WO2015045420A1 - 鋼板の摩擦撹拌接合方法及び接合継手の製造方法 - Google Patents

鋼板の摩擦撹拌接合方法及び接合継手の製造方法 Download PDF

Info

Publication number
WO2015045420A1
WO2015045420A1 PCT/JP2014/004984 JP2014004984W WO2015045420A1 WO 2015045420 A1 WO2015045420 A1 WO 2015045420A1 JP 2014004984 W JP2014004984 W JP 2014004984W WO 2015045420 A1 WO2015045420 A1 WO 2015045420A1
Authority
WO
WIPO (PCT)
Prior art keywords
joining
friction stir
tool
stir welding
heating device
Prior art date
Application number
PCT/JP2014/004984
Other languages
English (en)
French (fr)
Other versions
WO2015045420A8 (ja
Inventor
公一 谷口
松下 宗生
池田 倫正
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2016003933A priority Critical patent/MX2016003933A/es
Priority to US15/025,633 priority patent/US9833861B2/en
Priority to CN201480053292.3A priority patent/CN105579183B/zh
Priority to EP14849773.8A priority patent/EP3053697B1/en
Priority to JP2015502989A priority patent/JP6172261B2/ja
Priority to KR1020167009328A priority patent/KR101873126B1/ko
Publication of WO2015045420A1 publication Critical patent/WO2015045420A1/ja
Publication of WO2015045420A8 publication Critical patent/WO2015045420A8/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/123Controlling or monitoring the welding process
    • B23K20/1235Controlling or monitoring the welding process with temperature control during joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/1205Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using translation movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1225Particular aspects of welding with a non-consumable tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/227Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • C21D9/505Cooling thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a friction stir welding method for steel sheets, and particularly intends to improve joint strength.
  • a rotating tool is inserted into an unjoined portion of the overlapped or butted workpieces and moved while rotating, and the workpiece is softened by frictional heat with the rotating tool and the softened portion is moved.
  • This is a method of joining without adding a filler material by utilizing plastic flow generated by stirring of a rotary tool.
  • a butt portion that is in a state where the steel plates are just butt but not yet joined is referred to as an “unjoined portion”, while a portion joined and integrated by plastic flow is referred to as a “joined portion”. Shall be called.
  • FIG. 1 an example in the case of implementing friction stir welding with respect to the butt
  • the end faces of the steel plates 21 and 22 are brought into contact with each other to form an unjoined portion 20, and the rotary tool 10 is moved along the unjoined portion 20 while rotating.
  • the rotary tool 10 is arranged above the steel plates 21 and 22 and is configured to rotate by a motor (not shown).
  • a backing material 30 is installed in the lower part of the steel plate to support the steel plate against the pressure of the rotary tool.
  • the rotary tool 10 rotated by the drive of a motor moves to the arrow F direction, while the probe 12 contacts the steel plates 21 and 22 by the unjoined part 20.
  • the probe 12 creates a partial region of the plastic material around it, and the upper part 11 of the rotating body presses the steel plates 21 and 22 from above to prevent the material from being lost from the plastic zone. Therefore, the abutting portions of the unjoined portions 20 are heated and softened, and the steel plates 21 and 22 are solid-phase joined by a plastic material formed by plastic flow to form the joined portions 25.
  • Patent Document 1 proposes a joining method using a gas flame as a heating device.
  • FIG. 2 schematically shows the friction stir welding procedure when a gas flame is used as the heating device.
  • the members 1 and 2 are heated by using various gas flames 70 such as oxygen acetylene, oxygen propane, and oxygen natural gas as a heat source.
  • the substantially cylindrical gas nozzle portion 71 to which the gas flame 70 is injected is disposed in the vicinity of the front of the probe 62 in the movement direction and moves in conjunction with the movement of the probe 62.
  • the injection position of the gas flame 70 in the unjoined part 13 is always located in front of the joining device in the moving direction. Further, the injection width of the gas flame 70 is set so as to be approximately the same as the diameter of the shoulder 61 of the rotor 60 when the tip of the gas flame 70 hits the surfaces of the members 1 and 2 and expands. Has been. As a result, only the vicinity of the probe 62 in the unbonded portion 13 is heated, and the temperature in the vicinity of the probe and its peripheral region is increased.
  • a gas flame 70 is ejected from the gas nozzle portion 71 of the heating device 72, and the rotor 60 of the joining device 3 is rotated to insert the probe 62 that rotates integrally therewith into the unjoined portion 13, and the probe is inserted.
  • the probe 62 is moved relative to the members 1 and 2 along the butted portion. Thereby, the to-be-joined members 1 and 2 are joined and the junction part 14 is formed.
  • the unbonded portion is heated by the heat of the gas flame 70, and the contact portion between the probe 62 and the shoulder 61 is quickly softened, and the bonding by the probe 62 is performed. It aims to be easy.
  • Patent Document 2 uses an induction heating device as a heat source.
  • a control mechanism that sets the temperature until the joining with the rotary tool to a predetermined temperature, the time until the friction stir welding is started is shortened, thereby improving the controllability of the heating range and the heating temperature. Along with the improvement, it is said that it is possible to prevent cracking of the joining portion regardless of the material.
  • Patent Document 3 uses laser light as a heat source.
  • the unjoined part is heated before joining with the rotary tool, and after the unjoined part reaches a predetermined softening temperature, the irradiation of the laser beam is stopped to suppress wear of the joining tool. You can do that.
  • a technique using a gas flame, induction heating, or laser light as an auxiliary heat source when performing construction has been proposed.
  • Patent Documents 1 to 3 can reduce bonding defects or increase the bonding speed, but can be embrittled by temper softening or hardening in the heat-affected zone. This caused a problem that sufficient joint strength could not be obtained.
  • the present invention advantageously solves the above-described problems, and there is no risk of occurrence of bonding defects or damage to the bonding tool, and furthermore, there is no risk of temper softening or embrittlement due to hardening in the heat-affected zone at high speed. It aims at providing the friction stir welding method of the steel plate which improved joint strength under the joining speed of this.
  • the inventors investigated the relationship between the temperature distribution immediately before the start of the joining by the rotary tool and the joint state in the friction stir welding of the steel plates.
  • (1) When the heated region is wide, a good joint can be obtained due to the influence of softening, but the range of the heat-affected zone is expanded because of the large influence of heat generation by the steel plate and rotary tool.
  • (2) On the contrary, when the region to be heated is too narrow, the joining with the rotary tool becomes insufficient, and defects are likely to occur. (3) Therefore, in the friction stir welding of steel sheets, the knowledge that management of the temperature range immediately before the joining was particularly important was obtained.
  • the inventors heated the bonded parts under various conditions using a heating device arranged in front of the rotating tool in order to manage the temperature range immediately before the bonding.
  • the inventors studied earnestly about the influence of the surface temperature distribution in the direction perpendicular to the traveling direction on the joint state at the position where the joining by the rotary tool is started. That is, when the welded joint obtained as described above has been intensively studied from the structure, hardness, fracture form, etc., by increasing the temperature at the joining start position to a certain temperature, high-speed joining can be achieved by softening the steel plate. It becomes possible.
  • the gist configuration of the present invention is as follows. 1. A rotating tool is inserted into an unjoined part where two or more steel plates are overlapped or abutted, and the rotating tool is moved along the part to be joined while rotating, and the frictional heat between the rotating tool and the steel plate is moved.
  • T Ac1 is a temperature defined by the following equation using the amount of added elements in the steel sheet.
  • T Ac1 723-10.7 [% Mn] -16.9 [% Ni] +29.1 [% Si] +16.9 [% Cr] +290 [% As] +6.38 [% W]
  • [% M] represents the content (mass%) of the M element in the steel sheet.
  • the thermal conductivity TC B of the backing material disposed at a position facing the welding tool with the unbonded portion interposed therebetween is 0.5 ⁇ TC S ⁇ TC B ⁇ the thermal conductivity TC S of the steel plate.
  • 1.0 ⁇ TC S Friction stir welding method that satisfies the above relationship.
  • the friction of the steel sheet in which the C content of the steel sheet containing a larger amount of C among the C contents of two or more steel sheets is 0.1% by mass or more and 0.6% by mass or less.
  • T Ac1 is a temperature defined by the following equation using the amount of added elements in the steel sheet.
  • T Ac1 723-10.7 [% Mn] -16.9 [% Ni] +29.1 [% Si] +16.9 [% Cr] +290 [% As] +6.38 [% W]
  • [% M] represents the content (mass%) of the M element in the steel sheet.
  • a rotating tool is inserted into an unjoined portion in which two or more steel plates are overlapped or abutted, and the rotating tool is moved along a portion to be joined while rotating.
  • the present invention relates to friction stir welding in which steel plates are joined using softening of steel plates due to frictional heat and plastic flow generated by stirring.
  • any friction stir welding apparatus may be used as long as it can press and rotate the rotary tool to join the steel plates, and any control method such as position control or pressure control may be used.
  • a tool having a flat portion called a shoulder and a projection called a probe that is concentric with the shoulder is usually used.
  • the shape of the probe is not limited, and processing such as a screw-like spiral may be performed.
  • the material is not particularly limited, but a ceramic or a metal material excellent in high temperature strength is suitable.
  • FIG. 3 shows the relationship between the temperature conditions at the joining start position, the presence or absence of joining defects and tool breakage, and the joint efficiency when joining is performed while heating the steel sheet under various conditions in the forward direction of the joining tool.
  • This data uses a joining tool with a shoulder diameter d of 12 mm, a joining speed of 1 m / min, an Ac 1 temperature of 720 ° C., and a thickness of 1.0 to 3.0 mm. It was obtained after various implementations.
  • T Ac1 is a temperature defined by the following formula using the amount of additive element of the steel sheet, and corresponds to Ac 1 point of steel.
  • T Ac1 723-10.7 [% Mn] -16.9 [% Ni] +29.1 [% Si] +16.9 [% Cr] +290 [% As] +6.38 [% W]
  • [% M] represents the content (mass%) of the M element in the steel sheet.
  • the heating means may be any as long as it can be heated to a predetermined temperature, and is not particularly limited, but heating means using high-frequency induction heating or laser light is advantageously suitable.
  • heating means using high-frequency induction heating or laser light is advantageously suitable.
  • the arrangement position of the heating device is preferably a distance from 1 mm to 100 mm in front of the tool, and the heating range is preferably from 0.1 cm 2 to 100 cm 2 .
  • the heating method may operate separately or in conjunction with the movement of the tool. For example, in the case of a device that moves on the tool side, the heating device that is attached to this device and moves at the same speed as this device. However, when the joint side is fixed to the stage and the stage moves, a heating device installed on the stage can be considered. Examples of the heating device include an induction heating device and a laser.
  • the positional relationship between the joint and the heating device is not limited as long as it is forward in the direction of travel of the tool.
  • friction stir welding is performed on the side where the travel direction and rotational direction of the tool are the same ( On the advanced side (left side in FIG. 1) and on the side where the traveling direction and the rotation direction are opposite (retreating side, right side in FIG. 1), the advanced side has higher resistance and is more likely to cause defects. It is known. Therefore, by moving the heating range to the advanced side, the bondability is stabilized even at high speed.
  • the heating range is shifted to the advancing side, it is desirable that the position in the heating range where the maximum temperature is reached is somewhat shifted from the junction centerline and within the junction width.
  • the thermal conductivity (TC B ) of the backing material is too high at the time of bonding, the heat balance at the time of bonding cannot be maintained, causing defects. On the other hand, if TC B is too low, it causes excessive heat input.
  • the TC B of the present invention preferably satisfies the following relationship with the thermal conductivity (TC S ) of the bonded material from the viewpoint of appropriately controlling the temperature distribution. Therefore, it is preferable that the thermal conductivity of the backing material is about 0.5 to 1.0 times the thermal conductivity of the material to be joined. That is, for TC B and TC S , 0.5 ⁇ TC S ⁇ TC B ⁇ 1.0 ⁇ TC S It is preferable to satisfy this relationship.
  • the friction stir welding method according to the present invention is particularly suitable for a steel plate containing carbon in the range of 0.1 mass% to 0.6 mass% as an additive element. It is valid. This is because, by applying the present invention, the steel sheet can be joined at a particularly high speed as compared with the conventional joining speed.
  • heating range is preferably within a range from 0.1 cm 2 to 100 cm 2.
  • the reheating method may operate separately or in conjunction with the movement of the tool.
  • the heating that is attached to this device and moves at the same speed as this device.
  • a heating apparatus installed on the stage can be considered.
  • the heating device include an induction heating device and a laser.
  • the cooling condition is preferably a cooling rate of about 50 to 1000 ° C./s and cooling to 200 ° C. or less.
  • the steel plates can be joined at a high speed. That is, the general joining speed in friction stir welding is about 0.05 to 0.2 m / min, but according to the present invention, high carbon steel, which is considered difficult to join at high speed, is joined. Even in this case, bonding at a speed of 0.5 m / min or more is possible.
  • Tool rotation speed 100-1500rpm
  • the tool rotation speed is controlled to an appropriate value. There is a need. If the rotation speed of the tool is less than 100 rpm, heat generation and plastic flow may be insufficient, resulting in a problem that an unbonded portion is formed in the bonded portion, or an excessive load is applied to the rotating tool to cause damage.
  • the tool rotation speed is preferably in the range of 100 to 1500 rpm.
  • Tool rotation torque 50 to 1000 N ⁇ m
  • the tool rotational torque is less than 50 N ⁇ m, heat generation and plastic flow may be insufficient, resulting in a problem that an unjoined part is formed in the joined part, or an excessive load is applied to the rotating tool and the tool is damaged.
  • the tool rotation torque is preferably in the range of 50 to 1000 N ⁇ m.
  • FIG. 4 shows a friction stir welding apparatus used for carrying out the present invention.
  • the induction heating device 4 is disposed in front of the welding tool 60 in the traveling direction, and the induction heating device 8 is disposed behind the welding tool 60, so that the heating can be performed by these induction heating devices.
  • the tool 60 has a shape having a protruding probe 62 and a flat shoulder 61 made of tungsten carbide as a base material. Moreover, in order to suppress the oxidation of a junction part, it joined, spraying argon gas from the advancing direction front of the tool 60.
  • Friction stir welding was performed under the conditions shown in FIG. In addition, the joint butting was a so-called I-shaped groove with no angle. The frequency when heating by the induction heating device was 30 to 300 kHz. The results of investigating whether or not joining is possible when the friction stir welding is performed are shown in Table 1.
  • indicates that the tool can be joined without damaging the tool, and if there is no visible defect over the entire length of the joint, the x indicates that the tool is damaged or a defect that is visible somewhere in the entire length of the joint. The case where there was.
  • the term “defective” refers to a case where there are irregularities or through-holes that are more than half the plate thickness due to insufficient stirring or excessive stirring, or a case where there is a crack in the weld.
  • Example 2 Similar to Example 1, friction stir welding was performed under the conditions shown in Table 2 using the friction stir welding apparatus shown in FIG. The joining conditions were almost the same as in Example 1, but in Example 2, a backing material was used for joining. Table 2 also shows the results of investigating the possibility of joining, the joint efficiency, and the stability of the bead width when the friction stir welding is performed. Regarding the bead width, the minimum bead width and the maximum bead width were measured, and the difference was 20% or less of the minimum bead width.
  • Example 3 As in Example 1, friction stir welding was performed under the conditions shown in Table 3 using the friction stir welding apparatus shown in FIG. The joining conditions are almost the same as in the case of Example 1, but in Example 3, the joining was performed using the cooling device 9 and the rear heating device 8. Table 3 also shows the results of investigation on the joint efficiency and the standard deviation of the joint efficiency of 10 samples obtained under the same conditions when the friction stir welding is performed. ⁇ and ⁇ are those that can be joined, and ⁇ indicates that the tool can be joined without breakage, there is no visible defect over the entire length of the joint, and the bead width is stable.
  • the ⁇ mark indicates that the tool can be joined without being damaged, and if there is no visible defect in the joint, the ⁇ mark indicates that the tool has been damaged or that there is a visible defect somewhere in the entire length of the joint.
  • the term “defective” refers to a case where there are irregularities or through-holes that are more than half the plate thickness due to insufficient stirring or excessive stirring, or a case where there is a crack in the weld.
  • the standard deviation of the joint efficiency of the sample is the percentage obtained by dividing the joint strength by the strength of the base material, and the value is more than 5% and less than 8%, and more than 3% and less than 5% Was evaluated as ⁇ when it was 3% or less.

Abstract

鋼板同士を接合する摩擦撹拌接合方法において、回転工具の進行方向の前方に配置した加熱装置(4)により、回転工具(10)による接合前に未接合部を予め加熱するものとし、その際、回転工具(10)による接合が開始される位置における進行方向に垂直な方向における表面温度分布につき、TAc1 を鋼板のAc1 点として、その最高温度(TU)を、0.6×TAc1<TU<1.8×TAc1 の範囲とし、かつ温度(TL)=0.6×TAc1 を上回る加熱領域の幅をLとした場合に、ショルダ部の直径dに対して、0.3×d≦L≦2.0×dの関係を満足させることにより、接合欠陥の発生や接合ツールの破損のおそれがなく、さらには熱影響部における焼き戻し軟化あるいは硬化による脆化のおそれなしに、高速での接合速度下で継手強度を向上させることができる。

Description

鋼板の摩擦撹拌接合方法及び接合継手の製造方法
 本発明は、鋼板の摩擦撹拌接合方法に関し、特に継手強度の向上を図ろうとするものである。
 摩擦撹拌接合方法は、重ね合わせたまたは突き合わせた被加工材の未接合部に回転工具を挿入し回転させながら移動させ、この回転工具との摩擦熱による被加工材の軟化と、その軟化部を回転工具が撹拌することにより生じる塑性流動を利用して、溶加材を添加することなく接合を行う方法である。
 なお、本明細書では、例えば鋼板を突き合わせただけで未だ接合されてない状態にある突き合わせ部分を「未接合部」、一方、塑性流動により接合されて一体化された部分を「接合部」と呼ぶものとする。
 図1に、突き合わせた鋼板に対して摩擦撹拌接合を実施する場合の一例を示す。
 同図に示したとおり、この摩擦撹拌接合方法では、鋼板21,22の端面を互いに突き合わせて未接合部20とし、この未接合部20に沿って回転工具10を回転させながら移動させる。回転工具10は、鋼板21,22の上部に配置して、モータ(図示省略)によって回転するよう構成されている。鋼板の下部には裏当て材30を設置し、回転工具の加圧に対し鋼板を支えている。そして、モータの駆動によって回転する回転工具10は、プローブ12が未接合部20で鋼板21,22に接触しながら矢印F方向に移動する。このときプローブ12は、その周りに可塑性材の部分領域を作り、回転体上部11は、上方向から鋼板21,22を押圧し、可塑性ゾーンから材料が失われるのを防いでいる。従って、鋼板21,22は、未接合部20の突き合わせ部分が発熱して軟化し、塑性流動してできた可塑性材によって固相接合され、接合部25が形成される。
 かような摩擦撹拌接合において、接合の高速化または接合欠陥の低減を目的として、回転工具による接合とは別に加熱を行う方法が検討されてきた。
 例えば、特許文献1には、加熱装置としてガス炎を用いた接合方法が提案されている。図2に、加熱装置としてガス炎を用いた場合の摩擦撹拌接合要領を模式で示す。この方式は、酸素アセチレン、酸素プロパン、酸素天然ガス等の各種ガス炎70を熱源として被接合部材1,2を加熱するものである。この加熱装置72において、ガス炎70が噴射される略円筒状のガスノズル部71は、プローブ62の移動方向前方の近傍部位に配置されると共に、プローブ62の動きと連動して移動する。さらに未接合部13におけるガス炎70の噴射位置は常に接合装置の移動方向前方に位置するものとされている。また、ガス炎70の噴射幅は、被接合部材1,2の表面にぶつかってその先端部が広がった状態になったときに回転子60のショルダ61の径と略同一寸法になるように設定されている。これにより未接合部13のうちプローブ62近傍だけを加熱して、このプローブ近傍及びその周辺領域の温度を上昇させるようになっている。
 上記の摩擦撹拌接合法における加熱装置の動作について説明する。加熱装置72のガスノズル部71からガス炎70を噴射させると共に、接合装置3の回転子60を回転させてこれと一体回転するプローブ62を未接合部13に挿入し、プローブが挿入された状態のまま突き合わせ部に沿ってプローブ62を被接合部材1,2に対し相対的に移動させる。これにより、被接合部材1,2が接合されて接合部14が形成される。
 図2に示した加熱装置72を用いた摩擦撹拌接合では、ガス炎70の熱によって未接合部が加熱され、プローブ62及びショルダ61との接触部を迅速に軟化させて、プローブ62による接合を容易とすることを狙いとしている。
 特許文献2は、熱源として誘導加熱装置を用いたものである。ここでは、回転工具による接合が行われるまでの温度を所定の温度とする制御機構を設けることで、摩擦撹拌接合を開始するまでの時間を短縮し、それにより加熱範囲及び加熱温度の制御性の向上と共に、材質に拠らず、接合部位の割れを防止できるとしている。
 特許文献3は、熱源としてレーザ光を用いたものである。ここでは、回転工具による接合が行われるまでに未接合部を加熱し、未接合部が予め定めた軟化温度に達した後に、レーザ光の照射を停止させることで、接合ツールの摩耗を抑制することができるとしている。
 このように、従来の摩擦擦撹拌接合では、施工を行う際の補助熱源として、ガス炎や誘導加熱、レーザ光を用いる技術が提案されている。
特許第3081808号公報 特許第4235874号公報 特許第4537132号公報
 しかしながら、鋼板の摩擦撹拌接合にあたり、特許文献1~3に記載の方法では、接合欠陥の低減、あるいは接合速度の高速化が達成できたとしても、熱影響部において焼き戻し軟化あるいは硬化による脆化が生じ、十分な継手強度を得ることができないという問題を残していた。
 本発明は、上記の問題を有利に解決するもので、接合欠陥の発生や接合ツールの破損のおそれがなく、さらには熱影響部における焼き戻し軟化あるいは硬化による脆化のおそれなしに、高速での接合速度下で継手強度を向上させた鋼板の摩擦撹拌接合方法を提供することを目的とする。
 さて、発明者らは、上記の問題を解決するために、鋼板の摩擦撹拌接合において、回転工具による接合が開始される直前の温度分布と継手状態との関係について調査した。
 その結果、
(1)加熱される領域が広い場合は、軟化の影響によって良好な接合部が得られるものの、鋼板、回転工具による発熱の影響が大きいために、熱影響部の範囲は拡大する、
(2)逆に、加熱される領域が狭すぎる場合は、回転工具による接合が不十分となり、欠陥を生じやすくなる、
(3)したがって、鋼板の摩擦撹拌接合においては、接合直前における温度範囲の管理が特に重要である
との知見を得た。
 そこで、発明者らは、接合直前における温度範囲を管理すべく、回転工具の進行方向の前方に配置した加熱装置で被接合部を種々の条件で加熱を施した。そして特に、回転工具による接合が開始される位置における,進行方向に垂直な方向の表面温度分布が継手状態に及ぼす影響について、鋭意検討を重ねた。
 すなわち、上記のようにして得られた溶接継手を、組織、硬さおよび破断形態等から鋭意検討したところ、接合開始位置における温度を一定の温度まで上げることで、鋼板の軟化により高速な接合が可能となる。しかし一方で、温度を上げすぎた場合は摩擦撹拌接合の原理である塑性流動が逆に減少して、欠陥の原因となることが分かった。
 また、接合開始位置における温度が一定の温度に達しない場合は、ツールによる発熱が主体になり、従来方法と変わらない結果、継手強度は改善されない。一方温度が高すぎる場合にはツールの摩擦熱が減少しツールによる温度分布の変化が起こらず、さらには焼入れされてしまうため、脆化の原因となることも判明した。
 さらに、高C鋼の場合、焼入れ性が高いために、接合後の急冷による脆化や拘束から生じる残留応力によって割れが発生する可能性がある。従って、冷却速度の低下や焼戻しによる硬化・脆化の抑制が必要になる場合が考えられる。
 そこで、発明者らは、接合後の再加熱、さらには接合後・再加熱前の冷却に関しても併せて検討した結果、その有効性が確認された。
 本発明は、上記の知見に立脚するものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.二枚以上の鋼板を重ね合わせた、または突き合わせた未接合部に、回転工具を挿入し、この回転工具を回転させながら接合する部分に沿って移動させ、この回転工具と上記鋼板との摩擦熱による鋼板の軟化と、撹拌することにより生じる塑性流動を利用して鋼板同士を接合する摩擦撹拌接合方法において、
 上記回転工具の進行方向の前方に配置した加熱装置によって、回転工具による接合前に未接合部を予め加熱するものとし、
 その際、回転工具による接合が開始される位置において、進行方向に垂直な方向の表面の最高温度TUが、
 0.6×TAc1<TU<1.8×TAc1
の範囲を満足し、かつ温度TL=0.6×TAc1を上回る加熱領域の幅Lが、上記回転工具のショルダ部の直径dに対し、
 0.3×d≦L≦2.0×d
の関係を満足する摩擦撹拌接合方法。
 なお、TAc1は鋼板の添加元素量を用いて、次式で定義される温度とする。
 TAc1=723-10.7〔%Mn〕-16.9〔%Ni〕+29.1〔%Si〕+16.9〔%Cr〕+290〔%As〕+6.38〔%W〕
 ここで、〔%M〕は、M元素の鋼板中の含有量(質量%)を表す。
2.前記1において、未接合部を挟み、接合ツールに対向する位置に配置する裏当て材の熱伝導率TCBが、鋼板の熱伝導率TCSに対して
 0.5×TCS≦TCB≦1.0×TCS
の関係を満足する摩擦攪拌接合方法。
3.前記1または2において、加熱装置が高周波誘導加熱装置であり、該加熱装置の使用周波数を20kHz以上360kHz以下とする摩擦攪拌接合方法。
4.前記1~3のいずれかにおいて、二枚以上の鋼板の各C量のうち、より多量にCを含有する鋼板のC量を0.1質量%以上0.6質量%以下とする鋼板の摩擦撹拌接合方法。
5.前記1に記載の摩擦撹拌接合方法において、
 回転工具の進行方向の後方に、接合部の再加熱を司る後方加熱装置を配置し、該後方加熱装置により再加熱される領域の再加熱後の最高温度をTpとするとき、このTpが、
 0.6×TAc1≦Tp≦1.2×TAc1
の関係を満足する鋼板の摩擦撹拌接合方法。
 なお、TAc1は鋼板の添加元素量を用いて、次式で定義される温度とする。
 TAc1=723-10.7〔%Mn〕-16.9〔%Ni〕+29.1〔%Si〕+16.9〔%Cr〕+290〔%As〕+6.38〔%W〕
 ここで、〔%M〕は、M元素の鋼板中の含有量(質量%)を表す。
6.前記5において、回転工具と後方加熱装置との間に、接合部の冷却を司る冷却装置を配置して鋼板を冷却する鋼板の摩擦撹拌接合方法。
7.前記1~6のいずれかに記載の摩擦攪拌接合方法を用いる鋼板の接合継手の製造方法。
 本発明によれば、速い接合速度の下で、溶接欠陥やツール破損などのない鋼板の接合が可能となる。
突き合わせた鋼板に対して摩擦撹拌接合を実施する場合の一般的な接合要領を示した図である。 加熱装置としてガス炎を用いた場合の摩擦撹拌接合要領を示した図である。 接合ツールの進行方向の前方において、種々の条件で鋼板を加熱しつつ接合を実施した場合における、接合開始位置での温度条件と接合欠陥やツール破損の有無および継手効率とを関係を示した図である。 本発明の実施に用いた摩擦撹拌接合装置を示した図である。
 以下、本発明を具体的に説明する。
 本発明は、二枚以上の鋼板を重ね合わせた、または突き合わせた未接合部に、回転工具を挿入し、この回転工具を回転させながら接合する部分に沿って移動させ、この回転工具と上記鋼板との摩擦熱による鋼板の軟化と、撹拌することにより生じる塑性流動を利用して鋼板同士を接合する摩擦撹拌接合に関するものである。この時、使用する摩擦撹拌接合装置としては、回転工具を加圧、回転して鋼板を接合することのできるものであれば何でもよく、位置制御か加圧制御かなどの制御方法は問わない。
 回転工具としては、通常、ショルダと呼ばれる平坦部と、ショルダと同心であるプローブと呼ばれる突起を有する工具が用いられる。プローブの形状は問わず、ネジ状のスパイラルなどの加工が施されていてもよい。また、材質についても、とくに限定されることはないが、セラミックスや高温強度に優れる金属材が好適である。
 図3に、接合ツールの進行方向の前方において、種々の条件で鋼板を加熱しつつ接合を実施した場合における、接合開始位置での温度条件と接合欠陥やツール破損の有無および継手効率とを関係について調査した結果を示す。このデータは、ショルダ径dが12mmの接合ツールを用い、接合速度:1m/minで、Ac1温度が720℃で板厚が1.0~3.0mmの鋼板について、突き合わせまたは重ね合わせ接合を種々実施して、得られたものである。
 同図に示したとおり、接合開始位置では、進行方向に垂直な方向の表面において温度分布が生じるがその中の最高温度をTUとするとき、このTU
 0.6×TAc1<TU<1.8×TAc1
の範囲を満足し、かつ温度TL(=0.6×TAc1)を超える加熱領域の幅Lが、回転工具のショルダ部の直径dに対し、
 0.3×d≦L≦2.0×d
の関係を満足する場合に、接合欠陥の発生やツールの破損なしに、しかも継手効率として、継手強度が母材強度の8割を超える高強度継手が得られている。
 ここに、TAc1は、鋼板の添加元素量を用いて次式で定義される温度であり、鋼のAc1点に相当する。
 TAc1=723-10.7〔%Mn〕-16.9〔%Ni〕+29.1〔%Si〕+16.9〔%Cr〕+290〔%As〕+6.38〔%W〕
 ここで、〔%M〕は、M元素の鋼板中の含有量(質量%)を表す。
 最高温度TUを0.6×TAc1超まで温度を上げることで、鋼板の好適な軟化により高速での接合が可能となる。一方、この最高温度TUが1.8×TAc1以上に高くなると、摩擦撹拌接合の原理である塑性流動が逆に低減して、溶接欠陥の原因となる。
 また、加熱手段については、所定の温度までの加熱が可能であればいずれでもよく、特に限定はされないが、高周波誘導加熱やレーザ光などを用いる加熱手段が有利に適合する。
 特に、高周波加熱装置を用いる場合は、加熱効率および加熱範囲を考慮すると、使用周波数を20kHz以上360kHz以下とすることが好ましく、かかる周波数の装置を用いることによって、上記した温度範囲への制御が容易となる。
 接合ツールと加熱装置との位置関係および加熱範囲については、接合前における温度が重要であるので、進行方向前方であればその距離、範囲は問わない。しかし、加熱効率および鋼板への影響を考慮すると、加熱装置の配置位置はツール前方1mm以上100mmまでの距離、また加熱範囲は0.1cm2から100cm2までの範囲とすることが好ましい。
 なお、加熱方法は、ツールの移動と別個に、または連動して動作してもよく、例えばツール側が移動する装置の場合には、この装置に取り付けられ、この装置と同じ速度で移動する加熱装置が、また継手側がステージに固定されてステージが動く場合には、このステージに設置された加熱装置が考えられる。加熱装置としては誘導加熱装置やレーザが挙げられる。
 接合部と加熱装置の位置関係については、上述したとおり、ツールの進行方向前方であれば、その関係は問わないが、一般に摩擦撹拌接合はツールの進行方向と回転方向とが同じである側(アドバンシングサイド、図1では左側)と、進行方向と回転方向が逆である側(リトリーティングサイド、図1では右側)とでは、アドバンシングサイド側の方が、抵抗が高く、欠陥が生じやすいことが知られている。したがって、加熱範囲をアドバンシングサイド側へ移動させることで、高速でも接合性が安定する。加熱範囲をアドバンシングサイド側へずらす場合には、加熱範囲のうち、最高温度に達する位置が、接合部中心線から幾分ずれ、接合部幅以内であることが望ましい。
 また、接合に際して,裏当て材の熱伝導率(TCB)があまりに高いと、接合時における熱バランスが保てず、欠陥の原因となる。一方、TCBがあまりに低いと、入熱過剰の原因となる。
 そして、本発明のTCBは、温度分布を適切に制御する観点から、被接合材の熱伝導率(TCS)と以下の関係を満足することが好ましい。
 したがって、裏当て材の熱伝導率は被接合材の熱伝導率に対して0.5倍以上1.0倍程度とすることが好ましい。
 すなわち、上記TCBとTCSとについては、
 0.5×TCS≦TCB≦1.0×TCS
の関係を満足させることが好ましい。
 本発明で対象とする鋼板について、特に制限はないが、本発明による摩擦撹拌接合方法は、添加元素に炭素を0.1質量%以上0.6質量%以下の範囲で含む鋼板に対してとりわけ有効である。
 というのは、本発明を適用することで、従来の接合速度に比して、特に高速で接合可能な鋼板だからである。
 前述したように、本発明で想定する高炭素鋼の場合、急冷による硬化・脆化や残留応力の影響によって接合後に割れが生じる場合がある。この点について、本発明では、接合後に接合部を再加熱することにより割れの発生を抑制することができる。ただし、過剰な再加熱は、より広い範囲における硬化・脆化の原因となるおそれがある。かような硬化等を抑制するために、再加熱したとしても、後方加熱装置により加熱される領域の再加熱後の最高温度Tpを、TAc1との関係で
  0.6×TAc1≦Tp≦1.2×TAc1
の範囲に制御する必要がある。
 上記の再加熱を行った場合における、接合ツールと後方加熱装置の位置関係および再加熱範囲については、再加熱そのものが重要であるので、進行方向後方であればその距離、範囲は問わない。しかし、効率および鋼板への影響を考慮すると、ツール後方1mm以上200mmまでの距離で、加熱範囲は0.1cm2から100cm2までの範囲とすることが好ましい。
 なお、再加熱方法は、ツールの移動と別個に、または連動して動作してもよく、例えばツール側が移動する装置の場合には、この装置に取り付けられ、この装置と同じ速度で移動する加熱装置が、また継手側がステージに固定されてステージが動く場合には、このステージに設置された加熱装置が考えられる。加熱装置としては誘導加熱装置やレーザが挙げられる。
 上記の再加熱を行う場合、焼戻しによる割れを防止するためには、接合ツールと後方加熱装置との間に冷却装置を設けることが有利である。この場合の冷却方法としては、ガスやミスト、銅板接触などが考えられる。冷却効率や継手の酸化、サビ発生の影響を考えると、不活性ガスの使用が望ましい。
 また、その冷却条件は、冷却速度:50~1000℃/s程度で200℃以下まで冷却することが好ましい。
 以上述べたとおり、本発明に従えば、高速での鋼板の接合が可能になる。
 すなわち、摩擦撹拌接合における一般的な接合速度は0.05~0.2m/min程度であるが、本発明に従った場合には、高速での接合が難しいとされる高炭素鋼を接合する場合であっても0.5m/min以上の速度での接合が可能となる。
 本発明の摩擦撹拌接合法におけるその他の接合条件については次のとおりである。
ツール回転数:100~1500rpm
 回転ツールと加工物の接合部との間で摩擦熱を発生させ、その熱により軟化した接合部をツールが撹拌することにより生じる塑性流動を発生させるためには、適正なツール回転数に制御する必要がある。このツール回転数が100rpm未満では、発熱と塑性流動が不足し接合部に未接合部が生じたり、回転ツールに過大な負荷が掛かり破損したりする不具合が生じるおそれがある。一方、ツール回転数が1500rpmを超えると、発熱と塑性流動が過大となり軟化した金属が接合部からバリとして欠損するため接合部の十分な厚さが得られなかったり、回転ツールが過度に加熱されて破損したりする不具合が生じるおそれがある。よって、ツール回転数は100~1500rpmの範囲とすることが好ましい。
ツール回転トルク:50~1000N・m
 回転ツールと加工物の接合部との間で摩擦熱を発生させ、その熱により軟化した接合部をツールが撹拌することにより生じる塑性流動を発生させるためには、ツール回転トルクを適正範囲に設定する必要がある。このツール回転トルクが50N・m未満では、発熱と塑性流動が不足し接合部に未接合部が生じたり、回転ツールに過大な荷重が掛かり破損したりする不具合が生じるおそれがある。一方、ツール回転トルクが1000N・mを超えると、発熱と塑性流動が過大となり軟化した金属が接合部からバリとして欠損するため接合部の十分な厚さが得られなかったり、回転ツールが過度に加熱されて破損したりする不具合が生じるおそれがある。よって、ツール回転トルクは50~1000N・mの範囲とすることが好ましい。
(実施例1)
 図4に、本発明の実施に用いた摩擦撹拌接合装置を示す。この装置は、接合ツール60の進行方向前方に誘導加熱装置4を、またその後方に誘導加熱装置8を配置し、これらの誘導加熱装置により加熱できる仕組みになっている。ツール60には、タングステンカーバイドを基材とする突起状のプローブ62と平坦なショルダ61を有する形状を用いた。また、接合部の酸化を抑制するため、アルゴンガスをツール60の進行方向前方より吹き付けつつ接合を行った。
 なお、図中、符号9は冷却装置、35は電源、40は加熱温度設定パネルである。
 図4に示した摩擦撹拌接合装置を用い、板厚が1.2mmの鋼板(C:0.3質量%、Si:0.1質量%、Mn:1.0質量%)に対し、表1に示す条件で摩擦撹拌接合を施した。なお、継手の突き合わせは、角度を付けないいわゆるI型開先とした。また、誘導加熱装置により加熱する際の周波数は30~300kHzとした。
 上記の摩擦撹拌接合を実施した場合における接合の可否について調査した結果を、表1に併記する。
 接合の可否で、○印はツールが破損せずに接合可能であり、接合全長にわたり目視可能な不良がなかった場合、×印はツールが破損したか、接合全長のどこかに目視可能な不良があった場合を表す。ここで不良とは、撹拌不足または過剰な撹拌によって板厚の半分以上の凹凸や貫通穴がある場合、あるいは溶接部における割れがある場合を指す。
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、本発明に従い摩擦撹拌接合した場合には、0.5m/minを超える接合速度であっても、溶接欠陥の発生がなく、また高い継手効率の接合継手を得ることができた。
(実施例2)
 実施例1と同様、図4に示した摩擦撹拌接合装置を用いて、表2に示す条件で摩擦撹拌接合を実施した。接合条件は、実施例1の場合とほぼ同じであるが、この実施例2では、接合に際して裏当て材を使用した。
 上記の摩擦撹拌接合を実施した場合における接合の可否におよび継手効率、さらにビード幅の安定性について調査した結果を、表2に併記する。ビード幅については、最小のビード幅と最大のビード幅を計測し、その差が最小のビード幅の20%以下であることをもって安定するとした。
Figure JPOXMLDOC01-appb-T000002
 表2に示したように、本発明に従い摩擦撹拌接合した場合には、0.5m/minを超える接合速度であっても、安定したビード幅で、溶接欠陥の発生がなく、また高い継手効率の下で接合継手を得ることができた。
(実施例3)
 実施例1と同様、図4に示した摩擦撹拌接合装置を用い、表3に示す条件で摩擦撹拌接合を実施した。接合条件は、実施例1の場合とほぼ同じであるが、この実施例3では冷却装置9および後方加熱装置8を用いて接合を実施した。
 上記の摩擦撹拌接合を実施した場合における継手効率および同一条件で得られた10本のサンプルの継手効率の標準偏差について調査した結果を、表3に併記する。
 接合の可否で、○および◎は接合可能であったものであり、◎印はツールが破損せずに接合可能であり、接合全長にわたり目視可能な不良がなく、さらにビード幅が安定していた場合、○印はツールが破損せずに接合が可能であり、接合部に目視可能な不良がなかった場合、×印はツールが破損したか,接合全長のどこかに目視可能な不良があった場合を表す。ここで不良とは、撹拌不足または過剰な撹拌によって板厚の半分以上の凹凸や貫通穴がある場合、あるいは溶接部における割れがある場合を指す。
 サンプルの継手効率の標準偏差は、継手強度を母材強度で除してパーセンテージとし、その値が5%を超えて8%以下であるものを△、3%を超えて5%以下であるものを○、3%以下であるものを◎として評価した。
Figure JPOXMLDOC01-appb-T000003
 表3に示したように、本発明に従い摩擦撹拌接合した場合には、0.5m/minを超える接合速度であっても、溶接欠陥の発生がなく、かつ高い継手効率の下で、接合継手を得ることができた。特に、摩擦撹拌接合後、適切な再加熱処理または冷却-再加熱処理を施した場合には、より安定的な接合継手を得ることができた。
符号の簡単な説明
 1,2 被接合部材
 3 接合装置
 4 誘導加熱装置
 8 後方加熱装置
 9 冷却装置
 10 回転工具
 11 回転体上部
 12 プローブ
 13 未接合部
 14 接合部
 20 未接合部
 21,22 鋼板
 25 接合部
 30 裏当て材
 35 電源
 40 加熱温度設定パネル
 60 接合ツール(回転子)
 61 ショルダ
 62 プローブ
 70 ガス炎
 71 ガスノズル部
 72 加熱装置

Claims (7)

  1.  二枚以上の鋼板を重ね合わせた、または突き合わせた未接合部に、回転工具を挿入し、この回転工具を回転させながら接合する部分に沿って移動させ、この回転工具と上記鋼板との摩擦熱によって鋼板に軟化部を形成し、さらにその軟化部を撹拌することにより生じる塑性流動を利用して鋼板同士を接合する摩擦撹拌接合方法において、
     上記回転工具の進行方向の前方に配置した加熱装置によって、回転工具による接合前に未接合部を予め加熱するものとし、
     その際、回転工具による接合が開始される位置において、進行方向に垂直な方向の表面の最高温度TUが、
     0.6×TAc1<TU<1.8×TAc1
    の範囲を満足し、かつ温度TL=0.6×TAc1を超える加熱領域の幅Lが、上記回転工具のショルダ部の直径dに対し、
     0.3×d≦L≦2.0×d
    の関係を満足する摩擦撹拌接合方法。
     なお、TAc1は鋼板の添加元素量を用いて、次式で定義される温度とする。
     TAc1=723-10.7〔%Mn〕-16.9〔%Ni〕+29.1〔%Si〕+16.9〔%Cr〕+290〔%As〕+6.38〔%W〕
     ここで、〔%M〕は、M元素の鋼板中の含有量(質量%)を表す。
  2.  請求項1において、未接合部を挟み、接合ツールに対向する位置に配置する裏当て材の熱伝導率TCBが、鋼板の熱伝導率TCSに対して
     0.5×TCS≦TCB≦1.0×TCS
    の関係を満足する摩擦攪拌接合方法。
  3.  請求項1または2において、加熱装置が高周波誘導加熱装置であり、該加熱装置の使用周波数を20kHz以上360kHz以下とする摩擦攪拌接合方法。
  4.  請求項1~3のいずれかにおいて、二枚以上の鋼板の各C量のうち、より多量にCを含有する鋼板のC量を0.1質量%以上0.6質量%以下とする鋼板の摩擦撹拌接合方法。
  5.  請求項1に記載の摩擦撹拌接合方法において、
     回転工具の進行方向の後方に、接合部の再加熱を司る後方加熱装置を配置し、該後方加熱装置により再加熱される領域の再加熱後の最高温度をTpとするとき、このTpが、
     0.6×TAc1≦Tp≦1.2×TAc1
    の関係を満足する鋼板の摩擦撹拌接合方法。
     なお、TAc1は鋼板の添加元素量を用いて、次式で定義される温度とする。
     TAc1=723-10.7〔%Mn〕-16.9〔%Ni〕+29.1〔%Si〕+16.9〔%Cr〕+290〔%As〕+6.38〔%W〕
     ここで、〔%M〕は、M元素の鋼板中の含有量(質量%)を表す。
  6.  請求項5において、回転工具と後方加熱装置との間に、接合部の冷却を司る冷却装置を配置して鋼板を冷却する鋼板の摩擦撹拌接合方法。
  7.  請求項1~6のいずれかに記載の摩擦撹拌接合方法を用いる鋼板の接合継手の製造方法。
PCT/JP2014/004984 2013-09-30 2014-09-29 鋼板の摩擦撹拌接合方法及び接合継手の製造方法 WO2015045420A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2016003933A MX2016003933A (es) 2013-09-30 2014-09-29 Metodo de soldadura por friccion-agitacion para laminas de acero y metodo de fabricacion de junta.
US15/025,633 US9833861B2 (en) 2013-09-30 2014-09-29 Friction stir welding method for steel sheets and method of manufacturing joint
CN201480053292.3A CN105579183B (zh) 2013-09-30 2014-09-29 钢板的摩擦搅拌接合方法及接合接头的制造方法
EP14849773.8A EP3053697B1 (en) 2013-09-30 2014-09-29 Friction stir welding method for steel sheets
JP2015502989A JP6172261B2 (ja) 2013-09-30 2014-09-29 鋼板の摩擦撹拌接合方法及び接合継手の製造方法
KR1020167009328A KR101873126B1 (ko) 2013-09-30 2014-09-29 강판의 마찰 교반 접합 방법 및 접합 이음매의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-204505 2013-09-30
JP2013204505 2013-09-30
JP2013-227499 2013-10-31
JP2013227499 2013-10-31

Publications (2)

Publication Number Publication Date
WO2015045420A1 true WO2015045420A1 (ja) 2015-04-02
WO2015045420A8 WO2015045420A8 (ja) 2016-03-24

Family

ID=52742588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004984 WO2015045420A1 (ja) 2013-09-30 2014-09-29 鋼板の摩擦撹拌接合方法及び接合継手の製造方法

Country Status (7)

Country Link
US (1) US9833861B2 (ja)
EP (1) EP3053697B1 (ja)
JP (1) JP6172261B2 (ja)
KR (1) KR101873126B1 (ja)
CN (1) CN105579183B (ja)
MX (1) MX2016003933A (ja)
WO (1) WO2015045420A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160214203A1 (en) * 2013-09-30 2016-07-28 Jfe Steel Corporation Friction stir welding method for steel sheets and method of manufacturing joint
US20160221117A1 (en) * 2013-09-30 2016-08-04 Jfe Steel Corporation Friction stir welding method for steel sheets and method of manufacturing joint
US20160228981A1 (en) * 2013-09-30 2016-08-11 Jfe Steel Corporation Friction stir welding method for structural steel and method of manufacturing joint for structural steel
CN109070262A (zh) * 2016-03-31 2018-12-21 杰富意钢铁株式会社 结构用钢的摩擦搅拌接合方法和装置
JP2020124739A (ja) * 2019-02-06 2020-08-20 Jfeスチール株式会社 両面摩擦攪拌接合方法および両面摩擦攪拌接合装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003740A1 (ja) * 2016-06-27 2018-01-04 川崎重工業株式会社 摩擦攪拌点接合方法および摩擦攪拌点接合装置
CN106181020B (zh) * 2016-08-28 2018-08-10 兰州理工大学 随动式改善Al/Cu搅拌摩擦焊焊缝组织的方法
KR102173603B1 (ko) * 2016-10-11 2020-11-03 제이에프이 스틸 가부시키가이샤 마찰 교반 접합 방법 및 장치
JP6681941B2 (ja) * 2018-05-31 2020-04-15 株式会社Uacj 衝撃吸収部材
EP3984684A4 (en) * 2019-06-17 2022-11-02 Nippon Steel Corporation GLUED CONNECTION AND ELEMENT FOR A MOTOR VEHICLE
EP4019180A4 (en) * 2019-08-20 2023-05-24 Nippon Steel Corporation COUPLING JOINT, AUTOMOTIVE PART AND METHOD OF MAKING COUPLING JOINT
CN111421223B (zh) * 2020-05-07 2023-11-24 铜陵学院 一种用于异种材料的搅拌摩擦对接焊装置及其加工方法
CN112917000A (zh) * 2021-03-31 2021-06-08 西南交通大学 一种基于相变控温的搅拌摩擦焊接系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3081808B2 (ja) 1997-02-17 2000-08-28 昭和アルミニウム株式会社 摩擦撹拌接合法
US20060231595A1 (en) * 2005-04-14 2006-10-19 James Florian Quinn Method for friction stir welding of dissimilar materials
JP2007263299A (ja) * 2006-03-29 2007-10-11 Ntn Corp 車輪用軸受装置の製造方法
JP4235874B2 (ja) 2001-09-20 2009-03-11 株式会社安川電機 摩擦撹拌接合法の加熱装置
JP4537132B2 (ja) 2004-07-07 2010-09-01 川崎重工業株式会社 スポット接合用摩擦攪拌接合方法
JP2012040584A (ja) * 2010-08-17 2012-03-01 Osaka Univ 鉄系材料の接合方法
JP2013049092A (ja) * 2012-11-06 2013-03-14 Osaka Univ 金属材の接合方法

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394187A (en) * 1981-02-25 1983-07-19 Sumitomo Metal Industries, Ltd. Method of making steels which are useful in fabricating pressure vessels
US5829664A (en) * 1996-11-15 1998-11-03 Aluminum Company Of America Resistance heated stir welding
SE9701265D0 (sv) * 1997-04-04 1997-04-04 Esab Ab Förfarande och anordning för friktionsomrörningssvetsning
US5942314A (en) * 1997-04-17 1999-08-24 Mitsui Mining & Smelting Co., Ltd. Ultrasonic welding of copper foil
US6155767A (en) 2000-03-10 2000-12-05 Walker; Harold A. Three-batch coal loadout system and method
JP3288678B2 (ja) * 2000-06-19 2002-06-04 川崎重工業株式会社 摩擦撹拌接合の仮付け方法
DE10036170C1 (de) * 2000-07-25 2001-12-06 Eads Deutschland Gmbh Laserunterstütztes Reibrührschweißverfahren
JP2003154470A (ja) * 2001-11-20 2003-05-27 Hitachi Ltd 摩擦攪拌接合方法
AU2002352844A1 (en) * 2001-11-27 2003-06-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Spa Thermal stir welding process and apparatus
US6780525B2 (en) * 2001-12-26 2004-08-24 The Boeing Company High strength friction stir welding
US20050224562A1 (en) * 2002-03-26 2005-10-13 Prevey Paul S Apparatus and method for forming a weld joint having improved physical properties
US7360676B2 (en) * 2002-09-21 2008-04-22 Universal Alloy Corporation Welded aluminum alloy structure
JP4317685B2 (ja) * 2002-11-05 2009-08-19 三菱重工業株式会社 摩擦攪拌接合装置とその接合方法
US6802444B1 (en) * 2003-03-17 2004-10-12 The United States Of America As Represented By The National Aeronautics And Space Administration Heat treatment of friction stir welded 7X50 aluminum
US20070138239A1 (en) * 2005-12-15 2007-06-21 Sumitomo Light Metal Industries, Ltd. Method of joining heat-treatable aluminum alloy members by friction stir welding and joined product obtained by the method and used for press forming
US6913186B2 (en) * 2003-09-11 2005-07-05 The Boeing Company Apparatus and method for friction stir welding with a variable speed pin
JP4313714B2 (ja) * 2004-03-31 2009-08-12 日本車輌製造株式会社 摩擦撹拌接合装置及び摩擦撹拌接合方法
JP4468125B2 (ja) * 2004-09-27 2010-05-26 三菱重工業株式会社 摩擦撹拌接合方法及び装置
US7078647B2 (en) * 2004-10-21 2006-07-18 Wisconsin Alumni Research Foundation Arc-enhanced friction stir welding
JP2007111716A (ja) * 2005-10-19 2007-05-10 Showa Denko Kk クランプ装置、接合装置および接合方法
JP5099009B2 (ja) 2006-08-21 2012-12-12 国立大学法人大阪大学 金属材の加工方法及び構造物
DE102006048580C5 (de) * 2006-10-13 2015-02-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum rissfreien Schweißen, Reparaturschweißen oder Auftragsschweißen heißrissanfälliger Werkstoffe
US20080099533A1 (en) * 2006-10-31 2008-05-01 General Electric Method for controlling microstructure via thermally managed solid state joining
US20080302539A1 (en) * 2007-06-11 2008-12-11 Frank's International, Inc. Method and apparatus for lengthening a pipe string and installing a pipe string in a borehole
CA2706955A1 (en) * 2007-11-28 2009-06-04 Frank's International, Inc. Methods and apparatus for forming tubular strings
US20090261146A1 (en) * 2008-03-25 2009-10-22 Hou Gene J Donor material technology for friction stir welding
US20100136369A1 (en) * 2008-11-18 2010-06-03 Raghavan Ayer High strength and toughness steel structures by friction stir welding
DE102009002912A1 (de) * 2008-12-03 2010-06-10 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Coburg Fahrzeugsitz mit einer Mehrzahl von Struktur-oder Halteteilen sowie Verfahren zum Herstellen von Struktur-oder Halteteilen eines solchen Fahrzeugsitzes
US7874471B2 (en) * 2008-12-23 2011-01-25 Exxonmobil Research And Engineering Company Butt weld and method of making using fusion and friction stir welding
US7832613B2 (en) * 2009-01-15 2010-11-16 General Electric Company Friction stir welding system
CA2793798A1 (en) * 2010-03-31 2011-10-06 Smith International, Inc. Downhole tool having a friction stirred surface region
JP5563926B2 (ja) * 2010-08-19 2014-07-30 株式会社神戸製鋼所 摩擦圧接に適した機械構造用鋼材および衝撃特性、曲げ疲労特性に優れた摩擦圧接部品
DE102010054453A1 (de) * 2010-12-14 2012-06-14 Hochschule Für Angewandte Wissenschaften - Fachhochschule Kempten Verfahren zum Fügen von Werkstücken
JP5843547B2 (ja) * 2010-12-24 2016-01-13 本田技研工業株式会社 摩擦撹拌接合材の製造方法
WO2012147439A1 (ja) * 2011-04-28 2012-11-01 株式会社オーハシテクニカ 微細フェライト粒界析出型マルテンサイト組織を有する鋼製品及びその製造方法
US9259774B2 (en) * 2011-05-03 2016-02-16 GM Global Technology Operations LLC Clinching method and tool for performing the same
JP5461476B2 (ja) * 2011-05-27 2014-04-02 三菱重工業株式会社 摩擦攪拌接合装置
DE102011078144A1 (de) * 2011-06-27 2012-12-27 Airbus Operations Gmbh Verfahren und vorrichtung zum verbinden von fügeteilen, sowie bauteil
WO2013043877A1 (en) * 2011-09-23 2013-03-28 Burford Dwight A Mandrel tool probe for friction stir welding
FI126176B (sv) * 2011-10-17 2016-07-29 Uponor Infra Oy Förfarande för framställning av skivformiga strukturer
US9033205B2 (en) * 2012-07-27 2015-05-19 Alfredo CASTILLO Friction stir welding with temperature control
KR101809388B1 (ko) * 2013-09-30 2017-12-14 제이에프이 스틸 가부시키가이샤 구조용 강의 마찰 교반 접합 방법 및 구조용 강의 접합 조인트의 제조 방법
JP6407855B2 (ja) * 2013-09-30 2018-10-17 Jfeスチール株式会社 鋼板の摩擦撹拌接合方法及び接合継手の製造方法
JP6172261B2 (ja) * 2013-09-30 2017-08-02 Jfeスチール株式会社 鋼板の摩擦撹拌接合方法及び接合継手の製造方法
US10244588B2 (en) * 2014-10-14 2019-03-26 Illinois Tool Works Inc. Hybrid induction heating/welding assembly
WO2016147668A1 (ja) * 2015-03-19 2016-09-22 Jfeスチール株式会社 構造用鋼の摩擦撹拌接合装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3081808B2 (ja) 1997-02-17 2000-08-28 昭和アルミニウム株式会社 摩擦撹拌接合法
JP4235874B2 (ja) 2001-09-20 2009-03-11 株式会社安川電機 摩擦撹拌接合法の加熱装置
JP4537132B2 (ja) 2004-07-07 2010-09-01 川崎重工業株式会社 スポット接合用摩擦攪拌接合方法
US20060231595A1 (en) * 2005-04-14 2006-10-19 James Florian Quinn Method for friction stir welding of dissimilar materials
JP2007263299A (ja) * 2006-03-29 2007-10-11 Ntn Corp 車輪用軸受装置の製造方法
JP2012040584A (ja) * 2010-08-17 2012-03-01 Osaka Univ 鉄系材料の接合方法
JP2013049092A (ja) * 2012-11-06 2013-03-14 Osaka Univ 金属材の接合方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160214203A1 (en) * 2013-09-30 2016-07-28 Jfe Steel Corporation Friction stir welding method for steel sheets and method of manufacturing joint
US20160221117A1 (en) * 2013-09-30 2016-08-04 Jfe Steel Corporation Friction stir welding method for steel sheets and method of manufacturing joint
US20160228981A1 (en) * 2013-09-30 2016-08-11 Jfe Steel Corporation Friction stir welding method for structural steel and method of manufacturing joint for structural steel
US9821407B2 (en) * 2013-09-30 2017-11-21 Jfe Steel Corporation Friction stir welding method for structural steel and method of manufacturing joint for structural steel
US9833861B2 (en) * 2013-09-30 2017-12-05 Jfe Steel Corporation Friction stir welding method for steel sheets and method of manufacturing joint
US10005151B2 (en) * 2013-09-30 2018-06-26 Jfe Steel Corporation Friction stir welding method for steel sheets and method of manufacturing joint
CN109070262A (zh) * 2016-03-31 2018-12-21 杰富意钢铁株式会社 结构用钢的摩擦搅拌接合方法和装置
CN109070262B (zh) * 2016-03-31 2021-09-10 杰富意钢铁株式会社 结构用钢的摩擦搅拌接合方法和装置
US11241755B2 (en) 2016-03-31 2022-02-08 Jfe Steel Corporation Friction stir welding method and apparatus for structural steel
JP2020124739A (ja) * 2019-02-06 2020-08-20 Jfeスチール株式会社 両面摩擦攪拌接合方法および両面摩擦攪拌接合装置
JP6992773B2 (ja) 2019-02-06 2022-01-13 Jfeスチール株式会社 両面摩擦攪拌接合方法および両面摩擦攪拌接合装置

Also Published As

Publication number Publication date
JPWO2015045420A1 (ja) 2017-03-09
US9833861B2 (en) 2017-12-05
EP3053697A4 (en) 2016-08-31
WO2015045420A8 (ja) 2016-03-24
CN105579183A (zh) 2016-05-11
JP6172261B2 (ja) 2017-08-02
US20160221117A1 (en) 2016-08-04
KR101873126B1 (ko) 2018-06-29
KR20160054001A (ko) 2016-05-13
EP3053697A1 (en) 2016-08-10
MX2016003933A (es) 2016-06-17
CN105579183B (zh) 2018-10-26
EP3053697B1 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
JP6172261B2 (ja) 鋼板の摩擦撹拌接合方法及び接合継手の製造方法
JP6407855B2 (ja) 鋼板の摩擦撹拌接合方法及び接合継手の製造方法
JP5943142B2 (ja) 構造用鋼の摩擦撹拌接合方法および構造用鋼の接合継手の製造方法
JP6004147B1 (ja) 構造用鋼の摩擦撹拌接合装置
CN109803784B (zh) 摩擦搅拌接合方法及装置
JP6992773B2 (ja) 両面摩擦攪拌接合方法および両面摩擦攪拌接合装置
CN109070261B (zh) 结构用钢的摩擦搅拌接合方法和装置
CN109070262B (zh) 结构用钢的摩擦搅拌接合方法和装置
CN109689276B (zh) 摩擦搅拌接合方法及装置
JP2019166569A (ja) 摩擦攪拌接合方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480053292.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015502989

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849773

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014849773

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014849773

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201601953

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/003933

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15025633

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167009328

Country of ref document: KR

Kind code of ref document: A