WO2016145994A1 - 一类三环类似物、其制备方法和用途 - Google Patents

一类三环类似物、其制备方法和用途 Download PDF

Info

Publication number
WO2016145994A1
WO2016145994A1 PCT/CN2016/075391 CN2016075391W WO2016145994A1 WO 2016145994 A1 WO2016145994 A1 WO 2016145994A1 CN 2016075391 W CN2016075391 W CN 2016075391W WO 2016145994 A1 WO2016145994 A1 WO 2016145994A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
membered
compound
unsubstituted
Prior art date
Application number
PCT/CN2016/075391
Other languages
English (en)
French (fr)
Inventor
南发俊
李伯良
湛洋
张晓维
熊缨
胡西旵
张仰明
Original Assignee
中国科学院上海药物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海药物研究所 filed Critical 中国科学院上海药物研究所
Priority to US15/556,932 priority Critical patent/US10278962B2/en
Priority to KR1020177029352A priority patent/KR101975916B1/ko
Priority to EP16764175.2A priority patent/EP3272755A1/en
Priority to JP2017549239A priority patent/JP2018508560A/ja
Publication of WO2016145994A1 publication Critical patent/WO2016145994A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4433Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with oxygen as a ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B37/00Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
    • C07B37/04Substitution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B49/00Grignard reactions

Definitions

  • the invention belongs to the field of medicinal chemistry, and relates to a series of analogs having a natural product Pyripyropene A structure, a preparation method and use thereof, and more particularly, the invention relates to an analog of the natural product Pyripyropene A, a preparation method thereof and an acyl-CoA An inhibitor of cholesterol acyltransferase 2 (ACAT2) for the treatment of cardiovascular diseases such as atherosclerosis and the like.
  • ACAT2 cholesterol acyltransferase 2
  • Cholesterol plays an extremely important role in the body and is essential for the survival of all animal cells. Under normal physiological conditions, cholesterol levels in higher biological cells are maintained within a relatively narrow concentration range. Too high or too low cholesterol levels will affect their normal life processes and even cause serious lesions. Cells maintain their normal cholesterol levels primarily by regulating the balance between cholesterol synthesis, absorption, esterification, and outflow. Among them, the esterification reaction of cholesterol catalyzed by acyl-CoA: cholesterol acyltransferase (ACAT) plays an extremely important role in the balance of cholesterol metabolism in cells and at the individual level. ACAT is the only enzyme in the cell that synthesizes cholesterol esters - catalyzes the attachment of free cholesterol to long-chain fatty acid chains to form cholesterol esters.
  • ACAT cholesterol acyltransferase
  • ACAT is a membrane-bound protein located on the rough endoplasmic reticulum of tissue cells. Two subtypes have been identified so far: ACAT1 and ACAT2. The organization of the two is different. ACAT1 is present in almost all tissues and cells and regulates cholesterol balance in tissues such as brain, macrophages and adrenal glands. ACAT2 is only expressed in liver and small intestine cells, and is mainly responsible for the esterification of cholesterol in the liver and small intestine. It has long been recognized that ACAT is closely related to the occurrence of atherosclerosis. Therefore, inhibition of ACAT may not only attenuate the absorption of cholesterol in the small intestine, but also inhibit the formation of many types of foam cells including macrophage sources, and is a very important target for the treatment of cardiovascular diseases.
  • ACAT inhibitors are broadly classified as follows: a. Synthetic inhibitors: including ureas, amides, and imidazoles; b. Microbial inhibitors; c. Natural plant inhibitors.
  • ACAT inhibitors that have been discovered so far have not been used as a drug because the selectivity for the inhibitory activity of both ACAT subtypes has been neglected. Later, it was concluded that the inhibition of ACAT1 on atherosclerosis has different conclusions.
  • One laboratory believes that the absence of ACAT1 inhibits the development of atherosclerosis; another laboratory test showed that ACAT1-deficient mice have a much higher risk of developing atherosclerosis.
  • ACAT2 knockout mice revealed that ACAT-2 -/- mice had decreased ability to absorb cholesterol and were resistant to stone disease and food-induced hypercholesterolemia. Therefore, it is speculated that the specific inhibition of ACAT1 will destroy the intracellular cholesterol metabolism balance, leading to the cytotoxic effect of cholesterol, which is not conducive to the prevention of atherosclerosis.
  • ACAT2 may be an effective target for the prevention of hyperlipidemia and atherosclerosis. Specific inhibition of ACAT2 will reduce the absorption and transport of cholesterol without affecting the balance of intracellular cholesterol metabolism. Based on the above conclusions, it is particularly important to develop highly selective inhibitors targeting ACAT2.
  • Pyripyropene A has ACAT2 specific inhibitory activity.
  • Pyripyropenes was obtained from the fermentation broth of Aspergillus fumigates FO-1289 microorganisms by Satoshi Omura et al. in 1993. It is very difficult to obtain Pyripyropenes naturally, and the procedure is cumbersome and the amount of acquisition is small.
  • the natural Pyripyropenes has the disadvantage of being difficult to prepare. Starting from carvone, the total synthesis route is up to 19 steps, and the extremely harsh reaction conditions are used many times, and the yield is extremely low.
  • the inventors attempted to simplify the structure of Pyripyropenes by removing the most cost-effective ring system in the mother nucleus of Pyripyropenes, eliminating two methylene groups and one keratin group in the leftmost ring, but retaining the key diacetyl structure.
  • the unit which achieves a new skeleton structure, simplifies the target molecule, has a greatly reduced structural complexity, and is easily prepared from a simple natural raw material carvone. Therefore, it is desired to find a novel ACAT2 inhibitor with better inhibitory activity and higher selectivity.
  • the invention discloses a tricyclic compound of Pyripyropenes, the main feature of which is that some compounds obtained after the removal of the leftmost ring system have a significant increase in the specific inhibitory activity of ACAT2 compared with the natural product Pyripyropene A.
  • the invention discloses the influence law of the structure on the activity, and obtains a series of compounds with excellent properties. Compared with the natural product Pyripyropene A, the synthesis is not only simple, but also the inhibition of ACAT2 activity and the selective inhibition of ACAT2 are obvious. Better than Pyripyropene A, it is expected to become a new drug for the treatment of cardiovascular diseases such as atherosclerosis.
  • the object of the present invention is to design and synthesize a novel class of simplified Pyripyropene A analogs which can act as ACAT2 inhibitors, thereby opening up new avenues for the discovery of drugs for cardiovascular diseases such as atherosclerosis.
  • Another object of the present invention is to provide a process for the preparation of the above analog of Pyripyropene A.
  • a further object of the invention is to provide the use of the above analogs of Pyripyropene A.
  • R 1 is hydrogen or C1-C6 alkyl; R 1 is preferably hydrogen or methyl;
  • R 2 and R 3 are each independently hydrogen, hydroxy, C1-C6 alkylcarbonyloxy, C1-C6 alkylcarbonylthio, C1-C6 alkylcarbonylamine, 3 to 8 membered cycloalkyl a carbonyloxy group, a 3 to 8 membered cycloalkylcarbonylthio group, a 3 to 8 membered cycloalkylcarbonylamine group, a substituted or unsubstituted 5 to 8 membered arylcarbonyloxy group, substituted or unsubstituted a heteroarylcarbonyloxy group, wherein said substitution is substituted by halogen, hydroxy, alkyl, alkoxy, amino, cyano, preferably, R 2 and R 3 are each independently hydrogen, hydroxy, ethyl a carbonyloxy group (ie, acetoxy group, -OAc) or a para-cyano-substituted phenylcarbonyloxy group
  • R 4 and R 5 are each independently hydrogen, hydroxy, C1-C6 alkylcarbonyloxy group, C1-C6 alkylcarbonylthio group, C1-C6 alkylcarbonylamine group, 3 to 8 membered cycloalkyl group a carbonyloxy group, a 3- to 8-membered cycloalkylcarbonylthio group, a 3- to 8-membered cycloalkylcarbonylamine group, Wherein R 7 , R 8 and R 9 are each independently hydrogen, hydroxy, halogen, methyl, C1-C6 alkylcarbonyloxy group, C1-C6 alkylcarbonylthio group, C1-C6 alkylcarbonylamine a group, a 3- to 8-membered cycloalkylcarbonyloxy group, a 3- to 8-membered cycloalkylcarbonylthio group, a 3- to 8-membered cycloalkylcarbonylamine group
  • R 6 is an unsubstituted or substituted C 1 -C 6 alkyl group, an unsubstituted or substituted C 1 -C 6 alkenyl group, a substituted or unsubstituted 5 to 8 membered heteroaryl group, a substituted or unsubstituted 5 to 8 membered aryl group, a substituted or unsubstituted 3 to 8 membered cycloalkyl group, wherein said substitution is substituted by halogen, hydroxy, alkyl, alkoxy, amino, cyano; preferably, R 6 is substituted or unsubstituted 5 to 8-membered heteroaryl; more preferably, R 6 is 3-position pyridyl;
  • X is an oxygen atom, a sulfur atom, an amino group or a C1-C6 alkyl group; preferably, X is an oxygen atom;
  • Y is hydrogen
  • the single bond, that is, the analog of Pyripyropene A represented by the general formula (I) of the present invention has a structure represented by the following formula (II):
  • Y is hydrogen
  • n 1
  • X is oxygen
  • R 1 is a methyl group.
  • R 3 and R 5 are hydrogen
  • the absolute configuration of each chiral center is as follows: the W and Y configurations are consistent, and the configurations of R 2 , R 4 , and R 1 are in the following general formula (IV).
  • C1-C6 alkyl may be a linear or branched C1-C6 alkyl group, and in particular, may be methyl, ethyl, propyl, isopropyl, butyl, t-butyl, Isobutyl, pentyl, neopentyl or hexyl; preferably a linear or branched C1-C3 alkyl group.
  • 5 to 8 membered heteroaryl is an aromatic group having a 5- to 8-membered ring
  • the term "5- to 8-membered cycloalkyl” is a cycloalkyl group having a 5- to 8-membered ring, and specifically, may be a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group or a cycloheptyl group. Or cyclooctyl.
  • C1-C6 alkylcarbonyloxy group is C n H 2n+1 COO-, and n is 1-6.
  • C1-C6 alkylcarbonylthio group is C n H 2n+1 COS-, and n is 1-6.
  • C1-C6 alkylcarbonylamine group is C n H 2n+1 CONH-, and n is 1-6.
  • 3- to 8-membered cycloalkylcarbonyloxy group is a -OCO-3 to 8-membered ring.
  • 3- to 8-membered cycloalkylcarbonylthio group is a -SCO-3 to 8-membered ring.
  • 3- to 8-membered cycloalkylcarbonylamine group is a -NCO-3 to 8-membered ring.
  • C1-C6 alkylcarbonyloxymethylene is C n H 2n+1 COOCH 2 -, and n is 1-6.
  • 3- to 8-membered cycloalkylcarbonyloxymethylene is a -CH 2 OCO-3 to 8-membered ring.
  • the present invention provides a process for producing an analog of Pyripyropene A represented by the general formula (I).
  • the preparation method can This is achieved by the following route:
  • Compound 31 is coupled with Compound 267 and isopropyl Grignard reagent in THF, and then oxidized to form Compound 32;
  • Compound Ia can be subjected to a CBS selective reduction reaction to obtain a compound Ie of a specific configuration
  • R 2 , R 3 , R 4 , R 5 , R 6 , n and W are as defined above;
  • R 12 is a substituted or unsubstituted 5 to 8 membered aryl or heteroaryl group, C1-C6 alkane a group, a 3 to 8 membered cycloalkyl group;
  • R 13 is a substituted or unsubstituted 5 to 8 membered aryl or heteroaryl group, a C1-C6 alkyl group, a 3 to 8 membered cycloalkyl group a group; wherein the substitution is substituted by halogen, hydroxy, alkyl, alkoxy, amino, cyano;
  • one of R 14 and R 15 is hydrogen and the other is tert-butyldimethylsilyloxy .
  • the solvent used in the coupling reaction in the step (1) is selected from an aprotic solvent such as tetrahydrofuran; the reaction temperature is -30 ° C to room temperature;
  • the solvent used in the solvolysis reaction in the step (2) is selected from the group consisting of toluene and methanol; the reaction temperature is 80 ° C;
  • the solvent used in the C-acylation ring-closing reaction in the step (3) is selected from an aprotic solvent such as tetrahydrofuran; the reaction temperature is from 0 ° C to room temperature;
  • the solvent used for the deprotection group TBS reaction and the upper acyl group reaction in the step (4) is selected from an aprotic solvent such as dichloromethane; the reaction temperature is room temperature;
  • the solvent used in the Luche reduction reaction in the step (5) is selected from the group consisting of alcohol solvents such as methanol and ethanol; the reaction temperature is -78 ° C;
  • the solvent used in the CBS selective reduction reaction in the step (6) is selected from an aprotic solvent such as tetrahydrofuran; the reaction temperature is selected from -78 ° C or -30 ° C;
  • the analog of Pyripyropene A represented by the general formula (I) of the present invention can be used for the preparation of a drug having a highly selective inhibitor of ACAT2, and thus can be used for the preparation of a medicament for treating atherosclerosis and the like.
  • NMR was measured using a Mercury-Vx 300M instrument manufactured by Varian, NMR calibration: ⁇ H 7.26 ppm (CDCl 3 ), 2.50 ppm (DMSO-d 6 ), 3.15 ppm (CD 3 OD); Provided by Shanghai Chemical Reagent Co., Ltd.; TLC thin layer chromatography silica gel plate is produced by Shandong Yantai Huiyou Silicone Development Co., Ltd., model HSGF 254; normal phase column chromatography silica gel used for compound purification is produced by Shandong Qingdao Marine Chemical Plant Branch, model zcx -11,200-300 mesh.
  • Triethylamine (302 mg, 2.98 mmol) was added to a solution of Compound 2-1 (380 mg, 2.29 mmol) in dichloromethane. After stirring for 5 min, trifluoromethanesulfonic acid anhydride (0.50 ml, 2.98 mmol) was added.
  • BH 3 -Me 2 S (0.54 ml, 5.35 mmol) was added dropwise to a solution of the compound 2-4 (400 mg, 1.78 mmol) in THF, then warmed to room temperature, stirred for 2 h, then cooled to 0 ° C, then added 1:1 THF: MeOH solution 20 ml, then added 30% H 2 O 2 (7.6 ml) and 3M NaOH aqueous solution (17.7 ml), and stirred at room temperature for 2 hr.
  • Iodide 267 (311 mg, 1.16 mmol) was dissolved in dry THF, cooled to -30 ° C, isopropylmagnesium chloride (0.6 ml, 1.16 mmol) was added dropwise, stirring at this temperature for 30 minutes, followed by the addition of compound 2-7 ( A solution of 214 mg, 0.385 mmol) in THF was warmed to room temperature and stirred for 30 min then quenched with saturated aqueous ammonium chloride.
  • Acetyl chloride (13 ⁇ l, 0.175 mmol) was added dropwise to 0.1 ml of methanol, and the mixture was stirred at room temperature for 5 minutes, and then a solution of compound 2-10 (13 mg, 0.018 mmol) in methanol was added and stirred at room temperature for 1 hour. Concentrate and go straight to the next step.
  • the crude product was dissolved in dichloromethane, mp EtOAc (EtOAc (EtOAc) (EtOAc) The reaction was completely monitored by TLC, quenched with water, ethyl acetate, and dried over anhydrous sodium sulfate.
  • Acetyl chloride (0.06 ml, 0.6 mmol) was added dropwise to 0.7 ml of methanol, and the mixture was stirred at room temperature for 5 minutes, and then a solution of compound 7-9 (33 mg, 0.060 mmol) in methanol was added and stirred at room temperature for 1 hour. Concentrate and go straight to the next step.
  • the crude product was dissolved in dichloromethane, EtOAc (EtOAc)EtOAc (EtOAc) The reaction was completed by TLC, EtOAc (EtOAc) (EtOAc) 10 (yield 80%), since the previous step 7-9 is divided into 7-9-a and 7-9-b, the corresponding 7-10-a and 7-10-b are obtained.
  • Acetyl chloride (0.07 ml, 0.951 mmol) was added dropwise to 0.4 ml of methanol, and the mixture was stirred at room temperature for 5 minutes, and then a solution of compound 7-9 (57 mg, 0.096 mmol) in methanol was stirred at room temperature for 1 hour. Concentrate, drain, and go straight to the next step.
  • the crude product, p-cyanobenzoic acid, EDC ⁇ HCl, catalytic amount of DMAP was dissolved in dichloromethane and stirred at room temperature overnight.
  • Example 11 (30 mg, 0.061 mmol) obtained in Example 5 was dissolved in glacial acetic acid (1.5 ml) and water (5.9 ⁇ l), and silver acetate (21 mg, 0.121 mmol) and iodine (17 mg, 0.665 mmol) were added and stirred at room temperature. overnight. The next day, water was added, and the mixture was extracted with ethyl acetate. The organic phase was washed with brine, evaporated, evaporated, evaporated A total of 16 mg of a pair of diastereomers (yield 46.3%).
  • Compound 24 (11.14 g, 62.86 mmol), m. The next day, water was added to quench and extracted with ethyl acetate. The organic phase was washed with saturated brine and dried and concentrated.
  • Acetyl chloride (0.06 ml, 0.6 mmol) was added dropwise to 0.7 ml of methanol, and the mixture was stirred at room temperature for 5 minutes, and then a solution of compound 15-9 (33 mg, 0.060 mmol) in methanol was stirred at room temperature for 1 hour. Concentrate and go straight to the next step.
  • the compound R-carvone in the preparation example 6 is replaced with S-carvone to prepare the compound 20;
  • Acetyl chloride (0.20 ml, 1.83 mmol) was added dropwise to 2.5 ml of methanol, and the mixture was stirred at room temperature for 5 minutes, and then a solution of compound 15-9-b (102.0 mg, 0.18 mmol) in methanol was stirred at room temperature for 1 hour. Concentrate and go straight to the next step.
  • the crude product was dissolved in dichloromethane, EtOAc (EtOAc:EtOAc.
  • n-Butyllithium (0.01 ml, 0.011 mmol) was added dropwise to a solution of 21 (6.0 mg, 0.011 mmol) in THF at -78 ° C, and stirred at this temperature for half an hour, then p-bromobenzoyl chloride was added and stirring was continued for 1 hour. It was quenched by the addition of a saturated aqueous solution of sodium hydrogencarbonate, and the mixture was evaporated to EtOAc EtOAc (EtOAc m.
  • the inhibitory effect of the analog of the Pyripyropene A structure on ACAT2 activity at the intact cell level was examined by a method for measuring ACAT2 activity using a fluorescent labeled sterol.
  • HepG2 cells were cultured in a 96-well plate at a starting density of 1.5 ⁇ 10 4 per well for 24 hours. After mixing with the cholesterol mixture, the culture was continued for 24 hours, and then NBD22-fluorescent label was added at a final concentration of 0.5 ⁇ g/ml. Sterols, and compounds with final concentration gradients of 0, 0.008, 0.04, 0.2, 1 and 5 ⁇ M, three replicate wells per concentration, and after 6 hours of incubation, the fluorescence intensity was measured using a fluorescence analyzer (E488, A535). intensity value and plotted for various concentrations of compound to obtain IC 50.
  • a fluorescence analyzer E488, A535
  • IC 50 is a 50% inhibition evaluation of ACAT2 activity by sample compounds.
  • the % inhibition rate was the relative inhibition rate when the Pyripyropene A (0.2 ⁇ M) was 100% inhibition control.
  • ACAT2 and ACAT1 The inhibition of ACAT2 and ACAT1 by the analog of the Pyripyropene A structure at the intact cell level was detected by measuring the ACAT activity by the cholesterol oxidase method, and a compound having high selectivity to ACAT2 was obtained.
  • IC 50 is obtained to calculate the SI (ACAT1-IC 50 / ACAT2 -IC 50).
  • HepG2 cells were cultured in a 6-well plate at a starting density of 4 ⁇ 10 5 cells per well for 24 hours, the medium was changed, 10 ⁇ g/ml of cholesterol and various concentrations of the compound were added, and the culture was continued for 9 hours, and the cells were assayed using a Cholesterol Assay kit. The amount of cholesterol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

本发明涉及一类通式I所示的一系列具有天然产物Pyripyropene A结构的类似物及其制备方法和用途,更具体而言,本发明涉及天然产物Pyripyropene A的类似物,其制备方法以及作为酰基辅酶A:胆固醇酰基转移酶2(ACAT2)的抑制剂在治疗心血管疾病比如动脉粥样硬化等的应用。

Description

一类三环类似物、其制备方法和用途 技术领域
本发明属于药物化学领域,涉及一系列具有天然产物Pyripyropene A结构的类似物及其制备方法和用途,更具体而言,本发明涉及天然产物Pyripyropene A的类似物,其制备方法以及作为酰基辅酶A:胆固醇酰基转移酶2(ACAT2)的抑制剂在治疗心血管疾病比如动脉粥样硬化等的应用。
背景技术
胆固醇在生物体内发挥着极其重要的作用,是所有动物细胞生存所必需的,正常生理条件下,高等生物细胞中的胆固醇水平被维持在一个相当狭小的浓度范围之内。胆固醇浓度过高或过低都将影响其正常生命过程,甚至产生严重病变。而细胞主要是通过调节胆固醇的合成、吸收、酯化、以及外流等途径之间的平衡以维持正常的胆固醇浓度。其中,酰基辅酶A:胆固醇酰基转移酶(ACAT)所催化的胆固醇的酯化反应无论是在细胞还是在个体水平的胆固醇代谢的平衡中都发挥了极其重要的作用。ACAT是细胞内唯一合成胆固醇酯的酶——催化游离的胆固醇与长链脂肪酸链连接形成胆固醇酯。
ACAT是一种位于组织细胞内粗面内质网上的膜结合蛋白,至今发现有两种亚型:ACAT1和ACAT2。它们二者的组织分布较为不同。ACAT1存在于几乎各种组织和细胞中,调控脑、巨噬细胞和肾上腺等组织中的胆固醇平衡。而ACAT2只在肝脏和小肠细胞中有表达,主要负责肝脏和小肠中的胆固醇的酯化合成。人们很早就认识到ACAT与动脉粥样硬化的发生密切相关。因此,抑制ACAT可能不仅能减弱小肠对胆固醇的吸收,而且可以抑制包括巨噬细胞来源的多类泡沫细胞的形成,是一个非常重要的治疗心血管疾病的靶点。
目前已知的ACAT抑制剂大致分类如下:a.合成类抑制剂:包括脲类,酰胺类,以及咪唑类;b.微生物类抑制剂;c.天然植物类抑制剂。但是,至今为止所有已发现的ACAT抑制剂均未成为药物,原因就是忽略了对ACAT两种亚型抑制活性的选择性。后来考察抑制ACAT1对于动脉粥样硬化的影响有不同的结论。一家实验室认为ACAT1的缺失可抑制动脉粥样硬化的发生;另一实验室实验结果表明ACAT1缺失的小鼠患动脉粥样硬化症的几率大大增加。而对ACAT2基因敲除的小鼠分析则发现,ACAT-2-/-的小鼠吸收胆 固醇的能力下降了,对于结石病和食物诱导的高胆固醇血症有抵御作用。因此,推测特异性抑制ACAT1将破坏细胞内胆固醇代谢平衡,导致胆固醇的细胞毒性作用,并不利于防止动脉粥样硬化的发生。而ACAT2对于预防高血脂症和动脉粥样硬化,可能是一个有效的靶点。特异性抑制ACAT2将减少胆固醇的吸收和运输,并不会影响细胞内胆固醇代谢平衡。综合以上结论,开发靶向ACAT2的高选择性抑制剂则显得尤为重要。
但是重新检测已发现的ACAT抑制剂,只有Pyripyropene A具有ACAT2特异抑制活性。Pyripyropenes是1993年Satoshi Omura等人从Aspergillus fumigates FO-1289微生物的发酵液中提取获得的,天然分离获取Pyripyropenes的难度非常大,程序繁琐,获取量少。而且天然Pyripyropenes具有制备困难的缺点,以香芹酮为起点,全合成路线多达十九步,且多次用到极为苛刻的反应条件,产率极低。发明人尝试简化Pyripyropenes的结构,将Pyripyropenes的母核中全合成耗费精力最多的环系构筑去除,消除最左边环中的两个亚甲基和一个角甲基,但保留关键的双乙酰基结构单元,这样获得全新骨架的结构简化了的目标分子,结构复杂程度大大降低,且易于从简单的天然原料香芹酮制备。从而希望发现抑制活性更好,选择性更高的新型ACAT2抑制剂。本发明公开了一类Pyripyropenes的三环化合物,其主要特点是最左边环系去除后得到的一些化合物与天然产物Pyripyropene A相比其ACAT2的特异抑制活性明显增加。本发明公开了这一结构对活性的影响规律,并得到一系列性能优异的化合物,与天然产物Pyripyropene A相比,不仅合成简便,而且其对ACAT2活性的抑制和对ACAT2的选择性抑制均明显优于Pyripyropene A,有望成为作用于该靶点治疗心血管疾病比如动脉粥样硬化等的新型药物。
发明内容
本发明的目的在于设计与合成一类新型的简化的Pyripyropene A类似物,其可以作为ACAT2抑制剂,从而为治疗心血管疾病比如动脉粥样硬化等药物的发现开辟新途径。
本发明的另一目的在于提供上述的Pyripyropene A的类似物的制备方法。
本发明的又一目的是提供上述的Pyripyropene A的类似物的用途。
本发明所述的Pyripyropene A的类似物具有以下通式(I)所示的结构:
Figure PCTCN2016075391-appb-000001
其中:
n=0、1或2;优选为n=1;
R1为氢或C1-C6烷基;R1优选为氢或甲基;
R2和R3各自独立地为氢、羟基、C1-C6烷基羰基氧基团、C1-C6烷基羰基硫基团、C1-C6烷基羰基胺基团、3至8元环烷基羰基氧基团、3至8元环烷基羰基硫基团、3至8元环烷基羰基胺基团、取代或未取代的5至8元芳基羰基氧基团、取代或未取代的杂芳基羰基氧基团,其中所述取代是指被卤素、羟基、烷基、烷氧基、氨基、氰基取代,优选的,R2和R3各自独立地为氢、羟基、乙基羰基氧基团(即乙酰氧基,-OAc)或对位氰基取代的苯基羰基氧基团;更优选的,R2和R3其中一个为氢,另一个选自羟基、乙基羰基氧基团(即乙酰氧基,-OAc)或对位氰基取代的苯基羰基氧基团;
R4和R5各自独立地为氢、羟基、C1-C6烷基羰基氧基团、C1-C6烷基羰基硫基团、C1-C6烷基羰基胺基团、3至8元环烷基羰基氧基团、3至8元环烷基羰基硫基团、3至8元环烷基羰基胺基团、
Figure PCTCN2016075391-appb-000002
其中,R7、R8和R9各自独立地为氢、羟基、卤素、甲基、C1-C6烷基羰基氧基团、C1-C6烷基羰基硫基团、C1-C6烷基羰基胺基团、3至8元环烷基羰基氧基团、3至8元环烷基羰基硫基团、3至8元环烷基羰基胺基团、C1-C6烷基羰基氧亚甲基、3至8元环烷基羰基氧亚甲基、取代或未取代的5至8元杂芳基羰基氧基团、取代或未取代的5至8元杂芳基羰基氧亚甲基基团、取代或未取代的5至8元芳基羰基氧基团、取代或未取代的5至8元芳基羰基氧亚甲基基团,其中所述取代是指被卤素、羟基、烷基、烷氧基、氨基、氰基取代;Z1和Z2各自独立地为氢、氧原子、硫原子或氨基;R10和R11各自独立地为氢、C1-C6烷基、3至8元环烷基、取代或未取代的5至8元杂芳基、取代或未取代的5至8元芳基,其中所述取代是指被卤素、羟基、烷基、烷氧基、氨基、氰基取代;优选的,R4和R5各自独立的为氢、
Figure PCTCN2016075391-appb-000003
R7、R8和R9各自独立地为氢、羟基、卤素、甲基、C1-C6烷基羰基氧基团、取代或未取代的苯基羰基氧基团,其中所述取代是指被对位氰基取代;更优选的,R4和R5其中一个为氢、另一为
Figure PCTCN2016075391-appb-000004
Figure PCTCN2016075391-appb-000005
R6为未取代或取代的C1-C6烷基、未取代或取代C1-C6链烯基、取代或未取代的5至8元杂芳基、取代或未取代的5至8元芳基、取代或未取代的3至8元环烷基,其中所述取代是指被卤素、羟基、烷基、烷氧基、氨基、氰基取代;优选的,R6为取代或未取代的5至8元杂芳基;更优选的,R6为3位吡啶基;
X为氧原子、硫原子、氨基或C1-C6烷基;优选的,X为氧原子;
Y为氢;
W为氢、羟基、卤素、氧代基团(=O)、=N-OH、取代或未取代的5至8元芳基或杂芳基羰基氧基团、C1-C6烷基羰基氧基团或3至8元环烷基羰基氧基团;优选的,W为羟基、氧代基团(=O)或对位卤素取代的苯基羰基氧;
Figure PCTCN2016075391-appb-000006
表示单键或双键;优选为单键。
在本发明中除非另外指出,
Figure PCTCN2016075391-appb-000007
表示连接位点;
在本发明的优选实施方案中,Y为氢,n=1,
Figure PCTCN2016075391-appb-000008
为单键,即本发明所述的通式(I)所示的Pyripyropene A的类似物具有如下通式(II)所示的结构:
Figure PCTCN2016075391-appb-000009
在通式(II)中的各取代基的定义与通式(I)中的定义相同。
进一步优选地,Y为氢,n=1,X为氧,R1为甲基,
Figure PCTCN2016075391-appb-000010
为单键即本发明所述的通式 (I)所示的Pyripyropene A的类似物具有如下通式(III)所示的结构:
Figure PCTCN2016075391-appb-000011
其中,在通式(III)中,各取代基的定义与通式(I)中的定义相同。
更进一步优选地,Y为氢,n=1,X为氧,R1为甲基,
Figure PCTCN2016075391-appb-000012
为单键,R3、R5为氢,每个手性中心的绝对构型如下:W和Y构型保持一致,R2、R4、R1的构型按照如下通式(IV)中所示的绝对立体构型:
Figure PCTCN2016075391-appb-000013
其中,在通式(IV)中,各取代基的定义与通式(I)中的定义相同。
在说明书中,术语“C1-C6烷基”可以为直链或支链C1-C6烷基,特别地,可以为甲基、乙基、丙基、异丙基、丁基、叔丁基、异丁基、戊基、新戊基或己基;优选地为直链或支链C1-C3烷基。
在说明书中,术语“5至8元杂芳基”为5至8元环的具有芳香性的基团;
在说明书中,术语“5至8元环烷基”为具有5至8元环的环烷基,具体地,可以为,环丙基、环丁基、环戊基、环己基、环庚基或环辛基。
在说明书中,术语“C1-C6烷基羰基氧基团”为CnH2n+1COO-,n为1-6。
在说明书中,术语“C1-C6烷基羰基硫基团”为CnH2n+1COS-,n为1-6。
在说明书中,术语“C1-C6烷基羰基胺基团”为CnH2n+1CONH-,n为1-6。
在说明书中,术语“3至8元环烷基羰基氧基团”为-OCO-3至8元环。
在说明书中,术语“3至8元环烷基羰基硫基团”为-SCO-3至8元环。
在说明书中,术语“3至8元环烷基羰基胺基团”为-NCO-3至8元环。
在说明书中,术语“C1-C6烷基羰基氧亚甲基”为CnH2n+1COOCH2-,n为1-6。
在说明书中,术语“3至8元环烷基羰基氧亚甲基”为-CH2OCO-3至8元环。
在本发明更优选的实施方案中,本发明所述通式(I)所示的Pyripyropene A的类似物具体为:
Figure PCTCN2016075391-appb-000014
Figure PCTCN2016075391-appb-000015
Figure PCTCN2016075391-appb-000016
本发明提供了通式(I)所示的Pyripyropene A的类似物的制备方法。该制备方法可以 通过下述路线来实现:
Figure PCTCN2016075391-appb-000017
具体来说,包括以下步骤:
(1)化合物31与化合物267以及异丙基格氏试剂在THF中偶联反应,再被氧化后形成化合物32;
(2)化合物32经过溶剂解反应得到化合物33;
(3)化合物33被LHMDS攫氢烯醇化,随后和不同基团的酰氯(R6COCl)发生C-酰基化关环得到化合物34;
(4)化合物34在酸性条件下发生脱TBS保护基反应,再和不同的酸酐((R12)2CO)或酰氯(R12COCl)发生上酰基反应得到不同取代的化合物Ia和Ib;
化合物34制备得到化合物Ia和Ib的通式(II)具体表示如下:
Figure PCTCN2016075391-appb-000018
进一步的,
(5)化合物Ia经过Luche还原反应得到化合物Ic;
(6)化合物Ia经过CBS选择性还原反应可以得到特定构型的化合物Ie;
(7)化合物Ic与不同基团的酰氯(R13COCl)反应制得本发明所述化合物Id。
其中,R2、R3、R4、R5、R6、n和W的定义同前;R12为取代或未取代的5至8元芳基或杂芳基基团、C1-C6烷基基团、3至8元环烷基基团;R13为取代或未取代的5至8元芳基或杂芳基基团、C1-C6烷基基团、3至8元环烷基基团;其中所述取代是指被卤素、羟基、烷基、烷氧基、氨基、氰基取代;R14和R15中一个为氢,另一个为叔丁基二甲基硅基氧基。
其中,
步骤(1)中所述偶联反应所用溶剂选自四氢呋喃等非质子性溶剂;反应温度为-30℃至室温;
步骤(2)中所述溶剂解反应所用溶剂选自甲苯和甲醇;反应温度为80℃;
步骤(3)中所述C-酰基化关环反应所用溶剂选自四氢呋喃等非质子性溶剂;反应温度为0℃到室温;
步骤(4)中所述脱保护基TBS反应及上酰基反应所用溶剂选自二氯甲烷等非质子性溶剂;反应温度为室温;
步骤(5)中所述Luche还原反应所用溶剂选自甲醇、乙醇等醇类溶剂;反应温度为-78℃;
步骤(6)中所述CBS选择性还原反应所用溶剂选自四氢呋喃等非质子性溶剂;反应温度选自-78℃或-30℃等等;
本发明通式(I)所示的Pyripyropene A的类似物可以用于制备ACAT2高选择性抑制剂的药物,从而可以在制备治疗动脉粥样硬化等的药物中应用。
具体实施方式
下面结合具体实施例对本发明做进一步阐述,但本发明不局限于这些实施例。
化合物制备实施例
下述制备实施例中,NMR用Varian生产的Mercury-Vx 300M仪器测定,NMR定标:δH 7.26ppm(CDCl3),2.50ppm(DMSO-d6),3.15ppm(CD3OD);试剂主要由上海化学试剂公司提供;TLC薄层层析硅胶板由山东烟台会友硅胶开发有限公司生产,型号HSGF 254;化合物纯化使用的正相柱层析硅胶为山东青岛海洋化工厂分厂生产,型号zcx-11,200-300 目。
制备实施例一(化合物编号2,6)
Figure PCTCN2016075391-appb-000019
把含有40.0g(0.266mol)(R)-香芹酮的40ml甲醇溶液冷至0℃,然后加入含有32.0g(0.57mol)KOH的40ml水和120ml甲醇混合溶液。所得混合液再冷至-5℃,随后加入30ml 30%H2O2,10分钟后,温度升至15℃,搅拌25分钟后,再冷至-3℃。补加35ml 30%H2O2,0℃下搅拌2.5小时。TLC监测反应完全,加入大量碎冰淬灭,乙酸乙酯萃取,饱和食盐水洗,干燥浓缩。粗品冰浴下加入1L1mol/l的氢氧化钠水溶液,加热回流1小时,冷至室温,低温下加入20%盐酸调pH至酸性,抽滤得到淡黄色固体为产物2-1(共29.8g, 67%):1H NMR(CDCl3,300MHz)δ4.83(dd,J=13.8,15.3Hz,2H),2.74-2.41(m,5H),1.74(s,3H),1.69(s,3H).
0℃下,化合物2-1(380mg,2.29mmol)的二氯甲烷溶液中加入三乙胺(302mg,2.98mmol),搅拌5分钟后加入三氟甲磺酸酐(0.50ml,2.98mmol)。0℃下搅拌1小时,TLC监测反应完全,随后加入石油醚/乙醚(v/v)=1/1快速柱层析纯化得到产物2-2(726mg,2.44mmol,定量):1H NMR(CDCl3,300MHz)δ4.87(s,1H),4.79(s,1H),2.79-2.36(m,5H),1.84(s,3H),1.75(s,3H);
化合物2-2溶于MeOH(2.0ml)和DMF(3.0ml)中,加入Pd(OAc)2(8.0mg,0.04mmol),PPh3(11.0mg,0.04mmol)和Et3N(0.15ml,1.02mmol),插上一氧化碳气球,回流过夜。次日冷至室温,乙酸乙酯稀释,水洗,饱和食盐水洗,干燥,浓缩,柱层析分离纯化(正己烷/乙酸乙酯(v/v)=25∶1)得到产物甲酯2-3透明油状物(50mg,0.24mmol,71%):1H NMR(CDCl3,300MHz)δ4.81(s,1H),4.75(s,1H),3.80(s,3H),2.72-2.30(m,5H),1.92(s,3H),1.79(s,3H).
二氧化硒(50mg,0.241mmol)溶于二氯甲烷中,滴加过氧叔丁醇(0.09ml,0.482mmol),冷至0℃,加入乙酸(0.002ml,0.0241mmol),大约30分钟后待二氧化硒完全溶解,随之加入化合物2-3的二氯甲烷溶液,升至室温搅拌36小时,原料几乎反应尽,加入乙酸乙酯稀释,10%氢氧化钾水溶液洗涤,饱和食盐水洗涤,干燥浓缩。柱层析分离(二氯甲烷∶甲醇(v/v)=50∶1)得到化合物2-4淡黄油状物为产物(8mg,14.87%)。1H NMR(d-DMSO,300MHz)δ5.18(s,1H),4.97(s,1H),4.15(s,2H),3.82(s,3H),2.83-2.37(m,5H),1.87(s,3H).
0℃下,向化合物2-4(400mg,1.78mmol)的四氢呋喃溶液中滴加BH3-Me2S(0.54ml,5.35mmol),然后升至室温,搅拌2h,再冷至0℃,加入1∶1的THF∶MeOH溶液20ml,随后加入30%H2O2(7.6ml)和3M NaOH的水溶液(17.7ml),升至室温搅拌2h,TLC检测原料反应尽,乙酸乙酯稀释,10%Na2SO3水溶液洗涤,饱和食盐水洗涤,干燥浓缩,柱层析分离(二氯甲烷∶甲醇(v/v)=10∶1)得到产物三羟基化合物2-5(180mg,41.31%)。1H NMR(CD3OD,300MHz)δ4.12(brs,1H),3.72(s,3H),3.74-3.62(m,4H),2.42(d,J=16.2Hz,1H),2.18-2.09(m,2H),1.99-1.83(m,1H),1.59-1.22(m,1H),1.32-1.24(m,1H).
化合物2-5(180mg,0.737mmol)溶于DMF中加入咪唑(302mg,4.43mmol),DMAP(cat.),搅拌5min后加入TBSCl(667mg,4.43mmol),混合物室温搅拌过夜。次日加入水淬灭,乙酸乙酯萃取。有机相用饱和食盐水洗,干燥浓缩。柱层析纯化(正己烷∶ 乙酸乙酯(v/v)=50∶1)得到化合物2-6(310mg,产率80%)1H NMR(CDCl3,300MHz)δ4.16(brs,1H),3.71(s,3H),3.68-3.56(m,4H),2.34(d,J=16.2Hz,1H),2.13-2.03(m,2H),2.01(s,3H),1.87-1.76(m,1H),1.63-1.41(m,1H),1.34(dd,J=8.7,18.9Hz,1H),0.88(s,27H),0.03(s,18H).
干冰丙酮浴下化合物2-6(310mg,0.529mmol)的THF溶液中滴加DIBAL-H(1.2ml,1.17mmol),滴毕后升至室温搅拌2h。TLC监测原料反应尽,加入饱和NaHCO3水溶液淬灭,混合物升至室温,抽滤,乙醚洗涤,滤液用饱和食盐水洗涤,无水硫酸钠干燥,浓缩,直接下一步。粗品溶于二氯甲烷中,0℃加入DMP(270mg,0.635mmol),升至室温搅拌1h。加入饱和硫代硫酸钠溶液/饱和碳酸氢钠溶液(v/v)=1/1淬灭,二氯甲烷萃取,饱和食盐水洗涤,浓缩,柱层析(正己烷/乙酸乙酯(v/v)=50/1),得到产物2-7(185mg,产率63%)。1H NMR(CDCl3,300MHz)δ10.14(s,1H),4.27(s,1H),3.76-3.58(m,4H),2.45(d,J=13.2Hz,1H),2.15(s,3H),1.89-1.08(m,5H),0.92(s,27H),0.03(s,18H).
碘代物267(311mg,1.16mmol)溶于干燥的THF中,冷至-30℃,滴加异丙基氯化镁(0.6ml,1.16mmol),此温下搅拌30分钟,随后加入化合物2-7(214mg,0.385mmol)的THF溶液,升温至室温搅拌30分钟,随后加入饱和氯化铵溶液淬灭。乙酸乙酯萃取,有机相用饱和食盐水洗涤,无水硫酸钠干燥,浓缩,直接下一步。粗品溶于二氯甲烷中,0℃加入DMP(245mg,0.580mmol),升至室温搅拌过夜。次日加入饱和硫代硫酸钠溶液/饱和碳酸氢钠溶液=1/1淬灭,二氯甲烷萃取,饱和食盐水洗涤,浓缩,柱层析纯化(正己烷/乙酸乙酯(v/v)=25/1),得到产物2-8(87mg,产率33%)。1H NMR(CDCl3,300MHz)δ4.21(brs,1H),3.72-3.56(m,4H),2.24(s,3H),2.14-1.86(m,4H),1.52-1.46(m,1H),1.41(q,J=13.3Hz,1H),0.94(s,27H),0.03(s,6H),0.02(s,12H).
化合物2-8(80mg,0.115mmol)溶于甲苯(2ml)和甲醇(0.5ml)中,反应混合物加热至外温80℃下回流过夜。次日浓缩柱层析分离(正己烷/乙酸乙酯(v/v)=10/1),得到产物2-9(77mg,产率99%)。1H NMR(CDCl3,300MHz)δ3.82(dd,J=4.8,11.1Hz,1H),3.79(s,3H),3.67-3.55(m,4H),2.46(dd,J=12.3,3.6Hz,1H),2.25(s,3H),2.07(d,J=14.2Hz,1H),1.82(d,J=13.8Hz,1H),1.63-1.1.47(m,2H),1.32(dd,J=12.9,24.6Hz,1H),1.19(s,3H),1.08(dd,J=12.6,26.1Hz,1H),0.90(s,9H),0.88(s,18H),0.11(s,3H),0.08(s,3H),0.02(s,12H).
向0℃下LHMDS(1ml,0.85mmol)的THF溶液中滴加化合物2-9(57mg,0.085mmol)的THF溶液,升至室温搅拌4h,快速加热烟酰氯盐酸盐,室温搅拌2h。TLC检测原料反应彻底,加入2ml乙酸淬灭,10ml水稀释,二氯甲烷萃取,无水硫酸钠干燥,浓缩。 柱层析纯化(正己烷/丙酮(v/v)=3/1),得到产物2-10黄色固体(30mg,产率47.4%)。1H NMR(CDCl3,300MHz)δ9.04(s,1H),8.73(d,J=3.3Hz,1H),8.17(d,J=8.1Hz,1H),7.44(dd,J=4.8,8.1Hz,1H),6.48(s,1H),3.93(dd,J=4.8,11.4Hz,1H),3.69-3.58(m,4H),2.61(dd,J=3.6,12.3Hz,1H),2.19(d,J=14.1Hz,1H),1.87(d,J=12.9Hz,1H),1.68-1.63(m,1H),1.54(dd,J=5.7,11.1Hz,1H),1.39(dd,J=12.9,24.6Hz,1H),1.29(s,3H),1.27-1.18(m,1H),0.87(s,27H),0.18(s,6H),0.13(s,6H).
乙酰氯(13μl,0.175mmol)滴加到0.1ml甲醇中,混合物在室温搅拌5分钟,随后加入化合物2-10(13mg,0.018mmol)的甲醇溶液,室温下搅拌1小时。浓缩,直接下一步。粗品溶于二氯甲烷中,加入催化量DMAP,三乙胺(25μl,0.175mmol),乙酸酐(9μl,0.09mmol),室温搅拌半小时。TLC监测反应完全,加入水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩直接下一步。
粗品2(10mg,0.019mmol)和七水氯化亚铈(50mg,0.133mmol)溶于甲醇中,冷至-78℃小心加入硼氢化钠(5.1mg,0.133mmol),混合物搅拌30分钟原料消失。加入丙酮淬灭,乙酸乙酯稀释,有机相用水洗,饱和食盐水洗,干燥,浓缩,柱层析(二氯甲烷/甲醇(v/v)=25/1)分离纯化,得到淡黄固体为最终产物6(9mg,90%):1H NMR(CDCl3,300MHz)δ9.25(s,1H),8.87(s,1H),8.63(s,1H),7.92(s,1H),6.84(s,1H),5.08-5.04(m,1H),4.45(d,J=10.2Hz,1H),4.17-4.06(m,4H),2.47-1.30(m,7H),2.09(s,3H),2.07(s,3H),2.02(s,3H),1.24(s,3H).
制备实施例二(化合物编号7)
Figure PCTCN2016075391-appb-000020
由制备实施例一得到的化合物7-1(3.298g,15.84mmol)出发,和七水氯化亚铈(8.86g,23.76mmol)溶于甲醇中,冷至0℃小心加入硼氢化钠(899mg,23.76mmol),混合物搅拌30分钟原料消失。加入丙酮淬灭,乙酸乙酯稀释,有机相用水洗,饱和食盐水洗,干燥,浓缩,柱层析(石油醚/乙酸乙酯(v/v)=10/1)分离纯化,得到透明油状物为产物7-2(3.28g,99%):1H NMR(CDCl3,300MHz)δ4.75(dd,J=1.2,5.7Hz,2H),3.75(brs,1H),3.71(s,3H),2.45(brd,J=14.4Hz,1H),2.30-2.11(m,3H),2.03(s,3H),1.68(s,3H),1.52(td,J=12, 9.9Hz,1H).化合物12(2.35g,11.17mmol)溶于DMF中加入咪唑(1.60g,22.34mmol),DMAP(cat.),搅拌5min后加入TBSCl(3.40g,22.34mmol),混合物室温搅拌过夜。次日加入水淬灭,乙酸乙酯萃取。有机相用饱和食盐水洗,干燥浓缩。柱层析纯化(石油醚∶乙酸乙酯(v/v)=50∶1)得到化合物7-3透明油状物。(3.55g,产率98%)1H NMR(CDCl3,300MHz)δ4.74(s,2H),4.24(brs,1H),3.72(s,3H),2.41(brd,J=14.1Hz,1H),2.23-2.02(m,3H),1.98(s,3H),1.68(s,3H),1.52(td,J=12.3,10.2Hz,1H),0.90(s,9H),0.10(s,3H),0.09(s,3H).
干冰丙酮浴下化合物7-3(3.55g,10.94mmol)的THF溶液中滴加DIBAL-H(24.10ml,24.10mmol),滴毕后升至室温搅拌2h。TLC监测原料反应尽,加入饱和NaHCO3水溶液淬灭,混合物升至室温,抽滤,乙醚洗涤,滤液用饱和食盐水洗涤,无水硫酸钠干燥,浓缩,直接下一步。粗品溶于二氯甲烷中,0℃加入DMP(5.60g,13.20mmol),升至室温搅拌1h。加入饱和硫代硫酸钠溶液/饱和碳酸氢钠溶液(v/v)=1/1淬灭,二氯甲烷萃取,饱和食盐水洗涤,浓缩,柱层析(正己烷/乙酸乙酯(v/v)=50/1),得到产物7-4(2.928g,产率91%)。1H NMR(CDCl3,300MHz)δ10.18(s,1H),4.75(s,2H),4.34(brs,1H),2.52(brd,J=15.3Hz),2.16(s,3H),2.12-1.83(m,3H),1.75(s,3H),1.52(td,J=12.6,10.2Hz,1H),0.93(s,9H),0.14(s,3H),0.12(s,3H).
碘代物267(656mg,2.45mmol)溶于干燥的THF中,冷至-30℃,滴加2M异丙基氯化镁的THF溶液(1.5ml,2.45mmol),此温下搅拌30分钟,随后加入化合物7-4(240mg,0.82mmol)的THF溶液,升温至室温搅拌30分钟,随后加入饱和氯化铵溶液淬灭。乙酸乙酯萃取,有机相用饱和食盐水洗涤,无水硫酸钠干燥,浓缩,直接下一步。粗品7-5溶于二氯甲烷中,,0℃加入DMP(519mg,1.23mmol),升至室温搅拌过夜。次日加入饱和硫代硫酸钠溶液/饱和碳酸氢钠溶液(v/v)=1/1淬灭,二氯甲烷萃取,饱和食盐水洗涤,浓缩,柱层析纯化(正己烷/乙酸乙酯(v/v)=25/1),得到产物7-6(157mg,两步产率45%)。1H NMR(CDCl3,300MHz)δ4.73(s,2H),4.29(s,1H),2.36(dt,J=7.8,1.8Hz,1H),2.30(s,3H),2.26-1.97(m,3H),1.72(s,6H),1.68(s,6H),1.58(td,J=12.6,10.2Hz,1H),0.88(s,9H),0.08(s,6H).
化合物7-6(1.50g,3.46mmol)溶于甲苯(60.0ml)和甲醇(15.0ml)中,反应混合物加热至外温80℃下回流过夜。次日浓缩柱层析分离(正己烷/乙酸乙酯(v/v)=10/1),得到产物7-7(黄色油状物,1.21g,产率86%)。1H NMR(CDCl3,300MHz)δ4.71(s,2H),3.88(dd,J=6.0,12.0Hz,1H),3.75(s,3H),2.52(dd,J=3.0,12.0Hz,1H),2.20(s,3H),2.15-1.99(m,3H),1.80-1.74(m,1H),1.69(s,3H),1.36(td,J=12.6,10.2Hz,1H),1.19(s, 3H),0.88(s,9H),0.09(s,3H),0.07(s,3H).
向0℃下1M的LHMDS(2.00ml,2.00mmol)THF溶液中滴加化合物7-7(78.00mg,0.19mmol)的THF溶液,升至室温搅拌4h,快速加热烟酰氯盐酸盐,室温搅拌2h。TLC检测原料反应彻底,加入乙酸淬灭,水稀释,二氯甲烷萃取,无水硫酸钠干燥,浓缩。柱层析纯化(正己烷/丙酮(v/v)=3/1),得到重要中间体7-8白色固体(41.00mg,两步产率45%)。1H NMR(CDCl3,300MHz)δ9.06(d,J=1.2Hz,1H),8.75(d,J=3.6Hz,1H),8.19(d,J=8.4Hz,1H),7.45(dd,J=4.8,8.1Hz,1H),6.50(s,1H),4.89(s,2H),4.03(dd,J=10.8,4.8Hz,1H),2.71(dd,J=12.3,3.6Hz,1H),2.28(d,J=13.5Hz,1H),2.13(t,J=12.9Hz,1H),1.88(d,J=13.8Hz,1H),1.76(s,3H),1.44(q,J=12.9Hz,1H),1.34(s,3H),1.31-1.23(m,1H),0.96(s,9H),0.07(s,3H),0.04(s,3H).
化合物7-8(134mg,0.279mmol)溶于冰醋酸(7.4ml)和水(0.03ml)中,加入醋酸银(100mg,0.594mmol)和碘(83mg,0.327mmol),室温搅拌过夜。次日加入水,乙酸乙酯萃取,有机相用饱和食盐水洗涤,浓缩抽干,柱层析分离(二氯甲烷/甲醇(v/v)=25/1),得到化合物7-9,包含一对非对映异构体7-9-a(33mg)和7-9-b(44mg)。7-9-a:1H NMR(CDCl3,400MHz)δ9.03(d,J=2.8Hz,1H),8.73(d,J=4.8Hz,1H),8.16(dd,J=2.8,10.4Hz,1H),7.44(dd,J=6.8,11.2Hz,1H),6.44(s,1H),4.08(dd,J=12.0,32.0Hz,2H),4.00(dd,J=4.0,8.0Hz,1H),2.68(dd,J=4.0,16.0Hz,1H),2.21(d,J=16.0Hz,1H),2.11(s,3H),2.01(d,J=12.0Hz,1H),1.72(t,J=12.0Hz,1H),1.37(dd,J=12.0,24.0Hz,1H),1.31(s,3H),1.20(s,3H),1.15(dd,J=8.0,24.0Hz,1H),0.95(s,9H),0.19(s,3H),0.14(s,3H).
7-9-b:1H NMR(CDCl3,400MHz)δ9.05(s,1H),8.75(d,J=4.0Hz,1H),8.18(d,J=8.0Hz,1H),7.45(dd,J=4.0,8.0Hz,1H),6.43(s,1H),4.07(dd,J=12.0,32.0Hz,2H),3.98(dd,J=4.0,8.0Hz,1H),2.66(dd,J=4.0,16.0Hz,1H),2.36(d,J=16.0Hz,1H),2.12(s,3H),1.89(d,J=12.0Hz,1H),1.70(t,J=12.0Hz,1H),1.37-1.26(m,2H),1.32(s,3H),1.22(s,3H),0.95(s,9H),0.19(s,3H),0.14(s,3H).
乙酰氯(0.06ml,0.6mmol)滴加到0.7ml甲醇中,混合物在室温搅拌5分钟,随后加入化合物7-9(33mg,0.060mmol)的甲醇溶液,室温下搅拌1小时。浓缩,直接下一步。粗品溶于二氯甲烷中,加入催化量DMAP,三乙胺(0.09ml,0.60mmol),乙酸酐(0.04ml,0.30mmol),室温搅拌过夜。TLC监测反应完全,加入水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩,柱层析分离纯化(二氯甲烷/甲醇(v/v)=50/1)得到化合物黄色固体7-10(产率80%),由于上一步7-9分为7-9-a和7-9-b,得到相对应7-10-a和7-10-b。
7-10-a:1H NMR(CDCl3,400MHz)δ9.11(s,1H),8.79(s,1H),8.22(d,J=8.0Hz,1H), 7.48(s,1H),6.55(s,1H),5.33(dd,J=4.0,8.0Hz,1H),4.47(dd,J=12.0,100.0Hz,2H),2.82(dd,J=4.0,8.0Hz,1H),2.23-1.86(m,3H),2.22(s,3H),2.11(s,3H),2.05(s,3H),1.59-1.29(m,2H),1.52(s,3H),1.45(s,3H).
7-10-b:1H NMR(CDCl3,400MHz)δ9.08(s,1H),8.76(d,J=4.0Hz,1H),8.19(d,J=4.0Hz,1H),7.46(dd,J=4.0,8.0Hz,1H),6.55(s,1H),5.29(dd,J=4.0,8.0Hz,1H),4.44(dd,J=8.0,48.0Hz,2H),2.79(dd,J=4.0,8.0Hz,1H),2.38-1.97(m,3H),2.19(s,3H),2.10(s,3H),2.03(s,3H),1.57-1.28(m,2H),1.47(s,3H),1.43(s,3H).
化合物7-10(11mg,0.021mmol)和七水氯化亚铈(55mg,0.147mmol)溶于甲醇中,冷至-78℃小心加入硼氢化钠(5.6mg,0.147mmol),混合物搅拌30分钟原料消失。加入丙酮淬灭,乙酸乙酯稀释,有机相用水洗,饱和食盐水洗,干燥,浓缩,柱层析(二氯甲烷/甲醇=50/1)分离纯化,得到淡黄固体为最终产物7(8.5mg,产率78%):1HNMR(CDCl3,400MHz)δ9.01(d,J=4.0Hz,1H),8.69(dd,J=4.0,8.0Hz,1H),8.09(td,J=4.0,8.0Hz,1H),7.41(dd,J=4.0,8.0Hz,1H),6.49(s,1H),5.08(dd,J=4.0,8.0Hz,1H),4.56-4.34(m,3H),2.34-1.99(m,2H),2.17(s,3H),2.07(s,3H),1.99(s,3H),1.89(t,J=12.0Hz,1H),1.58-1.51(m,1H),1.48(s,3H),1.30(s,3H),1.13(dd,J=12.0,24.0Hz,1H).
制备实施例三(化合物编号1,4,5)
Figure PCTCN2016075391-appb-000021
由制备实施例二得到的化合物7-8(28mg,0.059mmol)出发,溶于MeOH中,向其中滴加乙酰氯(44μl,0.58mmol),混合物在室温搅拌1小时。浓缩,直接下一步。粗品溶于二氯甲烷中,加入催化量DMAP,三乙胺(85μl,0.59mmol),乙酸酐(30μl,0.295mmol),室温搅拌30分钟。TLC监测反应完全,加入水淬灭,乙酸乙酯萃取,有机相用 无水硫酸钠干燥,浓缩,柱层析分离纯化(二氯甲烷/甲醇(v/v)=50/1)得到化合物黄色固体1(产率80%):1HNMR(CDCl3,300MHz)δ9.06(s,1H),8.74(s,1H),8.17(d,J=8.1Hz,1H),7.44(s,1H),6.54(s,1H),5.29(dd,J=5.4,6.6Hz,1H),2.99(t,J=3.9Hz,1H),2.83-2.74(m,1H),2.46(d,J=12.6Hz,1H),2.30-1.98(m,2H),1.80-1.69(m,1H),2.17(s,3H),1.63(s,3H),1.60(s,3H),1.32(s,3H).
按照化合物1制备实施例二中的合成方法得到化合物4(黄色固体,产率80%):1HNMR(CDCl3,300MHz)δ8.99(s,1H),8.68(s,1H),8.09(d,J=8.1Hz,1H),7.40(t,J=7.5Hz,1H),6.49(s,1H),5.06(d,J=4.5Hz,1H),4.47(d,J=9.9Hz,1H),2.47(d,J=13.8Hz,1H),2.40-1.72(m,5H),2.22(s,3H),1.68(s,3H),1.66(s,3H),1.24(s,3H).
化合物4(5.0mg,0.012mmol)和无水醋酸锌(5mg,0.024mmol)溶于冰醋酸中,加热至80℃过夜。次日用乙酸乙酯稀释,有机相依次用水洗,饱和食盐水洗涤,干燥浓缩,薄层层析分离(二氯甲烷/甲醇=25/1)得到产物5(淡黄色固体,产率40%):1HNMR(CDCl3,300MHz)δ9.01(s,1H),8.69(s,1H),8.10(d,J=8.1Hz,1H),7.41(s,1H),6.49(s,1H),5.05(d,J=4.8Hz,1H),4.44(d,J=5.1Hz,1H),2.36(d,J=10.2Hz,1H),2.26(s,3H),2.04(s,3H),2.17-0.85(m,5H),1.50(s,3H),1.49(s,3H),1.28(s,3H).
制备实施例四(化合物编号13,14)
Figure PCTCN2016075391-appb-000022
乙酰氯(0.07ml,0.951mmol)滴加到0.4ml甲醇中,混合物在室温搅拌5分钟,随后加入化合物7-9(57mg,0.096mmol)的甲醇溶液,室温下搅拌1小时。浓缩,抽干,直接下一步。粗品,对氰基苯甲酸,EDC·HCl,催化量DMAP溶于二氯甲烷中,室温搅拌过夜。次日TLC显示原料反应完全,加入水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩,柱层析分离纯化(二氯甲烷/甲醇(v/v)=50/1)得到化合物14(5mg,产率10%):1HNMR(CDCl3,300MHz)δ8.94(s,1H),8.58(d,J=3.3Hz,1H),8.12(d,J=7.8Hz,2H),8.06(d,J=5.4Hz,1H),7.66(d,J=8.4Hz,2H),7.40(dd,J=4.8,7.8Hz,1H),6.73(s,1H),4.24(s,2H),3.95(s,1H),3.54(s,1H),2.64(d,J=12.0Hz,1H),1.97-1.40(m,4H),1.39(s,3H),1.27(s,3H).和13(16mg,产率32%):1HNMR(CDCl3,300MHz)δ9.01(s,1H),8.73(s,1H),8.26-8.11(m,5H),7.83-7.77(m,4H),7.43(dd,J=8.1,12.9Hz,1H),6.48(s,1H), 5.72-5.68(m,1H),4.52-4.26(m,2H),2.90-2.83(m,1H),2.40-1.09(m,5H),1.64(s,3H),1.31(s,3H).
用同样方法合成以下化合物:
将制备实施例四中的化合物7-9替换为7-8,制备得到化合物11;
将制备实施例二中的化合物7-10替换为11,制备得到化合物12。
Figure PCTCN2016075391-appb-000023
制备实施例五(化合物编号8,9,10)
Figure PCTCN2016075391-appb-000024
由实施例五中得到的11(30mg,0.061mmol)溶于冰醋酸(1.5ml)和水(5.9μl)中,加入醋酸银(21mg,0.121mmol)和碘(17mg,0.665mmol),室温搅拌过夜。次日加入水,乙酸乙酯萃取,有机相用饱和食盐水洗涤,浓缩抽干,柱层析分离(二氯甲烷/甲醇(v/v)=25/1),得到化合物9-1,包含一对非对映异构体共16mg(产率46.3%)。9-1-a:1H NMR(CDCl3,400MHz)δ9.014(s,1H),8.72(d,J=4.8Hz,1H),8.19(d,J=8.1Hz,2H),8.15(d,J=7.8Hz,1H),7.80(d,J=8.7Hz,2H),7.42(dd,J=4.5,8.1Hz,1H),6.53(s,1H),5.57(dd,J=5.4,12.3Hz,1H),4.15(s,2H),2.86(d,J=9.0Hz,1H),2.33(d,J=4.5Hz,1H),2.19(s,3H),2.08-1.68(m,3H),1.64(s,3H),1.33(dd,J=8.1,21.6Hz,1H),1.24(s,3H).
9-1-b:1H NMR(CDCl3,400MHz)δ9.014(s,1H),8.72(d,J=4.8Hz,1H),8.19(d,J=8.1Hz,2H),8.15(d,J=7.8Hz,1H),7.80(d,J=8.7Hz,2H),7.42(dd,J=4.5,8.1Hz,1H),6.53(s,1H),5.57(dd,J=5.4,12.3Hz,1H),4.15(s,2H),2.86(d,J=9.0Hz,1H),2.45(d,J=13.5Hz,1H),2.19(s,3H),2.08-1.68(m,3H),1.64(s,3H),1.39(dd,J=12.9,27.0Hz,1H),1.24(s,3H).
化合物9-1(16mg,0.028mmol)出发,溶于二氯甲烷中,加入DMAP(cat.),滴加三乙胺(0.03ml,0.168mmol),再滴加乙酸酐(0.02ml,0.084mmol),室温搅拌过夜。次日,加入水淬灭,二氯甲烷萃取,浓缩,柱层析分离(二氯甲烷/甲醇(v/v)=50/1),得到化合物9(4.0mg,产率23.3%):1HNMR(CDCl3,300MHz)δ9.01(s,1H),8.74(s,1H),8.21-8.12(m,3H),7.80(t,J=8.4Hz,2H),7.43(dd,J=6.6,13.8Hz,1H),6.48(s,1H),5.58-5.53(m,1H),4.60-4.32(m,2H),2.87(d,J=9.3Hz,1H),2.43-2.22(m,3H),2.19(s,3H),2.10(s,3H),1.56-1.13(m,2H),1.45(s,3H),1.35(s,3H).和8(4.0mg,产率23.3%):1HNMR(CDCl3,300MHz)δ8.92(d,J=2.1Hz,1H),8.65(d,J=4.8Hz,1H),8.20(dd,J= 2.1,8.4Hz,2H),8.02(d,J=8.1Hz,1H),7.81(d,J=8.4Hz,2H),7.35(dd,J=5.1,8.4Hz,1H),6.37(s,1H),5.67(s,1H),4.59-4.36(m,2H),3.25-3.23(m,1H),2.80-2.66(m,1H),2.33(s,3H),2.32-1.66(m,2H),2.07(s,3H),1.99(s,3H),1.52(s,3H),1.47(s,3H),1.11-0.96(m,1H).
按照化合物7制备实施例二中的合成方法得到化合物10(产率80%):1HNMR(CDCl3,300MHz)δ8.93(s,1H),8.64(s,1H),8.21-8.12(m,3H),7.80(t,J=8.4Hz,2H),7.43(dd,J=6.6,13.8Hz,1H),6.43(s,1H),5.38-5.27(m,1H),4.58-4.32(m,3H),2.62-1.57(m,5H),2.19(s,3H),2.10(s,3H),1.45(s,3H),1.35(s,3H),0.92-0.85(m,1H).
制备实施例六(手性化合物的合成:化合物编号15-22)
Figure PCTCN2016075391-appb-000025
从天然来源易得的原料(R)-香芹酮(10.0g,66.6mmol)出发,和L-脯氨酸的锂盐 (810mg,6.66mmol)放入圆底烧瓶中,再缓慢加入TMSCN(8.86ml*2,66.6mmol*2),所得悬浮液室温搅拌12小时后,再补加1eqTMSCN,混合物再在室温搅拌12小时。TLC显示原料几乎反应尽,加入100ml THF稀释,和100ml 1M盐酸,室温搅拌1小时,随后加入水稀释,乙醚萃取,有机相用饱和食盐水洗涤,无水硫酸钠干燥,浓缩后得到中间体177,直接下一步。三氧化铬(13.9g,139.2mmol)缓慢加入到乙酸酐(54ml)中,混合物室温搅拌至完全溶解,随后把所得的铬酸试剂滴加到中间体177的-55℃的二氯甲烷溶液中,保持此温度下搅拌半小时。TLC显示原料反应尽,加入甲醇淬灭,水稀释,二氯甲烷萃取,有机相用饱和碳酸氢钠水溶液洗涤,浓缩。柱层析分离(石油醚/乙酸乙酯(v/v)=10/1),得到产物黄色油状物15-1(7.59g,两步产率65%):1H NMR(CDCl3,300MHz)δ4.87(s,1H),4.77(s,1H),2.78-2.32(m,5H),2.06(s,3H),1.68(s,3H).
化合物15-1(9.64g,55.02mmol)和七水氯化亚铈(20.5g,55.02mmol)溶于甲醇中,冷至冰水浴中,小心加入硼氢化钠(2.1g,55.02mmol),混合物搅拌30分钟原料消失。加入丙酮淬灭,乙酸乙酯稀释,有机相用水洗,饱和食盐水洗,干燥,浓缩,柱层析(石油醚/乙酸乙酯(v/v)=10/1)分离纯化,得到无色透明油状物为产物15-2(11.14g,产率99%):1H NMR(CDCl3,300MHz)δ4.77(s,1H),4.72(s,1H),4.19(d,J=5.7Hz,1H),2.73(d,J=7.2Hz,1H),2.30-2.08(m,4H),2.06(s,3H),1.71(s,3H),1.49(dd,J=12.6,22.8Hz,1H).化合物24(11.14g,62.86mmol)溶于DMF中加入咪唑(8.60g,125.71mmol),DMAP(cat.),搅拌5min后加入TBSCl(18.95g,125.71mmol),混合物室温搅拌过夜。次日加入水淬灭,乙酸乙酯萃取。有机相用饱和食盐水洗,干燥浓缩。柱层析纯化(石油醚∶乙酸乙酯(v/v)=25∶1)得到化合物15-3无色透明油状物(产率98%):1H NMR(CDCl3,300MHz)δ4.75(s,1H),4.71(s,1H),4.24(brs,1H),2.30-2.01(m,4H),1.99(s,3H),1.69(s,3H),1.49(dd,J=12.6,22.8Hz,1H),0.88(s,9H),0.09(s,3H),0.07(s,3H).
干冰丙酮浴下化合物15-3(3.55g,10.94mmol)的THF溶液中滴加DIBAL-H(24.10ml,24.10mmol),滴毕后升至室温搅拌2h。TLC监测原料反应尽,加入饱和酒石酸钠钾水溶液淬灭,混合物升至室温搅拌,二氯甲烷萃取,无水硫酸钠干燥,浓缩,柱层析分离(石油醚/乙酸乙酯(v/v)=25/1)得到产物黄色油状物15-4(14.75g,产率90%):1H NMR(CDCl3,300MHz)δ10.15(s,1H),4.71(s,2H),4.34(brs,1H),2.51(d,J=14.4Hz,1H),2.16(s,3H),2.11-1.84(m,3H),1.74(s,3H),1.49(dd,J=12.6,22.8Hz,1H),0.90(s,9H),0.14(s,3H),0.12(s,3H).
碘代物267(656mg,2.45mmol)溶于干燥的THF中,冷至-30℃,滴加2M异丙基 氯化镁的THF溶液(1.5ml,2.45mmol),此温下搅拌30分钟,随后加入化合物15-4(240mg,0.82mmol)的THF溶液,升温至室温搅拌30分钟,随后加入饱和氯化铵溶液淬灭。乙酸乙酯萃取,有机相用饱和食盐水洗涤,无水硫酸钠干燥,浓缩,直接下一步。粗品15-5溶于二氯甲烷中,,0℃加入DMP(519mg,1.23mmol),升至室温搅拌过夜。次日加入饱和硫代硫酸钠溶液/饱和碳酸氢钠溶液=1/1淬灭,二氯甲烷萃取,饱和食盐水洗涤,浓缩,柱层析纯化(石油醚/乙酸乙酯(v/v)=25/1),得到产物15-6(157mg,两步产率45%)。1H NMR(CDCl3,300MHz)δ4.73(s,2H),4.29(s,1H),2.36(dt,J=7.8,1.8Hz,1H),2.30(s,3H),2.26-1.97(m,3H),1.72(s,6H),1.68(s,6H),1.58(td,J=12.6,10.2Hz,1H),0.88(s,9H),0.08(s,6H).
化合物15-6(1.50g,3.46mmol)溶于甲苯(60.0ml)和甲醇(15.0ml)中,反应混合物加热至外温80℃下回流过夜。次日浓缩柱层析分离(石油醚/乙酸乙酯(v/v)=10/1),得到产物15-7(黄色油状物,1.21g,产率86%)。1H NMR(CDCl3,300MHz)δ4.71(s,2H),3.88(dd,J=6.0,12.0Hz,1H),3.75(s,3H),2.52(dd,J=3.0,12.0Hz,1H),2.20(s,3H),2.15-1.99(m,3H),1.80-1.74(m,1H),1.69(s,3H),1.36(td,J=12.6,10.2Hz,1H),1.19(s,3H),0.88(s,9H),0.09(s,3H),0.07(s,3H).
向0℃下1M的LHMDS(2.00ml,2.00mmol)THF溶液中滴加化合物15-7(78.00mg,0.19mmol)的THF溶液,升至室温搅拌4h,快速加热烟酰氯盐酸盐,室温搅拌2h。TLC检测原料反应彻底,加入乙酸淬灭,水稀释,二氯甲烷萃取,无水硫酸钠干燥,浓缩。柱层析纯化(石油醚/丙酮(v/v)=3/1),得到重要中间体15-8白色固体(41.00mg,两步产率45%)。1H NMR(CDCl3,300MHz)δ9.06(d,J=1.2Hz,1H),8.75(d,J=3.6Hz,1H),8.19(d,J=8.4Hz,1H),7.45(dd,J=4.8,8.1Hz,1H),6.50(s,1H),4.89(s,2H),4.03(dd,J=10.8,4.8Hz,1H),2.71(dd,J=12.3,3.6Hz,1H),2.28(d,J=13.5Hz,1H),2.13(t,J=12.9Hz,1H),1.88(d,J=13.8Hz,1H),1.76(s,3H),1.44(q,J=12.9Hz,1H),1.34(s,3H),1.31-1.23(m,1H),0.96(s,9H),0.07(s,3H),0.04(s,3H).
化合物15-8(134mg,0.279mmol)溶于冰醋酸(7.4ml)和水(0.03ml)中,加入醋酸银(100mg,0.594mmol)和碘(83mg,0.327mmol),室温搅拌过夜。次日加入水,乙酸乙酯萃取,有机相用饱和食盐水洗涤,浓缩抽干,柱层析分离(二氯甲烷/甲醇(v/v)=25/1),得到化合物15-9,包含一对非对映异构体15-9-a(33mg)和15-9-b(44mg)。15-9-a:1H NMR(CDCl3,400MHz)δ9.03(d,J=2.8Hz,1H),8.73(d,J=4.8Hz,1H),8.16(dd,J=2.8,10.4Hz,1H),7.44(dd,J=6.8,11.2Hz,1H),6.44(s,1H),4.08(dd,J=12.0,32.0Hz,2H),4.00(dd,J=4.0,8.0Hz,1H),2.68(dd,J=4.0,16.0Hz,1H),2.21(d,J=16.0Hz,1H), 2.11(s,3H),2.01(d,J=12.0Hz,1H),1.72(t,J=12.0Hz,1H),1.37(dd,J=12.0,24.0Hz,1H),1.31(s,3H),1.20(s,3H),1.15(dd,J=8.0,24.0Hz,1H),0.95(s,9H),0.19(s,3H),0.14(s,3H).
15-9-b:1H NMR(CDCl3,400MHz)δ9.05(s,1H),8.75(d,J=4.0Hz,1H),8.18(d,J=8.0Hz,1H),7.45(dd,J=4.0,8.0Hz,1H),6.43(s,1H),4.07(dd,J=12.0,32.0Hz,2H),3.98(dd,J=4.0,8.0Hz,1H),2.66(dd,J=4.0,16.0Hz,1H),2.36(d,J=16.0Hz,1H),2.12(s,3H),1.89(d,J=12.0Hz,1H),1.70(t,J=12.0Hz,1H),1.37-1.26(m,2H),1.32(s,3H),1.22(s,3H),0.95(s,9H),0.19(s,3H),0.14(s,3H).
乙酰氯(0.06ml,0.6mmol)滴加到0.7ml甲醇中,混合物在室温搅拌5分钟,随后加入化合物15-9(33mg,0.060mmol)的甲醇溶液,室温下搅拌1小时。浓缩,直接下一步。粗品溶于二氯甲烷中,加入催化量DMAP,三乙胺(0.09ml,0.60mmol),乙酸酐(0.04ml,0.30mmol),室温搅拌过夜。TLC监测反应完全,加入水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩,柱层析分离纯化(二氯甲烷/甲醇(v/v)=50/1)得到化合物黄色固体15-10(产率80%),由于上一步15-9分为15-9-a和15-9-b,得到相对应15-10-a,15-10-a’和15-10-b,15-10-b’。
15-10-a:1H NMR(CDCl3,400MHz)δ9.11(s,1H),8.79(s,1H),8.22(d,J=8.0Hz,1H),7.48(s,1H),6.55(s,1H),5.33(dd,J=4.0,8.0Hz,1H),4.47(dd,J=12.0,100.0Hz,2H),2.82(dd,J=4.0,8.0Hz,1H),2.23-1.86(m,3H),2.22(s,3H),2.11(s,3H),2.05(s,3H),1.59-1.29(m,2H),1.52(s,3H),1.45(s,3H).
15-10-a’:1H NMR(CDCl3,300MHz)δ9.02(d,J=1.8Hz,1H),8.72(d,J=4.5Hz,1H),8.16(td,J=1.5,7.8Hz,1H),7.42(dd,J=5.1,8.4Hz,1H),6.55(s,1H),5.38(dd,J=5.1,11.7Hz,1H),4.43(s,2H),2.98(s,1H),2.62(d,J=13.5Hz,1H),2.50-1.12(m,4H),2.30(s,3H),2.23(s,3H),2.14(s,3H),1.66(s,3H),1.49(s,3H).
15-10-b:1H NMR(CDCl3,400MHz)δ9.08(s,1H),8.76(d,J=4.0Hz,1H),8.19(d,J=4.0Hz,1H),7.46(dd,J=4.0,8.0Hz,1H),6.55(s,1H),5.29(dd,J=4.0,8.0Hz,1H),4.44(dd,J=8.0,48.0Hz,2H),2.79(dd,J=4.0,8.0Hz,1H),2.38-1.97(m,3H),2.19(s,3H),2.10(s,3H),2.03(s,3H),1.57-1.28(m,2H),1.47(s,3H),1.43(s,3H).
15-10-b’:1H NMR(CDCl3,300MHz)δ9.02(d,J=1.8Hz,1H),8.72(d,J=4.5Hz,1H),8.16(td,J=1.5,7.8Hz,1H),7.42(dd,J=5.1,8.4Hz,1H),6.55(s,1H),5.38(dd,J=5.1,11.7Hz,1H),4.41(dd,J=11.7,67.2Hz,2H),2.98(s,1H),2.62(d,J=13.5Hz,1H),2.50-1.12(m,4H),2.30(s,3H),2.23(s,3H),2.14(s,3H),1.66(s,3H),1.49(s,3H).
化合物15-10(11mg,0.021mmol)(依次15-10-a,15-10-a’,15-10-b,15-10-b’)和七水氯化亚铈(55mg,0.147mmol)溶于甲醇中,冷至-78℃小心加入硼氢化钠(5.6mg,0.147mmol),混合物搅拌30分钟原料消失。加入丙酮淬灭,乙酸乙酯稀释,有机相用水洗,饱和食盐水洗,干燥,浓缩,柱层析(二氯甲烷/甲醇(v/v)=50/1)分离纯化,得到淡黄固体为最终产物15(8.5mg,产率78%):1HNMR(CDCl3,300MHz)δ9.01(s,1H),8.69(d,J=4.8Hz,1H),8.09(dd,J=1.8,8.1Hz,1H),7.39(dd,J=4.8,8.1Hz,1H),6.49(s,1H),5.08(dd,J=4.8,12.0Hz,1H),4.56-4.34(m,4H),2.34-1.99(m,2H),2.17(s,3H),2.07(s,3H),1.99(s,3H),1.89(t,J=12.0Hz,1H),1.58-1.51(m,1H),1.48(s,3H),1.30(s,3H),1.13(dd,J=13.2,26.1Hz,1H).
和16:1HNMR(CDCl3,300MHz)δ8.97(s,1H),8.67(dd,J=1.2,4.5Hz,1H),8.09(td,J=1.8,7.8Hz,1H),7.39(dd,J=4.8,8.1Hz,1H),6.39(s,1H),5.04(dd,J=4.8,12.0Hz,1H),4.78(d,J=9.6Hz,1H),4.45(dd,J=12.3,70.5Hz,2H),2.59-1.24(m,6H),2.22(s,3H),2.08(s,3H),1.92(s,3H),1.63(s,3H),1.50(s,3H).
和17:1HNMR(CDCl3,300MHz)δ9.00(d,J=2.1Hz,1H),8.68(dd,J=0.9,4.5Hz,1H),8.09(td,J=1.5,8.4Hz,1H),7.40(dd,J=4.8,8.1Hz,1H),6.49(s,1H),5.06(dd,J=5.1,12.3Hz,1H),4.52-4.32(m,4H),2.39-2.23(m,2H),2.16(s,3H),2.03(s,3H),1.99(s,3H),2.02-1.85(m,2H),1.54-1.15(m,2H),1.48(s,3H),1.24(s,3H).
和18:1HNMR(CDCl3,300MHz)δ8.97(s,1H),8.67(dd,J=1.2,4.5Hz,1H),8.09(td,J=1.8,7.8Hz,1H),7.39(dd,J=4.8,8.1Hz,1H),6.39(s,1H),5.03(dd,J=4.8,12.0Hz,1H),4.76(d,J=9.6Hz,1H),4.51-4.34(m,3H),2.59-1.24(m,6H),2.19(s,3H),2.11(s,3H),2.03(s,3H),1.56(s,3H),1.49(s,3H).
用同样方法合成以下化合物:
将制备实施例六中的化合物R-香芹酮替换为S-香芹酮,制备得到化合物19;
将制备实施例六中的化合物R-香芹酮替换为S-香芹酮,制备得到化合物20;
将制备实施例六中的化合物R-香芹酮替换为S-香芹酮,制备得到化合物21;
将制备实施例六中的化合物R-香芹酮替换为S-香芹酮,制备得到化合物22。
Figure PCTCN2016075391-appb-000026
Figure PCTCN2016075391-appb-000027
制备实施例七(化合物编号ZY529I-O)
Figure PCTCN2016075391-appb-000028
向(S)-MeCBS(5.0mg,0.015mmol)的THF溶液中,小心滴加BH3-Me2S(0.006ml, 0.046mmol),室温搅拌10min,冷至-30℃,再向所得混合液中加入从制备实施例七中获得的化合物15-10-a(8.0mg,0.015mmol)的THF溶液,低温下搅拌2小时。TLC监测原料反应彻底,加入甲醇淬灭,水稀释,二氯甲烷萃取,浓缩,柱层析分离(二氯甲烷/甲醇(v/v)=50/1),得到产物为23(4.0mg,产率50%):1HNMR(CDCl3,300MHz)δ9.03(s,1H),8.69(dd,J=4.8Hz,1H),8.11(d,J=7.8Hz,1H),7.40(dd,J=4.8,7.8Hz,1H),6.49(s,1H),5.04(dd,J=3.9,11.4Hz,1H),4.65(s,1H),4.48(dd,J=12.0,65.4Hz,2H),2.82(s,1H),2.41-2.37(m,1H),2.10-1.56(m,5H),2.18(s,3H),2.10(s,3H),1.92(s,3H),1.50(s,3H),1.49(s,3H).
用同样方法合成以下化合物:
将制备实施例七中的化合物15-10-a替换为15-10-b,制备得到化合物24;
将制备实施例七中的化合物15-10-a替换为其对映异构体19-10-a,制备得到化合物25;
将制备实施例6中的化合物15-10-a替换为15-10-b的对映异构体19-10-b,制备得到化合物26。
Figure PCTCN2016075391-appb-000029
Figure PCTCN2016075391-appb-000030
制备实施例八(化合物编号28和29)
Figure PCTCN2016075391-appb-000031
乙酰氯(0.20ml,1.83mmol)滴加到2.5ml甲醇中,混合物在室温搅拌5分钟,随后加入化合物15-9-b(102.0mg,0.18mmol)的甲醇溶液,室温下搅拌1小时。浓缩,直接下一步。粗品溶于二氯甲烷中,三乙胺(0.28ml,1.83mmol),乙酸酐(0.13ml,0.92mmol),室温搅拌2小时。TLC监测反应完全,加入水淬灭,二氯甲烷萃取,浓缩,柱层析分离纯化(二氯甲烷/甲醇(v/v)=25/1)得到化合物黄色固体为28-1-b和28-1-b’的两个非对映异构体的混合物,以及28-2-b和28-2-b’的两个非对映异构体的混合物共包含四个化合物28-1-b,28-1-b’,28-2-b,28-2-b’(产率75%)。
直接把28-1-b和28-1-b’混合物以及28-2-b和28-2-b’的混合物分别进行下一步luche还原反应,下一步的反应选择性地与28-1-b,28-2-b反应,所以可以得到纯品28和29。
举例:混合物28-1-b和28-1-b’(共4.0mg,0.01mmol)和七水氯化亚铈(22mg,0.058mmol)溶于无水乙醇中,冷至-78℃小心加入硼氢化钠(3.0mg,0.058mmol),混合物搅拌30分钟原料消失。加入丙酮淬灭,乙酸乙酯稀释,有机相用水洗,饱和食盐水洗,干燥,浓缩,柱层析(二氯甲烷/甲醇(v/v)=50/1)分离纯化,得到淡黄固体为最终产物28(4.0mg,产率38%):1HNMR(CDCl3,300MHz)δ9.05(s,1H),8.73(s,1H),8.19(d,J=7.8Hz,1H),7.50(s,1H),6.52(s,1H),5.08(dd,J=4.8,11.7Hz,1H),4.46(d,J=9.9Hz,1H),4.05(dd,J=11.4,29.7Hz,2H),2.42(d,J=13.5Hz,1H),2.17(s,3H),2.13(s,3H),2.09-1.31(m,5H),1.31(s,3H),1.21(s,3H).
用同样方法合成以下化合物:
将制备实施例八中的化合物28-1-b替换为28-2-b,制备得到化合物29。
Figure PCTCN2016075391-appb-000032
制备实施例九(化合物编号27)
Figure PCTCN2016075391-appb-000033
化合物15-9-b和七水氯化亚铈(96mg,0.173mmol)溶于甲醇中,冷至-78℃小心加入 硼氢化钠(46mg,1.21mmol),混合物搅拌30分钟原料消失。加入丙酮淬灭,乙酸乙酯稀释,有机相用水洗,饱和食盐水洗,干燥,浓缩,柱层析(二氯甲烷/甲醇(v/v)=50/1)分离纯化,得到淡黄固体为产物27-1(88.0mg,产率92%):1HNMR(CDCl3,300MHz)δ8.96(d,J=1.8Hz,1H),8.65(dd,J=1.8,5.1Hz,1H),8.06(td,J=1.8,8.1Hz,1H),7.39(td,J=0.6,8.1Hz,1H),6.35(s,1H),4.45(s,1H),4.42(s,1H),3.99(dd,J=11.4,47.4Hz,2H),3.75(dd,J=4.5,11.1Hz,1H),2.42(d,J=13.5Hz,1H),2.09(s,3H),1.80-1.70(m,3H),1.37-1.08(m,2H),1.18(s,3H),0.90(s,9H),0.14(s,3H),0.09(s,3H).
化合物27-1(62mg,0.11mmol)溶于二氯甲烷中,零度下加入三乙胺(0.18ml,1.11mmol),再加入TMSCl(0.05ml,0.19mmol),此温下搅拌3.5小时,加入饱和碳酸氢钠水溶液淬灭,二氯甲烷萃取,旋干,柱层析分离(二氯甲烷/甲醇(v/v)=50/1)得到产物27-2(白色固体,产率70%):1HNMR(CDCl3,300MHz)δ8.97(s,1H),8.65(s,1H),8.07(d,J=8.1Hz,1H),7.38(t,J=4.8Hz,1H),6.27(s,1H),4.38(d,J=9.3Hz,1H),4.04(dd,J=11.4,41.1Hz,2H),3.74(dd,J=4.8,11.7Hz,1H),2.18(d,J=13.2Hz,1H),2.09(s,3H),1.80-1.70(m,3H),1.46-0.98(m,2H),1.16(s,3H),1.12(s,3H),0.92(s,9H),0.22(s,9H),0.09(s,3H),0.02(s,3H).
化合物27-2(289mg,0.07mmol)溶于二氯甲烷中,加入DMAP(cat.),滴加三乙胺(1.8ml,5.49mmol),再滴加乙酸酐(1.8ml,5.49mmol),室温搅拌4小时。加入水淬灭,二氯甲烷萃取,浓缩,柱层析分离(二氯甲烷/甲醇(v/v)=50/1),得到产物27-3(127mg,产率42%):1HNMR(CDCl3,300MHz)δ8.99(s,1H),8.67(s,1H),8.08(d,J=7.8Hz,1H),7.39(s,1H),6.29(s,1H),4.47(dd,J=11.4,41.1Hz,2H),4.38(d,J=9.3Hz,1H),3.74(dd,J=4.8,11.7Hz,1H),2.37-2.15(m,2H),2.09(s,3H),1.96(s,3H),1.84-1.76(m,2H),1.42(s,3H),1.39-1.25(m,1H),1.20(s,3H),1.11-0.94(m,1H),0.86(s,9H),0.20(s,9H),0.11(s,3H),0.06(s,3H).
化合物27-3溶于乙腈中,加入0.8ml 40%氢氟酸,滴毕室温搅拌2.5小时,加入饱和碳酸氢钠水溶液淬灭,乙酸乙酯萃取,有机相用饱和食盐水洗涤,浓缩,柱层析分离(二氯甲烷/甲醇(v/v)=25/1),得到最终产物27(白色固体,产率69%):1HNMR(CDCl3,300MHz)δ9.02(s,1H),8.71(s,1H),8.14(d,J=7.8Hz,1H),7.46(s,1H),6.55(s,1H),4.53-4.33(m,4H),3.85(dd,J=4.8,11.7Hz,1H),2.33(d,J=14.1Hz,1H),2.09(s,3H),2.04(s,3H),1.98-1.50(m,5H),1.49(s,3H),1.25(s,3H).
制备实施例十(化合物编号30)
Figure PCTCN2016075391-appb-000034
-78℃下向21(6.0mg,0.011mmol)的THF溶液中滴加正丁基锂(0.01ml,0.011mmol),此温下搅拌半小时,随后加入对溴苯甲酰氯,继续搅拌1小时,加入饱和碳酸氢钠溶液淬灭,升至室温二氯甲烷萃取,浓缩,柱层析分离(二氯甲烷/甲醇(v/v)=50/1)得到产物30(白色粉末,产率80%):1HNMR(CDCl3,300MHz)δ9.00(s,1H),8.68(d,J=5.1Hz,1H),8.09(d,J=8.4Hz,1H),7.89(d,J=8.4Hz,2H),7.57(d,J=8.4Hz,2H),7.39(dd,J=4.8,8.1Hz,1H),6.48(s,1H),6.10(d,J=10.2Hz,1H),5.10(dd,J=4.8,11.7Hz,1H),4.38(dd,J=11.7,48.3Hz,2H),2.29-1.18(m,4H),2.18(s,3H),2.04(s,3H),1.91(s,3H),1.60-1.24(m,2H),1.42(s,3H),1.41(s,3H).
试验实施例1
对ACAT2活性的抑制作用试验实施例
1.试验目的:
通过利用荧光标记固醇测定ACAT2活性方法,检测所述的Pyripyropene A结构的类似物在完整细胞水平对ACAT2活性的抑制作用。
2.测试原理:
用不同浓度的化合物,对含NBD22-荧光标记固醇的酯合成的抑制,导致荧光强度差异变化,从而绘制抑制曲线,计算IC50
3.实验过程:
HepG2细胞以1.5×104个每孔的起始密度在96孔板中培养24小时后,加入胆固醇混合物混匀后,继续培养24小时,然后加入终浓度为0.5μg/ml的NBD22-荧光标记固醇,以及终浓度梯度为0、0.008、0.04、0.2、1和5μM的化合物,每一浓度设三重复孔,再培养6小时后使用荧光分析仪(E488,A535)测定荧光强度,将荧光强度值对化合物不同浓度作图并获得IC50
4.实验结果:(以7、8、13、21等十四个化合物为例,但不局限于这些化合物)
表1.化合物对ACAT2活性的抑制作用
化合物编号 IC50(μM)或%抑制率
Pyripyropene A 0.179
2 104%
3 90%
6 90%
7 0.152
8 0.086
13 0.023
14 0.103
15 0.831
16 0.245
21 0.078
22 0.086
26 0.433
27 0.069
29 0.081
注:IC50为样品化合物对ACAT2活性的50%抑制评价。%抑制率是以Pyripyropene A(0.2μM)为100%抑制对照时的相对抑制率。
结果表明该类化合物具有对ACAT2的抑制活性,而且该类ACAT2抑制剂与已发现的唯一一个ACAT2的特异抑制剂Pyripyropene A相比,抑制活性有明显提高。
试验实施例2
对ACAT2活性的抑制作用的选择性系数试验实施例
1.试验目的:
通过利用胆固醇氧化酶法测定ACAT活性,检测所述的Pyripyropene A结构的类似物在完整细胞水平对ACAT2和ACAT1的抑制作用,而获得对ACAT2具有高选择性的化合物。
2.测试原理:
通过利用HepG2细胞测定不同浓度的化合物对ACAT1或ACAT2活性的抑制作用,获得IC50来计算SI(ACAT1-IC50/ACAT2-IC50)。
3.实验过程:
HepG2细胞以4×105个每孔的起始密度在6孔板中培养24小时后,更换培养基并加入10μg/ml胆固醇以及不同浓度的化合物,继续培养9小时,利用Cholesterol Assay kit测定细胞胆固醇量。
4.实验结果:(以编号为7、8、13、14、21和22等6个化合物为例,但不局限于这些化合物)
表2.化合物对ACAT活性抑制的选择性
化合物编号 ACAT1-IC50(μM) ACAT2-IC50(μM) SI
7 107.7 0.147 733
8 64.71 0.061 1076
13 17.77 0.012 1496
14 153.7 0.129 1191
21 56.66 0.055 1035
22 87.35 0.090 971
结果表明该类化合物对ACAT2活性抑制具有高选择性(SI>733,HepG2 cell),且远高于Pyripyropene A的(SI>200,AC29 CHO cell)。

Claims (9)

  1. 一类通式(I)所示的Pyripyropene A的类似物,
    Figure PCTCN2016075391-appb-100001
    其中:
    n=0、1或2;
    R1为氢或C1-C6烷基;
    R2和R3各自独立地为氢、羟基、C1-C6烷基羰基氧基团、C1-C6烷基羰基硫基团、C1-C6烷基羰基胺基团、3至8元环烷基羰基氧基团、3至8元环烷基羰基硫基团、3至8元环烷基羰基胺基团、取代或未取代的5至8元芳基羰基氧基团或取代或未取代的杂芳基羰基氧基团,其中所述取代是指被卤素、羟基、烷基、烷氧基、氨基、氰基取代;
    R4和R5各自独立地为氢、羟基、C1-C6烷基羰基氧基团、C1-C6烷基羰基硫基团、C1-C6烷基羰基胺基团、3至8元环烷基羰基氧基团、3至8元环烷基羰基硫基团、3至8元环烷基羰基胺基团、
    Figure PCTCN2016075391-appb-100002
    其中,R7、R8和R9各自独立地为氢、羟基、卤素、甲基、C1-C6烷基羰基氧基团、C1-C6烷基羰基硫基团、C1-C6烷基羰基胺基团、3至8元环烷基羰基氧基团、3至8元环烷基羰基硫基团、3至8元环烷基羰基胺基团、C1-C6烷基羰基氧亚甲基、3至8元环烷基羰基氧亚甲基、取代或未取代的5至8元杂芳基羰基氧基团、取代或未取代的5至8元杂芳基羰基氧亚甲基基团、取代或未取代的5至8元芳基羰基氧基团、取代或未取代的5至8元芳基羰基氧亚甲基基团,其中所述取代是指被卤素、羟基、烷基、烷氧基、氨基、氰基取代,优选的为对位氰基取代;Z1和Z2各自独立地为氢、氧原子、硫原子或氨基;R10和R11各自独立地为氢、C1-C6烷基、3至8元环烷基、取代或未取代的5至8元杂芳基、取代或未取代的5至8元芳基,其中所述取代是指被卤素、羟基、烷基、烷氧基、氨基、氰基取代;
    R6为未取代或取代的C1-C6烷基、未取代或取代C1-C6链烯基、取代或未取代的5 至8元芳基或杂芳基、取代或未取代的3至8元环烷基,其中所述取代是指被卤素、羟基、烷基、烷氧基、氨基、氰基取代;
    X为氧原子、硫原子、氨基或C1-C6烷基;
    Y为氢;
    W为氢、羟基、卤素、氧代基团(=O)、=N-OH、取代或未取代的5至8元芳基或杂芳基羰基氧基团、C1-C6烷基羰基氧基团或3至8元环烷基羰基氧基团;
    Figure PCTCN2016075391-appb-100003
    表示单键或双键。
  2. 如权利要求1所述的Pyripyropene A的类似物,其特征在于:
    n=1;
    R1为氢或甲基;
    R2和R3各自独立地为氢、羟基、乙基羰基氧基团或对位氰基取代的苯基羰基氧基团;
    R4和R5各自独立的为氢、
    Figure PCTCN2016075391-appb-100004
    R7、R8和R9各自独立地为氢、羟基、卤素、甲基、C1-C6烷基羰基氧基团、取代或未取代的苯基羰基氧基团,其中所述取代是指被卤素、羟基、烷基、烷氧基、氨基、氰基取代;
    R6为未取代或取代的C1-C6烷基、未取代或取代C1-C6链烯基、取代或未取代的5至8元杂芳基、取代或未取代的5至8元芳基、取代或未取代的3至8元环烷基,其中所述取代是指被卤素、羟基、烷基、烷氧基、氨基、氰基取代,优选的为对位氰基取代;
    X为氧原子;
    Y为氢;
    W为氢、羟基、卤素、氧代基团(=O)、=N-OH、取代或未取代的5至8元芳基或杂芳基羰基氧基团、C1-C6烷基羰基氧基团或3至8元环烷基羰基氧基团;
    Figure PCTCN2016075391-appb-100005
    表示单键或双键。
  3. 如权利要求1所述的Pyripyropene A的类似物,其特征在于:
    n=1;
    R1为甲基;
    R2和R3各自独立地为氢、羟基、乙基羰基氧基团或对位氰基取代的苯基羰基氧基团; 优选的,R2和R3其中一个为氢,另一个选自羟基、乙基羰基氧基团(即乙酰氧基,-OAc)或对位氰基取代的苯基羰基氧基团;
    R4和R5各自独立的为氢、
    Figure PCTCN2016075391-appb-100006
    R7、R8和R9各自独立地为氢、羟基、卤素、甲基、C1-C6烷基羰基氧基团、取代或未取代的苯基羰基氧基团,其中所述取代是指被氰基取代;优选的,R4和R5其中一个为氢、另一为
    Figure PCTCN2016075391-appb-100007
    Figure PCTCN2016075391-appb-100008
    R6为取代或未取代的5至8元杂芳基;优选的,R6为3位吡啶基;
    X为氧原子、硫原子、氨基或C1-C6烷基;优选的,X为氧原子;
    Y为氢;
    W为羟基、氧代基团(=O)或对位卤素取代的苯基羰基氧;
    Figure PCTCN2016075391-appb-100009
    为单键。
  4. 如权利要求1所述的Pyripyropene A的类似物,其特征在于:Y为氢,n=1,X为氧,R1为甲基,
    Figure PCTCN2016075391-appb-100010
    为单键,R3、R5为氢,W和Y构型保持一致,R2、R4、R1的构型按照如下通式(IV)中所示的绝对立体构型:
    Figure PCTCN2016075391-appb-100011
    其中,在通式(IV)中,其他取代基的定义与权利要求1的通式(I)中的定义相同。
  5. 如权利要求1所述的Pyripyropene A的类似物,其特征在于选自如下的化合物:
    Figure PCTCN2016075391-appb-100012
    Figure PCTCN2016075391-appb-100013
    Figure PCTCN2016075391-appb-100014
  6. 权利要求1-5中任一项所述Pyripyropene A的类似物的制备方法,其反应路线如下:
    Figure PCTCN2016075391-appb-100015
    包括以下步骤:
    (1)化合物31与化合物267以及异丙基格氏试剂在THF中偶联反应,再被氧化后形成化合物32;
    (2)化合物32经过溶剂解反应得到化合物33;
    (3)化合物33被LHMDS攫氢烯醇化,随后和R6COCl发生C-酰基化关环得到化合物34;
    (4)化合物34在酸性条件下发生脱TBS保护基反应,再和(R12)2CO或R12COCl发生上酰基反应得到不同取代的化合物Ia和Ib;
    进一步的,
    (5)化合物Ia经过Luche还原得到化合物Ic;
    (6)化合物Ia经过CBS选择性还原得到特定构型的化合物Ie;
    (7)化合物Ic与酰氯R13COCl反应制得化合物Id;
    其中,R2、R3、R4、R5、R6、n和W的定义同权利要求1;R12为取代或未取代的5至8元芳基或杂芳基基团、C1-C6烷基基团、3至8元环烷基基团;R13为取代或未取代的5至8元芳基或杂芳基基团、C1-C6烷基基团、3至8元环烷基基团;其中所述取代是 指被卤素、羟基、烷基、烷氧基、氨基、氰基取代;R14和R15中一个为氢,另一个为叔丁基二甲基硅基氧基。
  7. 如权利要求6所述的Pyripyropene A的类似物的制备方法,其特征在于:
    步骤(1)中所述偶联反应所用溶剂选自四氢呋喃等非质子性溶剂;反应温度为-30℃至室温;
    步骤(2)中所述溶剂解反应所用溶剂选自甲苯和甲醇;反应温度为80℃;
    步骤(3)中所述C-酰基化关环反应所用溶剂选自非质子性溶剂,优选为四氢呋喃;反应温度为0℃到室温;
    步骤(4)中所述脱保护基TBS反应及上酰基反应所用溶剂选自非质子性溶剂,优选为二氯甲烷;反应温度为室温;
    步骤(5)中所述Luche还原反应所用溶剂选自醇类溶剂,优选自甲醇或乙醇;反应温度为-78℃;
    步骤(6)中所述CBS选择性还原反应所用溶剂选自非质子性溶剂,优选为四氢呋喃;反应温度选自-78℃或-30℃。
  8. 如权利要求1-5中任一项所述的Pyripyropene A的类似物在制备胆固醇酰基转移酶2高选择性抑制剂的药物中的用途。
  9. 如权利要求1-5中任一项所述的Pyripyropene A的类似物在制备治疗动脉粥样硬化症的药物中的用途。
PCT/CN2016/075391 2015-03-19 2016-03-03 一类三环类似物、其制备方法和用途 WO2016145994A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/556,932 US10278962B2 (en) 2015-03-19 2016-03-03 Tricyclic analogues, preparation method and uses thereof
KR1020177029352A KR101975916B1 (ko) 2015-03-19 2016-03-03 삼환계 유사체, 이의 제조방법과 용도
EP16764175.2A EP3272755A1 (en) 2015-03-19 2016-03-03 Class of tricyclic analogue, preparation method and use thereof
JP2017549239A JP2018508560A (ja) 2015-03-19 2016-03-03 三環類似体、その製造方法及び使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510121662.9 2015-03-19
CN201510121662.9A CN106032383B (zh) 2015-03-19 2015-03-19 一类三环类似物、其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2016145994A1 true WO2016145994A1 (zh) 2016-09-22

Family

ID=56918370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075391 WO2016145994A1 (zh) 2015-03-19 2016-03-03 一类三环类似物、其制备方法和用途

Country Status (6)

Country Link
US (1) US10278962B2 (zh)
EP (1) EP3272755A1 (zh)
JP (1) JP2018508560A (zh)
KR (1) KR101975916B1 (zh)
CN (1) CN106032383B (zh)
WO (1) WO2016145994A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020063663A1 (zh) * 2018-09-27 2020-04-02 中国科学院上海药物研究所 一类三环类似物、其制备方法和用途

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7935726B1 (en) * 1999-11-12 2011-05-03 Kansas State University Research Foundation Tricyclic pyrones

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958970A (en) * 1997-03-07 1999-09-28 Kansas State University Research Foundation Tricyclic and tetracyclic pyrones
US6916824B1 (en) * 1999-11-12 2005-07-12 Kansas State University Research Foundation Methods of treating cataracts and diabetic retinopathy with tricyclic pyrones
US7019022B2 (en) * 2003-12-15 2006-03-28 Merck Frosst Canada & Co. Substituted tetrahydrocarbazole and cyclopentanoindole derivatives
NZ591824A (en) * 2008-08-29 2013-07-26 Treventis Corp Butyrylcholinesterase ligands as diagnostic tools and treatment for deseases of the nervous system
EP2351742A4 (en) * 2008-10-09 2012-03-28 Asahi Kasei Pharma Corp indazole
WO2011107411A1 (en) * 2010-03-02 2011-09-09 Basf Se Pyranopyranone derivatives as antimicrobial agents
JP2014144922A (ja) * 2013-01-28 2014-08-14 Kitasato Institute Acat2阻害活性を示すピリピロペンa構造簡略型誘導体
JP5946100B2 (ja) * 2014-06-24 2016-07-05 学校法人北里研究所 コレステロールアシル転移酵素アイソザイム2(acat2)阻害活性を有する新規医薬化合物

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7935726B1 (en) * 1999-11-12 2011-05-03 Kansas State University Research Foundation Tricyclic pyrones

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEWIS, S. ET AL.: "Synthesis and evaluation of novel aldose reductase inhibitors: effects on lens protein kinase Cy", MOLECULAR VISION, vol. 7, 18 July 2001 (2001-07-18), pages 164 - 171, XP055312094 *
See also references of EP3272755A4 *
ZEHNDER, LUKE R. ET AL.: "Lewis acid mediated condensation reactions of alpha,beta-unsaturated acids with 4-hydroxy-2-pyrones. A concise structural assignment of Fleischmann's a,a-bispyrone and Praill's alpha,gamma-bispyrone", TETRAHEDRON LETTERS, vol. 41, no. 12, 31 December 2000 (2000-12-31), pages 1901 - 1905, XP004190861 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020063663A1 (zh) * 2018-09-27 2020-04-02 中国科学院上海药物研究所 一类三环类似物、其制备方法和用途
CN110950881A (zh) * 2018-09-27 2020-04-03 中国科学院上海药物研究所 一类三环类似物、其制备方法和用途

Also Published As

Publication number Publication date
CN106032383A (zh) 2016-10-19
KR20170125970A (ko) 2017-11-15
US20180064696A1 (en) 2018-03-08
EP3272755A4 (en) 2018-01-24
JP2018508560A (ja) 2018-03-29
US10278962B2 (en) 2019-05-07
EP3272755A1 (en) 2018-01-24
CN106032383B (zh) 2019-08-13
KR101975916B1 (ko) 2019-05-07

Similar Documents

Publication Publication Date Title
FUJITA et al. Fungal metabolites. Part 12. Potent immunosuppressant, 14-deoxomyriogin,(2s, 3r, 4r-(e) 2-amino-3, 4-dihydroxy-2-hydroxymethyleicos-6-enoic acid and structure-activity relationships of myriocin derivatives
JP3008985B2 (ja) ジスコダーモライド化合物類、これらを含有する組成物類、及び製造及び使用法
EP2970122B1 (en) Ship1 modulators
US10808005B2 (en) Ligand for orphan nuclear receptor Nur77 and uses thereof
JPS5855443A (ja) オクタヒドロナフタリン誘導体およびその製造法
Kelebekli et al. Stereospecific synthesis of highly substituted novel carbasugar as carbonic anhydrase inhibitors: decahydronaphthalene-1, 2, 3, 4, 5, 6, 7-heptol
CN102947312A (zh) 生产啶南平衍生物的方法
NO317056B1 (no) 10-deacetylbaccatin III- og 10-deacetyl-14<beta>-hydroksybaccatin III-derivater, fremgangsmate ved deres fremstilling og farmasoytiske blandinger som inneholder dem
Brenner 6-(Methoxymethylene) penicillanic acid: a new. beta.-lactamase inactivator
WO2016145994A1 (zh) 一类三环类似物、其制备方法和用途
CN103214542A (zh) B-降-6-(4′-烷基)缩氨硫腙胆甾烷化合物及其制备方法和在抗肿瘤药物中的应用
Sung et al. Briaexcavatins C–F, four new briarane-related diterpenoids from the Formosan octocoral Briareum excavatum (Briareidae)
JP3423002B2 (ja) タキサン誘導体、その調製、及びそれを含有する処方物
WO1995008546A1 (fr) Derive d'epoxycyclohexenedione
CN106046105A (zh) 一种甘草次酸、阿魏酸和硒代蛋氨酸三元化合物的制备方法及应用
Chou et al. Fungal transformation of isosteviol lactone and its biological evaluation for inhibiting the AP-1 transcription factor
CN107033202B (zh) 大环内酯类化合物或其盐,及其制备方法与应用
CN100596294C (zh) 4'-取代苄氧基-苯基丁二烯类衍生物及制备和用途
CN115785189B (zh) 一种5α,8α-过氧化甾醇-17-苯基噻唑衍生物及其合成方法和应用
CN100502846C (zh) 3,4,5-三取代的苯丙烯类衍生物及其制备方法和用途
US6872747B2 (en) Decalactones, method for making, and pharmaceuticals there from
CN110437264B (zh) 高喜树碱5,6-二溴去甲斑蝥素酸酯衍生物及其区域选择性合成方法
CN110950881A (zh) 一类三环类似物、其制备方法和用途
Chang et al. Biotransformation of dihydroisosteviol and the effects of transformed products on steroidogenic gene expressions
CN113825507A (zh) 具有抗氧化性和神经保护活性的大环化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764175

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15556932

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017549239

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177029352

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016764175

Country of ref document: EP