WO2016147314A1 - コンピュータ断層撮影方法及び装置 - Google Patents
コンピュータ断層撮影方法及び装置 Download PDFInfo
- Publication number
- WO2016147314A1 WO2016147314A1 PCT/JP2015/057884 JP2015057884W WO2016147314A1 WO 2016147314 A1 WO2016147314 A1 WO 2016147314A1 JP 2015057884 W JP2015057884 W JP 2015057884W WO 2016147314 A1 WO2016147314 A1 WO 2016147314A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- projection
- subject
- image
- data
- image data
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
- G01N23/044—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using laminography or tomosynthesis
Definitions
- the present invention relates to an X-ray imaging technique, and more particularly, to an X-ray imaging technique suitable for inspecting the inside of an object with non-destructive and high quantitativeness.
- X-ray CT (Computed Tomography) is a method of obtaining a cross-sectional image of a subject by calculation using a transmission image obtained by rotating the subject relative to an X-ray source and obtained from different angles. It is an indispensable technology for medical diagnosis and product inspection because the inside of a subject can be observed three-dimensionally without breaking using the high transmission of X-rays.
- the calculation for obtaining the cross-sectional image from the measured transmission image data is called “reconstruction” and is generally obtained by the “back projection” operation shown below.
- Figure 1 shows the relationship between reconstruction and backprojection.
- FIG. 1 (a) is an operation concept at the time of CT measurement, and for simplification, it is assumed that the subject exists only at the center (the coordinates of the center are (0, 0)).
- the projection image data at each projection angle ⁇ is an integration of the intensity in that direction.
- the data “0” area that originally has no subject is also a value (in the example of FIG. 1B).
- the original data cannot be accurately reconstructed by back projection alone.
- a filter is applied (convolved) to the projection image data before back projection, and all the data is added by back projection.
- the value of each image data is converted to 0.
- This method is called filtered back projection (FBP).
- FBP filtered back projection
- the value where there is no subject may not be zero, and there is a problem that a line-like pseudo image (artifact) is generated.
- the CT value to be reproduced differs depending on the shape of the filter to be acted (generally a function is used, a function expression or parameter), it is difficult to quantitatively compare CT values in cross-sectional images acquired with different filters. There was a problem.
- image data obtained at other projection angles is used instead of adding values uniformly to the projection direction in back projection.
- Use to control the addition process As a result, the value of an area that is originally 0 where no subject exists can be kept 0, and a cross-sectional image without artifacts can be reproduced. That is, if image data obtained at other projection angles is used, the area where the subject is present can be specified to some extent, and this information is used for back projection processing.
- Another aspect of the present invention includes an X-ray source, an X-ray image detector, and a calculation unit.
- the X-ray source emits X-rays from a plurality of different directions
- the X-ray image detector Acquires projection images obtained at a plurality of different projection angles obtained by X-rays irradiated from a plurality of different directions, processes the image data of the projection images by the calculation unit, and reconstructs the cross-sectional image of the subject by back projection Is a computed tomography apparatus.
- the calculation unit can be realized by executing software by a computer processing device. Moreover, you may comprise with exclusive hardware.
- the calculation unit adds a first processing unit that creates mask data from the image data obtained at the first projection angle and the image data obtained at the second projection angle to the data array to re-create the cross-sectional image.
- the image processing apparatus includes a second processing unit that performs processing for weighting image data with mask data and forming a part of the cross-sectional image. Then, by changing the first projection angle and the second projection angle and repeating the process of forming a part of the cross-sectional image, the cross-sectional image is reconstructed.
- the first projection angle and the second projection angle are set to an orthogonal angle.
- the first processing unit creates mask data in which coordinates at which it is determined that no subject exists is 0 based on the image data obtained at the first projection angle
- the second The processing unit performs processing for integrating the image data obtained at the second projection angle and the mask data.
- the second processing unit may add a process for converting the coordinates of at least one of the image data or the mask data obtained at the second projection angle.
- Another aspect of the present invention is a computer tomography method for reconstructing a cross-sectional image of a subject by back projection addition from image data obtained at different projection angles by relatively rotating the subject and an X-ray imaging system.
- the image data acquired from the first projection direction is backprojected and added, the image data acquired from the second projection direction different from this is used to limit the area to which the reconstructed cross-sectional image is added.
- Another aspect of the present invention is a cross-section of a subject in computer tomography in which a cross-sectional image of a subject is reconstructed by repetitive calculation from image data obtained at different projection angles by relatively rotating the subject and an X-ray imaging system.
- the back-projection calculation for reconstructing an image is a back-projection calculation with a restriction that adds only the area where the subject exists on the data acquired from different projection directions, and does not add the area that does not exist. To do.
- f () is a convolution of a conventional filter function such as a Shepp-Logan function.
- ⁇ is performed from 0 ° to 360 °. Note that the calculation of M (x ′′) after 180 ° may use the data I_2 ( ⁇ 90 °) of ⁇ 90 °.
- an accurate CT value cross-sectional image without a pseudo image can be obtained.
- notations such as “first”, “second”, and “third” are attached to identify the constituent elements, and do not necessarily limit the number or order.
- a number for identifying a component is used for each context, and a number used in one context does not necessarily indicate the same configuration in another context. Further, it does not preclude that a component identified by a certain number also functions as a component identified by another number.
- FIG. 2 shows an X-ray imaging apparatus that acquires measurement data to be processed in this embodiment.
- This apparatus mainly includes an X-ray source 1, a subject positioning rotation mechanism 2, an X-ray image detector 3, a control unit 4, a calculation unit 5, and a display unit 6.
- the subject positioning rotation mechanism 2 can rotate the subject 8 about a predetermined CT rotation axis 10.
- the irradiated X-ray 7 emitted from the X-ray source 1 is irradiated to the subject 8 positioned by the subject positioning rotation mechanism 2.
- the transmitted X-ray 9 transmitted through the subject 8 is detected by the X-ray image detector 3.
- the control unit 4, the calculation unit 5, and the display unit 6 collectively constitute a control device.
- the control device 11 may include a storage device and an input device such as a keyboard for an operator to operate.
- FIG. 3 is a flowchart showing a processing procedure for acquiring CT measurement data under the control of the control unit 4 using the apparatus of FIG.
- process S301 the subject 8 is retracted from the optical path 7 of the irradiated X-rays using the subject positioning rotation mechanism 2.
- dark data I_D is acquired without irradiating X-rays.
- background image data I_BK is acquired.
- the subject 8 is inserted into the optical path 7 of the irradiation X-rays using the subject positioning rotation mechanism 2. At this time, if the center of rotation of the subject 8 and the center of the optical path are adjusted, it is possible to measure a subject having the same size as the X-ray optical path width (field of view).
- transmission image data I ( ⁇ ) transmitted through the subject 8 is acquired.
- process S307 the subject 8 is rotated by ⁇ using the subject positioning rotation mechanism 2.
- steps S306 to S307 are repeated until the rotation angle ⁇ of the subject reaches 0 to 360 °.
- step S309 the subject 8 is retracted from the optical path of the irradiation X-ray 7 using the subject positioning rotation mechanism 2.
- the background image data I_BK_2 is acquired by irradiating X-rays, and the process ends in S311.
- FIG. 4 is a flowchart showing the processing procedure of preprocessing by the control device 11.
- I_BK_2 is the main background image data.
- the image data is one- or two-dimensional array data, and the above calculation means individual calculation for each pixel.
- FIG. 5 shows a procedure for reconstructing a cross-sectional image by the processing apparatus 11.
- the processing is performed according to the following procedure using the linear absorption coefficient data I_2 ( ⁇ ) obtained in the preprocessing.
- the mask data M (x ′′) is calculated as follows based on the value at each pixel position x for the linear absorption coefficient data I_2 ( ⁇ + 90) at an angle ( ⁇ + 90 °) orthogonal to the projection angle ⁇ .
- x x ′ sin ⁇ + y′cos ⁇ for each coordinate (x ′, y ′) of the virtual reconstructed image data S (x ′, y ′).
- f () is a convolution of filter functions such as a Shepp-Logan function and a ramp function.
- process 504 the above procedure is repeated until the projection angle ⁇ is changed from 0 ° to 360 °. Note that the calculation of the mask data M (x ′′) after 180 ° uses data of ⁇ 90 °. When 360 ° is reached, the process ends (S505).
- the reconstructed image data S calculated as described above is displayed on the display unit 6 in accordance with the operator's instructions.
- the processing operations of the control unit 4 and the calculation unit 5 are realized, for example, by executing a program by a computer (computer).
- the program is stored in a storage device (not shown).
- part or all of the processing operations executed by the control unit 4 and the calculation unit 5 may be realized as an ASIC or a dedicated calculation module.
- the display device 6 is connected to the calculation unit 5, but a printing device as an output device may be connected to the calculation unit 5 instead of the display device 6 or together with the display device 6. .
- the printing apparatus prints the reconstructed image described above.
- a communication device may be connected instead of the display device 6 or together with the display device 6 so that transmission can be made to an external device.
- FIG. 6 shows an application example for a simple system having a size of 5 ⁇ 5 pixels similar to FIG. 1 and having a subject only at the center.
- Each projection image data obtained by this system is as shown in FIG.
- mask data is created in which the area where the value of the projection data orthogonal to the data to be projected is not 0 and the area of 0 is 0, and this mask data
- Example 1 addition was performed after convolving a filter function to projection data. For this reason, since the CT value of each pixel in the reproduced cross-sectional image changes depending on the type of the filter function, a constant value cannot be obtained, and quantitative analysis is difficult.
- a method for reproducing a cross-sectional image without needing to perform convolution of the filter function will be described.
- the process of calculating the mask data M (x ′′) of the first embodiment is changed as follows.
- M '(x ”) I_2 ( ⁇ + 90 °, x”) / ⁇ I_2 ( ⁇ + 90 °, x_i ”)
- the denominator is the sum of the projection image data of ⁇ + 90 °
- the numerator is the value at the position x ′′ of the projection image data. That is, the mask data M ′ is the normalized projection image data.
- the cross-sectional image S obtained as described above is displayed on the display device in accordance with the operator's instructions as in the first embodiment.
- the implementation method may be executed by a computer (computer) program, an ASIC, or a dedicated calculation module.
- FIG. 7 shows an example in which the present invention is applied to measurement data of small pixels of 5 ⁇ 5.
- the subject has a size of 1 ⁇ 2 as well as one pixel at the center.
- mask data M ′ is first calculated using projection data 101 of + 90 ° in accordance with the above.
- mask data is generated by dividing the value at each position of the projection data I_2 ( ⁇ + 90 °) orthogonal to the projection data I_2 ( ⁇ ) by the sum in the back projection calculation of the reconstruction.
- mask data M (x ′′) is calculated as follows based on the value at each pixel x for linear absorption coefficient data I_2 ( ⁇ + 90) at an angle ( ⁇ + 90 °) orthogonal to the projection angle ⁇ .
- x x ′ sin ⁇ + y′cos ⁇ for each coordinate of the virtual reconstructed image data S (x ′, y ′).
- x ” x 'sin ( ⁇ + 90 °) + y'cos ( ⁇ + 90 °) Perform coordinate transformation of.
- step S504 the above procedure is repeated until the projection angle ⁇ is changed from 0 ° to 360 °.
- the calculation of the mask data M (x ′′) after 180 ° uses data of ⁇ 90 °.
- step S503 what is added in step S503 is a simple product of M and I_2, and the major difference from the first embodiment is that no filter convolution is performed.
- the sequential calculation is performed by the following procedure using the reconstructed image data S obtained by the above calculation as the initial reconstructed image data S_0.
- the reconstructed image data S_0 is set to the initial value of the reconstructed image data.
- the projection image data I_k ( ⁇ r) is obtained as follows.
- ⁇ r is the projection angle, and the calculation is performed at the same angular interval as the measurement data from ⁇ r to 0 to 360 °.
- Fig. 8 shows a flowchart of the above calculation process.
- a more accurate CT value cross-sectional image can be reconstructed.
- initial reconstructed image data S_0 is calculated from the measurement data, and k is set to 1.
- projection image data I_k is calculated from the projection of S_k-1.
- process S804 it is determined whether or not the error E is a set value. If the set value is satisfied, the process ends, and the reconstructed data (reproduced image) at that time is the result (end process 805). If the error does not satisfy the set value, the process proceeds to step S806.
- S′_k ⁇ 1 is calculated by back projection of I_k to obtain reconstructed image data.
- dS 2 (S_0 ⁇ S′_k ⁇ 1) is calculated to obtain a difference dS between the initial reconstructed image data and the reconstructed data.
- the cross-sectional image S obtained as described above is displayed on the display device 6 in accordance with the operator's instructions as in the first embodiment.
- the implementation method may be executed by a computer (computer) program, an ASIC, or a dedicated calculation module. Further, by displaying the repeated calculation process on the display 6 every time, it is possible to determine the convergence process and the validity of the constraint conditions even during the calculation.
- a region in which the value of the projection data orthogonal to the projection data is not 0 is set to 1, and the 0 region is set to 0.
- mask data is created using projection data O_2 ( ⁇ + 90 °) orthogonal to projection data I_2 ( ⁇ ).
- O_2 ⁇ + 90 °
- I_2 ⁇
- a method for creating mask data using projection data other than 90 ° and reconstructing a cross-sectional image using the mask data will be described.
- the rectangular area 901 is an area where the subject 902 exists at the angle ⁇ , that is, an area where the mask data is not zero. Therefore, in this region, addition from the data of the projection angle ⁇ is allowed.
- the mask data M ′′ remains unchanged with respect to the horizontal position x ′ of I_2, but becomes x ′ at angles other than 90 °. It can be seen that the position x ′′ of the mask data needs to be shifted depending on this.
- the process of creating the mask data M of the first embodiment is performed at the position x of each pixel with respect to the linear absorption coefficient data I_2 ( ⁇ + ⁇ ) of the angle ⁇ ( ⁇ + ⁇ ) with respect to the projection angle ⁇ .
- the mask data M ′′ (x ′′) is calculated as follows.
- mask data is created based on the projection data value different from the projection data by the projection angle ⁇ , and the product of the mask data and the projection data is reproduced.
- FIG. 10 is a principle diagram showing the relationship between the rotation angle of the irradiation X-ray 1001 and the subject 1002 in the embodiment of the present invention.
- Examples 1 to 4 a cross-sectional image orthogonal to the rotation axis 1003 of the subject 1002 is obtained as shown in FIG.
- calculation of a cross-sectional image in a system in which the rotation axis 1003 of the subject is not orthogonal to the incident X-ray 1001 and is inclined by ⁇ as shown in FIG. 10B will be described.
- a system in which the rotation axis and the X-ray optical path are tilted is called laminography, and the tilt angle ⁇ is called a laminography angle 1004.
- FIG. 11 shows examples of a shape (a) measured from a side of a thick disc-shaped object and a shape (b) measured from an oblique direction.
- the internal absorption coefficient is very large and X-rays are not transmitted.
- both images are rounded up and down. For this reason, the restriction on the Z-axis direction as mask data is inevitably reduced, but it functions effectively as before in the horizontal plane.
- a specific method of creating the mask data M_3 extends the first embodiment to two dimensions.
- each pixel (with respect to linear absorption coefficient data I_2 ( ⁇ + 90, x ′′, y ′′)) at an angle ( ⁇ + 90 °) orthogonal to the projection angle ⁇
- the mask data M_3 (x ′′, y ′′) is calculated as follows.
- back projection at the projection angle ⁇ is performed on the coordinates of the virtual reconstructed image data S (x ′, y ′, z ′) using the mask data M_3.
- an image can be reproduced more accurately if known information such as the subject being in a disk shape can be incorporated as a constraint.
- I_2 ( ⁇ + 90 °) orthogonal to the mask data is used.
- the mask data may be generated using data having an angle different from 90 ° as in the fourth embodiment.
- the cross-sectional image S obtained as described above is displayed on the display device 6 in accordance with the instructions of the operator as in the first to fourth embodiments.
- the implementation method may be executed by a computer (computer) program, an ASIC, or a dedicated calculation module.
- a computer computer
- ASIC application specific integrated circuit
- the reprojection calculation is based on the projection data value different from the projection data by the projection angle by ⁇ .
- the data processing may be configured by a single computer, or any part of the input device, output device, processing device, and storage device may be configured by another computer connected via a network. Also good.
- the idea of the invention is equivalent and unchanged.
- the data processing in this embodiment can be configured by software. Equivalent functions can also be realized by hardware such as FPGA (Field Programmable Gate Array) and ASIC (Application Specific Integrated Circuit). Such an embodiment is also included in the scope of the present invention.
- FPGA Field Programmable Gate Array
- ASIC Application Specific Integrated Circuit
- the present invention is not limited to the above-described embodiment, and includes various modifications.
- a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
X線CTにおいてアーチファクトのない断面像を再生する 被写体とX線撮像系を相対的に回転して異なる投影角度で得られた画像データから被写体の断面像を逆投影によって再構成するコンピュータ断層撮影について、逆投影において投影方向に一様に値を加算していくのではなく、他の投影角度(基本的には直交する方向)で得られた像データを利用して加算領域を設定し,その領域だけ値の加算を行うようにする。
Description
本発明はX線撮像技術に係わり、特に、物体の内部を非破壊で高い定量性で検査するのに適したX線撮像技術に関する。
X線CT(Computed Tomography)は、X線源に対して被写体を相対的に回転し,異なる角度から取得した透過像を用いて,計算により被写体の断面像を得る方法である。X線の高い透過能を利用して非破壊で被写体内部を三次元的に観察できることから,医療診断や製品の検査には不可欠な技術となっている。
測定した透過像データから断面像を求める計算は「再構成」と呼ばれ,一般に以下に示す「逆投影」演算により求める。
図1に再構成と逆投影の関係を示す。
図1(a)はCTの測定時の操作概念であり、単純化するため、被写体が中心(中心の座標を(0,0)とする)にしか存在しないものとする。測定系においては,各投影角度θにおける投影像データはその方向への強度の積算となるので、例えば投影角度θが、白矢印で示す90度(横方向)や、黒矢印で示す0度(縦方向)では、図1(a)のθ=90度の投影データ101、θ=0度の投影データ102のような、中心の値(1)のデータとなる。
一方、再構成で用いる「逆投影」では、各投影方向で得られた像データ101,102を仮想的な被写体のデータ配列(2次元あるいは3次元)に、順次加算していくことになる。図1の例では、投影角度θ=0で取得されたデータ102を0度方向から、90度で取得されたデータ101を90度方向から、各画素に投影方向に沿って、図1(b)の矢印の方向に加算していく。このことを各角度で取得した像データについて行えば,非破壊で被写体の断面像を取得することができる。以上が,CTによる断面像の再構成の原理である。
図1(b)からわかるように、投影角度に沿って各画素に全データを加算していくために、本来は被写体のないデータ「0」の領域も値(図1(b)の例では「1」)を持つことになってしまい、逆投影だけでは正確にオリジナルのデータを再構成することができない。
この問題を解決するために、従来のCTでは逆投影の前に、投影像データにフィルターを作用(コンボリューションして)し,逆投影により全てのデータを加算すると、被写体のないところの値は0になるように各像データの値を変換している。この方法をフィルタード・バックプロジェクション(FBP)と呼ぶ。FBPについては、例えば特許文献1に概要が記載されている。
従来のフィルタード・バックプロジェクション(FBP)では、被写体の形状や密度によっては,被写体のないところの値が0にならないこともあり,ライン状の疑似像(アーチファクト)が生じるという問題があった。また,作用させるフィルターの形状(一般には関数を利用するので,関数式やパラメータ)によって,再生されるCT値が異なるため,異なるフィルターで取得した断面像におけるCT値の定量的な比較は難しいという問題があった。
上記課題を解決するために本発明の一側面では,逆投影において投影方向に一様に値を加算していくのではなく、他の投影角度(例えば直交する方向)で得られた像データを利用して加算処理を制御するようにする。これにより、被写体が存在しない本来は0である領域の値を0のままとすることができ,アーチファクトのない断面像を再生することができる。すなわち、他の投影角度で得られた像データを用いると、被写体が存在する領域をある程度特定することができるので、この情報を用いて逆投影の処理を行う。
本発明の他の一側面は、X線源とX線画像検出器と演算部を備え、X線源から被写体に対して複数の異なる方向からX線を照射し、X線画像検出器で前記複数の異なる方向から照射されたX線によって得られる複数の異なる投影角度で得られた投影像を取得し、投影像の画像データを演算部によって処理し、被写体の断面像を逆投影によって再構成する、コンピュータ断層撮影装置である。演算部は、コンピュータの処理装置によってソフトウェアを実行することで実現することができる。また、専用のハードウェアで構成してもよい。演算部は、第1の投影角度で得られた画像データからマスクデータを作成する第1の処理部と、第2の投影角度で得られた画像データをデータ配列に加算して断面像を再構成する際に、画像データをマスクデータで重み付けして前記断面像の一部を形成する処理を行う第2の処理部を有する。そして、第1の投影角度および第2の投影角度を変化させ、断面像の一部を形成する処理を繰り返すことにより、断面像を再構成する。
より具体的な例では、第1の投影角度と第2の投影角度を直交する角度に設定する。また、ある具体例では、第1の処理部は、第1の投影角度で得られた画像データによって、被写体が存在しないと判定される座標が0の値となるマスクデータを作成し、第2の処理部は、第2の投影角度で得られた画像データとマスクデータを積算する処理を行う。また、第2の処理部では、第2の投影角度で得られた画像データもしくはマスクデータの少なくとも一つを座標変換する処理を加えてもよい。
本発明の他の側面は、被写体とX線撮像系を相対的に回転して、異なる投影角度で得られた画像データから、被写体の断面像を逆投影加算によって再構成するコンピュータ断層撮影方法において、第1の投影方向から取得した画像データを逆投影加算する際に、これと異なる第2の投影方向から取得した画像データを用いて、再構成する断面像の加算する領域を制限することを特徴とする。
本発明の別の側面は、被写体とX線撮像系を相対的に回転して異なる投影角度で得られた画像データから繰り返し計算によって被写体の断面像を再構成するコンピュータ断層撮影において、被写体の断面像を再構成するための逆等投影計算が、異なる投影方向から取得したデータ上で被写体が存在する領域だけ加算し,存在しない領域は加算しない制限を設けた逆投影計算であることを特徴とする。
上記のより具体化された一例として計算機等の演算装置で実行する処理手順を以下に示す。なお,ここでX線撮像装置によって取得した各投影角度θにおける投影データI(θ)と,被写体のない背景データI_BKと,X線を照射しないで取得したダークデータI_Dとする。また,被写体は360°回転して投影データを取得したとする。
(1)各投影データI(θ)について,
I_1(θ)=(I(θ)-I_D)/(I_BK-I_D)
を計算し,規格化された投影データI_1 (θ)を求める。(θは0から360°)
(2)I_1(θ)について,
I_2(θ)=-ln(I_1(θ))
を計算し,線吸収係数データI_2(θ)を求める。(θは0から360°)
(3)投影角度θに対して直交する角度(θ+90°)の線吸収係数データI_2(θ+90)について,各画素の位置xにおける値を元にマスクデータM(x”)を
M(x”) = 1 if I_2(θ+90,x”) <> 0
0 if I_2(θ+90,x”) = 0
により計算する。すなわち,被写体のある位置のマスクデータを1,無いところを0とする。
I_1(θ)=(I(θ)-I_D)/(I_BK-I_D)
を計算し,規格化された投影データI_1 (θ)を求める。(θは0から360°)
(2)I_1(θ)について,
I_2(θ)=-ln(I_1(θ))
を計算し,線吸収係数データI_2(θ)を求める。(θは0から360°)
(3)投影角度θに対して直交する角度(θ+90°)の線吸収係数データI_2(θ+90)について,各画素の位置xにおける値を元にマスクデータM(x”)を
M(x”) = 1 if I_2(θ+90,x”) <> 0
0 if I_2(θ+90,x”) = 0
により計算する。すなわち,被写体のある位置のマスクデータを1,無いところを0とする。
(4)仮想的な再構成像データS(x’, y’)を,I_2(θ,x)とM(x)を用いて計算する。具体的には各画素(x’, y’)について
x = x’ sin θ + y’cos θ
x” = x’ sin (θ+90°) + y’cos (θ+90°)
を計算し,この値に対応したI_2(θ,x)とM(x”)を用いて
S(x, y) = S(x, y) + M(x”)×f(I_2(θ))
となる加算演算を行う。なお,ここでf()はShepp-Logan関数など従来のフィルター関数のコンボリューションである。
x = x’ sin θ + y’cos θ
x” = x’ sin (θ+90°) + y’cos (θ+90°)
を計算し,この値に対応したI_2(θ,x)とM(x”)を用いて
S(x, y) = S(x, y) + M(x”)×f(I_2(θ))
となる加算演算を行う。なお,ここでf()はShepp-Logan関数など従来のフィルター関数のコンボリューションである。
(5)上記(3)と(4)の過程について,θが0°から360°まで行う。なお,180°以降のM(x”)の計算は,θ-90°のデータI_2(θ-90°)を用いれば良い。
以上の計算によって,被写体のある領域だけ値を持ち,他の領域は0となる。すなわち,アーチファクト(疑似像)のない,断面像を再生することができる。
本発明によれば、疑似像のない,正確なCT値の断面像を求めることができる。
以下、図面を用いて本発明の実施例について説明する。以下に示す図において、同じ機能を有する部分には同じ符号を付し、重複する説明を省略することがある。
本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。
本明細書等における「第1」、「第2」、「第3」などの表記は、構成要素を識別するために付するものであり、必ずしも、数または順序を限定するものではない。また、構成要素の識別のための番号は文脈毎に用いられ、一つの文脈で用いた番号が、他の文脈で必ずしも同一の構成を示すとは限らない。また、ある番号で識別された構成要素が、他の番号で識別された構成要素の機能を兼ねることを妨げるものではない。
図面等において示す各構成の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面等に開示された位置、大きさ、形状、範囲などに限定されない。
図2に本実施例で処理する測定データを取得する、X線撮像装置を示す。本装置は主にX線源1,被写体位置決め回転機構2,X線画像検出器3,制御部4,演算部5,及び表示部6から構成されている。被写体位置決め回転機構2は、被写体8を所定のCT回転軸10を中心に回転させることができる。X線源1から出射した照射X線7は,被写体位置決め回転機構2で位置決めされた被写体8に照射される。被写体8を透過した透過X線9は,X線画像検出器3で検出される。制御部4,演算部5,及び表示部6は、纏めて制御装置を構成する。制御装置11は、この他、記憶装置や、オペレーターが操作するためのキーボードなどの入力装置を備えてもよい。
図3は、図2の装置を用い、制御部4の制御によって,CTの測定データを取得する処理手順を示すフロー図である。
処理S301では、被写体位置決め回転機構2を用いて被写体8を照射X線の光路7から退避する。
処理S302では、X線を照射せずにダークデータI_Dを取得する。
処理S303ではX線を照射する。
処理S304で背景画像データI_BKを取得する。
処理S305では、被写体位置決め回転機構2を用いて,被写体8を照射X線の光路7に挿入する。この際,被写体8の回転中心と光路の中心が一致するように調整すれば,X線の光路の幅(視野)と同程度の大きさの被写体を測定することが可能になる。
処理S306では、被写体8を透過した透過像データI(θ)を取得する。
処理S307では、被写体8を被写体位置決め回転機構2を用いてΔθだけ回転する。
処理S308では、S306からS307のステップを、被写体の回転角度θが0から360°になるまで繰り返して行う。
処理S309では、被写体位置決め回転機構2を用いて被写体8を照射X線7の光路から退避する。
処理S310では、X線を照射して背景画像データI_BK_2を取得し、S311で終了する。
なお,ダークデータI_D及び各背景画像データI_BK及びI_BK_2は複数枚測定し,その平均値を採用することで,より揺らぎの少ない画像を得ることができる。
以上によって取得したCTのデータセットを用いて,はじめに以下の前処理を行い,各投影角度θおける線吸収係数の像データを表すI_2を求める。
図4は、制御装置11による前処理の処理手順を示すフローである。
処理S401では、測定前後の背景画像データI_BK及びI_BK_2を用いて,各投影データI(θ)における背景画像I’_BKを
I’_BK = (1-a)×I_BK + a×I_BK_2
により求める。ここで,aは各背景画像の重み関数で,a=θ/360 である。
I’_BK = (1-a)×I_BK + a×I_BK_2
により求める。ここで,aは各背景画像の重み関数で,a=θ/360 である。
すなわち,θが0°近傍では,直近に取得したI_BKを主な背景画像データとし,θが360°近傍では,I_BK_2を主な背景画像データとする。なお,像データは1或いは2次元配列のデータであり,上記の計算は各画素における個々の計算を意味している。
処理S402では、上記によって算出した背景画像データI’_BKと,ダークデータI_Dを用いて,規格化された投影データI_1(θ)を
I_1(θ)=(I(θ)-I_D)/(I’_BK-I_D)
により求める。
I_1(θ)=(I(θ)-I_D)/(I’_BK-I_D)
により求める。
処理S403では、I_1(θ)について,
I_2(θ)=-ln(I_1(θ))
を計算し,線吸収係数データI_2(θ)を求める。
I_2(θ)=-ln(I_1(θ))
を計算し,線吸収係数データI_2(θ)を求める。
なお,被写体のサイズや密度が大きく,X線が被写体を全く透過しない場合,I_1(θ)は0となるため,上記(3)の計算はln(0)となり,エラーになってしまう。この際は,X線のエネルギーを向上したり,露光時間の延長を行った上で,再度上記のCT測定を行う。
図5に、処理装置11による断面像の再構成の手順を示す。処理は,前処理で求めた線吸収係数データI_2(θ)を用いて,以下の手順により行う。
処理501では、投影角度θに対して直交する角度(θ+90°)の線吸収係数データI_2(θ+90)について,各画素位置xにおける値に基づき、マスクデータM(x”)を以下により計算する。
M(x”) = 1 if I_2(θ+90, x”)<>0
= 0 if I_2(θ+90, x”)=0
すなわち,被写体を観察した投影像データを元に,被写体の存在しない(I_2=0)領域は0,存在する(I_2<>0)は1とするマスクデータを作成する。ただし、「<>」は「等しくない」ことを示す。なお、計算の前に所定閾値以下のI_2を、0に近似して置き換える処理を行ってもよい。
= 0 if I_2(θ+90, x”)=0
すなわち,被写体を観察した投影像データを元に,被写体の存在しない(I_2=0)領域は0,存在する(I_2<>0)は1とするマスクデータを作成する。ただし、「<>」は「等しくない」ことを示す。なお、計算の前に所定閾値以下のI_2を、0に近似して置き換える処理を行ってもよい。
処理502では、仮想的な再構成像データS(x’, y’)の各座標(x’, y’)について
x = x’ sin θ + y’cos θ
x” = x’ sin (θ+90°) + y’cos (θ+90°)
の座標変換を行う。
x = x’ sin θ + y’cos θ
x” = x’ sin (θ+90°) + y’cos (θ+90°)
の座標変換を行う。
処理503では、この座標に対応したI_2とMを用いて,
S(x, y) = S(x, y) + M(x”)×f(I_2(θ))
を計算する。なお,ここでf( )はShepp-Logan関数やランプ関数などのフィルター関数のコンボリューションである。
S(x, y) = S(x, y) + M(x”)×f(I_2(θ))
を計算する。なお,ここでf( )はShepp-Logan関数やランプ関数などのフィルター関数のコンボリューションである。
処理504では、上記の手順について,投影角度θが0°から360°になるまで繰り返して行う。なお,180°以降のマスクデータM(x”)の計算は,θ-90°のデータを用いる。360°になると終了(S505)である。
以上によって算出した再構成像データSは,オペレーターの指示に従って,表示器6で表示する。ここで、制御部4と演算部5の処理動作は、例えば計算機(コンピュータ)によるプログラムの実行を通じて実現される。プログラムは、不図示の記憶装置に格納されている。また、制御部4や演算部5で実行される処理動作の一部又は全部は、ASICや専用の計算モジュールとして実現されてもよい。なお、図2では、表示器6が演算部5に接続されているが、出力装置としての印刷装置が、表示器6に代えて又は表示器6とともに、演算部5に接続されていてもよい。印刷装置は、前述の再構成像を印刷する。また、表示器6に代えて又は表示器6とともに通信装置を接続し、外部装置に送信できるようにしてもよい。
図6に図1と同様のサイズ5×5画素で、被写体が中心にしか存在しない単純な系を対象とした適用例を示す。この系で得られる各投影像データは図1(a)で示したようになる。
θ=0°のデータ102を逆投影で加算するとき,θ=90°の投影データ101から、中心(座標(0,0))以外には被写体がないことが分かるので、中心以外の領域には値を入れない。すなわち、マスクデータMは (0, 0, 1, 0, 0)となる。したがって,上記(2)の加算は、領域602に示すように中心(0,0)だけに行うことになる。
この処理は、図1(b)と図6を比較すれば明らかなように、θ=90°の投影データ101に基づいて、θ=0°のデータ102を加算すべき領域を特定していることになる。データ処理上は、θ=90°の投影データ101でマスクデータを生成し、θ=0°のデータ102の加算時にフィルタリング処理を行っていることと等価である。
次にθ=90度のデータ101を加算するとき,θ=0の投影データ102から中心以外に被写体がないことがわかるので,マスクデータMは同じように(0, 0, 1, 0, 0)となる。このため,領域601に示すように中心(0,0)だけに同様に値を加算する。以上によって,オリジナルのデータと同様に,被写体のある領域だけ値を持ち,他の領域は0となる。すなわち,アーチファクト(疑似像)のない,断面像を再生することができる。
以上,本実施例によれば,再構成の逆投影計算において,投影するデータと直交した投影データの値が0でない領域を1,0の領域を0とするマスクデータを作成し,このマスクデータと投影データの積を再生構成データに加算することによって,アーチファクトのない断面像を再生することができる。
実施例1では,投影データにフィルター関数をコンボリューションした後に加算を行っていた。このため,再生された断面像における各画素のCT値はフィルター関数の種類に依存して変化するため一定の値を得ることができず,定量的な解析が難しかった。本実施例では,フィルター関数のコンボリューションを行う必要がなく,断面像を再生する方法について説明する。
本実施例では実施例1のマスクデータM(x”)を計算する過程について,以下のように変更する。
M’(x”) = I_2(θ+90°, x”)/ΣI_2(θ+90°,x_i”)
ここで,分母はθ+90°の投影像データの総和で,分子は投影像データの位置x”における値である。すなわち,マスクデータM’は規格化した投影像データとなる。そして,逆投影はこのM’を用いて,
S(x, y) = S(x, y) + M’(x”)×I_2(θ)
により,計算する。実施例1との違いは,フィルター関数のコンボリューションが無いことである。
ここで,分母はθ+90°の投影像データの総和で,分子は投影像データの位置x”における値である。すなわち,マスクデータM’は規格化した投影像データとなる。そして,逆投影はこのM’を用いて,
S(x, y) = S(x, y) + M’(x”)×I_2(θ)
により,計算する。実施例1との違いは,フィルター関数のコンボリューションが無いことである。
以上により求めた断面像Sは,実施例1と同様にオペレーターの指示に従って,表示器で表示する。また,その実現方法も同様に,計算機(コンピュータ)によるプログラムや,ASICや専用の計算モジュールで実行してもよい。
図7に、5×5の小さい画素の測定データを対象として,本発明を適用した例を示す。なお,図1と異なり,被写体は中心部の1画素だけでなく,1×2の大きさを有している。この系で、測定時において、投影角度θ=0°及び90°で得られる投影データ102,101は,図1と同様に縦及び横方向の積算であるために,図7(a)のような値となる。
この投影データを用いた再構成計算の逆投影は,上記に従いはじめに+90°の投影データ101を用いてマスクデータM’を計算する。本例では,+90°の投影データI_2(90°)は
I_2(90°) = (0, 1, 2, 0, 0)
となっているので,総和は3となる。このため,マスクデータM’は
M’ = (0, 1/3, 2/3, 0, 0)
となる。次にこのマスクデータを用いて,θ=0°の投影データ102を縦方向に加算することになるが, θ=0°における投影像データI_2(0)は
I_2(0) = (0, 0, 3, 0, 0)
のため,実際の加算は中央の縦方向だけに行う。加算するデータはマスクデータM’との積であることから
S(0, y) = S(0, y) + M’(y)×I_2(0, 0)
= S(0, y) + (0, 1, 2, 0, )
となる。すなわち
I_2(90°) = (0, 1, 2, 0, 0)
となっているので,総和は3となる。このため,マスクデータM’は
M’ = (0, 1/3, 2/3, 0, 0)
となる。次にこのマスクデータを用いて,θ=0°の投影データ102を縦方向に加算することになるが, θ=0°における投影像データI_2(0)は
I_2(0) = (0, 0, 3, 0, 0)
のため,実際の加算は中央の縦方向だけに行う。加算するデータはマスクデータM’との積であることから
S(0, y) = S(0, y) + M’(y)×I_2(0, 0)
= S(0, y) + (0, 1, 2, 0, )
となる。すなわち
となる。なお,θ = 0°では座標の変換
x” = x’ sin (θ+90°) + y’cos (θ+90°)
から,M’の座標はxとyが入れ替わった形になっている。次にθ=90°の計算では,上記と同様にはじめにθ=0°の投影データ102を用いてマスクデータM’を作成する。0°のデータI_2(0)は
I_2(0) = (0, 0, 3, 0, 0)
であることから,
M’ = (0, 0, 1, 0, 0)
となる。θ=90°の逆投影は横方向への投影データの加算になるので,
S(x, y) = S(x, y) + M’(x)×I_2(90, y)
となり,M’(x)×I_2(90, y)の演算結果である以下のデータをS(x, y)に加算することになる。
x” = x’ sin (θ+90°) + y’cos (θ+90°)
から,M’の座標はxとyが入れ替わった形になっている。次にθ=90°の計算では,上記と同様にはじめにθ=0°の投影データ102を用いてマスクデータM’を作成する。0°のデータI_2(0)は
I_2(0) = (0, 0, 3, 0, 0)
であることから,
M’ = (0, 0, 1, 0, 0)
となる。θ=90°の逆投影は横方向への投影データの加算になるので,
S(x, y) = S(x, y) + M’(x)×I_2(90, y)
となり,M’(x)×I_2(90, y)の演算結果である以下のデータをS(x, y)に加算することになる。
したがって,最終的なS(x, y)は
となり,投影データの加算回数2で除算すると,
が得られる。この結果は被写体の分布と一致しており,本法により被写体の像を正確に再現可能なことがわかる。
以上,本実施例によれば,再構成の逆投影計算において,投影するデータI_2(θ)と直交した投影データI_2(θ+90°)の各位置における値をその総和で除算したマスクデータを作成し,このマスクデータと投影データの積を再生構成データに加算することによって,フィルターを用いることなく,アーチファクトのない断面像を再生することができる。
実施例1および2では,1回の計算だけで断面像を再構成していた。このために,実施例1ではフィルターをコンボリューションし,実施例2では逆投影するデータと直交するデータを用いてその加算の比率を決めていた。本実施例では繰り返しの計算(逐次計算)によってこのような計算を行うことなく,断面像を再生する方法について説明する。
逐次計算における1回の計算過程は図5に示した実施例1と同様に,
処理S501で、投影角度θに対して直交する角度(θ+90°)の線吸収係数データI_2(θ+90)について,各画素xにおける値を元にマスクデータM(x”)を以下により計算する。
処理S501で、投影角度θに対して直交する角度(θ+90°)の線吸収係数データI_2(θ+90)について,各画素xにおける値を元にマスクデータM(x”)を以下により計算する。
M(x”) = 1 if I_2(θ+90, x”) <> 0
= 0 if I_2(θ+90, x”) = 0
すなわち,横から画像データを元に,被写体の存在しない(I_2=0)領域は0,存在する(I_2<>0)領域は1とする。
= 0 if I_2(θ+90, x”) = 0
すなわち,横から画像データを元に,被写体の存在しない(I_2=0)領域は0,存在する(I_2<>0)領域は1とする。
処理S502で、仮想的な再構成像データS(x’, y’)の各座標について
x = x’ sin θ + y’cos θ
x” = x’ sin (θ+90°) + y’cos (θ+90°)
の座標変換を行う。
x = x’ sin θ + y’cos θ
x” = x’ sin (θ+90°) + y’cos (θ+90°)
の座標変換を行う。
処理S503で、この座標に対応したI_2とMを用いて,
S(x, y) = S(x, y) + M(x”)×f(I_2(θ))
を計算する。
S(x, y) = S(x, y) + M(x”)×f(I_2(θ))
を計算する。
処理S504で、上記の手順について,投影角度θが0°から360°になるまで繰り返して行う。なお,180°以降のマスクデータM(x”)の計算は,θ-90°のデータを用いる。
但し,処理S503において加算するのはMとI_2の単純な積であり,フィルターのコンボリューションは行わないことが実施例1との大きな違いである。
逐次計算は上記の計算によって得られた再構成像データSを初期の再構成像データS_0として以下の手順により行う。
最初に、上述のように、再構成像データS_0を再構成像データの初期値に設定する。
(A)S_0を用いて,投影像データI_k(θr)を以下により求める。なお,ここでθrは投影角度で,計算はθrが0から360°まで,測定データと同じ角度間隔で行う。
(A)S_0を用いて,投影像データI_k(θr)を以下により求める。なお,ここでθrは投影角度で,計算はθrが0から360°まで,測定データと同じ角度間隔で行う。
I_k(θr, xr) = ΣS(xr_i, yr_i)
xr_i = i cos θr + xr sin θr
yr_i = i sin θr + xr cos θr
(B)得られたI_k(θr)について,図5に示した逆投影計算を行い,再構成像データS_kを求める。
(C)S_0とS_kの差dS_k
dS_k = 2(S_0 - S_k)
を用いて,次ステップにおける再構成像データS_k+1を
S_k+1 = S_k + dS_k
から求め,さらに次の投影像データI_k+1を上記と同様の計算で算出する。
xr_i = i cos θr + xr sin θr
yr_i = i sin θr + xr cos θr
(B)得られたI_k(θr)について,図5に示した逆投影計算を行い,再構成像データS_kを求める。
(C)S_0とS_kの差dS_k
dS_k = 2(S_0 - S_k)
を用いて,次ステップにおける再構成像データS_k+1を
S_k+1 = S_k + dS_k
から求め,さらに次の投影像データI_k+1を上記と同様の計算で算出する。
以上の一連の計算過程(A)から(B)を
E = Σ|(I_2-I_k)|
で与えられる誤差Eが予め設定した値以下となるまで行う。これにより,フィルターのコンボリューション等を用いることなく,定量性の高い断面像を再構成することができる。
E = Σ|(I_2-I_k)|
で与えられる誤差Eが予め設定した値以下となるまで行う。これにより,フィルターのコンボリューション等を用いることなく,定量性の高い断面像を再構成することができる。
図8には,以上の計算過程のフローチャートを示す。なお,上記処理S502の計算過程において,CT値の上限や非負など既知の情報を制約条件として組み込むことで,さらに正確なCT値の断面像を再構成することができる。
処理S801では、測定データから初期再構成像データS_0を計算し、kを1に設定する。
処理S802では、S_k-1の投影から投影像データI_kを計算する。
処理S803では、E = Σ|(I_2-I_k)|で与えられる誤差Eを計算する。
処理S804では、誤差Eが設定値か否かを判定する。設定値を満たせば終了し、そのときの再構成データ(再生画像)が結果となる(終了処理805)。誤差が設定値を満たさない場合は、処理S806に進む。
処理S806では,I_kの逆投影によりS’_k-1を計算し再構成像データを求める。
処理S807では,dS = 2(S_0 - S’_k-1)を計算して、初期再構成像データと再構成データの差分dSを求める。
処理S808では、S_k = S_k-1 + dSを計算して、次ステップにおける再構成像データを求め、k = k+1に設定して、処理S802に戻る。
以上により求めた断面像Sは,実施例1と同様にオペレーターの指示に従って,表示器6で表示する。また,その実現方法も同様に,計算機(コンピュータ)によるプログラムや,ASICや専用の計算モジュールで実行してもよい。さらに,繰り返しの計算過程を表示器6で毎回表示することによって,収束の過程や制約条件の妥当性を計算の途中でも判断することできるようになる。
以上,本実施例によれば,繰り返し計算で断面像を再構成する方法の逆投影計算において,投影するデータと直交した投影データの値が0でない領域を1,0の領域を0とするマスクデータを作成し,このマスクデータと投影データの積を再生構成データに加算することによって,アーチファクトのない定量性の高い断面像を再生することができる。
実施例1から3では,逆投影において,投影するデータI_2(θ)と直交する投影データO_2(θ+90°)を用いて,マスクデータを作成していた。本実施例では,90°以外の投影データを用いてマスクデータを作成し,これを用いて断面像を再構成する方法について説明する。
図9に投影角度θ=0°における投影データI_2(0)と、任意の投影角度αにおける投影像データI_2(θ+α)の関係を示した模式図を示す。ここで,矩形の領域901が角度αにおいて,被写体902が存在していることになる領域,すなわちマスクデータが0でない領域である。従って、この領域では、投影角度αのデータからの加算を許すことになる。
このことから,α=90°のとき(実施例1から3に該当),マスクデータM”はI_2の横方向の位置x’に対して不変となるが,90°以外の角度ではx’に依存してマスクデータの位置x”をシフトする必要があることがわかる。
本実施例では,実施例1のマスクデータMを作成する過程(処理S501)を、投影角度θに対して角度α(θ+α)の線吸収係数データI_2(θ+α)について,各画素の位置xにおける値を元にマスクデータM”(x”)を以下により計算する。
M”(x”) = 1 if I_2(θ+α, x_m) <> 0
= 0 if I_2(θ+α, x_m) = 1
ただし、x_m = x” sin αとする。なお,αが小さくなるとx”に対応するI_2(x_m)がデータ範囲外となってしまうので,あまり小さくすることはできない。そして,上記によって作成したマスクデータM”を用いて,本実施例では座標変換処理S502と再構成像データ作成処理S503において、以下のように再構成の加算を行う。
= 0 if I_2(θ+α, x_m) = 1
ただし、x_m = x” sin αとする。なお,αが小さくなるとx”に対応するI_2(x_m)がデータ範囲外となってしまうので,あまり小さくすることはできない。そして,上記によって作成したマスクデータM”を用いて,本実施例では座標変換処理S502と再構成像データ作成処理S503において、以下のように再構成の加算を行う。
仮想的な再構成像データS(x’, y’)の各座標について以下の変換
x = x’ sin θ + y’cos θ
x” = x’ sin (θ+α) + y’cos (θ+α)
を行い,このx及びx”に対応する,I_2(θ,x)にフィルター関数をコンボリューションしたf(I_2)と,マスクデータM(x”)の積をSに以下のように加算する。
x = x’ sin θ + y’cos θ
x” = x’ sin (θ+α) + y’cos (θ+α)
を行い,このx及びx”に対応する,I_2(θ,x)にフィルター関数をコンボリューションしたf(I_2)と,マスクデータM(x”)の積をSに以下のように加算する。
S(x, y) = S(x, y) + M(x”)×I_2(θ)
αが小さくなるに従って,マスクデータと投影データが重なる領域が大きくなり,その効果が減少して被写体周辺でアーチファクトが発生しやすくなるが,被写体より離れた領域では依然として有効に機能する。すなわち,直交からずれた投影データを使用してもアーチファクトの発生を抑えることができる。また,上記のマスクデータM”を作成する過程において,実施例2のように,I_2(θ+α)のデータを用いて,M”の値を0 or1でなく,加算の比率としても良い。この場合,フィルター関数のコンボリューションが不要となるために,より定量的なCT値の断面像を求めることができる。さらに,上記処理S502~S503の計算過程においてコンボリューションを除き,実施例3のように繰り返し計算により,像を再生してもよい。この場合も,より定量的なCT値の断面像を求めることができる。
αが小さくなるに従って,マスクデータと投影データが重なる領域が大きくなり,その効果が減少して被写体周辺でアーチファクトが発生しやすくなるが,被写体より離れた領域では依然として有効に機能する。すなわち,直交からずれた投影データを使用してもアーチファクトの発生を抑えることができる。また,上記のマスクデータM”を作成する過程において,実施例2のように,I_2(θ+α)のデータを用いて,M”の値を0 or1でなく,加算の比率としても良い。この場合,フィルター関数のコンボリューションが不要となるために,より定量的なCT値の断面像を求めることができる。さらに,上記処理S502~S503の計算過程においてコンボリューションを除き,実施例3のように繰り返し計算により,像を再生してもよい。この場合も,より定量的なCT値の断面像を求めることができる。
以上,本実施例によれば,再構成の逆投影計算において,投影するデータと投影角度がαだけ異なる投影データの値に基づいてマスクデータを作成し,このマスクデータと投影データの積を再生構成データに加算することによって,アーチファクトのない断面像を再生することができる。
図10は、本発明の実施例における照射X線1001と被写体1002の回転角度の関係を示す原理図である。
実施例1から4では,図10(a)に示すように被写体1002の回転軸1003に対して,直交する断面像を求めていた。本実施例では,図10(b)のように被写体の回転軸1003が入射X線1001と直交せず,βだけ傾いた系における断面像の計算について説明する。なお,一般に回転軸とX線光路が傾いた系をラミノグラフィーと呼び、その傾き角βをラミノグラフィーアングル1004と呼ぶ。このように回転軸を傾けることによって,板状の縦と横の長さと厚さが大きく異なる被写体も投影角度によらずに積分した厚さは一定となるので,通常のCTと同様に測定することが可能になる。
ラミノグラフィーでは,投影角度によって被写体の垂直方向(Z軸方向)の位置もビーム(画像検出器)に対して変動することになるため,再構成を3次元で考慮する必要がある。
図11には厚みのある円盤状の被写体を真横から測定した形状(a)および斜めから測定した形状(b)の例を示す。なお,説明を簡略化するために,内部の吸収係数は非常に大きく,X線は透過しないものとして扱っている。斜め方向から観察した像では,両画像共に上下に丸みを帯びた形状をしていることがわかる。このため,マスクデータとしてZ軸方向に対する制限はどうしても甘くなるが,水平面内に対しては従来通り有効に機能する。マスクデータM_3の具体的な作成方法は実施例1を2次元に拡張する。
具体的には、実施例1のマスクデータの作成処理S501において、投影角度θに対して直交する角度(θ+90°)の線吸収係数データI_2(θ+90, x”, y”)について,各画素(x”, y”)における値を元にマスクデータM_3(x”, y”)を以下により計算する。
M_3(x”, y”) = 1 if I_2(θ+90, x”, y”) <> 0
= 0 if I_2(θ+90, x”, y”) = 0
すなわち,横から被写体を観察した画像データを元に,被写体の存在しない(I_2=0)領域は0,存在する(I_2<>0)は1とする。
= 0 if I_2(θ+90, x”, y”) = 0
すなわち,横から被写体を観察した画像データを元に,被写体の存在しない(I_2=0)領域は0,存在する(I_2<>0)は1とする。
そして,座標変換処理S502において、このマスクデータM_3を用いて投影角度θにおける逆投影は仮想的な再構成像データS(x’, y’, z’)の各座標について以下の変換を行う。
x = x’ sin θ + y’cos θ
y = x’ cos θsin β- y’sin θsin β+z’ cos β
x” = x’ sin (θ+α) + y’cos (θ+α)
y” = x’ cos (θ+α)sin β- y’sin (θ+α)sin β+z’ cos β
そして,これらの座標に対応する,I_2(θ,x, y)にフィルター関数をコンボリューションしたf(I_2)と,マスクデータM_3(x”, y”)の積をSに以下のように加算する。
S(x’, y’, z’) = S(x’, y’, z’) + M_3(x”, y”)×I_2(θ, x, y)
以上により,水平面内方向にはアーチファクトが無い断面像を再生することができる。なお,フィルター関数のコンボリューションは水平面内(X-Y面)に行えば像を再構成することができるが,より正確なCT値を有した像を再生するためには,Z方向も含めた2次元的なフィルター関数(Shepp-Loganの2次元関数など)を2次元的にコンボリューションする必要がある。また,実施例3のように、上記の過程を含めた繰り返しの計算によって像を再生することができる。この計算において,被写体が円盤状であることなどの既知の情報を制約条件として組み込むことができればより正確に像を再生することができる。なお,本実施例ではマスクデータを直交したI_2(θ+90°)を利用しているが,当然のことながら実施例4と同様に90°と異なる角度のデータを利用して作成してもよい。
y = x’ cos θsin β- y’sin θsin β+z’ cos β
x” = x’ sin (θ+α) + y’cos (θ+α)
y” = x’ cos (θ+α)sin β- y’sin (θ+α)sin β+z’ cos β
そして,これらの座標に対応する,I_2(θ,x, y)にフィルター関数をコンボリューションしたf(I_2)と,マスクデータM_3(x”, y”)の積をSに以下のように加算する。
S(x’, y’, z’) = S(x’, y’, z’) + M_3(x”, y”)×I_2(θ, x, y)
以上により,水平面内方向にはアーチファクトが無い断面像を再生することができる。なお,フィルター関数のコンボリューションは水平面内(X-Y面)に行えば像を再構成することができるが,より正確なCT値を有した像を再生するためには,Z方向も含めた2次元的なフィルター関数(Shepp-Loganの2次元関数など)を2次元的にコンボリューションする必要がある。また,実施例3のように、上記の過程を含めた繰り返しの計算によって像を再生することができる。この計算において,被写体が円盤状であることなどの既知の情報を制約条件として組み込むことができればより正確に像を再生することができる。なお,本実施例ではマスクデータを直交したI_2(θ+90°)を利用しているが,当然のことながら実施例4と同様に90°と異なる角度のデータを利用して作成してもよい。
以上により求めた断面像Sは,実施例1から4と同様にオペレーターの指示に従って,表示器6で表示する。また,その実現方法も同様に,計算機(コンピュータ)によるプログラムや,ASICや専用の計算モジュールで実行してもよい。また,特に繰り返し計算で求める場合は,3次元的な計算を行うために,膨大な計算量となる。このため,超高速な演算が可能な計算機や専用のハードウェアを実装した演算部5を用いると良い。
以上,本実施例によれば,入射X線と被写体の回転軸が直角でない測定系においても,再構成の逆投影計算において,投影するデータと投影角度がαだけ異なる投影データの値に基づいてマスクデータを作成し,このマスクデータと投影データの積を再生構成データに加算することによって,アーチファクトのない断面像を再生することができる。
本明細書において単数形で表される構成要素は、特段文脈で明らかに示されない限り、複数形を含むものとする。
以上の構成においてデータ処理は、単体のコンピュータで構成してもよいし、あるいは、入力装置、出力装置、処理装置、記憶装置の任意の部分が、ネットワークで接続された他のコンピュータで構成されてもよい。発明の思想としては等価であり、変わるところがない。
本実施例中のデータ処理は、ソフトウエアで構成することができる。また、同等の機能は、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)などのハードウエアでも実現できる。そのような態様も本願発明の範囲に含まれる。
本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。
1 X線源
2 被写体位置決め回転機構
3 X線画像検出器
4 制御部
5 演算部
6 表示器
7 照射X線
8 被写体
9 透過X線
2 被写体位置決め回転機構
3 X線画像検出器
4 制御部
5 演算部
6 表示器
7 照射X線
8 被写体
9 透過X線
Claims (15)
- X線源とX線画像検出器と演算部を備え、
前記X線源から被写体に対して複数の異なる方向からX線を照射し、前記X線画像検出器で前記複数の異なる方向から照射されたX線によって得られる複数の異なる投影角度で得られた投影像を取得し、前記投影像の画像データを演算部によって処理し、前記被写体の断面像を逆投影によって再構成する、コンピュータ断層撮影装置において、
前記演算部は、
第1の投影角度で得られた前記画像データからマスクデータを作成する第1の処理部、
第2の投影角度で得られた前記画像データをデータ配列に加算して前記断面像を再構成する際に、前記画像データを前記マスクデータで重み付けして前記断面像の一部を形成する処理を行う第2の処理部、
を有し、
前記第1の投影角度および第2の投影角度を変化させ、前記断面像の一部を形成する処理を繰り返すことにより、前記断面像を再構成するコンピュータ断層撮影装置。 - 前記第1の投影角度と前記第2の投影角度が直交する角度である、請求項1記載のコンピュータ断層撮影装置。
- 前記第1の処理部は、
前記第1の投影角度で得られた画像データによって、前記被写体が存在しないと判定される座標が0の値となる前記マスクデータを作成し、
前記第2の処理部は、
前記第2の投影角度で得られた前記画像データと前記マスクデータを積算する処理を行う、請求項1記載のコンピュータ断層撮影装置。 - 前記第2の処理部は、
前記第2の投影角度で得られた画像データもしくは前記マスクデータの少なくとも一つを座標変換して演算を行う、請求項1記載のコンピュータ断層撮影装置。 - 前記第2の処理部は、
前記第2の投影角度で得られた前記画像データをフィルター関数により演算処理する、請求項1記載のコンピュータ断層撮影装置。 - 前記第1の処理部は、
前記第1の投影角度で得られた前記画像データを規格化して前記マスクデータを作成する、請求項1記載のコンピュータ断層撮影装置。 - 前記逆投影によって再構成された第1の断面像から第1の投影像データを計算し、前記第1の投影像データから逆投影によって第2の断面像を計算し、前記第1の断面像と第2の断面像の差分を計算し、前記差分により前記第1の断面像を修正する、第3の処理部を有する、請求項1記載のコンピュータ断層撮影装置。
- 前記第1の投影角度と前記第2の投影角度が直交する角度でない場合、前記マスクデータの座標をシフトする処理を行う、請求項1記載のコンピュータ断層撮影装置。
- 前記X線源から被写体に対して複数の異なる方向からX線を照射するために、
前記被写体の回転軸とX線光路が傾いた系を用い、前記マスクデータとして2次元の値を用いる、請求項1記載のコンピュータ断層撮影装置。 - 被写体とX線撮像系を相対的に回転して、異なる投影角度で得られた画像データから、被写体の断面像を逆投影加算によって再構成するコンピュータ断層撮影方法において、
第1の投影方向から取得した画像データを前記逆投影加算する際に、これと異なる第2の投影方向から取得した画像データを用いて、再構成する断面像の加算する領域を制限することを特徴とするコンピュータ断層撮影方法。 - 請求項10記載のコンピュータ断層撮影方法において、上記制限は前記第2の投影方向から取得した画像データ上で前記被写体が存在する領域だけ加算し,存在しない領域は加算しない制限であることを特徴とするコンピュータ断層撮影方法。
- 請求項10記載のコンピュータ断層撮影方法において、上記制限は前記第2の投影方向から取得した画像データの各位置の信号強度に比例した係数を、前記第1の投影方向から取得した画像データに乗算することによって行われることを特徴とするコンピュータ断層撮影方法。
- 請求項10記載のコンピュータ断層撮影方法において、前記第1の投影方向と第2の投影方向は、直交することを特徴とする。コンピュータ断層撮影方法。
- 請求項10記載のコンピュータ断層撮影方法において、被写体を照射するX線と被写体の回転軸が直交しないことを特徴とするコンピュータ断層撮影方法。
- 被写体とX線撮像系を相対的に回転して異なる投影角度で得られた画像データから繰り返し計算によって被写体の断面像を再構成するコンピュータ断層撮影において、
前記被写体の断面像を再構成するための逆等投影計算が、異なる投影方向から取得したデータ上で被写体が存在する領域だけ加算し,存在しない領域は加算しない制限を設けた逆投影計算であることを特徴とするコンピュータ断層撮影方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/057884 WO2016147314A1 (ja) | 2015-03-17 | 2015-03-17 | コンピュータ断層撮影方法及び装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/057884 WO2016147314A1 (ja) | 2015-03-17 | 2015-03-17 | コンピュータ断層撮影方法及び装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016147314A1 true WO2016147314A1 (ja) | 2016-09-22 |
Family
ID=56919918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/057884 WO2016147314A1 (ja) | 2015-03-17 | 2015-03-17 | コンピュータ断層撮影方法及び装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016147314A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016200582A (ja) * | 2015-04-07 | 2016-12-01 | ヌクテック カンパニー リミテッド | X線走査方法及び走査システム |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60181639A (ja) * | 1984-02-29 | 1985-09-17 | Nippon Steel Corp | 放射線による産業用試料の断層撮影方法 |
US20070140407A1 (en) * | 2005-10-12 | 2007-06-21 | Siemens Corporate Research Inc | Reduction of Streak Artifacts In Low Dose CT Imaging through Multi Image Compounding |
JP2010099114A (ja) * | 2008-10-21 | 2010-05-06 | Yamatake Corp | Ct装置および金属形状抽出方法 |
JP2013190333A (ja) * | 2012-03-14 | 2013-09-26 | Hitachi Ltd | X線撮像装置およびx線撮像方法 |
-
2015
- 2015-03-17 WO PCT/JP2015/057884 patent/WO2016147314A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60181639A (ja) * | 1984-02-29 | 1985-09-17 | Nippon Steel Corp | 放射線による産業用試料の断層撮影方法 |
US20070140407A1 (en) * | 2005-10-12 | 2007-06-21 | Siemens Corporate Research Inc | Reduction of Streak Artifacts In Low Dose CT Imaging through Multi Image Compounding |
JP2010099114A (ja) * | 2008-10-21 | 2010-05-06 | Yamatake Corp | Ct装置および金属形状抽出方法 |
JP2013190333A (ja) * | 2012-03-14 | 2013-09-26 | Hitachi Ltd | X線撮像装置およびx線撮像方法 |
Non-Patent Citations (1)
Title |
---|
MASATOSHI TAGUCHI: "Gazo Saikoseiho no Kiso -FBP-ho o Manabu", KAKU IGAKU BUNKAKAISHI, vol. 42, 1 April 2001 (2001-04-01), pages 5 - 25 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016200582A (ja) * | 2015-04-07 | 2016-12-01 | ヌクテック カンパニー リミテッド | X線走査方法及び走査システム |
US10042080B2 (en) | 2015-04-07 | 2018-08-07 | Nuctech Company Limited | X-ray scanning method and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7202302B2 (ja) | 断層撮影再構成に使用するためのデータのディープラーニングに基づく推定 | |
EP1953700B1 (en) | System and method for reconstructing an image by rectilinear trajectory scanning | |
JP5221394B2 (ja) | ラドンデータから画像関数を再構成する方法 | |
US8284892B2 (en) | System and method for image reconstruction | |
US11670017B2 (en) | Systems and methods for reprojection and backprojection via homographic resampling transform | |
JP2007529738A (ja) | 干渉性散乱ctのビーム硬化補正および減衰補正 | |
JPH07109621B2 (ja) | 不完全な円錐状ビーム投射データから物体の三次元映像を再構成する方法および装置 | |
KR101591381B1 (ko) | Ct 촬영에서의 금속에 의한 잡음 및 오류 감쇄방법 | |
JP3987024B2 (ja) | 横方向のフィルタリング処理を用いたトモシンセシス画像を強調する方法及びシステム | |
JP4767679B2 (ja) | 3次元医療用x線撮影のための方法及び配置 | |
US7737972B2 (en) | Systems and methods for digital volumetric laminar tomography | |
WO2018131252A1 (ja) | 画像処理装置、画像処理方法、及びプログラム | |
US20070098133A1 (en) | Method for Increasing the Resolution of a CT Image During Image Reconstruction | |
JP4106251B2 (ja) | 3次元逆投影方法およびx線ct装置 | |
JP4129572B2 (ja) | 傾斜三次元x線ct画像の再構成方法 | |
JP5883689B2 (ja) | X線撮像装置およびx線撮像方法 | |
US20180144462A1 (en) | Geometry correction for computed tomography | |
US10417795B2 (en) | Iterative reconstruction with system optics modeling using filters | |
WO2016147314A1 (ja) | コンピュータ断層撮影方法及び装置 | |
CN104132950B (zh) | 基于原始投影信息的cl扫描装置投影旋转中心标定方法 | |
JPWO2007096936A1 (ja) | 断層撮影装置および演算処理プログラム | |
Liu et al. | Cooperative data fusion of transmission and surface scan for improving limited-angle computed tomography reconstruction | |
JP4387758B2 (ja) | Spect装置及びspect画像再構成方法 | |
JP6730827B2 (ja) | 放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム | |
KR100857030B1 (ko) | 고해상도의 x선 단층 영상을 획득하는 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15885410 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15885410 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |