WO2014118932A1 - 蓄電システム及び蓄電方法 - Google Patents

蓄電システム及び蓄電方法 Download PDF

Info

Publication number
WO2014118932A1
WO2014118932A1 PCT/JP2013/052171 JP2013052171W WO2014118932A1 WO 2014118932 A1 WO2014118932 A1 WO 2014118932A1 JP 2013052171 W JP2013052171 W JP 2013052171W WO 2014118932 A1 WO2014118932 A1 WO 2014118932A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
power
bidirectional inverter
storage
charging
Prior art date
Application number
PCT/JP2013/052171
Other languages
English (en)
French (fr)
Inventor
賢治 武田
本田 光利
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/052171 priority Critical patent/WO2014118932A1/ja
Publication of WO2014118932A1 publication Critical patent/WO2014118932A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy

Definitions

  • the present invention relates to a power storage system and a power storage method for charging and discharging a storage battery.
  • Patent Literature 1 includes a first battery that deteriorates due to overdischarge, a second battery that deteriorates when left at a deep charge depth for a long time, and a boosting unit that boosts the power generation voltage of the in-vehicle generator.
  • the power supply is described.
  • the step-down means steps down the output voltage of the second battery and supplies power to the first battery.
  • the power supply device described in Patent Document 1 consider a case where the second battery has a higher output / capacity ratio than the first battery (that is, there is instantaneousness).
  • the power supply device increases the SOC (State Of Charge: charge rate) of the first battery and decreases the SOC of the second battery.
  • SOC State Of Charge: charge rate
  • the first battery with a high SOC is discharged immediately after the restart, and the second battery with a low SOC is charged immediately after the restart.
  • power is supplied only from the first battery with low instantaneous power and is not supplied from the second battery with high instantaneous power.
  • there is a problem that if there is a request for discharging a large power exceeding the rating of the first battery immediately after the restart, it cannot be immediately handled.
  • an object of the present invention is to provide a power storage system and a power storage method that keep the life of a storage battery long and have excellent responsiveness at the time of restart.
  • the present invention is characterized in that the control means executes the following control.
  • the control means controls the first bidirectional inverter so as to lower the charging rate of the first storage battery and stops increasing the charging rate of the second storage battery from the time when the charge / discharge demand of the power system stops.
  • Control the bidirectional inverter controls the first bidirectional inverter so as to increase the charging rate of the first storage battery from a predetermined time before the scheduled restart time of charge / discharge demand of the power system, and the charging rate of the second storage battery.
  • the second bidirectional inverter is controlled so as to lower the value.
  • SOC charging rate
  • FIG. 1 is an overall configuration diagram showing an outline of a power storage system according to a first embodiment of the present invention.
  • the first bidirectional inverter 11a (interconnection inverter) and the power system 3 are illustrated as being connected via a single wiring c. They are connected by wiring corresponding to V-phase and W-phase three-phase AC power.
  • the first storage battery P1 and the first bidirectional inverter 11a are illustrated as being connected via a single wiring a1, but in reality, the positive terminal of the first storage battery P1.
  • the DC side of the first bidirectional inverter 11a is connected in parallel to the negative terminal.
  • the power storage system S stores power in a plurality of storage batteries P1, P2, E1, and E2, and levels the supplied power by charging and discharging according to the power demand (referred to as charge / discharge demand) from the power system 3.
  • the power storage system S has a function of absorbing fluctuations in power generated by wind power generation or the like by charging and discharging the first storage batteries P1, P2 and the second storage batteries E1, E2.
  • the power storage system S includes the first bidirectional inverters 11a and 11b and the second bidirectional inverters 12a and 12b connected to the power system 3, and the storage batteries P1, P2, and E1 connected corresponding to the bidirectional inverters. , E2 and a controller 2 for controlling the driving of each bidirectional inverter.
  • the first storage battery P1 is, for example, a storage battery module in which a plurality of lithium ion storage batteries are connected in series, and is connected to the DC side of the first bidirectional inverter 11a via a wiring a1.
  • the first storage battery P1 is a high-output type storage battery having a larger output / capacity ratio than the second storage batteries E1 and E2 described later.
  • the first storage battery P1 is connected to a cell controller (not shown) that equalizes the voltages of the individual cells (not shown) and monitors voltage, current, temperature, and the like.
  • the state information of the first storage battery P1 generated by the cell controller is output to the host controller 2.
  • the first storage battery P2 has the same configuration as the first storage battery P1 described above. Below, the case where 1st storage battery P1, P2 is a lithium ion storage battery is demonstrated as an example.
  • Lithium ion storage batteries have higher energy density and superior responsiveness (instantaneous) compared to lead storage batteries described later. Moreover, since the lithium ion storage battery has a smaller internal resistance than the lead storage battery, it has a feature that power loss and voltage drop are small even when charged or discharged with a large current.
  • Fig.2 (a) is explanatory drawing which shows a time-dependent change of the battery capacity of a lithium ion storage battery regarding the storage battery of the preservation
  • the solid line Ap shown in FIG. 2A indicates a case where the SOC (charge rate) when charging / discharging is stopped (that is, when charging / discharging request from the power system 3 is stopped) is lower than that of the solid line Bp. ing.
  • the lithium ion storage battery has a characteristic that the battery capacity is less likely to decrease as the SOC (or charging voltage) at the time of stopping charging / discharging is lower (arrow in FIG. 2A). reference).
  • the battery capacity is lowered due to deterioration. This is mainly due to the gradual change of the molecular structure on the negative electrode side.
  • the second storage battery E1 is, for example, a storage battery module in which a plurality of lead storage batteries are connected in series, and is connected to the second bidirectional inverter 12a via a wiring a2.
  • the second storage battery E1 is a low output type storage battery having a smaller output / capacity ratio than the first storage batteries P1 and P2.
  • the second storage battery E2 has the same configuration as the first storage battery described above.
  • a cell controller is also connected to each of the second storage batteries E1, E2. Below, the case where 2nd storage battery E1, E2 is a lead storage battery is demonstrated as an example.
  • Lead-acid batteries are characterized by low cost and long life. Incidentally, lead storage batteries have been frequently used in large-capacity power storage systems from the viewpoint of return on investment. Therefore, for example, an existing lead storage battery constituting the power storage system S may be retrofitted with a lithium ion storage battery having high responsiveness.
  • FIG.2 (b) is explanatory drawing which shows the time-dependent change of the battery capacity of a lead storage battery regarding the storage battery of the preservation
  • the solid line Ae shown in FIG.2 (b) has shown the case where SOC (charge rate) at the time of a charge / discharge stop is low compared with the solid line Be.
  • the lead-acid battery has a characteristic that the battery capacity is less likely to decrease as the SOC (or the charging voltage) at the time of stopping charging and discharging is higher (arrow in FIG. 2B). reference).
  • the first bidirectional inverter 11a (interconnection inverter) is, for example, a bidirectional inverter using an IGBT (Insulated Gate Bipolar Transistor) that is a switching element, and is connected to the power system 3 via a wiring c.
  • the first bidirectional inverter 11 a is driven by PWM control (Pulse Width Modulation) in accordance with a command from the controller 2.
  • the first bidirectional inverter 11a has, for example, a three-phase full bridge inverter circuit (not shown).
  • the three-phase full-bridge inverter circuit has a configuration in which upper and lower arms (not shown) in which two switching elements (IGBT and the like) are connected in series are connected in parallel to the DC side.
  • the three intermediate potentials of the upper and lower arms are connected to the AC side (the power system 3 side) via a grid reactor (not shown).
  • the first bidirectional inverter 11a When charging the first storage battery P1 with the power supplied from the power system 3, the first bidirectional inverter 11a converts the three-phase AC power supplied via the wiring c into DC power, and via the wiring a1. It supplies to the 1st storage battery P1. On the other hand, when discharging from the first storage battery P1 toward the power system 3, the first bidirectional inverter 11a converts the DC power from the first storage battery P1 via the wiring a1 into three-phase AC power, and the wiring c Output to the electric power system 3. The same applies to the other bidirectional inverters 11b, 12a and 12b shown in FIG. Note that the first bidirectional inverters 11a and 11b and the second bidirectional inverters 12a and 12b are connected to each other so as to be able to exchange power (including the storage batteries connected in parallel).
  • the controller 2 performs power flow calculation using information from a system power meter (not shown) connected to the wiring c, and sets the bidirectional inverters 11a, 11b, 12a, 12b according to a preset program. Control the drive. For example, when the generated power of a wind power generator (not shown) connected to the power system 3 is small, the controller 2 discharges from each of the storage batteries P1, P2, E1, E2 to each bidirectional inverter 11a, 11b, 12a. , 12b. In this case, the controller 2 is communicably connected to the above-described generator control device (not shown).
  • the controller 2 does not exchange power with the power system 3 during the charge / discharge demand stoppage of the power system 3, and between the first storage batteries P ⁇ b> 1 and P ⁇ b> 2 and the second storage batteries E ⁇ b> 1 and E ⁇ b> 2. To charge and discharge each other (see FIG. 3). Details of the processing executed by the controller 2 will be described later.
  • FIG. 3 is an explanatory diagram illustrating a state in which power is being transferred between the first and second storage batteries immediately after the charge / discharge demand of the power system is stopped.
  • illustration of the controller 2 is abbreviate
  • the first bidirectional inverters 11a and 11b are driven to discharge from the first storage batteries P1 and P2 (lithium ion storage batteries) immediately after the charge / discharge demand of the power system 3 stops.
  • the second bidirectional inverters 12a and 12b are driven to charge the second storage battery (lead storage battery).
  • the charging / discharging described above is performed by phase control using a connected reactor (not shown) connected to the AC side of each bidirectional inverter with reference to the AC voltage of the power system 3 serving as a reference voltage.
  • the controller 2 reduces the SOC of the first storage batteries P1 and P2 and increases the SOC of the second storage batteries E1 and E2 during the demand stop period of the electric power system 3, and the bidirectional inverters 11a and 11b. , 12a, 12b are controlled. Thereby, deterioration of each storage battery P1, P2, E1, E2 can be suppressed.
  • the first bidirectional inverters 11a and 11b charge the first storage batteries P1 and P2, respectively, and the second bidirectional inverters 12a and 12b are supplied from the second storage batteries E1 and E2. Discharge (electric power is exchanged in the reverse flow to FIG. 3).
  • FIG. 4 is a configuration diagram of a controller included in the power storage system.
  • the controller 2 includes an SOC target value switching unit 21p1 and the like, an individual calculation unit 22p1 and the like, a totaling calculation unit 23, a comparison unit 24, and a power command value calculation unit 25p1 and the like.
  • the four SOC target value switching units 21p1, etc., the individual calculation unit 22p1, etc., and the power command value calculation unit 25p1, etc. correspond to the four bidirectional inverters 11a, 11b, 12a, 12b (see FIG. 1), respectively. Yes.
  • the SOC target value switching unit 21p1 switches the SOC target value of the first storage battery P1 according to the switching command.
  • the switching command described above is generated in the controller 2 according to a preset schedule (at which timing charging / discharging is stopped / restarted), for example.
  • the first storage battery P1 lithium ion storage battery
  • the SOC target value Ref_Sp1 when charging / discharging demand is stopped is set to a relatively low value (for example, 30%) (see FIG. 7).
  • the SOC target value Ref_Rp1 of the first storage battery P1 at the time of the restart is set to a value near 50% (see FIG. 7).
  • the SOC target value switching unit 21p1 outputs the SOC threshold value: Ref_Sp1 to the individual calculation unit 22p1 when charging / discharging is stopped, and outputs the SOC threshold value: Ref_Rp1 to the individual calculation unit 22p1 when charge / discharge demand is resumed.
  • the SOC target value switching unit 21p2 has the same configuration as the SOC target value switching unit 21p1. Note that the SOC target values Ref_Sp2 and Ref_Sp2 corresponding to the first storage battery P2 may be the same as or different from the SOC target values Ref_Sp1 and Ref_Sp1 described above.
  • the 2nd storage battery E1 (lead storage battery) has the characteristic that it is hard to deteriorate, so that SOC at the time of a charge / discharge stop is high. Accordingly, the SOC target value Ref_Se1 when charging / discharging demand is stopped is set to a relatively high value (for example, 80%) (see FIG. 7). In addition, Ref_Re1 and Ref_Re2 are set to values near 50% so that both charging requests and discharging requests at the time of restart can be immediately responded (see FIG. 7).
  • the SOC target value switching unit 21e1 outputs the SOC threshold value: Ref_Se1 to the individual calculation unit 22e1 when charging / discharging is stopped, and outputs the SOC threshold value: Ref_Re1 to the individual calculation unit 22e1 when resuming the charge / discharge demand.
  • the individual calculation unit 22p1 is required by comparing the SOC target value Ref_Se1 input from the SOC target value switching unit 21p1 with the current charge amount SOCp1 input from the cell controller (not shown) of the first storage battery. Charge / discharge power Pps1 is calculated. For example, the individual calculation unit 22p1 outputs the maximum power allowed as the discharge power of the first storage battery P1 immediately after the stop of the charge / discharge demand as the required power value Pps1 to the total calculation unit 23. The same applies to the other individual calculation units 22p2, 22e1, and 22e2.
  • the total calculation unit 23 calculates the sum ⁇ Pd of the discharge power ( ⁇ 0) and the sum ⁇ Pc of the charge power (> 0) input from the individual calculation units 22p1, 22p2, 22e1, and 22e2, respectively, and the comparison unit 24 and the power command value calculation units 25p1, 25p2, 25e1, and 25e2.
  • the comparison unit 24 compares the magnitudes of the sum ⁇ Pd of the discharge power input from the total calculation unit 23 and the sum (absolute value
  • the power command value calculation unit 25p1 calculates a power command value Pp1 * based on information input from the individual calculation unit 21p1, the total calculation unit 23, and the comparison unit 24, and outputs the power command value Pp1 * to the first bidirectional inverter 11a.
  • the power command value calculation unit 25p1 calculates the power command value at the time of charging / discharging using the following (Formula 1).
  • Pp1 * is a power command value to the first bidirectional inverter 11a
  • Px is a power value input from the comparison unit 24
  • Pps1 is a power value input from the individual calculation unit 22p1.
  • ⁇ Pd is a power value (sum of discharge power) input from the total calculation unit 23.
  • the power command value calculation unit 25p1 calculates the power command value Pp1 * so that the power Px is distributed according to the ratio of the target discharge power Pps1 to the total ⁇ Pd of the discharge power. The same applies to the processing executed by the power command value calculation units 25p2, 25e1, 25e2.
  • ⁇ Power storage system processing> 5 and 6 are flowcharts showing the flow of processing executed by the controller.
  • the controller 2 executes inverter control according to the charge / discharge demand of the power system 3.
  • the controller 2 controls the first bidirectional inverters 11a and 11b and the second bidirectional inverters 12a and 12b so as to absorb fluctuations in the generated power due to wind power generation or the like while performing synchronous tracking control on the power system 3. (Time t0 to t1: see FIG. 7).
  • step S102 the controller 2 determines whether information for stopping the charge / discharge demand of the power system 3 has been input.
  • the information may be preset in the schedule, for example, or may be input from a control device of a generator (not shown) connected to the power system 3.
  • step S103 the controller 2 sets the SOC target value when the demand is stopped (time t1: see FIG. 7). That is, the controller 2 sets the SOC target values of the first storage batteries P1, P2 to Ref_Sp1 and Ref_Sp2, respectively (see FIG. 7). Further, the controller 2 sets the SOC target values of the second storage batteries E1 and E2 to Ref_Se1 and Ref_Se2 respectively (see FIG. 7).
  • step S104 the controller 2 individually calculates charge power or discharge power Pps1, Pps2, Pes1, and Pes2 required for each storage battery. For example, the controller 2 individually calculates the maximum power allowed for charging and discharging for each of the storage batteries P1, P2, E1, and E2.
  • step S105 the controller 2 calculates a total sum ⁇ Pc of discharge power and a total sum ⁇ Pd of charge power.
  • step S106 the controller 2 calculates (selects) the smaller value of the absolute value of the sum ⁇ Pc ( ⁇ 0) of the discharge power calculated in step S105 and the sum ⁇ Pd (> 0) of the charge power.
  • step S107 the controller 2 calculates the power command values Pp1 * , Pp2 * , Pe1 * , Pe2 * of the charge / discharge power of each storage battery based on the processing results of steps S103 to S106.
  • step S108 the controller 2 drives each bidirectional inverter 11a, 11b, 12a, 12b according to the electric power command value calculated in step S107 (time t1 to t2: see FIG. 7).
  • step S109 the controller 2 determines whether there is a storage battery that has reached the SOC target value set in step S103.
  • the process of the controller 2 proceeds to step S110.
  • the first storage battery P1 reaches the SOC target value Ref_Sp1 earlier than the second storage battery E1.
  • the controller 2 repeats the process of step S109.
  • step S110 the controller 2 stops the bidirectional inverters 11a, 11b, and 12a12b (time t2: see FIG. 7). Then, charging / discharging of each storage battery P1, P2, E1, E2 stops. Note that the SOC of each of the storage batteries P1, P2, E1, and E2 gradually decreases due to leakage current generated during the stop period (see FIG. 7: times t2 to t3).
  • step S111 of FIG. 6 the controller 2 predicts the demand resumption time t4 (see FIG. 7) of the power system 3, and sets it as the scheduled resumption time. For example, when a generator (not shown) using wind power generation is connected to the power system 3, the controller 2 is based on information input from the control device of the generator, weather information, past history, or the like. The demand resumption time t4 is predicted. In step S112, the controller 2 determines whether or not the current time has reached (scheduled restart time t4) ⁇ t1. Note that the predetermined time ⁇ t is set in advance as a time required for the SOC of each storage battery to be close to 50% by charging the first storage batteries P1 and P2 and discharging the second storage batteries E1 and E2. Yes.
  • step S113 the controller 2 sets the SOC target value at the time of restart (time t3: see FIG. 7). That is, the controller 2 sets the SOC target values of the first storage batteries P1, P2 to Ref_Rp1, Ref_Rp2, respectively. Further, the controller 2 sets the SOC target values of the second storage batteries E1 and E2 to Ref_Re1 and Ref_Re2, respectively (see FIG. 7).
  • the processing of steps S114 to S119 is the same as the processing of steps S104 to 109 (see FIG. 5) described above, and thus description thereof is omitted. If there is a storage battery that has reached the SOC target value in step S119 (S119 ⁇ Yes), the controller 2 resumes inverter control according to the demand of the power system 3 (S120, see FIG. 7: time t4).
  • FIG. 7 is a time chart showing changes in the charging rate (SOC) before and after the charge / discharge demand is stopped for the first storage battery and the second storage battery.
  • SOC charging rate
  • the first bidirectional inverter 11a When there is a demand stop input at time t1 shown in FIG. 7 (FIG. 5: S102 ⁇ Yes), the first bidirectional inverter 11a is driven in accordance with a command from the controller 2 and discharged from the first storage battery P1 to generate the SOC. Decreases (time t1 to t2). Similarly, the 1st storage battery P2 is also discharged and SOC falls. The discharge power of the first storage batteries P1, P2 is charged to the second storage batteries E1, E2 via the wiring c, and the SOC of each of the second storage batteries E1, E2 increases. At this time, since the sum of discharge power (
  • the controller 2 charges each of the bidirectional inverters 11a, 11b, 12a, 12b so as to charge the first storage batteries P1, P2 and discharge from the second storage batteries E1, E2. Control is performed (S118: see FIG. 6). If it does so, SOC of 1st storage battery P1, P2 will rise, and SOC of 2nd storage battery E1, E2 will fall. Also at this time, power is not exchanged with the power system 3 (by the process of S116 in FIG. 6).
  • the SOC of the first storage battery P1 reaches the target SOCRef_Sp1 (lower limit value) at time t4 (S119 ⁇ Yes: see FIG. 6). Therefore, the controller 2 switches to the control according to the demand of the electric power system 3, and controls each bidirectional inverter 11a, 11b, 12a, 12b (S120: refer FIG. 6).
  • the SOC target values Ref_Rp1 and Ref_Rp2 of the first storage batteries P1 and P2 and the SOC target values Ref_Re1 and Ref_Re of the second storage battery are set around 50%. Therefore, even if there is a charge request or a discharge request from the power system 3 immediately after the restart, it is possible to respond immediately.
  • the first storage batteries P1 and P2 are discharged to lower the SOC.
  • the first storage batteries P1 and P2 lithium ion storage batteries
  • the deterioration can be suppressed by reducing the SOC of the first storage batteries P1, P2 immediately after entering the standby state.
  • the second storage batteries E1 and E2 (lead storage batteries) have characteristics that easily deteriorate when left in a state where the SOC is low. According to this embodiment, the deterioration can be suppressed by increasing the SOC of the second storage batteries E1, E2 immediately after entering the standby state.
  • the controller 2 controls the bidirectional inverters 11a, 11b, 12a, and 12b based on the predetermined power ⁇ Pmin when the power is transferred between the first storage batteries P1 and P2 and the second storage batteries E1 and E2. To do. Therefore, one of the charging power and the discharging power does not exceed the other, and it is possible to prevent power from being transferred to and from the power system 3 during a period when there is no charge / discharge demand.
  • the first storage batteries P1 and P2 are charged by discharging from the second storage batteries E1 and E2 and supplying the discharged power to the first storage batteries P1 and P2 immediately before resuming the charge / discharge demand.
  • the first storage batteries P1 and P2 (lithium ion storage batteries) have high energy density and excellent response (instantaneous). Therefore, even when there is a request for discharging a large current from the power system 3 immediately after the resumption of charge / discharge demand, from the fully charged first storage batteries P1, P2 (and the second storage batteries E1, E2 having a certain degree of SOC). Discharge and respond immediately to the discharge request.
  • the controller 2 drives each bidirectional inverter 11a, 11b, 12a, 12b. To stop. Therefore, for example, the SOC of the first storage battery P1 becomes lower than the SOC target value Ref_Rp1 (lower limit value), or the SOC of the second storage battery E1 becomes higher than the SOC target value Ref_Re1 (upper limit value). Can be prevented.
  • the predetermined time ⁇ t is set so that the SOCs of the first storage batteries P1, P2 and the second storage batteries E1, E2 become values near 50% when the charge / discharge demand is resumed. . Therefore, it is possible to appropriately cope with any charge request or discharge request immediately after restart. As described above, according to the present embodiment, it is possible to provide the power storage system S that maintains the life of the storage battery and has excellent responsiveness at the time of restart.
  • the power storage system S according to the second embodiment is different from the first embodiment in that a priority order setting unit 26 for setting the priority order of storage batteries to be charged and discharged is added to the controller 2, but the other configurations are the first. This is the same as the embodiment. Therefore, the said different part is demonstrated and description is abbreviate
  • FIG. 8 is a configuration diagram of the controller 2 included in the power storage system according to the second embodiment of the present invention.
  • the priority order setting unit 26 determines the priority order when charging / discharging the storage batteries P1, P2, E1, and E2 based on the required power values input from the individual calculation units 22p1, 22p2, 22e1, and 22e2. For example, the priority order setting unit 26 assigns priorities to the necessary power values Pps1, Pps2, Pes1, and Pes2 in descending order of absolute values, and outputs them to the power command value calculation units 25p1, 25p2, 25e1, and 25e2. .
  • the power command value calculation unit 25p1 calculates a power command value for charging / discharging the first storage battery P1 by multiplying the power value ⁇ Pmin by a predetermined coefficient corresponding to the priority. Thus, in this embodiment, it charges / discharges preferentially from a storage battery with a large required electric power value (absolute value).
  • state information (current value) input from the cell controllers of the respective storage batteries P1, P2, E1, E2 , Voltage value, temperature, etc.) are preferably reflected.
  • the first (second) storage battery determined to be in a state of being easily deteriorated based on the state information is preferentially discharged (charged) to be in a charge / discharge stop state, and each of the storage batteries P1, P2, E1 , E2 can be leveled.
  • the program of the priority setting unit 26 may be changed via a network, or the power command value calculation method based on (Equation 1) described in the first embodiment may be switched.
  • the priority order setting unit 26 sets the priority order when charging and discharging each storage battery, and the power command value calculation unit 25p1 and the like calculate the power command value according to the priority order. Therefore, for example, it is possible to preferentially charge each of the storage batteries P1, P2, E1, and E2 from those having a large required power value. Further, when the state information from the cell controller is used in addition to the required power value, the priority order can be appropriately set according to the state of each of the storage batteries P1, P2, E1, and E2, and the power command value can be calculated.
  • the power storage system S according to the third embodiment is different from the first embodiment in that a display control unit (not shown) that displays an SOC target value or the like on a display device (not shown) is different from the first embodiment. Is the same as in the first embodiment. Therefore, the said different part is demonstrated and description is abbreviate
  • FIG. 9 is an example of a display screen when displaying the maximum charge power, the maximum discharge power, the priority order, and the time required for power transfer of each storage battery on the display device.
  • the display control unit has a function of causing each display device (such as a monitor) to display the following information in response to an operation by an administrator or the like via an input device (such as a keyboard and a mouse). That is, the display control unit displays the SOC target value of each storage battery P1, P2, E1, and E2 when the charge / discharge demand is stopped (see symbol G1) and the SOC target value of each storage battery when the charge / discharge demand is restarted (reference symbol G2). Display screen G including the priority (refer to reference G3) when charging / discharging, and the time ⁇ t required for charging / discharging (see reference G4).
  • the charge / discharge time calculated by the controller 2 is input.
  • the above-described SOC target value and the priority order when charging / discharging each of the storage batteries P1, P2, E1, and E2 can be appropriately set by a user according to an operation via an input device (not shown).
  • the charge / discharge time ⁇ t is calculated by the controller 2 based on the power command value output to each bidirectional inverter 11a, 11b, 12a, 12b and the SOC at the start of charge / discharge.
  • the controller 2 calculates (selects) the longest time among the charge / discharge times ⁇ t of the storage batteries P1, P2, E1, and E2, and causes the display control unit to display the maximum time (Max: see FIG. 9).
  • the display device (not shown) described above may be a tablet terminal or a mobile terminal in addition to a monitor.
  • the SOC target value, priority (Priorityi) of each storage battery P1, P2, E1, and E2, and time (DELTA) t required for charging / discharging are displayed on a display apparatus by a display control part. Therefore, the administrator of the storage battery system can easily grasp each information described above. In addition, the administrator can actively manage the operation of the power storage system S by appropriately setting the SOC target value and the priority order described above.
  • the power storage system S according to the present invention has been described above, but the present invention is not limited to the above-described embodiment, and can be changed as appropriate.
  • the present invention is not limited thereto.
  • a nickel hydride battery, a sodium sulfur battery, an electric double layer capacitor, a redox flow battery, a nickel-cadmium storage battery, or the like can be used in any combination as the first or second storage battery.
  • a storage battery having a relatively large output / capacity ratio is defined as a first storage battery
  • a storage battery having a relatively low output capacity ratio is defined as a second storage battery.
  • size of an output capacity ratio which kind is set to a 1st storage battery / a 2nd storage battery is preset.
  • a storage battery module may be configured by connecting a large number of single cells in series and parallel, and the state of the single cell included in each storage battery module may be managed hierarchically by a cell controller (not shown).
  • two-way inverter 11a, 11b is set so that the sum of the alternating current power exchanged between each storage battery and the electric power system 3 may become substantially zero during the stop period of the charging / discharging demand of the electric power system 3.
  • the present invention is not limited to this. That is, for example, by performing some power exchange with the power system 3, all the storage batteries may be charged and discharged until they reach their SOC target values.
  • the present invention is not limited thereto. That is, the number of the first storage battery and the second storage battery can be arbitrarily determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】蓄電池の寿命を長く保つと共に、再起動時の応答性に優れた蓄電システム及び蓄電方法を提供する。コントローラ(2)は、電力系統(3)の充放電需要の停止時から、第1蓄電池(P1,P2)のSOCを低めるように第1双方向インバータ(11a,11b)を制御するとともに、第2蓄電池(E1,E2)のSOCを高めるように第2双方向インバータ(12a,12b)を制御する。また、コントローラ(2)は、電力系統(3)の充放電需要の再開予定時刻よりも所定時間前から、第1蓄電池(P1,P2)のSOCを高めるように第1双方向インバータ(11a,11b)を制御するとともに、第2蓄電池(E1,E2)のSOCを低めるように第2双方向インバータ(12a,12b)を制御する。

Description

蓄電システム及び蓄電方法
 本発明は、蓄電池の充放電を行う蓄電システム及び蓄電方法に関する。
 近年、商用電源からの電力供給が一時的に途絶えた場合にも負荷への電力供給を継続する無停電電源システムや、太陽光発電や風力発電等による発電電力の変動を吸収するための電力貯蔵システムを構成するものとして、大型の蓄電装置が開発されている。
 例えば、特許文献1には、過放電によって劣化する第1バッテリと、深い充電深度で長時間放置されると劣化する第2バッテリと、車載発電機の発電電圧を昇圧する昇圧手段と、を備えた電源装置について記載されている。なお、前記した昇圧手段が停止した場合、降圧手段が第2バッテリの出力電圧を降圧し、第1バッテリに電力供給する。
特開2008-148389号公報
 例えば、特許文献1に記載の電源装置において、第2バッテリが第1バッテリよりも出力/容量比が高い(つまり、瞬発性がある)場合について考える。当該電源装置は、昇圧手段が停止した場合、第1バッテリのSOC(State Of Charge:充電率)を高めるとともに、第2バッテリのSOCを低める。このような状態で停止処理を行うことで蓄電池の劣化を防止できるものの、再起動時において以下の問題が生じ得る。
 すなわち、SOCが高くなっている第1バッテリは再起動直後に放電し、SOCが低くなっている第2バッテリは再起動直後に充電される。このとき、電力系統から大電力放電の要求があった場合、瞬発性の低い第1バッテリのみから電力供給され、瞬発性の高い第2バッテリからは電力供給されない。その結果、再起動直後において第1バッテリの定格を超える大電力の放電要求があった場合、即座に対応できないという問題がある。
 そこで、本発明は、蓄電池の寿命を長く保つと共に、再起動時の応答性に優れた蓄電システム及び蓄電方法を提供することを課題とする。
 前記課題を解決するために、本発明は、制御手段が以下に示す制御を実行することを特徴とする。
(1)制御手段は、電力系統の充放電需要の停止時から、第1蓄電池の充電率を低めるように第1双方向インバータを制御するとともに、第2蓄電池の充電率を高めるように第2双方向インバータを制御する。
(2)制御手段は、電力系統の充放電需要の再開予定時刻よりも所定時間前から、第1蓄電池の充電率を高めるように第1双方向インバータを制御するとともに、第2蓄電池の充電率を低めるように第2双方向インバータを制御する。
 本発明によれば、蓄電池の寿命を長く保つと共に、再起動時の応答性に優れた蓄電システム及び蓄電方法を提供できる。
本発明の第1実施形態に係る蓄電システムの概要を示す全体構成図である。 充放電しない保存状態の蓄電池に関して、電池容量の経時的な変化を示す説明図であり、(a)は第1蓄電池の場合であり、(b)は第2蓄電池の場合である。 電力系統の充放電需要の停止直後において、第1・第2蓄電池間で電力を授受している状態を示す説明図である。 蓄電システムが有するコントローラの構成図である。 コントローラが実行する処理の流れを示すフローチャートである。 コントローラが実行する処理の流れを示すフローチャートである。 第1蓄電池及び第2蓄電池に関し、充放電需要の停止前後における充電率(SOC)の変化を示すタイムチャートである。 本発明の第2実施形態に係る蓄電システムが備えるコントローラの構成図である。 各蓄電池の最大充電電力、最大放電電力、優先順位、及び電力の授受に要する時間を表示装置に表示させる際の表示画面例である。
 本発明を実施するための形態(以下、実施形態という)について、適宜図面を参照しながら詳細に説明する。
≪第1実施形態≫
 図1は、本発明の第1実施形態に係る蓄電システムの概要を示す全体構成図である。
 図1では、例えば、第1双方向インバータ11a(連系インバータ)と電力系統3とが、一本の配線cを介して接続されるように図示しているが、実際には、U相、V相、W相の三相交流電力に対応する配線で接続されている。他の双方向インバータ11b,12a,12bと電力系統3についても同様である。
 また、図1では、第1蓄電池P1と第1双方向インバータ11aとが、一本の配線a1を介して接続されるように図示しているが、実際には、第1蓄電池P1の正極端子及び負極端子に第1双方向インバータ11aの直流側が並列接続されている。他の蓄電池と双方向インバータとを接続する配線b1,a2,b2についても同様である。
<蓄電システムの構成>
 蓄電システムSは、複数の蓄電池P1,P2,E1,E2に電力を貯蔵し、電力系統3からの電力需要(充放電需要という)の状況に応じて充放電することによって供給電力を平準化するシステムである。例えば、蓄電システムSは、第1蓄電池P1,P2及び第2蓄電池E1,E2を充放電させることで風力発電等による発電電力の変動を吸収する機能を有している。
 蓄電システムSは、電力系統3に接続される第1双方向インバータ11a,11b、及び第2双方向インバータ12a,12bと、各双方向インバータに対応して接続される各蓄電池P1,P2,E1,E2と、各双方向インバータの駆動を制御するコントローラ2と、を備えている。
(第1蓄電池)
 第1蓄電池P1は、例えば、複数のリチウムイオン蓄電池が直列接続された蓄電池モジュールであり、配線a1を介して第1双方向インバータ11aの直流側に接続されている。第1蓄電池P1は、後記する第2蓄電池E1,E2と比較して、出力/容量比が大きい高出力タイプの蓄電池である。
 第1蓄電池P1には、各単電池(図示せず)の電圧を均等化すると共に、電圧・電流・温度等を監視するセルコントローラ(図示せず)が接続されている。当該セルコントローラによって生成された第1蓄電池P1の状態情報は、上位のコントローラ2に出力される。なお、第1蓄電池P2も、前記した第1蓄電池P1と同様の構成である。
 以下では、一例として、第1蓄電池P1,P2がリチウムイオン蓄電池である場合について説明する。
 リチウムイオン蓄電池は、後記する鉛蓄電池と比較してエネルギ密度が高く、応答性(瞬発性)に優れている。また、リチウムイオン蓄電池は、鉛蓄電池と比較して内部抵抗が小さいため、大電流で充電又は放電した場合でも電力損失や電圧降下が小さいという特徴を有している。
 図2(a)は、充放電しない保存状態の蓄電池に関して、リチウムイオン蓄電池の電池容量の経時的な変化を示す説明図である。なお、図2(a)に示す実線Apは、充放電停止時(つまり、電力系統3からの充放電要求の停止時)におけるSOC(充電率)が、実線Bpと比較して低い場合を示している。
 図2(a)に示すように、リチウムイオン蓄電池は、充放電停止時におけるSOC(又は充電電圧)が低いほど、電池容量が低下しにくい特性を有している(図2(a)の矢印参照)。換言すると、リチウムイオン蓄電池は、SOCが高い状態を保ったまま長期間放置されると、劣化が進んで電池容量が低下する。これは、主に、負極側の分子構造が徐々に変化することに起因する。
(第2蓄電池)
 第2蓄電池E1は、例えば、複数の鉛蓄電池が直列接続された蓄電池モジュールであり、配線a2を介して第2双方向インバータ12aに接続されている。第2蓄電池E1は、前記した第1蓄電池P1,P2よりも出力/容量比が小さい低出力タイプの蓄電池である。第2蓄電池E2は、前記した第1蓄電池と同様の構成である。第2蓄電池E1,E2にも、それぞれセルコントローラが接続されている。
 以下では、一例として、第2蓄電池E1,E2が鉛蓄電池である場合について説明する。
 鉛蓄電池は、安価かつ長寿命であるという特徴を有している。ちなみに、投資対効果の観点から大容量の蓄電システムには鉛蓄電池が多用されてきた経緯がある。したがって、例えば、蓄電システムSを構成する既存の鉛蓄電池に、高応答性を有するリチウムイオン蓄電池が後付けされる場合もある。
 図2(b)は、充放電しない保存状態の蓄電池に関して、鉛蓄電池の電池容量の経時的な変化を示す説明図である。なお、図2(b)に示す実線Aeは、充放電停止時におけるSOC(充電率)が、実線Beと比較して低い場合を示している。
 図2(b)に示すように、鉛蓄電池は、充放電停止時におけるSOC(又は、充電電圧)が高いほど、電池容量が低下しにくい特性を有している(図2(b)の矢印参照)。換言すると、鉛蓄電池は、SOCが低い状態を保ったまま長期間放置されると、劣化が進んで電池容量が低下する。これは、過放電に伴って生じるサルフェーション(負極の表面に白色硫酸鉛が析出する現象)によって鉛蓄電池が劣化するためである。
(第1、第2双方向インバータ)
 再び、図1に戻って説明を続ける。第1双方向インバータ11a(連系インバータ)は、例えば、スイッチング素子であるIGBT(Insulated Gate Bipolar Transistor)を用いた双方向インバータであり、配線cを介して電力系統3に接続されている。第1双方向インバータ11aは、コントローラ2からの指令に従ってPWM制御(Pulse Width Modulation)により駆動する。
 第1双方向インバータ11aは、例えば、3相フルブリッジインバータ回路(図示せず)を有している。3相フルブリッジインバータ回路は、スイッチング素子(IGBT等)を2直列した上下アーム(図示せず)を直流側に対して並列接続した構成となっている。それぞれの上下アームの3つの中間電位は、連系リアクトル(図示せず)を介して交流側(電力系統3側)に接続されている。
 電力系統3から供給される電力を第1蓄電池P1に充電する場合、第1双方向インバータ11aは、配線cを介して供給される三相交流電力を直流電力に変換し、配線a1を介して第1蓄電池P1に供給する。
 一方、第1蓄電池P1から電力系統3に向けて放電する場合、第1双方向インバータ11aは、配線a1を介した第1蓄電池P1からの直流電力を三相交流電力に変換し、配線cを介して電力系統3に出力する。
 図1に示す他の双方向インバータ11b,12a,12bについても同様である。なお、第1双方向インバータ11a,11bと、第2双方向インバータ12a,12bと、は互いに電力授受可能に接続されている(各蓄電池を含めて並列接続されている)。
(コントローラ)
 コントローラ2は、例えば、配線cに接続されるシステム電力計(図示せず)からの情報等を用いて潮流計算を行い、予め設定されたプログラムに従って各双方向インバータ11a,11b,12a,12bの駆動を制御する。
 例えば、コントローラ2は電力系統3に接続される風力発電機(図示せず)の発電電力が小さい場合、各蓄電池P1,P2,E1,E2から放電するように各双方向インバータ11a,11b,12a,12bを制御する。この場合においてコントローラ2は、前記した発電機の制御装置(図示せず)と通信可能に接続されている。
 また、コントローラ2は、電力系統3の充放電需要の停止期間中において、電力系統3との間で電力の授受を行わずに、第1蓄電池P1,P2と第2蓄電池E1,E2との間で相互に充放電させる(図3参照)。なお、コントローラ2が実行する処理の詳細については後記する。
<第1・第2蓄電池の充放電>
 図3は、電力系統の充放電需要の停止直後において、第1・第2蓄電池間で電力を授受している状態を示す説明図である。なお、図3では、コントローラ2の図示を省略している。
 本実施形態では、電力系統3の充放電需要の停止直後において第1双方向インバータ11a,11bが、第1蓄電池P1,P2(リチウムイオン蓄電池)から放電するように駆動する。また、第2双方向インバータ12a,12bが、第2蓄電池(鉛蓄電池)に充電するように駆動する。
 なお、前記した充放電は、基準電圧となる電力系統3の交流電圧を基準として、各双方向インバータの交流側に接続される連系リアクトル(図示せず)を用いた位相制御によって行われる。
 前記した充放電によって、第1蓄電池P1,P2のSOCは低下し、第2蓄電池E1,E2のSOCは上昇する。このように、コントローラ2は、電力系統3の需要停止期間において第1蓄電池P1,P2のSOCを低くし、かつ、第2蓄電池E1,E2のSOCを高くするように各双方向インバータ11a,11b,12a,12bを制御する。これによって、各蓄電池P1,P2,E1,E2の劣化を抑制できる。
 また、電力系統3の充放電需要が再開する直前において第1双方向インバータ11a,11bは第1蓄電池P1,P2をそれぞれ充電し、第2双方向インバータ12a,12bは第2蓄電池E1,E2から放電させる(図3とは逆の流れで電力が授受される)。
<コントローラの構成>
 図4は、蓄電システムが有するコントローラの構成図である。
 コントローラ2は、SOC目標値切替部21p1等と、個別演算部22p1等と、集計演算部23と、比較部24と、電力指令値算出部25p1等と、を有している。なお、4つのSOC目標値切替部21p1等、個別演算部22p1等、及び電力指令値算出部25p1等はそれぞれ、4つの双方向インバータ11a,11b,12a,12b(図1参照)に対応している。
 SOC目標値切替部21p1は、切替指令に応じて第1蓄電池P1のSOC目標値を切り替える。前記した切替指令は、例えば、予め設定されたスケジュール(どのタイミングで充放電を停止/再開するか)に従ってコントローラ2内で生成される。
 前記したように、第1蓄電池P1(リチウムイオン蓄電池)は、充放電停止時におけるSOCが低いほど劣化しにくい特性を有している。したがって、充放電の需要停止時におけるSOC目標値Ref_Sp1は、比較的低い値(例えば、30%)に設定されている(図7参照)。
 一方、充放電需要の再開時には、電力系統3からの充電要求・放電要求のいずれにも対応できることが好ましい。したがって、当該再開時における第1蓄電池P1のSOC目標値Ref_Rp1は、50%付近の値に設定されている(図7参照)。
 SOC目標値切替部21p1は、充放電停止時にはSOC閾値:Ref_Sp1を個別演算部22p1に出力し、充放電需要の再開時にはSOC閾値:Ref_Rp1を個別演算部22p1に出力する。
 SOC目標値切替部21p2は、前記したSOC目標値切替部21p1と同様の構成を有している。なお、第1蓄電池P2に対応するSOC目標値Ref_Sp2,Ref_Sp2は、前記したSOC目標値Ref_Sp1,Ref_Sp1と同一の値であってもよいし、異なる値であってもよい。
 一方、第2蓄電池E1(鉛蓄電池)は、充放電停止時におけるSOCが高いほど劣化しにくい特性を有している。したがって、充放電の需要停止時におけるSOC目標値Ref_Se1は、比較的高い値(例えば、80%)に設定されている(図7参照)。また、再起動時の充電要求・放電要求のいずれにも即座に対応できるよう、Ref_Re1,Ref_Re2は50%付近の値に設定されている(図7参照)。
 SOC目標値切替部21e1は、充放電停止時にはSOC閾値:Ref_Se1を個別演算部22e1に出力し、充放電需要の再開時にはSOC閾値:Ref_Re1を個別演算部22e1に出力する。
 個別演算部22p1は、SOC目標値切替部21p1から入力されるSOC目標値Ref_Se1と、第1蓄電池のセルコントローラ(図示せず)から入力される現在充電量SOCp1と、を比較し、必要となる充放電電力Pps1を算出する。例えば、個別演算部22p1は、充放電需要の停止直後における第1蓄電池P1の放電電力として許容される最大電力を必要電力値Pps1として集計演算部23に出力する。
 他の個別演算部22p2,22e1,22e2についても同様である。
 集計演算部23は、個別演算部22p1,22p2,22e1,22e2から入力される放電電力(<0)の総和ΣPdと、充電電力(>0)の総和ΣPcと、をそれぞれに算出し、比較部24、及び電力指令値演算部25p1,25p2,25e1,25e2に出力する。
 比較部24は、集計演算部23から入力される放電電力の総和ΣPdと、充電電力の総和(絶対値|ΣPc|)と、の大小を比較し、小さい方の値ΣPminを電力指令値演算部25p1,25p2,25e1,25e2に出力する。当該電力値ΣPminが、実際の各蓄電池間で授受される放電電力(=充電電力)の総和になる。
 電力指令値演算部25p1は、個別演算部21p1、集計演算部23、及び比較部24から入力される情報に基づいて電力指令値Pp1を算出し、第1双方向インバータ11aに出力する。
 例えば、電力指令値演算部25p1は、以下に示す(数式1)を用いて充放電時の電力指令値を算出する。(数式1)において、Pp1は第1双方向インバータ11aへの電力指令値であり、Pxは比較部24から入力される電力値であり、Pps1は個別演算部22p1から入力される電力値であり、ΣPdは集計演算部23から入力される電力値(放電電力の和)である。
 Pp1=Px×(Pps1/ΣPd) ・・・(数式1)
 つまり、電力指令値演算部25p1は、目標となる放電電力Pps1が、放電電力の総和ΣPdに占める割合に応じて電力Pxを配分されるように電力指令値Pp1を算出する。
 なお、電力指令値算出部25p2,25e1,25e2が実行する処理についても同様である。
<蓄電システムの処理>
 図5、図6は、コントローラが実行する処理の流れを示すフローチャートである。
 図5のステップS101においてコントローラ2は、電力系統3の充放電需要に応じたインバータ制御を実行する。例えば、コントローラ2は、電力系統3に対して同期追従制御しつつ、風力発電等による発電電力の変動を吸収するように第1双方向インバータ11a,11b、第2双方向インバータ12a,12bを制御する(時刻t0~t1:図7参照)。
 ステップS102においてコントローラ2は、電力系統3の充放電需要が停止する情報が入力されたか否かを判定する。当該情報は、例えば、前記スケジュールで予め設定されていてもよいし、電力系統3に接続されている発電機(図示せず)の制御装置から入力してもよい。
 充放電需要が停止した場合(S102→Yes)、コントローラ2の処理はステップS103に進む。一方、充放電需要が継続している場合(S102→No)、コントローラ2はステップS102の処理を繰り返す。
 ステップS103においてコントローラ2は、需要停止時におけるSOC目標値を設定する(時刻t1:図7参照)。すなわち、コントローラ2は、第1蓄電池P1,P2のSOC目標値を、それぞれRef_Sp1,Ref_Sp2に設定する(図7参照)。また、コントローラ2は、第2蓄電池E1,E2のSOC目標値を、それそれれRef_Se1,Ref_Se2に設定する(図7参照)。
 ステップS104においてコントローラ2は、各蓄電池に関して必要となる充電電力又は放電電力Pps1,Pps2,Pes1,Pes2を個別演算する。例えば、コントローラ2は蓄電池P1,P2,E1,E2のそれぞれに関し、充放電する際に許容される最大電力を個別演算する。
 ステップS105においてコントローラ2は、放電電力の総和ΣPcと、充電電力の総和ΣPdと、をそれぞれ算出する。
 ステップS106においてコントローラ2は、ステップS105で算出した放電電力の総和ΣPc(<0)の絶対値と、充電電力の総和ΣPd(>0)のうち小さいほうの値を算出(選択)する。
 ステップS107においてコントローラ2は、ステップS103~S106の処理結果に基づいて、各蓄電池の充放電電力の電力指令値Pp1,Pp2,Pe1,Pe2を算出する。
 ステップS108においてコントローラ2は、ステップS107で算出した電力指令値に応じて、各双方向インバータ11a,11b,12a,12bを駆動する(時刻t1~t2:図7参照)。
 ステップS109においてコントローラ2は、ステップS103で設定したSOC目標値に達している蓄電池が存在するか否かを判定する。SOC目標値に達している蓄電池が存在する場合(S109→Yes)、コントローラ2の処理はステップS110に進む。ちなみに、図7に示す例では、第1蓄電池P1のほうが第2蓄電池E1よりも早くSOC目標値Ref_Sp1に達している。
 一方、SOC目標値に達している蓄電池が存在しない場合(S109→No)、コントローラ2はステップS109の処理を繰り返す。
 ステップS110おいてコントローラ2は、各双方向インバータ11a,11b,12a12bを停止させる(時刻t2:図7参照)。そうすると、各蓄電池P1,P2,E1,E2の充放電が停止する。
 なお、停止期間中に発生する漏れ電流等によって、各蓄電池P1,P2,E1,E2のSOCは少しずつ低下していく(図7:時刻t2~t3参照)。
 次に、図6のステップS111においてコントローラ2は、電力系統3の需要再開時刻t4(図7参照)を予測し、再開予定時刻として設定する。例えば、風力発電を利用した発電機(図示せず)が電力系統3に接続されている場合、コントローラ2は前記発電機の制御装置から入力される情報や、気象情報や過去の履歴等に基づいて需要再開時刻t4を予測する。
 ステップS112においてコントローラ2は、現在時刻が(再開予定時刻t4)-Δt1に達したか否かを判定する。なお、前記した所定時間Δtは、第1蓄電池P1,P2を充電し、第2蓄電池E1,E2を放電することで、各蓄電池のSOCを50%付近とするのに要する時間として予め設定されている。
 ステップS113においてコントローラ2は、再起動時におけるSOC目標値を設定する(時刻t3:図7参照)。すなわち、コントローラ2は、第1蓄電池P1,P2のSOC目標値を、それぞれRef_Rp1,Ref_Rp2に設定する。また、コントローラ2は、第2蓄電池E1,E2のSOC目標値を、それぞれRef_Re1,Ref_Re2に設定する(図7参照)。
 ステップS114~S119の処理は、前記したステップS104~109(図5参照)の処理と同様であるから、説明を省略する。
 ステップS119においてSOC目標値に達した蓄電池が存在する場合(S119→Yes)、コントローラ2は電力系統3の需要に応じたインバータ制御を再開する(S120、図7:時刻t4参照)。
 図7は、第1蓄電池及び第2蓄電池に関し、充放電需要の停止前後における充電率(SOC)の変化を示すタイムチャートである。なお、図7では、2つの第1蓄電池P1,P2・第2蓄電池E1,E2のうち、それぞれ一方(第1蓄電池P1、第2蓄電池E1)のSOCのみを図示した。
 図7に示す時刻t1で需要停止入力があった場合(図5:S102→Yes)、コントローラ2からの指令に応じて第1双方向インバータ11aが駆動し、第1蓄電池P1から放電してSOCが低下する(時刻t1~t2)。同様に、第1蓄電池P2も放電してSOCが低下する。
 第1蓄電池P1,P2の放電電力は配線cを介して第2蓄電池E1,E2に充電され、、各第2蓄電池E1,E2のSOCは上昇する。このとき、放電電力の総和(|ΣPmin|)と充電電力の総和(ΣPmin)とが等しいため、電力系統3との間で電力が授受されることはない。
 充放電を行っていない期間において各蓄電池P1,P2,E1,E2では、漏れ電流等によってSOCが少しずつ低下する(時刻t2~t3参照)。
 時刻t3(つまり、再開予定時刻t4-Δt1)においてコントローラ2は、第1蓄電池P1,P2を充電し、第2蓄電池E1,E2から放電するように各双方向インバータ11a,11b,12a,12bを制御する(S118:図6参照)。そうすると、第1蓄電池P1,P2のSOCは上昇し、第2蓄電池E1,E2のSOCは低下する。このときも、電力系統3との間で電力が授受されることはない(図6のS116の処理による)。
 図7に示す例では、時刻t4において第1蓄電池P1のSOCが目標SOCRef_Sp1(下限値)に達している(S119→Yes:図6参照)。したがって、コントローラ2は、電力系統3の需要に応じた制御に切り替え、各双方向インバータ11a,11b,12a,12bを制御する(S120:図6参照)。
 前記したように、第1蓄電池P1,P2のSOC目標値Ref_Rp1,Ref_Rp2、第2蓄電池のSOC目標値Ref_Re1,Ref_Reは、50%付近に設定されている。したがって、再起動直後に電力系統3から充電要求・放電要求のいずれがあった場合でも、即座に対応できる。
≪効果≫
 本実施形態に係る蓄電システムSによれば、電力系統3の充放電需要が停止した場合、第1蓄電池P1,P2を放電してSOCを低下させる。
 前記したように、第1蓄電池P1,P2(リチウムイオン蓄電池)は、SOCが高い状態で放置されると劣化しやすい特性を有する。本実施形態では、待機状態に入った直後に第1蓄電池P1,P2のSOCを低下させることで、前記劣化を抑制できる。
 また、前記したように、第2蓄電池E1,E2(鉛蓄電池)は、SOCが低い状態で放置されると劣化しやすい特性を有する。本実施形態によれば、待機状態に入った直後に第2蓄電池E1,E2のSOCを上昇させることで、前記劣化を抑制できる。
 また、コントローラ2は、第1蓄電池P1,P2と、第2蓄電池E1,E2と、の間で電力を授受する際、所定電力ΣPminに基づいて各双方向インバータ11a,11b,12a,12bを制御する。したがって、充電電力と放電電力のうち一方が他方を上回ることがなく、充放電需要がない期間において電力系統3との間で電力が授受されることを防止できる。
 また、本実施形態では、充放電需要の再開直前において第2蓄電池E1,E2から放電し、その放電電力を第1蓄電池P1,P2に供給することで、第1蓄電池P1,P2を充電する。前記したように、第1蓄電池P1,P2(リチウムイオン蓄電池)は、エネルギ密度が高く、応答性(瞬発性)に優れている。
 したがって、充放電需要の再開直後に電力系統3から大電流の放電要求があった場合でも、十分に充電された第1蓄電池P1,P2(及びある程度のSOCを有する第2蓄電池E1,E2)から放電し、前記放電要求に即座に対応できる。
 また、本実施形態では、充放電需要の再開直前に行う充放電において、SOC目標値に達した蓄電池が少なくとも一つ存在した場合、コントローラ2は各双方向インバータ11a,11b,12a,12bの駆動を停止する。したがって、例えば、第1蓄電池P1のSOCがSOC目標値Ref_Rp1(下限値)を下回って低くなり過ぎたり、第2蓄電池E1のSOCがSOC目標値Ref_Re1(上限値)を上回って高くなりすぎたりすることを防止できる。
 また、本実施形態では、充放電需要の再開時において第1蓄電池P1,P2、及び第2蓄電池E1,E2のSOCが50%付近の値となるように前記した所定時間Δtが設定されている。したがって、再起動直後に充電要求・放電要求のいずれがあった場合にも、適切に対応できる。
 以上より、本実施形態によれば、蓄電池の寿命を長く保つと共に、再起動時の応答性に優れた蓄電システムSを提供できる。
≪第2実施形態≫
 第2実施形態に係る蓄電システムSは、充放電する蓄電池の優先順位を設定する優先順位設定部26をコントローラ2に追加した点が第1実施形態と異なるが、それ以外の構成については第1実施形態と同様である。したがって、当該異なる部分について説明し、第1実施形態と重複する部分については説明を省略する。
 図8は、本発明の第2実施形態に係る蓄電システムが備えるコントローラ2の構成図である。優先順位設定部26は、個別演算部22p1,22p2,22e1,22e2から入力される必要電力値に基づいて各蓄電池P1,P2,E1,E2を充放電する際の優先順位を決定する。
 例えば、優先順位設定部26は、各必要電力値Pps1,Pps2,Pes1,Pes2のうち、その絶対値が大きいものの順に優先順位を付け、電力指令値演算部25p1,25p2,25e1,25e2に出力する。電力指令値演算部25p1は、第1蓄電池P1を充放電する際の電力指令値を、前記優先順位に応じた所定係数を電力値ΣPminに乗算すること等によって算出する。このように、本実施形態では、必要電力値(絶対値)の大きい蓄電池から優先的に充放電させる。
 なお、優先順位設定部26による優先順位の算出や、電力指令値演算部25p1等による電力指令値の算出に関し、各蓄電池P1,P2,E1,E2のセルコントローラから入力される状態情報(電流値、電圧値、温度等)を反映させることが好ましい。
 これによって、例えば、状態情報に基づいて劣化しやすい状況にあると判定された第1(第2)蓄電池を優先的に放電(充電)して充放電停止状態とし、各蓄電池P1,P2,E1,E2の寿命を平準化できる。
 また、例えば、ネットワークを介して優先順位設定部26のプログラムを変更したり、第1実施形態で説明した(数式1)に基づいた電力指令値の演算方法に切り替え可能な構成としてもよい。
<効果>
 本実施形態によれば、優先順位設定部26によって各蓄電池を充放電する際の優先順位を設定し、電力指令値演算部25p1等が当該優先順位に従って電力指令値を演算する。
 したがって、例えば、各蓄電池P1,P2,E1,E2のうち必要電力値の大きいものから優先的に充電することができる。また、必要電力値に加えてセルコントローラからの状態情報を用いた場合、各蓄電池P1,P2,E1,E2の状態に応じて優先順位を適宜設定し、電力指令値を演算できる。
≪第3実施形態≫
 第3実施形態に係る蓄電システムSは、表示装置(図示せず)にSOC目標値等を表示させる表示制御部(図示せず)を追加した点が第1実施形態と異なるが、その他の点は第1実施形態と同様である。したがって、当該異なる部分について説明し、第1実施形態と重複する部分については説明を省略する。
 図9は、各蓄電池の最大充電電力、最大放電電力、優先順位、及び電力の授受に要する時間を表示装置に表示させる際の表示画面例である。
 表示制御部は、入力装置(キーボード、マウス等)を介した管理者等による操作に応じて、以下に示す各情報を表示装置(モニタ等)に表示させる機能を有している。すなわち、表示制御部は、充放電需要の停止時における各蓄電池P1,P2,E1,E2のSOC目標値(符号G1参照)と、充放電需要の再開時における各蓄電池のSOC目標値(符号G2参照)と、充放電する際の優先順位(Priority:符号G3参照)と、充放電に要する時間Δt(符号G4参照)と、を含む表示画面Gを表示装置に表示させる。
 表示制御部には、コントローラ2の記憶手段(図示せず)に格納されている各SOC目標値(Ref_Sp1等)と、各蓄電池P1,P2,E1,E2を充放電する際の優先順位と、コントローラ2で算出された充放電時間と、が入力される。前記した充放電時間とは、充放電需要の再開直前における充放電開始時刻t3(図7参照)から再開予定時刻t4までの充放電時間Δt(=t4-t3)である。
 なお、前記したSOC目標値と、各蓄電池P1,P2,E1,E2を充放電する際の優先順位と、は入力装置(図示せず)を介した操作に応じてユーザが適宜設定できる。また、充放電時間Δtは、各双方向インバータ11a,11b,12a,12bに出力する電力指令値と、充放電開始時のSOCと、に基づき、コントローラ2によって算出される。
 さらに、コントローラ2は、各蓄電池P1,P2,E1,E2の充放電時間Δtのうち、最も長い時間を算出(選択)し、表示制御部により表示装置に表示させる(Max:図9参照)。
 なお、前記した表示装置(図示せず)は、モニタの他、タブレット端末や携帯端末であってもよい。
<効果>
 本実施形態によれば、各蓄電池P1,P2,E1,E2のSOC目標値、優先順位(Priorityi)、及び充放電に要する時間Δtを、表示制御部によって表示装置に表示させる。したがって、蓄電池システムの管理者は、前記した各情報を容易に把握できる。
 また、管理者は、SOC目標値及び前記した優先順位を適宜設定することで、蓄電システムSの動作を能動的に管理できる。
≪変形例≫
 以上、本発明に係る蓄電システムSについて説明したが、本発明は前記した実施形態に限定されるものではなく、適宜変更できる。
 例えば、前記実施形態では、第1蓄電池P1,P2がリチウムイオン蓄電池であり、第2蓄電池E1,E2が鉛蓄電池である場合について説明したが、これに限らない。例えば、第1又は第2蓄電池として、ニッケル水素電池、ナトリウム硫黄電池、電気二重層キャパシタ、レドックスフロー電池、ニッケル・カドミウム蓄電池等、を任意の組み合わせで使用できる。
 この場合、相対的に出力/容量比が大きい蓄電池を第1蓄電池とし、相対的に出力容量比が低い蓄電池を第2蓄電池とする。なお、3種類以上の蓄電池を併用する場合には、出力容量比の大きさに応じて、どの種類を第1蓄電池/第2蓄電池に設定するかを予め設定する。
 また、前記実施形態では、複数の単セルを直列接続して第1蓄電池P1,P2及び第2蓄電池E1,E2を構成する場合について説明したが、これに限らない。例えば、多数個の単セルを直並列接続して蓄電池モジュールを構成し、それぞれの蓄電池モジュールが有する単セルの状態を、セルコントローラ(図示せず)によって階層的に管理してもよい。
 また、前記実施形態では、電力系統3の充放電需要の停止期間中、各蓄電池と電力系統3との間で授受される交流電力の和が略ゼロとなるように各双方向インバータ11a,11b,12a,12bが制御される場合について説明したが、これに限らない。すなわち、例えば、電力系統3との間で多少の電力授受を行うことで、全ての蓄電池が自身のSOC目標値に達するまで充放電させてもよい。
 また、前記実施形態では、蓄電システムSが2つの第1蓄電池P1,P2と、2つの第2蓄電池E1,E2と、を備える場合について説明したが、これに限らない。すなわち、第1蓄電池及び第2蓄電池の個数は、任意に決めることができる。
 S 蓄電システム
 P1,P2 第1蓄電池
 E1,E2 第2蓄電池
 11a,11b 第1双方向インバータ
 12a,12b 第2双方向インバータ
 2 コントローラ(制御手段)
 21p1,21p2,21e1,21e2 SOC目標値切替部
 22p1,22p2,22e1,22e2 個別演算部
 23 集計演算部
 24 比較部
 25p1,25p2,25e1,25e2 電力指令値算出部
 26 優先順位設定部
 3 電力系統
 G 表示画面

Claims (5)

  1.  第1蓄電池を充放電する第1双方向インバータと、
     前記第1蓄電池よりも出力/容量比が小さい第2蓄電池を充放電する第2双方向インバータと、
     前記第1双方向インバータ及び前記第2双方向インバータを制御する制御手段と、を備え、
     前記第1双方向インバータと、前記第2双方向インバータと、は互いに電力授受可能に接続され、
     前記制御手段は、
     電力系統の充放電需要の停止時から、前記第1蓄電池の充電率を低めるように前記第1双方向インバータを制御するとともに、前記第2蓄電池の充電率を高めるように前記第2双方向インバータを制御し、
     前記電力系統の充放電需要の再開予定時刻よりも所定時間前から、前記第1蓄電池の充電率を高めるように前記第1双方向インバータを制御するとともに、前記第2蓄電池の充電率を低めるように前記第2双方向インバータを制御すること
     を特徴とする蓄電システム。
  2.  前記制御手段は、
     前記電力系統の充放電需要の停止期間中、前記第1蓄電池及び前記第2蓄電池と前記電力系統との間で授受される交流電力の和が略ゼロとなるように、前記第1双方向インバータ及び前記第2双方向インバータを制御すること
     を特徴とする請求項1に記載の蓄電システム。
  3.  複数の前記第1双方向インバータそれぞれに前記第1蓄電池が接続され、
     複数の前記第2双方向インバータそれぞれに前記第2蓄電池が接続され、
     前記制御手段は、
     前記第1蓄電池の充放電を行う際の目標値と、前記第2蓄電池の充放電を行う際の目標値と、を含む情報に基づいて、前記第1蓄電池及び前記第2蓄電池を充放電する際の優先順位を決定し、当該優先順位に基づいて前記第1双方向インバータ及び前記第2双方向インバータを制御すること
     を特徴とする請求項1に記載の蓄電システム。
  4.  前記第1蓄電池は、リチウムイオン蓄電池であり
     前記第2蓄電池は、鉛蓄電池であること
     を特徴とする請求項1から請求項3のいずれか一項に記載の蓄電システム。
  5.  第1蓄電池を充放電する第1双方向インバータと、前記第1蓄電池よりも出力/容量比が小さい第2蓄電池を充放電する第2双方向インバータと、前記第1双方向インバータ及び前記第2双方向インバータを制御する制御手段と、を備え、前記第1双方向インバータと前記第2双方向インバータとが互いに電力授受可能に接続される蓄電システムで実行される蓄電方法であって、
     前記制御手段は、
     電力系統の充放電需要の停止時から、前記第1蓄電池の充電率を低めるように前記第1双方向インバータを制御するとともに、前記第2蓄電池の充電率を高めるように前記第2双方向インバータを制御し、
     前記電力系統の充放電需要の再開予定時刻よりも所定時間前から、前記第1蓄電池の充電率を高めるように前記第1双方向インバータを制御するとともに、前記第2蓄電池の充電率を低めるように前記第2双方向インバータを制御すること
     を特徴とする蓄電方法。
PCT/JP2013/052171 2013-01-31 2013-01-31 蓄電システム及び蓄電方法 WO2014118932A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/052171 WO2014118932A1 (ja) 2013-01-31 2013-01-31 蓄電システム及び蓄電方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/052171 WO2014118932A1 (ja) 2013-01-31 2013-01-31 蓄電システム及び蓄電方法

Publications (1)

Publication Number Publication Date
WO2014118932A1 true WO2014118932A1 (ja) 2014-08-07

Family

ID=51261678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052171 WO2014118932A1 (ja) 2013-01-31 2013-01-31 蓄電システム及び蓄電方法

Country Status (1)

Country Link
WO (1) WO2014118932A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016103915A (ja) * 2014-11-28 2016-06-02 株式会社Co2O 蓄電池システムおよび蓄電方法
WO2016147307A1 (ja) * 2015-03-16 2016-09-22 株式会社東芝 蓄電池管理装置、方法及びプログラム
JP2017085781A (ja) * 2015-10-28 2017-05-18 三菱電機株式会社 電力供給システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148389A (ja) * 2006-12-06 2008-06-26 Auto Network Gijutsu Kenkyusho:Kk 電源装置
WO2011030380A1 (ja) * 2009-09-10 2011-03-17 株式会社日立エンジニアリング・アンド・サービス 発電システムの電力貯蔵装置およびその電力貯蔵装置の運用方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148389A (ja) * 2006-12-06 2008-06-26 Auto Network Gijutsu Kenkyusho:Kk 電源装置
WO2011030380A1 (ja) * 2009-09-10 2011-03-17 株式会社日立エンジニアリング・アンド・サービス 発電システムの電力貯蔵装置およびその電力貯蔵装置の運用方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016103915A (ja) * 2014-11-28 2016-06-02 株式会社Co2O 蓄電池システムおよび蓄電方法
WO2016147307A1 (ja) * 2015-03-16 2016-09-22 株式会社東芝 蓄電池管理装置、方法及びプログラム
JPWO2016147307A1 (ja) * 2015-03-16 2018-02-01 株式会社東芝 蓄電池管理装置、方法及びプログラム
EP3273567A4 (en) * 2015-03-16 2018-02-14 Kabushiki Kaisha Toshiba Storage battery management device, method, and program
JP2017085781A (ja) * 2015-10-28 2017-05-18 三菱電機株式会社 電力供給システム

Similar Documents

Publication Publication Date Title
Sun et al. Design and test of a new two-stage control scheme for SMES-battery hybrid energy storage systems for microgrid applications
JP5704156B2 (ja) 蓄電池システム
US9190915B2 (en) Electric-power conversion device
US10084314B2 (en) Storage battery equipment
CN106816884A (zh) 能量存储系统
JP5569643B2 (ja) 二次電池システム及びその充放電方法
KR20150106912A (ko) 복수 전지를 갖는 이차 전지 시스템 및 충방전 전력 등의 배분 방법
US9780565B2 (en) System and method for controlling frequency
KR20200048913A (ko) 폐배터리 기반의 독립형 가정용 에너지 저장 시스템
WO2011068133A1 (ja) 充放電システム、発電システムおよび充放電制御装置
JPWO2011052314A1 (ja) 二次電池の制御方法および電力貯蔵装置
JPWO2013038764A1 (ja) 二次電池システム及び二次電池の運用方法
US9257859B2 (en) Dynamic battery control based on demand
CN115066819B (zh) 与一个或多个不同的公用事业代理一起使用的电力供应管理系统和方法
CN114362226A (zh) 一种复杂工况下分布式储能型mmc电池荷电状态三级均衡控制策略
WO2014118932A1 (ja) 蓄電システム及び蓄電方法
CN106786803A (zh) 独立运行光伏发电系统供大于需时的一种无损功率平衡法
KR20150013072A (ko) 배터리 히터 시스템 및 방법
JP2017139834A (ja) 電力変換装置、およびパワーコンディショナシステム
WO2021232418A1 (zh) 充电控制方法、储能模块及用电设备
CN117096936A (zh) 供电电路的控制方法、供电设备及储能设备
ES2637971T3 (es) Dispositivo de alimentación eléctrica de una carga y método asociado
WO2020161766A1 (ja) 直流給電システム
JP2017139843A (ja) 電力貯蔵システムおよびその制御方法
JP4533927B2 (ja) Dc/dcコンバータ、dc/dcコンバータ装置、車両、燃料電池システム及びdc/dcコンバータの駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP