WO2017169991A1 - 構造用鋼の摩擦撹拌接合方法及び装置 - Google Patents
構造用鋼の摩擦撹拌接合方法及び装置 Download PDFInfo
- Publication number
- WO2017169991A1 WO2017169991A1 PCT/JP2017/011286 JP2017011286W WO2017169991A1 WO 2017169991 A1 WO2017169991 A1 WO 2017169991A1 JP 2017011286 W JP2017011286 W JP 2017011286W WO 2017169991 A1 WO2017169991 A1 WO 2017169991A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heating
- stir welding
- friction stir
- steel
- tool
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/12—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/12—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
- B23K20/122—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
- B23K20/123—Controlling or monitoring the welding process
- B23K20/1235—Controlling or monitoring the welding process with temperature control during joining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/12—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
- B23K20/122—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
- B23K20/1245—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
- B23K20/125—Rotary tool drive mechanism
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/12—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
- B23K20/122—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
- B23K20/1245—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
- B23K20/1255—Tools therefor, e.g. characterised by the shape of the probe
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/24—Preliminary treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/18—Sheet panels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
- B23K2103/04—Steel or steel alloys
Definitions
- a rotary tool (hereinafter, sometimes simply referred to as “tool”) is inserted into an unjoined portion between workpieces and moved while rotating, and the workpiece is moved by frictional heat with the rotary tool.
- the present invention relates to a friction stir welding method in which joining is performed without adding a filler material by utilizing softening and plastic flow generated by stirring the softened portion by a rotating tool, and an apparatus for realizing the above.
- Patent Document 1 discloses that a softened portion is stirred while rotating both or one of a pair of metal materials (workpieces) to generate frictional heat and soften the metal material.
- a technique for joining metal materials by causing plastic flow is disclosed.
- Patent Document 2 a tool made of a material that is substantially harder than a workpiece is inserted into an unjoined portion of the workpiece, and the tool and workpiece are moved by rotating the tool while rotating the tool.
- a method has been proposed in which workpieces are continuously joined in the longitudinal direction by heat and plastic flow generated between the two.
- the friction welding method described in Patent Document 1 is a method of rotating workpieces and welding them by frictional heat between workpieces.
- the friction stir welding method disclosed in Patent Document 2 can be joined by moving the tool while rotating the work piece in a fixed state. For this reason, there is an advantage that a workpiece which is substantially infinitely long in the welding direction can be continuously solid-phase bonded in the longitudinal direction.
- it since it is a solid phase joining using the plastic flow of the metal by the frictional heat of a rotary tool and a workpiece, it can join, without melt
- the heating temperature by the heating means is low, deformation after joining is small, and unjoined parts are not melted, so there are few defects in the joined parts, and in addition, there is no need for a filler material.
- a butt portion that is in a state where the steel plates are just butt but not yet joined is referred to as an “unjoined portion”, while a portion joined and integrated by plastic flow is referred to as a “joined portion”. Shall be called.
- the friction stir welding method is a method of joining low melting point metal materials represented by aluminum alloys and magnesium alloys, and its use is expanding in the fields of aircraft, ships, railway vehicles, automobiles, and the like.
- the reason for this is that these low-melting-point metal materials are difficult to obtain satisfactory characteristics of joints by conventional arc welding methods, and improve the productivity and high quality by applying the friction stir welding method. This is because a joint can be obtained.
- the application of friction stir welding to structural steel which is mainly applied as a structural material such as buildings, ships, heavy machinery, pipelines, and automobiles, is subject to solidification cracking and hydrogen cracking, which are problems in conventional fusion welding. Since the structural change of the steel material is suppressed, it can be expected that the joint performance is excellent. In addition, since the clean surfaces can be brought into contact with each other by stirring the bonding interface with a rotating tool, a merit that a preparatory step such as diffusion bonding is unnecessary can be expected. Thus, the application of the friction stir welding method to structural steel is expected to have many advantages. However, since the problem remains in joining workability, such as suppression of defect generation at the time of joining and an increase in joining speed, it has not been widely used as compared with low melting point metal materials.
- Patent Documents 5 to 7 disclose a joining method in which a heating means other than frictional heat generated between the rotary tool and the material to be joined is added for the purpose of improving joining workability.
- Patent Document 5 has a heating means using an induction heating apparatus, and heats the workpieces before and after joining, thereby increasing the joining speed and eliminating friction at the joining portion. Legal is disclosed.
- Patent Document 6 has a heating means using a laser device, and the workpiece is partially heated immediately before joining, thereby suppressing the microstructure change around the heating region due to preheating and increasing the joining speed.
- a friction stir welding apparatus which is designed to be simplified is disclosed.
- Patent Document 7 discloses a friction stir welding apparatus that has a heating means using a laser device and partially heats workpieces immediately before joining. By strictly controlling the surface temperature, depth, etc. of the heated region of the workpiece during heating, the plastic flow failure due to insufficient heating of the workpiece is eliminated, and sufficient workability is improved along with sufficient strength. Can be planned.
- the double-side friction stir welding method disclosed in Patent Documents 8 and 9 is considered effective as a method for eliminating the temperature difference formed in the thickness direction of the workpiece.
- these joining methods with respect to reducing the load on the rotating tool and further improving the workability of the rotating tool and the life of the rotating tool by a pre-heat treatment process that heats the workpiece using heating means in front of the rotating tool. None is considered.
- the present invention has been developed in view of the above-described situation, and in the friction stir welding of structural steel, the plastic flow failure due to insufficient heating of the workpiece is eliminated, and a sufficiently strong joint is obtained.
- the purpose is to improve workability.
- it is an object of the present invention to provide a friction stir welding method and apparatus in which preheating process conditions are strictly defined.
- the pre-heat treatment process before friction stir welding is effective.
- the heat source is only on the same side (for example, the front side) Exists.
- the temperature on the back surface side is lower than that on the front surface side, and a temperature difference is generated from the front surface side to the back surface side with respect to the thickness direction of the workpiece. Since the strength of the metal plate, which is a workpiece, decreases as the temperature increases, the load on the rotary tool in the friction stir welding decreases as the temperature increases. Therefore, it is considered that the load applied to the tip end of the rotary tool can be more effectively reduced by eliminating the temperature difference formed in the thickness direction of the workpiece. Therefore, the inventors examined various preheat treatment process conditions before friction stir welding.
- the rotating tool In order to eliminate the temperature difference in the thickness direction from the front surface side to the back surface side of the work material, the rotating tool should be opposed not only to one surface side but also to the other surface side of the work material to be preheated. It has been found that it is effective to provide a mechanism for realizing friction stir welding in which the workpiece is heated by frictional heat from both the one side and the other side with respect to the workpiece. d) On the other hand, when the preheating heat treatment before the friction stir welding is performed, if the amount of preheating heat is excessive, the microstructure around the heating region changes.
- the present invention is based on the above findings.
- the gist configuration of the present invention is as follows. 1.
- a rotating tool comprising a shoulder portion and a pin portion arranged on the shoulder portion and sharing a rotation axis with the shoulder portion, wherein at least the shoulder portion and the pin portion are made of a material harder than a steel plate as a workpiece, It is moved in the joining direction while rotating at the unjoined portion between, and the plastic flow is generated by stirring the softened portion with the rotating tool while softening the steel plate by frictional heat between the rotating tool and the steel plate.
- the rotating tool is disposed opposite to the one surface side and the other surface side of the steel plate, respectively, While gripping the steel sheet with a gripping device, the respective shoulder portions of the rotating tool facing each other are pressed against the one surface side and the other surface side of the steel sheet, and the respective pin portions of the rotating tool facing each other are pressed on the one surface side and the other surface. Insert it into the unjoined part of the steel plate from the side and move it in the joining direction while rotating the rotary tool, The steel plate is heated by a heating means provided in front of one side of the rotating tool that moves in the joining direction, and the temperature T S (° C.) of the surface of the steel plate is increased by heating.
- T S ⁇ 0.8 ⁇ T A1 (T A1 is shown in the following formula (1))
- T A1 is shown in the following formula (1)
- the heating area is the heating area
- the minimum distance between the heating area and the rotating tool on the surface of the steel sheet is not more than the diameter of the shoulder of the rotating tool
- a friction stir welding method for structural steel in which the area of the heating region on the surface of the steel plate is equal to or less than the area of the maximum diameter portion of the pin portion of the rotary tool.
- the shaft cores of both opposing rotary tools are tilted in the direction in which each pin precedes the traveling direction of the rotary tool, and the rotary tool is rotated and moved in the joining direction to perform friction stir welding 1-3.
- T D (° C.) is T D ⁇ 0.8 ⁇ T A1 ( T A1 are shown in the following equation (1)) Any one of 1 to 5 in which the depth D of the heating region is 100% of the thickness t of the steel plate, where the depth from the surface of the steel plate in the region satisfying Friction stir welding method for structural steel as described in 1.
- T A1 (° C) 723-10.7 [% Mn] -16.9 [% Ni] +29.1 [% Si] +16.9 [% Cr] +290 [% As] +6.38 [% W] 1)
- [% M] is the content (mass%) of the M element in the steel sheet as the workpiece, and is 0 when not contained. 7).
- the heating means is a laser heating device. 8).
- a rear heating means is provided behind the rotating tool moving in the joining direction, and the joined portion of the steel sheet is heated by the rear heating means.
- a cooling means is provided behind the rotating tool and behind the rear heating means, and the joining portion of the steel sheet is cooled by the cooling means.
- Friction stir welding method The friction stir welding method for structural steel according to any one of 1 to 11, wherein the surface of the rotary tool is formed of a material having a coefficient of dynamic friction with a steel plate greater than 0.6. 13.
- a friction stir welding apparatus that joins unjoined portions between steel plates that are workpieces, A gripping device for gripping the steel plates to be joined; A shoulder portion and a pin portion arranged on the shoulder portion and sharing a rotation axis with the shoulder portion, wherein at least the shoulder portion and the pin portion are made of a material harder than a steel plate, and one side and the other side of the steel plate In a state where the respective shoulder portions opposed to the side press the one surface side and the other surface side of the steel plate and the opposing pin portions are inserted in the unjoined portions between the steel plates, A rotating tool that can move in the joining direction while rotating; A heating means provided on the front side in the joining direction on one side of the rotary tool, and heating the steel plate; A friction stir welding apparatus having control means for controlling the rotating tool and the heating means so as to realize the following state 1.
- T S (° C.) of the surface of the steel sheet by heating using the heating means
- T S ⁇ 0.8 ⁇ T A1 T A1 is shown in the following formula (1)
- the region to be the heating region the minimum distance between the heating region and the rotating tool on the surface of the steel sheet is not more than the diameter of the shoulder of the rotating tool, Moreover, the area of the heating area
- Both of the opposing rotary tools include a shoulder portion and a pin portion arranged on the shoulder portion and sharing the rotation axis with the shoulder portion, and the rotary tool on one side of the pin lengths of both opposing rotary tools
- the friction stir welding apparatus for structural steel according to any one of 13 to 16 wherein the rotating direction of the rotary tool is opposite on the one side and the other side. 18.
- the structural steel friction stir welding apparatus according to any one of 13 to 17, wherein the control means controls the rotating tool and the heating means so as to realize the following state 2 in addition to the state 1.
- State 2 Regarding the region in the thickness direction of the heating region, the temperature T D (° C.) is T D ⁇ 0.8 ⁇ T A1 ( T A1 are shown in the following equation (1))
- T D of the heating region is 100% of the thickness t of the steel plate.
- 20. The friction stir welding apparatus for structural steel according to any one of 13 to 19, wherein a cooling means for cooling the bonded portion of the steel sheet is provided behind the rotating tool that moves in the bonding direction. 23.
- 23. The friction stir welding apparatus for structural steel according to 21 or 22, wherein a rear reheating means for reheating the joined portion of the steel sheet is provided behind the rotating tool that moves in the joining direction and behind the cooling means.
- 24. The friction stir welding apparatus for structural steel according to any one of 13 to 23, wherein the surface of the rotary tool is formed of a material having a coefficient of dynamic friction with a steel plate larger than 0.6.
- the present invention at the time of friction stir welding of structural steel, it is possible to improve the joining workability by eliminating the plastic flow failure caused by insufficient heating in the plate thickness direction of the workpieces, which has been a concern in the past. . Furthermore, by suppressing the change in the microstructure, a high joint strength can be obtained at the joint.
- FIG. 1 is a schematic view illustrating the friction stir welding method of the present invention.
- FIG. 2 is a diagram showing an example of a region in which a workpiece is frictionally stirred by a rotating tool from one side and the other side, a heating region in a preheating process, a cooling region after joining, and a reheating region (top view and AA sectional view).
- FIG. 3 is a diagram showing the relationship between temperature and tensile strength for an example of structural steel targeted by the friction stir welding method of the present invention.
- FIG. 4 is a diagram illustrating a cross-sectional dimension of the rotary tool used in the example.
- the present invention relates to a friction stir welding method and apparatus for structural steel, and as shown in FIG. 1, a preheat treatment process for heating a workpiece (steel plate) by a heating means provided in front, and a rotary tool in the subsequent stage And a friction stir process using.
- the rotating tool is disposed so as to face the one surface (front surface) side and the other surface (back surface) side of the steel plate, and stirs the softened portion while softening the steel plate by frictional heat with the steel plate during rotation. This causes a plastic flow to join the steel plates.
- reference numerals 1 and 15 are rotary tools
- 2 is a rotating shaft
- 3 is a steel plate
- 4 is a joint
- 5 is a heating means
- 6 is a cooling means
- 7 is a rear reheating means
- 8 and 16 are rotary tools.
- the shoulder portions 9 and 17 are pin portions of the rotary tool
- ⁇ and ⁇ indicate the inclination angle of the rotary tool.
- AS and RS represent an advancing side and a retreating side, respectively.
- the advanced side is defined as the side where the rotation direction (tool rotation direction) of the surface-side rotary tool provided with the heating means coincides with the joining direction, and the retreating side is the surface-side tool rotation direction. And the side where the joining direction is opposite.
- the steel plates (workpieces) 3 and 3 are gripped by a gripping device (not shown) from the front and back surfaces, and from the front and back sides of the unjoined portion of the workpiece, the pin portions of the rotating tool that face each other Is inserted into the non-joined part, and the shoulder part of the rotating tool facing is pressed against the front side and the back side of the workpiece to be joined.
- a gap ⁇ may be appropriately provided between the tips of the pin portions of the rotating tools facing each other so that the friction by the shoulder portion and the stirring by the pin portion are appropriately performed and sound joining is possible.
- the gap ⁇ is 0.1 mm or more.
- the gap ⁇ is preferably set to 0.3 mm or less.
- the opposing rotating tool includes a shoulder portion and a pin portion.
- the pin portion is disposed on the shoulder portion and shares the rotation axis with the shoulder portion. At least the shoulder portion and the pin portion are formed of a material harder than a steel plate that is a workpiece.
- the rotary tool on one side provided with the heating means may include a shoulder portion but no pin portion.
- the shoulder portion of the rotating tool on the one surface side and the shoulder portion and pin portion of the rotating tool on the other surface side may be formed of a material harder than the steel plate that is the workpiece.
- the rotating tool has a shape in which a substantially cylindrical pin portion having a diameter smaller than that of the shoulder portion is provided on the substantially cylindrical shoulder portion. Further, as shown in FIG. 4, the surface of the shoulder portion may be formed in a tapered shape.
- the shoulder part and the pin part are arranged only on one side of the steel plate with a rotating tool formed of a material harder than the steel plate being processed, and the pin part is an unjoined part between the steel plates. It is inserted and joined. Therefore, the axial length (pin length) of the pin portion needs to be equal to the thickness of the workpiece. However, the longer the pin length, the greater the load applied to the tip of the pin portion. Therefore, in order to improve the joining workability and the life of the rotary tool, the shorter pin length is preferable.
- the pin length when the pin lengths of both opposing rotary tools are the same, the pin length can be about half the thickness of the workpiece, so the load applied to each rotary tool is on one side. Compared to the case where the pin part of the rotating tool is inserted and joined only from the side.
- the rotating tool on the side with the heating means should shorten the pin length Can reduce the load.
- the load on the tool can be similarly reduced.
- the axis of the opposing rotary tool is tilted in the direction in which each pin portion precedes the traveling direction of the rotating tool (in other words, the tip of the pin portion is more advanced than the rear end of the pin portion).
- the load on the tool can be made a component force compressed in the axial direction. Since at least the shoulder and pin of the tool must be made of a material harder than the steel plate, and a material with poor toughness such as ceramic is often used, a force in the bending direction is applied to the pin. Then, stress concentrates on the local part and leads to destruction.
- the load on the tool is received as a component force compressed in the axial direction, the force in the bending direction can be reduced, and damage to the tool can be avoided.
- An example of the inclination angle of the pin portion is 1 ° or more and 5 ° or less.
- the inclination angle of the pin portion means an acute angle among the angles formed between the axis center line of the rotary tool and the vertical line.
- Rotating torque applied to the material to be joined by the rotating tool can be canceled out by setting the rotating direction of the opposing rotating tool to the opposite direction on the one side and the other side.
- a pre-heat treatment process is important in which the steel sheet is heated by a heating means provided in front of a rotating tool that moves in the joining direction.
- a heating means provided in front of a rotating tool that moves in the joining direction.
- reference numeral 10 denotes a joining center line, and this joining center line indicates a straight line passing through the rotation axis of the rotary tool on the surface of the steel plate and parallel to the joining direction.
- 12 is a heating region
- 13 is a cooling region
- 14 is a reheating (backward heating) region
- a is the shoulder diameter of the rotating tool
- b is the maximum diameter of the pin portion of the rotating tool
- X is rotating with the heating region.
- D represents the minimum distance from the tool
- D represents the depth of the heating region
- t represents the thickness of the steel sheet.
- FIG. 3 shows the relationship between the temperature and tensile strength of steel sheets to be joined by the friction stir welding method and apparatus of the present invention.
- T A1 which is a steel transformation temperature (ferrite-austenite transformation temperature)
- the strength is usually about 30% of the strength at normal temperature.
- strength will fall further. Therefore, the surface temperature of the steel sheet is set to 0.8 x T A1 °C or higher, the steel sheet is pre-softened, the steel sheet is agitated, and plastic flow is promoted to reduce the load on the rotating tool and increase the joining speed.
- T A1 (° C.) can be obtained by the following equation (1).
- T A1 (° C) 723-10.7 [% Mn] -16.9 [% Ni] +29.1 [% Si] +16.9 [% Cr] +290 [% As] +6.38 [% W] (1 )
- [% M] is the content (mass%) of the M element in the steel sheet as the workpiece, and is 0 when not contained.
- a temperature gradient may exist on the surface of the heating region.
- the surface temperature of the steel sheet in the heating region is 1.5 ⁇ T M ° C or less.
- the surface temperature of the steel sheet in the heating zone is T M ° C before contacting the rotating tool passing through the heating zone. It is preferable to make it less than.
- T M (° C.) is the melting point of the steel sheet as the workpiece.
- the minimum distance between the heating region on the surface of the steel plate and the rotating tool moving in the joining direction is 0.1 times or more the diameter of the shoulder of the rotating tool.
- the moving speed of the rotary tool is preferably 200 mm / min or more and 3000 mm / min or less.
- the diameter of the shoulder of the rotary tool is about 8 to 60 mm.
- the area of the heating area on the surface of the steel sheet less than the area of the maximum diameter part of the pin part of the rotary tool on one side
- the heating region becomes too large, the microstructure of the region and the surrounding region changes.
- the martensite is tempered to cause softening and greatly reduce the strength of the joint. I will let you.
- region in the surface of a steel plate shall be below the area of the largest diameter part of the pin part of a rotary tool.
- the area of the heating region on the surface of the steel plate is preferably 0.1 times or more the area of the maximum diameter portion in the pin portion of the rotary tool.
- the maximum diameter (pin diameter) of the pin portion of the rotary tool is about 2 to 50 mm.
- the maximum diameter of the pin portion of the rotary tool is the largest diameter among the diameters obtained from the cut surface when one pin portion is cut in a cross section perpendicular to the axial direction (multiple times). For example, when the diameter of the pin portion does not change along the axial direction as shown in FIGS. 4 (1) to (4), the diameter of the upper surface of the pin portion (4 mm in the figure) is set as the maximum diameter of the pin portion. Can do.
- the pin part has a tapered shape or the like and the diameter of the pin part varies depending on the position in the axial direction, the largest diameter among the diameters obtained in a plurality of cross sections may be set as the maximum diameter of the pin part. it can.
- region can be made into arbitrary shapes, such as circular, an ellipse, and a rectangle.
- the major axis can be used as the pin diameter, and if it is rectangular, the equivalent circle diameter can be adopted as the pin diameter. Can do.
- the steel plates to be joined by the friction stir welding method and apparatus of the present invention usually have a strength of about 30% of the strength at normal temperature at a temperature of about 80% of TA1 , which is the transformation temperature of the steel. . Moreover, when it becomes higher than this temperature, intensity
- T D in the thickness direction of the heating area that defines the depth D of the heating zone to be described later shall be defined as 0.8 ⁇ T A1 ° C. or higher.
- T A1 (°C) Can be obtained by the following equation (1).
- T A1 (°C) 723-10.7 [% Mn] -16.9 [% Ni] +29.1 [% Si] +16.9 [% Cr] +290 [% As] +6.38 [% W] (1)
- [% M] is the content (mass%) of the M element in the steel sheet as the workpiece, and is 0 when not contained.
- a temperature gradient may exist in the thickness direction of the heating region.
- the temperature in the thickness direction of the heating region is preferably 1.5 ⁇ T M ° C. or less.
- the temperature in the thickness direction of the steel plate in the heating zone is until the rotating tool passes through the heating zone.
- the temperature is preferably less than T M ° C. Note that T M (° C.) is the melting point of the steel sheet as the workpiece.
- the depth D of the heating area, in the region where the temperature T D in the thickness direction of the heating region as described above is 0.8 ⁇ T A1 ° C. or higher, defined by the maximum depth from the surface of the steel sheet is a workpiece.
- the depth D of the heating region is preferably set to 100% of the thickness of the steel plate.
- the heating tool of the pre-heat treatment process is provided and the side opposite to the side pressing the rotary tool is equal to or more than the steel plate. It is necessary to support by the support body which has the hardness of. On the other hand, by setting D to 100% of the thickness of the steel sheet, there is no need for such support. Further, if the depth D of the heating region exceeds 30% of the thickness of the steel plate, the steel plate and the support may be fixed, but in the present invention, since the support is not provided on the opposite side of the heating region, Even if the depth D of the heating region is 100% of the thickness of the steel plate, there is no fear of sticking.
- Control means for controlling the operating conditions of the apparatus so that the position and area of the heating region satisfy the above-described condition (state 1) or the depth D of the heating region satisfies the above-described condition (state 2). Can also be used. Specifically, the control means can control the operating conditions of the heating means and the rotary tool. Further, the operation of the rear heating means, the cooling means, the rear reheating means and the like which will be described later can be controlled by the control means.
- the rotary tool itself may be formed of a material having a dynamic friction coefficient with a steel plate greater than 0.6, or the surface of the rotary tool may be coated with a material having a dynamic friction coefficient with the steel plate of greater than 0.6.
- the said raw material should just be formed in the surface which contacts a steel plate at least at the time of friction stirring among the surfaces of a rotary tool.
- An example of a material having a coefficient of dynamic friction with a steel plate greater than 0.6 is tungsten carbide (WC).
- the method for measuring the dynamic friction coefficient is not particularly limited, and for example, a ball-on-disk method can be used.
- the heating means used in the pre-heat treatment process is not particularly limited, but it is preferable to use a laser heating device.
- a laser with a high energy density such as a laser heating device, as the heat source, it is possible to more accurately control the pre-heat treatment process conditions, and to improve the bonding workability without deteriorating the characteristics of the bonding portion. it can.
- the moving speed of the heating means used in the preheat treatment process may be approximately the same as the joining speed.
- the laser output, beam diameter, etc. may be set as appropriate according to the bonding conditions.
- a cooling means is provided behind the rotating tool moving in the joining direction, and the strength of the joint can be improved by the cooling means.
- the cooling means provided behind the rotating tool that moves in the joining direction cools the joining portion of the steel sheet and appropriately controls the cooling rate, thereby improving the strength by quenching.
- cooling by injecting an inert gas is suitable.
- a cooling rate for example, a range of 800 ° C. to 500 ° C. is preferably 30 to 300 ° C./s.
- argon gas, helium gas, or the like can be used as the inert gas.
- the hardenability of the steel material to be processed is high, there is a problem that it may be excessively hardened and the toughness of the joint joint is lowered.
- excessive curing can be suppressed by providing a rear heating means for heating a rear portion close to the rotating tool and appropriately cooling the cooling rate.
- the rear heating means include high frequency induction heating and heating using a laser as a heat source.
- the slow cooling rate for example, the range of 800 ° C. to 500 ° C. is preferably 10 to 30 ° C./s.
- the rear reheating means may be provided behind the rotating tool that moves in the joining direction and after the cooling means described above, and the joining portion of the steel plates may be reheated by the rear reheating means.
- the joint properties having both strength and toughness can be achieved by suppressing the hardness by tempering by the backward reheating means.
- the cooling rate by the cooling means is preferably 30 to 300 ° C./s in the range of 800 ° C. to 500 ° C.
- the temperature of the joint after reheating is preferably 550 to 650 ° C., for example. .
- a cooling means may be provided behind the rotary tool moving in the joining direction and after the above-described rear reheating means, and the joined portion of the steel sheet may be cooled by the cooling means.
- the cooling rate in the reheating means is about 10 to 30 ° C / s in the range of 800 ° C to 600 ° C, and the cooling rate in the cooling means is 30 to 300 ° C / s in the range of 600 ° C to 400 ° C. It is preferable to set the degree.
- the rotational speed of the rotary tool in the range of 100 to 1000 rpm, suppress the torque of the rotary tool, and increase the joining speed to 1000 mm / min or more.
- general structural steel and carbon steel for example, rolled steel for welded structure of JIS (Japanese Industrial Standard) G 3106, carbon steel for machine structure of JIS G 4051, etc. are preferably used. be able to. It can also be advantageously applied to high-strength structural steels with a tensile strength of 800 MPa or more. Even in this case, the strength at the joint is 85% or more of the tensile strength of the steel plate (base material), and even 90%. The above strength can be obtained.
- JIS Japanese Industrial Standard
- G 4051 Japanese Industrial Standard
- Friction stir welding was carried out using the chemical composition shown in Table 1 with a thickness of 1.60 mm (the balance other than the composition in Table 1 is composed of Fe and inevitable impurities) and steel sheets with tensile strength (one or two). did.
- the joint butt surface was joined by pressing a rotating tool from one side of the steel sheet, or from one side or the other side, depending on the surface condition of the milling with a so-called I-shaped groove with no angle. .
- Table 2 (and Table 5) show the welding conditions for friction stir welding. When L4 and H3 conditions are joined by pressing a rotating tool from one side of the steel sheet (comparative example), L1, L2, L3, H1, and H2 are from both the one side and the other side of the steel sheet.
- WC tungsten carbide
- tungsten carbide As a material of the surface of the rotary tool, tungsten carbide (WC) is not used as a material (invention examples 1 to 24 and comparative examples 1 to 7), or tungsten carbide is used as a material by physical vapor deposition (PVD). Titanium nitride (TiN) surface-coated (WC + TiN) was used (Invention Examples 25 to 27). The coefficient of friction between the surface of the rotary tool and the steel sheet was 0.7 when the WC was not subjected to film treatment, and 0.5 when the WC was coated with TiN.
- a ball-on-disk friction and wear tester was used to press a steel ball with a diameter of 6 mm against a fixed steel ball while rotating it with a load of 5 N, and a rotational speed of 100 mm / s. The test was conducted at a sliding distance of 300 m. The test was performed at room temperature and without lubrication.
- those made of a material having the chemical composition of SUJ2 defined in JIS G 4805 and processed as steel balls for bearings were used.
- the steel plate 1 in Table 1 Prior to joining, for the purpose of confirming a heating region by preheating using a laser as a heat source, the steel plate 1 in Table 1 is subjected to each irradiation condition (laser moving speed, laser output, and beam diameter) shown in Table 3. Laser light was irradiated, and the surface temperature was measured by thermography. Furthermore, the cross section of the laser irradiation part was observed, and the microstructure was observed with a nital etchant.
- laser moving speed, laser output, and beam diameter shown in Table 3.
- the region having the transformation point (T A1 ° C) or higher is the darkest, and is less than the transformation point (T A1 ° C) existing outside, but a high hardness structure such as martensite in the base material is tempered. because regions are relatively thin etched areas became transformation point (T A1 ° C.) or higher, tempering area of less than transformation point (T A1 ° C.), and regions of the matrix are distinguishable respectively. Further, from the knowledge of heat treatment of steel, it is known that the tempering region below the transformation point (T A1 ° C) coincides with the region of 0.8 x T A1 ° C or more and less than T A1 ° C.
- the depth D 0 of the region where the transformation point (T A1 ° C) or higher and the depth of the region where the temperature becomes 0.8 ⁇ T A1 ° C or higher (depth of the heating region) D) was measured.
- the region of 0.8 ⁇ T A1 ° C or more was a circular shape with a diameter of 2.4 mm. Since the maximum diameter of the pin part of the rotating tool used here is 4.0 mm, the area of the heating region on the steel plate surface is equal to or less than the area of the maximum diameter part of the pin part of the rotating tool.
- the region of 0.8 ⁇ TA1 ° C. or higher was a circular shape having a diameter of 2.0 mm. Therefore, similarly to the above, the area of the heating region on the surface of the steel sheet is equal to or less than the area of the maximum diameter portion of the pin portion of the rotary tool.
- the region of 0.8 ⁇ TA1 ° C. or higher was a circular shape with a diameter of 5.4 mm. Since the maximum diameter of the pin part of the rotary tool used here is 4.0 mm, the area of the heating region on the steel plate surface exceeds the area of the maximum diameter part of the pin part of the rotary tool. In all of the irradiation conditions A to C, the heating region was circular, so the minor axis in Table 4 is not described.
- the region of 0.8 ⁇ TA1 ° C. or higher has an elliptical diameter in which the laser moving direction is the major axis and the perpendicular direction to the laser moving direction is the minor axis, the major axis is 1.8 mm and the minor axis is 1.2 mm. It was. Since the maximum diameter of the pin part of the rotating tool used here is 4.0 mm, the area of the heating region on the steel plate surface is equal to or less than the area of the maximum diameter part of the pin part of the rotating tool.
- the region where the temperature is 0.8 ⁇ TA 1 ° C or higher has an elliptical diameter in which the laser moving direction is the major axis and the direction perpendicular to the laser moving direction is the minor axis, the major axis is 2.3 mm and the minor axis is 1.9 mm. . Therefore, similarly to the above, the area of the heating region on the surface of the steel sheet is equal to or less than the area of the maximum diameter portion of the pin portion of the rotary tool.
- the depth D 0 of the region where T A1 ° C or higher and the depth of the area where 0.8 ⁇ T A1 ° C or higher were 0.47 mm and 0.50 mm, respectively. It was. Since the thickness t of the steel plate that is the workpiece is 1.60 mm, the depth D of the heating region is about 31.3% of the thickness t of the steel plate.
- the depth D 0 of the region where T A1 ° C or higher and the depth of 0.8 ⁇ T A1 ° C or higher were 0.28 mm and 0.30 mm, respectively. It was. Since the thickness t of the steel plate that is the workpiece is 1.60 mm, the depth D of the heating region is about 18.8% of the thickness t of the steel plate.
- the depth D 0 of the region where T A1 ° C or higher and the depth of the area where 0.8 ⁇ T A1 ° C or higher are 1.60 mm and 1.60 mm, respectively.
- a region of T A1 ° C or higher was formed in the entire thickness of the steel sheet. Therefore, the depth D of the heating region, which is the depth of the region of 0.8 ⁇ TA1 ° C. or more, is 100% of the thickness t of the steel plate.
- the depth D 0 of the region where T A1 ° C or higher and the depth of 0.8 ⁇ T A1 ° C or higher were 0.58 mm and 0.63 mm, respectively. It was. Since the thickness t of the steel plate that is the workpiece is 1.60 mm, the depth D of the heating region is about 39.4% of the thickness t of the steel plate.
- Table 5 shows preheating process conditions by laser irradiation performed before joining the workpieces and process conditions performed after joining.
- cooling by gas ejection was performed, and in the heating (and reheating), induction heating was performed.
- Table 6 shows the measured value of the torque of the rotating tool when the joining is performed and the tensile strength of the obtained joint.
- Tensile strength was measured by taking a tensile test piece of the size of No. 1 test piece specified in JIS Z 3121 and conducting a tensile test.
- Comparative Examples 1 to 3 are friction stir welding conditions in which the rotating tool is pressed and joined from both one side and the other side of the steel sheet that satisfies the scope of the present invention, and the joining speed is 400 mm / min.
- the preheating process conditions were conditions that did not satisfy the scope of the present invention.
- the torque of the rotary tools on both the front side and the back side was greater than 80 N ⁇ m, and the plastic fluidity was poor.
- Comparative Example 4 is a friction stir condition in which the rotating tool is pressed from only one side of the steel sheet that does not satisfy the scope of the present invention to perform joining, and the preheating process condition is a condition that satisfies the scope of the present invention.
- the torque of the rotating tool on the surface side was larger than 80 N ⁇ m, and the plastic fluidity was inferior.
- Table 6 shows that in Invention Examples 12 to 21, even when the joining speed is increased to 1000 mm / min, the torque of the rotary tools on the front side and the back side can be joined at 100 N ⁇ m or less. A strength of 85% or more of the tensile strength of the steel sheet to be achieved was achieved, and a sound joint was obtained. In particular, in Invention Examples 17 and 18 in which cooling and reheating were performed after joining, a strength of 100% of the tensile strength of the base material was obtained.
- Comparative Examples 5 and 6 are friction stir conditions in which joining is performed by pressing a rotating tool from both one side and the other side of a steel sheet that satisfies the scope of the present invention, and the preheating process conditions are within the scope of the present invention. I'm not satisfied.
- Comparative Example 7 is a friction stir condition in which the rotating tool is pressed and joined from only one side of the steel sheet that does not satisfy the scope of the present invention, and the preheating process condition satisfies the scope of the present invention. In Comparative Examples 5 to 7, the unjoined portion remained and could not be joined, and a healthy joint could not be obtained. For this reason, in Comparative Examples 5 to 7, the torque of the rotary tool is not measured.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
a)通常の摩擦撹拌接合では、接合のために必要な熱源が、回転ツールと被加工材との間で発生する摩擦熱のみである。そのため、構造用鋼を摩擦撹拌接合法により接合する場合には、被加工材である構造用鋼を軟化させるために必要な熱量を十分に確保することができない。その結果、接合部において十分な塑性流動が得られず、接合速度の低下や接合欠陥の発生などといった接合施工性の劣化が懸念される。
b)しかしながら、被加工材の表面側、裏面側において、いずれも予熱処理プロセスの加熱手段を備える側と回転ツールを備える側が同一である場合、発熱源は同一面側(例えば表面側)のみに存在する。これにより、裏面側では表面側と比較してより低温となり、表面側から裏面側では被加工材の厚さ方向に対して温度差を生じることになる。被加工材である金属板はより高温となるほど強度が下がるので、摩擦撹拌接合における回転ツールの負荷は高温となるほど下がる。よって、被加工材の厚さ方向に対して形成される温度差を解消することで、回転ツールのピン先端に掛かる負荷をより効果的に低減することができると考えられる。
そこで、発明者らは、摩擦撹拌接合前の予熱処理プロセス条件について種々検討した。
c)被加工材の表面側から裏面側における厚さ方向に対する温度差を解消するためには、予熱処理が行われる被加工材の一方面側だけでなく他方面側にも回転ツールを対向して配置し、被加工材に対し一方面側及び他方面側の両方から被加工材を摩擦熱により加熱する摩擦撹拌接合を実現する機構とすることが有効であることを見出した。
d)一方で、上記の摩擦撹拌接合前の予熱処理プロセスを含む接合を行う際に、予熱熱量が過剰になると、加熱領域周辺のミクロ組織が変化するという問題が生じる。特に、マルテンサイト組織により強化された高張力鋼板の場合は、加熱の際における加熱領域周辺の温度がフェライト-オーステナイト変態温度以下であっても、マルテンサイトが焼き戻されることで軟化を生じ、接合部の強度を著しく低下させる。
e)レーザなどのエネルギー密度の高い熱源を用いることで、予熱処理プロセスでの加熱領域の表面温度、面積、位置を厳密に制御し、また必要に応じて加熱領域の厚さ方向における温度についても適正に制御する。それにより、接合部の特性(例えば強度等)の劣化を招くことなく、施工性を向上できるとの知見を得た。
f)被加工材の加熱において、回転ツールの表面の素材と被接合材との間の動摩擦係数に支配される摩擦発熱量を調節することにより、施工性を向上させることができるとの知見を得た。
g)通常の摩擦撹拌接合では、接合完了後、接合部が自然放冷状態となるので、鋼材製造時の圧延プロセスで行われているような熱履歴管理によるミクロ組織制御を適用することができないという問題があった。しかし、接合完了直後に、接合部に対し、加熱処理や冷却処理を組み合わせたプロセスを実施することで、接合部の特性をさらに向上できるとの知見を得た。
1.肩部及び前記肩部に配され前記肩部と回転軸を共有するピン部を含み、少なくとも前記肩部と前記ピン部とが被加工材である鋼板よりも硬い材質からなる回転ツールを、鋼板間の未接合部において回転させながら接合方向に移動させ、前記回転ツールと前記鋼板との摩擦熱により前記鋼板を軟化させつつ、その軟化した部位を前記回転ツールで撹拌することにより塑性流動を生じさせて、鋼板同士を接合する構造用鋼の摩擦撹拌接合方法において、
前記回転ツールを前記鋼板の一方面側と他方面側とに対向してそれぞれ配置し、
前記鋼板を把持装置により把持しつつ、対向する回転ツールのそれぞれの肩部を鋼板の一方面側と他方面側とに押圧させ、対向する回転ツールのそれぞれのピン部を一方面側と他方面側とから鋼板の未接合部に挿入して、回転ツールを回転させながら接合方向に移動させるとともに、
接合方向へ移動する前記回転ツールの一方面側の前方に設けた加熱手段により前記鋼板を加熱し、加熱により該鋼板の表面の温度TS(℃)が、
TS ≧ 0.8×TA1 (TA1は下記の式(1)に示す)
となる領域を加熱領域としたとき、鋼板の表面における、加熱領域と回転ツールとの最小距離を、回転ツールの肩部の直径以下とし、
また鋼板の表面における加熱領域の面積を、回転ツールのピン部の最大径部の面積以下とする構造用鋼の摩擦撹拌接合方法。
記
TA1(℃)=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]+16.9[%Cr]+290[%As]+6.38[%W] ・・・(1)
ただし、[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)であり、含有しない場合は0とする。
2.対向する両方の回転ツールのピン長が同一である1に記載の構造用鋼の摩擦撹拌接合方法。
3.対向する両方の回転ツールのピン長のうち、一方面側の回転ツールのピン長が他方面側の回転ツールのピン長より短い1に記載の構造用鋼の摩擦撹拌接合方法。
4.対向する両方の回転ツールの軸芯を、前記回転ツールの進行方向に対してそれぞれのピンが先行する方向に傾け、前記回転ツールを回転させながら接合方向に移動させて摩擦撹拌接合する1~3のいずれかに記載の構造用鋼の摩擦撹拌接合方法。
5.回転ツールの回転方向を、一方面側と他方面側とで逆方向とする1~4のいずれかに記載の構造用鋼の摩擦撹拌接合方法。
6. 前記加熱領域の厚さ方向の領域に関し、温度TD(℃)が、
TD ≧ 0.8×TA1 (TA1は下記の式(1)に示す)
を満足する領域における前記鋼板の表面からの深さを加熱領域の深さDとしたとき、該加熱領域の深さDが、前記鋼板の厚さtの100%となる1~5のいずれかに記載の構造用鋼の摩擦撹拌接合方法。
記
TA1(℃)=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]+16.9[%Cr]+290[%As]+6.38[%W] ・・・(1)
ただし、[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)であり、含有しない場合は0とする。
7.前記加熱手段が、レーザ加熱装置である1~6のいずれかに記載の構造用鋼の摩擦撹拌接合方法。
8.接合方向へ移動する前記回転ツールの後方に後方加熱手段を設け、前記後方加熱手段により前記鋼板の接合部を加熱する1~7のいずれかに記載の構造用鋼の摩擦撹拌接合方法。
9.前記回転ツールの後方でかつ前記後方加熱手段の後方に冷却手段を設け、前記冷却手段により前記鋼板の接合部を冷却する8に記載の構造用鋼の摩擦撹拌接合方法。
10.接合方向へ移動する前記回転ツールの後方に冷却手段を設け、前記冷却手段により前記鋼板の接合部を冷却する1~7のいずれかに記載の構造用鋼の摩擦撹拌接合方法。
11.接合方向へ移動する前記回転ツールの後方でかつ前記冷却手段の後方に後方再加熱手段を設け、前記後方再加熱手段により前記鋼板の接合部を再加熱する9又は10に記載の構造用鋼の摩擦撹拌接合方法。
12.鋼板との動摩擦係数が0.6より大きい素材により、前記回転ツールの表面が形成されてなる1~11のいずれかに記載の構造用鋼の摩擦撹拌接合方法。
13.被加工材である鋼板間の未接合部を接合する摩擦撹拌接合装置であって、
接合される鋼板を把持する把持装置と、
肩部及び前記肩部に配され前記肩部と回転軸を共有するピン部を含み、少なくとも前記肩部と前記ピン部とは鋼板よりも硬い材質からなり、前記鋼板の一方面側と他方面側とに対向して配置され、対向するそれぞれの肩部が鋼板の一方面側と他方面側とを押圧するとともに対向するそれぞれのピン部が鋼板間の未接合部に挿入された状態で、回転しながら接合方向へと移動可能な回転ツールと、
前記回転ツールの一方面側の接合方向前方に設けられ、鋼板を加熱する加熱手段と、
以下の状態1を実現するように前記回転ツール及び前記加熱手段を制御する制御手段と、を有する摩擦撹拌接合装置。
(状態1)
加熱手段を用いた加熱により鋼板の表面の温度TS(℃)が、
TS ≧ 0.8×TA1 (TA1は下記の式(1)に示す)
となる領域を加熱領域としたとき、鋼板の表面における、加熱領域と回転ツールとの最小距離が、回転ツールの肩部の直径以下であり、
また鋼板の表面における加熱領域の面積が、該回転ツールのピン部の最大径部の面積以下である。
記
TA1(℃)=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]
+16.9[%Cr]+290[%As]+6.38[%W] ・・・(1)
ただし、[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)であり、含有しない場合は0とする。
14.対向する回転ツールの両方が、肩部および前記肩部に配され前記肩部と回転軸を共有するピン部を含み、且つ対向する両方の回転ツールのピン長が同一である13に記載の構造用鋼の摩擦撹拌接合装置。
15.対向する回転ツールの両方が、肩部および前記肩部に配され前記肩部と回転軸を共有するピン部を含み、且つ対向する両方の回転ツールのピン長のうち、一方面側の回転ツールのピン長が他方面側の回転ツールのピン長より短い13に記載の構造用鋼の摩擦撹拌接合装置。
16.対向する両方の回転ツールの軸芯は、前記回転ツールの進行方向に対してそれぞれのピン部が先行する方向に傾けられてなる13~15のいずれかに記載の構造用鋼の摩擦撹拌接合装置。
17.回転ツールの回転方向が、一方面側と他方面側とで逆方向である13~16のいずれかに記載の構造用鋼の摩擦撹拌接合装置。
18.前記制御手段は、前記状態1に加えて、以下の状態2を実現するように前記回転ツール及び前記加熱手段を制御する13~17のいずれかに記載の構造用鋼の摩擦撹拌接合装置。
(状態2)
前記加熱領域の厚さ方向の領域に関し、温度TD(℃)が、
TD ≧ 0.8×TA1 (TA1は下記の式(1)に示す)
を満足する領域における前記鋼板の表面からの深さを加熱領域の深さDとしたとき、加熱領域の深さDが、前記鋼板の厚さtの100%となる。
記
TA1(℃)=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]+16.9[%Cr]+290[%As]+6.38[%W] ・・・(1)
ただし、[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)であり、含有しない場合は0とする。
19.前記加熱手段が、レーザ加熱装置である13~18のいずれかに記載の構造用鋼の摩擦撹拌接合装置。
20.接合方向へ移動する前記回転ツールの後方に、前記鋼板の接合部を加熱する後方加熱手段を設ける13~19のいずれかに記載の構造用鋼の摩擦撹拌接合装置。
21.前記回転ツールの後方でかつ前記後方加熱手段の後方に、前記鋼板の接合部を冷却する冷却手段を設ける20に記載の構造用鋼の摩擦撹拌接合装置。
22.接合方向へ移動する前記回転ツールの後方に、前記鋼板の接合部を冷却する冷却手段を設ける13~19のいずれかに記載の構造用鋼の摩擦撹拌接合装置。
23.接合方向へ移動する前記回転ツールの後方でかつ前記冷却手段の後方に、前記鋼板の接合部を再加熱する後方再加熱手段を設ける21又は22に記載の構造用鋼の摩擦撹拌接合装置。
24.鋼板との動摩擦係数が0.6より大きい素材により、前記回転ツールの表面が形成されてなる13~23のいずれかに記載の構造用鋼の摩擦撹拌接合装置。
本発明の摩擦撹拌接合方法および装置で接合する鋼板の温度と引張強さとの関係を図3に示す。図3のように、通常、鋼の変態温度(フェライト-オーステナイト変態温度)であるTA1の80%程度の温度では、常温時の強度の30%程度の強度となる。また、この温度より高くなると、さらに強度が低下する。よって、鋼板の表面温度を0.8×TA1℃以上として鋼板を予め軟化させ、当該鋼板を撹拌し、塑性流動を促進することで、回転ツールにかかる負荷を低減し、また接合速度も高速度化することができる。このため、本発明では、加熱領域における鋼板の表面温度TS(℃)を、0.8×TA1℃以上とする。なお、TA1(℃)は次式(1)により求めることができる。
TA1(℃)=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]+16.9[%Cr]+290[%As]+6.38[%W] ・・・(1)
ここで、[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)であり、含有しない場合は0とする。
なお、TM(℃)は被加工材である鋼板の融点である。
鋼板の表面における加熱領域と回転ツールとの間隔が大きくなり過ぎると、接合前に加熱領域における温度が低下してしまい、予熱による効果が十分に得られない。このため、鋼板の表面における加熱領域と接合方向へ移動する回転ツールとの最小距離は、回転ツールの肩部の直径以下とする。
なお、回転ツールの肩部の直径は、8~60mm程度である。
加熱領域が大きくなり過ぎると当該領域およびその周辺領域のミクロ組織が変化する。特に、マルテンサイト組織により強化された高張力鋼板の場合は、フェライト-オーステナイト変態温度以下での加熱であっても、マルテンサイトが焼き戻されることで軟化を生じ、接合部の強度を大幅に低下させてしまう。このため、鋼板の表面における加熱領域の面積は、回転ツールのピン部の最大径部の面積以下とする。
また、加熱領域の形状は、円形、楕円形、矩形など任意の形状とすることができる。尚、加熱領域の面積を算出する際に、加熱領域の形状が楕円形の場合には長径をピン径として採用することができ、矩形等の場合には円相当径をピン径として採用することができる。
前述したように、本発明の摩擦撹拌接合方法および装置で接合する鋼板は、通常、鋼の変態温度であるTA1の80%程度の温度では、常温時の強度の30%程度の強度となる。また、この温度より高くなると、さらに強度が低下する。よって、鋼板の表面だけでなく、厚さ方向においても鋼板を高温化させ、予め軟化させることが好ましい。具体的には、加熱領域の厚さ方向においても、温度を0.8×TA1℃以上として鋼板を予め軟化させることが好ましい。これにより、当該鋼板の撹拌及び塑性流動を促進することで、回転ツールにかかる負荷をさらに低減し、また接合速度も一層高速度化することができる。従って、後述する加熱領域の深さDを規定する加熱領域の厚さ方向の温度TDは、0.8×TA1℃以上として定義するものとした。なお、TA1(℃)
は次式(1)により求めることができる。
TA1(℃)=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]
+16.9[%Cr]+290[%As]+6.38[%W] ・・・(1)
ここで、[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)であり、含有しない場合は0とする。
なお、TM(℃)は被加工材である鋼板の融点である。
加熱領域の深さDは、上記した加熱領域の厚さ方向の温度TDが0.8×TA1℃以上となる領域における、被加工材である鋼板の表面からの最大深さで規定される。ここで、この加熱領域の深さDは、鋼板の厚さの100%とすることが好ましい。加熱領域の深さDを鋼板の厚さの100%とすることで、塑性流動が最大限に促進されるので、回転ツールにかかる負荷低減および接合速度の高速度化において、一層有利となる。予熱処理プロセスの加熱手段と同一面側に回転ツールを押圧して接合する従来の技術では、予熱処理プロセスの加熱手段を備え且つ回転ツールを押圧する側の反対側は、鋼板と同等もしくはそれ以上の硬さを有する支持体により支持する必要がある。一方、Dを鋼板の厚さの100%とすることにより、このような支持体による支持の必要がない。また、加熱領域の深さDが鋼板の厚さの30%を超えると鋼板と支持体が固着する恐れがあったが、本発明では、加熱領域の反対側に支持体を設けていないので、加熱領域の深さDが鋼板の厚さの100%としても固着の恐れは無い。
鋼板の摩擦撹拌接合において、表面側における塑性流動は、アドバンシングサイドを始点とし、回転ツールの回転方向に沿って接合方向前方、リトリーティングサイド、及び接合方向後方を順に通り、アドバンシングサイドが終点となる。特に、接合速度を上げて施工効率を上げるためには、塑性流動の始点に近いアドバンシングサイド及び接合方向前方において、十分な摩擦発熱を発生させ、塑性流動を促進することが重要となる。このような観点から、回転ツールの表面を形成する素材は、鋼板との動摩擦係数が0.6より大きいことが好ましい。尚、回転ツール自体を鋼板との動摩擦係数が0.6より大きい素材により形成してもよいし、回転ツールの表面を鋼板との動摩擦係数が0.6より大きい素材により被覆してもよい。前記素材は、回転ツールの表面のうち、少なくとも摩擦撹拌時に鋼板と接触する面に形成されていればよい。鋼板との動摩擦係数が0.6より大きい材質としては、例えば炭化タングステン(WC)を挙げることができる。尚、動摩擦係数の測定方法は特に制限されず、例えばボールオンディスク法を用いることができる。
2 表面側回転ツールの回転軸
3 鋼板
4 接合部
5 加熱手段
6 冷却手段
7 後方再加熱手段
8 表面側回転ツールの肩部
9 表面側回転ツールのピン部
10 接合中央線
12 加熱領域
13 冷却領域
14 再加熱領域
15 裏面側回転ツール
16 裏面側回転ツールの肩部
17 裏面側回転ツールのピン部
19 裏面側回転ツールの回転軸
a 表面側回転ツールの肩部直径
b 表面側回転ツールのピン部の最大径
c 表面側回転ツールのピン長さ
X 加熱領域と回転ツールとの距離
D 加熱領域の深さ
t 鋼板の厚さ
α 表面側回転ツール傾斜角度
β 裏面側回転ツール傾斜角度
Claims (24)
- 肩部及び前記肩部に配され前記肩部と回転軸を共有するピン部を含み、少なくとも前記肩部と前記ピン部とが被加工材である鋼板よりも硬い材質からなる回転ツールを、鋼板間の未接合部において回転させながら接合方向に移動させ、前記回転ツールと前記鋼板との摩擦熱により前記鋼板を軟化させつつ、その軟化した部位を前記回転ツールで撹拌することにより塑性流動を生じさせて、鋼板同士を接合する構造用鋼の摩擦撹拌接合方法において、
前記回転ツールを前記鋼板の一方面側と他方面側とに対向してそれぞれ配置し、
前記鋼板を把持装置により把持しつつ、対向する回転ツールのそれぞれの肩部を鋼板の一方面側と他方面側とに押圧させ、対向する回転ツールのそれぞれのピン部を一方面側と他方面側とから鋼板の未接合部に挿入して、回転ツールを回転させながら接合方向に移動させるとともに、
接合方向へ移動する前記回転ツールの一方面側の前方に設けた加熱手段により前記鋼板を加熱し、加熱により該鋼板の表面の温度TS(℃)が、
TS ≧ 0.8×TA1 (TA1は下記の式(1)に示す)
となる領域を加熱領域としたとき、鋼板の表面における、加熱領域と回転ツールとの最小距離を、回転ツールの肩部の直径以下とし、
また鋼板の表面における加熱領域の面積を、回転ツールのピン部の最大径部の面積以下とする構造用鋼の摩擦撹拌接合方法。
記
TA1(℃)=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]+16.9[%Cr]+290[%As]+6.38[%W] ・・・(1)
ただし、[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)であり、含有しない場合は0とする。 - 対向する両方の回転ツールのピン長が同一である請求項1に記載の構造用鋼の摩擦撹拌接合方法。
- 対向する両方の回転ツールのピン長のうち、一方面側の回転ツールのピン長が他方面側の回転ツールのピン長より短い請求項1に記載の構造用鋼の摩擦撹拌接合方法。
- 対向する両方の回転ツールの軸芯を、前記回転ツールの進行方向に対してそれぞれのピンが先行する方向に傾け、前記回転ツールを回転させながら接合方向に移動させて摩擦撹拌接合する請求項1~3のいずれかに記載の構造用鋼の摩擦撹拌接合方法。
- 回転ツールの回転方向を、一方面側と他方面側とで逆方向とする請求項1~4のいずれかに記載の構造用鋼の摩擦撹拌接合方法。
- 前記加熱領域の厚さ方向の領域に関し、温度TD(℃)が、
TD ≧ 0.8×TA1 (TA1は下記の式(1)に示す)
を満足する領域における前記鋼板の表面からの深さを加熱領域の深さDとしたとき、該加熱領域の深さDが、前記鋼板の厚さtの100%となる請求項1~5のいずれかに記載の構造用鋼の摩擦撹拌接合方法。
記
TA1(℃)=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]+16.9[%Cr]+290[%As]+6.38[%W] ・・・(1)
ただし、[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)であり、含有しない場合は0とする。 - 前記加熱手段が、レーザ加熱装置である請求項1~6のいずれかに記載の構造用鋼の摩擦撹拌接合方法。
- 接合方向へ移動する前記回転ツールの後方に後方加熱手段を設け、前記後方加熱手段により前記鋼板の接合部を加熱する請求項1~7のいずれかに記載の構造用鋼の摩擦撹拌接合方法。
- 前記回転ツールの後方でかつ前記後方加熱手段の後方に冷却手段を設け、前記冷却手段により前記鋼板の接合部を冷却する請求項8に記載の構造用鋼の摩擦撹拌接合方法。
- 接合方向へ移動する前記回転ツールの後方に冷却手段を設け、前記冷却手段により前記鋼板の接合部を冷却する請求項1~7のいずれかに記載の構造用鋼の摩擦撹拌接合方法。
- 接合方向へ移動する前記回転ツールの後方でかつ前記冷却手段の後方に後方再加熱手段を設け、前記後方再加熱手段により前記鋼板の接合部を再加熱する請求項9又は10に記載の構造用鋼の摩擦撹拌接合方法。
- 鋼板との動摩擦係数が0.6より大きい素材により、前記回転ツールの表面が形成されてなる請求項1~11のいずれかに記載の構造用鋼の摩擦撹拌接合方法。
- 被加工材である鋼板間の未接合部を接合する摩擦撹拌接合装置であって、
接合される鋼板を把持する把持装置と、
肩部及び前記肩部に配され前記肩部と回転軸を共有するピン部を含み、少なくとも前記肩部と前記ピン部とは鋼板よりも硬い材質からなり、前記鋼板の一方面側と他方面側とに対向して配置され、対向するそれぞれの肩部が鋼板の一方面側と他方面側とを押圧するとともに対向するそれぞれのピン部が鋼板間の未接合部に挿入された状態で、回転しながら接合方向へと移動可能な回転ツールと、
前記回転ツールの一方面側の接合方向前方に設けられ、鋼板を加熱する加熱手段と、
以下の状態1を実現するように前記回転ツール及び前記加熱手段を制御する制御手段と、を有する摩擦撹拌接合装置。
(状態1)
加熱手段を用いた加熱により鋼板の表面の温度TS(℃)が、
TS ≧ 0.8×TA1 (TA1は下記の式(1)に示す)
となる領域を加熱領域としたとき、鋼板の表面における、加熱領域と回転ツールとの最小距離が、回転ツールの肩部の直径以下であり、
また鋼板の表面における加熱領域の面積が、該回転ツールのピン部の最大径部の面積以下である。
記
TA1(℃)=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]
+16.9[%Cr]+290[%As]+6.38[%W] ・・・(1)
ただし、[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)であり、含有しない場合は0とする。 - 対向する回転ツールの両方が、肩部および前記肩部に配され前記肩部と回転軸を共有するピン部を含み、且つ対向する両方の回転ツールのピン長が同一である請求項13に記載の構造用鋼の摩擦撹拌接合装置。
- 対向する回転ツールの両方が、肩部および前記肩部に配され前記肩部と回転軸を共有するピン部を含み、且つ対向する両方の回転ツールのピン長のうち、一方面側の回転ツールのピン長が他方面側の回転ツールのピン長より短い請求項13に記載の構造用鋼の摩擦撹拌接合装置。
- 対向する両方の回転ツールの軸芯は、前記回転ツールの進行方向に対してそれぞれのピン部が先行する方向に傾けられてなる請求項13~15のいずれかに記載の構造用鋼の摩擦撹拌接合装置。
- 回転ツールの回転方向が、一方面側と他方面側とで逆方向である請求項13~16のいずれかに記載の構造用鋼の摩擦撹拌接合装置。
- 前記制御手段は、前記状態1に加えて、以下の状態2を実現するように前記回転ツール及び前記加熱手段を制御する請求項13~17のいずれかに記載の構造用鋼の摩擦撹拌接合装置。
(状態2)
前記加熱領域の厚さ方向の領域に関し、温度TD(℃)が、
TD ≧ 0.8×TA1 (TA1は下記の式(1)に示す)
を満足する領域における前記鋼板の表面からの深さを加熱領域の深さDとしたとき、加熱領域の深さDが、前記鋼板の厚さtの100%となる。
記
TA1(℃)=723-10.7[%Mn]-16.9[%Ni]+29.1[%Si]+16.9[%Cr]+290[%As]+6.38[%W] ・・・(1)
ただし、[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)であり、含有しない場合は0とする。 - 前記加熱手段が、レーザ加熱装置である請求項13~18のいずれかに記載の構造用鋼の摩擦撹拌接合装置。
- 接合方向へ移動する前記回転ツールの後方に、前記鋼板の接合部を加熱する後方加熱手段を設ける請求項13~19のいずれかに記載の構造用鋼の摩擦撹拌接合装置。
- 前記回転ツールの後方でかつ前記後方加熱手段の後方に、前記鋼板の接合部を冷却する冷却手段を設ける請求項20に記載の構造用鋼の摩擦撹拌接合装置。
- 接合方向へ移動する前記回転ツールの後方に、前記鋼板の接合部を冷却する冷却手段を設ける請求項13~19のいずれかに記載の構造用鋼の摩擦撹拌接合装置。
- 接合方向へ移動する前記回転ツールの後方でかつ前記冷却手段の後方に、前記鋼板の接合部を再加熱する後方再加熱手段を設ける請求項21又は22に記載の構造用鋼の摩擦撹拌接合装置。
- 鋼板との動摩擦係数が0.6より大きい素材により、前記回転ツールの表面が形成されてなる請求項13~23のいずれかに記載の構造用鋼の摩擦撹拌接合装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17774532.0A EP3437781B1 (en) | 2016-03-31 | 2017-03-22 | Friction stir welding method and apparatus for structural steel |
US16/089,217 US11241755B2 (en) | 2016-03-31 | 2017-03-22 | Friction stir welding method and apparatus for structural steel |
CN201780021133.9A CN109070262B (zh) | 2016-03-31 | 2017-03-22 | 结构用钢的摩擦搅拌接合方法和装置 |
JP2017528600A JP6332562B2 (ja) | 2016-03-31 | 2017-03-22 | 構造用鋼の摩擦撹拌接合方法及び装置 |
KR1020187028083A KR102096919B1 (ko) | 2016-03-31 | 2017-03-22 | 구조용 강의 마찰 교반 접합 방법 및 장치 |
MX2018011870A MX2018011870A (es) | 2016-03-31 | 2017-03-22 | Metodo de soldadura por friccion-agitacion y aparato para acero estructural. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016073233 | 2016-03-31 | ||
JP2016-073233 | 2016-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017169991A1 true WO2017169991A1 (ja) | 2017-10-05 |
Family
ID=59964337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/011286 WO2017169991A1 (ja) | 2016-03-31 | 2017-03-22 | 構造用鋼の摩擦撹拌接合方法及び装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11241755B2 (ja) |
EP (1) | EP3437781B1 (ja) |
JP (1) | JP6332562B2 (ja) |
KR (1) | KR102096919B1 (ja) |
CN (1) | CN109070262B (ja) |
MX (1) | MX2018011870A (ja) |
WO (1) | WO2017169991A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020124739A (ja) * | 2019-02-06 | 2020-08-20 | Jfeスチール株式会社 | 両面摩擦攪拌接合方法および両面摩擦攪拌接合装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102273514B1 (ko) * | 2017-10-31 | 2021-07-06 | 멜드 매뉴팩쳐링 코포레이션 | 고체-상태의 첨가제 제조 시스템 및 재료 조성물 및 구조 |
JP2021087961A (ja) * | 2019-12-02 | 2021-06-10 | 日本軽金属株式会社 | 伝熱板の製造方法 |
CN114939714B (zh) * | 2022-06-08 | 2023-05-16 | 南昌航空大学 | 一种电磁脉冲辅助搅拌摩擦锁焊加工装置及方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4838385B1 (ja) | 1969-02-25 | 1973-11-16 | ||
JPS62183979A (ja) | 1986-01-17 | 1987-08-12 | ザ ウエルデイング インステイテユ−ト | 摩擦溶接方法及びその装置 |
JPH07505090A (ja) | 1991-12-06 | 1995-06-08 | ザ ウェルディング インスティテュート | 摩擦溶接方法 |
JP3261433B2 (ja) | 1999-05-25 | 2002-03-04 | 川崎重工業株式会社 | 接合装置及び接合方法 |
JP2003032543A (ja) | 2001-07-11 | 2003-01-31 | Canon Inc | 撮像装置、露出制御方法、記録媒体及びプログラム |
JP2003094175A (ja) | 2001-09-20 | 2003-04-02 | Yaskawa Electric Corp | 摩擦撹拌接合法の加熱装置 |
JP2003532542A (ja) | 2000-05-08 | 2003-11-05 | ブリガム ヤング ユニバーシティ | 高耐摩耗性工具を使用する金属基複合材料、鉄合金、非鉄合金及び超合金の摩擦撹拌接合 |
JP2005288474A (ja) | 2004-03-31 | 2005-10-20 | Nippon Sharyo Seizo Kaisha Ltd | 摩擦撹拌接合装置及び摩擦撹拌接合方法 |
WO2011024320A1 (ja) * | 2009-08-31 | 2011-03-03 | 三菱日立製鉄機械株式会社 | 両面摩擦攪拌接合方法、接合装置、冷間圧延設備の金属板接合方法及び冷間圧延設備 |
WO2015045299A1 (ja) | 2013-09-30 | 2015-04-02 | Jfeスチール株式会社 | 構造用鋼の摩擦撹拌接合方法および構造用鋼の接合継手の製造方法 |
WO2015198910A1 (ja) * | 2014-06-25 | 2015-12-30 | 三菱重工業株式会社 | 摩擦撹拌接合方法及び摩擦撹拌接合装置 |
WO2016147668A1 (ja) * | 2015-03-19 | 2016-09-22 | Jfeスチール株式会社 | 構造用鋼の摩擦撹拌接合装置 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10036170C1 (de) * | 2000-07-25 | 2001-12-06 | Eads Deutschland Gmbh | Laserunterstütztes Reibrührschweißverfahren |
IL142101A0 (en) * | 2001-03-19 | 2002-03-10 | Rotem Ind Ltd | Improved process and apparatus for friction stir welding |
JP3864888B2 (ja) * | 2002-10-28 | 2007-01-10 | マツダ株式会社 | 摩擦撹拌を用いた接合方法 |
US6913186B2 (en) * | 2003-09-11 | 2005-07-05 | The Boeing Company | Apparatus and method for friction stir welding with a variable speed pin |
US7078647B2 (en) * | 2004-10-21 | 2006-07-18 | Wisconsin Alumni Research Foundation | Arc-enhanced friction stir welding |
AT506133B1 (de) * | 2007-11-16 | 2009-11-15 | Boehlerit Gmbh & Co Kg | Reibrührschweisswerkzeug |
US20100136369A1 (en) * | 2008-11-18 | 2010-06-03 | Raghavan Ayer | High strength and toughness steel structures by friction stir welding |
US8464926B2 (en) * | 2009-10-30 | 2013-06-18 | Wisconsin Alumni Research Foundation | Method of friction stir welding dissimilar metals and workpiece assemblies formed thereby |
US11072035B2 (en) * | 2010-05-21 | 2021-07-27 | Illinois Tool Works Inc. | Auxiliary welding heating system |
JP2012130947A (ja) * | 2010-12-22 | 2012-07-12 | Sumitomo Electric Ind Ltd | 回転ツール |
CN102601516A (zh) * | 2012-03-29 | 2012-07-25 | 哈尔滨工业大学 | 双面对称搅拌摩擦焊接方法 |
CN103008896B (zh) * | 2012-12-31 | 2015-04-15 | 中国科学院半导体研究所 | 一种结合激光和搅拌摩擦焊的复合焊接方法 |
DE102013110034B4 (de) * | 2013-09-12 | 2022-10-06 | Universität Stuttgart | Verfahren zum Stumpfverschweißen |
JP6407855B2 (ja) * | 2013-09-30 | 2018-10-17 | Jfeスチール株式会社 | 鋼板の摩擦撹拌接合方法及び接合継手の製造方法 |
US9833861B2 (en) | 2013-09-30 | 2017-12-05 | Jfe Steel Corporation | Friction stir welding method for steel sheets and method of manufacturing joint |
JP6403515B2 (ja) * | 2014-09-24 | 2018-10-10 | 三菱重工業株式会社 | 接合部処理方法及びドーム部材 |
US10440784B2 (en) * | 2014-10-14 | 2019-10-08 | Illinois Tool Works Inc. | Reduced-distortion hybrid induction heating/welding assembly |
CN104551379A (zh) | 2014-12-19 | 2015-04-29 | 董春林 | 一种热源辅助搅拌摩擦焊接方法 |
US10589375B2 (en) * | 2015-06-02 | 2020-03-17 | Honda Motor Co., Ltd. | Friction stir weld tool and method |
-
2017
- 2017-03-22 CN CN201780021133.9A patent/CN109070262B/zh active Active
- 2017-03-22 JP JP2017528600A patent/JP6332562B2/ja active Active
- 2017-03-22 MX MX2018011870A patent/MX2018011870A/es unknown
- 2017-03-22 WO PCT/JP2017/011286 patent/WO2017169991A1/ja active Application Filing
- 2017-03-22 US US16/089,217 patent/US11241755B2/en active Active
- 2017-03-22 KR KR1020187028083A patent/KR102096919B1/ko active IP Right Grant
- 2017-03-22 EP EP17774532.0A patent/EP3437781B1/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4838385B1 (ja) | 1969-02-25 | 1973-11-16 | ||
JPS62183979A (ja) | 1986-01-17 | 1987-08-12 | ザ ウエルデイング インステイテユ−ト | 摩擦溶接方法及びその装置 |
JPH07505090A (ja) | 1991-12-06 | 1995-06-08 | ザ ウェルディング インスティテュート | 摩擦溶接方法 |
JP3261433B2 (ja) | 1999-05-25 | 2002-03-04 | 川崎重工業株式会社 | 接合装置及び接合方法 |
JP2003532542A (ja) | 2000-05-08 | 2003-11-05 | ブリガム ヤング ユニバーシティ | 高耐摩耗性工具を使用する金属基複合材料、鉄合金、非鉄合金及び超合金の摩擦撹拌接合 |
JP2003032543A (ja) | 2001-07-11 | 2003-01-31 | Canon Inc | 撮像装置、露出制御方法、記録媒体及びプログラム |
JP2003094175A (ja) | 2001-09-20 | 2003-04-02 | Yaskawa Electric Corp | 摩擦撹拌接合法の加熱装置 |
JP2005288474A (ja) | 2004-03-31 | 2005-10-20 | Nippon Sharyo Seizo Kaisha Ltd | 摩擦撹拌接合装置及び摩擦撹拌接合方法 |
WO2011024320A1 (ja) * | 2009-08-31 | 2011-03-03 | 三菱日立製鉄機械株式会社 | 両面摩擦攪拌接合方法、接合装置、冷間圧延設備の金属板接合方法及び冷間圧延設備 |
WO2015045299A1 (ja) | 2013-09-30 | 2015-04-02 | Jfeスチール株式会社 | 構造用鋼の摩擦撹拌接合方法および構造用鋼の接合継手の製造方法 |
WO2015198910A1 (ja) * | 2014-06-25 | 2015-12-30 | 三菱重工業株式会社 | 摩擦撹拌接合方法及び摩擦撹拌接合装置 |
WO2016147668A1 (ja) * | 2015-03-19 | 2016-09-22 | Jfeスチール株式会社 | 構造用鋼の摩擦撹拌接合装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3437781A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020124739A (ja) * | 2019-02-06 | 2020-08-20 | Jfeスチール株式会社 | 両面摩擦攪拌接合方法および両面摩擦攪拌接合装置 |
JP6992773B2 (ja) | 2019-02-06 | 2022-01-13 | Jfeスチール株式会社 | 両面摩擦攪拌接合方法および両面摩擦攪拌接合装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3437781B1 (en) | 2022-02-09 |
EP3437781A4 (en) | 2019-06-12 |
CN109070262B (zh) | 2021-09-10 |
JPWO2017169991A1 (ja) | 2018-04-05 |
US20200306871A1 (en) | 2020-10-01 |
JP6332562B2 (ja) | 2018-05-30 |
MX2018011870A (es) | 2018-12-17 |
KR102096919B1 (ko) | 2020-04-03 |
EP3437781A1 (en) | 2019-02-06 |
US11241755B2 (en) | 2022-02-08 |
KR20180119635A (ko) | 2018-11-02 |
CN109070262A (zh) | 2018-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6497451B2 (ja) | 摩擦撹拌接合方法および装置 | |
JP5943142B2 (ja) | 構造用鋼の摩擦撹拌接合方法および構造用鋼の接合継手の製造方法 | |
JP6004147B1 (ja) | 構造用鋼の摩擦撹拌接合装置 | |
JP6332561B2 (ja) | 構造用鋼の摩擦撹拌接合方法及び装置 | |
JP6992773B2 (ja) | 両面摩擦攪拌接合方法および両面摩擦攪拌接合装置 | |
JP6332562B2 (ja) | 構造用鋼の摩擦撹拌接合方法及び装置 | |
JP6493564B2 (ja) | 摩擦撹拌接合方法および装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017528600 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2018/011870 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20187028083 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017774532 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017774532 Country of ref document: EP Effective date: 20181031 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17774532 Country of ref document: EP Kind code of ref document: A1 |