WO2016143689A1 - 配電系統の設備計画支援装置および設備計画支援方法 - Google Patents

配電系統の設備計画支援装置および設備計画支援方法 Download PDF

Info

Publication number
WO2016143689A1
WO2016143689A1 PCT/JP2016/056742 JP2016056742W WO2016143689A1 WO 2016143689 A1 WO2016143689 A1 WO 2016143689A1 JP 2016056742 W JP2016056742 W JP 2016056742W WO 2016143689 A1 WO2016143689 A1 WO 2016143689A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
value
distribution system
tap
database
Prior art date
Application number
PCT/JP2016/056742
Other languages
English (en)
French (fr)
Inventor
正親 中谷
渡辺 雅浩
高橋 玲児
昇 柴丸
守 田部
文雄 石川
浩一 八田
功一 小山
Original Assignee
株式会社日立製作所
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所, 中国電力株式会社 filed Critical 株式会社日立製作所
Publication of WO2016143689A1 publication Critical patent/WO2016143689A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load

Definitions

  • the present invention relates to an equipment plan support apparatus and equipment plan support method for a distribution system in which a plurality of voltage regulators each having a transformer with taps are arranged in series, and in particular, to reduce the number of huntings between a plurality of voltage regulators and voltage deviation
  • the present invention relates to a facility planning support apparatus and a facility planning support method for a distribution system capable of providing an optimal operation setting value capable of reducing time.
  • a plurality of voltage regulators with transformers with taps are arranged in series in the distribution system, and each voltage regulator adjusts taps of transformers with taps so that the detected secondary voltage is within the allowable range. Is going. For this reason, when voltage regulators detect voltage deviations at multiple locations in the distribution system and individually start tap control, hunting that represents a series of operations in which each voltage regulator repeats tap adjustment with each other occurs, In addition, the voltage deviation time becomes longer.
  • Patent Document 1 in order to reduce the voltage departure time with respect to the setting of the voltage regulator installed in the distribution system, “The operation time constant of the automatic voltage regulator is dynamically changed according to the state of the system”.
  • Patent Document 1 The method described in Patent Document 1 is intended for a voltage adjustment device that adjusts the tap position when the secondary voltage of the transformer with tap exceeds a predetermined voltage after a predetermined time (operation time constant).
  • a voltage adjustment device that adjusts the tap position when the time integral value of the deviation voltage of the predetermined voltage of the secondary side voltage exceeds a predetermined value (operation set value) is not assumed.
  • how to determine the operation setting value which prevents the hunting of the voltage regulator installed in series in the power distribution system is not specified.
  • the voltage adjustment device that adjusts the tap position when the time integral value of the deviation voltage of the predetermined voltage of the secondary side voltage exceeds a predetermined value (operation setting value) makes the number of huntings equal to or less than the predetermined value. It is an object of the present invention to provide a facility planning support apparatus and facility planning support method for a distribution system that sets operation setting values.
  • the voltage for adjusting the tap of the transformer with a tap when the integrated value of the voltage at which the secondary voltage of the transformer with a deviation deviates from the allowable range exceeds the operation set value.
  • a facility planning support device for a distribution system in which a plurality of regulators are arranged in series and the facility planning support device is configured to determine an operation set value of each voltage regulator for an upstream voltage regulator and a downstream voltage regulator.
  • a settling database that stores multiple combinations, and each voltage regulator stores a number of huntings representing a series of operations that repeats tap adjustment with each other, and operation settling read from the settling database. Based on the combination of values and the corresponding number of huntings, the motion set value settling processing unit calculates the set of motion set values, and the motion set value settling Operation set value processing section was calculated and a display unit for displaying a hunting number.
  • the figure which showed the structural example of the same power distribution system as what was illustrated in FIG. The figure which showed the case where a voltage fell from a distribution substation to the distribution line terminal.
  • FIG. 1 is a diagram showing a schematic configuration of a power distribution system and an equipment plan support apparatus according to the present invention.
  • a plurality of voltage regulators 300 are installed in series in the distribution system 100 connected to the distribution substation 110.
  • the voltage adjustment device 300 and the sensors 160 in each part of the distribution system are connected to the facility plan support device 10 via the communication network 200.
  • the distribution system 100 includes a distribution substation 110, a node (bus) 120, a distribution line 140 connecting them, a load 170 and a generator 150 connected to the node 120, a sensor 160 installed in the distribution line, and a voltage adjustment.
  • the apparatus 300 is configured.
  • the distribution substation 110 includes a distribution substation bus 130 and a sensor 160.
  • the sensor 160 measures the line current, current power factor, and node voltage V at the installation location, and sends information to the facility planning support apparatus 10 via the communication network 200.
  • the equipment plan support device is a device that supports an operation plan of equipment such as the voltage adjustment device 300 installed on the distribution system 100, and more specifically, a plurality of voltage adjustment devices 300 on the distribution system 100.
  • an optimum setting value of tap control in each voltage adjusting device 300 is provided.
  • the obtained optimum setting value may be directly set to each voltage adjusting device 300 and set, or the obtained optimum setting value is displayed on a display screen of a display device, etc. Actual operation may be left to the operator.
  • FIG. 1 shows an example in which an automatic voltage regulator SVR (SVR: Step Voltage Regulator) is adopted.
  • SVR Step Voltage Regulator
  • LRT Load Ratio Control Transformer
  • the case where the voltage regulator 300 is an automatic voltage regulator SVR will be described.
  • the automatic voltage regulator SVR (300) of FIG. 1 includes a transformer 310 composed of a single-turn transformer and a tap changer, a control unit 320 that controls the taps of the transformer, and a communication network 200 from the equipment plan support apparatus 10. It is comprised by the communication part 330 which receives the operation
  • the facility plan support apparatus 10 determines the operation setting value of the control unit 320.
  • FIG. 2 shows a more specific configuration example of the automatic voltage regulator SVR (300).
  • the transformer 310 of the automatic voltage regulator SVR is configured by connecting a tap changer 302 and a single-turn transformer 301 between a primary side distribution line and a secondary side distribution line. .
  • the voltage and current of the secondary distribution line are detected for the tap operation in the control unit 320 that controls the tap of the transformer.
  • the voltage detection transformer PT is connected in parallel to the secondary side distribution line, and the output side wiring of the voltage detection transformer PT is connected to the measurement unit 340 in the control unit 320 and inputted.
  • the secondary side wiring of the current detection transformer CT for the secondary side distribution line is connected to the measuring unit 340 in the control unit 320 and inputted.
  • the control unit 320 includes a measurement unit 340, a line voltage drop compensation circuit (LDC: Line Drop Compensator) 350, and an automatic voltage adjustment unit 360.
  • the current and voltage on the secondary side of the distribution line obtained by the measurement unit 340 generate a voltage at the virtual point of the distribution system (hereinafter simply referred to as the secondary side voltage VL ) in the line voltage drop compensation circuit (LDC) 350.
  • the secondary side voltage VL obtained by the line voltage drop compensation circuit (LDC) 350 and the operation setting value (reference voltage) of the control unit 320 obtained through the communication network 200 are obtained.
  • VS etc. is used to give a control command signal composed of a step-up / step-down command or the like to the tap changer 302, and the tap changer 302 performs tap control by the tap changer 302.
  • the automatic voltage adjustment unit 360 when power is sent from the primary distribution line to the secondary distribution line, when the current secondary voltage V L satisfies a certain condition with respect to the reference voltage V S A voltage control function for performing voltage control by outputting a tap switching command to the tap switcher 302 is provided.
  • Various settings necessary for the voltage control function here (operation set value, dead band, reference voltage, etc.) are received by the communication device 330 from the facility planning support device 10 via the communication network 200, and are sent to the automatic voltage adjustment unit 360. Sent.
  • FIG. 3 is a diagram showing an example of time transition of the secondary side voltage V L and the reference voltage V S , where time is plotted on the horizontal axis and voltage (secondary voltage V L and reference voltage V S ) is plotted on the vertical axis. Show. This example shows an example in which the variable secondary voltage V L generally increases with respect to a constant reference voltage V S. As a result, the difference voltage between the two changes from the initial negative voltage to the positive voltage.
  • the symbol m attached to the secondary side voltage VL means the order of the sampled secondary side voltage in the case of performing digital processing.
  • FIG. 4 is a diagram showing an example of the time transition of the differential voltage obtained when the voltage VL shown in FIG. 3 varies with time.
  • the horizontal axis represents time and the vertical axis represents voltage deviation (secondary voltage).
  • the difference between V L and the reference voltage V S is shown.
  • the ratio of the differential voltage to the reference voltage V S that is, the voltage deviation V Hm exceeds the dead zone K
  • the excess difference ⁇ V m is integrated over time, and the integrated value exceeds the operation set value.
  • Output control commands That is, it is an evaluation target whether or not the voltage deviation V Hm exceeds the dead zone.
  • the tap Switcher 302 switches taps based on the command.
  • the dead zone is set to K% on the step-down side (+) and the step-up side ( ⁇ ).
  • FIG. 5 shows an example of a processing flow when the above-described transformer tap control of the automatic voltage regulator SVR is realized by digital processing by a computer.
  • the secondary voltage VLm is read into the automatic voltage adjustment unit 360.
  • the secondary side voltage V Lm means a value at a predetermined time when the secondary side voltage is sampled and input at a predetermined cycle.
  • the automatic voltage adjustment unit 360 obtains a voltage deviation difference ⁇ V m .
  • the method of obtaining the voltage deviation V Hm that is an element for obtaining ⁇ V m is based on the following equation (1).
  • VS is a reference voltage shown in FIG. [Equation 1]
  • V Hm (V Lm ⁇ Vs) / Vs * 100 (1)
  • ⁇ V m is obtained by the following equation (2) by subtracting the dead band setting value K from the voltage deviation.
  • the numerical value to be substituted for K is determined whether V Hm is positive or negative, and if positive, a positive value is substituted for K, and if negative, a negative value is substituted for K as a set value.
  • the automatic voltage adjustment unit 360 performs integration on the boost side. Adding this difference [Delta] V m in S Rm-1 is the integral value of the [Delta] V m up to the previous time, we obtain an integrated value S R at present. In the case of boosting, since the secondary side voltage is lower than the reference voltage, V Hm becomes negative. Therefore, addition processing is performed by multiplying by minus.
  • Automatic voltage adjustment unit 360 in the process step S406 rewrites the S R in m-th integral value S Rm.
  • the automatic voltage adjustment unit 360 determines whether or not the integral value SRm exceeds the operation set value ⁇ . If it exceeds, a command for switching to the step-up side is output to the tap changer 302, and the operation proceeds to step-down integration. Also, if the integral value does not exceed the operation set value ⁇ , the process proceeds to step-down integration.
  • the series of processing from the above processing steps S403 to S408 shows processing for boosting control by tap switching.
  • the subsequent series of processing from step S409 to S413 shows processing when the step-down control is similarly performed by tap switching.
  • processing step S409 the automatic voltage adjustment unit 360 adds the current difference ⁇ V m to S Lm ⁇ 1 , which is the integrated value of the difference ⁇ V m up to the previous time, as the step-down integration, and obtains the current integration value SL .
  • the same procedure as the step-up side integration is performed to determine whether or not the integral value S Lm exceeds the operation set value ⁇ . Outputs a command to switch to the step-down step.
  • the specific configuration of the equipment plan support apparatus 10 will be described next.
  • a display device 11 an input unit 12 such as a keyboard and a mouse, a computer (CPU) 13, a communication unit 14, a RAM 15, and a memory M are connected to a bus line 30.
  • seven databases DB are formed in the memory M.
  • the database DB is a database DB1 of measurement data D1, a database DB2 of equipment data D2, a database DB3 of tidal current calculation result data D3, and tap data D4.
  • Database DB4 voltage deviation time calculation data D5 database DB5, settling data D6 database DB6, and program data D7 database DB7.
  • the computer (CPU) 13 executes a calculation program to instruct image data to be displayed on the display device 11, search for data in various databases DB, and the like.
  • the RAM 15 is a memory for temporarily storing calculation result data such as display image data, power flow calculation result data D3, tap data D4, voltage deviation time calculation data D5, and settling data D6.
  • the CPU 13 generates necessary image data. Display on the display device 11 (for example, a display screen).
  • the storage contents of the seven databases DB formed in the memory in the facility plan support apparatus 10 are as follows.
  • the database DB1 of the measurement data D1 stores a table in which information such as line current, power factor, and node voltage V measured by the sensor 160 in the distribution system 100 is associated with the measurement time (time section). An example is shown in FIG.
  • the voltage, current, and power factor in units of time are recorded for each sensor for the sensors 160a, 160b, and 160c installed in each part of the distribution system. These data D1 are transmitted via the communication network 200 and the communication means 14 of the facility plan support apparatus 10.
  • the data measured by the sensor 160a installed in the distribution substation 110 is the voltage 6800 (V), the current 100 (A), and the power factor 98 (%) at the time 00:00:00. ), Voltage 6750 (V), current 150 (A), power factor 97 (%) at time 00:00:01, voltage 6550 (V), current 70 (A), power factor 98 at time 00:00:02
  • Similar sensor information is prepared for the sensor 160b installed downstream of the automatic voltage regulator 300a and the sensor 160c installed downstream of the automatic voltage regulator 300b in the same manner as the sensor 160a.
  • An example of the table is shown in FIG.
  • System configuration data representing the load / power generation amount and the connection status of lines and nodes of the system is stored.
  • resistance and reactance values as line constants are stored for each of the branches 140a and 140b.
  • the impedance of the line (branch) 140a between the distribution substation 11 and the automatic voltage regulator 300a is set such that the resistance R is 0.05 ( ⁇ ) and the reactance X is 0.10 ( ⁇ ).
  • the impedance of the line (branch) 140b between the automatic voltage regulator 300a and the automatic voltage regulator 300b is set such that the resistance R is 0.06 ( ⁇ ) and the reactance X is 0.120 ( ⁇ ).
  • the database DB2 of the equipment data D2 stores a table in which various setting values (operation setting value, dead band, reference voltage) of the automatic voltage regulator SVR are associated with set values, set ranges, set increments and SVR IDs. Has been.
  • An example of the table is shown in FIG. In the example of FIG. 12, an operation set value (% sec), a dead zone, and a reference voltage are stored for each automatic voltage regulator SVR (300a, 300b).
  • the operation setting value (% sec) includes information on the establishment range and the increment.
  • the established range is 30 to 90, the step is 30, the dead zone is 1.0 (%), the reference voltage is 6700 (V), and the automatic voltage regulator Regarding the SVR 300b, the established range and the increment are the same numerical value, the dead zone is 1.0 (%), and the reference voltage is 6600 (V).
  • the calculation time (time section) and the node number are associated with the calculation result information such as the current, power factor, and node voltage of the line as the result of the tidal current calculation by the program data D7.
  • the 12 shows the estimated values of voltage, current, and power factor in time units for the node 120b.
  • the detection information of the sensor 160b is directly used as the information of the node 120b.
  • the value of the node 120c is calculated from the detection information of the sensor 160b and the measurement information of another sensor (for example, 160c), and the result of the power flow calculation by the program data D7. Is stored as an estimated value.
  • An example of the table is shown in FIG. In FIG. 14, the command time, the step-up / step-down command value, and the tap number are recorded for each automatic voltage regulator SVR (300a, 300b).
  • the table of the automatic voltage regulator SVR 300a includes the step-up / step-down command value at time 09:50:00 and the tap number 6 as the step-up / step-down command value at time 12:00:30.
  • the step-down / tap number 5 is recorded.
  • the step-up / tap number 7 is recorded as the step-up / step-down command value at time 11:30.
  • the automatic voltage regulator SVR300b first boosts to tap number 6, then SVR300a boosts to tap number 7, and then the history of SVR300b stepping down to tap number 5 remains. .
  • a table in which the upper and lower limit values of the voltage allowable region in each node 130 are associated with the node number is stored.
  • An example of the table is shown in FIG. In FIG. 15, voltage allowable regions (upper limit voltage and lower limit voltage) in each node 130 (130a, 130b, 130c, 130d, 130e) are stored.
  • the upper limit voltage and lower limit voltage of the nodes 130a and 130b are 6900 (V) and 6600 (V)
  • the upper limit voltage and lower limit voltage of the node 130c are 6800 (V) and 6500 (V).
  • the upper limit voltage and lower limit voltage of the nodes 130d and 130e are 6700 (V) and 6400 (V).
  • the upper limit voltage and the lower limit voltage of the node 130 are set to lower values as the distance from the substation increases.
  • the hunting times, voltage deviation times, and the sending side (first) SVR 300a and the terminal side (second) SVR 300b, which are the results of the hunting frequency calculation and the voltage deviation time calculation based on the program data D7, are stored.
  • a table in which each operation setting value is associated is stored. An example of the table is shown in FIG. In FIG. 16, in cases 1, 2, and 3, when the operation setting value of the sending side SVR is fixed to 30 (% sec) and the operation setting value of the terminal side SVR is variably set to 30, 60, 90 (% sec) The number of hunting times and voltage deviation time are stored.
  • the operation setting value of the sending side SVR is fixed to 60 (% sec)
  • the operation setting value of the sending side SVR is fixed to 90 (% sec).
  • the hunting count and voltage deviation time when the operation setting value of the terminal side SVR is variably set to 30, 60, 90 (% sec) are stored.
  • the hunting times and voltage deviation times when the terminal side SVR operation setting values are 30, 60, and 90 (% sec) are 10,000, 100, 1000, and 200, respectively. , 100 and 300.
  • the number of times of hunting and the voltage deviation time are 5000 and 500, 500 and 1000, and 50 and 1500, respectively.
  • cases 7, 8, and 9 when the operation setting value of the terminal side SVR is 30, 60, and 90 (% sec), the number of times of hunting and the voltage deviation time are 2500 and 1000, 250 and 2000, and 25 and 3000, respectively. .
  • the database DB6 of the settling data D6 stores a table in which the hunting times used for setting the operation set value of the program data D7, the respective weighting factors of the voltage deviation time, and the upper limit value are stored.
  • An example of the table is shown in FIG. According to FIG. 17, the weighting coefficient and the upper limit value are stored for the hunting count and the voltage deviation time, respectively.
  • the weighting coefficient is set to 0.3 and the upper limit value is set to 3000 for the number of times of hunting, and the weighting coefficient is set to 0.7 and the upper limit value is set to 1000 for the voltage deviation time.
  • the database DB7 of the program data D7 includes a power flow calculation program Prg1, a tap command value calculation program Prg2, a hunting times calculation program Prg3, a voltage deviation time calculation program Prg4, an operation set value settling program Prg5, and a display creation program Prg6. Store. These programs are read out by the CPU 13 as necessary and are calculated.
  • the facility planning support apparatus estimates the hunting frequency and voltage deviation time for each combination of operation setting values of the sending side (first) SVR 300a and the terminal side (second) SVR 300b installed in series, and uses them to set the operation setting value.
  • the settling program Prg5 is executed to determine an operation setting value that minimizes the sum of values multiplied by the respective weighting factors.
  • the hunting frequency and voltage deviation time are obtained as follows.
  • the tidal current calculation program Prg1 and the tap command value calculation program Prg2 are executed using the measurement data D1 of the plurality of time sections, and the tap number and the step-up / step-down command of the node voltage and automatic voltage regulator SVR are calculated.
  • the node voltages of the cross sections obtained in this manner are stored in the database DB3 (FIG. 13) of the power flow calculation result data D3.
  • the tap number and the step-up / step-down command of the automatic voltage regulator SVR having a plurality of time sections are stored in the database DB4 (FIG. 14) of the tap data D4.
  • the number of huntings is calculated by executing the hunting number calculation program Prg3 using the tap number of the automatic voltage regulator SVR having a plurality of time sections of the tap data D4 and the step-up / down command.
  • the number of huntings is stored in the database DB6 (FIG. 16) of the settling data D6.
  • the voltage deviation time is calculated by executing the voltage deviation time calculation program Prg4 using the node voltage of the power flow calculation result data D3.
  • the voltage deviation time is stored in the database DB6 (FIG. 16) of the settling data D6.
  • FIG. 6 is a flowchart showing the processing of the power flow calculation program Prg1 and the tap command calculation program Prg2 among the programs stored in the database DB7 of the program data D7.
  • the processing steps S501 to S506 are related to the power flow calculation program Prg1
  • the processing steps S507 to S512 are related to the tap command calculation program Prg2.
  • this process needs to be calculated in an order such that the time of the measurement data D1 is in time series.
  • Information on the branch 140 is read into the RAM 15.
  • the node voltage, load 140, and power generation amount 150 of the substation (swing node) necessary for power flow calculation are read from the database DB1 of the measurement data D1 to the RAM 15.
  • the node voltage of the substation is the voltage measurement value of the sensor 160a (first) with reference to the database DB1.
  • the load 140 is a value obtained by subtracting the current of the sensor 160b (second) from the current of the sensor 160a (first).
  • process step S503 the operation set value, dead zone, and reference voltage necessary for the tap command calculation are read from the database DB2 of the equipment data D2 to the RAM 15.
  • processing step S504 the tap number of the newest time necessary for the tidal current calculation and the tap command calculation is read from the database DB4 of the tap data D4 to the RAM 15.
  • processing step S505 power flow calculation is performed using the data set in processing steps S501, S502, and S504, the voltage, line current, and power factor of each node are calculated, and the calculation results are stored in the RAM 15.
  • various tidal current calculation methods are known, an appropriate method can be adopted.
  • the processing so far corresponds to the power flow calculation program Prg1.
  • processing step S506 the voltage, line current, power factor of each node obtained in processing step S505, and the time of measurement data used for calculation are output.
  • the output is stored in the database DB3 as the tidal current calculation result data D3 in the format shown in FIG.
  • the above process is the process in the power flow calculation program Prg1, and then the process proceeds to the process of the tap command value calculation program Prg2.
  • process step S507 the data set in process step S503 and the node voltage obtained in process step S505 are obtained.
  • the tap command value calculation process is the process flow of FIG.
  • processing steps S508 and S510 the presence / absence of a boost command and the presence / absence of a step-down command are determined.
  • 1 is added to the tap number when there is a boost command, and 1 is subtracted from the tap number when there is a step-down command. Every time there is a boost command, the value is incremented, and every time there is a step-down command, it is subtracted.
  • processing step S512 the tap number, the step-up / step-down command, and the time of the measurement data used for the calculation are output.
  • the output is stored in the database DB4 as tap data D4 as shown in FIG.
  • FIG. 7 is a flowchart showing the processing of the hunting count calculation program Prg3 in the database DB7 of the program data D7. This process is executed when tap numbers of cross sections for a plurality of hours are accumulated in the tap data D4.
  • the multi-time section is, for example, one month or one year, and is processing using the experience value stored during this time.
  • FIG. 20A shows a configuration example of the same distribution system as that illustrated in FIG.
  • a power distribution system in which two automatic voltage regulators SVR (300) (300a, 300b) are installed in series is shown.
  • 20 (b) to 20 (e) are graphs showing a time-series voltage change and a tap operation example of the automatic voltage regulator SVR (300) in the power distribution system of FIG. 20 (a).
  • the horizontal axis represents the distribution line length and the vertical axis represents the node voltage. The node voltage is described in comparison with the dead zone, and according to this, the measured voltage at each part of the distribution line is shown.
  • FIG. 20B shows a situation where the voltage decreases from the distribution substation 110 to the end of the distribution line.
  • the node voltage in the vicinity of the node 120b is lower than the lower limit of the dead zone. Therefore, the line on the terminal side of the node 120b is in a state where voltage improvement (boost) is necessary.
  • boost voltage improvement
  • FIG. 20 (c) shows that the terminal SVR 300b that has detected the state of FIG. 20 (b) (the node voltage has dropped below the lower limit of the dead zone) switches the tap before the upstream SVR 300a, and the secondary side of the SVR 300b ( A state in which the voltage on the terminal side from the node 120d) is boosted is shown.
  • the voltage is maintained at a voltage equal to or higher than the lower limit of the dead zone on the upstream side of the node 120b and on the terminal side of the node 120d, but the voltage is not improved (boosted) between the node 120b and the node 120d.
  • the upstream SVR 300a that has detected the state of FIG. 20C (the node voltage between the node 120b and the node 120d is equal to or lower than the lower limit of the dead band) is the SVR in the upstream distribution substation 110.
  • the state is shown in which the tap is switched earlier to increase the voltage on the terminal side from the secondary side (node 120b) of the SVR 300a.
  • the node voltage can be maintained above the lower limit of the dead zone over the entire distribution line.
  • the SVR 300a of the upstream distribution substation 110 switches the tap later than the SVR 300b, and boosts the voltage on the terminal side from the secondary side (node 120b) of the SVR 300a.
  • the voltage control of the SVR 300a and the SVR 300b interferes, and the voltage on the terminal side from the secondary side (node 120d) of the SVR 300b may deviate from the upper limit of the dead zone.
  • the voltage of the node 120d shows a state where it deviates from the upper limit of the dead zone. For this reason, the node 120d newly needs to return the tap to the initial position and lower the voltage.
  • FIG. 20E shows the state shown in FIG. 20D (the voltage at the node 120d deviates from the upper limit of the dead band), and the SVR 300b switches the tap to the terminal side from the secondary side (node 120d) of the SVR 300d. This shows a state in which the voltage of is stepped down.
  • FIGS. 20 (b) to 20 (e) show examples in which the terminal voltage is equal to or lower than the lower limit of the dead band, but it is also possible to assume a case where the upper limit of the dead band is similarly exceeded. Assuming that the upper limit is exceeded in FIGS. 20B to 20E, when the voltage deviates from the dead band upper limit in FIG. 20B, the SVR 300b is stepped down in FIG. It can be easily understood that the tap operation is performed such that the SVR 300a is stepped down at 20 (d) and the SVR 300b is stepped up at FIG. 20 (e).
  • the time constant is set so that each voltage regulator 300 corresponds to the voltage drop (voltage rise). For this reason, depending on the correspondence between the upstream side and the downstream side, hunting of the tap operation may occur.
  • the number of times of hunting is calculated using the pattern of tap operation during hunting as shown in FIG. Specific processing will be described with reference to FIG. FIG. 7 shows the specific processing contents of the hunting frequency calculation program Prg3.
  • the time T RN-1 and T RN of the two time sections of the step-up / step-down command of the terminal side (second) SVR are read.
  • the data is read from the database DB4 of the tap data D4 to the RAM 15.
  • the boost command time is the time when the tap is changed to the tap number 6 and TRN -1 is 9:50 sec and stepping down instruction time
  • T RN is read as 12 00 30 seconds as the time for changing the tap to tap number 6.
  • the transmitting side SVR with reference to SVRa table is (first), as boost command time changing the taps to the tap number 7, T RN-1 is present is 30 minutes 00 seconds at 11 ing.
  • T RN-1 determines whether boost command.
  • T RN-1 means the time cross section of FIG.
  • step S605 the tap operation, the operation pattern when deviating from the lower limit voltage of the dead band, i.e., T RN-1 is boost command, T S is boost command, if T RN is as a stepping down instruction
  • step S609 1 is added to the number of huntings.
  • the number of times of hunting is stored in the database DB6 of the settling data D6. For example, it is described in the table of FIG.
  • step S609 1 is added to the number of huntings.
  • the number of times of hunting is stored in the database DB6 of the settling data D6. For example, it is described in the table of FIG.
  • processing steps S601 to S609 it is possible to grasp the hunting frequency (hunting frequency) when each operation setting is set.
  • FIG. 8 is a flowchart showing the processing of the voltage deviation time calculation program Prg4 stored in the database DB7 of the program data D7. This process may be performed every time the tidal current calculation result data D3 is updated, or may be performed when a tidal current calculation result of a plurality of time sections is accumulated.
  • the multiple time section is, for example, one month or one year.
  • step S701 in FIG. 8 the node voltage Vm is read.
  • Vm the voltage shown in FIG.
  • the upper and lower limit values Vmax and Vmin of the voltage allowable region of each node are read.
  • it is read from the voltage deviation calculation data D5.
  • FIG. 9 is a flowchart showing the processing of the operation set value settling program Prg5 stored in the database DB7 of the program data D7. This process may be performed every time the settling data D6 is updated, or may be performed every predetermined period. The predetermined period is, for example, one month or one year.
  • step S801 in FIG. 9 the condition for setting the operation set value is read.
  • processing step S802 the number of times of hunting and voltage deviation time for each operation set value are read.
  • the table shown in FIG. 16 is read from the settling data D6.
  • the objective function shown in the following mathematical expression (3) is calculated.
  • the objective function is a sum F of values obtained by multiplying the weighting factors W H and W VE by the number of times of hunting NH and the voltage deviation time T VE .
  • the values obtained in FIG. 16 are used for the number of huntings NH and the voltage deviation time TVE .
  • F W H * N H + W VE * T VE (3)
  • a solution that minimizes the objective function, an operation setting value, the number of times of hunting, and a voltage deviation time are obtained under the constraint conditions shown in the following mathematical expressions (4) and (5).
  • Constraint conditions were set as the objective function upper limit N Hmax of each hunting number N H and the voltage deviation time T VE, does not exceed T Vemax.
  • the upper limit values N Hmax and T VEmax those set in FIG. 17 are used.
  • N H ⁇ N H max (4)
  • Equation 5 T VE ⁇ T VEmax (5)
  • process step S805 when the solution of process step S804 exists, the operation setting value at that time is output.
  • the operation setting value is transmitted to the SVR 300 via the communication unit 12 and the communication network 200 of the facility plan support apparatus 10.
  • processing step S806 when there is no solution in processing step S805, a change command for setting conditions (weighting coefficient, number of times of hunting and upper limit value of voltage deviation time) is displayed on the display device 11 of the facility planning support apparatus 10.
  • the user changes the settling condition of the settling data 26 using the input means 12.
  • FIGS. 18 and 19 are explanatory diagrams showing examples of display of the setting result of the operation setting value on the display unit 11. Here, display on a display screen is considered.
  • the horizontal axis represents a case (1 to 9) of combinations of operation setting values shown in FIG. 16.
  • the vertical axis represents the value of the objective function in equation (3).
  • the weighting factor W H 0.3 of the number of times of hunting N H (10000), the voltage deviation time T VE (100), and the number of times of hunting N H
  • the value of the objective function obtained from the weight coefficient W VE (0.7) of the voltage deviation time T VE is 3000.
  • hunting frequency N H (1000), voltage deviation time T VE (200), weighting factor W H (0.3) for hunting frequency N H , weighting factor W VE for voltage deviation time T VE (0 The value of the objective function obtained from .7) is 510.
  • hunting frequency N H (100), voltage deviation time T VE (300), weighting factor W H (0.3) for hunting frequency N H , weighting factor W VE for voltage deviation time T VE (0.7)
  • the value of the objective function obtained from is 240.
  • the horizontal axis represents the number of huntings shown in FIG.
  • the vertical axis represents the voltage deviation time shown in FIG.
  • Two broken lines indicate the upper limit of the number of times of hunting and the voltage deviation time shown in FIG.
  • the plot of case 3 highlighted by a broken-line circle is the solution obtained in process step S804 of FIG.
  • the operation setting values of the two upstream and downstream voltage regulators 300 are set to values that minimize the number of times of hunting and the voltage deviation time. According to the operation of the distribution system reflecting this result, the voltage ends within the allowable range with a smaller number of times of hunting. For example, in the conventional case, the voltage converges within the allowable range by the series of tap operations shown in FIG. 20, but in the case of the present invention, the number of tap operations can be reduced, so that FIG. 20 (b) to FIG. c) It can be expected to directly shift to FIG. 20 (e) without going through the process of FIG. 20 (d).
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • SSD Solid State Drive
  • 100 Distribution system
  • 110 Distribution substation
  • 120 Node
  • 130 Substation bus
  • 140 Distribution line
  • 150 Generator
  • 160 Sensor
  • 170 Load
  • 200 Communication network
  • 300 Voltage regulator ( SVR)
  • 310 Transformer composed of a single volume transformer and a tap changer
  • 320 Control unit
  • 330 Communication unit
  • 10 Equipment planning support device
  • 11 Display device
  • 12 Input means
  • 13 CPU
  • 14 communication means
  • DB1 measurement database
  • DB2 equipment database
  • DB3 tidal current calculation result database
  • DB4 tap database
  • DB5 voltage deviation time calculation database
  • DB6 settling database
  • DB7 program database

Abstract

 二次側電圧の所定電圧の逸脱電圧の時間積分値が所定値(動作設定値)を超えるときにタップ位置を調整する電圧調整装置について、ハンチング回数を所定値以下にする動作設定値を整定する配電系統の設備計画支援装置および設備計画支援方法を提供する。タップ付変圧器の二次側電圧が許容領域から逸脱した電圧の積分値が動作設定値を超えたことをもってタップ付変圧器のタップを調整する電圧調整装置が複数直列配置されている配電系統の設備計画支援装置であって、設備計画支援装置は、上流側の電圧調整装置と下流側の電圧調整装置について、各電圧調整装置の動作整定値の組み合わせを複数備え、かつ各動作整定値の組み合わせのときに各電圧調整器が互いにタップの調整を繰り返す一連の動作を表すハンチングの回数を記憶している整定データベースと、整定データベースから読み出した動作整定値の組み合わせと、対応するハンチング回数に基づいて、動作設定値の組み合わせを算出する動作設定値整定処理部と、動作設定値整定処理部が算出した動作設定値およびハンチング回数を表示する表示部を備える。

Description

配電系統の設備計画支援装置および設備計画支援方法
 本発明は、タップ付変圧器を備えた電圧調整装置が複数直列に配置された配電系統の設備計画支援装置および設備計画支援方法に係り、特に複数の電圧調整装置間におけるハンチング回数を減らし電圧逸脱時間を少なくすることができる最適な動作設定値を与えることができる配電系統の設備計画支援装置および設備計画支援方法に関する。
 配電系統にはタップ付変圧器を備えた電圧調整装置が複数直列に配置されており、各電圧調整装置ではその検知する二次側電圧を許容領域内にすべくタップ付変圧器のタップ調整を行っている。このため、配電系統の複数個所で電圧調整装置が電圧逸脱を検知して、個々にタップ制御を開始しだすと、各電圧調整器が互いにタップの調整を繰り返す一連の動作を表すハンチングが発生し、かつ電圧逸脱時間が長くなることになる。
 このため、ハンチングを減らし電圧逸脱時間を短くできる配電系統の運用手法が提案されており、例えば特許文献1では、配電系統に設置された電圧調整装置の整定に関して、電圧逸脱時間を低減するため、「系統の状態に応じて、電圧自動調整装置の動作時定数を動的に変更する」としている。
特開2012-182897号公報
 特許文献1に記載の方法では、タップ付変圧器の二次側電圧が所定時間(動作時定数)を経過して所定電圧を超えるときにタップ位置を調整する電圧調整装置を対象とする。二次側電圧の所定電圧の逸脱電圧の時間積分値が所定値(動作設定値)を超えるときにタップ位置を調整する電圧調整装置を想定していない。また、特許文献1に記載の方法では、配電系統に直列に設置された電圧調整装置のハンチングを防止する動作設定値の決め方が明記されていない。
 そこで、本発明では、二次側電圧の所定電圧の逸脱電圧の時間積分値が所定値(動作設定値)を超えるときにタップ位置を調整する電圧調整装置について、ハンチング回数を所定値以下にする動作設定値を整定する配電系統の設備計画支援装置および設備計画支援方法を提供することを目的とする。
 上記課題を解決するために、本発明においてはタップ付変圧器の二次側電圧が許容領域から逸脱した電圧の積分値が動作設定値を超えたことをもってタップ付変圧器のタップを調整する電圧調整装置が複数直列配置されている配電系統の設備計画支援装置であって、設備計画支援装置は、上流側の電圧調整装置と下流側の電圧調整装置について、各電圧調整装置の動作整定値の組み合わせを複数備え、かつ各動作整定値の組み合わせのときに各電圧調整器が互いにタップの調整を繰り返す一連の動作を表すハンチングの回数を記憶している整定データベースと、整定データベースから読み出した動作整定値の組み合わせと、対応するハンチング回数に基づいて、動作設定値の組み合わせを算出する動作設定値整定処理部と、動作設定値整定処理部が算出した動作設定値およびハンチング回数を表示する表示部を備える。
 本発明で求めた動作設定値を用いることで、電圧調整器のハンチングを防止できる。上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
配電系統と設備計画支援装置の構成を示す図。 自動電圧調整器の具体的な構成例を示す図。 二次側電圧VLと基準電圧VSの時間推移の例を示した図。 電圧の時間変動の際に得られた差電圧ΔVmの時間推移の例を示した図。 自動電圧調整器SVRの変圧器タップ制御を計算機によるディジタル処理にて実現するときの処理フローの一例を示す図。 潮流計算プログラムPrg1とタップ指令計算プログラムPrg2のフローチャート。 ハンチング回数計算プログラムPrg3のフローチャート。 電圧逸脱時間計算プログラムPrg4のフローチャート。 動作設定値整定プログラムPrg5のフローチャート。 計測データD1のデータベースDB1に格納されたセンサ毎の情報を示す図。 設備データD2のデータベースDB2に格納されたブランチ毎の情報を示す図。 設備データD2のデータベースDB2に格納されたSVR毎の情報を示す図。 潮流計算結果データD3のデータベースDB3に格納されたノード毎の情報を示す図。 タップデータD4のデータベースDB4に格納されSVR毎の情報を示す図。 電圧逸脱時間計算データD5のデータベースDB5に格納されたノード毎の情報を示す図。 整定データD6のデータベースDB6に格納されたハンチング回数および電圧逸脱時間の情報を示す図。 整定データD6のデータベースDB6に格納されたハンチング回数および電圧逸脱時間の重み係数および上限値情報を示す図。 目的関数値の表示画面の例を示す図。 電圧逸脱時間とハンチング回数の表示画面の例を示す図。 図1に例示したものと同じ配電系統の構成例を示した図。 配電変電所から配電線末端にかけて電圧が低下していく場合を示した図。 末端のSVR300bにより末端側の電圧を昇圧させた状態を示した図。 上流のSVR300aにより末端側の電圧を昇圧させた状態を示した図。 末端のSVR300bにより末端側の電圧を降圧した状態を示した図。
 以下、本発明の実施例について図面を用いて説明する。
 図1は、本発明に係る配電系統と設備計画支援装置の概略構成を示す図である。この構成によれば、配電変電所110に接続された配電系統100には電圧調整装置300が複数台直列に設置されている。また電圧調整装置300や配電系統各所のセンサ160は、通信ネットワーク200を介して設備計画支援装置10に接続されている。
 このうち配電系統100は、配電変電所110とノード(母線)120およびそれらを接続する配電線路140、ノード120に接続される負荷170や発電機150、配電線路に設置されるセンサ160、電圧調整装置300などで構成されている。配電変電所110には配電変電所母線130や、センサ160を含んでいる。センサ160は、その設置個所における線路の電流、電流力率、ノード電圧Vを測定し、通信ネットワーク200を介して設備計画支援装置10に情報を送る。
 ここで設備計画支援装置とは、配電系統100上に設置された電圧調整装置300などの設備の運用計画を支援する装置であり、さらに具体的には配電系統100上の複数の電圧調整装置300における頻繁なタップ制御とハンチングを阻止する計画として、各電圧調整装置300におけるタップ制御の最適な設定値を提供するものである。この場合における支援の形態としては、求めた最適な設定値を直接各電圧調整装置300に与えて設定してもよく、また求めた最適な設定値を表示装置のディスプレイ画面などに表示して、実運用は運転員に委ねるといったことでもよい。
 電圧調整装置300について、図1では自動電圧調整器SVR(SVR:Step Voltage Regulator)を採用した例を示しているが、これは負荷時タップ切換変圧器LRT(LRT:Load Ratio Control Transformer)としてもよい。また、タップ切換分岐リアクトルやタップ切換並列コンデンサのように、リアクトルやコンデンサの接続数をタップ切換え器で調整する装置としてもよい。本発明では、これらを総称して電圧調整装置300としている。以下の説明では、電圧調整装置300が自動電圧調整器SVRである場合について説明する。
 図1の自動電圧調整器SVR(300)は、単巻変圧器とタップチェンジャで構成される変圧器310と、変圧器のタップを制御する制御部320と、設備計画支援装置10から通信ネットワーク200を介して制御部320の動作設定値を受信する通信部330で構成されている。本発明の実施例では、制御部320の動作設定値を設備計画支援装置10が決定する。
 図2には、自動電圧調整器SVR(300)のさらに具体的な構成例を示している。自動電圧調整器SVRの変圧器310は、図2に示すように、一次側配電線と二次側配電線との間にタップ切換器302、単巻変圧器301を接続して構成されている。
 また変圧器のタップを制御する制御部320におけるタップ操作のために二次側配電線の電圧、電流を検出している。変圧器二次側電圧について、二次側配電線に電圧検出用トランスPTを並列接続し、電圧検出用トランスPTの出力側配線を制御部320内の計測部340に接続して入力している。二次側電流について、二次側配電線に対する電流検出用トランスCTの二次側配線を制御部320内の計測部340に接続して入力している。
 制御部320は、計測部340、線路電圧降下補償回路(LDC:Line Drop Compensator)350、自動電圧調整部360を備えている。計測部340に得られた配電線二次側の電流、電圧は、線路電圧降下補償回路(LDC)350において配電系統仮想点における電圧(以下単に二次側電圧Vという)を生成する。制御部320内の自動電圧調整部360では、線路電圧降下補償回路(LDC)350で求めた二次側電圧Vと、通信ネットワーク200を介して得た制御部320の動作設定値(基準電圧VSなど)を用いて、昇圧・降圧指令等からなる制御指令信号をタップ切換え器302に与えてタップ切換器302による単巻変圧器301のタップ制御を実行する。
 自動電圧調整部360は、一次側配電線から二次側配電線に電力が送られている場合に、現在の二次側電圧Vが基準電圧Vに対して一定条件を満たしたときにタップの切り換え指令をタップ切換え器302に出力することで電圧制御を行う電圧制御機能を備えている。ここでの電圧制御機能に必要な各種の設定(動作設定値、不感帯、基準電圧など)は、設備計画支援装置10から通信ネットワーク200を介して通信装置330で受信し、自動電圧調整部360に送られる。
 自動電圧調整部360における処理は、電圧偏差の積分値制御によるタップ操作判断であり、この積分値制御は例えば以下の考え方により実行される。図3は、二次側電圧Vと基準電圧Vの時間推移の例を示した図であり、横軸に時間、縦軸に電圧(二次側電圧Vと基準電圧V)を示している。この例では、一般には一定値の基準電圧Vに対して、変動する二次側電圧Vが増加していった例を示す。この結果、両者の差電圧が当初の負電圧から正電圧に変化したものとする。なお図3において二次側電圧Vに付した記号mは、ディジタル処理を行う場合におけるサンプリングした二次側電圧の順番を意味する。
 図4は、図3に示した電圧Vの時間変動の際に得られた差電圧の時間推移の例を示した図であり、横軸に時間、縦軸に電圧偏差(二次側電圧Vと基準電圧Vの差)を示している。この例では基準電圧Vに対する差電圧の比率、即ち電圧偏差VHmが不感帯Kを超えているときには、その超過した差分ΔVを時間積分し、その積分値が動作設定値を超えたときに制御指令を出力する。つまり、電圧偏差VHmが不感帯を超えているか否かの評価対象となる。この例では、現在の二次側電圧Vが基準電圧Vよりも上昇しているので、二次側電圧Vが上記条件を満たしたときに1タップ分降圧する指令を出力し、タップ切換器302はその指令に基づいてタップを切り換える。不感帯は、降圧側(+)と昇圧側(-)にK%という具合に設定する。
 上記した自動電圧調整器SVRの変圧器タップ制御を計算機によるディジタル処理にて実現するときの処理フローの一例を図5に示す。最初の処理ステップS401では、自動電圧調整部360に二次側電圧VLmを読み込む。ここで二次側電圧VLmとは、二次側電圧を所定周期でサンプリング入力した所定時刻の値を意味している。
 処理ステップS402において自動電圧調整部360は、電圧偏差の差分ΔVを求める。ΔVを求める要素となる電圧偏差VHmの求め方は、以下の(1)式による。なおVSは、図3に示す基準電圧である。
[数1]
Hm=(VLm-Vs)/Vs*100    (1)
 そして、ΔVは電圧偏差から不感帯用設定値Kをひく、以下の(2)式によって求められる。
[数2]
ΔV=VHm-K         (2)
但し計算上、Kに代入する数値は、VHmが正か負かを判定し、正の場合はKに正の値を、負の場合にはKに負の値を設定値として代入するものとする。
 処理ステップS403において自動電圧調整部360は、昇圧側の積分を行う。前回までのΔVの積分値であるSRm-1に今回の差分ΔVを加算し、現時点での積分値Sを求める。なお、昇圧する場合は、二次側電圧が基準電圧より低いので、VHmは負となるので、マイナスを掛けることにより、加算処理される。
 処理ステップS404、S405において自動電圧調整部360は、積分値Sが負になったときは、積分値SRに0を代入する。処理ステップS406において自動電圧調整部360は、Sをm回目の積分値SRmに書き換える。処理ステップS407、S408において自動電圧調整部360は、積分値SRmが動作設定値τを超えているか否かを判定する。超えている場合は、タップ切換器302にタップ分昇圧側に切り換える指令を出力し、降圧側の積分に移る。また、積分値が動作設定値τを超えていない場合も、そのまま降圧側の積分に移る。
 以上の処理ステップS403からS408に至る一連の処理は、要するにタップ切り替えにより昇圧制御を図る場合の処理を示している。以降の処理ステップS409からS413に至る一連の処理は、同様にタップ切り替えにより降圧制御を図る場合の処理を示している。
 処理ステップS409において自動電圧調整部360は、降圧側の積分として、前回までの差分ΔVの積分値であるSLm-1に今回の差分ΔVを加算し、現時点での積分値Sを求める。処理ステップS410からS414では、昇圧側の積分と同様の手順で行い、積分値SLmが動作設定値τを超えているか否かを判定し、超えている場合は、タップ切換器302に1タップ分降圧側に切り換える指令を出力する。
 図1に戻り、次に設備計画支援装置10の具体構成について説明する。設備計画支援装置10は、表示装置11、キーボードやマウス等の入力手段12、コンピュータ(CPU)13、通信手段14、RAM15、メモリMがバス線30に接続されている。なおメモリM内には7つのデータベースDBが形成されており、この場合のデータベースDBとしては、計測データD1のデータベースDB1、設備データD2のデータベースDB2、潮流計算結果データD3のデータベースDB3、タップデータD4のデータベースDB4、電圧逸脱時間計算データD5のデータベースDB5、整定データD6のデータベースDB6、プログラムデータD7のデータベースDB7が準備されている。
 かかる構成において、コンピュータ(CPU)13は、計算プログラムを実行して表示装置11に表示すべき画像データの指示、各種データベースDB内のデータの検索等を行う。RAM15は表示用の画像データ、潮流計算結果データD3、タップデータD4、電圧逸脱時間計算データD5、整定データD6等の計算結果データを一旦格納するメモリであり、CPU13によって必要な画像データを生成して表示装置11(例えば表示ディスプレイ画面)に表示する。
 設備計画支援装置10内のメモリ内に形成された7つのデータベースDBの記憶内容は、それぞれ以下のようである。計測データD1のデータベースDB1には、配電系統100内のセンサ160で計測された線路の電流、力率、ノード電圧Vなどの情報と計測時刻(時間断面)を対応づけたテーブルが格納される。その一例を図10に示す。
 図10の例では、配電系統各所に設置されたセンサ160a、160b、160cについて、センサごとに時刻単位での電圧、電流、力率が記録されている。これらのデータD1は、通信ネットワーク200や設備計画支援装置10の通信手段14を介して伝送される。図10の記録事例によれば、配電変電所110内に設置されたセンサ160aが計測したデータは、時刻00:00:00において電圧6800(V)、電流100(A)、力率98(%)、時刻00:00:01において電圧6750(V)、電流150(A)、力率97(%)、時刻00:00:02において電圧6550(V)、電流70(A)、力率98(%)のように時系列変化する内容であった。同様のセンサ情報は、自動電圧調整器300aの下流に設置されたセンサ160b、自動電圧調整器300bの下流に設置されたセンサ160cについてもセンサ160aと同様に準備されている。
 設備データD2のデータベースDB2には、線路(ブランチ)140のインピーダンスを示す線路定数Z(=R+jX)と線路140を対応づけたテーブルが格納される。そのテーブルの一例を図11に示す。負荷・発電量、系統の線路やノードの接続状況を表す系統構成データが記憶されている。図11の例では、ブランチ140a、140bごとに、その線路定数としての抵抗とリアクタンスの値を記憶している。
 図11の記録事例では、配電変電所11と自動電圧調整器300aの間の線路(ブランチ)140aのインピーダンスは、抵抗Rが0.05(Ω)、リアクタンスXが0.10(Ω)と設定され、自動電圧調整器300aと自動電圧調整器300bの間の線路(ブランチ)140bのインピーダンスは、抵抗Rが0.06(Ω)、リアクタンスXが0.120(Ω)と設定されている。
 また設備データD2のデータベースDB2には、自動電圧調整器SVRについての各種の設定値(動作設定値、不感帯、基準電圧)の整定値、整定範囲、整定刻みとSVR IDを対応づけたテーブルが格納されている。そのテーブルの一例を図12に示す。図12の例では、自動電圧調整器SVR(300a、300b)ごとに、動作設定値(%sec)、不感帯、基準電圧を記憶している。動作設定値(%sec)としては、制定範囲と刻みの情報を含んでいる。
 図12の記録事例では、自動電圧調整器SVR300aについて、制定範囲が30~90、刻みが30、不感帯が1.0(%)、基準電圧が6700(V)とされ、同様に自動電圧調整器SVR300bについて、制定範囲と刻みは同じ数値であり、不感帯が1.0(%)、基準電圧が6600(V)とされている。
 潮流計算結果データD3のデータベースDB3には、プログラムデータD7による潮流計算の結果である線路の電流、力率、ノード電圧などの計算結果の情報について、計算時刻(時間断面)、ノード番号を対応づけたテーブルを格納する。そのテーブルの一例を図13に示す。図13の例では、ノード120a、120b、120c、120d、120eについて、ノードごとに時刻単位での電圧、電流、力率の推定値が記録されている。
 図12の記録事例ではノード120bについての時刻単位での電圧、電流、力率の推定値が記載されている。この例ではノード120bの位置にセンサ160bが設置され図10の情報が得られているので、センサ160bの検出情報をそのままノード120bの情報としている。これに対し例えばノード120cにはセンサが設置されていないので、センサ160bの検出情報と、他のセンサ(例えば160c)での計測情報とからノード120cの値を、プログラムデータD7による潮流計算の結果として求めた推定値として保存している。
 タップデータD4のデータベースDB4には、プログラムデータD7によるタップ指令値計算の結果として、自動電圧調整器SVR(300a、300b)ごとにタップ番号、昇圧・降圧指令値、指令時刻を対応づけたテーブルを格納する。そのテーブルの一例を図14に示す。図14では、自動電圧調整器SVR(300a、300b)ごとに指令時刻、昇圧・降圧指令値、タップ番号が記録されている。
 図14の記録事例では、自動電圧調整器SVR300aのテーブルには、時刻09:50:00における昇圧・降圧指令値として昇圧、タップ番号6が、時刻12:00:30における昇圧・降圧指令値として降圧、タップ番号5が記録されており、同様に自動電圧調整器SVR300bのテーブルには、時刻11:30:00における昇圧・降圧指令値として昇圧、タップ番号7が記録されている。これらの一連のタップ操作処理によれば、まず自動電圧調整器SVR300bがタップ番号6に昇圧し、次にSVR300aがタップ番号7に昇圧し、その後SVR300bがタップ番号5に降圧した履歴が残っている。
 電圧逸脱時間計算データD5のデータベースDB5には、各ノード130における電圧の許容領域の上下限値とノード番号を対応づけたテーブルを格納する。そのテーブルの一例を図15に示す。図15では、各ノード130(130a、130b、130c、130d、130e)における電圧許容領域(上限電圧、下限電圧)が記憶されている。
 因みに図15の記録事例によれば、ノード130aと130bの上限電圧、下限電圧は6900(V)、6600(V)、ノード130cの上限電圧、下限電圧は6800(V)、6500(V)、ノード130dと130eの上限電圧、下限電圧は6700(V)、6400(V)である。このように、変電所から遠いほどノード130の上限電圧、下限電圧は低い値に設定されている。
 整定データD6のデータベースDB6には、プログラムデータD7によるハンチング回数計算および電圧逸脱時間計算の結果である、ハンチング回数、電圧逸脱時間、および送出側(第1)SVR300aと末端側(第2)SVR300bの各々の動作設定値を対応づけたテーブルを格納する。そのテーブルの一例を図16に示す。図16において、ケース1、2、3は送出側SVRの動作設定値を30(%sec)に固定して末端側SVRの動作設定値を30、60、90(%sec)に可変設定した時のハンチング回数、電圧逸脱時間を記憶している。同様にケース4、5、6では送出側SVRの動作設定値を60(%sec)に固定し、ケース7、8、9では送出側SVRの動作設定値を90(%sec)に固定したときに、末端側SVRの動作設定値を30、60、90(%sec)に可変設定した時のハンチング回数、電圧逸脱時間を記憶している。
 図16の記録事例では、ケース1、2、3において末端側SVRの動作設定値が30、60、90(%sec)の時のハンチング回数と電圧逸脱時間は、それぞれ10000と100、1000と200、100と300である。またケース4、5、6において末端側SVRの動作設定値が30、60、90(%sec)の時のハンチング回数と電圧逸脱時間は、それぞれ5000と500、500と1000、50と1500である。またケース7、8、9において末端側SVRの動作設定値が30、60、90(%sec)の時のハンチング回数と電圧逸脱時間は、それぞれ2500と1000、250と2000、25と3000である。
 このケース分析によれば、末端側SVRの動作設定値が大きくなるとハンチング回数は減少するが、電圧逸脱時間は長くなっている。また送出側SVRの動作設定値が大きいほどハンチング回数は減少し、電圧逸脱時間は長くなる傾向がある。
 また整定データD6のデータベースDB6には、プログラムデータD7の動作設定値整定で使用するハンチング回数、電圧逸脱時間の各々の重み係数および上限値を記載したテーブルを格納する。そのテーブルの一例を図17に示す。図17によれば、ハンチング回数と電圧逸脱時間についてそれぞれ重み係数および上限値が記憶されている。図17の記録事例では、ハンチング回数について重み係数が0.3、上限値が3000に設定され、電圧逸脱時間について重み係数が0.7、上限値が1000に設定されている。
 プログラムデータD7のデータベースDB7には、計算プログラムである潮流計算プログラムPrg1、タップ指令値計算プログラムPrg2、ハンチング回数計算プログラムPrg3、電圧逸脱時間計算プログラムPrg4、動作設定値整定プログラムPrg5、表示作成プログラムPrg6を格納する。これらのプログラムは必要に応じてCPU13に読み出され、計算実行される。
 次に、上記データベースDBのデータD及びプログラムPrgを用いる設備計画支援装置10の計算処理内容について説明する。設備計画支援装置では、直列設置した送出側(第1)SVR300aと末端側(第2)SVR300bの動作設定値の各組合せについて、ハンチング回数と電圧逸脱時間を推定し、それらを用いて動作設定値整定プログラムPrg5を実行し、各々の重み係数を乗じた値の和が最小になる動作設定値を決定する。
 この場合に、ハンチング回数と電圧逸脱時間は以下のように求める。最初に、複数時間断面の計測データD1を用いて潮流計算プログラムPrg1およびタップ指令値計算プログラムPrg2を実行して、ノード電圧および自動電圧調整器SVRのタップ番号と昇降圧指令を算出する。ここで得られた複数時間断面のノード電圧は、潮流計算結果データD3のデータベースDB3(図13)に格納する。複数時間断面の自動電圧調整器SVRのタップ番号と昇降圧指令はタップデータD4のデータベースDB4(図14)に格納する。
 次に、タップデータD4の複数時間断面の自動電圧調整器SVRのタップ番号と昇降圧指令を用いてハンチング回数計算プログラムPrg3を実行してハンチング回数を算出する。ハンチング回数は整定データD6のデータベースDB6(図16)に格納する。
 最後に、潮流計算結果データD3のノード電圧を用いて電圧逸脱時間計算プログラムPrg4を実行して電圧逸脱時間を算出する。電圧逸脱時間は整定データD6のデータベースDB6(図16)に格納する。
 以下、潮流計算プログラムPrg1、タップ指令値計算プログラムPrg2、ハンチング回数計算プログラムPrg3、電圧逸脱時間計算プログラムPrg4、動作設定値整定プログラムPrg5の各処理について説明する。
 図6は、プログラムデータD7のデータベースDB7格納されたプログラムのうち、潮流計算プログラムPrg1とタップ指令計算プログラムPrg2の処理を示すフローチャートである。この一連の処理のうち、処理ステップS501からS506の部分が潮流計算プログラムPrg1に関する部分であり、処理ステップS507からS512の部分がタップ指令計算プログラムPrg2に関する部分である。この処理は、タップの昇降圧動作を推定するために、計測データD1の時刻が時系列になるような順番で計算する必要がある。
 最初に処理ステップS501では、潮流計算に必要となる線路定数Z(=R+jX)、系統構成(ノード120、ブランチ140)を読み込む。例えば、図2の設備データD2のデータベースDB2からブランチごとの線路定数Z(=R+jX)を得、また予め入力手段12を介して得ていたユーザ入力として図1の配電系統を構成するノード120、ブランチ140の情報をRAM15に読み出す。
 処理ステップS502では、潮流計算に必要となる変電所(スイングノード)のノード電圧、負荷140、発電量150を、計測データD1のデータベースDB1からRAM15に読み出す。例えば、図1および図10の例では、変電所のノード電圧はデータベースDB1を参照してセンサ160a(第一)の電圧計測値とする。また負荷140はセンサ160a(第一)の電流からセンサ160b(第二)の電流を差し引いた値とする。
 処理ステップS503では、タップ指令計算に必要となる動作設定値、不感帯、基準電圧を、設備データD2のデータベースDB2からRAM15に読み出す。
 処理ステップS504では、潮流計算およびタップ指令計算に必要となる最も新しい時刻のタップ番号を、タップデータD4のデータべースDB4からRAM15に読み出す。
 処理ステップS505では、処理ステップS501、S502、S504で設定したデータを用いて潮流計算を行い、各ノードの電圧、線路電流、力率を計算し、計算結果をRAM15に格納する。なお潮流計算手法としては種々のものが知られているので、適宜の手法を採用区可能である。ここまでの処理が、潮流計算プログラムPrg1に相当している。
 処理ステップS506では、処理ステップS505で求めた各ノードの電圧、線路電流、力率と、計算に使用した計測データの時刻を出力する。ここでは、その出力を図13に示すような形式で潮流計算結果データD3としてデータベースDB3に格納する。
 以上の処理が潮流計算プログラムPrg1における処理であり、次にタップ指令値計算プログラムPrg2の処理に移り、まず処理ステップS507では、処理ステップS503で設定したデータと、処理ステップS505で求めたノード電圧を用いてタップ指令計算を実行する。タップ指令値計算の処理は、図5の処理フローである。
 処理ステップS508、S510では、昇圧指令の有無、降圧指令の有無をそれぞれ判断している。これを受けて、処理ステップS509、S511では、昇圧指令有りの時にタップ番号に1を加算し、降圧指令有りの時にタップ番号に1を減算する。昇圧指令有のたびに加算していき、降圧指令有のたびに減算していく。
 処理ステップS512では、タップ番号、昇降圧指令、計算に使用した計測データの時刻を出力する。ここでは、その出力を図14に示すようなタップデータD4としてデータベースDB4に格納する。
 図7は、プログラムデータD7のデータベースDB7におけるハンチング回数計算プログラムPrg3の処理を示すフローチャートである。この処理は、タップデータD4に複数時間断面のタップ番号が蓄積された場合に実行される。複数時間断面とは、例えば1カ月や1年間などであり、この間記憶された経験値を用いた処理である。
 まず、ハンチング回数計算の方法を説明するために、ハンチング発生時のタップ動作を図20で説明する。図20(a)は、図1に例示したものと同じ配電系統の構成例を示している。ここでは自動電圧調整器SVR(300)を2台(300a、300b)直列に設置した配電系統を示している。図20(b)~図20(e)は、図20(a)の配電系統における、時系列の電圧変化と自動電圧調整器SVR(300)のタップ動作例を示すグラフである。これらの図20(b)~図20(e)では、横軸に配電線路長、縦軸にノード電圧を記述している。なおノード電圧は、不感帯と比較して記述されており、これによれば、配電線路各部における計測電圧が示されている。
 図20(b)は、配電変電所110から配電線末端にかけて電圧が低下していく状況を示している。またノード120b近傍のノード電圧が不感帯の下限以下に低下している状態を示している。従って、ノード120bよりも末端側の線路では、電圧改善(昇圧)が必要な状態である。
 図20(c)は、図20(b)の状態(ノード電圧が不感帯の下限以下に低下)を検知した末端のSVR300bが、上流側のSVR300aより先にタップを切換えてSVR300bの二次側(ノード120d)より末端側の電圧を昇圧させた状態を示している。これにより、ノード120bよりも上流側、及びノード120dよりも末端側では不感帯の下限以上の電圧に維持されているが、ノード120bとノード120dの間は、電圧改善(昇圧)がなされていない。
 図20(d)は、図20(C)の状態(ノード120bとノード120dの間のノード電圧が不感帯の下限以下)を検知した上流側のSVR300aが、上流側の配電変電所110内のSVRより先にタップを切換えてSVR300aの二次側(ノード120b)より末端側の電圧を昇圧させた状態を示している。これにより、配電線路の全域においてノード電圧が不感帯の下限以上に維持できたことになる。またさらにはその後、上流側の配電変電所110のSVR300aがSVR300bより遅れてタップを切換えてSVR300aの二次側(ノード120b)より末端側の電圧を昇圧する。
 このとき、SVR300aとSVR300bの電圧制御が干渉して、SVR300bの二次側(ノード120d)より末端側の電圧が不感帯の上限を逸脱する可能性がある。図示の例ではノード120dの電圧が、不感帯の上限を逸脱してしまう状態を示している。このため、ノード120dではタップを当初位置に戻して電圧を下げてやる必要が新たに生じる。
 図20(e)は、図20(d)の状態(ノード120dの電圧が、不感帯の上限を逸脱)を検知して、SVR300bがタップを切換えてSVR300dの二次側(ノード120d)より末端側の電圧を降圧した状態を示している。
 図20(b)~図20(e)は、末端電圧が不感帯の下限以下になった事例を示しているが、同様に不感帯の上限を超過した場合も想定可能である。図20(b)~図20(e)が上限を超過したものと想定すると、図20(b)で電圧が不感帯上限を逸脱している場合は、図20(c)でSVR300bが降圧、図20(d)でSVR300aが降圧、図20(e)でSVR300bが昇圧、のようにタップ動作をすることが容易に理解できる。
 このように配電系統の電圧調整装置300によるタップ操作では、電圧低下(電圧上昇)に対して、各電圧調整装置300が対応するように時定数が設定されている。このため上流側と下流側での対応によっては、タップ操作のハンチングを生じることがある。以下においては、図20のようなハンチング時のタップ動作のパターンを使って、ハンチング回数を計算する。具体的な処理を図7で説明する。図7はハンチング回数計算プログラムPrg3の具体的な処理内容を示している。
 図7の処理ステップS601では、末端側(第2)SVRの昇圧または降圧指令の2つの時間断面の時刻TRN-1、TRNを読み込む。ここでは、タップデータD4のデータベースDB4からRAM15に読み出す。例えば、図14の場合は、末端側(第2)SVRであるSVRbのテーブルを参照して、昇圧指令時刻は、タップをタップ番号6に変更した時刻としてTRN-1は9時50分00秒、また降圧指令時刻は、タップをタップ番号6に変更した時刻としてTRNは12時00分30秒のように読み込む。
 処理ステップS602では、末端側(第2)SVRであるSVRbのテーブルを参照して得た昇圧指令時刻TRN-1から降圧指令時刻TRNの間で発生し、存在する送出側S
VR(第1)の昇圧または降圧の指令時刻Tを読み込む。図14の場合は、送出側SVR(第1)であるSVRaのテーブルを参照して、タップをタップ番号7に変更した昇圧指令時刻として、TRN-1は11時30分00秒が存在している。
 処理ステップS603では、送出側SVR(第1)の昇圧または降圧の指令時刻Tが複数存在する場合は、ハンチングによるタップ動作ではないと判定し、処理を終了する。
 処理ステップS604では、処理ステップS603で送出側SVR(第1)の昇圧または降圧の指令時刻Tが1つの場合は、TRN-1が昇圧指令か判定する。ここで、TRN-1は図20(c)の時間断面を意味する。
 処理ステップS605、S606、S609においては、タップ動作が、不感帯の下限電圧を逸脱した時の動作パターン、すなわちTRN-1は昇圧指令、Tは昇圧指令、TRNは降圧指令となる場合に、処理ステップS609においてハンチング回数に1を加算する。ここでは、ハンチング回数を整定データD6のデータベースDB6に格納する。例えば、図16のテーブルに記載する。
 また処理ステップS607、S608、S609では、タップ動作が、不感帯の上限電圧を逸脱した時の動作パターン、すなわちTRN-1は降圧指令、Tは降圧指令、TRNは昇圧指令となる場合に、処理ステップS609においてハンチング回数に1を加算する。ここでは、ハンチング回数を整定データD6のデータベースDB6に格納する。例えば、図16のテーブルに記載する。
 処理ステップS601~609の処理によって、各動作設定を設定した場合のハンチングの頻度(ハンチング回数)を把握することができる。
 図8は、プログラムデータD7のデータベースDB7に格納された電圧逸脱時間計算プログラムPrg4の処理を示すフローチャートである。この処理は、潮流計算結果データD3が更新される毎に実施してもよいし、複数時間断面の潮流計算結果が蓄積された場合に実行してもよい。なお複数時間断面とは、例えば1カ月や1年間などである。
 図8の処理ステップS701では、ノード電圧Vmを読み込む。ここでは、潮流計算結果データD3から読み込む。例えば、図13に示す電圧(6800V)などである。
 処理ステップS702では、各ノードの電圧許容領域の上下限値Vmax、Vminを読み込む。ここでは、電圧逸脱計算データD5から読み込む。例えば、図15に示す上限値Vmax(6900V)および下限値Vmin(6600V)などである。
 処理ステップS703~705では、ノード電圧Vmの電圧許容領域の上下限値Vmax、Vminを逸脱する場合(Vm<VminまたはVm>Vmax)、電圧逸脱時間に1を加算する。
 処理ステップS701~705の処理によって、各動作設定を設定した場合の電圧品質(電圧逸脱時間)を定量的に把握することができる。
 図9は、プログラムデータD7のデータベースDB7に格納された動作設定値整定プログラムPrg5の処理を示すフローチャートである。この処理は、整定データD6が更新される毎に実施してもよいし、所定の期間ごとに実行してもよい。所定の期間とは、例えば、例えば1カ月や1年間などである。
 図9の処理ステップS801では、動作設定値整定の条件を読み込む。ここでは、整定データD6に格納された図17のテーブルから、重み係数(ハンチング回数=0.3、電圧逸脱時間=0.7)、上限値(ハンチング回数=3000、電圧逸脱時間=1000)を読み込む。
 処理ステップS802では、各動作設定値に対するハンチング回数および電圧逸脱時間を読み込む。ここでは、整定データD6から図16に示すテーブルを読み込む。
 処理ステップS803では、以下の数式、(3)式に示す目的関数を計算する。目的関数はハンチング回数Nと電圧逸脱時間TVEの各々に重み係数W、WVEを乗じた値の和Fとした。ハンチング回数Nと電圧逸脱時間TVEは、図16で求められている値を用いる。
[数3]
F=W*N+WVE*TVE       (3)
 処理ステップS804では、以下の数式、(4)(5)式に示す制約条件の下で、目的関数が最小となる解と、そのときの動作設定値、ハンチング回数、電圧逸脱時間を求める。制約条件は、目的関数はハンチング回数Nと電圧逸脱時間TVEの各々の上限値NHmax、VEmaxを超えないという設定にした。上限値NHmax、VEmaxは、図17で設定されたものを用いる。
[数4]
<NHmax           (4)
[数5]
VE<TVEmax          (5)
 処理ステップS805では、処理ステップS804の解が存在する場合、そのときの動作設定値を出力する。その動作設定値は設備計画支援装置10の通信手段12、通信ネットワーク200、を介してSVR300に送信する。
 処理ステップS806では、処理ステップS805で解が存在しない場合、設備計画支援装置10の表示装置11に整定条件(重み係数、ハンチング回数および電圧逸脱時間の上限値)の変更指令を表示する。ユーザは入力手段12によって整定データ26の整定条件を変更する。
 処理ステップS801~805の処理によって、ハンチング回数および電圧逸脱時間は所定の値以下となる動作設定値を自動で決定することができる。
 次に、図18および19を用いて動作設定値の整定結果表示の一例を説明する。図18、19は動作設定値の整定結果の表示手段11への表示例を示す説明図である。ここでは、ディスプレイ画面への表示を考える。
 図18のグラフにおいて、横軸は図16に示す動作設定値の組合せのケース(1から9)である。縦軸は(3)式の目的関数の値である。例えば図16のケース1について(3)式の目的関数を求めた場合、ハンチング回数N(10000)、電圧逸脱時間TVE(100)、ハンチング回数Nの重み係数W(0.3)電圧逸脱時間TVEの重み係数WVE(0.7)から求まる目的関数の値は3000である。図16のケース2では、ハンチング回数N(1000)、電圧逸脱時間TVE(200)、ハンチング回数Nの重み係数W(0.3)電圧逸脱時間TVEの重み係数WVE(0.7)から求まる目的関数の値は510である。ケース3では、ハンチング回数N(100)、電圧逸脱時間TVE(300)、ハンチング回数Nの重み係数W(0.3)電圧逸脱時間TVEの重み係数WVE(0.7)から求まる目的関数の値は240である。
 以下同様にして、各ケースでの目的関数の値を(4)(5)式の制約のもとで求め、プロットしたものが図18のグラフである。ここでは、破線の丸で強調しているケース3のプロットが図9の処理ステップS804で求めた最小解である。
 図19のグラフでは、横軸は図16に示すハンチング回数である。縦軸は図16に示す電圧逸脱時間である。2つの破線で、図17に示すハンチング回数と電圧逸脱時間の上限値を示す。ここでは、破線の丸で強調しているケース3のプロットが図9の処理ステップS804で求めた解である。
 このように表示することで、ユーザに動作設定値の整定結果をわかりやすく伝えることが可能となる。また、図9の処理ステップS806で整定条件(ハンチング回数と電圧逸脱時間の重み係数および上限値)の変更指令が出た場合に、制約付き目的関数の解が存在する整定条件を決定しやすくなる。ここでは、画面への出力例を示したが、書類等に印刷可能なフォーマットのデータとしてユーザに提供してもよい。
 本発明によれば、上流と下流の2つの電圧調整装置300の動作設定値が、ハンチング回数と電圧逸脱時間を最小とする値に整定されることになる。この結果を反映した配電系統の運用によれば、ハンチング回数がより少ない回数で電圧が許容範囲内に終息することになる。例えば従来の場合に、図20の一連のタップ操作により電圧が許容範囲内に収束しているが、本発明の場合にはより少ないタップ操作回数にできるので、図20(b)から図20(c)、図20(d)の経過過程を踏むことなく、直接図20(e)に移行することが期待できる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
100:配電系統,110:配電変電所,120:ノード,130:変電所母線,140:配電線路,150:発電機,160:センサ,170:負荷,200:通信ネットワーク,300:電圧調整装置(SVR),310:単巻変圧器とタップチェンジャで構成される変圧器,320:制御部,330:通信部,10:設備計画支援装置,11:表示装置,12:入力手段,13:CPU,14:通信手段,15:RAM,DB1:計測データベース,DB2:設備データベース,DB3:潮流計算結果データベース,DB4:タップデータベース,DB5:電圧逸脱時間計算データベース,DB6:整定データベース,DB7:プログラムデータベース

Claims (9)

  1.  タップ付変圧器の二次側電圧が許容領域から逸脱した電圧の積分値が動作設定値を超えたことをもって前記タップ付変圧器のタップを調整する電圧調整装置が複数直列配置されている配電系統の設備計画支援装置であって、
     設備計画支援装置は、上流側の電圧調整装置と下流側の電圧調整装置について、各電圧調整装置の動作整定値の組み合わせを複数備え、かつ各動作整定値の組み合わせのときに各電圧調整器が互いにタップの調整を繰り返す一連の動作を表すハンチングの回数を記憶している整定データベースと、該整定データベースから読み出した動作整定値の組み合わせと、対応するハンチング回数に基づいて、前記動作設定値の組み合わせを算出する動作設定値整定処理部と、該動作設定値整定処理部が算出した動作設定値およびハンチング回数を表示する表示部を備えることを特徴とする配電系統の設備計画支援装置。
  2.  請求項1に記載の配電系統の設備計画支援装置であって、
     前記整定データベースは、前記各動作整定値の組み合わせのときの電圧逸脱時間を過去の運転実績から求め前記ハンチング回数と共に記憶しており、前記動作設定値整定処理部は前記整定データベースから読み出した動作整定値の組み合わせと、対応するハンチング回数及び電圧逸脱時間に基づいて、前記動作設定値の組み合わせを算出し、前記表示部は、前記動作設定値整定処理部が算出した動作設定値の組み合わせ、ハンチング回数および電圧逸脱時間を表示することを特徴とする配電系統の設備計画支援装置。
  3.  請求項2に記載の配電系統の設備計画支援装置であって、
     前記動作設定値整定処理部は、前記各動作整定値の組み合わせのときの前記ハンチング回数と前記電圧逸脱時間による評価値を求め、該評価値を用いて前記各動作整定値の組み合わせの中から1組の動作整定値の組み合わせを算出することを特徴とする配電系統の設備計画支援装置。
  4.  請求項3に記載の配電系統の設備計画支援装置であって、
     前記整定データベースは、前記ハンチング回数と前記電圧逸脱時間の上限値をそれぞれ備えており、前記動作設定値整定処理部は前記評価値の算出に当たり前記ハンチング回数と前記電圧逸脱時間の上限値に制限して算出することを特徴とする配電系統の設備計画支援装置。
  5.  請求項4に記載の配電系統の設備計画支援装置であって、
     前記動作設定値整定処理部は、ハンチング回数と電圧逸脱時間の上限値以下になる動作設定値が存在しない場合に、上限値の変更指令を出力することを特徴とする配電系統の設備計画支援装置。
  6.  請求項1から請求項5のいずれか1項に記載の配電系統の設備計画支援装置であって、
     前記電圧調整器はリアクトルやコンデンサの接続数をタップ切換えにより調整する装置であることを特徴とする配電系統の設備計画支援装置。
  7.  タップ付変圧器の二次側電圧が許容領域から逸脱した電圧の積分値が動作設定値を超えたことをもって前記タップ付変圧器のタップを調整する電圧調整装置が複数直列配置されている配電系統の設備計画支援装置であって、
     設備計画支援装置は、複数時間断面の前記配電系統の計測値を格納する計測データベースと、配電系統の線路定数、系統構成、電圧調整の整定値を格納する設備データベースと、前記計測データベースから読み出した複数時間断面の計測値と、前記設備データベースから読み出した配電系統の線路定数および系統構成に基づいて配電系統の電圧分布を推定する潮流計算処理部と、該潮流計算処理部が算出した電圧分布を格納する潮流計算結果データベースと、該潮流計算結果データベースから読み出した電圧分布と前記設備データベースから読み出した前記電圧調整器の設定値に基づいて電圧調整器のタップ番号を算出するタップ指令計算処理部と、該タップ指令計算処理部が算出したタップ番号を格納するタップデータベースと、該タップデータベースから読み出した複数時間断面のタップ番号に基づいてハンチング回数を算出するハンチング回数計算処理部と、前記潮流計算結果データベースから読み出した電圧分布に基づいて電圧逸脱時間を算出する電圧逸脱時間計算処理部と、配電系統上流側の電圧調整装置と下流側の電圧調整装置について、各電圧調整装置の動作整定値の組み合わせを複数備え、かつ各動作整定値の組み合わせのときのハンチング回数と電圧逸脱時間を記憶している整定データベースと、該整定データベースから読み出した動作整定値の組み合わせと、対応するハンチング回数と電圧逸脱時間に基づいて、前記動作設定値の組み合わせを算出する動作設定値整定処理部と、該動作設定値整定処理部が算出した動作設定値およびハンチング回数を表示する表示部を備えることを特徴とする配電系統の設備計画支援装置。
  8.  請求項7に記載の配電系統の設備計画支援装置であって、
     前記動作設定値整定処理部は、前記各動作整定値の組み合わせのときの前記ハンチング回数と前記電圧逸脱時間を重みづけ加算して評価値を求め、前記各動作整定値の組み合わせの中から前記評価値が最小となる1組の動作整定値の組み合わせを算出することを特徴とする配電系統の設備計画支援装置。
  9.  タップ付変圧器の二次側電圧が許容領域から逸脱した電圧の積分値が動作設定値を超えたことをもって前記タップ付変圧器のタップを調整する電圧調整装置が複数直列配置されている配電系統の設備計画支援方法であって、
     上流側の電圧調整装置と下流側の電圧調整装置について、各電圧調整装置の動作整定値の組み合わせを複数備え、かつ各動作整定値の組み合わせのときのハンチング回数と電圧逸脱時間を配電系統の運転実績から求め、前記各動作整定値の組み合わせに対応するハンチング回数と動作整定値を重みづけ加算して評価値を求め、前記各動作整定値の組み合わせの中から前記評価値が最小となる1組の動作整定値の組み合わせを算出することを特徴とする配電系統の設備計画支援方法。
PCT/JP2016/056742 2015-03-06 2016-03-04 配電系統の設備計画支援装置および設備計画支援方法 WO2016143689A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015044301A JP6367740B2 (ja) 2015-03-06 2015-03-06 配電系統の設備計画支援装置および設備計画支援方法
JP2015-044301 2015-03-06

Publications (1)

Publication Number Publication Date
WO2016143689A1 true WO2016143689A1 (ja) 2016-09-15

Family

ID=56876863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056742 WO2016143689A1 (ja) 2015-03-06 2016-03-04 配電系統の設備計画支援装置および設備計画支援方法

Country Status (2)

Country Link
JP (1) JP6367740B2 (ja)
WO (1) WO2016143689A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6863778B2 (ja) * 2017-03-08 2021-04-21 株式会社日立製作所 配電系統の運用支援装置および方法
US11394238B2 (en) * 2017-09-01 2022-07-19 Mitsubishi Electric Corporation System control device and method of system control
JP7047343B2 (ja) * 2017-11-24 2022-04-05 富士電機株式会社 電圧制御用計算装置、電圧制御用計算方法、および電圧制御用計算プログラム
JP7002991B2 (ja) * 2018-04-27 2022-01-20 株式会社日立製作所 配電系統の電圧調整装置、電圧調整システム、電圧調整方法及び配電設備設計支援システム
CN110398928A (zh) * 2019-09-09 2019-11-01 燎原控股集团有限公司 一种智能操作柱

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182897A (ja) * 2011-03-01 2012-09-20 Hitachi Ltd 配電系統の電圧調整装置および電力制御システム
JP5436734B1 (ja) * 2013-06-26 2014-03-05 三菱電機株式会社 電圧監視制御装置および電圧監視制御方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3347356B2 (ja) * 1992-02-14 2002-11-20 東北電力株式会社 変圧器制御装置
US9733277B2 (en) * 2012-11-26 2017-08-15 Mitsubishi Electric Corporation Voltage monitoring control device, voltage control device, and voltage monitoring control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182897A (ja) * 2011-03-01 2012-09-20 Hitachi Ltd 配電系統の電圧調整装置および電力制御システム
JP5436734B1 (ja) * 2013-06-26 2014-03-05 三菱電機株式会社 電圧監視制御装置および電圧監視制御方法

Also Published As

Publication number Publication date
JP6367740B2 (ja) 2018-08-01
JP2016165169A (ja) 2016-09-08

Similar Documents

Publication Publication Date Title
WO2016143689A1 (ja) 配電系統の設備計画支援装置および設備計画支援方法
JP6587522B2 (ja) 電圧・無効電力制御装置、方法、および電圧・無効電力制御システム
KR101043572B1 (ko) 무효전력 보상을 위한 배전 자동화 시스템 및 전압 제어방법
US7956596B2 (en) Voltage control for electric power systems
JP5624353B2 (ja) 配電系統の電圧制御装置およびプログラム
CN109962638B (zh) 电力转换装置
JP5872732B2 (ja) 電力系統制御システムおよびそれに用いる分散コントローラ
JP2014027737A (ja) 線路電圧降下補償器の整定値の算出方法および算出装置
JP6191229B2 (ja) タップ計画値算出方法及びこれを用いたタップ指令値の決定方法、制御目標値算出方法、並びにタップ計画値算出装置、タップ指令値決定装置、タップ計画値算出プログラム
JP6517857B2 (ja) 電圧調整機器の電圧制御装置およびその電圧制御方法
JP2013192378A (ja) 配電用自動電圧調整器の電力逆潮流原因判定方法及び装置
JP2012005277A (ja) 潮流計算機能を備えた無効電力補償装置、およびそのシステムと方法
JPS63299722A (ja) 電圧調整継電器
JP2019198153A (ja) 配電系統の電圧調整装置配置計画の支援装置および方法
SE469360B (sv) Foerfarande och anordning foer att i ett kraftnaet reducera stoerningar med ett styrbart aktivt filter
JP5537300B2 (ja) 配電系統の電圧制御装置およびプログラム
US20170264183A1 (en) Improvements in or relating to the control of converters
CN110970915B (zh) 风力发电机组的并网电压的控制方法和设备
CN116470773B (zh) 一种变换器的比例积分参数计算方法及系统
JP2023007058A (ja) 電圧調整機器の最適整定装置及び最適整定プログラム
JP6462545B2 (ja) 電圧調整機器の整定値算出装置及び方法
CN105468067A (zh) 参数确定方法、计算机可读记录介质以及信息处理设备
JP2003259555A (ja) 電圧無効電力監視制御装置及び電圧無効電力監視制御プログラム
WO2017155047A1 (ja) 配電監視制御装置
JP2019154204A (ja) 最適計算装置、最適計算方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761659

Country of ref document: EP

Kind code of ref document: A1