WO2016143798A1 - 有機・無機複合膜及びこれを用いた多層耐熱セパレータ材 - Google Patents

有機・無機複合膜及びこれを用いた多層耐熱セパレータ材 Download PDF

Info

Publication number
WO2016143798A1
WO2016143798A1 PCT/JP2016/057223 JP2016057223W WO2016143798A1 WO 2016143798 A1 WO2016143798 A1 WO 2016143798A1 JP 2016057223 W JP2016057223 W JP 2016057223W WO 2016143798 A1 WO2016143798 A1 WO 2016143798A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
resistant layer
organic
inorganic composite
film
Prior art date
Application number
PCT/JP2016/057223
Other languages
English (en)
French (fr)
Inventor
坂本 和之
福田 浩一
信雄 榎木
慎吾 伊藤
Original Assignee
Jnc株式会社
Jnc石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社, Jnc石油化学株式会社 filed Critical Jnc株式会社
Priority to US15/557,475 priority Critical patent/US20180062141A1/en
Priority to EP16761766.1A priority patent/EP3269544A4/en
Priority to KR1020177027184A priority patent/KR20170126949A/ko
Priority to CN201680014498.4A priority patent/CN107428122A/zh
Publication of WO2016143798A1 publication Critical patent/WO2016143798A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an organic / inorganic composite film, a manufacturing method thereof, and a multilayer heat-resistant separator material using the organic / inorganic composite film.
  • microporous film that is a material for the battery separator
  • a film made of a resin such as polyethylene or polypropylene is microporous by a method called a wet method or a dry method.
  • multilayer heat-resistant separator materials are used for organic / inorganic composite membranes in which a heat-resistant layer containing inorganic heat-resistant particles is provided on a resin microporous membrane. Became.
  • Such a multilayer heat-resistant separator material contributes to improving the safety of the battery by increasing the heat resistance, but actually has a problem specific to the organic / inorganic composite film.
  • the weight per unit length of the separator material increases. Since the heat-resistant layer contains a large amount of metal oxides such as alumina and silica, the density is much higher than the density of a resin microporous film (hereinafter referred to as a substrate film) as a substrate. Although the thickness of the heat-resistant layer is small, the weight per unit length of the separator is surely increased by providing the heat-resistant layer. This is not convenient for reducing the weight of batteries in recent years.
  • the ionic conductivity of the base film may be affected by the heat-resistant layer.
  • the heat-resistant layer is formed by applying a heat-resistant layer agent containing inorganic heat-resistant particles, a binder, and a solvent to a base film, drying, and solidifying.
  • a heat-resistant layer agent containing inorganic heat-resistant particles, a binder, and a solvent to a base film, drying, and solidifying.
  • the heat resistant layer adheres to the surface of the base film and a portion close to the surface, the form of the space penetrating the microporous film may change. Therefore, in the multilayer heat-resistant separator material including the heat-resistant layer and the base film, there is a possibility that the excellent ion conductivity originally possessed by the base film cannot be maintained.
  • the heat-resistant layer is blended with a binder having an appropriate affinity for both the inorganic heat-resistant particles and the base film in order to make the filler such as a metal oxide adhere to a base film such as polyolefin.
  • a binder having an appropriate affinity for both the inorganic heat-resistant particles and the base film in order to make the filler such as a metal oxide adhere to a base film such as polyolefin.
  • Organic / inorganic composite membrane that can overcome all of the above problems, that is, organic / inorganic with excellent balance in lightness, maintenance of microporous properties of base film, and adhesion between base and heat-resistant layer A composite membrane has not yet been obtained.
  • Patent Documents 1 to 5 describe multilayer films composed of a base film and a heat-resistant layer for battery separators.
  • Patent Documents 1 and 2 describe the adhesion of the heat-resistant layer, but do not describe the density of the heat-resistant layer, the weight reduction of the multilayer film, and the maintenance of the microporous characteristics of the base film.
  • Patent Documents 3 and 4 focus on the peel strength of the heat-resistant layer and the change in air permeability of the base film, but do not describe the weight reduction of the multilayer film.
  • Patent Document 5 describes the weight reduction of the multilayer film, but does not describe the maintenance of the microporous characteristics of the base film and the adhesion between the base and the heat-resistant layer.
  • the separator material that has all of the lightness, the maintenance of the microporous characteristics of the base film, and the adhesion between the base and the heat-resistant layer has not been sufficiently studied so far.
  • the inventor of the present invention provides an organic / inorganic composite film for a multilayer heat-resistant separator material having a good balance between lightness, maintaining the microporous characteristics of the base film, and adhesion between the base and the heat-resistant layer. We studied earnestly to obtain.
  • the inventors succeeded in selectively producing an organic / inorganic composite film excellent in balance by providing specific conditions.
  • a heat-resistant layer containing inorganic heat-resistant particles and a binder is provided on at least one surface of a base film made of a polyolefin microporous film, and all of the following conditions (A), (B), and (C) are satisfied.
  • Air permeability change rate (%)
  • a polymer obtained by polymerizing a monomer mainly containing olefin is a propylene homopolymer or a copolymer of propylene and at least one selected from ethylene and ⁇ -olefins having 4 to 8 carbon atoms.
  • the binder is a fluorine-containing resin.
  • [7] including a step of applying a heat-resistant layer agent containing inorganic heat-resistant particles and a binder to at least one surface of a base film made of a polyolefin microporous film, and then drying and solidifying the heat-resistant layer.
  • a heat-resistant layer agent containing inorganic heat-resistant particles and a binder to at least one surface of a base film made of a polyolefin microporous film, and then drying and solidifying the heat-resistant layer.
  • [8] A multilayer heat-resistant separator material comprising the organic / inorganic composite film according to any one of [1] to [6].
  • the organic / inorganic composite film of the present invention has high heat resistance and is lighter than the conventional one. And the adhesiveness of a base film and a heat-resistant layer is good. Furthermore, the microporous property of the base film is well maintained even in a state where it is in contact with the heat-resistant layer.
  • the organic / inorganic composite film of the present invention is novel in that it has heat resistance, lightness, adhesion between the base film and the heat-resistant layer, and maintenance of the microporosity of the base film, It is progressive in that it has new advantages not previously targeted.
  • the organic / inorganic composite film of the present invention is provided with a heat-resistant layer containing inorganic heat-resistant particles and a binder on at least one surface of a base film made of a polyolefin microporous film.
  • a heat-resistant layer containing inorganic heat-resistant particles and a binder on at least one surface of a base film made of a polyolefin microporous film.
  • the base film used in the present invention is a polyolefin microporous film.
  • the polyolefin which is a raw material for the base film used in the present invention, is a polymer obtained by polymerizing monomers mainly composed of olefins.
  • Polyolefin is a polymer that is polymerized only from an olefin monomer, but if it is mainly composed of an olefin monomer, that is, a polymer that contains other monomers than the olefin monomer if it is the main component. It may be.
  • olefin monomer examples include linear olefin monomers having 2 to 10 carbon atoms and branched olefin monomers having 4 to 8 carbon atoms such as 2-methylpropene, 3-methyl-1-butene and 4-methyl-1-pentene. Is available. As other monomers, styrenes and dienes can be used in combination.
  • Typical polyolefins are polymers called polyethylene and polypropylene.
  • Polyethylene is a polymer containing ethylene as a main component, for example, an ethylene homopolymer, ethylene obtained by copolymerizing ethylene and at least one (comonomer) selected from ⁇ -olefins having 3 to 8 carbon atoms.
  • Polypropylene is a polymer mainly composed of propylene.
  • it is a copolymer of propylene homopolymer, propylene, and at least one (comonomer) selected from ethylene and an ⁇ -olefin having 4 to 8 carbon atoms.
  • examples thereof include a polymer having propylene as a main component.
  • the content of the comonomer may be in any range as long as the base film satisfies a predetermined elongation condition.
  • the base film used in the present invention may be any film as long as the organic / inorganic composite film of the present invention satisfies the above conditions (A), (B), and (C).
  • the raw material of the base film used in the present invention is preferably a highly crystalline and high melting point polypropylene.
  • a particularly preferable polypropylene has a melt mass flow rate (measured in accordance with MFR, JIS K6758 (230 ° C., 21.18 N)) of 0.1 to 1.0 g / 10 min and a melting point of 150 to 170 ° C.
  • a highly crystalline polypropylene having a high melting point is preferable.
  • a particularly preferable polypropylene is an arbitrary one having a melt mass flow rate (measured in accordance with MFR, JIS K6758 (230 ° C., 21.18 N)) of 0.1 to 1.0 g / 10 minutes and a melting point of 150 to 170 ° C.
  • a polymer based on propylene which may contain at least one selected from ethylene and ⁇ -olefins having 4 to 8 carbon atoms.
  • additives such as a crystal nucleating agent and a filler can be blended.
  • the type and amount of the additive are not limited as long as the organic / inorganic composite film of the present invention satisfies the above conditions (A), (B), and (C).
  • the substrate film of the present invention is preferably a polyolefin microporous membrane produced by a so-called dry method, which is advantageous in terms of cost because no organic solvent is used.
  • a microporous membrane made of polyolefin a microporous membrane having a porosity of 45% or more manufactured by a dry method including the following film forming process, heat treatment process, cold stretching process, hot stretching process, and relaxation process Is particularly preferred.
  • Frm forming process This is a process of forming a raw film by extruding the raw material.
  • the raw material polyolefin is supplied to an extruder, the raw material polyolefin is melt-kneaded at a temperature equal to or higher than its melting point, and a film made of the raw material polyolefin is extruded from a die attached to the tip of the extruder.
  • the extruder used is not limited.
  • the extruder for example, any of a single screw extruder, a twin screw extruder, and a tandem type extruder can be used. Any die can be used as long as it is used for film forming.
  • the dice for example, various T-type dice can be used.
  • the thickness and shape of the raw film are not particularly limited.
  • the ratio (draft ratio) between the die slip clearance and the raw film thickness is 100 or more, more preferably 150 or more.
  • the thickness of the raw film is 10 to 200 ⁇ m, more preferably 15 to 100 ⁇ m.
  • Heat treatment process It is a process of heat-treating the raw film after finishing the film forming process.
  • a constant tension in the length direction is applied to the raw film at a temperature 5 to 65 ° C., preferably 10 to 25 ° C. lower than the melting point of the raw polyolefin.
  • a preferable tension is such that the length of the raw film is more than 1.0 times and 1.1 times or less.
  • the stretching temperature is ⁇ 5 ° C. to 45 ° C., preferably 5 ° C. to 30 ° C.
  • the draw ratio is 1.0 to 1.1, preferably 1.00 to 1.08, more preferably 1.02 or more and less than 1.05 in the length direction. However, the draw ratio is greater than 1.0.
  • the stretching means is not limited. Known means such as a roll stretching method and a tenter stretching method can be used. The number of stretching stages can be set arbitrarily. One-stage stretching may be performed, and two or more stages of stretching may be performed through a plurality of rolls.
  • the molecules of the polypropylene polymer constituting the raw film are oriented.
  • a stretched film having a lamellar portion with a dense molecular chain and a region (craze) with a loose molecular chain between lamellas is obtained.
  • the stretching temperature is 5 to 65 ° C. lower than the melting point of the polypropylene polymer, preferably 10 to 45 ° C. lower than the melting point of the raw polyolefin polymer.
  • the draw ratio is 1.5 to 4.5 times in the length direction, preferably 2.0 to 4.0 times.
  • the stretching means is not limited. Known means such as a roll stretching method and a tenter stretching method can be used.
  • the number of stretching stages can be set arbitrarily. One-stage stretching may be performed, and two or more stages of stretching may be performed through a plurality of rolls. As a result of stretching the craze generated in the cold stretching step in the hot stretching step, voids are generated in the stretched film.
  • the relaxation temperature is slightly higher than the stretching temperature in the warm stretching step, and is generally 0 to 20 ° C. higher.
  • the degree of relaxation is adjusted so that the length of the stretched film after Step 4 is finally 0.7 to 1.0 times.
  • the final substrate film has a thickness of 15 to 30 ⁇ m, preferably 15 to 25 ⁇ m.
  • An inorganic heat resistant layer is formed on at least one side of the substrate film.
  • the inorganic heat-resistant layer is formed by applying a heat-resistant layer agent containing inorganic heat-resistant particles, a binder, and a solvent to the base film, and drying and solidifying the coating liquid.
  • inorganic heat resistant particles As the inorganic heat-resistant particles, an inorganic material having a high melting point, high insulating properties, and electrochemical stability can be used. Such inorganic heat-resistant particles are inorganic particles having a melting point of 200 ° C. or more and generally called an inorganic filler.
  • the average particle diameter of the inorganic heat resistant particles used in the present invention is 0.2 ⁇ m or less, preferably 0.15 ⁇ m or less.
  • inorganic heat-resistant particles include alumina, silica, titania, zirconia, magnesia, barium titanate and other metal oxides, aluminum hydroxide, magnesium hydroxide and other metal hydroxides, boehmite, talc, kaolin, Clay-based minerals such as zeolite, apatite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amicite, bentonite, calcium silicate, and magnesium silicate are used.
  • a mixture comprising a plurality of inorganic heat resistant particles can also be used.
  • Preferred inorganic heat resistant particles are at least one selected from alumina, silica, and boehmite.
  • binder The binder functions as a binder between the base material and the inorganic heat resistant particles.
  • a binder Various resins such as polyolefin, fluorine-containing resin, rubber, elastomer, cellulose, and water-soluble resin can be used.
  • preferred binders are polytetrafluoroethylenes (PTFE), ethylene-tetrafluoroethylene (ETFE), polyvinyl fluoride (PVF), polychlorotrifluoroethylene (CTFE), and polyvinylidene fluoride (PVDF) or a combination thereof.
  • PTFE polytetrafluoroethylenes
  • ETFE ethylene-tetrafluoroethylene
  • PVF polyvinyl fluoride
  • CFE polychlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • Fluorine-containing resins such as polymers, more preferably polyvinylidene fluoride (PVDF) and copolymers thereof.
  • the amount ratio of inorganic heat resistant particles and binder is generally in the range of 40:60 to 98: 2, preferably 50:50 to 95: 5, more preferably 60. : In the range of 40 to 90:10.
  • a solvent is usually added to the inorganic heat-resistant layer agent.
  • polar organic solvents such as water or acetone, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethylsulfoxide and the like can be used.
  • additives such as a dispersant, an antibacterial agent, and a fungicide can be blended with the inorganic heat resistant layer agent as necessary.
  • the inorganic heat-resistant layer agent is prepared by mixing and stirring raw materials such as the above-mentioned inorganic heat-resistant particles, binder, solvent, and additive.
  • the means for mixing and stirring is not limited. Usually, a homogenizer, a bead mill, or a jet mill is used.
  • a heat-resistant layer agent is applied to at least one surface of the base film.
  • the coating means is not limited.
  • any means can be used as long as it is a means for applying a liquid material in the form of a flat film, such as a gravure coater, a micro gravure coater, a die coater, or a knife coater.
  • a base film with a heat resistant layer agent is conveyed to a dryer, and the heat resistant layer agent is dried to form a heat resistant layer.
  • the drying temperature is set to such a temperature that the solvent in the heat-resistant layering agent volatilizes but the thermal deterioration of the base film is suppressed.
  • a preferable drying temperature is 70 ° C. or more, and a more preferable drying temperature is 80 to 120 ° C.
  • the heat-resistant layer agent solidifies as it is dried, and the heat-resistant layer is completed.
  • the thickness of the heat-resistant layer agent provided on one surface of the base film is usually in the range of 1 to 10 ⁇ m, preferably 1.5 to 6.0 ⁇ m, more preferably 2.5 to 5.0 ⁇ m.
  • the organic / inorganic composite film of the present invention uses a base film obtained under the above conditions and a heat-resistant layer agent, and is provided with a heat-resistant layer on at least one side of the base film by the above-described method.
  • the heat-resistant layer of the present invention satisfies the following condition (A).
  • Condition (A) a ⁇ 1.5
  • a is the density of the heat-resistant layer and is represented by the weight per volume (g / m 2 / ⁇ m) of the heat-resistant layer having an area of 1 m 2 and a thickness of 1 ⁇ m.
  • the chuck of the tensile tester is pulled away at a tensile speed of 500 mm / min, and the maximum stress (N) at the time when the heat-resistant layer and the base film peel off at the interface is defined as the peel strength b.
  • N the maximum stress at the time when the heat-resistant layer and the base film peel off at the interface.
  • the heat-resistant layer of the present invention satisfies the following condition (C).
  • the completed organic / inorganic composite film is usually produced as a raw roll in which a film having a length of several tens to several thousand meters is wound around one core.
  • the organic / inorganic composite film of the present invention is processed into a separator, the organic / inorganic composite film was wound on a new core after cutting the organic / inorganic composite film to a width suitable for the separator in which the organic / inorganic composite film was used, if necessary.
  • Product roll Thereafter, the roll of the organic / inorganic composite film is packaged, stored, shipped, and processed into a desired product.
  • the organic / inorganic composite film of the present invention When the organic / inorganic composite film of the present invention is used for a heat resistant multilayer separator, it is desired that the organic / inorganic composite film has higher heat resistance.
  • the heat resistance of the separator material is evaluated by the 150 ° C. heat shrinkage rate (%) used in the examples described later, the heat shrinkage rate of the organic / inorganic composite film of the present invention is 10% or less. This degree of thermal shrinkage is in the range allowed for the separator material.
  • Example 1 Manufacture of base film
  • a propylene homopolymer having a melt mass flow rate (MFR) measured in accordance with JIS K6758 (230 ° C., 21.18 N) of 0.5 g / 10 min and a melting point of 165 ° C. was used.
  • MFR melt mass flow rate
  • Heat treatment The raw film was cold-stretched 1.03 times in the length direction at 30 ° C.
  • silica (AEROSIL MOX80, average particle diameter 0.1 ⁇ m) was used as the inorganic heat resistant particles.
  • a vinylidene fluoride copolymer (abbreviated as “co-PVDF”) (Kyner 2801 manufactured by Arkema Co., Ltd.) was used as a binder.
  • Inorganic heat resistant particles (weight concentration 8%) and a binder (weight concentration 4%) were added to N-methylpyrrolidone (NMP) as a solvent, and the mixture was stirred for 1 hour at 500 rpm with a disper.
  • NMP N-methylpyrrolidone
  • the resulting slurry was treated and mixed five times at a treatment pressure of 200 MPa using a high-pressure treatment apparatus (Nanovater manufactured by Yoshida Kikai Kogyo Co., Ltd.).
  • a high-pressure treatment apparatus Nanovater manufactured by Yoshida Kikai Kogyo Co., Ltd.
  • an inorganic heat resistant layer agent in which the inorganic heat resistant particles and the binder were uniformly dispersed was obtained.
  • a heat-resistant layer agent was applied to one side of the base film with a gravure coater.
  • the basis weight of the heat resistant layer was 3.5 g / m 2 .
  • the base film with a heat-resistant layer agent was conveyed in a drying furnace at a temperature of 95 ° C., and the heat-resistant layer agent was dried and solidified.
  • the thickness of the heat-resistant layer was 4.7 ⁇ m, and the thickness of the entire film was 24.7 ⁇ m.
  • an organic / inorganic composite film was obtained.
  • the density of the heat-resistant layer of the obtained organic / inorganic composite is 0.74 g / m 2 / ⁇ m, which satisfies the above condition (A).
  • the chuck was pulled at a pulling speed of 500 mm / min, and the maximum stress when the heat-resistant layer and the base film were peeled at the interface was obtained as the peel strength b (N) between the base film and the heat-resistant layer.
  • b was 14.7N.
  • the obtained organic / inorganic composite film satisfies the above-mentioned condition (B).
  • the heat shrinkage rate of the obtained organic / inorganic composite film was measured.
  • a square piece of 7 cm ⁇ 7 cm was cut out from the obtained organic / inorganic composite film.
  • Three sets of reference point sets consisting of two points separated by 2.5 cm in the length direction were determined at arbitrary positions on the surface of the small piece. Three sets were similarly determined in the width direction.
  • the small piece was left in a thermostatic bath at 150 ° C. for 2 hours without applying a load, and then the distance between the two points of each reference point set was measured.
  • the heat shrinkage rate (%) was calculated from the difference between the distance between the two points before heating and the distance between the two points after heating.
  • the average value of the three sets was defined as the heat shrinkage rate (%) in the length direction.
  • the thermal contraction rate (%) in the width direction was determined for three sets of reference points in the width direction.
  • the larger one of the heat shrinkage rate (%) in the length direction and the heat shrinkage rate (%) in the width direction was taken as the heat shrinkage rate (%) at 150 ° C. of the organic / inorganic composite film.
  • the heat shrinkage rate at 150 ° C. was 9%.
  • Example 2 Manufacture of base film
  • the stretching conditions of Example 1 were adjusted so that the thickness of the base film was 21 ⁇ m.
  • a heat-resistant layering agent was prepared under the same conditions as in Example 1 except that boehmite (Daimei Chemical CO1, average particle size: 0.1 ⁇ m) was used as the inorganic heat-resistant particles.
  • a heat-resistant layer agent was applied to one side of the base film with a gravure coater. The basis weight of the heat-resistant layer was 4.1 g / m 2 .
  • the base film with a heat-resistant layer agent was conveyed in a drying furnace at a temperature of 95 ° C., and the heat-resistant layer agent was dried and solidified.
  • the thickness of the heat-resistant layer was 3.2 ⁇ m, and the thickness of the entire film was 24.2 ⁇ m.
  • an organic / inorganic composite film was obtained.
  • Example 3 Manufacture of base film
  • the stretching conditions of Example 1 were adjusted so that the thickness of the base film was 21 ⁇ m.
  • Alumina AEROXIDE AluC, average particle size 0.1 ⁇ m
  • PVDF Kyner HSV 500, manufactured by Arkema Co., Ltd.
  • NMP N-methylpyrrolidone
  • an inorganic heat resistant layer agent in which the inorganic heat resistant particles and the binder were uniformly dispersed was obtained.
  • a heat-resistant layer agent was applied to one side of the base film with a gravure coater. The basis weight of the heat-resistant layer was 2.9 g / m 2 .
  • the base film with a heat-resistant layer agent was conveyed in a drying furnace at a temperature of 95 ° C., and the heat-resistant layer agent was dried and solidified.
  • the thickness of the heat-resistant layer was 3.0 ⁇ m, and the thickness of the entire film was 24.0 ⁇ m.
  • an organic / inorganic composite film was obtained.
  • Example 4 Manufacture of base film
  • the stretching conditions of Example 1 were adjusted so that the thickness of the base film was 20.5 ⁇ m.
  • a heat-resistant layering agent was prepared in the same manner as in Example 3 except that alumina (AEROXIDE AluC, average particle size 0.1 ⁇ m) was used as the inorganic heat-resistant particles, and PVDF (Kyner HSV 500 manufactured by Arkema Co., Ltd.) was used as the binder. did.
  • alumina AEROXIDE AluC, average particle size 0.1 ⁇ m
  • PVDF Kyner HSV 500 manufactured by Arkema Co., Ltd.
  • a heat-resistant layer agent was applied to one side of the base film with a gravure coater. The basis weight of the heat resistant layer was 3.2 g / m 2 .
  • the base film with a heat-resistant layer agent was conveyed in a drying furnace at a temperature of 95 ° C., and the heat-resistant layer agent was dried and solidified.
  • the thickness of the heat-resistant layer was 3.2 ⁇ m, and the thickness of the entire film was 23.7 ⁇ m.
  • an organic / inorganic composite film was obtained.
  • Example 5 Manufacture of base film
  • the stretching conditions of Example 1 were adjusted so that the thickness of the base film was 21 ⁇ m.
  • Alumina AEROXIDE Alu65, average particle size 0.1 ⁇ m
  • PVDF Kyner HSV 500 manufactured by Arkema Co., Ltd.
  • a heat-resistant layer agent was prepared under the same conditions as in Example 3 except that they were mixed.
  • a heat-resistant layer agent was applied to one side of the base film with a gravure coater.
  • the basis weight of the heat resistant layer was 3.0 g / m 2 .
  • the base film with a heat-resistant layer agent was conveyed in a drying furnace at a temperature of 95 ° C., and the heat-resistant layer agent was dried and solidified.
  • the thickness of the heat-resistant layer was 3.0 ⁇ m, and the thickness of the entire film was 24.0 ⁇ m.
  • an organic / inorganic composite film was obtained.
  • Example 1 Manufacture of base film
  • the stretching conditions of Example 1 were adjusted so that the thickness of the base film was 16 ⁇ m.
  • Boehmite C06 manufactured by Daimei Chemical Co., Ltd., average particle size 0.8 ⁇ m
  • vinylidene fluoride homopolymer product Kyner HSV 500 manufactured by Arkema Co., Ltd.
  • Inorganic heat resistant particles weight concentration: 9.6%
  • binder weight concentration: 2.48%
  • NMP N-methylpyrrolidone
  • a heat-resistant layer agent was prepared under the same conditions as in Example 1 except that the treatment was performed three times at a treatment pressure of 200 MPa using a high-pressure treatment apparatus, and the others were mixed.
  • a heat-resistant layer agent was applied to one side of the base film with a gravure coater. The basis weight of the heat resistant layer was 3.8 g / m 2 .
  • the base film with a heat-resistant layer agent was conveyed in a drying furnace at a temperature of 95 ° C., and the heat-resistant layer agent was dried and solidified.
  • the thickness of the heat-resistant layer was 2.5 ⁇ m, and the thickness of the entire film was 18.5 ⁇ m.
  • an organic / inorganic composite film was obtained.
  • Example 2 Manufacture of base film
  • the stretching conditions of Example 1 were adjusted so that the thickness of the base film was 21 ⁇ m.
  • Alumina Alumina (AKP-3000, average particle size 0.3 ⁇ m) was used as the inorganic heat resistant particles, and PDVF (Kyner HSV 500 manufactured by Arkema Co., Ltd.) was used as the binder.
  • a heat-resistant layer agent was prepared under the same conditions as in Example 1, except that the weight concentration of the inorganic heat-resistant particles was 9%, the binder was 3%, and the conditions of the high-pressure treatment apparatus were one treatment at a treatment pressure of 200 MPa. .
  • a heat-resistant layer agent was applied to one side of the base film with a gravure coater.
  • the basis weight of the heat-resistant layer was 5.5 g / m 2 .
  • the base film with a heat-resistant layer agent was conveyed in a drying furnace at a temperature of 95 ° C., and the heat-resistant layer agent was dried and solidified.
  • the thickness of the heat-resistant layer was 3.7 ⁇ m, and the thickness of the entire film was 24.7 ⁇ m.
  • an organic / inorganic composite film was obtained.
  • Example 3 Manufacture of base film
  • the stretching conditions of Example 1 were adjusted so that the thickness of the base film was 21 ⁇ m.
  • Preparation of heat-resistant layer agent A heat-resistant layer under the same conditions as in Comparative Example 2 except that alumina (AKP-3000, average particle size 0.3 ⁇ m) was used as the inorganic heat-resistant particles, and commercially available PVDF (trade name “S6-226”) was used as the binder.
  • An agent was prepared.
  • a heat-resistant layer agent was applied to one side of the base film with a gravure coater. The basis weight of the heat resistant layer was 3.3 g / m 2 .
  • the base film with a heat-resistant layer agent was conveyed in a drying furnace at a temperature of 95 ° C., and the heat-resistant layer agent was dried and solidified.
  • the thickness of the heat-resistant layer was 1.6 ⁇ m, and the thickness of the entire film was 22.6 ⁇ m.
  • an organic / inorganic composite film was obtained.
  • Example 4 Manufacture of base film
  • the stretching conditions of Example 1 were adjusted so that the thickness of the base film was 21 ⁇ m.
  • a heat-resistant layer agent was prepared under the same conditions as in Example 1 except that alumina (minimum particle diameter 0.3 ⁇ m, maximum particle diameter 0.5 ⁇ m) was used as the inorganic heat-resistant particles, and an acrylic commercial product was used as the binder.
  • a heat-resistant layer agent was applied to one side of the base film with a gravure coater. The basis weight of the heat resistant layer was 6.7 g / m 2 .
  • the base film with a heat-resistant layer agent was conveyed in a drying furnace at a temperature of 95 ° C., and the heat-resistant layer agent was dried and solidified.
  • the thickness of the heat-resistant layer was 2.8 ⁇ m, and the thickness of the entire film was 23.8 ⁇ m.
  • an organic / inorganic composite film was obtained.
  • Example 5 Manufacture of base film
  • the stretching conditions of Example 1 were adjusted so that the thickness of the base film was 21 ⁇ m.
  • a heat-resistant layer agent was prepared under the same conditions as in Example 1 except that alumina (minimum particle diameter 0.3 ⁇ m, maximum particle diameter 0.6 ⁇ m) was used as the inorganic heat-resistant particles, and an acrylic commercial product was used as the binder.
  • a heat-resistant layer agent was applied to one side of the base film with a gravure coater. The basis weight of the heat resistant layer was 5.7 g / m 2 .
  • the base film with a heat-resistant layer agent was conveyed in a drying furnace at a temperature of 95 ° C., and the heat-resistant layer agent was dried and solidified.
  • the thickness of the heat-resistant layer was 2.8 ⁇ m, and the thickness of the entire film was 23.8 ⁇ m.
  • an organic / inorganic composite film was obtained.
  • the organic / inorganic composite films obtained in Examples 1 to 5 have the following conditions (A): light weight, conditions (B): high adhesion between the base film and the heat-resistant layer, conditions (C): base film The three conditions of small air permeability change are satisfied.
  • the organic / inorganic composite films obtained in Examples 1 to 5 also have the heat resistance required for the separator material.
  • the organic / inorganic composite films obtained in Comparative Examples 1 to 5 have a poor balance of the above conditions (A), (B), and (C).
  • Comparative Examples 1, 2, and 3 are inferior in heat resistance, which is a basic performance required for separator materials.
  • the organic / inorganic composite membrane that has been successfully produced selectively in the present invention results in a lightweight, base film that is required for a separator material in recent years while maintaining the heat resistance required for the separator material. It can be seen that both the adhesion to the heat-resistant layer and the maintenance of the microporous properties of the substrate film are combined.
  • Such an organic / inorganic composite film of the present invention is particularly useful as a separator material.

Abstract

 セパレータ材として有用な、軽量性、基材フィルムと耐熱層との密着性、基材フィルムの微多孔特性の維持のいずれの性質も兼ね備える有機・無機複合膜を提供することを課題とする。ポリオレフィン製微多孔膜からなる基材フィルムの少なくとも片面に、無機耐熱粒子とバインダーとを含む耐熱層を設けてなり、以下の条件(A)、(b)、(C)の全てを満たすことを特徴とする有機・無機複合膜による。条件(A):a≦1.5(a:耐熱層の密度(g/m/μm))、条件(B):12.74≦b(b:基材フィルムと耐熱層との剥離強度(N))、条件(C):c≦20(c:以下の式で求められる通気度変化率(%)を表す。通気度変化率(%)=|(有機・無機複合膜の通気度)-(基材フィルムの通気度)|÷(基材フィルムの通気度)×100)

Description

有機・無機複合膜及びこれを用いた多層耐熱セパレータ材
 本発明は、有機・無機複合膜、その製造方法、及び該有機・無機複合膜を用いた多層耐熱セパレータ材に関する。
 電池セパレータの材料である微多孔膜としてはポリエチレン、ポリプロピレンなどの樹脂からなるフィルムを湿式法あるいは乾式法と呼ばれる方法で微多孔化したものが用いられている。近年の、電池の安全性、耐熱性に対する要求の高まりに伴って、樹脂製微多孔膜に無機耐熱性粒子を含む耐熱層を設けた有機・無機複合膜を多層耐熱セパレータ材が利用されるようになった。このような多層耐熱セパレータ材は、耐熱性が増すことによって電池の安全性向上に貢献している、しかし、実際には有機・無機複合膜に特有の問題点がある。
 第一に、セパレータ材の単位長さあたりの重量が増加する。耐熱層はアルミナやシリカなどの金属酸化物類を大量に含むため、その密度は基材である樹脂製微多孔膜フィルム(以下、基材フィルムという。)の密度よりもはるかに大きい。耐熱層の厚みはわずかであるが、セパレータの単位長さあたりの重量は耐熱層を設けることによって確実に増加する。このことは近年の電池の軽量化にとって都合が悪い。
 第二に、耐熱層によって基材フィルムのイオン伝導性が影響を受ける可能性がある。通常、耐熱層は、無機耐熱粒子とバインダー、溶媒を含む耐熱層剤を基材フィルムに塗布、乾燥、固化させて形成される。耐熱層が基材フィルムの表面と表面に近い部分に付着することにより、微多孔膜を貫通する空間の形態が変化する可能性がある。したがって、耐熱層と基材フィルムとを含む多層耐熱セパレータ材では、本来基材フィルムが有していた優れたイオン伝導性が維持できない可能性がある。
 第三に、互いに基材フィルムと耐熱層を強固に密着させることが難しい。無機耐熱粒子として用いられるフィラーと、ポリオレフィンなどの基材フィルムとの親和性は低い。このため耐熱層には、金属酸化物などのフィラーとポリオレフィンなどの基材フィルムとを密着させるために、無機耐熱粒子と基材フィルムの両方に適度な親和性を有するバインダーが配合される。しかし、無機耐熱粒子、バインダー、基材フィルムの相互の結合力には限界がある。また、高い耐熱性を得るためには耐熱層中に十分な濃度で無機耐熱粒子を分散させる必要があるが、大量の無機耐熱粒子をバインダーに均一に分散させることは難しい。このため、大量の無機耐熱粒子を含むバインダーと基材フィルムとを強固に密着させることには限界がある。
 上記の問題点をすべて克服できる有機・無機複合膜、すなわち、軽量性、基材フィルムの微多孔質特性の維持、基材と耐熱層との密着性のいずれもがバランスよく優れた有機・無機複合膜は、未だ得られていない。
国際公開第2014/030507号パンフレット 国際公開第2012/124093号パンフレット 特開2013-163806号公報 国際公開第2012/029699号パンフレット 特開2013- 14017号公報
 例えば、特許文献1~5には、電池セパレータ用の、基材フィルムと耐熱層からなる多層フィルムが記載されている。特許文献1、2には、耐熱層の密着性について記載されているが、耐熱層の密度や多層フィルムの軽量化、基材フィルムの微多孔質特性の維持については記載されていない。特許文献3,4には、耐熱層の剥離強度、基材フィルムの通気性の変化について注目しているが、多層フィルムの軽量化については記載されていない。特許文献5には、多層フィルムの軽量化について記載されているが、基材フィルムの微多孔質特性の維持、基材と耐熱層との密着性については記載されていない。このように、軽量性、基材フィルムの微多孔質特性の維持、基材と耐熱層との密着性の全てを兼ね備えるセパレータ材については、これまで十分に検討されていなかった。
 そこで、本発明の発明者は、軽量性、基材フィルムの微多孔質特性の維持、基材と耐熱層との密着性をバランスよく備える、多層耐熱セパレータ材用の、有機・無機複合膜を得るため鋭意検討した。
 その結果、特定の条件を設けることによって、上記バランスに優れた有機・無機複合膜を選択的に製造することに成功した。
 すなわち本発明は以下のものである。
[1]ポリオレフィン製微多孔膜からなる基材フィルムの少なくとも片面に、無機耐熱粒子とバインダーとを含む耐熱層を設けてなり、以下の条件(A)、(B)、(C)の全てを満たすことを特徴とする、有機・無機複合膜。
 条件(A):a≦1.5
(式中aは耐熱層の密度であり、面積1m、厚み1μmの耐熱層の体積当たりの重量(g/m/μm)で表される。)
 条件(B):12.74≦b
(式中bは、以下の測定法で得られた基材フィルムと耐熱層との剥離強度(N)である。
剥離強度bの測定法:以下の(1)、(2)、(3)、(4)の順に操作する。
(1)有機・無機複合膜の耐熱層に両面粘着テープを貼り付ける。
(2)クラフト紙を、両面粘着テープの耐熱層に密着していない面に貼り付ける。
(3)有機・無機複合膜とクラフト紙のそれぞれの端を引張試験機のチャックで挟む。
(4)引張試験機でチャックを引張速度500mm/分で引き離し、耐熱層と基材フィルムとが界面剥離した時点の最大応力(N)を剥離強度bとする。)
 条件(C):c≦20
(式中cは、以下の式で求められる通気度変化率(%)を表す。
通気度変化率(%)=|(有機・無機複合膜の通気度)-(基材フィルムの通気度)|÷(基材フィルムの通気度)×100)
[2]ポリオレフィン製微多孔膜が、オレフィンを主体とするモノマーを重合して得られる重合体からなる、前記[1]項に記載の有機・無機複合膜。
[3]オレフィンを主体とするモノマーを重合して得られる重合体が、プロピレン単独重合体、または、プロピレンと、エチレン及び炭素数4~8のα-オレフィンから選ばれる少なくとも1種とを共重合して得られるプロピレンを主成分とする重合体である、前記[2]項に記載の有機・無機複合膜。
[4]無機耐熱粒子が、0.2μm以下の平均粒子径を有する無機フィラーである、前記[1]~[3]のいずれか1項に記載の有機・無機複合膜。
[5]無機フィラーが、シリカ、ベーマイト、アルミナから選ばれる少なくとも1種である、前記[4]項に記載の有機・無機複合膜。
[6]バインダーが、フッ素含有樹脂である、前記[1]~[5]のいずれか1項に記載の有機・無機複合膜。
[7]ポリオレフィン製微多孔膜からなる基材フィルムの少なくとも片面に、無機耐熱粒子とバインダーとを含む耐熱層剤を塗工し、次に該耐熱層を乾燥、固化する工程を含む、前記[1]~[6]のいずれか1項に記載の有機・無機複合膜の製造方法。
[8]前記[1]~[6]のいずれか1項に記載の有機・無機複合膜からなる多層耐熱セパレータ材。
 本発明の有機・無機複合膜は、高い耐熱性を有すると同時に、従来のものよりも軽量である。しかも、基材フィルムと耐熱層との密着性がよい。さらに、耐熱層に接した状態でも、基材フィルムの微多孔質特性がよく維持されている。これまでに、このような有機・無機複合膜を選択的に製造しようという試みはなく、そのような有機・無機複合膜の使用例も見いだせない。故に、本発明の有機・無機複合膜は、耐熱性、軽量性、基材フィルムと耐熱層との密着性、基材フィルムの微多孔性の維持を兼ね備えているという点で、新規であり、従来品では目標とされていなかった新たな長所を備えている点で進歩的である。
 本発明の有機・無機複合膜は、ポリオレフィン製微多孔膜からなる基材フィルムの少なくとも片面に、無機耐熱粒子とバインダーとを含む耐熱層を設けてなり、以下の条件(A)、(B)、(C)の全てを満たすことを特徴とする。
条件(A):a≦1.5
(式中aは耐熱層の密度であり、面積1m、厚み1μmの耐熱層の体積当たりの重量(g/m/μm)で表される。)
条件(B):12.74≦b
(式中bは、以下の測定法で得られた基材フィルムと耐熱層との剥離強度(N)である。
剥離強度bの測定法:以下の(1)、(2)、(3)、(4)の順に操作する。
(1)有機・無機複合膜の耐熱層に両面粘着テープを貼り付ける。
(2)クラフト紙を、両面粘着テープの耐熱層に密着していない面に貼り付ける。
(3)有機・無機複合膜とクラフト紙のそれぞれの端を引張試験機のチャックで挟む。
(4)引張試験機のチャックを引張速度500mm/分で引き離し、耐熱層と基材フィルムとが界面剥離した時点の最大応力(N)を剥離強度bとする。)
条件(C):c≦20
(式中cは、以下の式で求められる通気度変化率(%)を表す。
通気度変化率(%)=|(有機・無機複合膜の通気度)-(基材フィルムの通気度)|÷(基材フィルムの通気度)×100)
[基材フィルム]
 本発明で用いる基材フィルムはポリオレフィン製微多孔膜である。本発明で用いる基材フィルムの原料であるポリオレフィンは、オレフィンを主体とするモノマーを重合して得られる重合体である。ポリオレフィンは、オレフィンモノマーのみから重合される重合体であっても、オレフィンモノマーを主体とするならば、つまり主成分とするならば、オレフィンモノマー以外の他のモノマーを含有して重合される重合体であってもよい。オレフィンモノマーとしては、炭素数2~10の直鎖状オレフィンモノマーや、2-メチルプロペン、3-メチル-1-ブテン、4-メチル-1-ペンテンなどの炭素数4~8の分岐状オレフィンモノマーが利用できる。他のモノマーとしては、スチレン類、ジエン類を併用することができる。代表的なポリオレフィンは、ポリエチレン、ポリプロピレンと称される重合体である。ポリエチレンは、エチレンを主成分とする重合体であり、例えば、エチレン単独重合体、エチレンと炭素数3~8のα-オレフィンから選ばれる少なくとも1種(コモノマー)とを共重合して得られるエチレンを主成分とする重合体が挙げられる。ポリプロピレンは、プロピレンを主成分とする重合体であり、例えば、プロピレン単独重合体、プロピレンと、エチレン及び炭素数4~8のα-オレフィンから選ばれる少なくとも1種(コモノマー)とを共重合して得られるプロピレンを主成分とする重合体が挙げられる。上記コモノマーの含有量は、基材フィルムが所定の伸び条件を満足する限り、いかなる範囲にあってもよい。
 本発明で用いる基材フィルムは、本発明の有機・無機複合膜が上記(A)、(B)、(C)の条件を満たす限り、いかなるものでもよい。本発明で用いる基材フィルムの原料は、好ましくは、高結晶性で高融点のポリプロピレンである。特に好ましいポリプロピレンは、メルトマスフローレイト(MFR、JIS K6758(230℃、21.18N)に準拠した条件で測定)が0.1~1.0g/10分で、融点が150~170℃である。
 本発明で用いる基材フィルムの原料であるポリオレフィンとしては、高結晶性で高融点のポリプロピレンが好ましい。特に好ましいポリプロピレンは、メルトマスフローレイト(MFR、JIS K6758(230℃、21.18N)に準拠した条件で測定)が0.1~1.0g/10分で、融点が150~170℃の、任意にエチレンおよび炭素数4~8のα-オレフィンから選ばれる少なくとも1種を含んでよい、プロピレンを主成分とする重合体である。
 上記ポリオレフィンには、結晶核剤や充填剤などの添加剤を配合することができる。添加剤の種類や量は、本発明の有機・無機複合膜が上記(A)、(B)、(C)の条件を満たす限り、制限はない。
[基材フィルムの製造]
 本発明の基材フィルムとしては、有機溶媒を用いないためコスト面で有利な、いわゆる乾式法によって製造されたポリオレフィン製微多孔膜が好ましい。そのようなポリオレフィン製微多孔膜としては、以下の製膜工程、熱処理工程、冷延伸工程、温延伸工程、弛緩工程を含む乾式法で製造された、空孔率が45%以上の微多孔膜が特に好ましい。
(製膜工程)
 原料を押出成形して原反フィルムを製膜する工程である。原料ポリオレフィンを押出機に供給し、原料ポリオレフィンをその融点以上の温度で溶融混練し、押出機の先端に取り付けたダイスから原料のポリオレフィンからなるフィルムを押出す。使用される押出機は限定されない。押出機としては、例えば、単軸押出機、二軸押出機、タンデム型押出機のいずれもが使用可能である。使用されるダイスはフィルム成形に用いられるものであれば、いずれも使用できる。ダイスとしては、例えば、各種T型ダイス使用することができる。原反フィルムの厚みや形状は特に限定されない。好ましくは、ダイスリップクリアランスと原反フィルム厚さの比(ドラフト比)は100以上、さらに好ましくは150以上である。好ましくは、原反フィルムの厚みは10~200μm、さらに好ましくは15~100μmである。
(熱処理工程)
 製膜工程を終えた原反フィルムを熱処理する工程である。原料ポリオレフィンの融点よりも5~65℃低い、好ましくは10~25℃低い温度で、原反フィルムに長さ方向の一定の張力を加える。好ましい張力は、原反フィルムの長さが1.0倍を超え1.1倍以下となる大きさである。
(冷延伸工程)
 熱処理工程を終えた原反フィルムを比較的低い温度で延伸する工程である。延伸温度は-5℃~45℃、好ましくは5℃~30℃である。延伸倍率は、長さ方向に1.0~1.1、好ましくは1.00~1.08、さらに好ましくは1.02以上1.05未満である。ただし、延伸倍率は1.0倍より大きい。延伸手段は制限されない。ロール延伸法、テンター延伸法などの公知の手段が使用できる。延伸の段数は任意に設定できる。1段延伸でもよく、複数のロールを経て2段以上の延伸を行ってもよい。冷延伸工程で、原反フィルムを構成するポリプロピレン系重合体の分子が配向する。その結果、分子鎖が密なラメラ部と、ラメラ間の分子鎖が疎な領域(クレーズ)とを有する延伸フィルムが得られる。
(温延伸工程)
 冷延伸工程を終えた延伸フィルムを比較的高い温度で延伸する工程である。延伸温度はポリプロピレン系重合体の融点よりも5~65℃低い温度、好ましくは原料ポリオレフィン系重合体の融点よりも10~45℃低い温度である。延伸倍率は、長さ方向に1.5~4.5倍、好ましくは2.0~4.0倍である。延伸手段は制限されない。ロール延伸法、テンター延伸法などの公知の手段が使用できる。延伸の段数は任意に設定できる。1段延伸でもよく、複数のロールを経て2段以上の延伸を行ってもよい。温延伸工程にて冷延伸工程で生じたクレーズが引き延ばされた結果、延伸フィルムに空孔が発生する。
(弛緩工程)
 温延伸工程を終えた延伸フィルムの収縮を防ぐために、フィルムを弛緩させる工程である。弛緩温度は、温延伸工程の延伸温度よりもやや高い温度であり、0~20℃高い温度が一般的である。弛緩の度合いは、工程4を終えた延伸フィルムの長さが最終的に0.7~1.0倍になるように調整される。こうして本発明で用いる基材フィルムが完成する。最終的な基材フィルムの厚みは15~30μm、好ましくは15~25μmである。
[耐熱層]
 上記基材フィルムの少なくとも片面に無機耐熱層が形成される。無機耐熱層は、無機耐熱粒子、バインダー、溶媒を含む耐熱層剤を基材フィルムに塗布し、塗工液を乾燥・固化させることによって形成される。
(無機耐熱粒子)
 無機耐熱粒子としては、高融点で、絶縁性が高く、電気化学的に安定な無機物が利用できる。このような無機耐熱粒子は、200℃以上の融点を持つ、一般に無機フィラーと呼ばれる無機粒子である。本発明で用いる無機耐熱粒子の平均粒子径は0.2μm以下、好ましくは0.15μm以下である。本発明では、無機耐熱粒子として、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、チタン酸バリウムなどの金属酸化物類、水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物類、ベーマイト、タルク、カオリン、ゼオライト、アパタイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、ケイ酸カルシウム、ケイ酸マグネシウムなどの粘土系鉱物類が用いられる。複数の無機耐熱粒子からなる混合物も用いることができる。好ましい無機耐熱粒子はアルミナ、シリカ、ベーマイトから選ばれる1種以上である。
(バインダー)
 バインダーは、基材と無機耐熱粒子との結着剤として機能する。バインダーとしては、
ポリオレフィン、フッ素含有樹脂、ゴム、エラストマー、セルロース類、水溶性樹脂など、様々な樹脂を使用することができる。中でも好ましいバインダーは、ポリテトラフルオロエチレン類(PTFE)、エチレン-テトラフルオロエチレン(ETFE)、ポリフッ化ビニル(PVF)、ポリクロロトリフルオロエチレン(CTFE)、及びポリフッ化ビニリデン(PVDF)またはそれらの共重合体などのフッ素含有樹脂であり、より好ましくはポリフッ化ビニリデン(PVDF)及びその共重合体である。
 無機耐熱粒子とバインダーの量割合(無機耐熱粒子:バインダー、重量比)は、一般的には40:60~98:2の範囲にあり、好ましくは50:50~95:5、より好ましくは60:40~90:10の範囲にある。無機耐熱層剤には、通常、溶媒を添加する。溶媒としては、水またはアセトン、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドなどの極性有機溶媒を使用することができる。上記無機耐熱層剤には、無機耐熱粒子とバインダーの他に、必要に応じて分散剤、抗菌剤、防かび剤などの添加剤も配合することができる。
(耐熱層剤の調製)
 上述のような無機耐熱粒子、バインダー、溶剤、添加剤などの原料を、混合、撹拌して無機耐熱層剤を調製する。無機耐熱粒子が無機耐熱層剤中に均一に分散する限り、混合、撹拌の手段は制限されない。通常はホモジナイザーやビーズミル、及びジェットミルを用いる。
[有機・無機複合膜の製造]
 基材フィルムの少なくとも片面に、耐熱層剤を塗工する。塗工手段は限定されない。例えば、グラビアコーター、マイクログラビアコーター、ダイコーター、ナイフコーターなど、液状物を平面フィルム状に塗布する手段であればいずれも用いることができる。その後、耐熱層剤つき基材フィルムを乾燥機に搬送し、耐熱層剤を乾燥させて耐熱層を形成させる。乾燥温度は、耐熱層剤中の溶媒が揮発するが、基材フィルムの熱劣化が抑えられるような温度とする。好ましい乾燥温度は70℃以上、さらに好ましい乾燥温度は80~120℃である。耐熱層剤は乾燥に伴って固化し、耐熱層が完成する。基材フィルムの一つの面に設けられた耐熱層剤の厚みは、通常1~10μm、好ましくは1.5~6.0μm、より好ましくは2.5~5.0μmの範囲にある。
[有機・無機複合膜] 
 本発明の有機・無機複合膜は、上記の条件で得られた基材フィルムと耐熱層剤を用い、上記の方法で基材フィルムの少なくとも片面に耐熱層が設けられたもので、しかも、以下の条件(A)、(B)、(C)を満たす有機・無機複合膜である。したがって、基材フィルム、耐熱層剤の組成、耐熱層の厚み、耐熱層と基材フィルムの組合せは、最終的に得られる有機・無機複合膜が条件(A)、(B)、(C)を満たすように選択されている。
[条件(A)] 
 本発明の耐熱層は以下の条件(A)を満たす。
 条件(A)a≦1.5
(式中aは耐熱層の密度であり、面積1m、厚み1μmの耐熱層の体積当たりの重量(g/m/μm)で表される。)
 好ましくは、a≦1.4であり、さらに好ましくはa≦1.3である。
[条件(B)] 
 本発明の耐熱層は以下の条件(B)を満たす。
 条件(B)12.74≦b
(式中bは、以下の測定法で測定した基材フィルムと耐熱層との剥離強度(N)である。
 剥離強度bの測定法:以下の(1)、(2)、(3)、(4)の順に操作する。
(1)有機・無機複合膜の耐熱層に両面粘着テープを貼り付ける。
(2)クラフト紙を、両面粘着テープの耐熱層に密着していない面に貼り付ける。
(3)有機・無機複合膜とクラフト紙のそれぞれの端を引張試験機のチャックで挟む。
(4)引張試験機のチャックを引張速度500mm/分で引き離し、耐熱層と基材フィルムとが界面剥離した時点の最大応力(N)を剥離強度bとする。)
 好ましくは14.7≦bであり、より好ましくは24.5≦b、最も好ましくは29.4≦bである。
[条件(C)]
 本発明の耐熱層は以下の条件(C)を満たす。
 条件(C)c≦20
(式中cは、以下の式で求められる通気度変化率(%)を表す。
 通気度変化率(%)=|(有機・無機複合膜の通気度)-(基材フィルムの通気度)|÷(基材フィルムの通気度)×100)
 cが0%であることは、基材フィルム単独が示す通気度が、耐熱層の形成によって変化しないことを意味する。このことは、基材フィルムの有する微多孔特性が有機・無機複合膜でも維持されると期待できることを示す。好ましくはc≦15であり、さらに好ましくはc≦10である。
 完成した有機・無機複合膜は、通常、数十mから数千mの長さのフィルムが1つの巻芯に巻取られた原反ロールとして作製される。本発明の有機・無機複合膜をセパレータに加工する場合には、有機・無機複合膜を、必要に応じて、これが用いられるセパレータに適した幅に裁断した後に新たな巻芯に巻取られた製品ロールとなる。その後、有機・無機複合膜のロールは、包装、保管、出荷され、所望の製品に加工される。
 本発明の有機・無機複合膜を耐熱性多層セパレータに用いる場合には、有機・無機複合膜の耐熱性がより高いことが望まれる。セパレータ材の耐熱性を、後述の実施例で用いた150℃熱収縮率(%)で評価した場合、本発明の有機・無機複合膜の該熱収縮率は10%以下である。この程度の熱収縮率は、セパレータ材に許容される範囲にある。
[実施例1]
(基材フィルムの製造)
(原料)原料として、JIS K6758(230℃、21.18N)に従い測定したメルトマスフローレイト(MFR)が0.5g/10分、融点が165℃のプロピレン単独重合体を使用した。(製膜)単軸押出機で溶融混練した原料をTダイからドラフト比206で押出し、原反フィルムを製造した。(熱処理)原反フィルムを30℃で長さ方向に1.03倍に冷延伸した。(温延伸)得られた延伸フィルムを230℃で長さ方向に2.8倍に温延伸した。(弛緩)得られた延伸フィルムの長さがもとの長さの約90%になるように弛緩させた。こうして厚み20μmの基材フィルムが得られた。得られた基材フィルムの通気度は、240sec/100mlであった。
(耐熱層剤の調製)
 無機耐熱粒子としてシリカ(AEROSIL MOX80、平均粒子径0.1μm)を用いた。バインダーとしてフッ化ビニリデン共重合体(略称「co-PVDF」)(アルケマ(株)社製 Kyner 2801)を用いた。溶媒であるN-メチルピロリドン(NMP)に、無機耐熱粒子(重量濃度8%)とバインダー(重量濃度4%)を加え、ディスパーを用いて回転数500rpmにて1時間攪拌した。得られたスラリーを高圧処理装置(吉田機械興業(株)製 Nanovater)を用いて200MPaの処理圧にて5回処理を行い混合した。こうして、無機耐熱粒子とバインダーが均一に分散した無機耐熱層剤を得た。
(有機・無機複合膜の製造)
 基材フィルムの片面に耐熱層剤をグラビアコーターで塗工した。耐熱層の目付は3.5g/mであった。耐熱層剤つき基材フィルムを温度95℃の乾燥炉中で搬送し、耐熱層剤を乾燥・固化した。耐熱層の厚みは4.7μm、フィルム全体の厚みは24.7μmであった。こうして有機・無機複合膜が得られた。
(条件(A)による評価)
 得られた有機・無機複合体の耐熱層の密度は0.74g/m/μmであり、上述の条件(A)を満たしている。
(条件(B)による評価)
 得られた有機・無機複合膜から2cm(幅方向)×7cm(長さ方向)の小片を切り出した。両面粘着テープ(住友3M社製 PPS-10、幅1cm)の2cm片を、上記小片の耐熱層に貼り付けた。両面粘着テープの耐熱層と密着していない方の面には、2cm(幅)×7cm(長さ)のクラフト紙の小片を貼り付けた。有機・複合膜の端と、クラフト紙の端のそれぞれを、引張試験機のチャックで挟んだ。引張り速度500mm/分でチャックを引張り、耐熱層と基材フィルムとが界面剥離した時の最大応力を、基材フィルムと耐熱層との剥離強度b(N)として得た。得られた有機・無機複合膜では、bは、14.7Nであった。得られた有機・無機複合膜は上述の条件(B)を満たす。
(条件(C)による評価)
 得られた有機・無機複合体の通気度は240sec/100mlであった。この値は基材フィルムの通気度に一致する。したがって、上述の条件(C)における通気度変化率c(%)は0である。この有機・無機複合膜は、条件(C)を満たす。
(耐熱性の評価)
 得られた有機・無機複合膜の熱収縮率を測定した。得られた有機・無機複合膜から7cm×7cmの正方形状小片を切り出した。この小片の表面に、長さ方向に2.5cm隔たった2点からなる基準点セットを、任意の箇所に3セット定めた。幅方向にも同様に3セットを定めた。この小片を、荷重を掛けない状態で150℃の恒温槽に2時間放置した後、各基準点セットの2点間距離を測定した。長さ方向の基準点3セットのそれぞれで、加熱前の2点間距離と、加熱後の2点間距離の差から、熱収縮率(%)を算出した。3セットの平均値を長さ方向の熱収縮率(%)とした。幅方向の基準点の3セットについても同様に、幅方向の熱収縮率(%)を求めた。長さ方向の熱収縮率(%)と幅方向の熱収縮率(%)の大きい方を、有機・無機複合膜の150℃における熱収縮率(%)とした。本サンプルでは、150℃における熱収縮率は9%であった。
 実施例1で得られた有機・無機複合膜の有機・無機複合体の、条件(A)の耐熱層密度a、条件(B)の基材フィルムと耐熱層との剥離強度b、条件(C)の通気度変化率c、耐熱性などを、表1に示す。
[実施例2]
(基材フィルムの製造)
 基材フィルムの厚みが21μmになるように実施例1の延伸条件を調整した。
(耐熱層剤の調製)
 無機耐熱粒子としてベーマイト(大明化学 C01、平均粒子径0.1μm)を用いた他は、実施例1と同じ条件で耐熱層剤を調製した。
(有機・無機複合膜の製造)
 基材フィルムの片面に耐熱層剤をグラビアコーターで塗工した。耐熱層の目付は4.1g/mであった。耐熱層剤つき基材フィルムを温度95℃の乾燥炉中で搬送し、耐熱層剤を乾燥・固化した。耐熱層の厚みは3.2μm、フィルム全体の厚みは24.2μmであった。こうして有機・無機複合膜が得られた。
[実施例3]
(基材フィルムの製造)
 基材フィルムの厚みが21μmになるように実施例1の延伸条件を調整した。
(耐熱層剤の調製)
 無機耐熱粒子としてアルミナ(AEROXIDE AluC、平均粒子径0.1μm)を用い、バインダーとしてPVDF(アルケマ(株)社製 Kyner HSV 500)を用いた。溶媒であるN-メチルピロリドン(NMP)に、無機耐熱粒子(重量濃度9%)とバインダー(重量濃度3%)を加え、ディスパーを用いて回転数500rpmにて1時間攪拌後、実施例1と同様の高圧処理装置を用いて200MPaの処理圧にて1回処理を行い混合した。こうして、無機耐熱粒子とバインダーが均一に分散した無機耐熱層剤を得た。
(有機・無機複合膜の製造)
 基材フィルムの片面に耐熱層剤をグラビアコーターで塗工した。耐熱層の目付は2.9g/mであった。耐熱層剤つき基材フィルムを温度95℃の乾燥炉中で搬送し、耐熱層剤を乾燥・固化した。耐熱層の厚みは3.0μm、フィルム全体の厚みは24.0μmであった。こうして有機・無機複合膜が得られた。
[実施例4]
(基材フィルムの製造)
 基材フィルムの厚みが20.5μmになるように実施例1の延伸条件を調整した。
(耐熱層剤の調製)
 無機耐熱粒子としてアルミナ(AEROXIDE AluC、平均粒子径0.1μm)を用い、バインダーとしてPVDF(アルケマ(株)社製 Kyner HSV 500)を用いた他は、実施例3と同様に耐熱層剤を調製した。
(有機・無機複合膜の製造)
 基材フィルムの片面に耐熱層剤をグラビアコーターで塗工した。耐熱層の目付は3.2g/mであった。耐熱層剤つき基材フィルムを温度95℃の乾燥炉中で搬送し、耐熱層剤を乾燥・固化した。耐熱層の厚みは3.2μm、フィルム全体の厚みは23.7μmであった。こうして有機・無機複合膜が得られた。
[実施例5]
(基材フィルムの製造)
 基材フィルムの厚みが21μmになるように実施例1の延伸条件を調整した。
(耐熱層剤の調製)
 無機耐熱粒子としてアルミナ(AEROXIDE Alu65、平均粒子径0.1μm)、バインダーとしてPVDF(アルケマ(株)社製 Kyner HSV 500)を用い、高圧処理装置を用いて170MPaの処理圧にて1回処理を行い混合したこと以外は、実施例3と同じ条件で耐熱層剤を調製した。
(有機・無機複合膜の製造)
 基材フィルムの片面に耐熱層剤をグラビアコーターで塗工した。耐熱層の目付は3.0g/mであった。耐熱層剤つき基材フィルムを温度95℃の乾燥炉中で搬送し、耐熱層剤を乾燥・固化した。耐熱層の厚みは3.0μm、フィルム全体の厚みは24.0μmであった。こうして有機・無機複合膜が得られた。
[比較例1]
(基材フィルムの製造)
 基材フィルムの厚みが16μmになるように実施例1の延伸条件を調整した。
(耐熱層剤の調製)
 無機耐熱粒子としてベーマイト(大明化学社製 C06、平均粒子径0.8μm)を用い、バインダーとしてフッ化ビニリデン単独重合体商品(アルケマ(株)社製 Kyner HSV 500)を用いた。溶媒であるN-メチルピロリドン(NMP)に、無機耐熱粒子(重量濃度9.6%)とバインダー(重量濃度2.4%)を加え、ディスパーを用いて回転数500rpmにて1時間攪拌後、高圧処理装置を用いて200MPaの処理圧にて3回処理を行い混合、その他は実施例1と同様の条件で耐熱層剤を調製した。
(有機・無機複合膜の製造)
 基材フィルムの片面に耐熱層剤をグラビアコーターで塗工した。耐熱層の目付は3.8g/mであった。耐熱層剤つき基材フィルムを温度95℃の乾燥炉中で搬送し、耐熱層剤を乾燥・固化した。耐熱層の厚みは2.5μm、フィルム全体の厚みは18.5μmであった。こうして有機・無機複合膜が得られた。
[比較例2]
(基材フィルムの製造)
 基材フィルムの厚みが21μmになるように実施例1の延伸条件を調整した。
(耐熱層剤の調製)
 無機耐熱粒子としてアルミナ(AKP-3000、平均粒子径0.3μm)を用い、バインダーとしてPDVF(アルケマ(株)社製 Kyner HSV 500)を用いた。無機耐熱粒子の重量濃度を9%、バインダーを3%とし、高圧処理装置の条件を200MPaの処理圧にて1回処理としたこと以外は、実施例1と同じ条件で耐熱層剤を調製した。
(有機・無機複合膜の製造)
 基材フィルムの片面に耐熱層剤をグラビアコーターで塗工した。耐熱層の目付は5.5g/mであった。耐熱層剤つき基材フィルムを温度95℃の乾燥炉中で搬送し、耐熱層剤を乾燥・固化した。耐熱層の厚みは3.7μm、フィルム全体の厚みは24.7μmであった。こうして有機・無機複合膜が得られた。
[比較例3]
(基材フィルムの製造)
 基材フィルムの厚みが21μmになるように実施例1の延伸条件を調整した。
(耐熱層剤の調製)
 無機耐熱粒子としてアルミナ(AKP-3000、平均粒子径0.3μm)を用い、バインダーとして市販のPVDF(商品名「S6-226」)を用いたこと以外は、比較例2と同じ条件で耐熱層剤を調製した。
(有機・無機複合膜の製造)
 基材フィルムの片面に耐熱層剤をグラビアコーターで塗工した。耐熱層の目付は3.3g/mであった。耐熱層剤つき基材フィルムを温度95℃の乾燥炉中で搬送し、耐熱層剤を乾燥・固化した。耐熱層の厚みは1.6μm、フィルム全体の厚みは22.6μmであった。こうして有機・無機複合膜が得られた。
[比較例4]
(基材フィルムの製造)
 基材フィルムの厚みが21μmになるように実施例1の延伸条件を調整した。
(耐熱層剤の調製)
 無機耐熱粒子としてアルミナ(最小粒子径0.3μm、最大粒子径0.5μm)を用い、バインダーとしてアクリル系市販品を用いたこと以外は、実施例1と同じ条件で耐熱層剤を調製した。
(有機・無機複合膜の製造)
 基材フィルムの片面に耐熱層剤をグラビアコーターで塗工した。耐熱層の目付は6.7g/mであった。耐熱層剤つき基材フィルムを温度95℃の乾燥炉中で搬送し、耐熱層剤を乾燥・固化した。耐熱層の厚みは2.8μm、フィルム全体の厚みは23.8μmであった。こうして有機・無機複合膜が得られた。
[比較例5]
(基材フィルムの製造)
 基材フィルムの厚みが21μmになるように実施例1の延伸条件を調整した。
(耐熱層剤の調製)
 無機耐熱粒子としてアルミナ(最小粒子径0.3μm、最大粒子径0.6μm)を用い、バインダーとしてアクリル系市販品を用いたこと以外は、実施例1と同じ条件で耐熱層剤を調製した。
(有機・無機複合膜の製造)
 基材フィルムの片面に耐熱層剤をグラビアコーターで塗工した。耐熱層の目付は5.7g/mであった。耐熱層剤つき基材フィルムを温度95℃の乾燥炉中で搬送し、耐熱層剤を乾燥・固化した。耐熱層の厚みは2.8μm、フィルム全体の厚みは23.8μmであった。こうして有機・無機複合膜が得られた。
 実施例2~5、比較例1~5で得られた有機・無機複合体の、条件(A)の耐熱層密度a、条件(B)の基材フィルムと耐熱層との剥離強度b、条件(C)の通気度変化率cと、耐熱性などを、実施例1と同じ条件で測定した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~5で得られた有機・無機複合膜は、条件(A):軽量性、条件(B):基材フィルムと耐熱層との密着性が高い、条件(C):基材フィルムの通気度変化が小さい、という3条件を満たす。しかも、実施例1~5で得られた有機・無機複合膜は、セパレータ材に求められる耐熱性も有している。これに対して比較例1~5で得られた有機・無機複合膜は、上記条件(A)、(B)、(C)のバランスが悪い。比較例1,2,3は、セパレータ材に求められる基本的性能である耐熱性が劣る。
 本発明で選択的に製造することに成功した有機・無機複合膜は、結果的に、セパレータ材に求められる耐熱性も維持したまま、近年のセパレータ材に求められる、軽量性、基材フィルムと耐熱層との密着性、基材フィルムの微多孔特性の維持のいずれの性質も兼ね備えていることが分かる。このような本発明の有機・無機複合膜は、特にセパレータ材として有用である。

Claims (8)

  1.  ポリオレフィン製微多孔膜からなる基材フィルムの少なくとも片面に、無機耐熱粒子とバインダーとを含む耐熱層を設けてなり、以下の条件(A)、(B)、(C)の全てを満たすことを特徴とする、有機・無機複合膜。
     条件(A):a≦1.5
    (式中aは耐熱層の密度であり、面積1m、厚み1μmの耐熱層の体積当たりの重量(g/m/μm)で表される。)
     条件(B):12.74≦b
    (式中bは、以下の測定法で得られた基材フィルムと耐熱層との剥離強度(N)である。
    剥離強度bの測定法:以下の(1)、(2)、(3)、(4)の順に操作する。
    (1)有機・無機複合膜の耐熱層に両面粘着テープを貼り付ける。
    (2)クラフト紙を、両面粘着テープの耐熱層に密着していない面に貼り付ける。
    (3)有機・無機複合膜とクラフト紙のそれぞれの端を引張試験機のチャックで挟む。
    (4)引張試験機でチャックを引張速度500mm/分で引き離し、耐熱層と基材フィルムとが界面剥離した時点の最大応力(N)を剥離強度bとする。)
     条件(C):c≦20
    (式中cは、以下の式で求められる通気度変化率(%)を表す。
    通気度変化率(%)=|(有機・無機複合膜の通気度)-(基材フィルムの通気度)|÷(基材フィルムの通気度)×100)
  2.  ポリオレフィン製微多孔膜が、オレフィンを主体とするモノマーを重合して得られる重合体からなる、請求項1に記載の有機・無機複合膜。
  3.  オレフィンを主体とするモノマーを重合して得られる重合体が、プロピレン単独重合、または、プロピレンと、エチレン及び炭素数4~8のα-オレフィンから選ばれる少なくとも1種とを共重合して得られるプロピレンを主成分とする重合体である、請求項2に記載の有機・無機複合膜。
  4.  無機耐熱粒子が、0.2μm以下の平均粒子径を有する無機フィラーである、請求項1~3のいずれか1項に記載の有機・無機複合膜。
  5.  無機フィラーが、シリカ、ベーマイト、アルミナから選ばれる少なくとも1種である、請求項4に記載の有機・無機複合膜。
  6.  バインダーが、フッ素含有樹脂である、請求項1~5のいずれか1項に記載の有機・無機複合膜。
  7.  ポリオレフィン製微多孔膜からなる基材フィルムの少なくとも片面に、無機耐熱粒子とバインダーとを含む耐熱層剤を塗工し、次に該耐熱層を乾燥、固化する工程を含む、請求項1~6のいずれか1項に記載の有機・無機複合膜の製造方法。
  8.  請求項1~6のいずれか1項に記載の有機・無機複合膜からなる多層耐熱セパレータ材。
PCT/JP2016/057223 2015-03-12 2016-03-08 有機・無機複合膜及びこれを用いた多層耐熱セパレータ材 WO2016143798A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/557,475 US20180062141A1 (en) 2015-03-12 2016-03-08 Organic-inorganic composite film, and multi-layer heat resistant separator material using same
EP16761766.1A EP3269544A4 (en) 2015-03-12 2016-03-08 Organic-inorganic composite film, and multi-layer heat resistant separator material using same
KR1020177027184A KR20170126949A (ko) 2015-03-12 2016-03-08 유기-무기 복합막 및 이를 이용한 다층 내열 세퍼레이터재
CN201680014498.4A CN107428122A (zh) 2015-03-12 2016-03-08 有机‑无机复合膜及使用其的多层耐热隔板材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015049811A JP6672594B2 (ja) 2015-03-12 2015-03-12 有機・無機複合膜及びこれを用いた多層耐熱セパレータ材
JP2015-049811 2015-03-12

Publications (1)

Publication Number Publication Date
WO2016143798A1 true WO2016143798A1 (ja) 2016-09-15

Family

ID=56880150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057223 WO2016143798A1 (ja) 2015-03-12 2016-03-08 有機・無機複合膜及びこれを用いた多層耐熱セパレータ材

Country Status (7)

Country Link
US (1) US20180062141A1 (ja)
EP (1) EP3269544A4 (ja)
JP (1) JP6672594B2 (ja)
KR (1) KR20170126949A (ja)
CN (1) CN107428122A (ja)
TW (1) TW201634266A (ja)
WO (1) WO2016143798A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111691069A (zh) * 2020-05-18 2020-09-22 苏州大学 一种耐穿刺纤维复合膜及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6493747B2 (ja) * 2015-04-14 2019-04-03 トヨタ自動車株式会社 非水電解質二次電池用セパレータおよびその製造方法
JP6968012B2 (ja) * 2017-03-30 2021-11-17 株式会社バルカー 積層体及びその製造方法、並びにゲートシール

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013012351A (ja) * 2011-06-28 2013-01-17 Nissan Motor Co Ltd 耐熱絶縁層付セパレータ
JP2013014017A (ja) * 2011-06-30 2013-01-24 Sumitomo Chemical Co Ltd 積層多孔質フィルム
WO2013119056A1 (en) * 2012-02-08 2013-08-15 Sk Innovation Co., Ltd. Microporous polyolefin composite film having excellent heat resistance and thermal stability and method for manufacturing the same
WO2014030507A1 (ja) * 2012-08-23 2014-02-27 Jnc株式会社 耐熱性に優れた複合多孔質膜
JP2014040580A (ja) * 2012-07-27 2014-03-06 Sumitomo Chemical Co Ltd 積層多孔質フィルムの製造方法
WO2014132791A1 (ja) * 2013-02-27 2014-09-04 東レバッテリーセパレータフィルム株式会社 ポリオレフィン多孔質膜、それを用いた電池用セパレータおよびそれらの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130011743A1 (en) * 2010-03-17 2013-01-10 Mitsubishi Plastics, Inc. Porous polypropylene film
JP5861832B2 (ja) * 2011-06-30 2016-02-16 Jnc株式会社 微多孔膜
KR102144598B1 (ko) * 2011-11-18 2020-08-13 스미또모 가가꾸 가부시끼가이샤 적층 다공질 필름 및 그 제조 방법, 그리고 비수 전해액 2 차 전지용 세퍼레이터, 적층 전극 시트 및 비수 전해액 2 차 전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013012351A (ja) * 2011-06-28 2013-01-17 Nissan Motor Co Ltd 耐熱絶縁層付セパレータ
JP2013014017A (ja) * 2011-06-30 2013-01-24 Sumitomo Chemical Co Ltd 積層多孔質フィルム
WO2013119056A1 (en) * 2012-02-08 2013-08-15 Sk Innovation Co., Ltd. Microporous polyolefin composite film having excellent heat resistance and thermal stability and method for manufacturing the same
JP2014040580A (ja) * 2012-07-27 2014-03-06 Sumitomo Chemical Co Ltd 積層多孔質フィルムの製造方法
WO2014030507A1 (ja) * 2012-08-23 2014-02-27 Jnc株式会社 耐熱性に優れた複合多孔質膜
WO2014132791A1 (ja) * 2013-02-27 2014-09-04 東レバッテリーセパレータフィルム株式会社 ポリオレフィン多孔質膜、それを用いた電池用セパレータおよびそれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3269544A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111691069A (zh) * 2020-05-18 2020-09-22 苏州大学 一种耐穿刺纤维复合膜及其制备方法
CN111691069B (zh) * 2020-05-18 2021-10-08 苏州大学 一种耐穿刺纤维复合膜及其制备方法

Also Published As

Publication number Publication date
TW201634266A (zh) 2016-10-01
US20180062141A1 (en) 2018-03-01
KR20170126949A (ko) 2017-11-20
EP3269544A4 (en) 2018-10-24
EP3269544A1 (en) 2018-01-17
CN107428122A (zh) 2017-12-01
JP2016170970A (ja) 2016-09-23
JP6672594B2 (ja) 2020-03-25

Similar Documents

Publication Publication Date Title
JP6435886B2 (ja) 多層耐熱セパレータ材およびその製造方法
WO2017073598A1 (ja) 平滑性に優れた有機・無機複合膜及びこれを用いた多層耐熱セパレータ材
US9748542B2 (en) Composite porous film having excellent heat resistance
TWI720088B (zh) 電池用隔膜及其製備方法以及電池用隔膜捲繞體的製備方法
JP6279479B2 (ja) 多層多孔膜及びその製造方法、並びに非水電解液電池用セパレータ
WO2006137540A1 (ja) ポリエチレン多層微多孔膜並びにそれを用いた電池用セパレータ及び電池
TWI770004B (zh) 聚烯烴微多孔膜及其製造方法以及電池用隔膜及其製造方法
JP6672594B2 (ja) 有機・無機複合膜及びこれを用いた多層耐熱セパレータ材
KR20170093789A (ko) 폴리올레핀 미다공막, 전지용 세퍼레이터 및 그들의 제조 방법
EP2173794A1 (en) Polyethylene films
WO2017187779A1 (ja) ポリオレフィン微多孔膜、電池用セパレータおよびこれらの製造方法
WO2016104791A1 (ja) ポリオレフィン樹脂組成物およびポリオレフィン微多孔膜の製造方法
JP2016076323A (ja) 蓄電デバイス用セパレータの製造方法
TW202102595A (zh) 蓄電裝置用隔離膜及包括其的鋰離子電池
TWI473326B (zh) 具有關閉性質之鋰離子電池隔板
KR101669206B1 (ko) 인쇄성이 향상된 통기성 필름 조성물 및 이를 포함하는 인쇄성이 향상된 통기성 필름의 제조방법
KR20200012110A (ko) 고온 셧다운 기능을 가지며 횡 방향 물성이 우수한 미세 다공성 다층 필름의 제조 방법
KR102143267B1 (ko) 미세 다공성 다층 필름 제조 방법 및 그에 의해 제조된 필름
WO2016111323A1 (ja) 微多孔膜およびその製造方法
JP2019189795A (ja) ポリプロピレン組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177027184

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016761766

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15557475

Country of ref document: US