WO2016143788A1 - 油圧式オートテンショナ - Google Patents

油圧式オートテンショナ Download PDF

Info

Publication number
WO2016143788A1
WO2016143788A1 PCT/JP2016/057183 JP2016057183W WO2016143788A1 WO 2016143788 A1 WO2016143788 A1 WO 2016143788A1 JP 2016057183 W JP2016057183 W JP 2016057183W WO 2016143788 A1 WO2016143788 A1 WO 2016143788A1
Authority
WO
WIPO (PCT)
Prior art keywords
plunger
rod
pressure chamber
valve
oil
Prior art date
Application number
PCT/JP2016/057183
Other languages
English (en)
French (fr)
Inventor
洋生 森本
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to EP16761756.2A priority Critical patent/EP3270004B1/en
Priority to CN201680014952.6A priority patent/CN107532689B/zh
Priority to US15/556,810 priority patent/US10393239B2/en
Publication of WO2016143788A1 publication Critical patent/WO2016143788A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/10Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley
    • F16H7/12Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of an idle pulley
    • F16H7/1209Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of an idle pulley with vibration damping means
    • F16H7/1236Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of an idle pulley with vibration damping means of the fluid and restriction type, e.g. dashpot
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/0829Means for varying tension of belts, ropes, or chains with vibration damping means
    • F16H7/0836Means for varying tension of belts, ropes, or chains with vibration damping means of the fluid and restriction type, e.g. dashpot
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/0848Means for varying tension of belts, ropes, or chains with means for impeding reverse motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/10Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley
    • F16H7/12Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of an idle pulley
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0802Actuators for final output members
    • F16H2007/0806Compression coil springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0802Actuators for final output members
    • F16H2007/0812Fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0846Means for varying tension of belts, ropes, or chains comprising a mechanical stopper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/0848Means for varying tension of belts, ropes, or chains with means for impeding reverse motion
    • F16H2007/0859Check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0863Finally actuated members, e.g. constructional details thereof
    • F16H2007/0865Pulleys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0889Path of movement of the finally actuated member
    • F16H2007/0891Linear path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0889Path of movement of the finally actuated member
    • F16H2007/0893Circular path

Definitions

  • the present invention relates to a hydraulic auto tensioner used for adjusting the tension of a belt that drives an auxiliary machine such as an alternator, a water pump, and a compressor of an air conditioner.
  • an engine equipped with an ISG (Integrated Starter Generator) idle stop mechanism that stops the engine when the vehicle stops and starts the engine instantly when the vehicle starts when the accelerator pedal is depressed. Proposed.
  • ISG Integrated Starter Generator
  • ISG idle stop mechanism for both engine accessory drive and engine start indicates the belt transmission device of an engine mounted, a crankshaft pulley P 1 attached to the crankshaft 51, the ISG a starter-generator pulley P 2 attached to a rotating shaft of the starter generator 52, passing over the belt 54 between the accessory pulley P 3 attached to a rotating shaft of the auxiliary machine 53 such as a water pump, the normal operation of the engine when, as shown in FIG. 7A, it drives the starter generator 52 and the auxiliary 53 by rotation in the direction indicated by the arrow of the crankshaft pulley P 1, and so as to function the starter-generator 52 as a generator.
  • the belt transmission device as described above, a tension pulley 55 provided on the crankshaft pulley P 1 and the starter generator belt portion 54a over the pulley P 2, the swingable pulley arm 56 for rotatably supporting the tension pulley 55
  • the adjustment force of the hydraulic auto tensioner A is applied to urge the pulley arm 56 in the direction in which the tension pulley 55 presses the belt 54, and the tension change of the belt 54 is absorbed by the hydraulic auto tensioner A.
  • Patent Document 1 As the hydraulic auto tensioner A, one described in Patent Document 1 below has been conventionally known.
  • a lower end portion of a rod is slidably inserted into a valve sleeve erected on the bottom surface of the cylinder, a pressure chamber is formed in the valve sleeve, and the upper end portion of the rod is A return spring is incorporated between the provided spring seat and the bottom surface of the cylinder to urge the rod and the valve sleeve in the extending direction.
  • a sealed reservoir chamber is provided between the inner periphery of the cylinder and the outer periphery of the valve sleeve, and the lower portion of the reservoir chamber and the lower portion of the pressure chamber communicate with each other through an oil passage formed in the bottom surface of the cylinder.
  • a check valve is installed in the lower end, and when the pushing force is applied to the rod and the pressure in the pressure chamber becomes higher than the pressure in the reservoir chamber, the check valve is closed to block the communication between the oil passage and the pressure chamber. ing.
  • the connecting piece provided on the upper surface of the spring seat is rotatably connected to the engine block E shown in FIG. 7A, and the connecting piece provided on the lower surface of the cylinder is connected to the pulley arm 56.
  • the check valve is closed and the oil sealed in the pressure chamber is placed between the sliding surface of the valve sleeve and the rod.
  • the fluid is caused to flow through the formed leak gap, and a hydraulic damper force is generated in the pressure chamber by the viscous resistance of the oil at the time of the flow to buffer the pushing force.
  • the leak gap is set to a size that can absorb fluctuations in belt tension during normal operation of the engine, the leak gap is large, so that the rod is pushed in greatly when the engine is started by driving the starter generator 52, and the belt 54
  • the life of the belt may be shortened or the starter / generator 52 may fail to start the engine.
  • the leak gap is set to a size that can absorb fluctuations in the tension of the belt 54 when the engine is started by driving the starter / generator 52, the tension of the belt 54 during normal operation of the engine is reduced because the leak gap is small.
  • the belt 54 becomes excessively high and the belt 54 becomes over-tensioned, and the bearings that rotatably support the belt 54 and the pulleys P 1 to P 3 are easily damaged, resulting in a problem that fuel consumption increases.
  • An object of the present invention is to provide a hydraulic auto tensioner that can apply an appropriate tension to a belt during normal operation of an engine and when the engine is started by a starter generator.
  • a valve sleeve is erected on the bottom surface of a bottomed cylinder filled with oil, and the lower end of the rod is slidably inserted into the valve sleeve.
  • a pressure chamber is provided in the valve sleeve, and a return spring that urges the spring seat and the cylinder in the extending direction is incorporated between the spring seat provided at the top of the rod and the bottom surface of the cylinder.
  • An oil passage that communicates the lower part of the reservoir chamber formed between the outer periphery of the sleeve and the lower part of the pressure chamber is formed, and is closed when the pressure in the pressure chamber is higher than the pressure in the reservoir chamber in the lower end of the valve sleeve.
  • a first check valve that shuts off the communication between the pressure chamber and the oil passage, and closes the first check valve when a pushing force is applied to the rod via the spring seat;
  • a cylindrical plunger that can slide along the outer diameter surface of the rod and the inner diameter surface of the valve sleeve is fitted, a first leak gap is provided between the plunger and the sliding surface of the rod, and the plunger
  • a second leak gap having a flow resistance greater than the first leak gap is provided between the sliding surface of the valve sleeve and the valve sleeve, and the plunger is raised between the rod and the plunger as the pressure in the pressure chamber rises.
  • a second check valve for closing the first leak gap is provided, and the plunger is directed to a stopper for stopper provided at a lower end portion of the rod.
  • a spring seat at the end of the rod is attached to a tensioner attachment target such as an engine block.
  • the lower end of the cylinder is connected to the pulley arm, and the tension pulley supported by the pulley arm urges the pulley arm in the direction to press the belt between the crankshaft pulley and the starter / generator pulley, and tensions the belt.
  • the oil in the pressure chamber leaks from the second leak gap into the reservoir chamber. Since the flow resistance of the second leak gap is larger than that of the first leak gap, the pressure drop in the pressure chamber is small, the push of the rod is suppressed by the hydraulic damper action in the pressure chamber, and the belt drives the crankshaft. Thus, the belt tension required for the belt is maintained, and slippage between the belt and the pulley is prevented.
  • a spherical valve seat is provided at the lower end of the large-diameter shaft portion located outside from the upper end of the plunger of the rod, and can be seated on the valve seat on the upper inner diameter surface of the plunger. What consists of the structure which provided the sheet
  • seat surface is employable.
  • diamond-like carbon treatment DLC treatment
  • hard film coating treatment shot peening, or WPC treatment
  • a coil spring, a disc spring, a wave washer, and a wave spring may be employed as a valve spring that biases the plunger toward a retaining stopper provided at the lower end of the rod. it can.
  • FIG. 1 is a longitudinal sectional view showing an embodiment of a hydraulic auto tensioner according to the present invention.
  • Sectional drawing which shows the leakage state of the oil from the 1st leak gap which expands and shows the formation site of the 1st leak gap and the 2nd leak gap of FIG.
  • Sectional drawing which shows the leakage state of the oil from the 2nd leak gap which expands and shows the formation site of the 1st leak gap and the 2nd leak gap of FIG.
  • the cylinder 10 has a bottom portion, and a connecting piece 11 connected to the pulley arm 56 of FIG. 7 is provided on the bottom surface of the bottom portion.
  • the connecting piece 11 is provided with a shaft insertion hole 11a penetrating from one side surface to the other side surface, a cylindrical fulcrum shaft 11b and a slide bearing 11c for rotatably supporting the fulcrum shaft 11b in the shaft insertion hole 11a.
  • the fulcrum shaft 11b is fixed by tightening a bolt that is inserted into the fulcrum shaft 11b and screw-engaged with the pulley arm 56, and the connecting piece 11 is rotatably attached to the pulley arm 56.
  • a valve sleeve fitting hole 12 is provided on the bottom surface of the cylinder 10, and a lower end portion of a steel valve sleeve 13 is press-fitted into the valve sleeve fitting hole 12.
  • the lower portion of the rod 14 is slidably inserted into the valve sleeve 13, and a pressure chamber 15 is provided in the valve sleeve 13 below the rod 14 by the insertion of the rod 14.
  • a spring seat 16 is provided at an upper end portion of the rod 14 located outside the cylinder 10, and a return spring 17 incorporated between the spring seat 16 and the bottom surface of the cylinder 10 extends relative to the cylinder 10 and the rod 14. It is energizing in the direction to do.
  • a connecting piece 18 connected to the engine block is provided at the upper end of the spring seat 16.
  • the connecting piece 18 is formed with a sleeve insertion hole 18a penetrating from one side surface to the other side surface, and a sleeve 18b and a slide bearing 18c for rotatably supporting the sleeve 18b are incorporated in the sleeve insertion hole 18a.
  • the connecting piece 18 is rotatably connected to the engine block by a bolt inserted into the sleeve 18b.
  • the spring seat 16 is formed of a molded product, and a cylindrical dust cover 20 that covers the upper outer periphery of the cylinder 10 and a cylindrical spring cover 21 that covers the upper part of the return spring 17 are molded at the same time.
  • the spring seat 16 may be an aluminum die-cast molded product or a resin molded product such as a thermosetting resin.
  • the entire outer periphery of the spring cover 21 is covered with a cylindrical body 22 that is insert-molded when the spring seat 16 is molded.
  • the cylinder 22 is made of a press-formed product of a steel plate.
  • An oil seal 23 as a seal member is incorporated in the upper opening of the cylinder 10, and the inner periphery of the oil seal 23 is in elastic contact with the outer peripheral surface of the cylinder 22 to close the upper opening of the cylinder 10. This prevents the oil filled inside the tank from leaking to the outside and prevents dust from entering the inside.
  • a sealed reservoir chamber 24 is formed between the cylinder 10 and the valve sleeve 13.
  • the reservoir chamber 24 and the pressure chamber 15 are composed of an oil passage 25 formed between the fitting surfaces of the valve sleeve fitting hole 12 and the valve sleeve 13 and a circular recess formed in the center of the bottom surface of the valve sleeve fitting hole 12. Communication is made through an oil sump 26.
  • a first check valve 27 is incorporated in the lower end portion of the valve sleeve 13.
  • the first check valve 27 includes a steel check ball 27c that opens and closes the valve hole 27b of the valve seat 27a press-fitted into the lower end portion of the valve sleeve 13 from the pressure chamber 15, and the check ball 27c faces the valve hole 27b.
  • a retainer 27e for restricting the opening / closing amount of the check ball 27c.
  • the check ball 27c closes the valve hole 27b, and the communication between the pressure chamber 15 and the oil passage 25 is cut off. The oil in 15 is prevented from flowing into the reservoir chamber 24 through the oil passage 25.
  • a cylindrical plunger 28 is fitted to the rod 14.
  • the plunger 28 is slidable along the outer diameter surface of the rod 14 and a small inner diameter surface 13 a formed on the inner periphery of the valve sleeve 13, and is cylindrical between the sliding surface of the rod 14 and the plunger 28.
  • a first leak gap 31 is formed.
  • a cylindrical second leak gap 32 is provided between the sliding surfaces of the plunger 28 and the valve sleeve 13.
  • the gap amount of the second leak gap 32 is smaller than the gap amount of the first leak gap 31, and the flow path resistance of the second leak gap 32 is larger than the flow path resistance of the first leak gap 31 due to the difference in the gap amount. Yes.
  • Each of the first leak gap 31 and the second leak gap 32 causes a hydraulic damper action in the pressure chamber 15 due to viscous resistance when oil in the pressure chamber 15 leaks along the leak gaps 31 and 32. It is like that.
  • the first leak gap 31 is set to a size capable of absorbing fluctuations in the tension of the belt 54 during normal operation of the engine shown in FIG. 7A due to a hydraulic damper action caused by oil leak.
  • the second leak gap 32 is set to such a size that the rod 14 is not pushed suddenly when the engine is started by driving the starter generator 52 shown in FIG. 7B.
  • a stopper 34 for retaining the plunger 28 is provided at the lower end portion of the rod 14.
  • a retaining ring is employed as the stopper 34 and is attached to a ring groove 33 provided at the lower end of the rod 14.
  • the stopper 34 formed of a retaining ring has a separation part 34a in a part in the circumferential direction, and the pressure chamber 15 and the first leak gap 31 are always in communication with each other via the separation part 34a.
  • a second check valve 35 for closing the first leak gap 31 when the pressure at the start of the engine is increased by driving the starter generator 52.
  • the second check valve 35 is provided with a large-diameter shaft portion 14a at an upper portion located outside from the upper end of the plunger 28 of the rod 14, and a spherical valve seat 35a is provided at the lower end portion of the large-diameter shaft portion 14a.
  • a seat surface 35b is formed on the upper inner diameter surface of the plunger 28, and the seat surface 35b is seated on the valve seat 35a when the plunger 28 is lifted by the pressure in the pressure chamber 15, thereby closing the upper end opening of the first leak gap 31. ing.
  • the taper surface is shown as the sheet surface 35b, the sheet surface 35b is not limited to the taper surface.
  • a convex spherical surface may be used.
  • the second check valve 35 is provided on the upper end side of the plunger 28.
  • the second check valve 35 may be provided inside the plunger 28 or on the lower end side of the plunger 28. .
  • the valve seat 35a of the rod 14 and the seat surface 35b of the plunger 28 are subjected to surface hardening treatment to increase the strength.
  • the DLC treatment is applied as the surface hardening treatment, but instead of the DLC treatment, a hard coating may be applied or shot peening may be applied.
  • valve spring 37 urges the plunger 28 toward the above-described stopper 34 attached to the lower end portion of the rod 14.
  • valve spring 37 As the valve spring 37, a coil spring is adopted in FIG. 2A, but it may be a disc spring as shown in FIG. 3, or a wave washer as shown in FIG. Furthermore, as shown in FIG. 5, a wave spring may be used.
  • a corrugated washer As shown in FIG. 4, a plain washer 38 is interposed between the overlapping portions of the plural corrugated washers 37.
  • a ring-shaped taper groove 39 having a large diameter at the lower portion is provided at the lower outer periphery of the plunger 28, and a retaining ring 40 is attached in the taper groove 39.
  • the retaining ring 40 has an outer diameter in a natural state larger than the outer diameter of the plunger 28, an outer peripheral portion is located outside the outer diameter surface of the plunger 28, and is formed on the inner peripheral upper portion of the plunger 28.
  • the plunger 28 and the rod 14 are prevented from slipping upward from the upper end of the valve sleeve 13 by the contact of the lower end of the small-diameter inner diameter surface 13a with the step portion 13b.
  • the hydraulic auto-tensioner shown in the embodiment has the above-described configuration.
  • the closed end of the cylinder 10 is used.
  • the connecting piece 11 provided on the connecting portion 11 is connected to the pulley arm 56, and the connecting piece 18 of the spring seat 16 is connected to the engine block to apply an adjusting force to the pulley arm 56.
  • the oil in the pressure chamber 15 flows through the first leak gap 31 as shown by the arrow in FIG. 2A, leaks from the upper end opening of the first leak gap 31 to the reservoir chamber 24 shown in FIG. A hydraulic damper force is generated in the pressure chamber 15 by the oil flowing through the one leak gap 31.
  • the pushing force applied to the hydraulic auto tensioner is buffered by the hydraulic damper force.
  • the first leak gap 31 is set to a size capable of absorbing the fluctuation in tension of the belt 54 during normal operation of the engine, the tension of the belt 54 during normal operation of the engine will not be too high. And is maintained at an appropriate tension.
  • oil in the pressure chamber 15 leaks from the first leak gap 31 having a small flow path resistance to the reservoir chamber 24, while at the time of starting the engine by the starter generator 52, the pressure chamber 15 leaks to the reservoir chamber 24 from the second leak gap 32 having a large flow path resistance, so that an appropriate tension is applied to the belt 54 during normal operation of the engine and when the engine is started by the starter / generator. be able to.
  • FIG. 6 shows a measurement example comparing the reaction force characteristics of the hydraulic auto tensioner (hereinafter referred to as “implemented product”) with the reaction force characteristics of a conventional hydraulic auto tensioner (hereinafter referred to as “conventional product”). Indicates. This will be described below.
  • the tensioner described in the above embodiment was used. That is, as shown in FIGS. 1, 2A and 2B, a bottomed cylindrical cylinder 10, a valve sleeve 13 extending upward from the bottom surface of the cylinder 10, and a valve sleeve 13 slidably inserted vertically.
  • a return spring 17 that biases the spring seat 16 upward with respect to the cylinder 10 a valve spring 37 that biases the plunger 28 downward
  • a tensioner having a valve seat 35a as an upper stopper for restricting the upward movement range of the plunger 28 relative to the rod 14 and a lower stopper 34 for restricting the downward movement range of the plunger 28 relative to the rod 14 It was used.
  • the spring seat 16 was vibrated up and down with the cylinder 10 fixed, and the change in upward force (tensioner reaction force) acting on the spring seat 16 was measured.
  • the excitation conditions are as follows. ⁇ Control method: Displacement control ⁇ Excitation waveform: Sine wave ⁇ Excitation frequency: 10Hz
  • the displacement of the spring seat 16 is controlled so that the time change of the position of the spring seat 16 becomes a sine wave regardless of how the force (tensioner reaction force) acting on the spring seat 16 increases or decreases.
  • the vibration amplitude was set to ⁇ 0.5 mm, which is larger than the general vibration amplitude (for example, about ⁇ 0.1 mm to ⁇ 0.2 mm) applied to the tensioner during normal operation of the engine.
  • Both the practical product and the conventional product use the return spring 17 having a spring coefficient of about 35 N / mm.
  • FIG. 6 shows the relationship between the tensioner displacement (downward displacement of the spring seat 16) and the tensioner reaction force (upward force acting on the spring seat 16) obtained by the above vibration test.
  • the tensioner reaction force changes in three stages of sudden, slow, and sudden.
  • the tensioner reaction force of the product is almost increased in the first stroke (points P1 to P2) that increases relatively rapidly starting from the minimum value of the tensioner reaction force (point P1).
  • the second stroke points P2 to P3
  • the third stroke points P3 to P4
  • the tensioner reaction force changes in four stages: sudden, slow, sudden and slow.
  • the tensioner reaction force of the product is almost reduced in the first stroke (points P4 to P5) in which the maximum value (point P4) of the tensioner reaction force starts to decrease relatively rapidly.
  • the second stroke (points P5 to P6) that maintains a substantially constant size without any reduction, and the third stroke (points P6 to P7) that decreases relatively suddenly, and a substantially constant size that hardly decreases. It changes to the minimum value (point P1) of the tensioner reaction force through the fourth stroke (point P7 to point P1) for maintaining the height in order.
  • the tensioner reaction force generally increases monotonously from the minimum value (point Q1) to the maximum value (point Q2) during the process of contraction of the tensioner.
  • the tensioner reaction force changes in two steps, abrupt and slow, as the tensioner extends.
  • the tensioner reaction force of the conventional product is almost reduced in the first stroke (points Q2 to Q3) where the tensioner reaction force starts from the maximum value (point Q2).
  • the tensioner reaction force changes to the minimum value (point Q1).
  • the reaction force characteristic is shown.
  • the tensioner of the practical product has a tension point P5 where the rate of decrease of the tensioner reaction force changes from abrupt to moderate, and a point of change P6 where the rate of decrease of the tensioner reaction force changes suddenly.
  • the reaction force characteristic which has the change point P7 in which the decreasing rate of reaction force changes from sudden to moderate is shown.
  • FIG. 1 The reason why the tensioner of the product exhibits the reaction force characteristics will be described with reference to FIGS. 1, 2A, 2B, and 6.
  • FIG. 1 The reason why the tensioner of the product exhibits the reaction force characteristics will be described with reference to FIGS. 1, 2A, 2B, and 6.
  • the seat surface 35 b is seated on the valve seat 35 a, so that no oil flows through the first leak gap 31. 6, the upward pressure acting on the plunger 28 from the oil in the pressure chamber 15 and the downward biasing force acting on the plunger 28 from the valve spring 37 are balanced.
  • the tensioner reaction force reaches a predetermined value (the value at the point P2 in FIG. 6) in the process in which the tensioner contracts, the plunger 28 rises and the volume of the pressure chamber 15 changes. During the absorption, the tensioner reaction force becomes substantially constant (points P2 to P3 in FIG. 6). For this reason, in the process in which the tensioner contracts, the implemented product has a change point P2 at which the rate of increase in the tensioner reaction force changes from sudden to moderate, and a change point P3 at which the rate of increase in the tensioner reaction force changes from slow to sudden. Shows force characteristics.
  • the tensioner reaction force when the tensioner reaction force reaches a predetermined value (value at the point P5 in FIG. 6) during the extension of the tensioner, the plunger 28 descends to absorb the change in the volume of the pressure chamber 15. During this time, the tensioner reaction force becomes substantially constant (points P5 to P6 in FIG. 6). For this reason, in the process in which the tensioner is extended, the implemented product has a change point P5 where the rate of decrease of the tensioner reaction force changes suddenly and slowly and a change point P6 where the rate of decrease of the tensioner reaction force changes suddenly and suddenly. Shows force characteristics.
  • the implemented tensioner has the above-described reaction force characteristics, so that during the normal operation of the engine, the magnitude of the tensioner reaction force is kept small, and the tension applied to the belt 54 by the tension pulley 55 shown in FIG. 7A is kept small. it can, on the other hand, at the time of starting the engine by driving the starter generator 52, to generate a larger tensioner reaction force, it is possible to effectively prevent the slippage between the belt 54 and the pulley P 2 shown in FIG. 7B.
  • the tensioner is displaced with an amplitude smaller than ⁇ 0.5 mm (for example, an amplitude of about ⁇ 0.1 mm to ⁇ 0.2 mm).
  • the tensioner reaction force increases from the point P1 to the value between the points P2 and P3 in the process where the tensioner contracts, and then increases to the value between the points P2 and P3, and then in the process where the tensioner extends.
  • the maximum value of the tensioner reaction force can be suppressed to a value between the points P2 and P3 during the normal operation of the engine, and the tension pulley 55 shown in FIG.
  • the tension applied to the engine can be kept small, and the fuel consumption of the engine can be reduced.
  • the tension of the belt 54 tends to be excessive during normal operation of the engine. That is, when the tensioner is displaced with the amplitude indicated by S1 in FIG. 6, in the process in which the tensioner contracts, the tensioner reaction force increases from the point Q1 to the value between the points Q1 and Q2, and then In the process in which the tensioner contracts, the value between the point Q1 and the point Q2 is set as a starting point, the value is decreased to a value between the point Q3 and the point Q1, and further decreased to the point Q1.
  • the tension pulley 55 shown in FIG. The tension to be applied tends to be excessive, and it is difficult to reduce the fuel consumption of the engine.
  • valve sleeve 10 cylinder 13 valve sleeve 14 rod 15 pressure chamber 16 spring seat 17 return spring 24 reservoir chamber 25 oil passage 27 first check valve 28 plunger 31 first leak gap 32 second leak gap 34 stopper 35 second check valve 35a valve seat 35b Seat surface 37 Valve spring

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

 ロッド(14)の外側にプランジャ(28)を摺動自在に嵌合し、そのプランジャ(28)とロッド(14)の摺動面間に第1リーク隙間(31)を設け、かつ、プランジャ(28)とバルブスリーブ(13)の摺動面間に第1リーク隙間(31)より流路抵抗の大きな第2リーク隙間(32)を設ける。エンジンの通常運転時、ベルトの張力が増大し、シリンダ(10)とばね座(16)に収縮させる方向の押し込み力が負荷された際に圧力室(15)内のオイルを第1リーク隙間(31)からリザーバ室(24)にリークさせるようにした油圧式オートテンショナである。

Description

油圧式オートテンショナ
 この発明は、オルタネータやウォータポンプ、エアコンディショナのコンプレッサ等の補機を駆動するベルトの張力調整用に用いられる油圧式オートテンショナに関する。
 二酸化炭素の排出量を削減するため、車両の停止時にエンジンを停止し、アクセルペダルの踏み込みによる車両の発進時にエンジンを瞬時に始動させるISG(Integrated Starter Generator)のアイドルストップ機構が搭載されたエンジンが提案されている。
 図7A、図7Bは、エンジン補機駆動とエンジン始動を両立するISGのアイドルストップ機構が搭載されたエンジンのベルト伝動装置を示し、クランクシャフト51に取り付けられたクランクシャフトプーリPと、ISGのスタータ・ジェネレータ52の回転軸に取り付けられたスタータ・ジェネレータプーリPと、ウォータポンプ等の補機53の回転軸に取り付けられた補機プーリP間にベルト54を掛け渡し、エンジンの通常運転時、図7Aに示すように、クランクシャフトプーリPの矢印で示す方向の回転によりスタータ・ジェネレータ52および補機53を駆動し、スタータ・ジェネレータ52をジェネレータとして機能させるようにしている。
 一方、スタータ・ジェネレータ52の駆動によるエンジンの始動時、図7Bに示すように、スタータ・ジェネレータプーリPの矢印で示す方向の回転によりクランクシャフトプーリPを回転させて、スタータ・ジェネレータ52をスタータとして機能させるようにしている。
 上記のようなベルト伝動装置においては、クランクシャフトプーリPとスタータ・ジェネレータプーリPにわたるベルト部54aにテンションプーリ55を設け、そのテンションプーリ55を回転自在に支持する揺動可能なプーリアーム56に油圧式オートテンショナAの調整力を付与してテンションプーリ55がベルト54を押圧する方向にプーリアーム56を付勢し、ベルト54の張力変化を油圧式オートテンショナAにより吸収するようにしている。
 油圧式オートテンショナAとして、下記特許文献1に記載されたものが従来から知られている。この油圧式オートテンショナにおいては、シリンダの底面上に立設されたバルブスリーブ内にロッドの下端部を摺動自在に挿入して、バルブスリーブ内に圧力室を形成し、上記ロッドの上端部に設けられたばね座とシリンダの底面間にリターンスプリングを組み込んで、ロッドとバルブスリーブを伸長する方向に付勢している。
 また、シリンダの内周とバルブスリーブの外周間に密閉されたリザーバ室を設け、そのリザーバ室の下部と上記圧力室の下部をシリンダの底面部に形成された油通路で連通し、バルブスリーブの下端部内にはチェックバルブを組込み、ロッドに押込み力が負荷され、圧力室の圧力がリザーバ室の圧力より高くなった際、チェックバルブを閉鎖して油通路と圧力室の連通を遮断するようにしている。
 上記の構成からなる油圧式オートテンショナは、ばね座の上面に設けられた連結片を図7Aに示すエンジンブロックEに回動自在に連結し、シリンダの下面に設けられた連結片をプーリアーム56に連結して、ベルト54からテンションプーリ55およびプーリアーム56を介してロッドに押込み力が負荷された際に、チェックバルブを閉じ、圧力室内に封入されたオイルをバルブスリーブとロッドの摺動面間に形成されたリーク隙間に流動させ、その流動時のオイルの粘性抵抗により圧力室内に油圧ダンパ力を発生させて上記押込み力を緩衝するようにしている。
特開2009-275757号公報
 ところで、上記従来の油圧式オートテンショナにおいては、ロッドに押込み力が負荷された際、圧力室内のオイルをバルブスリーブとロッドの摺動面間に形成された単一のリーク隙間からリークさせる構成であるため、エンジンの通常運転時およびスタータ・ジェネレータ52でのエンジン始動時のそれぞれにおいてベルト54に適正な張力を付与することができない。
 すなわち、リーク隙間をエンジンの通常運転時におけるベルトの張力変動を吸収可能な大きさに設定すると、リーク隙間が大きいため、スタータ・ジェネレータ52の駆動によるエンジンの始動時にロッドが大きく押し込まれてベルト54に弛みが生じ、ベルト54とプーリP乃至Pの接触部で滑りが生じ、ベルト寿命の低下やスタータ・ジェネレータ52によるエンジン始動不良が生じる可能性がある。
 一方、リーク隙間をスタータ・ジェネレータ52の駆動によるエンジンの始動時におけるベルト54の張力変動を吸収可能な大きさに設定すると、リーク隙間が小さいために、エンジンの通常運転時におけるベルト54の張力が高くなり過ぎてベルト54が過張力となり、ベルト54やプーリP乃至Pを回転自在に支持する軸受が損傷し易くなり、燃料の消費が多くなるという問題が生じる。
 この発明の課題は、エンジンの通常運転時およびスタータ・ジェネレータでのエンジン始動時のそれぞれにおいて適正な張力をベルトに付与することができるようにした油圧式オートテンショナを提供することである。
 上記の課題を解決するために、この発明においては、オイルが入れられた底付きシリンダの底面上にバルブスリーブを立設し、そのバルブスリーブの内部にロッドの下端部を摺動自在に挿入してバルブスリーブ内に圧力室を設け、前記ロッドの上部に設けられたばね座とシリンダの底面間に、ばね座とシリンダを伸張する方向に付勢するリターンスプリングを組込み、前記シリンダの内周とバルブスリーブの外周間に形成されたリザーバ室の下部と前記圧力室の下部を連通する油通路を形成し、前記バルブスリーブの下端部内に前記圧力室の圧力がリザーバ室内の圧力より高くなると閉鎖して圧力室と油通路の連通を遮断する第1チェックバルブを設け、前記ばね座を介してロッドに押込み力が負荷された際に第1チェックバルブを閉じ、圧力室内のオイルを、その圧力室からリザーバ室にリークさせて圧力室内のオイルによる油圧ダンパ作用によってロッドに負荷される押込み力を緩衝するようにした油圧式オートテンショナにおいて、前記ロッドの外側に、そのロッドの外径面および前記バルブスリーブの内径面に沿って摺動可能な筒状のプランジャを嵌合して、そのプランジャとロッドの摺動面間に第1リーク隙間を設け、かつ、プランジャとバルブスリーブの摺動面間に、前記第1リーク隙間より流路抵抗の大きな第2リーク隙間を設け、前記ロッドと前記プランジャの相互間に、前記圧力室内の圧力上昇に伴うプランジャの上昇時に前記第1リーク隙間を閉鎖する第2チェックバルブを設け、前記プランジャを前記ロッドの下端部に設けられた抜止め用ストッパに向けて付勢するバルブスプリングを設けた構成を採用したのである。
 上記の構成からなる油圧式オートテンショナにおいて、ISGのアイドルストップ機構が搭載されたエンジンの補機駆動用ベルト伝動装置におけるベルトの張力調整に際しては、エンジンブロック等のテンショナ取付け対象にロッド先端のばね座を連結し、シリンダの下端部をプーリアームに連結して、そのプーリアームに支持されたテンションプーリがクランクシャフトプーリとスタータ・ジェネレータプーリ間のベルト部を押圧する方向にプーリアームを付勢し、ベルトを緊張させる。
 上記のようなベルト伝動装置への油圧式オートテンショナの組込み状態において、エンジンの通常運転状態でベルトの張力が強くなり、そのベルトからロッドに押込み力が負荷されると、圧力室内の圧力が高くなり、第1チェックバルブが閉鎖して、圧力室内のオイルは流路抵抗の小さな第1リーク隙間からリザーバ室にリークし、第1リーク隙間を流れるオイルの粘性抵抗により圧力室内に油圧ダンパ力が発生し、その油圧ダンパ力によって上記押込み力が緩衝され、ベルトは適正張力に保持される。
 一方、スタータ・ジェネレータの駆動によるエンジン始動時、ベルトの張力は急激に大きくなって圧力室の圧力が急激に上昇する。この時、第1チェックバルブが閉鎖し、その第1チェックバルブの閉鎖後、プランジャが上昇して第2チェックバルブが閉鎖し、第1リーク隙間が閉塞される。
 このため、圧力室のオイルは第2リーク隙間からリザーバ室にリークする。その第2リーク隙間の流路抵抗は第1リーク隙間より大きいため、圧力室での圧力低下が少なく、圧力室での油圧ダンパ作用によりロッドの押し込みが抑制されてベルトはクランクシャフトを駆動するのに必要なベルト張力に保持され、ベルトとプーリ間のスリップが防止される。
 ここで、第2チェックバルブとして、ロッドの前記プランジャの上端から外部に位置する大径軸部の下端に球面状のバルブシートを設け、プランジャの上部内径面に上記バルブシートに対して着座可能なシート面を設けた構成からなるものを採用することができる。
 アイドルストップ機構が搭載されたエンジンにおいては、燃費向上の要求からアイドリングストップの頻度が増加する傾向にある。この場合、スタータ・ジェネレータの始動の都度、プランジャが上昇してシート面がバルブシートに衝撃的に衝突するため、バルブシートおよびプランジャのシート面のそれぞれを表面硬化処理して、強度を高め、耐久性の向上を図るのがよい。
 上記表面硬化処理として、ダイヤモンドライクカーボン処理(DLC処理)、硬質皮膜のコーティング処理、ショットピーニング、WPC処理を採用することができる。
 この発明に係る油圧式オートテンショナにおいて、プランジャをロッドの下端部に設けられた抜止め用ストッパに向けて付勢するバルブスプリングとして、コイルばね、皿ばね、波形座金、ウェーブスプリングを採用することができる。
 この発明においては、上記のように、エンジンの通常運転時、圧力室内のオイルは流路抵抗の小さな第1リーク隙間からリザーバ室にリークし、一方、スタータ・ジェネレータでのエンジン始動時、圧力室内のオイルは流路抵抗の大きな第2リーク隙間からリザーバ室にリークするため、エンジンの通常運転時およびスタータ・ジェネレータでのエンジン始動時のそれぞれにおいてベルトに適正な張力を付与することができる。
この発明に係る油圧式オートテンショナの実施の形態を示す縦断面図 図1の第1リーク隙間および第2リーク隙間の形成部位を拡大して示す、第1リーク隙間からのオイルのリーク状態を示す断面図 図1の第1リーク隙間および第2リーク隙間の形成部位を拡大して示す、第2リーク隙間からのオイルのリーク状態を示す断面図 バルブスプリングの他の例を示す断面図 バルブスプリングのさらに他の例を示す断面図 バルブスプリングのさらに他の例を示す断面図 実施形態と従来の油圧式オートテンショナの反力特性の測定例を示すグラフ アイドルストップ機構が搭載されたエンジンのベルト伝動装置を示す、エンジンの通常運転状態を示す正面図 アイドルストップ機構が搭載されたエンジンのベルト伝動装置を示す、スタータ・ジェネレータによるエンジンの始動状態を示す正面図
 以下、この発明の実施の形態を図面に基づいて説明する。図1に示すように、シリンダ10は底部を有し、その底部の下面に図7のプーリアーム56に連結される連結片11が設けられている。
 連結片11には、一側面から他側面に貫通する軸挿入孔11aが設けられ、その軸挿入孔11a内に筒状の支点軸11bとその支点軸11bを回転自在に支持する滑り軸受11cとが組み込まれ、上記支点軸11b内に挿通されてプーリアーム56にねじ係合されるボルトの締め付けにより支点軸11bが固定され、連結片11がプーリアーム56に回動自在の取付けとされる。
 シリンダ10の底面には、バルブスリーブ嵌合孔12が設けられ、そのバルブスリーブ嵌合孔12内に鋼製のバルブスリーブ13の下端部が圧入されている。バルブスリーブ13内にはロッド14の下部が摺動自在に挿入され、そのロッド14の挿入によって、バルブスリーブ13内には上記ロッド14の下側に圧力室15が設けられている。
 ロッド14のシリンダ10の外部に位置する上端部にはばね座16が設けられ、そのばね座16とシリンダ10の底面間に組込まれたリターンスプリング17は、シリンダ10とロッド14が相対的に伸張する方向に付勢している。
 ばね座16の上端にはエンジンブロックに連結される連結片18が設けられている。連結片18には一側面から他側面に貫通するスリーブ挿入孔18aが形成され、そのスリーブ挿入孔18a内にスリーブ18bと、そのスリーブ18bを回転自在に支持する滑り軸受18cとが組み込まれ、上記スリーブ18b内に挿通されるボルトによって連結片18がエンジンブロックに回転自在に連結される。
 ばね座16は成形品からなり、その成形時にシリンダ10の上部外周を覆う筒状のダストカバー20と、リターンスプリング17の上部を覆う筒状のスプリングカバー21とが同時に成形される。
 ここで、ばね座16は、アルミのダイキャスト成形品であってもよく、あるいは、熱硬化性樹脂等の樹脂の成形品であってもよい。
 スプリングカバー21は、ばね座16の成形時にインサート成形される筒体22によって外周の全体が覆われている。筒体22は、鋼板のプレス成形品からなる。
 シリンダ10の上側開口部内にはシール部材としてのオイルシール23が組込まれ、そのオイルシール23の内周が筒体22の外周面に弾性接触して、シリンダ10の上側開口を閉塞し、シリンダ10の内部に充填されたオイルの外部への漏洩を防止し、かつ、ダストの内部への侵入を防止している。
 上記オイルシール23の組み込みにより、シリンダ10とバルブスリーブ13との間に密閉されたリザーバ室24が形成される。リザーバ室24と圧力室15は、バルブスリーブ嵌合孔12とバルブスリーブ13の嵌合面間に形成された油通路25およびバルブスリーブ嵌合孔12の底面中央部に形成された円形凹部からなる油溜り26を介して連通している。
 バルブスリーブ13の下端部内には第1チェックバルブ27が組み込まれている。第1チェックバルブ27は、バルブスリーブ13の下端部内に圧入されたバルブシート27aの弁孔27bを圧力室15側から開閉する鋼製のチェックボール27cと、そのチェックボール27cを弁孔27bに向けて付勢するスプリング27dと、上記チェックボール27cの開閉量を規制するリテーナ27eとからなっている。
 第1チェックバルブ27は、圧力室15内の圧力がリザーバ室24内の圧力より高くなると、チェックボール27cが弁孔27bを閉じ、圧力室15と油通路25の連通が遮断して、圧力室15内のオイルが油通路25を通ってリザーバ室24に流れるのを防止する。
 図1、図2A、図2Bに示すように、ロッド14には筒状のプランジャ28が嵌合されている。プランジャ28は、ロッド14の外径面およびバルブスリーブ13の内周上部に形成された小径内径面13aに沿って摺動自在とされ、上記ロッド14とプランジャ28の摺動面間に円筒状の第1リーク隙間31が形成されている。また、プランジャ28とバルブスリーブ13の摺動面間に円筒状の第2リーク隙間32が設けられている。
 第2リーク隙間32のすき間量は第1リーク隙間31のすき間量より小さく、そのすき間量の相違から、第2リーク隙間32の流路抵抗が第1リーク隙間31の流路抵抗より大きくなっている。
 第1リーク隙間31および第2リーク隙間32のそれぞれは、圧力室15内のオイルがそれぞれのリーク隙間31、32に沿ってリークする際の粘性抵抗により圧力室15内に油圧ダンパ作用を生じさせるようになっている。
 第1リーク隙間31は、オイルのリークによって生じる油圧ダンパ作用によって図7Aに示すエンジンの通常運転時におけるベルト54の張力変動を吸収可能とする大きさに設定されている。一方、第2リーク隙間32は、図7Bに示すスタータ・ジェネレータ52の駆動によるエンジン始動時にロッド14が急激に押し込まれることのない大きさに設定されている。
 図2Aに示すように、ロッド14の下端部にはプランジャ28を抜止めするストッパ34が設けられている。ストッパ34として、ここでは止め輪を採用し、ロッド14の下端部に設けられたリング溝33に取り付けるようにしている。
 ここで、止め輪からなるストッパ34は周方向の一部に切り離し部34aを有し、その切り離し部34aを介して圧力室15と第1リーク隙間31は常に連通する状態にある。
 ロッド14とプランジャ28の相互間には、スタータ・ジェネレータ52の駆動によるエンジン始動時の圧力上昇時に第1リーク隙間31を閉塞する第2チェックバルブ35が設けられている。
 第2チェックバルブ35は、ロッド14のプランジャ28の上端から外部に位置する上部に大径軸部14aを設け、その大径軸部14aの下端部に球面状のバルブシート35aを設け、一方、プランジャ28の上部内径面にシート面35bを形成し、圧力室15内の圧力によるプランジャ28の上昇時にバルブシート35aにシート面35bを着座させて第1リーク隙間31の上端開口を閉塞するようにしている。
 ここで、シート面35bとしてテーパ面を示したが、シート面35bはテーパ面に限定されない。例えば、凸形の球面であってもよい。
 また、実施の形態では、プランジャ28の上端側に第2チェックバルブ35を設けるようにしたが、プランジャ28の内部、あるいは、プランジャ28の下端側に第2チェックバルブ35を設けるようにしてもよい。
 ロッド14のバルブシート35aおよびプランジャ28のシート面35bは表面硬化処理されて強度が高められている。表面硬化処理として、ここでは、DLC処理を施すようにしているが、そのDLC処理に代えて、硬質皮膜のコーティング処理を施し、あるいは、ショットピーニングを施すようにしてもよい。
 プランジャ28の上部には外向きのフランジ29が設けられ、そのフランジ29とばね座16の対向面間にバルブスプリング37が組み込まれている。バルブスプリング37はプランジャ28をロッド14の下端部に取り付けられた前述のストッパ34に向けて付勢している。
 バルブスプリング37として、図2Aではコイルばねを採用しているが、図3に示すように、皿ばねであってもよく、あるいは、図4に示すように、波形座金であってもよい。さらに、図5に示すように、ウェーブスプリングであってもよい。波形座金を採用する場合は、図4に示すように、複数の波形座金37のそれぞれの重なり部間に平座金38を介在させるようにする。
 図2Aに示すように、プランジャ28の外周下部には、下部が大径のリング状のテーパ溝39が設けられ、そのテーパ溝39内に抜止めリング40が取り付けられている。抜止めリング40は、自然状態での外径がプランジャ28の外径より大径とされて外周部がプランジャ28の外径面より外側に位置し、プランジャ28の内周上部に形成された上述の小径内径面13aの下端の段差部13bに対する当接によってプランジャ28およびロッド14がバルブスリーブ13の上端から上方に抜け出るのを防止する。
 実施の形態で示す油圧式オートテンショナは上記の構成からなり、図7A、図7Bに示すアイドルストップ機構が搭載されたエンジンの補機駆動用ベルト伝動装置への組込みに際しては、シリンダ10の閉塞端に設けられた連結片11をプーリアーム56に連結し、かつ、ばね座16の連結片18をエンジンブロックに連結して、そのプーリアーム56に調整力を付与する。
 上記のようなベルト54の張力調整状態において、エンジンの通常運転状態において、補機53の負荷変動等によってベルト54の張力が変化し、上記ベルト54の張力が弱くなると、リターンスプリング17の押圧によりシリンダ10とばね座16が伸張する方向に相対移動してベルト54の弛みが吸収される。
 ここで、シリンダ10とばね座16が伸張する方向に相対移動するとき、圧力室15内の圧力はリザーバ室24内の圧力より低くなるため、第1チェックバルブ27が開放する。このため、リザーバ室24内のオイルは油通路25から油溜り26を通って圧力室15内にスムーズに流れ、シリンダ10とばね座16は伸張する方向にスムーズに相対移動してベルト54の弛みを直ちに吸収する。
 一方、ベルト54の張力が強くなると、ベルト54から油圧式オートテンショナのシリンダ10とばね座16を収縮させる方向の押込み力が負荷される。このとき、圧力室15内の圧力はリザーバ室24内の圧力より高くなるため、第1チェックバルブ27のチェックボール27cが弁孔27bを閉鎖する。
 また、圧力室15内のオイルは図2Aの矢印で示すように第1リーク隙間31を流通し、その第1リーク隙間31の上端開口から図1に示されるリザーバ室24にリークし、上記第1リーク隙間31を流動するオイルによって圧力室15内に油圧ダンパ力が発生する。その油圧ダンパ力により、油圧式オートテンショナに負荷される上記押込み力が緩衝される。
 このとき、第1リーク隙間31は、エンジンの通常運転時におけるベルト54の張力変動を吸収可能な大きさに設定されているため、エンジンの通常運転時におけるベルト54の張力が高くなり過ぎることはなく、適正張力に保持される。
 一方、スタータ・ジェネレータ52の駆動によるエンジン始動時、ベルト54の張力は急激に大きくなってばね座16を介して作用するロッド14に対する押込み力が強くなり、圧力室15の圧力が急激に上昇する。このとき、第1チェックバルブ27は閉鎖して圧力室15内の圧力が上昇し、その圧力がバルブスプリング37の弾性力より高くなると、プランジャ28がバルブスプリング37の弾性に抗して上昇し、図2Bに示すように、シート面35bがバルブシート35aに着座して、第2チェックバルブ35が閉鎖する。
 第2チェックバルブ35の閉鎖により第1リーク隙間31の上端開口が閉塞し、圧力室15内のオイルは、図2Bの矢印で示すように、第2リーク隙間32内に流通して上端開口からリザーバ室24にリークする。
 このとき、第2リーク隙間32の流路抵抗は第1リーク隙間31の流路抵抗より大きいため、圧力室15内のオイルは第2リーク隙間32内をゆっくりと流動する。このため、圧力室15での急激な圧力低下がなく、その圧力室15内の油圧ダンパ作用によってロッド14の押し込みが抑制され、ベルト54はクランクシャフト51を駆動するのに必要なベルト張力に保持され、ベルト54とプーリP乃至P間のスリップが防止される。
 上記のように、エンジンの通常運転時、圧力室15内のオイルは流路抵抗の小さな第1リーク隙間31からリザーバ室24にリークし、一方、スタータ・ジェネレータ52でのエンジン始動時、圧力室15内のオイルは流路抵抗の大きな第2リーク隙間32からリザーバ室24にリークするため、エンジンの通常運転時およびスタータ・ジェネレータでのエンジン始動時のそれぞれにおいてベルト54に適正な張力を付与することができる。
 図6に、上記実施形態の油圧式オートテンショナ(以下「実施品」という)の反力特性と、従来の油圧式オートテンショナ(以下「従来品」という)の反力特性とを比較した測定例を示す。以下説明する。
 実施品としては、上記実施形態で説明したテンショナを使用した。すなわち、図1、図2A、図2Bに示すように、有底筒状のシリンダ10と、そのシリンダ10の底面から上方に延びるバルブスリーブ13と、そのバルブスリーブ13に上下に摺動可能に挿入されたプランジャ28と、そのプランジャ28に上下に摺動可能に挿入されたロッド14と、バルブスリーブ13とロッド14とプランジャ28とで囲まれる圧力室15と、ロッド14とプランジャ28の摺動面間に形成された円筒状の第1リーク隙間31と、プランジャ28とバルブスリーブ13の摺動面間に形成された円筒状の第2リーク隙間32と、ロッド14の上端に固定されたばね座16と、そのばね座16をシリンダ10に対して上方に付勢するリターンスプリング17と、プランジャ28を下方に付勢するバルブスプリング37と、ロッド14に対するプランジャ28の上方への移動範囲を規制する上側のストッパとしてのバルブシート35aと、ロッド14に対するプランジャ28の下方への移動範囲を規制する下側のストッパ34とを有する構成のテンショナを使用した。そして、シリンダ10を固定した状態でばね座16を上下に加振し、ばね座16に作用する上向きの力(テンショナ反力)の変化を測定した。
 また、従来品としては、特許文献1の図1に示すテンショナ(実施品のプランジャ28に相当する部材が無いテンショナであり、ロッド14がバルブスリーブ13に直接摺動する)を使用した。
 加振条件は以下のとおりである。
 ・制御方法:変位制御
 ・加振波形:サイン波
 ・加振周波数:10Hz
 変位制御は、ばね座16に作用する力(テンショナ反力)がどのように増減するかによらず、ばね座16の位置の時間変化がサイン波となるようにばね座16の変位を制御する制御方式である。加振の振幅は、エンジンの通常運転時にテンショナに加わる一般的な加振の振幅(例えば±0.1mm~±0.2mm程度)よりも大きい±0.5mmとした。実施品および従来品は、いずれもばね係数が約35N/mmのリターンスプリング17を使用している。
 上記の加振試験により得たテンショナ変位(ばね座16の下向きの変位)とテンショナ反力(ばね座16に作用する上向きの力)の関係を図6に示す。
 図6に示すように、実施品は、テンショナが収縮する過程で、テンショナ反力が急・緩・急の3段階の行程で変化している。すなわち、テンショナが収縮する過程で、実施品のテンショナ反力は、テンショナ反力の最小値(点P1)を起点として比較的急に増加する第1行程(点P1~点P2)と、ほとんど増加せずにほぼ一定の大きさを維持する第2行程(点P2~点P3)と、比較的急に増加する第3行程(点P3~点P4)とを順に経てテンショナ反力の最大値(点P4)まで変化する。
 その後、実施品は、テンショナが伸長する過程で、テンショナ反力が急・緩・急・緩の4段階の行程で変化する。すなわち、テンショナが伸長する過程で、実施品のテンショナ反力は、テンショナ反力の最大値(点P4)を起点として比較的急に減少する第1行程(点P4~点P5)と、ほとんど減少せずにほぼ一定の大きさを維持する第2行程(点P5~点P6)と、比較的急に減少する第3行程(点P6~点P7)と、ほとんど減少せずにほぼ一定の大きさを維持する第4行程(点P7~点P1)とを順に経てテンショナ反力の最小値(点P1)まで変化する。
 これに対し、従来品は、テンショナが収縮する過程で、テンショナ反力が最小値(点Q1)から最大値(点Q2)までおおむね単調に増加する。また、従来品は、テンショナが伸長する過程で、テンショナ反力が急・緩の2段階の行程で変化する。すなわち、テンショナが伸長する過程で、従来品のテンショナ反力は、テンショナ反力の最大値(点Q2)を起点として比較的急に減少する第1行程(点Q2~点Q3)と、ほとんど減少せずにほぼ一定の大きさを維持する第2行程(点Q3~点Q1)とを順に経てテンショナ反力の最小値(点Q1)まで変化する。
 つまり、実施品のテンショナは、テンショナが収縮する過程で、テンショナ反力の増加率が急から緩に変わる変化点P2と、テンショナ反力の増加率が緩から急に変わる変化点P3とを順に有する反力特性を示す。また、実施品のテンショナは、テンショナが伸長する過程で、テンショナ反力の減少率が急から緩に変わる変化点P5と、テンショナ反力の減少率が緩から急に変わる変化点P6と、テンショナ反力の減少率が急から緩に変わる変化点P7とを順に有する反力特性を示す。
 実施品のテンショナが上記反力特性を示す理由を、図1、図2A、図2B、図6を参照して説明する。
<点P1~点P2>
 図2Aに示すロッド14が下降を開始する。このとき、プランジャ28はバルブスプリング37で下方に付勢してストッパ34に押圧されているので、プランジャ28もロッド14と一体に下降する。プランジャ28とロッド14が一体に下降すると、圧力室15内のオイルの一部が第1リーク隙間31を通って圧力室15から流出するとともに、圧力室15内のオイルが圧縮される。圧力室15内のオイルが圧縮すると、圧力室15内のオイルの圧力が増加し、テンショナ反力が比較的急に増加する(図6の点P1~点P2)。そして、図6の点P2において、圧力室15内のオイルからプランジャ28に作用する上向きの圧力と、バルブスプリング37からプランジャ28に作用する下向きの付勢力とが釣り合う。
<点P2~点P3>
 図2Aに示すロッド14がさらに下降する。このとき、圧力室15内のオイルからプランジャ28に作用する上向きの圧力が、バルブスプリング37からプランジャ28に作用する下向きの付勢力を上回ることにより、プランジャ28が上昇する。この間は、プランジャ28が上昇することによって圧力室15の圧力上昇が抑えられ、テンショナ反力がほぼ一定となる(図6の点P2~点P3)。すなわち、ロッド14の下降に伴いプランジャ28が上昇するので、圧力室15の体積がほとんど変化せず、圧力室15の圧力がほぼ一定となる。このとき、圧力室15の体積がほとんど変化しないため、第1リーク隙間31および第2リーク隙間32にはオイルがほとんど流れない。そして、図6の点P3において、図2Bに示すように、シート面35bがバルブシート35aに着座し、プランジャ28の上昇が停止する。
<点P3~点P4>
 図2Bに示すロッド14がさらに下降する。このとき、図2Bに示すように、シート面35bがバルブシート35aに着座しているので、プランジャ28もロッド14と一体に下降する。プランジャ28とロッド14が一体に下降すると、圧力室15内のオイルがさらに圧縮されるので、圧力室15内のオイルの圧力が再び増加し、テンショナ反力が再び急に増加する(図6の点P3~点P4)。このとき、図2Bに示すように、シート面35bがバルブシート35aに着座しているので、第1リーク隙間31にはオイルが流れず、圧力室15内のオイルの一部が第2リーク隙間32を通って圧力室15から流出する。
<点P4~点P5>
 図2Bに示すロッド14が上昇を開始する。このとき、圧力室15内のオイルからプランジャ28に作用する上向きの圧力が、バルブスプリング37からプランジャ28に作用する下向きの付勢力を上回っているので、プランジャ28もロッド14と一体に上昇する。プランジャ28とロッド14が一体に上昇すると、圧力室15内のオイルの圧縮が次第に解放されるので、圧力室15内のオイルの圧力が減少し、テンショナ反力が比較的急に減少する(図6の点P4~点P5)。このとき、圧力室15内のオイルの圧縮が解放される(すなわち圧力室15内のオイルが膨張する)ことにより圧力室15内のオイルの体積が増加するので、第2リーク隙間32にはオイルがほとんど流れない。また、図2Bに示すように、シート面35bがバルブシート35aに着座しているので、第1リーク隙間31にもオイルは流れない。そして、図6の点P5において、圧力室15内のオイルからプランジャ28に作用する上向きの圧力と、バルブスプリング37からプランジャ28に作用する下向きの付勢力とが釣り合う。
<点P5~点P6>
 図2Bに示すロッド14がさらに上昇する。このとき、圧力室15内のオイルからプランジャ28に作用する上向きの圧力が、バルブスプリング37からプランジャ28に作用する下向きの付勢力を下回ることにより、プランジャ28が下降する。この間は、プランジャ28が下降することによって、圧力室15の圧力下降が抑えられ、テンショナ反力がほぼ一定となる(図6の点P5~点P6)。すなわち、ロッド14の上昇に伴いプランジャ28が下降するので、圧力室15の体積がほとんど変化せず、圧力室15の圧力がほぼ一定となる。このとき、点P2~点P3の時と同じく、圧力室15の体積がほとんど変化しないため、第1リーク隙間31および第2リーク隙間32にはオイルがほとんど流れない。そして、図6の点P6において、図2Aに示すように、プランジャ28の下方の移動がストッパ34で阻止され、プランジャ28の下降が停止する。
<点P6~点P7>
 図2Aに示すロッド14がさらに上昇する。このとき、図2Aに示すように、プランジャ28のロッド14に対する下方への相対移動がストッパ34で阻止されているので、プランジャ28もロッド14と一体に上昇する。プランジャ28とロッド14が一体に上昇すると、圧力室15内のオイルの圧縮がさらに解放されるので、圧力室15内のオイルの圧力が再び減少し始め、テンショナ反力が再び急に減少する(図6の点P6~点P7)。このとき、点P4~点P5のときと同じく、圧力室15内のオイルの圧縮が解放される(すなわち圧力室15内のオイルが膨張する)ことにより圧力室15内のオイルの体積が増加するので、第1リーク隙間31および第2リーク隙間32にはオイルがほとんど流れない。そして、図6の点P7において、図1に示す圧力室15内のオイルの圧力がリザーバ室24内のオイルと同等の圧力まで低下し、圧力室15内のオイルの圧縮が完全に解放された状態となる。
<点P7~点P1>
 図1に示すロッド14がさらに上昇する。このとき、プランジャ28のロッド14に対する下方への相対移動がストッパ34で阻止されているので、プランジャ28もロッド14と一体に上昇する。プランジャ28とロッド14が一体に上昇すると、圧力室15内のオイルの圧力がリザーバ室24内の圧力を下回ることによりチェックバルブ27が開き、オイルが油通路25を通ってリザーバ室24から圧力室15に流れる。そのため、圧力室15内のオイルの圧力はほとんど変化せず、テンショナ反力もほぼ一定となる(図6の点P7~点P1)。
 以上のとおり、実施品は、テンショナが収縮する過程で、テンショナ反力が所定値(図6の点P2のときの値)に達すると、プランジャ28が上昇して圧力室15の体積の変化を吸収し、その間、テンショナ反力がほぼ一定となる(図6の点P2~点P3)。そのため、実施品は、テンショナが収縮する過程で、テンショナ反力の増加率が急から緩に変わる変化点P2と、テンショナ反力の増加率が緩から急に変わる変化点P3とを順に有する反力特性を示す。
 また、実施品は、テンショナが伸長する過程で、テンショナ反力が所定値(図6の点P5のときの値)に達すると、プランジャ28が下降して圧力室15の体積の変化を吸収し、その間、テンショナ反力がほぼ一定となる(図6の点P5~点P6)。そのため、実施品は、テンショナが伸長する過程で、テンショナ反力の減少率が急から緩に変わる変化点P5と、テンショナ反力の減少率が緩から急に変わる変化点P6とを順に有する反力特性を示す。
 実施品のテンショナは、上述の反力特性を有することにより、エンジンの通常運転時には、テンショナ反力の大きさを小さく抑えて、図7Aに示すテンションプーリ55がベルト54に付与する張力を小さく抑えることができ、一方、スタータ・ジェネレータ52の駆動によるエンジン始動時には、大きいテンショナ反力を発生させて、図7Bに示すベルト54とプーリPの間のスリップを効果的に防止することができる。
 すなわち、エンジンの通常運転時には、図6に符号S1で示すように、テンショナが±0.5mmよりも小さい振幅(例えば±0.1mm~±0.2mm程度の振幅)で変位する。このとき、テンショナ反力は、テンショナが収縮する過程では、点P1を起点として、点P2を経て、点P2と点P3の間の値まで増加し、その後、テンショナが伸長する過程では、点P2と点P3の間の値を起点として、点P5と点P6の間の値まで減少し、さらに点P6と点P7とを順に経て、点P1まで減少する。このように、実施品のテンショナを使用すると、エンジンの通常運転時には、テンショナ反力の最大値を点P2と点P3の間の値に抑えることができ、図7Aに示すテンションプーリ55がベルト54に付与する張力を小さく抑えて、エンジンの低燃費化を図ることができる。
 一方、スタータ・ジェネレータ52の駆動によるエンジン始動時には、テンショナは、図6に符号S2で示すように、±0.5mmの振幅の最大値かその近傍まで収縮する。このとき、テンショナ反力は、点P4かその近傍まで増加する。そのため、スタータ・ジェネレータ52の駆動によるエンジン始動時には、大きいテンショナ反力を発生させることができ、図7Bに示すベルト54とプーリPの間のスリップを効果的に防止することができる。
 これに対し、従来品のテンショナでは、エンジンの通常運転時には、ベルト54の張力が過大となりやすい傾向がある。すなわち、図6に符号S1で示す振幅でテンショナが変位するとき、テンショナが収縮する過程では、テンショナ反力が、点Q1を起点として、点Q1と点Q2の間の値まで増加し、その後、テンショナが収縮する過程では、点Q1と点Q2の間の値を起点として、点Q3と点Q1の間の値まで減少し、さらに点Q1まで減少する。このように、従来品のテンショナを使用すると、エンジンの通常運転時には、テンショナ反力の最大値が点Q1と点Q2の間の値まで増加するので、図7Aに示すテンションプーリ55がベルト54に付与する張力が過大となりやすく、エンジンの低燃費化を図ることが難しい。
 また、従来品のテンショナは、スタータ・ジェネレータ52の駆動によるエンジン始動時には、大きいテンショナ反力を発生させることが難しい。すなわち、テンショナが、図6に符号S2で示す±0.5mmの振幅の最大値かその近傍まで収縮したとき、テンショナ反力は、点Q2かその近傍までしか増加しない。そのため、スタータ・ジェネレータ52の駆動によるエンジン始動時に、大きいテンショナ反力を発生させることが難しく、図7Bに示すベルト54とプーリPの間にスリップが生じやすい。
10 シリンダ
13 バルブスリーブ
14 ロッド
15 圧力室
16 ばね座
17 リターンスプリング
24 リザーバ室
25 油通路
27 第1チェックバルブ
28 プランジャ
31 第1リーク隙間
32 第2リーク隙間
34 ストッパ
35 第2チェックバルブ
35a バルブシート
35b シート面
37 バルブスプリング

Claims (5)

  1.  オイルが入れられた底付きシリンダ(10)の底面上にバルブスリーブ(13)を立設し、そのバルブスリーブ(13)の内部にロッド(14)の下端部を摺動自在に挿入してバルブスリーブ(13)内に圧力室(15)を設け、前記ロッド(14)の上部に設けられたばね座(16)とシリンダ(10)の底面間に、ばね座(16)とシリンダ(10)を伸張する方向に付勢するリターンスプリング(17)を組込み、前記シリンダ(10)の内周とバルブスリーブ(13)の外周間に形成されたリザーバ室(24)の下部と前記圧力室(15)の下部を連通する油通路(25)を形成し、前記バルブスリーブ(13)の下端部内に前記圧力室(15)の圧力がリザーバ室(24)内の圧力より高くなると閉鎖して圧力室(15)と油通路(25)の連通を遮断する第1チェックバルブ(27)を設け、前記ばね座(16)を介してロッド(14)に押込み力が負荷された際に第1チェックバルブ(27)を閉じ、圧力室(15)内のオイルを、その圧力室(15)からリザーバ室(24)にリークさせて圧力室(15)内のオイルによる油圧ダンパ作用によってロッド(14)に負荷される押込み力を緩衝するようにした油圧式オートテンショナにおいて、
     前記ロッド(14)の外側に、そのロッド(14)の外径面および前記バルブスリーブ(13)の内径面に沿って摺動可能な筒状のプランジャ(28)を嵌合して、そのプランジャ(28)とロッド(14)の摺動面間に第1リーク隙間(31)を設け、かつ、プランジャ(28)とバルブスリーブ(13)の摺動面間に、前記第1リーク隙間(31)より流路抵抗の大きな第2リーク隙間(32)を設け、前記ロッド(14)と前記プランジャ(28)の相互間に、前記圧力室(15)内の圧力上昇に伴うプランジャ(28)の上昇時に前記第1リーク隙間(31)を閉鎖する第2チェックバルブ(35)を設け、前記プランジャ(28)を前記ロッド(14)の下端部に設けられた抜止め用ストッパ(34)に向けて付勢するバルブスプリング(37)を設けたことを特徴とする油圧式オートテンショナ。
  2.  前記第2チェックバルブ(35)が、前記ロッド(14)の前記プランジャ(28)の上端から外部に位置する大径軸部(14a)の下端に球面状のバルブシート(35a)を設け、前記プランジャ(28)の上部内径面に前記バルブシート(35a)に対して着座可能なシート面(35b)を設けた構成からなる請求項1に記載の油圧式オートテンショナ。
  3.  前記バルブシート(35a)および前記プランジャ(28)における前記シート面(35b)のそれぞれを表面硬化処理した請求項2に記載の油圧式オートテンショナ。
  4.  前記表面硬化処理が、ダイヤモンドライクカーボン処理、硬質皮膜のコーティング処理、ショットピーニング、WPC処理の一種からなる請求項3に記載の油圧式オートテンショナ。
  5.  前記バルブスプリング(37)が、コイルばね、皿ばね、波形座金、ウェーブスプリングの一種からなる請求項1に記載の油圧式オートテンショナ。
PCT/JP2016/057183 2015-03-11 2016-03-08 油圧式オートテンショナ WO2016143788A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16761756.2A EP3270004B1 (en) 2015-03-11 2016-03-08 Hydraulic auto-tensioner
CN201680014952.6A CN107532689B (zh) 2015-03-11 2016-03-08 液压式自动张紧器
US15/556,810 US10393239B2 (en) 2015-03-11 2016-03-08 Hydraulic auto tensioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-048141 2015-03-11
JP2015048141A JP6463998B2 (ja) 2015-03-11 2015-03-11 油圧式オートテンショナ

Publications (1)

Publication Number Publication Date
WO2016143788A1 true WO2016143788A1 (ja) 2016-09-15

Family

ID=56880292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057183 WO2016143788A1 (ja) 2015-03-11 2016-03-08 油圧式オートテンショナ

Country Status (5)

Country Link
US (1) US10393239B2 (ja)
EP (1) EP3270004B1 (ja)
JP (1) JP6463998B2 (ja)
CN (1) CN107532689B (ja)
WO (1) WO2016143788A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043491A1 (ja) * 2015-09-09 2017-03-16 Ntn株式会社 油圧式オートテンショナ、及び、油圧式オートテンショナ用プランジャの製造方法
JP2017061961A (ja) * 2015-09-24 2017-03-30 Ntn株式会社 油圧式オートテンショナ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6539564B2 (ja) * 2015-10-26 2019-07-03 Ntn株式会社 油圧式オートテンショナ
FR3062888B1 (fr) * 2017-02-14 2019-06-14 Hutchinson Tendeur de courroie
WO2021250459A1 (en) * 2020-06-09 2021-12-16 Antony, Ashlyn An apparatus for eliminating slack and vibrations in the chain of a chain drive
CN112460128B (zh) * 2020-11-27 2023-02-24 天海航空发动机有限公司 一种液压式防松动螺母及液压式防松动螺母、螺栓紧固装置
CN112460131B (zh) * 2020-11-27 2023-02-24 天海航空发动机有限公司 一种液压式防松动螺栓及液压式防松动螺栓、螺母紧固装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6193623B1 (en) * 1996-08-02 2001-02-27 INA Wälzlager Schaeffler oHG Tensioner with improved damping device
WO2012019801A1 (de) * 2010-08-13 2012-02-16 Schaeffler Technologies Gmbh & Co. Kg Druckbegrenztes hydraulisch gedämpftes spannsystem
JP2013151974A (ja) * 2012-01-25 2013-08-08 Ntn Corp 油圧式オートテンショナ
JP2015031392A (ja) * 2013-08-07 2015-02-16 Ntn株式会社 油圧式オートテンショナ
JP2015040589A (ja) * 2013-08-21 2015-03-02 Ntn株式会社 油圧式オートテンショナ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6767302B2 (en) * 2001-12-14 2004-07-27 Borgwarner Inc. Hydraulic tensioner
JP2003194165A (ja) * 2001-12-28 2003-07-09 Borg Warner Morse Tec Japan Kk 液圧テンショナ
US7070528B2 (en) * 2002-03-28 2006-07-04 Honda Giken Kogyo Kabushiki Kaisha Hydraulic tensioner lifter
KR20040053737A (ko) * 2002-12-16 2004-06-24 보그워너 모스 텍 저팬 가부시끼가이샤 유압 장력 장치
JP4891697B2 (ja) * 2006-08-10 2012-03-07 株式会社オティックス 油圧式オートテンショナ
JP2009191863A (ja) * 2008-02-12 2009-08-27 Ntn Corp 油圧式オートテンショナ
JP5086171B2 (ja) 2008-05-13 2012-11-28 Ntn株式会社 油圧式オートテンショナ
US9423009B2 (en) * 2011-04-21 2016-08-23 Ntn Corporation Hydraulic auto-tensioner
EP2801736B1 (en) 2012-01-06 2017-09-20 NTN Corporation Hydraulic auto tensioner
JP2013204767A (ja) * 2012-03-29 2013-10-07 Ntn Corp 油圧式オートテンショナ
JP2014101955A (ja) * 2012-11-21 2014-06-05 Ntn Corp 補機用油圧式オートテンショナ
JP6182411B2 (ja) * 2013-09-26 2017-08-16 Ntn株式会社 油圧式オートテンショナ
CN106461034B (zh) * 2014-06-20 2019-08-27 利滕斯汽车合伙公司 具有液压锁定特征的张紧器
DE102015215420A1 (de) * 2015-08-13 2017-02-16 Schaeffler Technologies AG & Co. KG Linearspanner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6193623B1 (en) * 1996-08-02 2001-02-27 INA Wälzlager Schaeffler oHG Tensioner with improved damping device
WO2012019801A1 (de) * 2010-08-13 2012-02-16 Schaeffler Technologies Gmbh & Co. Kg Druckbegrenztes hydraulisch gedämpftes spannsystem
JP2013151974A (ja) * 2012-01-25 2013-08-08 Ntn Corp 油圧式オートテンショナ
JP2015031392A (ja) * 2013-08-07 2015-02-16 Ntn株式会社 油圧式オートテンショナ
JP2015040589A (ja) * 2013-08-21 2015-03-02 Ntn株式会社 油圧式オートテンショナ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043491A1 (ja) * 2015-09-09 2017-03-16 Ntn株式会社 油圧式オートテンショナ、及び、油圧式オートテンショナ用プランジャの製造方法
JP2017061961A (ja) * 2015-09-24 2017-03-30 Ntn株式会社 油圧式オートテンショナ

Also Published As

Publication number Publication date
US20180066734A1 (en) 2018-03-08
EP3270004A4 (en) 2018-12-12
EP3270004A1 (en) 2018-01-17
JP2016169755A (ja) 2016-09-23
US10393239B2 (en) 2019-08-27
CN107532689B (zh) 2020-04-17
EP3270004B1 (en) 2020-08-19
CN107532689A (zh) 2018-01-02
JP6463998B2 (ja) 2019-02-06

Similar Documents

Publication Publication Date Title
JP6463998B2 (ja) 油圧式オートテンショナ
JP6182411B2 (ja) 油圧式オートテンショナ
WO2017073368A1 (ja) 油圧式オートテンショナ
JP6257950B2 (ja) 油圧式オートテンショナ
JP6560939B2 (ja) 油圧式オートテンショナ
JP6807682B2 (ja) 油圧式オートテンショナ
JP6263409B2 (ja) 油圧式オートテンショナ
WO2017018311A1 (ja) 油圧式オートテンショナ
WO2017030051A1 (ja) 油圧式オートテンショナ
WO2017043642A1 (ja) 油圧式オートテンショナ
WO2015115555A1 (ja) 油圧式オートテンショナ
JP6153554B2 (ja) 油圧式オートテンショナおよびベルト伝動装置
JP6250343B2 (ja) 油圧式オートテンショナ
WO2017043491A1 (ja) 油圧式オートテンショナ、及び、油圧式オートテンショナ用プランジャの製造方法
JP6599165B2 (ja) 油圧式オートテンショナ
JP6581451B2 (ja) 油圧式オートテンショナ
WO2017043412A1 (ja) 油圧式オートテンショナ
WO2018174069A1 (ja) 油圧式オートテンショナ
JP2017061961A (ja) 油圧式オートテンショナ
JP6234252B2 (ja) 油圧式オートテンショナ
JP2017223371A (ja) 油圧式オートテンショナ
JP2016145621A (ja) 油圧式オートテンショナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016761756

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15556810

Country of ref document: US