WO2016147307A1 - 蓄電池管理装置、方法及びプログラム - Google Patents

蓄電池管理装置、方法及びプログラム Download PDF

Info

Publication number
WO2016147307A1
WO2016147307A1 PCT/JP2015/057766 JP2015057766W WO2016147307A1 WO 2016147307 A1 WO2016147307 A1 WO 2016147307A1 JP 2015057766 W JP2015057766 W JP 2015057766W WO 2016147307 A1 WO2016147307 A1 WO 2016147307A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
power
battery
battery system
power adjustment
Prior art date
Application number
PCT/JP2015/057766
Other languages
English (en)
French (fr)
Inventor
岡部 令
小杉 伸一郎
関野 正宏
黒田 和人
菊地 祐介
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to US15/557,180 priority Critical patent/US20180069270A1/en
Priority to EP15885403.4A priority patent/EP3273567B1/en
Priority to JP2017505914A priority patent/JP6419941B2/ja
Priority to PCT/JP2015/057766 priority patent/WO2016147307A1/ja
Publication of WO2016147307A1 publication Critical patent/WO2016147307A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to a storage battery management device, method, and program.
  • the charge / discharge command value for the entire storage battery system is distributed to the individual storage battery devices that are constituent elements, and charge / discharge control of all storage battery devices constituting the storage battery system is performed. By doing so, it is used for applications such as power generation fluctuation suppression, interconnection current fluctuation fluctuation suppression, or peak shift.
  • the battery panel including the storage battery unit includes, in addition to the storage battery cell, a control device (BMU), a main circuit switch (contactor), a fuse, a current sensor (CT), and a battery panel. It was configured with a voltage measurement circuit and the like.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide a storage battery management device, method, and program capable of diagnosing a battery panel control device without affecting the system. Yes.
  • the storage battery management device manages a storage battery system including a plurality of battery panels and a plurality of power adjustment devices corresponding to the battery panels.
  • the storage battery management device performs diagnosis of the battery panel while the storage battery system is in an operating state, the storage battery management device transmits / receives charging power or discharging power of the battery panel used for diagnosis among a plurality of power adjustment devices in the storage battery system.
  • the charging power and the discharging power are offset within the storage battery system.
  • FIG. 1 is a schematic configuration diagram of a natural energy power generation system including a plurality of storage battery systems.
  • FIG. 2 is a schematic configuration block diagram of the storage battery system of the embodiment.
  • FIG. 3 is an explanatory diagram of detailed configurations of the cell module, the CMU, and the BMU.
  • FIG. 4 is an operation explanatory diagram of the embodiment.
  • FIG. 5 is a flowchart of failure diagnosis processing according to the embodiment.
  • FIG. 6 is a conceptual diagram of failure diagnosis processing according to the embodiment.
  • FIG. 7 is an explanatory diagram of power compensation performed by each PCS during diagnosis of any PCS.
  • FIG. 1 is a schematic configuration diagram of a natural energy power generation system including a plurality of storage battery systems.
  • the natural energy power generation system 100 functions as an electric power system, uses natural energy (renewable energy) such as sunlight, hydropower, wind power, biomass, geothermal heat, and the like, and a natural energy power generation unit 1 that can output as system power,
  • the power meter 2 that measures the power generated by the energy power generation unit 1, the surplus power of the natural energy power generation unit 1 is charged based on the measurement results of the wind power and the power meter 2, the insufficient power is discharged, and the natural energy power generation unit 1
  • a plurality of storage battery systems 3-1 to 3-n that are output superimposed on the generated power and the output power of the natural energy power generation unit 1 (including the case where the output power of the storage battery systems 3-1 to 3-n is superimposed)
  • a storage battery control controller that performs local control of the storage battery systems 3-1 to 3 -n.
  • FIG. 2 is a schematic configuration block diagram of the storage battery system of the embodiment. Since the storage battery systems 3-1 to 3-n have the same configuration, the storage battery system 3-1 will be described as an example in the following description.
  • the storage battery system 3-1 can be broadly divided into a storage battery device 11 that stores electric power, and a power conversion device (PCS) that converts DC power supplied from the storage battery device 11 into AC power having desired power quality and supplies it to a load. : Power Conditioning System) 12.
  • the storage battery device 11 roughly comprises a plurality of battery boards 21-1 to 21-N (N is a natural number) and a battery terminal board 22 to which the battery boards 21-1 to 21-N are connected.
  • the battery boards 21-1 to 21-N include a plurality of battery units 23-1 to 23-M (M is a natural number) connected in parallel to each other, a gateway device 24, and a BMU (Battery Management Unit: battery management described later).
  • Device and a DC power supply device 25 for supplying a DC power supply for operation to a CMU (Cell Monitoring Unit).
  • the battery units 23-1 to 23-M are connected to an output power supply via a high potential power supply line (high potential power supply line) LH and a low potential power supply line (low potential power supply line) LL, respectively.
  • Lines (output power supply lines; bus lines) LHO and LLO are connected to supply power to the power converter 12 that is the main circuit.
  • the battery unit 23-1 is roughly divided into a plurality (24 in FIG. 1) of cell modules 31-1 to 31-24, and a plurality of (see FIG. 1) provided in each of the cell modules 31-1 to 31-24. 24) CMU 32-1 to 32-24, a service disconnect 33 provided between the cell module 31-12 and the cell module 31-13, a current sensor 34, a positive contactor 35P, A plurality of cell modules 31-1 to 31-24, a service disconnect 33, a current sensor 34, a positive contactor 35P, a fuse 38 and a negative contactor 35N are connected in series. .
  • the cell modules 31-1 to 31-24 form a battery pack by connecting a plurality of battery cells in series and parallel.
  • a plurality of cell modules 31-1 to 31-24 connected in series constitute an assembled battery group.
  • the battery unit 23-1 includes a BMU 36, and the communication lines of the CMUs 32-1 to 32-24 and the output line of the current sensor 34 are connected to the BMU 36.
  • the BMU 36 controls the entire battery unit 23-1 under the control of the gateway device 24, and is based on the communication results (voltage and temperature measurement results) with the CMUs 32-1 to 32-24 and the detection results of the current sensor 34. Then, opening / closing control of the positive side contactor 35P and the negative side contactor 35N is performed.
  • the battery terminal board 22 includes a plurality of panel breakers 41-1 to 41-N provided corresponding to the battery boards 21-1 to 21-N and a master configured as a microcomputer that controls the entire storage battery device 11. (Master) device 42.
  • the master device 42 is configured as a control power line 51 and Ethernet (registered trademark) supplied via the UPS (Uninterruptible Power System) 12A of the power conversion device 12 between the power conversion device 12 and the control data. Are connected to a control communication line 52 that exchanges data.
  • UPS Uninterruptible Power System
  • FIG. 3 is an explanatory diagram of detailed configurations of the cell module, the CMU, and the BMU.
  • Each of the cell modules 31-1 to 31-24 includes a plurality (10 in FIG. 2) of battery cells 61-1 to 61-10 connected in series.
  • CMUs 32-1 to 32-24 are voltage temperature measurement ICs (Analog Front End IC: AFE) for measuring the voltage of the battery cells constituting the corresponding cell modules 31-1 to 31-24 and the temperature of a predetermined location.
  • -IC) 62 an MPU 63 that controls the entire CMU 32-1 to 32-24, and a communication controller 64 that conforms to the CAN (Controller Area Network) standard for performing CAN communication with the BMU 36, And a memory 65 for storing voltage data and temperature data corresponding to the voltage of each cell.
  • CAN Controller Area Network
  • each of the cell modules 31-1 to 31-24 and the corresponding CMUs 32-1 to 32-24 will be referred to as battery modules 37-1 to 37-24.
  • a configuration in which the cell module 31-1 and the corresponding CMU 32-1 are combined is referred to as a battery module 37-1.
  • the BMU 36 is transmitted from the MPU 71 that controls the entire BMU 36, the communication controller 72 conforming to the CAN standard for performing CAN communication between the CMUs 32-1 to 32-24, and the CMUs 32-1 to 32-24. And a memory 73 for storing voltage data and temperature data.
  • the storage battery controller 5 shown in FIG. 1 detects the generated power of the natural energy power generation unit 1 and suppresses fluctuations in the output of the generated power using the storage battery device 11 in order to reduce the influence of the generated power on the power system. Is doing.
  • the fluctuation suppression amount for the storage battery device 11 is calculated by the storage battery controller 5 or its upper control device 6 and is given as a charge / discharge command to a PCS (Power Conditioning System) 12 corresponding to the storage battery device 11.
  • PCS Power Conditioning System
  • the battery boards 21-1 to 21-N can be disconnected from the PCS 12, that is, from the system by the circuit breakers 41-1 to 41-N.
  • FIG. 4 is an operation explanatory diagram of the embodiment.
  • the natural energy power generation system 100 has a BMU (control device) of the battery panel 21-1 under the control of the PCS 12 belonging to the storage battery system 3-1. ) Will be described.
  • the current is controlled from the PCS 12 of the battery panel 21-1 to be diagnosed while the storage battery device is connected to the system. Yes.
  • FIG. 5 is a flowchart of failure diagnosis processing according to the embodiment.
  • FIG. 6 is a conceptual diagram of failure diagnosis processing according to the embodiment.
  • the storage battery controller 5 functions as a storage battery management device, and turns on the circuit breaker of the battery panel to which the BMU to be diagnosed belongs (step S11). Specifically, the board breaker 41-1 of the battery board 21-1 under the control of the PCS 12 that is higher than the battery board 21-1 to which the BMU 36 of the storage battery system 3-1 belongs is inserted.
  • the BMU 36 inputs the positive side contactor 35P and the negative side contactor 35N corresponding to the positive terminal (+) and the negative terminal ( ⁇ ) of the cell module 31-1 (step S12). .
  • the PCS 12 of the storage battery system 3-1 to which the battery panel 21-1 corresponds notifies the BMU 36 of the battery panel 21-1 of the amount of charging current under the control of the storage battery controller 5, as shown in FIG. Then, control is performed so that the charging current of the charging current amount notified from the other storage battery systems 3-2 to 3-n flows to the battery panel 21-1 (step S13).
  • the BMU 36 As a result, the BMU 36, as shown in FIG. 6, the charge current amount (charge current notification value) notified from the PCS 12 of the storage battery system 3-1, the current amount detected by the current sensor 34 (detected charge current value), Are compared to determine whether or not they match (step S14).
  • step S14 when it can be considered that the charging current notification value and the detected charging current value match (step S14; Yes), it is determined that the current sensor 34 is normal (step S15). ). On the other hand, if the charging current notification value and the detected charging current value cannot be regarded as matching, as a result of the determination in step S14, that is, if there is a divergence (step S14; No), the current It is determined that the sensor 34 has failed, and the situation is stored (step S16).
  • the PCS 12 of the storage battery system 3-1 corresponding to the battery panel 21-1 notifies the BMU 36 of the battery panel 21-1 of the discharge current amount under the control of the storage battery controller 5, and also notifies the battery panel 21-1.
  • control is performed so that the discharge current of the charge current amount notified to the other storage battery systems 3-2 to 3-n flows (step S17).
  • the BMU 36 compares the amount of discharge current (discharge current notification value) notified from the PCS 12 of the storage battery system 3-1 with the amount of current detected by the current sensor 34 (detected discharge current value), and they match. It is determined whether or not it can be considered (step S18). As a result of the comparison in step S18, when it can be considered that the discharge current notification value and the detected discharge current value match (step S18; Yes), it is determined that the current sensor 34 is normal (step S19). ).
  • step S18 if the discharge current notification value and the detected discharge current value cannot be regarded as matching, that is, if they are deviated (step S18; No), the current It is determined that the sensor 34 has failed (step S20).
  • one of the positive side contactor 35P and the negative side contactor 35N is in a closed state (on state), and the other is in an open state (off state), and the current value detected by the current sensor 34 and the voltage value detected by the voltmeter
  • the resistance values of the positive side contactor 35P and the negative side contactor 35N are measured (step S21). And according to the measured resistance value, it becomes possible to know the welding state or the deterioration state of the positive electrode side contactor 35P and the negative electrode side contactor 35N.
  • the BMU 36 measures the resistance value of the entire circuit of the battery panel 21-1 by measuring the charging current / discharge current and the voltage of the battery panel with the positive side contactor 35P and the negative side contactor 35N closed. (Step S22). This makes it possible to diagnose the deterioration of the cell modules (battery cells 61-1 to 61-10) and the fuse 38.
  • FIG. 7 is an explanatory diagram of power compensation performed by each PCS during diagnosis of any PCS.
  • a broken line arrow pointing from the storage battery system 3-2 to the storage battery system 3-1 in FIG. 4 and FIG. As shown, the power charged by the PCS 12 of the storage battery system 3-1 is stored in the storage battery system 3-1 in order to suppress and maintain the fluctuation of the charging current X required by the system throughout the storage battery systems 3-1 to 3-n.
  • Power compensation for discharging power is performed by the PCS 12 of the system 3-2.
  • the PCS 12 As described above, by operating the PCS 12 so as to cancel the charging power and the discharging power, the PCS 12 of a certain storage battery system, or the storage battery system 3-n in the above example, while the storage battery device is in operation. Control that does not affect the system is possible while performing failure diagnosis with the PCS 12.
  • the storage battery management device (storage battery control controller) of this embodiment includes a control device such as a CPU, a storage device such as a ROM (Read Only Memory) and a RAM, an external storage device such as an HDD and a CD drive device, and the like. And a display device such as a display device and an input device such as a keyboard and a mouse, and has a hardware configuration using a normal computer.
  • a control device such as a CPU
  • a storage device such as a ROM (Read Only Memory) and a RAM
  • an external storage device such as an HDD and a CD drive device
  • a display device such as a display device and an input device such as a keyboard and a mouse, and has a hardware configuration using a normal computer.
  • the program executed by the storage battery management device of the present embodiment is an installable or executable file, such as a CD-ROM, a flexible disk (FD), a CD-R, a DVD (Digital Versatile Disk), etc. It is recorded on a readable recording medium and provided.
  • the program executed with the storage battery management apparatus of this embodiment may be provided by storing on a computer connected to networks, such as the internet, and downloading via a network.
  • the program run with the storage battery management apparatus of this embodiment may be provided or distributed via networks, such as the internet.
  • you may comprise so that the program of the storage battery management apparatus of this embodiment may be previously incorporated in ROM etc. and provided.

Abstract

 実施形態の蓄電池管理装置は、複数の電池盤と、前記電池盤に対応する複数の電力調整装置と、を備えた蓄電池システムの管理を行うとともに、蓄電池システムを稼働状態としたまま電池盤の診断を行うに際し、診断に用いる前記電池盤の充電電力あるいは放電電力を当該蓄電池システム内の複数の電力調整装置間で授受することにより、前記充電電力及び前記放電電力を当該蓄電池システム内で相殺するようにしたので、系統に影響を与えることなく、電池盤の制御装置の診断を行うことができる。

Description

蓄電池管理装置、方法及びプログラム
 本発明の実施形態は、蓄電池管理装置、方法及びプログラムに関する。
 近年、太陽光、風力などの自然エネルギーを利用した発電の変動抑制、電力需要に伴う連系線潮流の変動抑制やピークシフト等の用途に、二次電池による大規模な蓄電池システムの利用が期待されている。こうした大規模な蓄電池システムを構成するには、個別に充放電電力等を制御可能な蓄電池装置を複数個組み合わせて利用していた。
 このような複数の蓄電池装置を備えた蓄電池システムでは、蓄電池システム全体に対する充放電指令値を構成要素である個別の蓄電池装置に配分して、当該蓄電池システムを構成する全ての蓄電池装置の充放電制御を行うことにより、発電の変動抑制、連系線潮流の変動抑制あるいはピークシフト等の用途に利用している。
特開2014-171335号公報
 上記従来の蓄電池システムにおいては、蓄電池ユニットを備えた電池盤は、蓄電池セル以外に、制御装置(BMU)、主回路の開閉器(コンタクタ)、ヒューズ、電流センサ(CT)および、電池盤間の電圧測定回路等を備えて構成されていた。
 そして、電池盤において、上述したコンタクタ、ヒューズ、電池セル、電流センサ等の診断を行うには、各部の抵抗値や検出精度を調べるためには、電池盤又はPCSを系統から切り離して、個別に調べる必要があり、系統に影響を与える虞があった。
 本発明は、上記に鑑みてなされたものであって、系統に影響を与えることなく、電池盤の制御装置の診断を行うことが可能な蓄電池管理装置、方法及びプログラムを提供することを目的としている。
 実施形態の蓄電池管理装置は、複数の電池盤と、前記電池盤に対応する複数の電力調整装置と、を備えた蓄電池システムの管理を行う。
 そして、蓄電池管理装置は、蓄電池システムを稼働状態としたまま電池盤の診断を行うに際し、診断に用いる前記電池盤の充電電力あるいは放電電力を当該蓄電池システム内の複数の電力調整装置間で授受することにより、前記充電電力及び前記放電電力を当該蓄電池システム内で相殺するようにした。
図1は、複数系統の蓄電池システムを備えた自然エネルギー発電システムの概要構成図である。 図2は、実施形態の蓄電池システムの概要構成ブロック図である。 図3は、セルモジュール、CMU及びBMUの詳細構成説明図である。 図4は、実施形態の動作説明図である。 図5は、実施形態の故障診断処理フローチャートである。 図6は、実施形態の故障診断処理概念図である。 図7は、各PCSがいずれかのPCSの診断中に行う電力補償の説明図である。
 次に図面を参照して実施形態について説明する。
[1]第1実施形態
 図1は、複数系統の蓄電池システムを備えた自然エネルギー発電システムの概要構成図である。
 自然エネルギー発電システム100は、電力システムとして機能し、太陽光、水力、風力、バイオマス、地熱等の自然エネルギー(再生可能エネルギー)を利用し、系統電力として出力可能な自然エネルギー発電ユニット1と、自然エネルギー発電ユニット1の発電電力を測定する電力計2と、風力、電力計2の測定結果に基づいて自然エネルギー発電ユニット1の余剰電力を充電し、不足電力を放電して自然エネルギー発電ユニット1の発電電力に重畳して出力する複数の蓄電池システム3-1~3-nと、自然エネルギー発電ユニット1の出力電力(蓄電池システム3-1~3-nの出力電力が重畳されている場合も含む)の電圧変換を行う変圧器4と、蓄電池システム3-1~3-nのローカルな制御を行う蓄電池制御コントローラ5と、蓄電池制御コントローラ5のリモート制御を行う上位制御装置6と、を備えている。
 図2は、実施形態の蓄電池システムの概要構成ブロック図である。
 蓄電池システム3-1~3-nは、同様の構成であるので、以下の説明においては、蓄電池システム3-1を例として説明する。
 蓄電池システム3-1は、大別すると、電力を蓄える蓄電池装置11と、蓄電池装置11から供給された直流電力を所望の電力品質を有する交流電力に変換して負荷に供給する電力変換装置(PCS:Power Conditioning System)12と、を備えている。
 蓄電池装置11は、大別すると、複数の電池盤21-1~21-N(Nは自然数)と、電池盤21-1~21-Nが接続された電池端子盤22と、を備えている。
 電池盤21-1~21-Nは、互いに並列に接続された複数の電池ユニット23-1~23-M(Mは自然数)と、ゲートウェイ装置24と、後述のBMU(Battery Management Unit:電池管理装置)及びCMU(Cell Monitoring Unit:セル監視装置)に動作用の直流電源を供給する直流電源装置25と、を備えている。
 ここで、電池ユニットの構成について説明する。
 電池ユニット23-1~23-Mは、それぞれ、高電位側電源供給ライン(高電位側電源供給線)LH及び低電位側電源供給ライン(低電位側電源供給線)LLを介して、出力電源ライン(出力電源線;母線)LHO、LLOに接続され、主回路である電力変換装置12に電力を供給している。
 電池ユニット23-1~23-Mは、同一構成であるので、電池ユニット23-1を例として説明する。
 電池ユニット23-1は、大別すると、複数(図1では、24個)のセルモジュール31-1~31-24と、セルモジュール31-1~31-24にそれぞれ設けられた複数(図1では、24個)のCMU32-1~32-24と、セルモジュール31-12とセルモジュール31-13との間に設けられたサービスディスコネクト33と、電流センサ34と、正極側コンタクタ35Pと、負極側コンタクタ35Nと、を備え、複数のセルモジュール31-1~31-24、サービスディスコネクト33、電流センサ34、正極側コンタクタ35P、ヒューズ38及び負極側コンタクタ35Nは、直列に接続されている。
 ここで、セルモジュール31-1~31-24は、電池セルを複数、直並列に接続されて組電池を構成している。そして、複数の直列接続されたセルモジュール31-1~31-24で組電池群を構成している。
 さらに電池ユニット23-1は、BMU36を備え、各CMU32-1~32-24の通信ライン、電流センサ34の出力ラインは、BMU36に接続されている。
 BMU36は、ゲートウェイ装置24の制御下で、電池ユニット23-1全体を制御し、各CMU32-1~32-24との通信結果(電圧及び温度の計測結果)及び電流センサ34の検出結果に基づいて正極側コンタクタ35P及び負極側コンタクタ35Nの開閉制御を行う。
 次に電池端子盤の構成について説明する。
 電池端子盤22は、電池盤21-1~21-Nに対応させて設けられた複数の盤遮断器41-1~41-Nと、蓄電池装置11全体を制御するマイクロコンピュータとして構成されたマスタ(Master)装置42と、を備えている。
 マスタ装置42には、電力変換装置12との間に、電力変換装置12のUPS(Uninterruptible Power System)12Aを介して供給される制御電源線51と、イーサネット(登録商標)として構成され、制御データのやりとりを行う制御通信線52と、が接続されている。
 ここで、セルモジュール31-1~31-24、CMU32-1~32-24およびBMU36の詳細構成について説明する。
 図3は、セルモジュール、CMU及びBMUの詳細構成説明図である。
 セルモジュール31-1~31-24は、それぞれ、直列接続された複数(図2では、10個)の電池セル61-1~61-10を備えている。
 CMU32-1~32-24は、対応するセルモジュール31-1~31-24を構成している電池セルの電圧及び所定箇所の温度を測定するための電圧温度計測IC(Analog Front End IC:AFE-IC)62と、それぞれが対応するCMU32-1~32-24全体の制御を行うMPU63と、BMU36との間でCAN通信を行うためのCAN(Controller Area Network)規格に則った通信コントローラ64と、セル毎の電圧に相当する電圧データ及温度データを格納するメモリ65と、を備えている。
 以下の説明において、セルモジュール31-1~31-24のそれぞれと、対応するCMU32-1~32-24と、を合わせた構成については、電池モジュール37-1~37-24と呼ぶものとする。例えば、セルモジュール31-1と対応するCMU32-1を合わせた構成を電池モジュール37-1と呼ぶものとする。
 また、BMU36は、BMU36全体を制御するMPU71と、CMU32-1~32-24との間でCAN通信を行うためのCAN規格に則った通信コントローラ72と、CMU32-1~32-24から送信された電圧データ及び温度データを格納するメモリ73と、を備えている。
 図1に示した蓄電池制御コントローラ5は、自然エネルギー発電ユニット1の発電電力を検出し、この発電電力が電力系統へ及ぼす影響を緩和するために、蓄電池装置11を用いて発電電力の出力変動抑制を行なっている。ここで、蓄電池装置11に対する変動抑制量は当該蓄電池制御コントローラ5あるいはその上位制御装置6で算出し、蓄電池装置11に対応するPCS(Power Conditioning System)12に充放電指令として与えられる。
 次に実施形態の動作を説明する。
 図2に示したように、電池盤21-1~21-Nは、遮断器41-1~41-Nにより、PCS12から、すなわち、系統から遮断可能とされている。
 図4は、実施形態の動作説明図である。
 以下の説明においては、電池盤21-1の試験を行う場合を例として説明する。
 自然エネルギー発電システム100は、この例に示す蓄電池装置が、24時間連続稼働状態であるとした場合に、蓄電池システム3-1に属するPCS12の制御下にある電池盤21-1のBMU(制御装置)の故障診断を行う方法について説明する。
 本実施形態では、電池盤21-1のBMU36の故障診断を行うため、蓄電池装置が系統に接続されている状態で、診断対象の電池盤21-1のPCS12から電流を制御するようになっている。
 図5は、実施形態の故障診断処理フローチャートである。
 図6は、実施形態の故障診断処理概念図である。
 まず、蓄電池制御コントローラ5は、蓄電池管理装置として機能し、診断対象のBMUが属する電池盤の遮断器を投入する(ステップS11)。
 具体的には、蓄電池システム3-1のBMU36が属する電池盤21-1の上位のPCS12の配下の電池盤21-1の盤遮断器41-1を投入する。
 続いて、蓄電池制御コントローラ5の制御下でBMU36は、セルモジュール31-1の正極端子(+)及び負極端子(-)に対応する正極側コンタクタ35P及び負極側コンタクタ35Nを投入する(ステップS12)。
 続いて電池盤21-1が対応する蓄電池システム3-1のPCS12は、蓄電池制御コントローラ5の制御下で、充電電流量を電池盤21-1のBMU36に通知するとともに、図4に示すように、電池盤21-1に対して他の蓄電池システム3-2~3-nから通知した充電電流量の充電電流を流すように制御を行う(ステップS13)。
 これにより、BMU36は、図6に示すように、蓄電池システム3-1のPCS12から通知された充電電流量(充電電流通知値)と、電流センサ34により検出した電流量(検出充電電流値)と、を比較し、一致したと見做せるか否かを判別する(ステップS14)。
 ステップS14の比較の結果、充電電流通知値と、検出充電電流値とが、一致したと見做せる場合には(ステップS14;Yes)、電流センサ34は正常であると判断される(ステップS15)。
 一方ステップS14の判別の結果、充電電流通知値と、検出充電電流値とが、一致したと見做せない場合、すなわち、乖離している状態である場合には(ステップS14;No)、電流センサ34は故障していると判断され、当該状況は記憶される(ステップS16)。
 続いて電池盤21-1が対応する蓄電池システム3-1のPCS12は、蓄電池制御コントローラ5の制御下で、放電電流量を電池盤21-1のBMU36に通知するとともに、電池盤21-1に対して他の蓄電池システム3-2~3-nに通知した充電電流量の放電電流を流すように制御を行う(ステップS17)。
 これにより、BMU36は、蓄電池システム3-1のPCS12から通知された放電電流量(放電電流通知値)と、電流センサ34により検出した電流量(検出放電電流値)と、を比較し、一致したと見做せるか否かを判別する(ステップS18)。
 ステップS18の比較の結果、放電電流通知値と、検出放電電流値とが、一致したと見做せる場合には(ステップS18;Yes)、電流センサ34は正常であると判断される(ステップS19)。
 一方ステップS18の判別の結果、放電電流通知値と、検出放電電流値とが、一致したと見做せない場合、すなわち、乖離している状態である場合には(ステップS18;No)、電流センサ34は故障していると判断される(ステップS20)。
 続いて、正極側コンタクタ35P及び負極側コンタクタ35Nの一方を閉状態(オン状態)とし、他方を開状態(オフ状態)とし、電流センサ34により検出した電流値と、電圧計により検出した電圧値とに基づいて正極側コンタクタ35P及び負極側コンタクタ35Nの抵抗値を測定する(ステップS21)。
 そして測定された抵抗値に応じて、正極側コンタクタ35P及び負極側コンタクタ35Nの溶着状態あるいは劣化状態を知ることが可能となる。
 次にBMU36は、正極側コンタクタ35P及び負極側コンタクタ35Nを閉じた状態で、充電電流/放電電流と電池盤の電圧を計測することにより、電池盤21-1の回路全体の抵抗値を測定する(ステップS22)。
 これにより、セルモジュール(電池セル61-1~61-10)やヒューズ38の劣化を診断することが可能となる。
 ところで、上述の例の場合に、蓄電池システム3-1が稼働中に、電池盤21-1に対してステップS13、ステップS17で示したように、充電または放電の電流を印加してしまうと、系統から蓄電池装置に要求されている入力/出力電力に影響を与える可能性がある。
 そこで、本実施形態においては、系統から蓄電池装置に要求されている入力/出力電力への影響を抑制するために、並列に接続されている他のPCS(上述の例の場合、蓄電池システム3-2~3-nのPCS12)の出力を制御する。
 図7は、各PCSがいずれかのPCSの診断中に行う電力補償の説明図である。
 蓄電池システム3-1のPCS12が小電流の放電を行っている時刻t0~時刻t1の期間中には、図4中の蓄電池システム3-2から蓄電池システム3-1に向かう破線矢印及び図7に示すように、蓄電池システム3-1~3-n全体に系統から要求されている充電電流Xの変動を抑制し、維持するため、蓄電池システム3-1のPCS12が充電している電力を、蓄電池システム3-2のPCS12で放電電力とする電力補償を行っている。
 また、蓄電池システム3-1のPCS12が小電流の充電を行っている時刻t1~時刻t2の期間中には、図4中の蓄電池システム3-1から蓄電池システム3-nに向かう破線矢印及び図7に示すように、蓄電池システム3-1~3-n全体に系統から要求されている充電電流Xの変動を抑制し、維持するため、蓄電池システム3-1のPCS12が放電している電力を、蓄電池システム3-nのPCS12で充電電力として受け入れる電力補償を行っている。
 以上の説明のように、PCS12間で充電電力と放電電力とを相殺するように動作することにより、蓄電池装置を稼働中に、ある蓄電池システムのPCS12、上述の例の場合蓄電池システム3-nのPCS12で故障診断を行いながら、系統に影響を与えない制御が可能となる。
 本実施形態によれば、系統に影響を与えることなく、電池盤の制御装置の診断を行うことが可能となる。
 本実施形態の蓄電池管理装置(蓄電池制御コントローラ)は、CPUなどの制御装置と、ROM(Read Only Memory)やRAMなどの記憶装置と、HDD、CDドライブ装置などの外部記憶装置と、必要に応じてディスプレイ装置などの表示装置と、キーボードやマウスなどの入力装置を備えており、通常のコンピュータを利用したハードウェア構成となっている。
 本実施形態の蓄電池管理装置で実行されるプログラムは、インストール可能な形式又は実行可能な形式のファイルでCD-ROM、フレキシブルディスク(FD)、CD-R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録されて提供される。
 また、本実施形態の蓄電池管理装置で実行されるプログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成しても良い。また、本実施形態の蓄電池管理装置で実行されるプログラムをインターネット等のネットワーク経由で提供または配布するように構成しても良い。
 また、本実施形態の蓄電池管理装置のプログラムを、ROM等に予め組み込んで提供するように構成してもよい。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (6)

  1.  複数の電池盤と、前記電池盤に対応する複数の電力調整装置と、を備えた蓄電池システムの管理を行う蓄電池管理装置において、
     前記蓄電池システムを稼働状態としたまま前記電池盤の診断を行うに際し、前記診断に用いる前記電池盤の充電電力あるいは放電電力を当該蓄電池システム内の前記複数の電力調整装置間で授受することにより、前記充電電力及び前記放電電力を当該蓄電池システム内で相殺するようにした、
     蓄電池管理装置。
  2.  前記電力調整装置を制御し、前記電池盤の診断を行うに際し、診断対象の前記電池盤に対応する前記電力調整装置を含む一対の電力調整装置間で前記充電電力及び前記放電電力の授受を行わせる、
     請求項1記載の蓄電池管理装置。
  3.  前記電池盤は、複数の電池セルを有する電池ユニットと、
     前記電池ユニットの正極端子側に設けられた正極側コンタクタと、
     前記電池ユニットの負極端子側に設けられた負極側コンタクタと、を備え、
     前記正極側コンタクタと、前記負極側コンタクタとを排他的に開状態/閉状態として、前記正極側コンタクタ及び前記負極側コンタクタの抵抗値を測定して前記診断を行う、
     請求項1又は請求項2記載の蓄電池管理装置。
  4.  前記電池盤は、複数の電池セルと、前記電池セルの充放電制御を行うBMUとを備え、
     前記電力調整装置からの電流通知値と、実際に電流センサで検出した検出電流値とを比較して、前記電流通知値と、前記検出電流値とに乖離がある場合に、前記電流センサが故障であると前記BMUに判断させる、
     請求項1乃至請求項3のいずれか一項記載の蓄電池管理装置。
  5.  複数の電池盤と、前記電池盤に対応する複数の電力調整装置と、を備えた蓄電池システムの管理を行う蓄電池管理装置で実行される方法であって、
     前記蓄電池システムを稼働状態としたまま前記電池盤の診断を行う過程と、
     前記診断に用いる前記電池盤の充電電力あるいは放電電力を当該蓄電池システム内の前記複数の電力調整装置間で授受させることにより、前記充電電力及び前記放電電力を当該蓄電池システム内で相殺する過程と、
     を備えた方法。
  6.  複数の電池盤と、前記電池盤に対応する複数の電力調整装置と、を備えた蓄電池システムの管理を行う蓄電池管理装置をコンピュータにより制御するプログラムであって、
     前記コンピュータを、
     前記蓄電池システムを稼働状態としたまま前記電池盤の診断を行わせる手段と、
     前記診断に用いる前記電池盤の充電電力あるいは放電電力を当該蓄電池システム内の前記複数の電力調整装置間で授受させることにより、前記充電電力及び前記放電電力を当該蓄電池システム内で相殺する手段と、
     して機能させるプログラム。
PCT/JP2015/057766 2015-03-16 2015-03-16 蓄電池管理装置、方法及びプログラム WO2016147307A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/557,180 US20180069270A1 (en) 2015-03-16 2015-03-16 Storage battery management device, method and computer program product
EP15885403.4A EP3273567B1 (en) 2015-03-16 2015-03-16 Storage battery management device, method, and program
JP2017505914A JP6419941B2 (ja) 2015-03-16 2015-03-16 蓄電池管理装置、方法及びプログラム
PCT/JP2015/057766 WO2016147307A1 (ja) 2015-03-16 2015-03-16 蓄電池管理装置、方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057766 WO2016147307A1 (ja) 2015-03-16 2015-03-16 蓄電池管理装置、方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2016147307A1 true WO2016147307A1 (ja) 2016-09-22

Family

ID=56920393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057766 WO2016147307A1 (ja) 2015-03-16 2015-03-16 蓄電池管理装置、方法及びプログラム

Country Status (4)

Country Link
US (1) US20180069270A1 (ja)
EP (1) EP3273567B1 (ja)
JP (1) JP6419941B2 (ja)
WO (1) WO2016147307A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019076069A1 (zh) * 2017-10-20 2019-04-25 蔚来汽车有限公司 用于确定换电站电池充电策略的方法和装置
CN113285507A (zh) * 2021-05-24 2021-08-20 阳光电源股份有限公司 一种电池簇并联方法及相关装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10236988B1 (en) * 2016-07-14 2019-03-19 LED Lighting IQ LLC Multi spectrum internet access appliance
FR3131876A1 (fr) 2022-01-19 2023-07-21 Wattalps Procédé de commande d'une batterie électrique

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005295694A (ja) * 2004-03-31 2005-10-20 Osaka Gas Co Ltd 蓄電池の放電エネルギ回収装置
JP2008199763A (ja) * 2007-02-13 2008-08-28 Seiko Electric Co Ltd 充放電装置及びバッテリー再生装置
JP2010200574A (ja) * 2009-02-27 2010-09-09 Panasonic Corp 自己診断回路、及び電源装置
JP2013017300A (ja) * 2011-07-04 2013-01-24 Mitsubishi Motors Corp 車両の充電部構造
JP2013160652A (ja) * 2012-02-06 2013-08-19 Sumitomo Heavy Ind Ltd 2次電池の充放電検査装置およびそのコントローラ
JP2013206643A (ja) * 2012-03-28 2013-10-07 Hitachi Ltd 電池システムのリレー溶着検知装置、及びこれを用いた電池システム
JP2014140282A (ja) * 2013-01-21 2014-07-31 Mitsubishi Heavy Ind Ltd 蓄電システムおよびその制御方法
WO2014118932A1 (ja) * 2013-01-31 2014-08-07 株式会社日立製作所 蓄電システム及び蓄電方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4019815B2 (ja) * 2002-06-26 2007-12-12 日産自動車株式会社 組電池の異常診断装置および方法
JP5469813B2 (ja) * 2008-01-29 2014-04-16 株式会社日立製作所 車両用電池システム
JP5486780B2 (ja) * 2008-07-01 2014-05-07 株式会社日立製作所 電池システム
JP6157880B2 (ja) * 2013-03-04 2017-07-05 株式会社東芝 複数電池を有する二次電池システム及び充放電電力等の配分方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005295694A (ja) * 2004-03-31 2005-10-20 Osaka Gas Co Ltd 蓄電池の放電エネルギ回収装置
JP2008199763A (ja) * 2007-02-13 2008-08-28 Seiko Electric Co Ltd 充放電装置及びバッテリー再生装置
JP2010200574A (ja) * 2009-02-27 2010-09-09 Panasonic Corp 自己診断回路、及び電源装置
JP2013017300A (ja) * 2011-07-04 2013-01-24 Mitsubishi Motors Corp 車両の充電部構造
JP2013160652A (ja) * 2012-02-06 2013-08-19 Sumitomo Heavy Ind Ltd 2次電池の充放電検査装置およびそのコントローラ
JP2013206643A (ja) * 2012-03-28 2013-10-07 Hitachi Ltd 電池システムのリレー溶着検知装置、及びこれを用いた電池システム
JP2014140282A (ja) * 2013-01-21 2014-07-31 Mitsubishi Heavy Ind Ltd 蓄電システムおよびその制御方法
WO2014118932A1 (ja) * 2013-01-31 2014-08-07 株式会社日立製作所 蓄電システム及び蓄電方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019076069A1 (zh) * 2017-10-20 2019-04-25 蔚来汽车有限公司 用于确定换电站电池充电策略的方法和装置
CN113285507A (zh) * 2021-05-24 2021-08-20 阳光电源股份有限公司 一种电池簇并联方法及相关装置
CN113285507B (zh) * 2021-05-24 2024-04-12 阳光电源股份有限公司 一种电池簇并联方法及相关装置

Also Published As

Publication number Publication date
JPWO2016147307A1 (ja) 2018-02-01
EP3273567A1 (en) 2018-01-24
EP3273567B1 (en) 2019-04-24
EP3273567A4 (en) 2018-02-14
JP6419941B2 (ja) 2018-11-07
US20180069270A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6571268B2 (ja) 電池監視装置及び方法
JP6301935B2 (ja) 蓄電池管理装置、方法及びプログラム
JP6174154B2 (ja) 蓄電池管理装置、方法及びプログラム
JP6419941B2 (ja) 蓄電池管理装置、方法及びプログラム
EP3514557B1 (en) Electric storage capacity estimation device, method and program
WO2017154115A1 (ja) 蓄電池装置、蓄電池システム、方法及び制御プログラム
WO2017042892A1 (ja) 蓄電池装置、蓄電池システム、方法及びプログラム
JP6622380B2 (ja) 蓄電池装置及び方法
WO2016147322A1 (ja) 蓄電池管理装置、方法及びプログラム
WO2021111673A1 (ja) 蓄電池装置、方法及びプログラム
WO2017042973A1 (ja) 蓄電池システム、方法及びプログラム
WO2017043109A1 (ja) 蓄電池装置及び蓄電池システム
WO2016147326A1 (ja) 蓄電池管理装置、方法及びプログラム
JP6585705B2 (ja) 充放電システム
WO2017158727A1 (ja) 電池容量推定装置およびプログラム
JP7293145B2 (ja) 監視制御装置、蓄電池システム及び方法
WO2016147323A1 (ja) 蓄電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885403

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015885403

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15557180

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017505914

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE