JP2018508560A - 三環類似体、その製造方法及び使用 - Google Patents

三環類似体、その製造方法及び使用 Download PDF

Info

Publication number
JP2018508560A
JP2018508560A JP2017549239A JP2017549239A JP2018508560A JP 2018508560 A JP2018508560 A JP 2018508560A JP 2017549239 A JP2017549239 A JP 2017549239A JP 2017549239 A JP2017549239 A JP 2017549239A JP 2018508560 A JP2018508560 A JP 2018508560A
Authority
JP
Japan
Prior art keywords
group
substituted
membered
compound
unsubstituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017549239A
Other languages
English (en)
Inventor
ファジュン ナン
ファジュン ナン
ブォリアン リ
ブォリアン リ
ヤン ヂャン
ヤン ヂャン
シャオウェイ ヂャン
シャオウェイ ヂャン
イン シィオン
イン シィオン
シーチャン フー
シーチャン フー
ヤンミン ヂャン
ヤンミン ヂャン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Materia Medica of CAS
Original Assignee
Shanghai Institute of Materia Medica of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Materia Medica of CAS filed Critical Shanghai Institute of Materia Medica of CAS
Publication of JP2018508560A publication Critical patent/JP2018508560A/ja
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4433Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with oxygen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B37/00Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
    • C07B37/04Substitution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B49/00Grignard reactions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

本発明は、一般式Iで示される天然物ピリピロペンA構造を有する類似体、その製造方法および使用に関するものであって、より具体的に、本発明は、天然物ピリピロペンAの類似体、その製造方法およびアテローム性動脈硬化症などの心血管疾患の治療におけるアシルCoA:コレステロールアシルトランスフェラーゼ2(ACAT2)の阻害剤としての使用に関するものである。I

Description

本発明は、医薬品化学分野に属し、一連の天然物ピリピロペンA(PyripyropeneA)構造を有する類似体及びその製造方法と使用に関し、より具体的に、本発明は天然物ピリピロペンAの類似体、その製造方法及びアテローム性動脈硬化症などの心血管疾患の治療におけるアシルCoA:コレステロールアシルトランスフェラーゼ2 (ACAT2)の阻害剤としての使用に関するものである。
コレステロールは、生体内で非常に重要な役割を果たしており、すべての動物細胞の生存に不可欠なものであり、正常な生理学的条件下で、高等生物の細胞におけるコレステロールのレベルは、濃度の比較的狭い範囲内に維持される。コレステロール濃度が高すぎても低すぎても日常生活に影響を与え、ひいては深刻な疾患が生じることになる。しかし、細胞は、主にコレステロールの合成、吸収、エステル化、及び流出などの経路の間のバランスを調整することによって、正常のコレステロール濃度に維持される。そのうち、アシルCoA:コレステロールアシルトランスフェラーゼ(ACAT)により触媒されるコレステロールのエステル化反応は、細胞レベルであっても個体レベルであっても、コレステロール代謝のバランスにおいて非常に重要な役割を果たしている。ACATは、細胞内にコレステロールエステルを合成する唯一の酵素であり、遊離コレステロールと長鎖脂肪酸を接続してコレステロールエステル形成を触媒するためのものである。
ACATは組織細胞内の粗面小胞体に存在する膜結合タンパク質であり、今まで二つのサブタイプ(即ちACAT1、ACAT2)が見出された。この両者の組織分布が異なる。ACAT1は、ほとんど様々な組織および細胞に存在しており、脳、マクロファージと副腎などの組織におけるコレステロールのバランスを調節する。しかし、ACAT2は、ただ肝臓と小腸細胞において発見され、主に肝臓と小腸におけるコレステロールのエステル化および合成を担う。昔から、ACATはアテローム性動脈硬化症の発生と密接に関連していることが認識された。したがって、ACATの阻害は小腸からのコレステロールの吸収を抑えるだけでなく、マクロファージからの複数のタイプの泡沫細胞の形成も抑えることができるので、心臓血管疾患の治療のための非常に重要な標的である。
現在知られているACAT阻害剤は以下のように分類される。a. 尿素系、アミド系及びイミダゾール系を含む合成系阻害剤、b.微生物系阻害剤、c.天然植物系阻害剤。だだし、今まで見出されたACAT阻害剤はいずれも薬物になっていない。その理由は、ACATの2つのサブタイプに対して阻害活性の選択性を無視したからである。その後、ACAT1を阻害することによってアテローム性動脈硬化症に対する影響について調査した結果、異なる結論が出た。ある研究室の研究者は、ACAT1 の欠如がアテローム性動脈硬化症の発生を抑制することができると信じているが、別の研究室における研究結果は、アテローム性動脈硬化症のリスクがACAT1欠如のマウスにおいて大きく増加することを示した。これに対して、ACAT2のないマウスを分析することで、ACAT-2-/-のマウスのコレステロール吸収能力が低下し、結石症および食物誘発高コレステロール血症について耐性があるということが分かった。従って、ACAT1を特異的に阻害することによって、細胞内のコレステロール代謝バランスが崩れ、コレステロールの細胞毒性作用をもたらし、アテローム性動脈硬化症の発生を防止するのには役立たないと推定された。これに対して、ACAT2は、高脂血症およびアテローム性動脈硬化症の予防のための有効な標的であり得る。ACAT2 を特異的に阻害することによって、コレステロールの吸収と輸送が減少し、細胞内のコレステロール代謝バランスに対して影響を与えない。以上により、ACAT2を標的として高い選択性を有する阻害剤を開発することは非常に重要である。
しかしながら、発見されたACAT阻害剤を再試験した結果、ピリピロペンAのみがACAT2特異的阻害活性を有することが分かった。ピリピロペンは、1993年にSatoshi Omura氏らがアスペルギルス・フミガーツス(Aspergillus fumigates)FO-1289微生物の発酵ブロスから抽出して得られたものである。天然物を分離してピリピロペンを得ることは非常に困難である。なぜなら、このプロセスが複雑で生産量が少ない。そして、天然物としてピリピロペンは、その調製が困難であるという欠点を有する。例えば、カルボンから出発して、19ステップの合成経路も経由して、非常に過酷な反応条件を必要とし、収率は非常に低い。本発明者らは、より優れた阻害活性およびより高い選択性を有する新規なACAT2阻害剤を見出すために、ピリピロペンの構造を簡略化しようと試みた。例えば、ピリピロペンの母核に全合成において最も複雑の環系構造を除去し、最も左の環の2つのメチレン基と1つの核間メチル基を排除したが、重要なジアセチル基構造単位を保持したので、得られた簡略化した全新な骨格を有する標的分子は、その構造の複雑さは大幅に軽減し、簡単な天然原料であるカルボンから容易に調製される。本発明に開示されたピリピロペンの三環系化合物は、最も左の環系が去除された後に、得られた化合物が天然物であるピリピロペンAと比べてそのACAT2の特異的阻害活性が明らかに増加することを特徴としている。本発明に開示された構造は、活性への影響が規則性を持ち、優れた特性を有する一連の化合物が得られた。それは、天然物であるピリピロペンAと比べて、その合成プロセスが簡単であるだけでなく、ACAT2活性への阻害およびACAT2への選択的阻害がいずれもピリピロペンAよりも明らかに優れている。それらは、アテローム性動脈硬化症などの心血管疾患の治療のための新規なACAT2標的薬になることが期待されている。
本発明の目的として、アテローム性動脈硬化症などの心血管疾患の治療のための薬剤を開発するための新しい方法を模索するように、ACAT2阻害剤として新規な簡略化したピリピロペンA類似体を設計と合成することである。
本発明の別の目的としては、上述したピリピロペンAの類似体の製造方法を提供することである。
本発明のさらに別の目的としては、上述したピリピロペンAの類似体の使用を提供することである。
本発明に係るピリピロペンAの類似体は以下の一般式(I)に示された構造を有する。
式中、
n=0、1または2であり、好ましくはn=1であり、
R1は、水素またはC1-C6アルキル基であり、好ましくは、R1は水素またはメチル基であり、
R2とR3はそれぞれ独立に水素、ヒドロキシ基、C1-C6アルキルカルボニルオキシ基、C1-C6アルキルカルボニルチオ基、C1-C6アルキルカルボニルアミン基、3〜8員シクロアルキルカルボニルオキシ基、3〜8員シクロアルキルカルボニルチオ基、3〜8員シクロアルキルカルボニルアミン基、置換または非置換の5〜8員アリールカルボニルオキシ基、置換または非置換のヘテロアリールカルボニルオキシ基であり、上述した置換とは、ハロゲン、ヒドロキシ基、アルキル基、アルコキシ基、アミノ基、シアノ基で置換されるということを意味し、好ましくは、R2とR3はそれぞれ独立に水素、ヒドロキシ基、エチルカルボニルオキシ基(即ちアセトキシル基、-OAc)またはp-シアノ基で置換されたフェニルカルボニルオキシ基であり、より好ましくは、R2とR3の一方は水素であり、他方は、ヒドロキシ基、エチルカルボニルオキシ基(即アセトキシル基、-OAc)またはp-シアノ基で置換されたフェニルカルボニルオキシ基からなる群から選択され、
R4とR5はそれぞれ独立に水素、ヒドロキシ基、C1-C6アルキルカルボニルオキシ基、C1-C6アルキルカルボニルチオ基、C1-C6アルキルカルボニルアミン基、3〜8員シクロアルキルカルボニルオキシ基、3〜8員シクロアルキルカルボニルチオ基、3〜8員シクロアルキルカルボニルアミン基、

または
であり、 そのうちに、R7、R8とR9はそれぞれ独立に水素、ヒドロキシ基、ハロゲン、メチル基、C1-C6アルキルカルボニルオキシ基、C1-C6アルキルカルボニルチオ基、C1-C6アルキルカルボニルアミン基、3〜8員シクロアルキルカルボニルオキシ基、3〜8員シクロアルキルカルボニルチオ基、3〜8員シクロアルキルカルボニルアミン基、C1-C6アルキルカルボニルオキシメチレン基、3〜8員シクロアルキルカルボニルオキシメチレン基、置換または非置換の5〜8員ヘテロアリールカルボニルオキシ基、置換または非置換の5〜8員ヘテロアリールカルボニルオキシメチレン基、置換または非置換の5〜8員アリールカルボニルオキシ基、置換または非置換の5〜8員アリールカルボニルオキシメチレン基であり、上述した置換とは、ハロゲン、ヒドロキシ基、アルキル基、アルコキシ基、アミノ基、シアノ基で置換されるということを意味し、好ましくは、Z1とZ2はそれぞれ独立に水素、酸素原子、硫黄原子またはアミノ基であり、R10とR11はそれぞれ独立に水素、C1-C6アルキル基、3〜8員シクロアルキル基、置換または非置換の5〜8員ヘテロアリール、置換または非置換の5〜8員アリールであり、上述した置換とは、ハロゲン、ヒドロキシ基、アルキル基、アルコキシ基、アミノ基、シアノ基で置換されるということを意味し、好ましくは、R4とR5はそれぞれ独立に水素、
または
であり、R7、R8とR9はそれぞれ独立に水素、ヒドロキシ基、ハロゲン、メチル基、C1-C6アルキルカルボニルオキシ基、置換または非置換のフェニルカルボニルオキシ基であり、上述した置換とはp-シアノ基で置換されるということを意味し、より好ましくは、R4とR5の一方は水素であり、他方は






であり、
R6は非置換または置換のC1-C6アルキル基、非置換または置換のC1-C6アルケニル基、置換または非置換の5〜8員ヘテロアリール、置換または非置換の5〜8員アリール、置換または非置換の3〜8員シクロアルキル基であり、上述した置換とは、ハロゲン、ヒドロキシ基、アルキル基、アルコキシ基、アミノ基、シアノ基で置換されるということを意味し、好ましくは、R6は置換または非置換の5〜8員ヘテロアリールであり、より好ましくは、R6は3-ピリジル基であり、
Xは、酸素原子、硫黄原子、アミノ基またはC1-C6アルキル基であり、好ましくは、Xは酸素原子であり、
Yは、水素であり、
Wは、水素、ヒドロキシ基、ハロゲン、オキソ基(=O)、=N-OH、置換または非置換の5〜8員アリールまたはヘテロアリールカルボニルオキシ基、C1-C6アルキルカルボニルオキシ基または3〜8員シクロアルキルカルボニルオキシ基であり、好ましくは、Wは、ヒドロキシ基、オキソ基(=O)またはp-ハロゲンで置換されたフェニルカルボニルオキシ基であり、

は単結合または二重結合を表し、好ましくは単結合を表す。
本発明において特に断らない限り、
は結合部位を表し、
本発明の好ましい実施の形態において、Yは水素であり、n=1、
は単結合を表し、即ち、本発明に記載の一般式(I)で示されるピリピロペンAの類似体は以下のような一般式(II)で示される構造を有する。
一般式(II)における各置換基の定義は一般式(I)における定義と同じである。
さらに好ましくは、Yは水素であり、n=1、Xは酸素であり、R1はメチル基であり、
は単結合を表し、即ち、本発明に記載の一般式(I)で示されるピリピロペンAの類似体は以下のような一般式(III)で示される構造を有する。
そのうち、一般式(III)において、各置換基の定義が一般式(I)における定義と同じである。
さらに好ましくは、Yは水素であり、n=1、Xは酸素であり、R1はメチル基であり、 は単結合を表し、R3、R5は水素である。各キラル中心の絶対配置は以下の通りである。WとYの配置は同じであり、R2、R4、R1の配置は以下のような一般式(IV)で示される絶対立体配置である。
そのうち、一般式(IV)において、各置換基の定義は一般式(I)における定義と同じである。
明細書において、「C1-C6アルキル基」とは直鎖状または分岐鎖状のC1-C6アルキル基であり、特に、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、イソブチル基、ペンチル基、ネオペンチル基またはヘキシル基であり、好ましくは、直鎖状または分岐鎖状のC1-C3アルキル基である。
明細書において、「5〜8員ヘテロアリール」とは5〜8員環の芳香族基であり、
明細書において、「5〜8員シクロアルキル基」とは5〜8員環を有するシクロアルキル基であり、具体的に、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基であってもよい。
明細書において、「C1-C6アルキルカルボニルオキシ基」とはCnH2n+1COO-であり、nは1-6である。
明細書において、「C1-C6アルキルカルボニルチオ基」とはCnH2n+1COS-であり、nは1-6である。
明細書において、「C1-C6アルキルカルボニルアミン基」とはCnH2n+1CONH-であり、nは1-6である。
明細書において、「3〜8員シクロアルキルカルボニルオキシ基」とは-OCO-3〜8員環である。
明細書において、「3〜8員シクロアルキルカルボニルチオ基」とは-SCO-3〜8員環である。
明細書において、「3〜8員シクロアルキルカルボニルアミン基」とは-NCO-3〜8員環である。
明細書において、「C1-C6アルキルカルボニルオキシメチレン基」とはCnH2n+1COOCH2-であり、nは1-6である。
明細書において、「3〜8員シクロアルキルカルボニルオキシメチレン基」とは-CH2OCO-3〜8員環である。
本発明の好ましい実施の形態において、本発明に記載の一般式(I)で示されるピリピロペンAの類似体は具体的に以下のようなものである。











































































本発明は、一般式(I)で示されるピリピロペンAの類似体の製造方法を提供するものである。当該製造方法は以下の経路によって実施することができる。
具体的に、以下のステップを含む。
(1)化合物31と化合物267はイソプロピルグリニャール試薬とともにTHFにおいてカップリング反応して酸化された後に、化合物32が形成されること、
(2)化合物32は、加溶媒分解反応により、化合物33が得られること、
(3)化合物33は、LHMDSでエノール化された後に、異なる基として塩化アシル(R6COCl)とともにC-アシル化閉環反応して、化合物34が得られること、
(4)化合物34は、酸性条件下でTBS保護基での脱保護反応され、異なる酸無水物((R122CO)または塩化アシル(R12COCl)とともにアシル化反応して、異なる置換基を有する化合物IaとIbが得られること、
化合物34により、以下の一般式(II)で示される化合物IaとIbが得られ、
さらに、
(5)化合物Iaは、ルーシェ(Luche)還元反応により、化合物Icが得られること、
または
(6)化合物Iaは、CBS選択的還元反応により、特異的な配置を有する化合物Ieが得られること、
または
(7)化合物Icは、異なる基として塩化アシル(R13COCl)とともに反応して、本発明に記載の化合物Idが得られることを含む。
そのうち、R2、R3、R4、R5、R6、nとWの定義は前述と同じ意味であり、R12は置換または非置換の5〜8員アリールまたはヘテロアリール基、C1-C6アルキル基、3〜8員シクロアルキル基、R13は、置換または非置換の5〜8員アリールまたはヘテロアリール基、C1-C6アルキル基、3〜8員シクロアルキル基であり、そのうち、上述した置換とは、ハロゲン、ヒドロキシ基、アルキル基、アルコキシ基、アミノ基、シアノ基で置換されるということを意味し、R14とR15の一方は水素であり、他方はtert-ブチルジメチルシリルオキシ基である。
そのうち、
ステップ(1)において、前記カップリング反応に使用される溶媒はテトラヒドロフランなどの非プロトン性溶媒から選ばれ、反応温度は、-30℃〜室温であり、
ステップ(2)において、前記加溶媒分解反応に使用される溶媒はトルエンとメタノールから選ばれ、反応温度は、80℃であり、
ステップ(3)において、前記C-アシル化閉環反応に使用される溶媒はテトラヒドロフランなどの非プロトン性溶媒から選ばれ、反応温度は、0℃〜室温であり、
ステップ(4)において、前記TBS保護基での脱保護反応およびアシル化反応に使用される溶媒はジクロロメタンなどの非プロトン性溶媒から選ばれ、反応温度は、室温であり、
ステップ(5)において、前記Luche還元反応に使用される溶媒はメタノール、エタノールなどのアルコール系溶媒から選ばれ、反応温度は、-78℃であり、
ステップ(6)において、前記CBS選択的還元反応に使用される溶媒はテトラヒドロフランなどの非プロトン性溶媒から選ばれ、反応温度は、-78℃または-30℃などから選ばれ、
本発明の一般式(I)で示されるピリピロペンAの類似体は、ACAT2に対して高い選択的阻害活性を有する阻害剤としての医薬品の製造のために用いられるので、アテローム性動脈硬化症などの治療のための医薬品において使用することができる。
以下、具体的な実施例を合わせて本発明をさらに説明するが、本発明はこれらの実施例に限定されない。
(化合物の調製例)
下記の調製例において、NMRはVarian製Mercury-Vx 300M装置を用いて測定した。NMR較正:δ H 7.26 ppm(CDCl3)、2.50 ppm(DMSO-d6)、3.15 ppm(CD3OD)、試薬が主に上海化学試薬会社によって提供され、薄層クロマトグラフィー(TLC)シリカゲル平板が山東煙台会友シリカゲル開発有限会社製、型式HSGF 254であり、化合物精製に使用された順相カラムクロマトグラフィーのシリカゲルは、山東青島海洋加工工場分工場製、型式zcx-11、200-300メッシュである。
調製例1(化合物番号2、6)
40.0 g (0.266 mol) (R)-カルボンを含む40 mlメタノール溶液を0℃に冷却した後に、32.0 g (0.57 mol) KOHを含む40 ml水と120 mlメタノールとの混合溶液を加えた。得られた混合液をまた-5℃に冷却した後、30 m1 30% H2O2を加え、10分後、温度が15℃に上昇し、25分撹拌した後、また- 3℃に冷却した。さらに、35 ml 30% H2O2を加え、0℃にて2.5時間撹拌した。TLCで原料がなくなったことを検出した後に、多くの粉砕した氷で反応をクエンチさせ、酢酸エチルで抽出し、飽和食塩水で洗浄し、乾燥、濃縮した。粗生成物に氷浴中で1L1 mol/lの水酸化ナトリウム水溶液を加え、1時間加熱回流し、室温に冷却し、20%塩酸を低温下で加え、pHを酸性に調整し、吸引濾過して下記淡黄色固体の生成物2-1(共29.8 g、67%)が得られた。1H NMR (CDCl3 , 300 MHz) δ 4.83 (dd, J = 13.8, 15.3 Hz, 2H), 2.74-2.41 (m, 5H), 1.74 (s, 3H), 1.69 (s, 3H)。
0℃にて、化合物2-1 (380 mg、2.29 mmol)のジクロロメタン溶液にトリエチルアミン (302 mg、2.98 mmol)を加え、5分撹拌した後、トリフルオロメタンスルホン酸無水物 (0.50 ml、2.98 mmol)を加えた。0℃にて1時間撹拌して、TLCで原料がなくなったことを検出した後に、石油エーテル/エーテル(v/v)=1/1を加えてフラッシュカラムクロマトグラフィーにより精製して下記生成物2-2 (726mg、2.44 mmol、定量)が得られた。 1H NMR (CDCl3, 300 MHz) δ 4.87 (s, 1H), 4.79 (s, 1H), 2.79-2.36 (m, 5H), 1.84(s, 3H), 1.75(s, 3H )。
化合物2-2をMeOH (2.0 ml) と DMF (3.0 ml)に溶解させ、Pd(OAc)2 (8.0 mg、0.04 mmol)、PPh3 (11.0 mg、0.04 mmol)とEt3N (0.15 ml、1.02 mmol)を加え、一酸化炭素バルーンを入れて一晩回流させた。翌日、室温に冷却し、酢酸エチルで希釈し、水で洗浄し、飽和食塩水で洗浄し、乾燥濃縮し、カラムクロマトグラフィー(n-ヘキサン/酢酸エチル(v/v)= 25:1) により単離精製して生成物として下記透明な油状物のメチルエステル2-3(50 mg、0.24 mmol、71%)が得られた。1H NMR (CDCl3, 300 MHz) δ4.81 (s, 1H), 4.75 (s, 1H), 3.80 (s, 3H), 2.72-2.30 (m, 5H), 1.92 (s, 3H), 1.79 (s, 3H)。
二酸化セレン (50 mg、0.241 mmol)をジクロロメタンに溶解させ、tert-ブチルヒドロペルオキシド(0.09 ml、0.482 mmol)を滴下して、0℃に冷却し、酢酸(0.002 ml、0.0241 mmol)を加えて、約30分後二酸化セレンが完全に溶解した後に、化合物2-3であるジクロロメタン溶液を加え、室温に昇温させて36時間撹拌し、原料がほとんどなくなって、酢酸エチルで希釈し、10%水酸化カリウム水溶液で洗浄し、飽和食塩水で洗浄し、乾燥濃縮した。カラムクロマトグラフィー(ジクロロメタン:メタノール(v/v)=50:1)により単離し、生成物として下記淡黄色油状物の化合物2-4 (8 mg、14.87%)が得られた。1H NMR (d-DMSO, 300 MHz) δ5.18 (s, 1H), 4.97 (s, 1H), 4.15 (s, 2H), 3.82 (s, 3H), 2.83-2.37 (m, 5H), 1.87 (s, 3H)。
0℃にて、化合物2-4 (400 mg、1.78 mmol) のテトラヒドロフラン溶液にBH3-Me2S (0.54 ml、5.35 mmol)を滴下した後に、室温に昇温させ、2 h攪拌し、また0℃に冷却させ、1:1のTHF:MeOH溶液20 mlを加えた後に、30%H2O2(7.6 ml)と3M NaOHの水溶液(17.7 ml)を加え、室温に昇温させて2h攪拌し、TLCで原料がなくなったことを検出した後に、酢酸エチルで希釈し、10%Na2SO3水溶液で洗浄し、飽和食塩水で洗浄し、乾燥濃縮し、カラムクロマトグラフィー(ジクロロメタン:メタノール(v/v)=10:1)により単離して生成物として下記トリヒドロキシ基化合物2-5(180 mg,41.31%)が得られた。1H NMR (CD3OD, 300 MHz) δ4.12(brs, 1H), 3.72(s, 3H), 3.74-3.62 (m, 4H), 2.42 (d, J = 16.2 Hz, 1H), 2.18-2.09 (m, 2H), 1.99-1.83 (m, 1H), 1.59-1.22 (m, 1H), 1.32-1.24 (m, 1H)。
化合物2-5(180 mg、0.737 mmol)をDMFに溶解させてイミダゾール(302 mg、4.43 mmol)、DMAP(cat.) を加え、5 min攪拌した後にTBSCl (667 mg、4.43 mmol)を加え、得られた混合物を室温にて一晩攪拌した。翌日、水を加えて反応をクエンチさせ、酢酸エチルで抽出した。有機相を飽和食塩水で洗浄し、乾燥濃縮した。カラムクロマトグラフィー(n-ヘキサン:酢酸エチル(v/v)= 50:1) により精製して下記化合物2-6(310 mg、収率80%)が得られた。1H NMR (CDCl3, 300 MHz) δ4.16(brs, 1H), 3.71 (s, 3H), 3.68-3.56 (m, 4H), 2.34 (d, J = 16.2Hz, 1H), 2.13-2.03 (m, 2H), 2.01 (s, 3H), 1.87-1.76 (m, 1H), 1.63-1.41 (m, 1H), 1.34 (dd, J = 8.7, 18.9 Hz, 1H), 0.88 (s, 27H), 0.03 (s, 18H)。
ドライアイス/アセトン浴にて化合物2-6(310 mg、0.529 mmol)のTHF溶液にDIBAL-H(1.2 ml、1.17 mmol)を滴下した後に、室温に昇温して2 h撹拌した。TLCで原料がなくなったことを検出した後に、飽和NaHCO3水溶液を加えて反応をクエンチさせ、得られた混合物を室温に昇温し、吸引濾過して、エーテルで洗浄し、濾液を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、濃縮し、次のステップに直接進む。粗生成物をジクロロメタンに溶解させ、0℃にてDMP(270 mg、0.635 mmol)を加え、室温に昇温して1h攪拌した。飽和チオ硫酸ナトリウム溶液/飽和炭酸水素ナトリウム溶液(v/v)=1/1を加えて反応をクエンチさせ、ジクロロメタンで抽出し、飽和食塩水で洗浄し、濃縮し、カラムクロマトグラフィー(n-ヘキサン/酢酸エチル(v/v)=50/1)により精製し、下記生成物2-7(185 mg、収率63%)が得られた。1H NMR (CDCl3, 300 MHz) δ10.14 (s, 1H), 4.27 (s, 1H), 3.76-3.58 (m, 4H), 2.45 (d, J = 13.2 Hz, 1H), 2.15 (s, 3H), 1.89-1.08 (m, 5H), 0.92 (s, 27H), 0.03 (s, 18H)。
ヨウ化物267(311 mg、1.16 mmol)を乾燥のTHFに溶解させ、-30℃に冷却し、イソプロピルマグネシウムクロリド(0.6 ml、1.16 mmol)を滴下し、この温度下で30分攪拌した後に、化合物2-7(214 mg、0.385 mmol)のTHF溶液を加え、室温に昇温して30分撹拌した後に、飽和塩化アンモニウム溶液を加えて反応をクエンチさせた。酢酸エチルで抽出し、有機相を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、濃縮し、次のステップに直接進む。粗生成物をジクロロメタンに溶解させ、0℃にてDMP(245 mg、0.580 mmol)を加えて、室温に昇温して一晩攪拌した。翌日、飽和チオ硫酸ナトリウム溶液/飽和炭酸水素ナトリウム溶液=1/1を加えて反応をクエンチさせ、ジクロロメタンで抽出し、飽和食塩水で洗浄し、濃縮し、カラムクロマトグラフィー(n-ヘキサン/酢酸エチル(v/v)=25/1)により精製して、下記生成物2-8(87mg、収率33%)が得られた。1H NMR (CDCl3, 300 MHz) δ4.21(brs, 1H), 3.72-3.56 (m, 4H), 2.24 (s, 3H), 2.14-1.86 (m, 4H), 1.52-1.46 (m, 1H), 1.41 (q, J = 13.3 Hz, 1H), 0.94 (s, 27H), 0.03 (s, 6H), 0.02 (s, 12H)。
化合物2-8 (80 mg、0.115 mmol)をトルエン(2 ml)とメタノール(0.5 ml)に溶解させ、得られた混合物を外温80℃に加熱して一晩回流した。翌日、得られたものを濃縮してカラムクロマトグラフィー(n-ヘキサン/酢酸エチル(v/v)=10/1)により単離し、下記生成物2-9(77 mg、収率99%)が得られた。1H NMR (CDCl3, 300 MHz) δ3.82 ( dd, J = 4.8, 11.1 Hz, 1H), 3.79 (s, 3H), 3.67-3.55 (m, 4H), 2.46 (dd, J = 12.3, 3.6 Hz, 1H), 2.25 (s, 3H), 2.07 (d, J = 14.2 Hz, 1H), 1.82 (d, J = 13.8 Hz, 1H), 1.63-1.1.47 (m, 2H), 1.32 (dd, J = 12.9, 24.6 Hz, 1H), 1.19 (s, 3H), 1.08 (dd, J = 12.6, 26.1 Hz, 1H), 0.90 (s, 9H), 0.88 (s, 18H), 0.11 (s, 3H), 0.08 (s, 3H), 0.02 (s, 12H)。
0℃にてLHMDS(1 ml、0.85 mmol)のTHF溶液に化合物2-9 (57 mg、0.085 mmol)のTHF溶液を滴下して、室温に昇温して4 h撹拌し、さっそくニコチノイルクロリド塩酸塩を加熱して、室温にて2 h撹拌した。TLCで原料がなくなったことを検出した後に、2 ml酢酸を加えて反応をクエンチさせ、10 ml水で希釈し、ジクロロメタンで抽出し、無水硫酸ナトリウムで乾燥し、濃縮した。カラムクロマトグラフィー(n-ヘキサン/アセトン(v/v)=3/1)により精製し、下記黄色固体の生成物2-10 (30 mg、収率47.4%)が得られた。1H NMR (CDCl3, 300 MHz) δ9.04 (s, 1H), 8.73 (d, J = 3.3 Hz, 1H), 8.17 (d, J = 8.1 Hz, 1H), 7.44 (dd, J = 4.8, 8.1 Hz, 1H), 6.48 (s, 1H), 3.93 (dd, J = 4.8, 11.4 Hz, 1H), 3.69-3.58 (m, 4H), 2.61 (dd, J = 3.6, 12.3 Hz, 1H), 2.19 (d, J = 14.1 Hz, 1H), 1.87 (d, J = 12.9 Hz, 1H), 1.68-1.63 (m, 1H), 1.54 (dd, J = 5.7, 11.1 Hz, 1H), 1.39 (dd, J = 12.9, 24.6 Hz, 1H), 1.29 (s, 3H), 1.27-1.18 (m, 1H), 0.87 (s, 27H), 0.18 (s, 6H), 0.13 (s, 6H)。
塩化アセチル(13 μl、0.175 mmol)を0.1 mlメタノールに滴下して、得られた混合物を室温にて5分撹拌した後に、化合物2-10 (13 mg、0.018 mmol)のメタノール溶液を加え、室温にて1時間撹拌した。得られたものを濃縮して、次のステップに直接進む。粗生成物をジクロロメタンに溶解させ、触媒量のDMAP、トリエチルアミン(25 μl、0.175 mmol)、無水酢酸(9 μl、0.09 mmol)を加え、室温にて30分攪拌した。TLCで原料がなくなったことを検出した後に、水を加えて反応をクエンチさせ、酢酸エチルで抽出し、無水硫酸ナトリウムで乾燥し、濃縮して、次のステップに直接進む。
粗生成物2 (10 mg、0.019 mmol)と塩化セリウム(III)七水和物(50 mg、0.133 mmol)をメタノールに溶解させ、-78℃に冷却し、ゆっくりと水素化ほう素ナトリウム(5.1 mg、0.133 mmol)を加え、得られた混合物を原料がなくなるまで30分撹拌した。アセトンを加えて反応をクエンチさせ、酢酸エチルで希釈し、有機相を水で洗浄し、飽和食塩水で洗浄し、乾燥、濃縮、カラムクロマトグラフィー(ジクロロメタン/メタノール(v/v)=25/1)により単離精製し、下記淡黄色固体の最終生成物6 (9 mg、90%)が得られた。1H NMR (CDCl3, 300 MHz) δ9.25 (s, 1H), 8.87 (s, 1H), 8.63 (s, 1H), 7.92 (s, 1H), 6.84 (s, 1H), 5.08-5.04 (m, 1H), 4.45 (d, J = 10.2 Hz, 1H), 4.17-4.06 (m, 4H), 2.47-1.30 (m, 7H), 2.09 (s, 3H), 2.07 (s, 3H), 2.02 (s, 3H),1.24 (s, 3H)。
調製例2(化合物番号7)
調製例1で得られた化合物7-1(3.298 g、15.84 mmol)から出発して、それを塩化セリウム(III)七水和物(8.86 g、23.76 mmol)とともにメタノールに溶解させ、0℃に冷却し、ゆっくり水素化ほう素ナトリウム(899 mg、23.76 mmol)を加え、得られた混合物を原料がなくなるまで30分攪拌した。アセトンを加えて反応をクエンチさせ、酢酸エチルで希釈し、有機相を水で洗浄し、飽和食塩水で洗浄し、乾燥し、濃縮し、カラムクロマトグラフィー(石油エーテル/酢酸エチル(v/v)=10/1)により単離精製し、透明油状物の生成物7-2 (3.28 g、99%)が得られた。1H NMR (CDCl3, 300 MHz) δ4.75 (dd, J = 1.2, 5.7 Hz, 2H), 3.75 (brs, 1H), 3.71 (s, 3H), 2.45 (brd, J =14.4 Hz, 1H), 2.30-2.11 (m, 3H), 2.03 (s, 3H), 1.68 (s, 3H), 1.52 (td, J = 12, 9.9 Hz, 1H)。化合物12(2.35 g、11.17 mmol)をDMFに溶解させ、イミダゾール(1.60 g、22.34 mmol)、DMAP(cat.)を加え、5 min撹拌した後にTBSCl (3.40 g、22.34 mmol)を加え、得られた混合物を室温にて一晩攪拌した。翌日、水を加えて反応をクエンチさせ、酢酸エチルで抽出した。有機相を飽和食塩水で洗浄し、乾燥濃縮した。カラムクロマトグラフィー (石油エーテル:酢酸エチル(v/v)= 50:1) により精製して、下記透明な油状物の化合物7-3(3.55 g、収率98%)が得られた。1H NMR (CDCl3, 300 MHz) δ4.74 (s, 2H), 4.24 (brs, 1H), 3.72 (s, 3H), 2.41 (brd, J = 14.1 Hz, 1H), 2.23-2.02 (m, 3H), 1.98 (s, 3H), 1.68 (s, 3H), 1.52 (td, J = 12.3, 10.2 Hz, 1H), 0.90 (s, 9H), 0.10 (s, 3H), 0.09 (s, 3H)。
ドライアイス/アセトン浴にて化合物7-3(3.55 g、10.94 mmol)のTHF溶液にDIBAL-H(24.10 ml、24.10 mmol)を滴下した後に、室温に昇温して2 h撹拌した。TLCで原料がなくなったことを検出した後に、飽和NaHCO3水溶液を加えて反応をクエンチさせ、得られた混合物を室温に昇温して、吸引濾過して、エーテルで洗浄し、ろ液を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、濃縮し、次のステップに直接進む。粗生成物をジクロロメタンに溶解させ、0℃にてDMP(5.60 g、13.20 mmol)を加え、室温に昇温して1 h撹拌した。飽和チオ硫酸ナトリウム溶液/飽和炭酸水素ナトリウム溶液(v/v)=1/1を加えて反応をクエンチさせ、ジクロロメタンで抽出し、飽和食塩水で洗浄し、濃縮し、カラムクロマトグラフィー(n-ヘキサン/酢酸エチル(v/v)=50/1)により精製し、下記生成物7-4(2.928 g、収率91%)が得られた。1H NMR (CDCl3, 300 MHz) δ10.18 (s, 1H), 4.75 (s, 2H), 4.34 (brs, 1H), 2.52 (brd, J = 15.3 Hz), 2.16 (s, 3H), 2.12-1.83 (m, 3H), 1.75 (s, 3H), 1.52 (td, J = 12.6, 10.2 Hz, 1H), 0.93 (s, 9H), 0.14 (s, 3H), 0.12 (s, 3H)。
ヨウ化物267(656 mg、2.45 mmol)を乾燥のTHFに溶解させ、-30℃に冷却し、2 MイソプロピルマグネシウムクロリドのTHF溶液(1.5 ml、2.45 mmol)を滴下し、この温度下で30分撹拌した後に、化合物7-4(240 mg、0.82 mmol)のTHF溶液を加え、室温に昇温して30分撹拌した後に、飽和塩化アンモニウム溶液を加えて反応をクエンチさせた。酢酸エチルで抽出し、有機相を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、濃縮し、次のステップに直接進む。粗生成物7-5をジクロロメタンに溶解させ、0℃にてDMP(519 mg、1.23 mmol)を加え、室温に昇温して一晩攪拌した。翌日、飽和チオ硫酸ナトリウム溶液/飽和炭酸水素ナトリウム溶液(v/v)=1/1を加えて反応をクエンチさせ、ジクロロメタンで抽出し、飽和食塩水で洗浄し、濃縮し、カラムクロマトグラフィー(n-ヘキサン/酢酸エチル(v/v)=25/1)により精製し、下記生成物7-6(157 mg、2つのステップで収率 45%)が得られた。1H NMR (CDCl3, 300 MHz) δ4.73 (s, 2H), 4.29 (s, 1H), 2.36 (dt, J = 7.8, 1.8 Hz, 1H), 2.30 (s, 3H), 2.26-1.97 (m, 3H), 1.72 (s, 6H), 1.68 (s, 6H), 1.58 (td, J = 12.6, 10.2 Hz, 1H), 0.88 (s, 9H), 0.08 (s, 6H)。
化合物7-6 (1.50 g、3.46 mmol) をトルエン(60.0 ml)とメタノール(15.0 ml)に溶解させ、得られた混合物を外温80℃に加熱して一晩回流させた。翌日、得られたものを濃縮してカラムクロマトグラフィー(n-ヘキサン/酢酸エチル(v/v)=10/1)により単離し、下記生成物7-7(黄色油状物、1.21 g、収率86%)が得られた。1H NMR (CDCl3, 300 MHz) δ4.71 (s, 2H), 3.88 (dd, J = 6.0, 12.0 Hz, 1H), 3.75 (s, 3H), 2.52 (dd, J = 3.0, 12.0 Hz, 1H), 2.20 (s, 3H), 2.15-1.99 (m, 3H), 1.80-1.74 (m, 1H), 1.69 (s, 3H), 1.36 (td, J = 12.6, 10.2 Hz, 1H), 1.19 (s, 3H), 0.88 (s, 9H), 0.09 (s, 3H), 0.07 (s, 3H)。
0℃にて1 MのLHMDS(2.00 ml、2.00 mmol)THF溶液に化合物7-7 (78.00 mg、0.19 mmol) のTHF溶液を滴下し、室温に昇温して4 h撹拌し、さっそくニコチノイルクロリド塩酸塩を加熱して、室温にて2 h撹拌した。TLCで原料がなくなったことを検出した後に、酢酸を加えて反応をクエンチさせ、水で希釈し、ジクロロメタンで抽出し、無水硫酸ナトリウムで乾燥し、濃縮した。カラムクロマトグラフィー(n-ヘキサン/アセトン(v/v)=3/1)により精製し、下記白色固体の重要な中間体7-8 (41.00 mg、2つのステップで収率45%)が得られた。1H NMR (CDCl3, 300 MHz) δ9.06 (d, J = 1.2 Hz, 1H), 8.75 (d, J = 3.6 Hz, 1H), 8.19 (d, J = 8.4 Hz, 1H), 7.45 (dd, J = 4.8, 8.1 Hz, 1H), 6.50 (s, 1H), 4.89 (s, 2H), 4.03 (dd, J = 10.8, 4.8 Hz, 1H), 2.71 (dd, J = 12.3, 3.6 Hz, 1H), 2.28 (d, J = 13.5 Hz, 1H), 2.13 (t, J = 12.9 Hz, 1H), 1.88 (d, J = 13.8 Hz, 1H), 1.76 (s, 3H), 1.44 (q, J = 12.9 Hz, 1H), 1.34 (s, 3H), 1.31-1.23(m, 1H), 0.96 (s, 9H), 0.07 (s, 3H), 0.04 (s, 3H)。
化合物7-8 (134 mg、0.279 mmol)を氷酢酸(7.4 ml)と水(0.03 ml)に溶解させ、酢酸銀(100 mg、0.594 mmol)とヨウ素 (83 mg、0.327 mmol)を加え、室温にて一晩攪拌した。翌日、水を加えて酢酸エチルで抽出し、有機相を飽和食塩水で洗浄し、濃縮し、減圧下で蒸発させ、カラムクロマトグラフィー(ジクロロメタン/メタノール(v/v)=25/1)により単離して、1対のジアステレオマー7-9-a(33 mg)と7-9-b (44 mg)を含む下記化合物7-9が得られた。7-9-a:1H NMR (CDCl3, 400 MHz) δ 9.03 (d, J = 2.8Hz, 1H), 8.73 (d, J = 4.8 Hz, 1H), 8.16 (dd, J = 2.8, 10.4 Hz, 1H), 7.44 (dd, J = 6.8, 11.2 Hz, 1H), 6.44 (s, 1H), 4.08 (dd, J = 12.0, 32.0 Hz, 2H), 4.00 (dd, J = 4.0, 8.0 Hz,1H), 2.68 (dd, J = 4.0, 16.0 Hz, 1H), 2.21 (d, J = 16.0 Hz, 1H), 2.11 (s, 3H), 2.01 (d, J = 12.0 Hz, 1H), 1.72 (t, J = 12.0 Hz, 1H), 1.37 (dd, J = 12.0, 24.0 Hz, 1H), 1.31 (s, 3H), 1.20 (s, 3H), 1.15 (dd, J = 8.0, 24.0 Hz, 1H), 0.95 (s, 9H), 0.19 (s, 3H), 0.14 (s, 3H)。
7-9-b:1H NMR (CDCl3, 400 MHz) δ9.05 (s, 1H), 8.75 (d, J = 4.0 Hz, 1H), 8.18 (d, J = 8.0 Hz, 1H), 7.45 (dd, J = 4.0, 8.0 Hz, 1H), 6.43 (s, 1H), 4.07 (dd, J = 12.0, 32.0 Hz, 2H), 3.98 (dd, J = 4.0, 8.0 Hz,1H), 2.66 (dd, J = 4.0, 16.0 Hz, 1H), 2.36 (d, J = 16.0 Hz, 1H), 2.12 (s, 3H), 1.89 (d, J = 12.0 Hz, 1H), 1.70 (t, J = 12.0 Hz, 1H), 1.37-1.26 (m, 2H), 1.32 (s, 3H), 1.22 (s, 3H), 0.95(s, 9H), 0.19 (s, 3H), 0.14 (s, 3H)。
塩化アセチル(0.06 ml、0.6 mmol)を0.7 mlメタノールに滴下し、得られた混合物を室温にて5分撹拌した後に、化合物7-9 (33 mg、0.060 mmol)のメタノール溶液を加え、室温にて1時間撹拌した。濃縮して、次のステップに直接進む。粗生成物をジクロロメタンに溶解させ、触媒量のDMAP、トリエチルアミン(0.09 ml、0.60 mmol)、無水酢酸(0.04 ml、0.30 mmol)を加え、室温にて一晩攪拌した。TLCで原料がなくなったことを検出した後に、水を加えて反応をクエンチさせ、酢酸エチルで抽出し、無水硫酸ナトリウムで乾燥し、濃縮し、カラムクロマトグラフィー(ジクロロメタン/メタノール(v/v)=50/1)により単離精製し、黄色固体の化合物7-10(収率80%)が得られた。前のステップにおいて7-9が7-9-aと7-9-bに分かれたので、相応的に下記7-10-aと7-10-bが得られた。
7-10-a: 1H NMR (CDCl3, 400 MHz) δ9.11 (s, 1H), 8.79 (s, 1H), 8.22 (d, J = 8.0 Hz, 1H), 7.48 (s, 1H), 6.55 (s, 1H), 5.33 (dd, J = 4.0, 8.0 Hz, 1H), 4.47 (dd, J = 12.0, 100.0 Hz, 2H), 2.82 (dd, J = 4.0, 8.0 Hz, 1H), 2.23-1.86 (m, 3H), 2.22 (s, 3H), 2.11 (s, 3H), 2.05 (s, 3H), 1.59-1.29 (m, 2H), 1.52 (s, 3H), 1.45 (s, 3H)。
7-10-b: 1H NMR (CDCl3, 400 MHz) δ9.08 (s, 1H), 8.76 (d, J = 4.0 Hz, 1H), 8.19 (d, J = 4.0 Hz, 1H), 7.46 (dd, J = 4.0, 8.0 Hz, 1H), 6.55 (s, 1H), 5.29 (dd, J = 4.0, 8.0 Hz, 1H), 4.44 (dd, J = 8.0, 48.0 Hz, 2H), 2.79 (dd, J = 4.0, 8.0 Hz, 1H), 2.38-1.97 (m, 3H), 2.19 (s, 3H), 2.10 (s, 3H), 2.03 (s, 3H), 1.57-1.28 (m, 2H), 1.47 (s, 3H), 1.43 (s, 3H)。
化合物7-10 (11 mg、0.021 mmol)と塩化セリウム(III)七水和物(55 mg、0.147 mmol)をメタノールに溶解させ、-78℃に冷却して、ゆっくり水素化ほう素ナトリウム(5.6 mg、0.147 mmol)を加え、得られた混合物を原料がなくなったまで30分撹拌した。アセトンを加えて反応をクエンチさせ、酢酸エチルで希釈し、有機相を水で洗浄し、飽和食塩水で洗浄し、乾燥し、濃縮し、カラムクロマトグラフィー(ジクロロメタン/メタノール=50/1)により単離精製し、下記淡黄色固体の最終生成物7 (8.5 mg、収率78%)が得られた。 1HNMR (CDCl3, 400 MHz) δ9.01 (d, J = 4.0 Hz, 1H), 8.69 (dd, J = 4.0, 8.0 Hz, 1H), 8.09 (td, J = 4.0, 8.0 Hz, 1H), 7.41 (dd, J = 4.0, 8.0 Hz, 1H), 6.49 (s, 1H), 5.08 (dd, J = 4.0, 8.0 Hz, 1H), 4.56-4.34 (m, 3H), 2.34-1.99 (m, 2H), 2.17 (s, 3H), 2.07 (s, 3H), 1.99 (s, 3H), 1.89 (t, J = 12.0 Hz, 1H), 1.58-1.51 (m, 1H), 1.48 (s, 3H), 1.30 (s, 3H), 1.13 (dd, J = 12.0, 24.0 Hz, 1H)。
調製例3(化合物番号1、4、5)
調製例2で得られた化合物7-8(28 mg、0.059 mmol)から出発して、それをMeOHに溶解させ、得られたものに塩化アセチル(44 μl、0.58 mmol)を滴下し、得られた混合物を室温にて1時間撹拌した。濃縮し、次のステップに直接進む。粗生成物をジクロロメタンに溶解させ、触媒量のDMAP、トリエチルアミン(85 μl、0.59 mmol)、無水酢酸(30 μl、0.295 mmol)を加え、室温にて30分撹拌した。TLCで原料がなくなったことを検出した後に、水を加えて反応をクエンチさせ、酢酸エチルで抽出し、有機相を無水硫酸ナトリウムで乾燥し、濃縮し、カラムクロマトグラフィー(ジクロロメタン/メタノール(v/v)=50/1)により単離精製し、下記黄色固体の化合物1(収率80%)が得られた。 1HNMR (CDCl3, 300 MHz) δ9.06 (s, 1H), 8.74 (s, 1H), 8.17 (d, J = 8.1 Hz, 1H), 7.44 (s, 1H), 6.54 (s, 1H), 5.29 (dd, J = 5.4, 6.6 Hz, 1H), 2.99 (t, J = 3.9 Hz, 1H), 2.83-2.74 (m, 1H), 2.46 (d, J = 12.6 Hz, 1H), 2.30-1.98 (m, 2H), 1.80-1.69 (m, 1H), 2.17 (s, 3H), 1.63 (s, 3H), 1.60 (s, 3H), 1.32 (s, 3H)。
化合物1の調製例2の合成方法により化合物4(黄色固体、収率80%)が得られた。1HNMR (CDCl3, 300 MHz) δ8.99 (s, 1H), 8.68 (s, 1H), 8.09 (d, J = 8.1 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 6.49 (s, 1H), 5.06 (d, J = 4.5 Hz, 1H), 4.47 (d, J = 9.9 Hz, 1H), 2.47 (d, J = 13.8 Hz, 1H), 2.40-1.72 (m, 5H), 2.22 (s, 3H), 1.68 (s, 3H), 1.66 (s, 3H), 1.24 (s, 3H)。
化合物4(5.0 mg、0.012 mmol)と無水醋酸亜鉛(5 mg、0.024 mmol)を氷酢酸に溶解させ、80℃に加熱して一晩置く。翌日、酢酸エチルで希釈し、有機相を順に水で洗浄し、飽和食塩水で洗浄し、乾燥濃縮し、薄層クロマトグラフィー(ジクロロメタン/メタノール=25/1)により単離し、下記生成物5 (淡黄色固体、収率40%)が得られた。1HNMR (CDCl3, 300 MHz) δ9.01 (s, 1H), 8.69 (s, 1H), 8.10 (d, J = 8.1 Hz, 1H), 7.41 (s, 1H), 6.49 (s, 1H), 5.05 (d, J = 4.8 Hz, 1H), 4.44 (d, J = 5.1 Hz, 1H), 2.36 (d, J = 10.2 Hz, 1H), 2.26 (s, 3H), 2.04 (s, 3H), 2.17-0.85 (m, 5H), 1.50 (s, 3H), 1.49 (s, 3H), 1.28 (s, 3H)。
調製例4(化合物番号13、14)
塩化アセチル(0.07 ml、0.951 mmol)を0.4 mlメタノールに滴下し、得られた混合物を室温にて5分撹拌した後に、化合物7-9 (57 mg、0.096 mmol)のメタノール溶液を加え、室温にて1時間撹拌した。濃縮し、減圧下で蒸発させ、次のステップに直接進む。粗生成物、p-シアノ安息香酸、EDC・HCl、触媒量のDMAPをジクロロメタンに溶解させ、室温にて一晩攪拌した。翌日、TLCで原料がなくなったことを検出した後に、水を加えて反応をクエンチさせ、酢酸エチルで抽出し、無水硫酸ナトリウムで乾燥し、濃縮し、カラムクロマトグラフィー(ジクロロメタン/メタノール(v/v)=50/1)により単離精製し、下記化合物14 (5 mg、収率10%)が得られた。 1HNMR (CDCl3, 300 MHz) δ8.94 (s, 1H), 8.58 (d, J = 3.3 Hz, 1H), 8.12 (d, J = 7.8 Hz, 2H), 8.06 (d, J = 5.4 Hz, 1H), 7.66 (d, J = 8.4 Hz, 2H), 7.40 (dd, J = 4.8, 7.8 Hz, 1H), 6.73 (s, 1H), 4.24 (s, 2H), 3.95 (s, 1H), 3.54 (s, 1H), 2.64 (d, J = 12.0 Hz, 1H), 1.97-1.40 (m, 4H), 1.39 (s, 3H), 1.27 (s, 3H)。 和13 (16mg, 収率32%): 1HNMR (CDCl3, 300 MHz) δ9.01 (s, 1H), 8.73 (s, 1H), 8.26-8.11 (m, 5H), 7.83-7.77 (m, 4H), 7.43 (dd, J = 8.1, 12.9 Hz, 1H), 6.48 (s, 1H), 5.72-5.68 (m, 1H), 4.52-4.26 (m, 2H), 2.90-2.83 (m, 1H), 2.40-1.09 (m, 5H), 1.64 (s, 3H), 1.31 (s, 3H)。
同じ方法により以下の化合物を合成した。
化合物11は、調製例4の化合物7-9を化合物7-8に置き換えて調製して得られ、
化合物12は、調製例2の化合物7-10を化合物11に置き換えて調製して得られた。
調製例5 (化合物番号8、9、10)
実施例5で得られた化合物11(30 mg、0.061 mmol)を氷酢酸(1.5 ml)と水(5.9 μl)に溶解させ、酢酸銀(21 mg、0.121 mmol)とヨウ素 (17 mg、0.665 mmol)を加え、室温にて一晩攪拌した。翌日、水を加えて酢酸エチルで抽出し、有機相を飽和食塩水で洗浄し、濃縮し、減圧下で蒸発させ、カラムクロマトグラフィー(ジクロロメタン/メタノール(v/v)=25/1)により単離して、1対のジアステレオマーを含む化合物9-1(合計16 mg、収率46.3%)が得られた。9-1-a: 1H NMR (CDCl3, 400 MHz) δ9.014 (s, 1H), 8.72 (d, J = 4.8 Hz, 1H), 8.19 (d, J = 8.1 Hz, 2H), 8.15 (d, J = 7.8 Hz, 1H), 7.80 (d, J = 8.7 Hz, 2H), 7.42 (dd, J = 4.5, 8.1 Hz, 1H), 6.53 (s, 1H), 5.57 (dd, J = 5.4, 12.3 Hz, 1H), 4.15 (s, 2H), 2.86 (d, J = 9.0 Hz, 1H), 2.33 (d, J = 4.5 Hz, 1H), 2.19 (s, 3H), 2.08-1.68 (m, 3H), 1.64 (s, 3H), 1.33 (dd, J = 8.1, 21.6 Hz, 1H), 1.24 (s, 3H)。
9-1-b: 1H NMR (CDCl3, 400 MHz) δ9.014 (s, 1H), 8.72 (d, J = 4.8 Hz, 1H), 8.19 (d, J = 8.1 Hz, 2H), 8.15 (d, J = 7.8 Hz, 1H), 7.80 (d, J = 8.7 Hz, 2H), 7.42 (dd, J = 4.5, 8.1 Hz, 1H), 6.53 (s, 1H), 5.57 (dd, J = 5.4, 12.3 Hz, 1H), 4.15 (s, 2H), 2.86 (d, J = 9.0 Hz, 1H), 2.45 (d, J = 13.5 Hz, 1H), 2.19 (s, 3H), 2.08-1.68 (m, 3H), 1.64 (s, 3H), 1.39 (dd, J = 12.9, 27.0 Hz, 1H), 1.24 (s, 3H)。
化合物9-1(16 mg、0.028 mmol)から出発し、それをジクロロメタンに溶解させ、DMAP(cat.)を加え、トリエチルアミン(0.03 ml、0.168 mmol)を滴下して、また無水酢酸(0.02 ml、0.084 mmol)を滴下して、室温にて一晩攪拌した。翌日、水を加えて反応をクエンチさせ、ジクロロメタンで抽出し、濃縮し、カラムクロマトグラフィー(ジクロロメタン/メタノール(v/v)=50/1)により単離し、化合物9(4.0 mg、収率23.3%)と8(4.0 mg, 収率23.3%)が得られた。1HNMR (CDCl3, 300 MHz) δ9.01 (s, 1H), 8.74 (s, 1H), 8.21-8.12 (m, 3H), 7.80 (t, J = 8.4 Hz, 2H), 7.43 (dd, J = 6.6, 13.8 Hz, 1H), 6.48 (s, 1H), 5.58-5.53 (m, 1H), 4.60-4.32 (m, 2H), 2.87 (d, J = 9.3 Hz, 1H), 2.43-2.22 (m, 3H), 2.19 (s, 3H), 2.10 (s, 3H), 1.56-1.13 (m, 2H), 1.45 (s, 3H), 1.35 (s, 3H)。8 (4.0 mg, 収率23.3%): 1HNMR (CDCl3, 300 MHz) δ8.92 (d, J = 2.1 Hz, 1H), 8.65 (d, J = 4.8 Hz, 1H), 8.20 (dd, J = 2.1, 8.4 Hz, 2H), 8.02 (d, J = 8.1 Hz, 1H), 7.81 (d, J = 8.4 Hz, 2H), 7.35 (dd, J = 5.1, 8.4 Hz, 1H), 6.37 (s, 1H), 5.67 (s, 1H), 4.59-4.36 (m, 2H), 3.25-3.23 (m, 1H), 2.80-2.66 (m, 1H), 2.33 (s, 3H), 2.32-1.66 (m, 2H), 2.07 (s, 3H), 1.99 (s, 3H), 1.52 (s, 3H), 1.47 (s, 3H), 1.11-0.96 (m, 1H)。
化合物7の調製例2の合成方法により下記化合物10 (収率80%)が得られた。 1HNMR (CDCl3, 300 MHz) δ8.93 (s, 1H), 8.64 (s, 1H), 8.21-8.12 (m, 3H), 7.80 (t, J = 8.4 Hz, 2H), 7.43 (dd, J = 6.6, 13.8 Hz, 1H), 6.43 (s, 1H), 5.38-5.27 (m, 1H), 4.58-4.32 (m, 3H), 2.62-1.57 (m, 5H), 2.19 (s, 3H), 2.10 (s, 3H), 1.45 (s, 3H), 1.35 (s, 3H), 0.92-0.85 (m, 1H)。
調製例6(キラル化合物の合成:化合物番号15-22)
天然物として(R)-カルボン(10.0 g、66.6 mmol)から出発し、それをL-プロリンのリチウム塩(810 mg、6.66 mmol)とともに丸底フラスコに入れ、またゆっくりTMSCN(8.86 ml*2、66.6 mmol*2)を加え、得られた懸濁液を室温にて12時間撹拌した後、また1eq TMSCNを加え、得られた混合物をまた室温にて12時間撹拌した。TLCで原料がなくなったことを検出した後に、100 ml THFを加えて希釈し、得られたものを100 ml 1 M塩酸とともに室温にて1時間撹拌した後に、水を加えて希釈し、エーテルで抽出し、有機相を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、濃縮した後に、中間体177が得られ、次のステップに直接進む。三酸化クロム(13.9 g、139.2 mmol)をゆっくり無水酢酸(54 ml)に加え、得られた混合物を室温にて完全に溶解するまで撹拌した後に、得られたクロム酸試薬を中間体177の-55℃のジクロロメタン溶液に滴下し、この温度下で30分攪拌した。TLCで原料がなくなったことを検出した後に、メタノールを加えて反応をクエンチさせ、水で希釈し、ジクロロメタンで抽出し、有機相を飽和炭酸水素ナトリウム水溶液で洗浄し、濃縮した。カラムクロマトグラフィー(石油エーテル/酢酸エチル(v/v)=10/1)により単離し、下記黄色油状物の生成物15-1(7.59 g,2つのステップで収率65%)が得られた。1H NMR (CDCl3, 300 MHz) δ4.87 (s, 1H), 4.77 (s, 1H), 2.78-2.32 (m, 5H), 2.06 (s, 3H), 1.68 (s, 3H)。
化合物15-1(9.64 g, 55.02 mmol)と塩化セリウム(III)七水和物(20.5 g, 55.02 mmol)をメタノールに溶解させ、氷水浴で冷却し、ゆっくり水素化ほう素ナトリウム(2.1 g, 55.02 mmol)を加え、得られた混合物を原料がなくなるまで30分撹拌した。アセトンを加えて反応をクエンチさせ、酢酸エチルで希釈し、有機相を水で洗浄し、飽和食塩水で洗浄し、乾燥し、濃縮し、カラムクロマトグラフィー(石油エーテル/酢酸エチル(v/v)=10/1)により単離精製し、下記無色透明な油状物の生成物15-2 (11.14 g、収率99%)が得られた。 1H NMR (CDCl3, 300 MHz) δ4.77 (s, 1H), 4.72 (s, 1H), 4.19 (d, J = 5.7 Hz, 1H), 2.73 (d, J = 7.2 Hz, 1H), 2.30-2.08 (m, 4H), 2.06 (s, 3H), 1.71 (s, 3H), 1.49 (dd, J = 12.6, 22.8 Hz, 1H)。 化合物24(11.14 g、62.86 mmol)をDMFに溶解させ、イミダゾール(8.60 g、125.71 mmol)、DMAP(cat.)を加えて5 min撹拌した後、TBSCl (18.95 g、125.71 mmol)を加え、得られた混合物を室温にて一晩攪拌した。翌日、水を加えて反応をクエンチさせ、酢酸エチルで抽出した。有機相を飽和食塩水で洗浄し、乾燥濃縮した。カラムクロマトグラフィー (石油エーテル:酢酸エチル(v/v)= 25:1) により精製し、下記無色透明な油状物の化合物15-3 (収率98%)が得られた。 1H NMR (CDCl3, 300 MHz) δ4.75 (s, 1H), 4.71 (s, 1H), 4.24 (brs, 1H), 2.30-2.01 (m, 4H), 1.99 (s, 3H), 1.69 (s, 3H), 1.49 (dd, J = 12.6, 22.8 Hz, 1H), 0.88 (s, 9H), 0.09 (s, 3H), 0.07 (s, 3H)。
ドライアイス/アセトン浴にて化合物15-3 (3.55 g、10.94 mmol)のTHF溶液にDIBAL-H(24.10 ml、24.10 mmol)を滴下した後に、室温にて2 h撹拌した。TLCで原料がなくなったことを検出した後に、飽和酒石酸カリウムナトリウム水溶液を加えて反応をクエンチさせ、得られた混合物を室温に昇温して攪拌し、ジクロロメタンで抽出し、無水硫酸ナトリウムで乾燥し、濃縮し、カラムクロマトグラフィー(石油エーテル/酢酸エチル(v/v)=25/1)により単離して、下記黄色油状物の生成物15-4(14.75 g、収率90%)が得られた。 1H NMR (CDCl3, 300 MHz) δ10.15 (s, 1H), 4.71 (s, 2H), 4.34 (brs, 1H), 2.51 (d, J = 14.4 Hz, 1H), 2.16 (s, 3H), 2.11-1.84 (m, 3H), 1.74 (s, 3H), 1.49 (dd, J = 12.6, 22.8 Hz, 1H), 0.90 (s, 9H), 0.14 (s, 3H), 0.12 (s, 3H)。
ヨウ化物267(656 mg、2.45 mmol)を乾燥のTHFに溶解させ、-30℃に冷却し、2 MイソプロピルマグネシウムクロリドのTHF溶液(1.5 ml、2.45 mmol)を滴下して、この温度下で30分撹拌した後に、化合物15-4(240 mg、0.82 mmol)のTHF溶液を加え、室温に昇温して30分撹拌した後に、飽和塩化アンモニウム溶液を加えて反応をクエンチさせた。酢酸エチルで抽出し、有機相を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、濃縮し、次のステップに直接進む。粗生成物15-5をジクロロメタンに溶解させ、0℃にてDMP(519 mg、1.23 mmol)を加えて、室温に昇温して一晩攪拌した。翌日、飽和チオ硫酸ナトリウム溶液/飽和炭酸水素ナトリウム溶液=1/1を加えて反応をクエンチさせ、ジクロロメタンで抽出し、飽和食塩水で洗浄し、濃縮し、カラムクロマトグラフィー(石油エーテル/酢酸エチル(v/v)=25/1)により精製し、下記生成物15-6(157 mg、2つのステップで収率 45%)が得られた。1H NMR (CDCl3, 300 MHz) δ4.73 (s, 2H), 4.29 (s, 1H), 2.36 (dt, J = 7.8, 1.8 Hz, 1H), 2.30 (s, 3H), 2.26-1.97 (m, 3H), 1.72 (s, 6H), 1.68 (s, 6H), 1.58 (td, J = 12.6, 10.2 Hz, 1H), 0.88 (s, 9H), 0.08 (s, 6H)。
化合物15-6 (1.50 g、3.46 mmol)をトルエン(60.0 ml)とメタノール(15.0 ml)に溶解させ、得られた混合物を外温80℃に加熱して一晩回流させた。翌日、得られたものを濃縮してカラムクロマトグラフィー(石油エーテル/酢酸エチル(v/v)=10/1)により単離し、下記生成物15-7 (黄色油状物、1.21 g、収率86%)が得られた。1H NMR (CDCl3, 300 MHz) δ4.71 (s, 2H), 3.88 (dd, J = 6.0, 12.0 Hz, 1H), 3.75 (s, 3H), 2.52 (dd, J = 3.0, 12.0 Hz, 1H), 2.20 (s, 3H), 2.15-1.99 (m, 3H), 1.80-1.74 (m, 1H), 1.69 (s, 3H), 1.36 (td, J = 12.6, 10.2 Hz, 1H), 1.19 (s, 3H), 0.88 (s, 9H), 0.09 (s, 3H), 0.07 (s, 3H)。
0℃にて1 MのLHMDS(2.00 ml、2.00 mmol)THF溶液に化合物15-7 (78.00 mg、0.19 mmol)のTHF溶液を滴下して、室温に昇温して4 h撹拌し、さっそくニコチノイルクロリド塩酸塩を加熱して、室温にて2 h撹拌した。TLCで原料がなくなったことを検出した後に、酢酸を加えて反応をクエンチさせ、水で希釈し、ジクロロメタンで抽出し、無水硫酸ナトリウムで乾燥し、濃縮した。カラムクロマトグラフィー(石油エーテル/アセトン(v/v)=3/1)により精製し、下記白色固体の重要な中間体15-8 (41.00 mg、2つのステップで収率45%)が得られた。1H NMR (CDCl3, 300 MHz) δ9.06 (d, J = 1.2 Hz, 1H), 8.75 (d, J = 3.6 Hz, 1H), 8.19 (d, J = 8.4 Hz, 1H), 7.45 (dd, J = 4.8, 8.1 Hz, 1H), 6.50 (s, 1H), 4.89 (s, 2H), 4.03 (dd, J = 10.8, 4.8 Hz, 1H), 2.71 (dd, J = 12.3, 3.6 Hz, 1H), 2.28 (d, J = 13.5 Hz, 1H), 2.13 (t, J = 12.9 Hz, 1H), 1.88 (d, J = 13.8 Hz, 1H), 1.76 (s, 3H), 1.44 (q, J = 12.9 Hz, 1H), 1.34 (s, 3H), 1.31-1.23(m, 1H), 0.96 (s, 9H), 0.07 (s, 3H), 0.04 (s, 3H)。
化合物15-8(134 mg、0.279 mmol)を氷酢酸 (7.4 ml) と水 (0.03 ml)に溶解させ、酢酸銀(100 mg、0.594 mmol)とヨウ素 (83 mg、0.327 mmol)を加えて室温にて一晩攪拌した。翌日、水を加えて、酢酸エチルで抽出し、有機相を飽和食塩水で洗浄し、濃縮して、減圧下で蒸発させ、カラムクロマトグラフィー(ジクロロメタン/メタノール(v/v)=25/1)により単離し、1対のジアステレオマー15-9-a (33mg)と15-9-b (44mg)を含む化合物15-9が得られた。15-9-a: 1H NMR (CDCl3, 400 MHz) δ 9.03 (d, J = 2.8Hz, 1H), 8.73 (d, J = 4.8 Hz, 1H), 8.16 (dd, J = 2.8, 10.4 Hz, 1H), 7.44 (dd, J = 6.8, 11.2 Hz, 1H), 6.44 (s, 1H), 4.08 (dd, J = 12.0, 32.0 Hz, 2H), 4.00 (dd, J = 4.0, 8.0 Hz,1H), 2.68 (dd, J = 4.0, 16.0 Hz, 1H), 2.21 (d, J = 16.0 Hz, 1H), 2.11 (s, 3H), 2.01 (d, J = 12.0 Hz, 1H), 1.72 (t, J = 12.0 Hz, 1H), 1.37 (dd, J = 12.0, 24.0 Hz, 1H), 1.31 (s, 3H), 1.20 (s, 3H), 1.15 (dd, J = 8.0, 24.0 Hz, 1H), 0.95 (s, 9H), 0.19 (s, 3H), 0.14 (s, 3H)。
15-9-b: 1H NMR (CDCl3, 400 MHz) δ9.05 (s, 1H), 8.75 (d, J = 4.0 Hz, 1H), 8.18 (d, J = 8.0 Hz, 1H), 7.45 (dd, J = 4.0, 8.0 Hz, 1H), 6.43 (s, 1H), 4.07 (dd, J = 12.0, 32.0 Hz, 2H), 3.98 (dd, J = 4.0, 8.0 Hz,1H), 2.66 (dd, J = 4.0, 16.0 Hz, 1H), 2.36 (d, J = 16.0 Hz, 1H), 2.12 (s, 3H), 1.89 (d, J = 12.0 Hz, 1H), 1.70 (t, J = 12.0 Hz, 1H), 1.37-1.26 (m, 2H), 1.32 (s, 3H), 1.22 (s, 3H), 0.95(s, 9H), 0.19 (s, 3H), 0.14 (s, 3H)。
塩化アセチル(0.06 ml、0.6 mmol)を0.7 mlメタノールに滴下し、得られた混合物を室温にて5分撹拌した後に、化合物15-9 (33 mg、0.060 mmol)のメタノール溶液を加え、室温にて1時間撹拌した。濃縮して、次のステップに直接進む。粗生成物をジクロロメタンに溶解させ、触媒量のDMAP、トリエチルアミン(0.09 ml、0.60 mmol)、無水酢酸(0.04 ml、0.30 mmol)を加えて室温にて一晩攪拌した。TLCで原料がなくなったことを検出した後に、水を加えて反応をクエンチさせ、酢酸エチルで抽出し、無水硫酸ナトリウムで乾燥し、濃縮し、カラムクロマトグラフィー(ジクロロメタン/メタノール(v/v)=50/1)により単離精製し、黄色固体の化合物15-10(収率80%)が得られた。前のステップにおいて15-9が15-9-aと15-9-bに分かれたので、相応的に15-10-a、15-10-a’ と15-10-b、15-10-b’ が得られた。
15-10-a: 1H NMR (CDCl3, 400 MHz) δ9.11 (s, 1H), 8.79 (s, 1H), 8.22 (d, J = 8.0 Hz, 1H), 7.48 (s, 1H), 6.55 (s, 1H), 5.33 (dd, J = 4.0, 8.0 Hz, 1H), 4.47 (dd, J = 12.0, 100.0 Hz, 2H), 2.82 (dd, J = 4.0, 8.0 Hz, 1H), 2.23-1.86 (m, 3H), 2.22 (s, 3H), 2.11 (s, 3H), 2.05 (s, 3H), 1.59-1.29 (m, 2H), 1.52 (s, 3H), 1.45 (s, 3H)。
15-10-a’: 1H NMR (CDCl3, 300 MHz) δ9.02 (d, J = 1.8 Hz, 1H), 8.72 (d, J = 4.5 Hz, 1H), 8.16 (td, J = 1.5, 7.8 Hz, 1H), 7.42 (dd, J = 5.1, 8.4 Hz, 1H), 6.55 (s, 1H), 5.38 (dd, J = 5.1, 11.7 Hz, 1H), 4.43 (s, 2H), 2.98 (s, 1H), 2.62 (d, J = 13.5 Hz, 1H), 2.50-1.12 (m, 4H), 2.30 (s, 3H), 2.23 (s, 3H), 2.14 (s, 3H), 1.66 (s, 3H), 1.49 (s, 3H)。
15-10-b: 1H NMR (CDCl3, 400 MHz) δ9.08 (s, 1H), 8.76 (d, J = 4.0 Hz, 1H), 8.19 (d, J = 4.0 Hz, 1H), 7.46 (dd, J = 4.0, 8.0 Hz, 1H), 6.55 (s, 1H), 5.29 (dd, J = 4.0, 8.0 Hz, 1H), 4.44 (dd, J = 8.0, 48.0 Hz, 2H), 2.79 (dd, J = 4.0, 8.0 Hz, 1H), 2.38-1.97 (m, 3H), 2.19 (s, 3H), 2.10 (s, 3H), 2.03 (s, 3H), 1.57-1.28 (m, 2H), 1.47 (s, 3H), 1.43 (s, 3H)。
15-10-b’: 1H NMR (CDCl3, 300 MHz) δ9.02 (d, J = 1.8 Hz, 1H), 8.72 (d, J = 4.5 Hz, 1H), 8.16 (td, J = 1.5, 7.8 Hz, 1H), 7.42 (dd, J = 5.1, 8.4 Hz, 1H), 6.55 (s, 1H), 5.38 (dd, J = 5.1, 11.7 Hz, 1H), 4.41 (dd, J = 11.7, 67.2 Hz, 2H), 2.98 (s, 1H), 2.62 (d, J = 13.5 Hz, 1H), 2.50-1.12 (m, 4H), 2.30 (s, 3H), 2.23 (s, 3H), 2.14 (s, 3H), 1.66 (s, 3H), 1.49 (s, 3H)。
化合物15-10 (11 mg、0.021 mmol) (順に15-10-a、15-10-a’、15-10-b、15-10-b’) と塩化セリウム(III)七水和物(55 mg、0.147 mmol)をメタノールに溶解させ、-78℃に冷却し、ゆっくり水素化ほう素ナトリウム(5.6 mg、0.147 mmol)を加え、得られた混合物を原料がなくなるまで30分撹拌した。アセトンを加えて反応をクエンチさせ、酢酸エチルで希釈し、有機相を水で洗浄し、飽和食塩水で洗浄し、乾燥し、濃縮し、カラムクロマトグラフィー(ジクロロメタン/メタノール(v/v)=50/1)により単離精製し、下記淡黄色固体の最終生成物15 (8.5 mg、収率78%)、16、17及び18が得られた。
15:1HNMR (CDCl3, 300 MHz) δ9.01 (s, 1H), 8.69 (d, J = 4.8 Hz, 1H), 8.09 (dd, J = 1.8, 8.1 Hz, 1H), 7.39 (dd, J = 4.8, 8.1 Hz, 1H), 6.49 (s, 1H), 5.08 (dd, J = 4.8, 12.0 Hz, 1H), 4.56-4.34 (m, 4H), 2.34-1.99 (m, 2H), 2.17 (s, 3H), 2.07 (s, 3H), 1.99 (s, 3H), 1.89 (t, J = 12.0 Hz, 1H), 1.58-1.51 (m, 1H), 1.48 (s, 3H), 1.30 (s, 3H), 1.13 (dd, J = 13.2, 26.1 Hz, 1H)。
並びに16: 1HNMR (CDCl3, 300 MHz) δ8.97 (s, 1H), 8.67 (dd, J = 1.2, 4.5 Hz, 1H), 8.09 (td, J = 1.8, 7.8 Hz, 1H), 7.39 (dd, J = 4.8, 8.1 Hz, 1H), 6.39 (s, 1H), 5.04 (dd, J = 4.8, 12.0 Hz, 1H), 4.78 (d, J = 9.6 Hz, 1H), 4.45 (dd, J = 12.3, 70.5 Hz, 2H), 2.59-1.24 (m, 6H), 2.22 (s, 3H), 2.08 (s, 3H), 1.92 (s, 3H), 1.63 (s, 3H), 1.50 (s, 3H)。
並びに17: 1HNMR (CDCl3, 300 MHz) δ9.00 (d, J = 2.1 Hz, 1H), 8.68 (dd, J = 0.9, 4.5 Hz, 1H), 8.09 (td, J = 1.5, 8.4 Hz, 1H), 7.40 (dd, J = 4.8, 8.1 Hz, 1H), 6.49 (s, 1H), 5.06 (dd, J = 5.1, 12.3 Hz, 1H), 4.52-4.32 (m, 4H), 2.39-2.23 (m, 2H), 2.16 (s, 3H), 2.03 (s, 3H), 1.99 (s, 3H), 2.02-1.85 (m, 2H), 1.54-1.15 (m, 2H), 1.48 (s, 3H), 1.24 (s, 3H)。
並びに18: 1HNMR (CDCl3, 300 MHz) δ8.97 (s, 1H), 8.67 (dd, J = 1.2, 4.5 Hz, 1H), 8.09 (td, J = 1.8, 7.8 Hz, 1H), 7.39 (dd, J = 4.8, 8.1 Hz, 1H), 6.39 (s, 1H), 5.03 (dd, J = 4.8, 12.0 Hz, 1H), 4.76 (d, J = 9.6 Hz, 1H), 4.51-4.34 (m, 3H), 2.59-1.24 (m, 6H), 2.19 (s, 3H), 2.11 (s, 3H), 2.03 (s, 3H), 1.56 (s, 3H), 1.49 (s, 3H)。
同じ方法により以下の化合物を合成した。
化合物19は、調製例6の化合物R-カルボンをS-カルボンに置き換えて調製して得られ、
化合物20は、調製例6の化合物R-カルボンをS-カルボンに置き換えて調製して得られ、
化合物21は、調製例6の化合物R-カルボンをS-カルボンに置き換えて調製して得られ、
化合物22は、調製例6の化合物R-カルボンをS-カルボンに置き換えて調製して得られた。
調製例7(化合物番号ZY529I-O)
(S)-MeCBS(5.0 mg, 0.015 mmol)のTHF溶液にゆっくりBH3-Me2S (0.006 ml, 0.046 mmol)を加えて室温にて10 min撹拌し、-30℃に冷却し、また得られた混合液に調製例7で得られた化合物15-10-a(8.0 mg, 0.015 mmol)のTHF溶液を加えて低温下で2時間撹拌した。TLCで原料がなくなったことを検出した後に、メタノールを加えて反応をクエンチさせ、水で希釈し、ジクロロメタンで抽出し、濃縮し、カラムクロマトグラフィー(ジクロロメタン/メタノール(v/v)=50/1)により単離し、下記生成物23 (4.0 mg, 収率50%)が得られた。 1HNMR (CDCl3, 300 MHz) δ9.03 (s, 1H), 8.69 (dd, J = 4.8 Hz, 1H), 8.11 (d, J = 7.8 Hz, 1H), 7.40 (dd, J = 4.8, 7.8 Hz, 1H), 6.49 (s, 1H), 5.04 (dd, J = 3.9, 11.4 Hz, 1H), 4.65 (s, 1H), 4.48 (dd, J = 12.0, 65.4 Hz, 2H), 2.82 (s, 1H), 2.41-2.37 (m, 1H), 2.10-1.56 (m, 5H), 2.18 (s, 3H), 2.10 (s, 3H), 1.92 (s, 3H), 1.50 (s, 3H), 1.49 (s, 3H)。
同じ方法により以下の化合物を合成した。
化合物24は、調製例7の化合物15-10-aを15-10-bに置き換えて調製して得られ、
化合物25は、調製例7の化合物15-10-aをそのエナンチオマー19-10-aに置き換えて調製して得られ、
化合物26は、調製例6の化合物15-10-aを15-10-bのエナンチオマー19-10-bに置き換えて調製して得られた。
調製例8(化合物番号28と29)
塩化アセチル(0.20 ml、1.83 mmol)を2.5 mlメタノールに滴下し、得られた混合物を室温にて5分撹拌した後に、化合物15-9-b (102.0 mg、0.18 mmol)のメタノール溶液を加え、室温にて1時間撹拌した。濃縮して、次のステップに直接進む。粗生成物をジクロロメタンに溶解させ、トリエチルアミン(0.28 ml、1.83 mmol)、無水酢酸(0.13 ml、0.92 mmol)を加えて室温にて2時間撹拌した。TLCで原料がなくなったことを検出した後に、水を加えて反応をクエンチさせ、ジクロロメタンで抽出し、濃縮し、カラムクロマトグラフィー(ジクロロメタン/メタノール(v/v)=25/1)により単離精製し、黄色固体の化合物28-1-bと28-1-b’との2つのジアステレオマーの混合物、および28-2-bと28-2-b’との二つのジアステレオマーの混合物(即ち、四つの化合物28-1-b、28-1-b’、28-2-b、28-2-b’を含む)(収率75%)が得られた。
直接に28-1-bと28-1-b’との混合物および28-2-bと28-2-b’との混合物をそれぞれ次のステップにおいてluche還元反応させ、次のステップの反応が選択的に28-1-b、28-2-bと反応したので、純物質28と29が得られた。例えば、混合物28-1-bと28-1-b’(合計4.0 mg、0.01 mmol )と塩化セリウム(III)七水和物(22 mg、0.058 mmol)を無水エタノールに溶解させ、-78℃に冷却し、ゆっくり水素化ほう素ナトリウム (3.0 mg、0.058 mmol)を加え、得られた混合物を原料がなくなるまで30分撹拌した。アセトンを加えて反応をクエンチさせ、酢酸エチルで希釈し、有機相を水で洗浄し、飽和食塩水で洗浄し、乾燥し、濃縮し、カラムクロマトグラフィー(ジクロロメタン/メタノール(v/v)=50/1)により単離精製し、下記淡黄色固体の最終生成物28 (4.0 mg、収率38%)が得られた。 1HNMR (CDCl3, 300 MHz) δ9.05 (s, 1H), 8.73 (s, 1H), 8.19 (d, J = 7.8 Hz, 1H), 7.50 (s, 1H), 6.52 (s, 1H), 5.08 (dd, J = 4.8, 11.7 Hz, 1H), 4.46 (d, J = 9.9 Hz, 1H), 4.05 (dd, J = 11.4, 29.7 Hz, 2H), 2.42 (d, J = 13.5 Hz, 1H), 2.17 (s, 3H), 2.13 (s, 3H), 2.09-1.31 (m, 5H), 1.31 (s, 3H), 1.21 (s, 3H)。
同じ方法により以下の化合物を合成した。
化合物29は、調製例8の化合物28-1-bを28-2-bに置き換えて調製して得られた。
調製例9(化合物番号27)
化合物15-9-bと塩化セリウム(III)七水和物 (96 mg、0.173 mmol) をメタノールに溶解させ、-78℃に冷却し、ゆっくり水素化ほう素ナトリウム (46 mg、1.21 mmol)を加え、得られた混合物を原料がなくなるまで30分撹拌した。アセトンを加えて反応をクエンチさせ、酢酸エチルで希釈し、有機相を水で洗浄し、飽和食塩水で洗浄し、乾燥し、濃縮し、カラムクロマトグラフィー(ジクロロメタン/メタノール(v/v)=50/1)により単離精製し、下記淡黄色固体の生成物27-1 (88.0 mg、 収率92%)が得られた。 1HNMR (CDCl3, 300 MHz) δ8.96 (d, J = 1.8 Hz, 1H), 8.65 (dd, J = 1.8, 5.1 Hz, 1H), 8.06 (td, J = 1.8, 8.1 Hz, 1H), 7.39 (td, J = 0.6, 8.1 Hz, 1H), 6.35 (s, 1H), 4.45 (s, 1H), 4.42 (s, 1H), 3.99 (dd, J = 11.4, 47.4 Hz, 2H), 3.75 (dd, J = 4.5, 11.1 Hz, 1H), 2.42 (d, J = 13.5 Hz, 1H), 2.09 (s, 3H), 1.80-1.70 (m, 3H), 1.37-1.08 (m, 2H), 1.18 (s, 3H), 0.90 (s, 9H), 0.14 (s, 3H), 0.09 (s, 3H)。
化合物27-1(62 mg、 0.11 mmol)をジクロロメタンに溶解させ、零度以下にてトリエチルアミン(0.18 ml、 1.11 mmol)を加え、またTMSCl (0.05 ml、 0.19 mmol)を加え、この温度下で3.5時間撹拌し、飽和炭酸水素ナトリウム水溶液反応をクエンチさせ、ジクロロメタンで抽出し、ロータリーエバポレーターで乾燥し、カラムクロマトグラフィー(ジクロロメタン/メタノール(v/v)=50/1)により単離し、下記生成物27-2(白色固体、収率70%)が得られた。 1HNMR (CDCl3, 300 MHz) δ8.97 (s, 1H), 8.65 (s, 1H), 8.07 (d, J = 8.1 Hz, 1H), 7.38 (t, J = 4.8 Hz, 1H), 6.27 (s, 1H), 4.38 (d, J = 9.3 Hz, 1H), 4.04 (dd, J = 11.4, 41.1 Hz, 2H), 3.74 (dd, J = 4.8, 11.7 Hz, 1H), 2.18 (d, J = 13.2 Hz, 1H), 2.09 (s, 3H), 1.80-1.70 (m, 3H), 1.46-0.98 (m, 2H), 1.16 (s, 3H), 1.12 (s, 3H), 0.92 (s, 9H), 0.22 (s, 9H), 0.09 (s, 3H), 0.02 (s, 3H)。
化合物27-2(289 mg、 0.07 mmol)をジクロロメタンに溶解させ、DMAP(cat.)を加え、トリエチルアミン(1.8 ml、 5.49 mmol)を滴下して、また無水酢酸(1.8 ml、 5.49 mmol)を加えて室温にて4時間撹拌した。水を加えて反応をクエンチさせ、ジクロロメタンで抽出し、濃縮し、カラムクロマトグラフィー(ジクロロメタン/メタノール(v/v)=50/1)により単離し、下記生成物27-3 (127 mg、 収率42%)が得られた。 1HNMR (CDCl3, 300 MHz) δ8.99 (s, 1H), 8.67 (s, 1H), 8.08 (d, J = 7.8 Hz, 1H), 7.39 (s, 1H), 6.29 (s, 1H), 4.47 (dd, J = 11.4, 41.1 Hz, 2H), 4.38 (d, J = 9.3 Hz, 1H), 3.74 (dd, J = 4.8, 11.7 Hz, 1H), 2.37-2.15 (m, 2H), 2.09 (s, 3H), 1.96 (s, 3H), 1.84-1.76 (m, 2H), 1.42 (s, 3H), 1.39-1.25 (m, 1H), 1.20 (s, 3H), 1.11-0.94 (m, 1H), 0.86 (s, 9H), 0.20 (s, 9H), 0.11 (s, 3H), 0.06 (s, 3H)。
化合物27-3をアセトニトリルに溶解させ、0.8 ml 40%ふっ化水素酸を滴下した後に、室温にて2.5時間撹拌し、飽和炭酸水素ナトリウム水溶液を加えて反応をクエンチさせ、酢酸エチルで抽出し、有機相を飽和食塩水で洗浄し、濃縮し、カラムクロマトグラフィー(ジクロロメタン/メタノール(v/v)=25/1)により、下記最終生成物27(白色固体、収率69%)が得られた。 1HNMR (CDCl3, 300 MHz) δ9.02 (s, 1H), 8.71 (s, 1H), 8.14 (d, J = 7.8 Hz, 1H), 7.46 (s, 1H), 6.55 (s, 1H), 4.53-4.33 (m, 4H), 3.85 (dd, J = 4.8, 11.7 Hz, 1H), 2.33 (d, J = 14.1 Hz, 1H), 2.09 (s, 3H), 2.04 (s, 3H), 1.98-1.50 (m, 5H), 1.49 (s, 3H), 1.25 (s, 3H)。
調製例10 (化合物番号30)
-78℃にて21(6.0 mg、0.011 mmol)のTHF溶液にn-ブチルリチウム(0.01 ml、0.011 mmol)を滴下し、この温度下で30分攪拌した後に、P-ブロモベンゾイルクロリドを加えて、続いて1時間撹拌し、飽和炭酸水素ナトリウム溶液を加えて反応をクエンチさせ、室温に昇温し、ジクロロメタンで抽出し、濃縮し、カラムクロマトグラフィー(ジクロロメタン/メタノール(v/v)=50/1)により単離し、生成物30 (白色粉末、収率80%)が得られた。 1HNMR (CDCl3, 300 MHz) δ9.00 (s, 1H), 8.68 (d, J = 5.1 Hz, 1H), 8.09 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 7.39 (dd, J = 4.8, 8.1 Hz, 1H), 6.48 (s, 1H), 6.10 (d, J = 10.2 Hz, 1H), 5.10 (dd, J = 4.8, 11.7 Hz, 1H), 4.38 (dd, J = 11.7, 48.3 Hz, 2H), 2.29-1.18 (m, 4H), 2.18 (s, 3H), 2.04 (s, 3H), 1.91 (s, 3H), 1.60-1.24 (m, 2H), 1.42 (s, 3H), 1.41 (s, 3H)。
(実験例1)
ACAT2活性に対する阻害効果の実験例
1. 実験目的:
蛍光標識されたステロールでACAT2活性を測定する方法によって、前記ピリピロペンA構造の類似体の、完全な細胞レベルでのACAT2活性に対する阻害効果を検出した。
2. 実験原理:
異なる濃度の化合物を用いてNBD22-蛍光標識ステロール含有エステルの合成を阻害することによって、蛍光強度が変化した。それにより、阻害曲線をプロットして、IC50が計算された。
3. 実験過程:
HepG2細胞は、1ウェルあたり1.5 × 104個細胞の初期密度で96ウェルプレートにおいて24時間培養した後、コレステロールを加えてよく混合した後、続いて24時間培養した後に、最終濃度0.5 μg/mlのNBD22-蛍光標識ステロール、および最終濃度勾配0、0.008、0.04、0.2、1および5Mの化合物を加え、濃度ごとに3つのウェルを設定し、また6時間培養した後、蛍光分析装置(E488、A535)で蛍光強度を測定した。得られた蛍光強度の値にて異なる濃度の化合物に対してプロットして、IC50が得られた。
4. 実験結果:(7、8、13、21などの14つの化合物を例としているが、これらの化合物に限られていない。)
注:IC50はACAT2活性に対するサンプルの50%阻害評価である。%阻害率はピリピロペンA (0.2μM)を100%阻害対照としている相対的阻害率である。
この結果から、これらの化合物はACAT2阻害活性を有するとともに、これらのACAT2阻害剤が知られている唯一のACAT2の特異的阻害剤であるピリピロペンAと比べて、阻害活性が明らかに向上したことが示された。
(実験例2)
ACAT2活性に対する阻害効果の選択性係数の実験例
1. 実験目的:
コレステロールオキシダーゼ法によりACAT活性を測定し、前記ピリピロペンA構造の類似体の、完全な細胞レベルでのACAT2とACAT1に対する阻害効果を検出した。それにより、ACAT2に対して高い選択性を有する化合物が得られた。
2. 実験原理:
異なる濃度の化合物のACAT1またはACAT2活性に対する阻害効果は、HepG2細胞で測定した。それにより、IC50を得てSI(ACAT1-IC50/ACAT2-IC50)を計算した。
3. 実験過程:
HepG2細胞は、1ウェルあたり4 × 105個細胞の初期密度で6ウェルプレートにおいて24 時間培養した後、培地を交換して10 g/mlコレステロールおよび異なる濃度の化合物を加え、続いて9 時間培養して、コレステロールアッセイキット(Cholesterol Assay kit)を利用して細胞のコレステロール量を測定した。
4. 実験結果:(番号7、8、13、14、21および22などの6つの化合物を例としているが、これらの化合物に限られていない。)
この結果から、これらの化合物はACAT2阻害活性に対して高い選択性を有する(SI>733、HepG2 細胞)ことが示され、そして、ピリピロペンAよりもはるかに向上した(SI>200、AC29 CHO細胞)。

Claims (9)

  1. 一般式(I)で示されるピリピロペンAの類似体であって、

    I
    式中、
    n=0、1または2であり、
    R1は、水素またはC1-C6アルキル基であり、
    R2とR3はそれぞれ独立に水素、ヒドロキシ基、C1-C6アルキルカルボニルオキシ基、C1-C6アルキルカルボニルチオ基、C1-C6アルキルカルボニルアミン基、3〜8員シクロアルキルカルボニルオキシ基、3〜8員シクロアルキルカルボニルチオ基、3〜8員シクロアルキルカルボニルアミン基、置換または非置換の5〜8員アリールカルボニルオキシ基あるいは置換または非置換のヘテロアリールカルボニルオキシ基であり、上述した置換とは、ハロゲン、ヒドロキシ基、アルキル基、アルコキシ基、アミノ基、シアノ基で置換されるということを意味し、
    R4とR5はそれぞれ独立に水素、ヒドロキシ基、C1-C6アルキルカルボニルオキシ基、C1-C6アルキルカルボニルチオ基、C1-C6アルキルカルボニルアミン基、3〜8員シクロアルキルカルボニルオキシ基、3〜8員シクロアルキルカルボニルチオ基、3〜8員シクロアルキルカルボニルアミン基、

    または
    であり、そのうちに、R7、R8とR9はそれぞれ独立に水素、ヒドロキシ基、ハロゲン、メチル基、C1-C6アルキルカルボニルオキシ基、C1-C6アルキルカルボニルチオ基、C1-C6アルキルカルボニルアミン基、3〜8員シクロアルキルカルボニルオキシ基、3〜8員シクロアルキルカルボニルチオ基、3〜8員シクロアルキルカルボニルアミン基、C1-C6アルキルカルボニルオキシメチレン基、3〜8員シクロアルキルカルボニルオキシメチレン基、置換または非置換の5〜8員ヘテロアリールカルボニルオキシ基、置換または非置換の5〜8員ヘテロアリールカルボニルオキシメチレン基、置換または非置換の5〜8員アリールカルボニルオキシ基、置換または非置換の5〜8員アリールカルボニルオキシメチレン基であり、上述した置換とは、ハロゲン、ヒドロキシ基、アルキル基、アルコキシ基、アミノ基、シアノ基で置換されるということを意味し、好ましくは、p-シアノ基で置換されるということを意味し、Z1とZ2はそれぞれ独立に水素、酸素原子、硫黄原子またはアミノ基であり、R10とR11はそれぞれ独立に水素、C1-C6アルキル基、3〜8員シクロアルキル基、置換または非置換の5〜8員ヘテロアリール、置換または非置換の5〜8員アリールであり、上述した置換とは、ハロゲン、ヒドロキシ基、アルキル基、アルコキシ基、アミノ基、シアノ基で置換されるということを意味し、
    R6は非置換または置換のC1-C6アルキル基、非置換または置換のC1-C6アルケニル基、置換または非置換の5〜8員アリールまたはヘテロアリール、置換または非置換の3〜8員シクロアルキル基であり、上述した置換とは、ハロゲン、ヒドロキシ基、アルキル基、アルコキシ基、アミノ基、シアノ基で置換されるということを意味し、
    Xは、酸素原子、硫黄原子、アミノ基またはC1-C6アルキル基であり、
    Yは、水素であり、
    Wは、水素、ヒドロキシ基、ハロゲン、オキソ基(=O)、=N-OH、置換または非置換の5〜8員アリールまたはヘテロアリールカルボニルオキシ基、C1-C6アルキルカルボニルオキシ基または3〜8員シクロアルキルカルボニルオキシ基であり、

    は単結合または二重結合を表す。
  2. n=1、
    R1は、水素またはメチル基であり、
    R2とR3は、それぞれ独立に水素、ヒドロキシ基、エチルカルボニルオキシ基またはp-シアノ基で置換されたフェニルカルボニルオキシ基であり、
    R4とR5はそれぞれ独立に水素、
    または
    であり、R7、R8とR9はそれぞれ独立に水素、ヒドロキシ基、ハロゲン、メチル基、C1-C6アルキルカルボニルオキシ基、置換または非置換のフェニルカルボニルオキシ基であり、上述した置換とは、ハロゲン、ヒドロキシ基、アルキル基、アルコキシ基、アミノ基、シアノ基で置換されるということを意味し、
    R6は、非置換または置換のC1-C6アルキル基、非置換または置換のC1-C6アルケニル基、置換または非置換の5〜8員ヘテロアリール、置換または非置換の5〜8員アリール、置換または非置換の3〜8員シクロアルキル基であり、上述した置換とは、ハロゲン、ヒドロキシ基、アルキル基、アルコキシ基、アミノ基、シアノ基で置換されるということを意味し、好ましくは、p-シアノ基で置換されるということを意味し、
    Xは、酸素原子であり、
    Yは、水素であり、
    Wは、水素、ヒドロキシ基、ハロゲン、オキソ基(=O)、=N-OH、置換または非置換の5〜8員アリールまたはヘテロアリールカルボニルオキシ基、C1-C6アルキルカルボニルオキシ基または3〜8員シクロアルキルカルボニルオキシ基であり、

    は単結合または二重結合を表す
    請求項1に記載のピリピロペンAの類似体。
  3. n=1、
    R1は、メチル基であり、
    R2とR3はそれぞれ独立に水素、ヒドロキシ基、エチルカルボニルオキシ基またはp-シアノ基で置換されたフェニルカルボニルオキシ基であり、好ましくは、R2とR3の一方は水素であり、他方は、ヒドロキシ基、エチルカルボニルオキシ基(即ちアセトキシル基、-OAc)またはp-シアノ基で置換されたフェニルカルボニルオキシ基であり、
    R4とR5はそれぞれ独立に水素、
    または
    であり、R7、R8とR9はそれぞれ独立に水素、ヒドロキシ基、ハロゲン、メチル基、C1-C6アルキルカルボニルオキシ基、置換または非置換のフェニルカルボニルオキシ基であり、上述した置換とは、シアノ基で置換されるということを意味し、好ましくは、R4とR5の一方は水素であり、他方は





    または
    であり、
    R6は、置換または非置換の5〜8員ヘテロアリールであり、好ましくは、R6は、3-ピリジル基であり、
    Xは、酸素原子、硫黄原子、アミノ基またはC1-C6アルキル基であり、好ましくは、Xは、酸素原子であり、
    Yは、水素であり、
    Wは、ヒドロキシ基、オキソ基(=O)またはp-ハロゲンで置換されたフェニルカルボニルオキシ基であり、

    は単結合を表す
    ということを特徴とする請求項1に記載のピリピロペンAの類似体。
  4. Yは水素であり、n=1、Xは酸素であり、R1はメチル基であり、 は単結合を表し、R3、R5は水素であり、WとYの配置は同じであり、R2、R4、R1の配置は以下のような一般式(IV)で示される絶対立体配置であり、

    IV
    そのうち、一般式(IV)において、各置換基の定義は一般式(I)における定義と同じである
    ということを特徴とする請求項1に記載のピリピロペンAの類似体。












































































  5. から選ばれる
    ということを特徴とする請求項1に記載のピリピロペンAの類似体。
  6. 請求項1〜5のいずれか一項に記載のピリピロペンAの類似体の製造方法であって、
    その反応経路は、

    以下のステップ:
    (1)化合物31と化合物267はイソプロピルグリニャール試薬とともにTHFにおいてカップリング反応して酸化された後に、化合物32が形成されること、
    (2)化合物32は、加溶媒分解反応により、化合物33が得られること、
    (3)化合物33は、LHMDSでエノール化された後に、R6COClとともにC-アシル化閉環反応して、化合物34が得られること、
    (4)化合物34は、酸性条件下でTBS保護基での脱保護反応され、さらに(R122COまたはR12COClとともにアシル化反応して、異なる置換基を有する化合物Ia和Ibが得られること、
    さらに、
    (5)化合物Iaは、Luche還元反応により、化合物Icが得られること、
    または、
    (6)化合物Iaは、CBS選択的還元反応により、特異的な配置を有する化合物Ieが得られること、
    または
    (7)化合物Icは、塩化アシルR13COClとともに反応して、化合物Idが得られることを含み、
    そのうち、R2、R3、R4、R5、R6、nとWの定義は請求項1と同じ意味であり、R12は、置換または非置換の5〜8員アリールまたはヘテロアリール基、C1-C6アルキル基、3〜8員シクロアルキル基であり、R13は、置換または非置換の5〜8員アリールまたはヘテロアリール基、C1-C6アルキル基、3〜8員シクロアルキル基であり、上述した置換とは、ハロゲン、ヒドロキシ基、アルキル基、アルコキシ基、アミノ基、シアノ基で置換されるということを意味し、R14とR15の一方は水素であり、他方はtert-ブチルジメチルシリルオキシ基である。
  7. ステップ(1)において、前記カップリング反応に使用される溶媒はテトラヒドロフランなどの非プロトン性溶媒から選ばれ、反応温度は、-30℃〜室温であり、
    ステップ(2)において、前記加溶媒分解反応に使用される溶媒はトルエンとメタノールから選ばれ、反応温度は、80℃であり、
    ステップ(3)において、前記C-アシル化閉環反応に使用される溶媒は非プロトン性溶媒から選ばれ、好ましくは、テトラヒドロフランであり、反応温度は、0℃〜室温であり、
    ステップ(4)において、前記TBS保護基での脱保護反応およびアシル化反応に使用される溶媒は非プロトン性溶媒から選ばれ、好ましくは、ジクロロメタンであり、反応温度は室温であり、
    ステップ(5)において、前記Luche還元反応に使用される溶媒はアルコール系溶媒から選ばれ、好ましくはメタノールまたはエタノールであり、反応温度は-78℃であり、
    ステップ(6)において、前記CBS選択的還元反応に使用される溶媒は非プロトン性溶媒から選ばれ、好ましくはテトラヒドロフランであり、反応温度は、-78℃または-30℃から選ばれる
    ということを特徴とする請求項6に記載のピリピロペンAの類似体の製造方法。
  8. コレステロールアシルトランスフェラーゼ2の高い選択性を有する阻害剤としての医薬品の製造における請求項1〜5のいずれか1項に記載のピリピロペンAの類似体の使用。
  9. アテローム性動脈硬化症の治療のための医薬品の製造における請求項1〜5のいずれか1項に記載のピリピロペンAの類似体の使用。
JP2017549239A 2015-03-19 2016-03-03 三環類似体、その製造方法及び使用 Pending JP2018508560A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510121662.9 2015-03-19
CN201510121662.9A CN106032383B (zh) 2015-03-19 2015-03-19 一类三环类似物、其制备方法和用途
PCT/CN2016/075391 WO2016145994A1 (zh) 2015-03-19 2016-03-03 一类三环类似物、其制备方法和用途

Publications (1)

Publication Number Publication Date
JP2018508560A true JP2018508560A (ja) 2018-03-29

Family

ID=56918370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017549239A Pending JP2018508560A (ja) 2015-03-19 2016-03-03 三環類似体、その製造方法及び使用

Country Status (6)

Country Link
US (1) US10278962B2 (ja)
EP (1) EP3272755A1 (ja)
JP (1) JP2018508560A (ja)
KR (1) KR101975916B1 (ja)
CN (1) CN106032383B (ja)
WO (1) WO2016145994A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110950881A (zh) * 2018-09-27 2020-04-03 中国科学院上海药物研究所 一类三环类似物、其制备方法和用途

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039010A1 (en) * 1997-03-07 1998-09-11 Kansas State University Research Foundation Tricyclic and tetracyclic pyrones
JP2007514005A (ja) * 2003-12-15 2007-05-31 メルク フロスト カナダ アンド カンパニー 置換テトラヒドロカルバゾールおよびシクロペンタノインドール誘導体
WO2010041568A1 (ja) * 2008-10-09 2010-04-15 旭化成ファーマ株式会社 インダゾール誘導体
US7935726B1 (en) * 1999-11-12 2011-05-03 Kansas State University Research Foundation Tricyclic pyrones
WO2011107411A1 (en) * 2010-03-02 2011-09-09 Basf Se Pyranopyranone derivatives as antimicrobial agents
JP2012501343A (ja) * 2008-08-29 2012-01-19 トレヴェンティス コーポレイション 神経系疾患用の診断ツール及び治療としてのブチリルコリンエステラーゼリガンド
JP2014144922A (ja) * 2013-01-28 2014-08-14 Kitasato Institute Acat2阻害活性を示すピリピロペンa構造簡略型誘導体
JP2016008191A (ja) * 2014-06-24 2016-01-18 学校法人北里研究所 コレステロールアシル転移酵素アイソザイム2(acat2)阻害活性を有する新規医薬化合物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6916824B1 (en) * 1999-11-12 2005-07-12 Kansas State University Research Foundation Methods of treating cataracts and diabetic retinopathy with tricyclic pyrones

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039010A1 (en) * 1997-03-07 1998-09-11 Kansas State University Research Foundation Tricyclic and tetracyclic pyrones
US7935726B1 (en) * 1999-11-12 2011-05-03 Kansas State University Research Foundation Tricyclic pyrones
JP2007514005A (ja) * 2003-12-15 2007-05-31 メルク フロスト カナダ アンド カンパニー 置換テトラヒドロカルバゾールおよびシクロペンタノインドール誘導体
JP2012501343A (ja) * 2008-08-29 2012-01-19 トレヴェンティス コーポレイション 神経系疾患用の診断ツール及び治療としてのブチリルコリンエステラーゼリガンド
WO2010041568A1 (ja) * 2008-10-09 2010-04-15 旭化成ファーマ株式会社 インダゾール誘導体
WO2011107411A1 (en) * 2010-03-02 2011-09-09 Basf Se Pyranopyranone derivatives as antimicrobial agents
JP2014144922A (ja) * 2013-01-28 2014-08-14 Kitasato Institute Acat2阻害活性を示すピリピロペンa構造簡略型誘導体
JP2016008191A (ja) * 2014-06-24 2016-01-18 学校法人北里研究所 コレステロールアシル転移酵素アイソザイム2(acat2)阻害活性を有する新規医薬化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TETRAHEDRON LETTERS, vol. Vol.41(12), JPN6018035092, 2000, pages 1901 - 1905 *

Also Published As

Publication number Publication date
CN106032383B (zh) 2019-08-13
WO2016145994A1 (zh) 2016-09-22
KR101975916B1 (ko) 2019-05-07
KR20170125970A (ko) 2017-11-15
EP3272755A4 (en) 2018-01-24
US10278962B2 (en) 2019-05-07
EP3272755A1 (en) 2018-01-24
CN106032383A (zh) 2016-10-19
US20180064696A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
CA3069160C (en) Synthesis of halichondrins
Kikuchi et al. Structural requirements of dictyopyrones isolated from Dictyostelium spp. in the regulation of Dictyostelium development and in anti-leukemic activity
CN112047973B (zh) 一种大麻素类化合物,其制备方法、组合物和用途
CN106928068B (zh) 一种四环二萜类异斯特维醇化合物及其制备方法与应用
KR20130040180A (ko) 피리피로펜 유도체의 제조방법
Fuwa et al. Synthetic studies on antascomicin A: construction of the C18–C34 fragment
Brenner 6-(Methoxymethylene) penicillanic acid: a new. beta.-lactamase inactivator
EP2872477B1 (en) Process for the preparation of ingenol-3-angelate from 20-deoxy-ingenol
JP2018508560A (ja) 三環類似体、その製造方法及び使用
EP2233467A1 (en) Alpha-amino-n-substituted amides, pharmaceutical composition containing them and uses thereof
JP6368351B2 (ja) ジフルオロラクタムアナログを合成する方法
CN106046105A (zh) 一种甘草次酸、阿魏酸和硒代蛋氨酸三元化合物的制备方法及应用
EP3162805B1 (en) Novel pharmaceutical compound having a cholesterol acyltransferase isozyme 2 (acat2) -inhibiting activity
CN108530510A (zh) 一种c19-酰基化雷公藤甲素的制备方法
Reddy et al. Stereoselective total synthesis of multiplolide A and of a diastereoisomer
Miura et al. Synthesis of southern (C1′–C11′) fragment of pamamycin-635A
CN115785189B (zh) 一种5α,8α-过氧化甾醇-17-苯基噻唑衍生物及其合成方法和应用
US6872747B2 (en) Decalactones, method for making, and pharmaceuticals there from
CN100596294C (zh) 4'-取代苄氧基-苯基丁二烯类衍生物及制备和用途
JP6289463B2 (ja) 治療化合物
Zhao et al. A model study on installation of (Z)-γ-methylglutaconic acid onto the 3-aminophenol core of divergolide A
EP3214088B1 (en) Method for producing eushearilides
KR100645373B1 (ko) 세 고리형 테트라하이드로퓨란 락톤 화합물과 이의 제조방법
Akkarasamiyo Total synthesis of schulzeines and analogues and screening for alpha-glucosidase inhibitors
APISORNOPAS SYNTHETIC MODIFICATIONS OF IRIDOID GLYCOSIDES AND THE STUDY OF THEIR BIOLOGICAL ACTIVITIES

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190521