WO2016143925A1 - 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판 - Google Patents

전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판 Download PDF

Info

Publication number
WO2016143925A1
WO2016143925A1 PCT/KR2015/002376 KR2015002376W WO2016143925A1 WO 2016143925 A1 WO2016143925 A1 WO 2016143925A1 KR 2015002376 W KR2015002376 W KR 2015002376W WO 2016143925 A1 WO2016143925 A1 WO 2016143925A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible substrate
conductors
deformation
conductor
conductive material
Prior art date
Application number
PCT/KR2015/002376
Other languages
English (en)
French (fr)
Inventor
조맹효
조규진
류정현
고제성
이종구
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to US14/895,944 priority Critical patent/US9699894B2/en
Priority to PCT/KR2015/002376 priority patent/WO2016143925A1/ko
Publication of WO2016143925A1 publication Critical patent/WO2016143925A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • G01B7/20Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance formed by printed-circuit technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/07Electric details

Definitions

  • the present invention relates to a flexible substrate capable of sensing deformation, and more particularly, by forming a conductive pattern made of an electrically conductive material to change the electrical conductivity according to external deformation on the flexible substrate.
  • a strain gauge is used by attaching to the surface of an object to measure the state and amount of deformation of the object, and detects a change in electrical resistance that occurs as the cross-sectional area decreases and the length increases in the tensile direction. Detect deformation
  • a dormant-computer interface device in the form of a glove presented in US Pat. No. 5,047,952 can be attached to a strain gage on the back of the hand It is configured to detect the movement of a hand such as a finger.
  • the present invention is not a method of detecting deformation based on tensile deformation of a conventional conductive material itself, but rather on a conductive substrate. It was developed with the intention of providing a deformation sensing flexible substrate capable of detecting deformation in a simplified manner by forming a pattern of materials to detect electrical conductivity due to contact between the conductive materials.
  • the present invention forms a conductive pattern made of an electrically conductive material on a flexible substrate that can be bent or folded by an external force, and when the contact between the electrically conductive materials occurs due to external deformation, deformation detection is detected by detecting the electric conductivity change accordingly. It is an object of the present invention to provide a deformation sensing flexible substrate using electrically conductive material patterning.
  • the present invention is a flexible substrate to achieve the above object; And a conductive pattern formed on a surface of the flexible substrate and including conductive patterns formed of conductors made of an electrically conductive material to be in contact / non-contact behavior according to deformation of the flexible substrate.
  • the conductive pattern includes a plurality of conductors extending in the longitudinal direction on the surface of the flexible substrate, the conductors are spaced in the width direction with respect to each other while having a spaced space set in the width direction Is placed.
  • the conductor is formed in an inverted trapezoidal shape that becomes wider from the surface of the flexible substrate toward the top.
  • each of the conductors formed extending in the longitudinal direction is composed of a plurality of block-shaped conductors arranged while having a spaced space in the longitudinal direction, the separation space between the block-shaped conductors forming the upper conductor is a lower conductor
  • the deformation sensing flexible substrate using the conductive material patterning characterized in that located in a straight line in the width direction and the separation space between the block-shaped conductors.
  • the surfaces facing each other in the longitudinal direction of the block-shaped conductor are formed to be inclined, and are formed to be inclined to protrude toward the surfaces facing upward from the surface of the flexible substrate.
  • the conductive pattern leading to the conductors is formed on both surfaces of the flexible substrate.
  • the flexible substrate includes a first region and a second region formed to be folded along a fold line L with respect to the first region, and the conductive pattern formed in the first region extends in the longitudinal direction.
  • the formed first conductors are formed in a plurality of shapes while being spaced apart from each other in the width direction, and the spaces spaced between the first conductors in the width direction form a second conductor receiving portion, and the conductive patterns formed in the second region are each And a second conductor extending in a longitudinal direction, wherein each second conductor is disposed in a plurality of spaced apart from each other by the width of the first conductor in a direction crossing the length direction in which the second conductor extends.
  • the second conductor is inserted into a second conductor receptacle between the first conductors, thereby providing the first conductor and the first conductor.
  • the two conductors are formed in contact with each other.
  • the present invention forms a conductive pattern by conductors made of an electrically conductive material on a flexible substrate that can be bent or folded by an external force, and detects an electrical conductivity change when contact between the electrically conductive materials occurs due to external deformation. Deformation can be detected by
  • the present invention can detect the deformation of the object to which the deformation sensing substrate is applied and the micro and large deformation by using the electrical conductivity change according to the contact of the conductors.
  • the present invention When the present invention is applied to the detection of bending deformation by external force, it is possible to eliminate or simplify the circuit configuration and the compensation device because the bending can be detected only by the energization through the conductor constituting the conductive pattern, which makes it simpler and more accurate.
  • a bend detection device can be implemented.
  • the present invention it is possible to make the energization in the bent state with a simple configuration, it can provide a function as a power control unit for controlling a specific operation as well as the detection of bending deformation.
  • FIG. 1 is a diagram illustrating a deformation sensing flexible substrate using an electrically conductive material patterning according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example in which a deformation sensing flexible substrate using the electrically conductive material patterning shown in FIG. 1 is warped and deformed.
  • FIG. 3 illustrates another embodiment of a strain sensing flexible substrate in accordance with the present invention.
  • FIG. 4 is a view showing another embodiment of the deformation sensing flexible substrate using the electrically conductive material patterning according to the present invention showing a state in which the deformation sensing flexible substrate is unfolded.
  • FIG. 5 illustrates a state in which the deformation sensing flexible substrate illustrated in FIG. 4 is folded.
  • FIG. 1 is a view illustrating a deformation sensing flexible substrate using an electrically conductive material patterning according to an embodiment of the present invention
  • FIG. 2 is an example in which the deformation sensing flexible substrate using an electrically conductive material patterning shown in FIG. 1 is bent and deformed. Figure is shown.
  • the deformation-sensitive flexible substrate 10 using the electrically conductive material patterning includes a flexible substrate 20 and a conductive pattern made of an electrically conductive material formed on the surface of the flexible substrate 20. .
  • the conductive pattern is patterned so that the conductors 30 formed of an electrically conductive material on the surface of the flexible substrate 20 are in contact / non-contact behavior according to the deformation of the flexible substrate 20, thereby bending the flexible substrate 20. Or it is formed to detect deformation such as folding.
  • the conductive pattern includes conductors 30 extending in the form of bars in the longitudinal direction on the surface of the flexible substrate 20, each conductor 30.
  • the other conductors 30 are spaced apart from each other by the spaced space 31 in the lower position in the width direction.
  • the separation space 31 is set according to the degree of bending deformation to be detected.
  • the separation space 31 when the separation space 31 is small, the slight bending deformation is also detected as deformation, and as the separation space 31 becomes longer, the deformation degree to detect the bending state becomes larger.
  • the separation space 31 may be made constant, and it may be determined that the bending space is deformed from a specific time point based on the change in the electrical conductivity between the conductors forming the conductive pattern.
  • the conductor 30 is formed in an inverted trapezoidal shape such that its width becomes wider from the surface of the flexible substrate 20 to the upper portion. Because of this, it is possible to reduce the attachment area between the conductor 30 and the flexible substrate 20, it is possible to minimize the deformation of the flexible substrate 20 is disturbed by the attachment portion of the conductor 30.
  • the electrically conductive material constituting the conductor 30 can be modified by external force. Therefore, when the conductors 30 are contacted by deformation of the flexible substrate 20, point or line contact is made at the beginning of bending, but as the deformation is increased, the contact surface is deformed and the surface contact is made.
  • the deformation sensing flexible substrate 10 has a change in electrical conductivity from a non-conductive state to a conductive state and an amount of electrical conductivity at a degree of bending deformation. Therefore, when measuring the change in the electrical conductivity made along the conductors 30 in the deformation sensing flexible substrate 10, it is possible to detect the deformation and the degree of deformation.
  • the deformation-sensing flexible substrate according to an embodiment of the present invention when the deformation-sensing flexible substrate according to an embodiment of the present invention is attached to each joint portion of the dormant-computer interface device in the form of a glove, the movement of each joint can be accurately detected.
  • the deformation-sensing flexible substrate according to an embodiment of the present invention can be used in the field of medicine, such as a device for inducing waist posture correction, and sports science, such as pitch correction.
  • the deformation sensing flexible substrate according to an embodiment of the present invention can be used in the aircraft field, such as to monitor the repetitive bending amount of the aircraft wing in real time to predict the flight life of the aircraft.
  • the deformation sensing flexible substrate of the present invention can be applied to various devices that need to detect deformation or control operation according to the degree of deformation, such as bending and torsion.
  • the flexible substrate may also have electrical conductivity.
  • FIG. 1 shows low electrical conductivity because electrical conduction occurs only by the flexible substrate, and the bending deformation state as shown in FIG. 2 provides electrical conductivity through the flexible substrate and the conductive pattern. So that it can be in a high electrical conductivity state. Therefore, it is possible to detect the deformation and the degree of deformation by detecting a change in the electrical conductivity in the deformation sensing flexible substrate 10.
  • 1 and 2 illustrate an example in which the conductive pattern is formed on one surface of the flexible substrate 20, but the conductive pattern may be formed on one surface and the opposite surface of the flexible substrate 20 to be formed on both sides. .
  • the conductive patterns are formed on both sides of the flexible substrate, a change in electrical conductivity occurs in the conductive pattern formed on one surface according to the bending direction, so that the bending direction can also be measured.
  • FIG. 3 illustrates another embodiment of a strain sensing flexible substrate 10 according to the present invention.
  • the conductive pattern formed on the surface of the flexible substrate 20 is a combination of a plurality of block-type conductors 32 in which the conductors 30 extending in the longitudinal direction are arranged with the space 33. Is done.
  • the conductive pattern consists of a plurality of block-like conductors 32 arranged with spaced apart spaces 31 and 33 in the width direction and the length direction.
  • the space 33 between each block-shaped conductor 32 in the longitudinal direction is located in a straight line. That is, the space 33 between the block-shaped conductors 32 constituting the upper conductor is located in a straight line with the space 33 between the block-shaped conductors 32 constituting the lower conductor.
  • the blocks facing each other in the longitudinal direction in the block-type conductor 32 is formed to be inclined so as to protrude toward the surface facing toward the top.
  • the deformation sensing flexible substrate 10 can detect the warp for two directions. That is, based on the drawing shown in FIG. 3, when the upper and lower sides are bent and deformed in a direction approaching each other, or when the bending deformation occurs in a direction in which the left and right sides approach each other, the block-type conductors 32 forming a conductive pattern according to the bending direction are The electrical conductivity is expressed while contacting each other and the electrical conductivity changes as the contact area changes according to the degree of warpage, thereby detecting the electrical conductivity.
  • FIG. 4 is a view illustrating a state in which the deformation sensing flexible substrate is unfolded.
  • the deformation sensing flexible substrate is shown in a folded state.
  • the deformation sensing flexible substrate according to another embodiment of the present invention shown in FIGS. 4 and 5 is an embodiment for detecting the folding of an object in the form of a collapsible plate, such as a flexible display.
  • the flexible substrate 20 having the first and second regions 24 and 26 foldable with respect to each other It includes. That is, the flexible substrate 20 includes the first region 24 and the second region 26 formed to be folded along the fold line L with respect to the first region 24.
  • the conductive patterns formed in the first region 24 are attached in a plurality of arrangements in which the first conductors 34 extending in the longitudinal direction are spaced apart from each other in the width direction, and the first conductors 34 in the width direction. The spaced spaces therebetween form the second conductor receiving portion 35.
  • the conductive patterns formed in the second region 26 are also arranged in a shape extending in the longitudinal direction, and the plurality of second conductors are spaced apart from each other by the width of the first conductor 34 in the direction crossing the longitudinal direction. (36).
  • the second conductor 36 forming a conductive pattern in the second region 26 is parallel to the second conductor receiving portion 35 of the first region 24 in the unfolded state of the flexible substrate 20 and the second conductor receiving portion It has a size corresponding to (35).
  • the first conductor 34 and the second conductor 36 are arranged perpendicular to each other and remain in contact with each other.
  • the second conductor 36 forms the first conductor 34 as shown in FIG. 5.
  • the flexible substrate 20 is folded while making a difference between them.
  • a collapsible flexible display In a collapsible flexible display, it is essential to detect whether the flexible display is in a folded or unfolded state, whether it is in use or in storage, in order to control the display on the flexible display.
  • the deformation sensing flexible substrate using the conductive material patterning is applied to the flexible display because it can detect whether the sheet is folded or not according to the change of the conductivity in the open state and the folded state. Allows you to see whether the flexible display is in use or in storage. It can also function as a power supply control unit so that power is applied only in the unfolded state.
  • the flexible substrate can be part of the flexible display or a separate film attached to the flexible display.

Abstract

본 발명은 유연 기판; 및 상기 유연 기판의 표면에 형성된 것으로 전기전도성 물질로 이루어진 전도체들이 유연 기판의 변형에 따라 접촉/비접촉 거동하도록 배열하여 이루어진 전도성 패턴을 포함하는 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판을 제공한다.

Description

전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판
본 발명은 변형 감지가 가능한 유연성 기판에 관한 것으로, 더욱 상세하게는, 유연 기판 위에 외부 변형에 따라 전기전도성이 변화하도록 전기전도성 물질로 이루어진 전도성 패턴을 형성함으로써, 전기전도성의 변화 감지를 통해 미소 또는 대 변형을 감지할 수 있는 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판에 관한 것이다.
물체가 외력을 받아 변형하는 그 변형을 측정하는 다양한 장치들이 개시되어 있다. 예컨대, 스트레인 게이지는 물체가 변형되는 상태와 그 양을 측정하기 위해 물체의 표면에 부착하여 사용되는 것으로, 물체 변형 시 인장 방향으로 단면적이 축소되고 길이가 늘어나면서 발생하는 전기 저항의 변화를 감지하여 변형을 감지한다.
스트레인 게이지와 같은 물체의 변형을 감지하는 장치들은 다양한 산업 분야에서 응용될 수 있는데, 예컨대, 미국 특허 제5,047,952호에서 제시된 장갑 형태의 휴면-컴퓨터 인터페이스 장치는 장갑의 손 등 부분에 스트레인 게이지를 부착하여 손가락 등의 손의 움직임을 감지할 수 있도록 구성되어 있다.
이외에도 다양한 산업 분야에서 물체의 움직임 또는 변형을 감지하고 제어하기 위한 장치들이 활용되고 있는바, 본 발명은 종래의 전도성 물질 자체의 인장 변형에 기초하여 변형을 감지하는 방식이 아닌, 유연 기판 위에서 전기전도성 물질로 이루어진 패턴을 형성하여 전기전도성 물질들 간의 접촉에 따른 전기전도성을 감지하는 단순화된 방식으로 변형 감지가 가능한 변형 감지 유연성 기판을 제공하고자 하는 의도에서 개발되었다.
본 발명은 외력에 의해 휨 또는 접힘이 가능한 유연 기판 위에 전기전도성 물질로 이루어진 전도성 패턴을 형성하고, 외부 변형으로 해당 전기전도성 물질들 간의 접촉이 발생하는 경우 이에 따른 전기전도성 변화를 감지하여 변형 감지가 가능한, 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판을 제공하는 것을 목적으로 한다.
본 발명은 상기 목적을 달성하기 위해 유연 기판; 및 상기 유연 기판의 표면에 형성된 것으로, 전기전도성 물질로 이루어진 전도체들이 유연 기판의 변형에 따라 접촉/비접촉 거동하도록 배열하여 이루어진 전도성 패턴을 포함하는 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판을 제공한다.
본 발명에 의하면, 상기 전도성 패턴은, 상기 유연 기판의 표면에 길이 방향으로 연장 형성된 복수개의 전도체들을 포함하되, 상기 전도체들은 폭 방향으로 설정된 이격 공간을 가지면서 각각이 서로에 대해 폭 방향으로 이격되어 배치된다.
본 발명에 의하면, 상기 전도체는 상기 유연 기판의 표면에서 상부로 갈수록 폭이 넓어지는 역 사다리꼴 형태로 형성된다.
본 발명에 의하면, 상기 각 길이 방향으로 연장 형성된 전도체들은 길이 방향으로 이격 공간을 가지면서 배열된 복수개의 블럭형 전도체들로 이루어지되, 상측 전도체를 이루는 상기 블럭형 전도체 사이의 이격 공간은 하측 전도체를 이루는 상기 블록형 전도체 사이의 이격 공간과 폭 방향으로 일직선상에 위치하는 것을 특징으로 하는 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판.
본 발명에 의하면, 상기 블럭형 전도체에서 길이 방향으로 서로 대면하는 면이 경사지게 형성되되, 상기 유연 기판 표면에서 상부로 갈수록 대면하는 면을 향해 돌출되게 경사지게 형성된다.
본 발명에 의하면, 상기 전도체들로 이어진 전도성 패턴은 상기 유연 기판의 양 표면으로 형성된다.
본 발명에 의하면, 상기 유연 기판은 제1 영역과 상기 제1 영역에 대하여 접힘선(L)을 따라 접힘되게 형성된 제2 영역을 포함하고, 상기 제1 영역에 형성되는 전도성 패턴은 길이 방향으로 연장 형성된 제1 전도체들이 폭 방향으로 서로 이격되면서 복수개로 배열된 형태로 형성되되, 폭 방향으로 제1 전도체 사이에 이격된 공간은 제2 전도체 수용부를 이루며, 상기 제2 영역에 형성된 전도성 패턴은 각각이 길이 방향으로 연장 형성된 제2 전도체를 포함하되, 각 제2 전도체는 제2 전도체가 연장되는 길이 방향에 교차하는 방향으로 상기 제1 전도체의 폭 만큼 서로 이격되면서 복수개로 배치됨으로써, 상기 제2 영역을 상기 제1 영역에 대하여 접었을 때 상기 제2 전도체가 상기 제1 전도체들 사이의 제2 전도체 수용부에 삽입되면서, 상기 제1 전도체 및 상기 제2 전도체는 서로 접촉되게 형성된다.
본 발명은 외력에 의해 휨 또는 접힘이 가능한 유연 기판 위에 전기전도성 물질로 이루어진 전도체들에 의해 전도성 패턴을 형성하고, 외부 변형으로 해당 전기전도성 물질들 간의 접촉이 발생하는 경우 이에 따른 전기전도성 변화를 감지하여 변형을 감지할 수 있다.
본 발명은 전도체들의 접촉에 따른 전기전도성 변화를 이용하여, 변형 감지 기판이 적용된 물체의 변형 여부 및 미소 및 대 변형을 감지할 수 있다.
본 발명이 외력에 의한 굽힘 변형 감지에 적용되는 경우 전도성 패턴을 이루는 전도체를 통한 통전 여부만으로 굽힘을 감지할 수 있기 때문에 회로 구성 및 보상 장치를 삭제하거나 단순화하는 것이 가능하며, 이로 인해 더욱 단순하고 정확한 굽힘 감지 장치를 구현할 수 있다.
또한 본 발명에 의할 경우 단순한 구성으로 굽힘 상태에서 통전이 이루어지도록 하는 것이 가능하므로, 굽힘 변형의 감지뿐만 아니라 특정 동작을 제어하기 위한 전원 제어부로서 기능을 제공할 수 있다.
도 1 은 본 발명의 일 실시예에 따른 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판을 도시한 도면이다
도 2 는 도 1 에 도시된 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판이 휨 변형된 예를 보인 도면이다.
도 3 은 본 발명에 따른 변형 감지 유연성 기판의 다른 실시예를 도시한 도면이다.
도 4 본 발명에 따른 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판의 또 다른 실시예를 도시한 도면으로 변형 감지 유연성 기판이 펼쳐진 상태를 도시한 도면이다.
도 5 는 도 4 에 도시된 변형 감지 유연성 기판이 접힌 상태를 도시한 도면이다.
이하 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다.
도 1 은 본 발명의 일 실시예에 따른 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판을 도시한 도면이고, 도 2 는 도 1 에 도시된 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판이 휨 변형된 예를 보인 도면이다.
도면을 참조하면, 본 발명에 따른 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판(10)은, 유연 기판(20)과 상기 유연 기판(20)의 표면에 형성된 전기전도성 물질로 이루어진 전도성 패턴을 포함한다.
본 발명에 따르면 전도성 패턴은 유연 기판(20)의 표면에 전기전도성 물질로 형성된 전도체(30)들이 유연 기판(20)의 변형에 따라 접촉/비접촉 거동을 하도록 패터닝 됨으로써, 유연 기판(20)의 휨 또는 접힘 등의 변형을 감지할 수 있도록 형성된다.
도 1 에 도시된 본 발명의 일 실시예를 참조하면, 전도성 패턴은 유연 기판(20)의 표면에 길이 방향으로 바(bar) 형태로 연장 형성된 전도체(30)들을 포함하며, 각 전도체(30)는 폭 방향으로 설정된 이격 공간(31)을 가지며 서로에 대해 이격되어 배치된다. 즉, 길이 방향으로 연장 형성된 바(bar) 형태의 전도체(30)가 폭 방향 상단에 하나 배치되고, 그 하측 즉, 폭 방향으로 아래 위치에 이격 공간(31)만큼 떨어져 다른 전도체(30)가 형성되고, 또 폭 방향으로 아래 위치에 이격 공간(31)만큼 떨어져 다른 전도체(30)가 형성되는 방식으로 배열되어 형성된다. 이격 공간(31)은 감지하고자 하는 휨 변형 정도에 따라 설정된다. 예컨대, 이격 공간(31)이 작은 경우 미소한 휨 변형도 변형으로 감지하며, 이격 공간(31)이 길어질 수 록 휨 상태로 감지하는 변형 정도가 커진다. 다른 예로서, 이격 공간(31)을 일정하게 하고, 전도성 패턴을 이루는 전도체간의 전기전도성 변화에 기초하여 특정 시점부터 휨 변형된 것으로 판단하도록 할 수 있다.
본 발명에 따르면, 전도체(30)는 유연 기판(20)의 표면에서 상부로 갈수록 폭이 넓어지게 역사다리꼴 형태로 형성된다. 이로 인해 전도체(30)와 유연 기판(20)의 부착 면적을 줄이는 것이 가능하므로 전도체(30) 부착 부분에 의해 유연 기판(20)의 변형이 방해받는 것을 최소화할 수 있다.
전도체(30)를 이루는 전기전도성 물질은 외력에 의해 변형이 가능하다. 따라서 유연 기판(20)의 변형에 의해 전도체(30)들이 접촉하는 경우 휨 초기에는 점 또는 선 접촉이 이루어지지만 변형이 증대됨에 따라 접촉면이 변형되면서 면 접촉이 이루어진다.
본 발명의 일 실시예에 따른 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판을 동작을 살펴보면, 도 1 에 도시된 상태에서는 각 전도체(30)가 서로 이격되어 있으므로 전도체(30) 사이에서 전기 전도는 발생하지 않는다.
그러나 도 2 에 도시된 바와 같이 유연 기판(20)이 전도체(30)가 부착된 표면이 오목한 방향으로 휨 변형이 발생하는 경우 전도체(30)들 사이의 거리가 좁아지면서 이격 공간(31)이 없어지고 각 전도체(30)끼리 접촉하게 된다. 그리고 그 접촉은 휨 초기에는 선 접촉이 되며, 변형량이 증가됨에 따라 면 접촉이 된다. 도 2 에 도시된 변형과 달리 유연 기판(20)이 비틀림 변형을 하는 경우 전도체(30)들간에는 비틀림 방향으로 점 접촉이 발생한다.
이와 같이 유연 기판(20)이 외력에 따라 변형이 이루어지면서 전도성 패턴이 초기 상태의 전도체 비 접촉 모드에서 전도체 접촉 모드로 변경되고, 유연 기판(20)의 변형이 증대됨에 따라 접촉 면적 역시 증대된다. 이에 따라 변형 감지 유연성 기판(10)은 비전도성 상태에서 전도성 상태로 전기전도성이 변화되고 그리고 휨 변형 정도에 전기전도량이 변화된다. 따라서 변형 감지 유연성 기판(10)에서 전도체(30)들을 따라 이루어지는 전기전도량 변화를 측정하는 경우 변형 여부 및 변형 정도를 감지할 수 있게 되는 것이다.
예컨대, 본 발명의 일 실시예에 따른 변형 감지 유연성 기판이 장갑 형태의 휴면-컴퓨터 인터페이스 장치의 각 관절 부분에 부착된 경우 각 관절의 움직임을 정확히 감지할 수 있게 되는 것이다. 또한 본 발명의 일 실시예에 따른 변형 감지 유연성 기판은 허리 자세 교정을 유도하는 장치 등의 포함하는 의학 분야 및 투구폼 교정과 같은 스포츠 과학 분야에서도 사용될 수 있다. 또한 본 발명의 일 실시예에 따른 변형 감지 유연성 기판은 항공기 날개의 반복적인 굽힘량을 실시간으로 모니터링 하여 항공기의 비행 수명을 예측하도록 하는 등과 같이 항공기 분야에서도 사용될 수 있다. 이와 같이 본 발명의 변형 감지 유연성 기판은 휨, 비틀림 등을 변형을 감지하거나 변형 정도에 따라 동작을 제어할 필요할 있는 여러 장치들에 응용될 수 있다.
본 발명에 따르면 유연 기판도 전기전도성을 갖는 것이 가능한데, 도 1 은 유연 기판에 의해서만 전기 전도가 일어나므로 Low 전기 전도성 상태가 되고 도 2 와 같은 휨 변형 상태는 유연 기판 및 전도성 패턴을 통해 전기 전도가 일어나므로 High 전기 전도성 상태가 될 수 있다. 따라서 변형 감지 유연성 기판(10)에서의 전기전도 변화를 감지하여 변형 여부 및 변형 정도를 감지할 수 있다.
도 1 및 도 2 는 전도성 패턴이 유연 기판(20)의 일측 표면으로 형성된 예를 도시하고 있으나, 전도성 패턴은 유연 기판(20)의 일측 표면 및 그 반대측 표면에 각각 형성되어 양면으로 형성될 수 있다. 전도성 패턴들이 유연성 기판의 양면으로 형성되는 경우 휨 방향에 따라 어느 하나의 표면에 형성된 전도성 패턴에서 전기전도성의 변화가 발생하게 되므로 휨 방향도 함께 측정할 수 있다
도 3 은 본 발명에 따른 변형 감지 유연성 기판(10)의 다른 실시예를 도시한 도면이다.
도 3 을 참조하면, 유연 기판(20)의 표면에 형성된 전도성 패턴은, 길이 방향으로 연장 형성된 전도체(30)가 이격 공간(33)을 가지면서 배열된 복수개의 블럭형 전도체(32)의 조합으로 이루진다. 따라서, 전도성 패턴은 폭 방향 및 길이 방향에 이격 공간(31, 33)을 가지면서 배열된 다수개의 블럭형 전도체(32)들로 이루어진다. 이때 길이 방향으로 각 블럭형 전도체(32)들 사이의 이격 공간(33)은 일직선상에 위치한다. 즉, 상측 전도체를 이루는 상기 블럭형 전도체(32) 사이의 이격 공간(33)은 하측 전도체를 이루는 상기 블럭형 전도체(32) 사이의 이격 공간(33)과 폭 방향으로 일직선 상에 위치한다. 그리고, 블럭형 전도체(32)에서 길이 방향으로 서로 대면하는 면이 경사지게 형성되어 표면에서 상부로 갈수록 대면하는 면을 향해 돌출되게 형성된다.
도 3 에 도시된 실시예에 의하면, 변형 감지 유연성 기판(10)은 2 방향성에 대한 휨이 감지할 수 있다. 즉, 도 3 에 도시된 도면을 기준으로 상하측이 서로 접근되는 방향으로 휨 변형되거나, 좌우측이 서로 접근되는 방향으로 휨 변형이 일어나는 경우 휨 방향에 따라 전도성 패턴을 이루는 블럭형 전도체(32)들이 서로 접촉하면서 전기전도성이 발현되고 휨 정도에 따라 접촉 면적이 변화하면서 전기 전도성이 변화되므로 이를 감지할 수 있게 되는 것이다.
도 4 및 도 5 는 본 발명에 따른 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판의 또 다른 실시예를 도시한 도면으로, 도 4 는 변형 감지 유연성 기판이 펼쳐진 상태를 도시한 도면이고, 도 5 는 변형 감지 유연성 기판이 접힌 상태를 도시한 도면이다. 도 4 및 도 5 에 도시된 본 발명의 또 다른 실시예에 따른 변형 감지 유연성 기판은 유연성 디스플레이와 같은 접힘 가능한 판 형태의 물체의 접힘을 감지하기 위한 실시예이다.
도면을 참조하면, 본 발명의 또 다른 실시예에 따른 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판은, 서로에 대해 접힘 가능한 제1 및 제2 영역(24, 26)을 구비한 유연 기판(20)을 포함한다. 즉, 유연 기판(20)은 제1 영역(24)과 제1 영역(24)에 대하여 접힘선(L)을 따라 접힘되게 형성된 제2 영역(26)을 포함한다.
제1 영역(24)에 형성되는 전도성 패턴은 길이 방향으로 연장된 제1 전도체(34)가 폭 방향으로 서로 이격되면서 복수개로 배열된 형태로 부착되는 데, 폭 방향으로 제1 전도체(34)들 사이의 이격된 공간은 제2 전도체 수용부(35)를 형성한다.
제2 영역(26)에 형성되는 전도성 패턴 역시 각각이 길이 방향으로 연장된 형태로 배치되며, 길이 방향에 교차하는 방향으로 제1 전도체(34)의 폭 만큼 서로 이격되면서 복수개로 배치된 제2 전도체(36)를 포함한다. 제2 영역(26)에서 전도성 패턴을 이루는 제2 전도체(36)는 유연 기판(20)의 펼침 상태에서 제1 영역(24)의 제2 전도체 수용부(35)와 나란하며 제2 전도체 수용부(35)에 대응되는 크기를 가진다.
도 4 에 도시된 바와 같은 유연 기판(20)의 펼침 상태에서는, 제1 전도체(34)와 제2 전도체(36)는 서로 수직한 배치를 이루며 서로 접촉되지 않는 상태를 유지한다.
도 4 에 도시된 상태에서 접힘선(L)을 따라 제2 영역(26)을 제1 영역(24)에 대하여 접으면 도 5 에 도시된 바와 같이 제2 전도체(36)가 제1 전도체(34) 사이에 이치하면서 유연 기판(20)이 접혀진다.
따라서 도 4 에 도시된 펼침 상태에서는 제1 전체와 제2 전도체(34, 36) 사이에서 전기전도가 일어나지 않지만, 도 5 와 같은 접힘 상태에서는 제1 전체와 제2 전도체(34, 36)가 서로 접촉되므로 그 사이에서 전기전도가 일어나게 된다.
접힘이 가능한 유연성 디스플레이에서는 유연성 디스플레이에 표시되는 화면을 제어하기 위해서는 유연성 디스플레이가 접힌 상태에 있는지 펼친 상태에 있는지를 감지하는 것 즉, 사용 상태인지 보관 상태인지를 감지하는 것이 필수적이다.
도 4 및 도 5 에 도시된 또 다른 실시예에 따른 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판은 펼친 상태 및 접힘 상태에서의 전기전도성 변화에 따라 접힘 여부를 감지할 수 있게 하므로 유연성 디스플레이에 적용되어 유연성 디스플레이가 사용 상태인지 보관 상태인지를 알 수 있게 한다. 또한 펼침 상태에서만 전원이 인가되도록 하는 전원 제어부로서의 기능도 할 수 있다. 유연성 디스플레이에 적용된 실시예의 경우 유연 기판은 유연성 디스플레이의 일부가 되거나 유연성 디스플레이에 부착되는 별도의 막일 수 있다.
이상에서 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였다. 그러나 본 발명의 범위는 상술된 실시예들에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 평균적인 기술자에 의해 용이하게 이루어질 수 있는 치환, 변경 등은 본 발명의 범위에 속한다.

Claims (5)

  1. 유연 기판(20); 및
    상기 유연 기판(20)의 표면에 전기전도성 물질로 이루어진 전도체(30)들이 배열되어 이루어진 전도성 패턴을 포함하며,
    상기 전도체(30)는 길이 방향으로 연장 형성되고, 복수의 상기 전도체(30)들이 폭 방향으로 설정된 이격 공간(31)을 가지면서 서로 이격하여 배치되되 폭 방향으로 휨 변형시에 상기 이격 공간(31)이 좁혀지면서 서로 접촉하게 배치되며, 휨 변형시 상기 전도성 패턴이 전도체 비 접촉 모드에서 전도체 접촉 모드로 변경되면서 전도체들간의 전기전도성이 변화하여 휨 변형을 감지하는 것을 특징으로 하는 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판.
  2. 제 1 항에 있어서,
    상기 전도체(30)는 상기 유연 기판(20)의 표면에서 상부로 갈수록 폭이 넓어지는 역 사다리꼴 형태로 형성되는 것을 특징으로 하는 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 각 길이 방향으로 연장 형성된 전도체(30)들은 길이 방향으로 이격 공간(33)을 가지면서 배열된 복수개의 블럭형 전도체(32)들로 이루어지되, 상측 전도체를 이루는 상기 블럭형 전도체(32) 사이의 이격 공간(33)은 하측 전도체를 이루는 상기 블럭형 전도체(32) 사이의 이격 공간(33)과 폭 방향으로 일직선 상에 위치하는 것을 특징으로 하는 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판.
  4. 제 3 항에 있어서,
    상기 블럭형 전도체(32)에서 길이 방향으로 서로 대면하는 면이 경사지게 형성되되, 상기 유연 기판(20) 표면에서 상부로 갈수록 대면하는 면을 향해 돌출되게 경사진 것을 특징으로 하는 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판.
  5. 제 1 항에 있어서,
    상기 전도체(30)들로 이루어진 상기 전도성 패턴은 상기 유연 기판(20)의 양 표면으로 형성되는 것을 특징으로 하는 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판.
PCT/KR2015/002376 2015-03-11 2015-03-11 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판 WO2016143925A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/895,944 US9699894B2 (en) 2015-03-11 2015-03-11 Deformation sensing flexible substrate using pattern formed of conductive material
PCT/KR2015/002376 WO2016143925A1 (ko) 2015-03-11 2015-03-11 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/002376 WO2016143925A1 (ko) 2015-03-11 2015-03-11 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판

Publications (1)

Publication Number Publication Date
WO2016143925A1 true WO2016143925A1 (ko) 2016-09-15

Family

ID=56878879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002376 WO2016143925A1 (ko) 2015-03-11 2015-03-11 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판

Country Status (2)

Country Link
US (1) US9699894B2 (ko)
WO (1) WO2016143925A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106767379A (zh) * 2016-12-30 2017-05-31 常州亿晶光电科技有限公司 一种太阳能电池板网板变形的检测设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10702177B2 (en) * 2016-08-24 2020-07-07 Biosense Webster (Israel) Ltd. Catheter with bipole electrode spacer and related methods
TWI627381B (zh) * 2016-10-21 2018-06-21 台灣艾華電子工業股份有限公司 彎曲感測器
CN107036525B (zh) * 2017-05-23 2019-06-28 京东方科技集团股份有限公司 柔性屏弯曲检测装置和方法、柔性屏
DE102021112608A1 (de) 2021-05-14 2022-11-17 Technische Hochschule Köln, Körperschaft des öffentlichen Rechts Vorrichtung zur Strukturüberwachung einer Oberfläche

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349650A (ja) * 1993-06-10 1994-12-22 Yokogawa Electric Corp プリントコイル形トランス
JP2008107514A (ja) * 2006-10-25 2008-05-08 Funai Electric Co Ltd L形フレキシブルプリント配線体及びこれを用いた液晶表示パネル
KR20090092982A (ko) * 2008-02-28 2009-09-02 재단법인서울대학교산학협력재단 스트레칭 및 벤딩이 가능한 배선구조체 및 이의 제조방법
KR20120114961A (ko) * 2011-04-08 2012-10-17 삼성전자주식회사 굽힘 감지 센서 및 그를 제조하는 방법
KR101504695B1 (ko) * 2013-11-29 2015-03-26 서울대학교산학협력단 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5047952A (en) 1988-10-14 1991-09-10 The Board Of Trustee Of The Leland Stanford Junior University Communication system for deaf, deaf-blind, or non-vocal individuals using instrumented glove
FR2751743B1 (fr) * 1996-07-23 1998-10-23 Support Systems International Procede et dispositif a self integree dans un pont de mesure
US6370964B1 (en) * 1998-11-23 2002-04-16 The Board Of Trustees Of The Leland Stanford Junior University Diagnostic layer and methods for detecting structural integrity of composite and metallic materials
AU2005286769A1 (en) * 2004-09-21 2006-03-30 Adidas Ag Inductive plethysmographic sensors, monitors, and apparel
EP2265900A2 (en) * 2008-04-11 2010-12-29 Rambus Inc. Displacement sensing using a flexible substrate
US20140035603A1 (en) * 2012-08-03 2014-02-06 Xerox Corporation Printed Stretch Sensor
WO2013163549A1 (en) * 2012-04-26 2013-10-31 The University Of Akron Flexible tactile sensors and method of making
US9419065B2 (en) * 2012-08-07 2016-08-16 Apple Inc. Flexible displays
KR101500840B1 (ko) * 2013-06-24 2015-03-10 서울대학교산학협력단 변형 센서 제조 방법, 변형 센서 및 변형 센서를 이용한 움직임 감지 장치
US9228907B2 (en) * 2013-11-14 2016-01-05 Nokia Technologies Oy Flexible device deformation measurement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349650A (ja) * 1993-06-10 1994-12-22 Yokogawa Electric Corp プリントコイル形トランス
JP2008107514A (ja) * 2006-10-25 2008-05-08 Funai Electric Co Ltd L形フレキシブルプリント配線体及びこれを用いた液晶表示パネル
KR20090092982A (ko) * 2008-02-28 2009-09-02 재단법인서울대학교산학협력재단 스트레칭 및 벤딩이 가능한 배선구조체 및 이의 제조방법
KR20120114961A (ko) * 2011-04-08 2012-10-17 삼성전자주식회사 굽힘 감지 센서 및 그를 제조하는 방법
KR101504695B1 (ko) * 2013-11-29 2015-03-26 서울대학교산학협력단 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106767379A (zh) * 2016-12-30 2017-05-31 常州亿晶光电科技有限公司 一种太阳能电池板网板变形的检测设备

Also Published As

Publication number Publication date
US9699894B2 (en) 2017-07-04
US20170048965A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
WO2016143925A1 (ko) 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판
US11015989B2 (en) Resistive-capacitive deformation sensor
TWI707127B (zh) 壓力檢測裝置
TWI607356B (zh) 一種三維觸控裝置
US9816799B2 (en) Embroidered strain sensing elements
EP2682724B1 (en) A large-area extensible pressure sensor for textile surfaces
KR102534083B1 (ko) 감압 센서
KR102398552B1 (ko) 벤딩 센싱 장치를 갖는 연성 표시장치
CN105115633A (zh) 一种压力感测装置
KR20180116161A (ko) Vr 글러브
US20200233532A1 (en) Touch substrate, touch panel, and touch display device
CN108292186A (zh) 静电电容式传感器
KR101261137B1 (ko) 탄성 유전체를 이용한 슬립센서
US11906372B2 (en) Capacitance sensor and measurement device
WO2012157930A2 (ko) 터치 위치의 검출 정확도가 향상된 터치 패널 센서 장치
KR101504695B1 (ko) 전기전도성 물질 패터닝을 이용한 변형 감지 유연성 기판
KR20130070233A (ko) 복합형 다축센서
CN205283925U (zh) 一种柔性线路板
JP6661309B2 (ja) タッチパネル装置
Pan et al. Flexible full‐body tactile sensor of low cost and minimal output connections for service robot
CN108351734A (zh) 静电电容式传感器
KR101083596B1 (ko) 다른 크기의 전극을 가지는 터치 스크린 패널
CN204831652U (zh) 压力感测装置
JP2008102090A (ja) 変形センサシステム
CN105339879A (zh) 用于敏感地板的基底和显示基底上的负载的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14895944

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884726

Country of ref document: EP

Kind code of ref document: A1