WO2016143116A1 - 聴診器 - Google Patents

聴診器 Download PDF

Info

Publication number
WO2016143116A1
WO2016143116A1 PCT/JP2015/057288 JP2015057288W WO2016143116A1 WO 2016143116 A1 WO2016143116 A1 WO 2016143116A1 JP 2015057288 W JP2015057288 W JP 2015057288W WO 2016143116 A1 WO2016143116 A1 WO 2016143116A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
auscultation
contact detection
sound
sensor
Prior art date
Application number
PCT/JP2015/057288
Other languages
English (en)
French (fr)
Inventor
昇 中丸
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2017504520A priority Critical patent/JP6396575B2/ja
Priority to PCT/JP2015/057288 priority patent/WO2016143116A1/ja
Publication of WO2016143116A1 publication Critical patent/WO2016143116A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes

Definitions

  • the present invention relates to the technical field of a stethoscope that acquires auscultatory sounds from auscultation subjects.
  • Patent Document 1 discloses an electronic stethoscope that detects contact with an auscultation object using a capacitance change or a mechanical switch.
  • Patent Document 2 discloses an electronic stethoscope that arranges a plurality of electrodes on a chest piece and detects contact with a contact object using impedance between the electrodes.
  • JP 60-261439 A Japanese translation of PCT publication 2010-534098
  • An object of the present invention is to provide a stethoscope capable of appropriately detecting a contact state with an auscultation target.
  • a first stethoscope for solving the above-mentioned problem is arranged on a chestpiece, and an auscultation sound acquisition unit that acquires auscultation sound from an auscultation object and two contact detection units that detect contact with the auscultation object A plurality of contact detection pairs, wherein the plurality of contact detection pairs intersect each other in a region where a virtual line connecting the two contact detection units overlaps the auscultation sound acquisition unit. Is arranged.
  • a second stethoscope for solving the above-described problem is disposed on the chestpiece, and has at least three contact detections for detecting an auscultation sound acquisition unit for acquiring an auscultation sound from an auscultation object and the auscultation object.
  • the contact detection unit is arranged on the chest piece such that a polygon having a virtual line connecting each other as one side overlaps a central portion of the auscultation sound acquisition unit in a plane. Has been.
  • the first stethoscope according to the present embodiment is disposed on the chest piece and includes an auscultation sound acquisition unit that acquires auscultation sound from an auscultation target and two contact detection units that detect contact with the auscultation target.
  • a plurality of contact detection pairs wherein the plurality of contact detection pairs are arranged on the chestpiece such that a virtual line connecting the two contact detection units intersects with each other in a region overlapping the auscultation sound acquisition unit. Has been.
  • the chestpiece is pressed against the auscultation target, and the auscultation sound acquisition unit acquires the auscultation sound (that is, the sound generated by the auscultation target).
  • the “auscultation target” here is typically a living body (more specifically, a patient such as a medical institution), but may be other than a living body (for example, piping).
  • the contact detection pair has two contact detection units, and each of the contact detection units can detect a contact separately.
  • the contact detection unit is configured as, for example, a pressure sensor, a capacitance type sensor, an electric resistance type sensor, a mechanical switch, or the like.
  • a virtual line connecting the two contact detection units in each of the plurality of contact detection pairs intersects with each other in a region overlapping the auscultation sound acquisition unit.
  • An auscultation sound acquisition unit and a plurality of contact detection pairs are arranged.
  • the two contact detection units are respectively arranged at positions facing each other with the auscultation sound acquisition unit interposed therebetween.
  • the line connecting the two contact detection units is orthogonal.
  • a line connecting two contact detection units intersect at one point.
  • the contact detection pair arranged as described above, when the chest piece is inclined and pressed against the auscultation target, the contact is detected only by one contact detection unit. On the other hand, when the chestpiece is correctly pressed against the auscultation target, contact is detected by both contact detection units. Therefore, whether or not the chest piece is correctly pressed against the auscultation target based on the detection determination of the two contact detection units in the plurality of contact detection pairs (that is, whether or not the auscultation sound can be appropriately acquired). Can be detected accurately.
  • the auscultation sound of the auscultation target can be acquired very suitably.
  • the effect of this embodiment is demonstrated notably when the auscultation object has an unevenness
  • the plurality of contact detection pairs are configured such that a virtual line connecting the two contact detection units intersects with each other at a central portion of the auscultation sound acquisition unit. , Arranged on the chestpiece.
  • the “center portion” means not only a portion located at the center of the auscultation sound acquisition unit but also a portion that is required to be pressed most correctly when acquiring the auscultation sound. . Therefore, according to the stethoscope according to this aspect, the auscultatory sound can be acquired more suitably.
  • the “information relating to contact” here is not limited to information indicating the presence / absence of contact, but may be information indicating the degree of contact stepwise, for example. In this case, for example, when the contact is detected by two or more contact detection pairs, the auscultation target is more appropriately contacted than when the contact is detected by one contact detection pair. Judgment should be made.
  • the second stethoscope according to the present embodiment is disposed on the chestpiece, and includes an auscultation sound acquisition unit that acquires auscultation sound from the auscultation target, and at least three contact detection units that detect contact with the auscultation target.
  • the contact detection unit is arranged on the chest piece so that a polygon having a virtual line connecting each other as one side and a central portion of the auscultation sound acquisition unit overlap in a plane. Yes.
  • the chestpiece is pressed against the auscultation target, and the auscultatory sound acquisition unit acquires the auscultatory sound, as in the first stethoscope described above.
  • the auscultatory sound acquisition unit acquires the auscultatory sound, as in the first stethoscope described above.
  • contact with the contact object is detected by at least three contact detection units in order to determine whether or not the chestpiece is correctly pressed against the auscultation object.
  • a polygon having a virtual line connecting the contact detection units as one side and the central portion of the auscultation sound acquisition unit are in a plane.
  • An auscultation sound acquisition unit and a plurality of contact detection pairs are arranged so as to overlap.
  • the plurality of contact detection units are respectively arranged so as to surround the auscultation sound acquisition unit.
  • the polygon which makes the one side the virtual line which connects contact detection parts becomes a regular polygon.
  • a plurality of sets of contact detection units forming a polygon may exist for one auscultatory sound acquisition unit.
  • the contact detection unit arranged as described above, when the chest piece is inclined and pressed against the auscultation target, contact is detected only at a part of the contact detection unit that forms a polygon. On the other hand, when the chest piece is correctly pressed against the auscultation target, contact is detected in all of the contact detection units forming the polygon. Therefore, accurately detecting whether or not the chestpiece is correctly pressed against the auscultation target (that is, whether or not the auscultation sound can be appropriately acquired) from the detection determination in each of the contact detection units. Is possible.
  • the second stethoscope according to the present embodiment it is possible to suitably detect contact with the auscultation target. Therefore, the auscultation sound of the auscultation target can be acquired very suitably. In addition, the effect of this embodiment is demonstrated notably when the auscultation object has an unevenness
  • the “information relating to contact” here is not limited to information indicating the presence / absence of contact, but may be information indicating the degree of contact stepwise, for example. In this case, for example, when contact is detected by a set of contact detection units that form two or more polygons, compared to when contact is detected only by a set of contact detection units that form one polygon It may be determined that the person is more appropriately in contact with the auscultation target.
  • the contact detection unit detects contact based on pressure from the auscultation target.
  • the distance between the contact detection units can be increased as compared with, for example, a capacitance type sensor or an electric resistance type sensor. For this reason, it can be avoided that the contact detection unit and the auscultation sound acquisition unit overlap with each other in terms of sensitivity and frequency characteristics. It is also possible to reduce the manufacturing cost.
  • noise cancellation means capable of performing noise cancellation processing for reducing noise in the auscultation sound, and information related to the contact output from the output means
  • adjusting means for adjusting the intensity of the noise canceling process
  • the auscultation sound acquired by the auscultation sound acquisition unit is subjected to noise cancellation processing by the noise cancellation means.
  • the intensity of the noise canceling process is adjusted by the adjusting means. More specifically, the adjustment unit adjusts the strength of the noise cancellation process based on the information regarding the contact output from the output unit. For example, when the contact state between the chestpiece and the auscultation target is not appropriate, it is determined that a lot of noise is mixed, and the intensity of noise cancellation is increased. On the other hand, when the contact state between the chestpiece and the auscultation target is appropriate, it is determined that there is little noise, and the intensity of noise cancellation is reduced (or the noise cancellation process is stopped).
  • volume limiting means for reducing the volume of the auscultatory sound until a predetermined period elapses after the information related to the contact is output from the output means.
  • the “predetermined period” is theoretically or experimentally determined as a period in which the impact sound is sufficiently small, and is set in advance.
  • the volume limiting means may not only reduce the volume of the auscultatory sound but also completely mute (mute).
  • FIG. 1 is an exploded perspective view showing the entire configuration of the chest piece of the stethoscope according to the embodiment.
  • FIG. 2 is sectional drawing which shows the structure of the chestpiece of the stethoscope which concerns on an Example.
  • the chest piece 100 includes an auscultatory sound sensor 110, a sensor damper 120, a contact detection sensor 130, a ring 140, a ring cover 150, and a sensor cap 160. Has been.
  • the auscultation sound sensor 110 is a sensor that can acquire auscultation sound from an auscultation target.
  • the auscultation sound sensor 110 is configured, for example, as a vibration sensor, and is configured to output the acquired auscultation sound as an auscultation sound signal.
  • the auscultatory sound sensor 110 is disposed at a substantially central position on the chest piece via the sensor damper 120.
  • the auscultation sound sensor 110 is a specific example of “auscultation sound acquisition unit”.
  • the contact detection sensor 130 is a sensor that can detect contact with an auscultation target.
  • the contact detection sensor 130 is configured as a pressure sensor, for example, and configured to output a signal indicating the presence or absence of contact according to the detected pressure.
  • a plurality of contact detection sensors 130 are arranged around the auscultatory sound sensor 110. A specific layout of the contact detection sensor 130 will be described in detail later.
  • the contact detection sensor 130 is a specific example of a “contact detection unit”.
  • the auscultation sound sensor 110 and the contact detection sensor 130 described above are supported by a ring 140 that is a casing. Moreover, the ring cover 150 is attached so that the area
  • positioned may be covered. Furthermore, a sensor cap 160 that covers an area where the auscultation sound sensor 110 and the contact detection sensor 130 are arranged is attached from above the ring cover 150. Since the sensor cap 160 directly touches the auscultation target, it is preferable that the sensor cap 160 can be easily replaced, for example, from the viewpoint of hygiene.
  • FIG. 3 is an exploded perspective view showing the overall configuration of the chestpiece of the stethoscope according to the modification.
  • FIG. 4 is sectional drawing which shows the structure of the chestpiece of the stethoscope which concerns on a modification.
  • the chest piece 1100 according to the modification includes an auscultation sound sensor 1110, a sensor damper 1120, a contact detection sensor 1130, a body 1140, a ring 1150, and a sensor cap 1160. Yes.
  • the chest piece 1110 according to the modified example is different from the chest piece 100 according to the present embodiment described in FIGS. 1 and 2 in that the ring cover 150 is not provided. Further, in the chest piece 1110 according to the modified example, the ring 140 is replaced with bodies 1140 and 1150.
  • the position of the contact detection sensor 1130 is further changed. Specifically, unlike the chest piece 100 according to the present embodiment, the ring cover 150 does not directly press the contact detection sensor 130 (that is, applies pressure), but the pressure applied to the auscultation sound sensor 1110 is a sensor damper. It is configured to be added to the contact detection sensor 1130 via 1120.
  • the assemblability is improved as compared with the chest piece 100 according to the present embodiment.
  • the contact detection sensor 1130 is disposed at a location where it cannot be easily touched, it is advantageous for cleaning using, for example, alcohol cotton or measures against static electricity.
  • the sensor damper 1120 assumes the function of the ring cover 150, the number of parts is reduced.
  • the sensor damper 1120 holding the auscultation sound sensor 1110 applies pressure to the contact detection sensor 1130, the contact state of the auscultation sound sensor 1110 can be transmitted to the contact detection sensor 1130 more accurately.
  • the chest piece 100 according to the present embodiment but the same applies to the chest piece 1110 according to the modification. That is, if the contact detection sensor 1130 according to the modification is arranged like the contact detection sensor 130 according to the following embodiment, the same effect can be obtained.
  • FIG. 5 is a plan view showing the configuration of the contact detection sensor according to the first embodiment.
  • each of the contact detection sensors 130 ⁇ / b> A, 130 ⁇ / b> B, 130 ⁇ / b> C, and 130 ⁇ / b> D is configured to be able to output a contact detection signal to the contact determination unit 210.
  • the contact detection sensors 130A and 130C are configured as a paired sensor.
  • the contact detection sensors 130B and 130D are configured as a paired sensor. That is, the one set of sensors is a specific example of “contact detection pair”.
  • Each of the contact detection sensors 130A, 130B, 130C, and 130D includes a virtual line that connects the contact detection sensors 130A and 130C and a virtual line that connects the contact detection sensors 130B and 130D. It arrange
  • FIG. 6 is a table showing determination logic by the contact detection sensor according to the first embodiment.
  • the chest piece 100 is It is determined that it is correctly pressed against the auscultation target. Specifically, if the contact detection sensors 130A and 130C that make a pair both detect contact (that is, the ON state), it is determined that the chestpiece 100 is correctly pressed against the auscultation target. . Similarly, if both the contact detection sensors 130B and 130D that make a pair detect contact, it is determined that the chestpiece 100 is correctly pressed against the auscultation target. When contact determination is made in at least one pair, it is determined that the chest piece 100 is correctly pressed against the auscultation target regardless of the detection state of other sensors.
  • the chestpiece 100 is correctly pressed against the auscultation target even if contact is detected by other sensors. do not do. Specifically, for example, even if both the contact detection sensors 130A and 130B detect contact, if the contact detection sensors 130C and 130D do not detect contact, the chestpiece 100 Is not correctly pressed against the subject of auscultation.
  • the auscultation sound of the auscultation target can be acquired very suitably.
  • FIG. 7 is a plan view showing the configuration of the contact detection sensor according to the second embodiment.
  • three contact detection sensors 130 are arranged around the auscultatory sound sensor 110.
  • a contact detection sensor 130A is arranged in the upward direction
  • a contact detection sensor 130B in the lower right direction
  • a contact detection sensor 130C in the lower left direction.
  • Each of the contact detection sensors 130A, 130B, and 130C is configured to be able to output a contact detection signal to the contact determination unit 210.
  • each of the contact detection sensors 130A, 130B, and 130C includes a virtual line that connects the contact detection sensors 130A and 130B, a virtual line that connects the contact detection sensors 130B and 130C, and the contact detection sensors 130C and 130A.
  • the triangle formed by the virtual line connecting the two is arranged so as to overlap the central portion of the auscultatory sound sensor 110 (that is, the central portion of the auscultatory sound sensor 110 is included inside the triangle). If arranged in this way, it can be suitably determined whether or not the chestpiece 100 is correctly pressed against the auscultation target using the contact detection signals output from each of the contact detection sensors 130A, 130B, and 130C.
  • FIG. 8 is a table showing determination logic by the contact detection sensor according to the second embodiment.
  • the polygon formed by the contact detection sensor 130 that detects contact includes the central portion of the auscultation sound sensor 110.
  • the contact detection sensor 130 that detects contact in order for the contact detection sensor 130 that detects contact to form a polygon, it is required that contact is detected in all of the contact detection sensors 130A, 130B, and 130C. For this reason, it is determined that the chest piece 100 is correctly pressed against the auscultation object only when contact is detected in all of the contact detection sensors 130A, 130B, and 130C.
  • the contact detection sensor 130 that detects the contact does not form a polygon. Therefore, when contact is not detected by at least one of the contact detection sensors 130A, 130B, and 130C, it is not determined that the chestpiece 100 is correctly pressed against the auscultation target.
  • the chestpiece 100 is in contact with the auscultation target is determined, not whether or not the auscultation target is in a correct state in which the auscultation sound can be appropriately acquired. Can be judged. Therefore, the auscultation sound of the auscultation target can be acquired very suitably.
  • FIG. 9 is a plan view showing the configuration of the contact detection sensor according to the third embodiment.
  • five contact detection sensors 130 are arranged around the auscultatory sound sensor 110.
  • the contact detection sensor 130A is upward
  • the contact detection sensor 130B is right
  • the contact detection sensor 130C is lower right
  • the contact detection sensor 130D is lower left
  • Contact detection sensors 130E are respectively arranged in the directions.
  • Each of the contact detection sensors 130 ⁇ / b> A, 130 ⁇ / b> B, 130 ⁇ / b> C, 130 ⁇ / b> D, and 130 ⁇ / b> E is configured to be able to output a contact detection signal to the contact determination unit 210.
  • each of the contact detection sensors 130A, 130B, 130C, 130D, and 130E includes at least one of a plurality of polygons (that is, a triangle, a quadrangle, or a pentagon) that can be formed with a virtual line connecting each other as one side.
  • Some polygons are arranged so as to overlap the central portion of the auscultatory sound sensor 110 (that is, the central portion of the auscultatory sound sensor 110 is included inside the polygon). If arranged in this way, it is preferable whether or not the chestpiece 100 is correctly pressed against the auscultation target using the contact detection signals output from each of the contact detection sensors 130A, 130B, 130C, 130D, and 130E. Can be determined.
  • FIG. 10 is a table showing determination logic by the contact detection sensor according to the third embodiment.
  • the polygon formed by the contact detection sensor 130 that detects contact includes the central portion of the auscultation sound sensor 110.
  • the triangle ABC does not include the central portion of the auscultation sound sensor 110, so the chest piece 100 is correctly pressed against the auscultation target. Not determined to be. That is, even when contact is detected by three or more contact detection sensors 130, if the central portion of the auscultation sound sensor 110 is not included in the formed polygon, the chest piece 100 is set as an auscultation target. It is not determined to be correctly pressed. Even when the number of contact detection sensors 130 for which contact is detected is two or less, since the polygon is not formed, it is not determined that the chestpiece 100 is correctly pressed against the auscultation target.
  • the chestpiece 100 is in contact with the auscultation target is determined, not whether or not the auscultation target is in a correct state in which the auscultation sound can be appropriately acquired. Can be judged. Therefore, the auscultation sound of the auscultation target can be acquired very suitably.
  • FIG. 11 is a plan view showing the configuration of the contact detection sensor according to the fourth embodiment.
  • FIG. 11 six contact detection sensors 130 according to the fourth embodiment are arranged around the auscultation sound sensor 110.
  • the contact detection sensor 130A is upward
  • the contact detection sensor 130B is upper right
  • the contact detection sensor 130C is lower right
  • the contact detection sensor 130D is lower
  • the lower left A contact detection sensor 130E is arranged in the direction
  • a contact detection sensor 130F is arranged in the upper left direction.
  • Each of the contact detection sensors 130A, 130B, 130C, 130D, 130E, and 130F is configured to be able to output a contact detection signal to the contact determination unit 210.
  • the contact detection sensors 130A and 130D are configured as a pair of sensors.
  • the contact detection sensors 130B and 130E and the contact detection sensors 130C and 130F are also configured as a pair of sensors. That is, the one set of sensors is a specific example of “contact detection pair”.
  • Each of the contact detection sensors 130A, 130B, 130C, 130D, 130E, and 130F includes a virtual line that connects the contact detection sensors 130A and 130D, a virtual line that connects the contact detection sensors 130B and 130E, and contact detection.
  • a virtual line connecting the sensors 130 ⁇ / b> C and 130 ⁇ / b> F is arranged so as to intersect at the central portion of the auscultatory sound sensor 110.
  • each of the contact detection sensors 130A, 130B, 130C, 130D, 130E, and 130F has a plurality of polygons (that is, a triangle, a quadrangle, a pentagon, or a polygon that can be formed with a virtual line connecting each other as one side. Hexagonal shape is arranged so that at least a part of the polygon overlaps the central portion of the auscultation sound sensor 110 (that is, the central portion of the auscultation sound sensor 110 is included inside the polygon). .
  • FIG. 12 is a table (No. 1) showing determination logic by the contact detection sensor according to the fourth embodiment.
  • FIG. 13 is a table (No. 2) showing determination logic by the contact detection sensor according to the fourth embodiment.
  • the contact is detected by both two sensors out of the six contact detection sensors 130A, 130B, 130C, 130D, 130E, and 130F. If it is detected, it is determined that the chestpiece 100 is correctly pressed against the auscultation target. Specifically, if the contact detection sensors 130A and 130D that make a pair both detect contact (that is, the ON state), it is determined that the chestpiece 100 is correctly pressed against the auscultation target. . Similarly, if the contact detection sensors 130B and 130E that make a pair detect contact, or the contact detection sensors 130C and 130F that make a pair detect contact, the chestpiece 100 Is correctly pressed against the auscultation target. When contact determination is made in at least one pair, it is determined that the chest piece 100 is correctly pressed against the auscultation target regardless of the detection state of other sensors.
  • the polygon formed by the contact detection sensor 130 that detects contact is the auscultation sound sensor 110.
  • the center portion is included, it is determined that the chestpiece 100 is correctly pressed against the auscultation target.
  • the contact detection sensors 130A, 130C, and 130E since the center portion of the auscultation sound sensor 110 is included in the triangle ACE, the chest piece 100 is correctly pressed against the auscultation target.
  • the triangle ABC does not include the central portion of the auscultation sound sensor 110, so the chest piece 100 is correctly pressed against the auscultation target. Not determined to be. That is, even when contact is detected by three or more contact detection sensors 130, if the central portion of the auscultation sound sensor 110 is not included in the formed polygon, the chest piece 100 is set as an auscultation target. It is not determined to be correctly pressed. Even when the number of contact detection sensors 130 for which contact is detected is two or less, since the polygon is not formed, it is not determined that the chestpiece 100 is correctly pressed against the auscultation target.
  • the auscultation sound of the auscultation target can be acquired very suitably.
  • the contact detection sensor 130 is disposed at an appropriate position, it is possible to suitably determine the contact state with the auscultation target.
  • the arrangement examples of the first to fourth embodiments described above are merely examples, and the contact detection sensors 130 are arranged so that the line connecting the paired contact detection sensors 130 intersects with the auscultation sound sensor 110 or the contact detection sensors 130 are connected to each other. If it is a case where at least a part of the plurality of polygons that can be formed with a connecting virtual line as one side is arranged so as to overlap the central portion of the auscultation sound sensor 110, the above-described determination logic is used.
  • the contact state can be suitably determined by using it.
  • FIG. 14 is a block diagram showing a configuration related to noise cancellation processing.
  • FIG. 15 is a flowchart showing the flow of noise cancellation processing.
  • the sensor signal output from the contact detection sensor 130 (that is, the contact detection signal) is input to the contact determination unit 210. Yes.
  • the contact determination unit 210 determines whether or not the chestpiece 100 is correctly in contact with the auscultation target based on the contact detection signal, and outputs the determination result as a contact detection signal.
  • the contact detection signal output from the contact determination unit 210 is input to the strength adjustment unit 220.
  • the intensity adjustment unit 220 outputs an intensity adjustment signal for adjusting the intensity of the noise cancellation process based on the contact determination result indicated by the contact detection signal.
  • the strength adjustment unit 220 is a specific example of “adjustment unit”.
  • the intensity adjustment signal output from the intensity adjustment unit 220 is input to the noise cancellation processing unit 230.
  • the noise cancellation processing unit 230 is also configured to receive a sensor signal output from the auscultatory sound sensor 110 (that is, an auscultatory sound signal).
  • the noise cancellation processing unit 230 performs noise cancellation processing on the auscultation sound signal with an intensity corresponding to the intensity adjustment signal, and outputs the result.
  • the noise cancellation processing unit 230 is a specific example of “noise cancellation unit”.
  • a contact detection signal is acquired from the contact detection sensor 130 (step S101).
  • the contact determination unit 210 determines whether or not the chestpiece 100 is correctly in contact with the auscultation target (step S102).
  • step S102 when it is determined that the chestpiece 100 is in proper contact with the auscultation target (step S102: YES), it can be determined that the noise included in the auscultation sound signal is reduced. For this reason, the intensity adjustment unit 220 outputs an intensity adjustment signal that weakens the noise cancellation process (step S103). Thereby, the intensity
  • step S102 determines that the chestpiece 100 is correctly in contact with the auscultation target (step S102: NO)
  • a large amount of external sound may be collected, so noise included in the auscultation sound signal Can be judged to increase.
  • the intensity adjustment unit 220 outputs an intensity adjustment signal that enhances the noise cancellation process (step S104).
  • the strength of the noise cancellation processing executed by the noise cancellation processing unit 230 is increased, and a clear auscultatory sound can be output even when there is a lot of noise.
  • FIG. 16 is a block diagram showing a configuration related to the mute process.
  • FIG. 17 is a flowchart showing the flow of mute processing.
  • FIG. 18 is a time chart showing an operation example during the mute process.
  • the sensor signal output from the contact detection sensor 130 (that is, the contact detection signal) is input to the contact determination unit 210. Yes.
  • the contact determination unit 210 determines whether or not the chestpiece 100 is correctly in contact with the auscultation target based on the contact detection signal, and outputs the determination result as a contact detection signal.
  • the contact detection signal output from the contact determination unit 210 is input to the mute control unit 240.
  • the mute controller 240 outputs a mute control signal for switching ON / OFF of the mute process based on the contact determination result indicated by the contact detection signal.
  • the mute control signal output from the mute controller 240 is input to the mute processor 250.
  • the mute processing unit 250 is also configured to receive a sensor signal output from the auscultatory sound sensor 110 (ie, an auscultatory sound signal).
  • the mute processing unit 250 performs a mute process corresponding to the mute control signal on the auscultation sound signal and outputs the result.
  • the mute processing unit 250 is a specific example of “volume limiter”.
  • a contact detection signal is first acquired from the contact detection sensor 130 (step S201).
  • the contact determination unit 210 determines whether or not the chestpiece 100 is correctly in contact with the auscultation target (step S202).
  • step S202 when it is not determined that the chestpiece 100 is correctly in contact with the auscultation target (step S202: NO), it can be determined that there is a possibility that an impact sound at the time of contact may be output. For this reason, the mute controller 240 outputs a mute control signal for turning on the mute process (step S203). As a result, the auscultation sound is muted in the mute processing unit 240, and the discomfort caused by the impact sound at the time of contact can be reduced. In the mute process, the auscultatory sound may not be completely muted, but the auscultatory sound may be reduced and output.
  • step S102 when it is determined that the chestpiece 100 is correctly in contact with the auscultation target (step S102: YES), it can be determined that the possibility that a new impact sound is generated is low. For this reason, the mute controller 240 outputs a mute control signal that turns off the mute process after a predetermined period has elapsed (step S204: YES) (step S205). As a result, the mute processing unit 240 does not execute the mute process and starts outputting auscultatory sounds.
  • the impact sound at the time of contact is detected not only at the moment of contact between the chestpiece 100 and the auscultation target, but also attenuated for a while after that. For this reason, if contact is detected and the mute process is turned off at the same time, an auscultatory sound including an impact sound may be output.
  • the mute process is turned off after a predetermined period after the contact is detected. Therefore, the output of the auscultation sound is started after the impact sound disappears. In this way, if the predetermined period is set based on the decay time of the impact sound, it is possible to more suitably reduce discomfort due to the impact sound.
  • the auscultation sound of the auscultation target can be acquired very suitably.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification, and a stethoscope with such a change is also applicable. Moreover, it is included in the technical scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

 聴診器は、チェストピース(100)に配置されており、聴診対象から聴診音を取得する聴診音取得部(110)と、聴診対象との接触を検出する2つの接触検出部(130)を有する複数の接触検出対とを備える。複数の接触検出対は、2つの接触検出部を結ぶ仮想的な線が、聴診音取得部と重なる領域において互いに交わるように、チェストピースに配置されている。これにより、聴診対象との接触を好適に検出することが可能である。従って、極めて好適に聴診対象の聴診音を取得することができる。

Description

聴診器
 本発明は、聴診対象から聴診音を取得する聴診器の技術分野に関する。
 この種の装置として、例えば聴診対象との接触状態を検出可能なものが知られている。例えば特許文献1では、静電容量変化や機械的スイッチを利用して聴診対象との接触を検出する電子聴診器が開示されている。また特許文献2では、チェストピースに複数の電極を配置し、電極間のインピーダンスを利用して接触対象との接触を検出する電子聴診器が開示されている。
特開昭60-261439号公報 特表2010-534098号公報
 しかしながら、上述した特許文献1に記載されているような聴診器では、接触の有無しか検出できないため、チェストピースが聴診対象に正しく押し当てられているか(即ち、聴診音を適切に取得できるような接触状態であるか)を判断することができないという技術的問題点が生ずる。また特許文献2では、隣り合う電極で接触を判定しているため、チェストピースが傾いて聴診対象に接触している場合であっても、正しく接触していると検出されてしまうという技術的問題点が生ずる。特許文献2では更に、聴診音を取得する部分に検出電極を形成しているため、感度や周波数特性が損なわれてしまうという技術的問題点も生ずる。
 本発明が解決しようとする課題には上記のようなものが一例として挙げられる。本発明は、聴診対象との接触状態を適切に検出可能な聴診器を提供することを課題とする。
 上記課題を解決するための第1の聴診器は、チェストピースに配置されており、聴診対象から聴診音を取得する聴診音取得部と、前記聴診対象との接触を検出する2つの接触検出部を有する複数の接触検出対とを備え、前記複数の接触検出対は、前記2つの接触検出部を結ぶ仮想的な線が、前記聴診音取得部と重なる領域において互いに交わるように、前記チェストピースに配置されている。
 上記課題を解決するための第2の聴診器は、チェストピースに配置されており、聴診対象から聴診音を取得する聴診音取得部と、前記聴診対象との接触を検出する少なくとも3つの接触検出部とを備え、前記接触検出部は、互いを結ぶ仮想的な線を1つの辺とする多角形と、前記聴診音取得部の中心部分とが平面的に重なるように、前記チェストピースに配置されている。
実施例に係る聴診器のチェストピースの全体構成を示す分解斜視図である。 実施例に係る聴診器のチェストピースの構成を示す断面図である。 変形例に係る聴診器のチェストピースの全体構成を示す分解斜視図である。 変形例に係る聴診器のチェストピースの構成を示す断面図である。 第1実施例に係る接触検出センサの構成を示す平面図である。 第1実施例に係る接触検出センサによる判定ロジックを示す表である。 第2実施例に係る接触検出センサの構成を示す平面図である。 第2実施例に係る接触検出センサによる判定ロジックを示す表である。 第3実施例に係る接触検出センサの構成を示す平面図である。 第3実施例に係る接触検出センサによる判定ロジックを示す表である。 第4実施例に係る接触検出センサの構成を示す平面図である。 第4実施例に係る接触検出センサによる判定ロジックを示す表(その1)である。 第1実施例に係る接触検出センサによる判定ロジックを示す表(その2)である。 ノイズキャンセル処理に関連する構成を示すブロック図である。 ノイズキャンセル処理の流れを示すフローチャートである。 ミュート処理に関連する構成を示すブロック図である。 ミュート処理の流れを示すフローチャートである。 ミュート処理時の動作例を示すタイムチャートである。
 <1>
 本実施形態に係る第1の聴診器は、チェストピースに配置されており、聴診対象から聴診音を取得する聴診音取得部と、前記聴診対象との接触を検出する2つの接触検出部を有する複数の接触検出対とを備え、前記複数の接触検出対は、前記2つの接触検出部を結ぶ仮想的な線が、前記聴診音取得部と重なる領域において互いに交わるように、前記チェストピースに配置されている。
 本実施形態に係る第1の聴診器の動作時には、チェストピースが聴診対象に押し当てられ、聴診音取得部において聴診音(即ち、聴診対象が発する音)が取得される。なお、ここでの「聴診対象」は、典型的には生体(より具体的には、医療機関等の患者等)であるが、生体以外(例えば、配管等)であっても構わない。
 聴診音を取得する際には、チェストピースが聴診対象に正しく押し当てられているか否かを判断するために、複数の接触検出対により接触対象との接触が検出される。接触検出対は、2つの接触検出部を有しており、接触検出部の各々が別個に接触を検出可能とされている。接触検出部は、例えば圧力センサや、静電容量方式のセンサ、電気抵抗方式のセンサ、機械的スイッチ等として構成される。
 ここで本実施形態では特に、チェストピースを平面的に見て、複数の接触検出対の各々における2つの接触検出部を結ぶ仮想的な線が、聴診音取得部と重なる領域において互いに交わるように、聴診音取得部及び複数の接触検出対が配置されている。具体的には、複数の接触検出対の各々において、2つの接触検出部は聴診音取得部を挟んで対向する位置にそれぞれ配置される。なお、接触検出対が2つである場合には、2つの接触検出部を結ぶ線は直交することが好ましい。また、接触検出対が3つ以上である場合には、2つの接触検出部を結ぶ線が1つの点で交わることが好ましい。
 上述したように配置された接触検出対によれば、チェストピースが聴診対象に傾いて押し当てられている場合には、一方の接触検出部のみでしか接触が検出されない。一方で、チェストピースが聴診対象に正しく押し当てられている場合には、両方の接触検出部において接触が検出される。よって、複数の接触検出対における2つの接触検出部の検出判定から、チェストピースが聴診対象に正しく押し当てられているか否か(即ち、聴診音を適切に取得可能な状態であるか否か)を正確に検出することが可能である。
 以上説明したように、本実施形態に係る第1の聴診器によれば、聴診対象との接触を好適に検出することが可能である。従って、極めて好適に聴診対象の聴診音を取得することができる。なお、本実施形態の効果は、聴診対象が凹凸を有しているような場合において顕著に発揮される。
 <2>
 本実施形態に係る第1の聴診器の一態様では、前記複数の接触検出対は、前記2つの接触検出部を結ぶ仮想的な線が、前記聴診音取得部の中心部分において互いに交わるように、前記チェストピースに配置されている。
 この態様によれば、聴診音取得部の中心部分が聴診対象に正しく押し当てられているか否かを正確に検出できる。なお、ここでの「中心部分」とは、聴診音取得部の中心に位置する部分を意味するだけでなく、聴診音を取得する際に最も正しく押し当てられることが要求される部分を意味する。よって、本態様に係る聴診器によれば、より好適に聴診音を取得することができる。
 <3>
 本実施形態に係る第1の聴診器の他の態様では、前記複数の接触検出対のうち、少なくとも1つで接触が検出された場合に、前記チェストピースと前記聴診対象との接触に関する情報を出力する出力手段を更に備える。
 この態様によれば、出力手段から出力される接触に関する情報を利用して、より好適に聴診音を取得することが可能となる。なお、ここでの「接触に関する情報」とは、単に接触の有無を示す情報に限られず、例えば接触の程度を段階的に示す情報であってもよい。この場合、例えば1つの接触検出対で接触が検出されている場合よりも、2つ以上の接触検出対で接触が検出されている場合の方が、より適切に聴診対象に接触していると判断するようにすればよい。
 <4>
 本実施形態に係る第2の聴診器は、チェストピースに配置されており、聴診対象から聴診音を取得する聴診音取得部と、前記聴診対象との接触を検出する少なくとも3つの接触検出部とを備え、前記接触検出部は、互いを結ぶ仮想的な線を1つの辺とする多角形と、前記聴診音取得部の中心部分とが平面的に重なるように、前記チェストピースに配置されている。
 本実施形態に係る第2の聴診器の動作時には、上述した第1の聴診器と同様に、チェストピースが聴診対象に押し当てられ、聴診音取得部において聴診音が取得される。聴診音を取得する際には、チェストピースが聴診対象に正しく押し当てられているか否かを判断するために、少なくとも3つの接触検出部により接触対象との接触が検出される。
 ここで本実施形態では特に、チェストピースを平面的に見て、接触検出部同士を結ぶ仮想的な線を1つの辺とする多角形と、前記聴診音取得部の中心部分とが平面的に重なるように、聴診音取得部及び複数の接触検出対が配置されている。具体的には、複数の接触検出部は聴診音取得部を囲むようにそれぞれ配置される。なお、接触検出部同士を結ぶ仮想的な線を1つの辺とする多角形は、正多角形となることが好ましい。また、多角形を形成する接触検出部の組が、1つの聴診音取得部に対して複数存在していてもよい。
 上述したように配置された接触検出部によれば、チェストピースが聴診対象に傾いて押し当てられている場合には、多角形を形成する接触検出部の一部でしか接触が検出されない。一方で、チェストピースが聴診対象に正しく押し当てられている場合には、多角形を形成する接触検出部の全部において接触が検出される。よって、接触検出部の各々における検出判定から、チェストピースが聴診対象に正しく押し当てられているか否か(即ち、聴診音を適切に取得可能な状態であるか否か)を正確に検出することが可能である。
 以上説明したように、本実施形態に係る第2の聴診器によれば、聴診対象との接触を好適に検出することが可能である。従って、極めて好適に聴診対象の聴診音を取得することができる。なお、本実施形態の効果は、聴診対象が凹凸を有しているような場合において顕著に発揮される。
 <5>
 本実施形態に係る第2の聴診器の一態様では、前記多角形を形成する前記接触検出部の全部で接触が検出された場合に、前記チェストピースと前記聴診対象との接触に関する情報を出力する出力手段を更に備える。
 この態様によれば、出力手段から出力される接触に関する情報を利用して、より好適に聴診音を取得することが可能となる。なお、ここでの「接触に関する情報」とは、単に接触の有無を示す情報に限られず、例えば接触の程度を段階的に示す情報であってもよい。この場合、例えば1つの多角形を形成する接触検出部の組でのみ接触が検出されている場合よりも、2つ以上の多角形を形成する接触検出部の組で接触が検出されている場合の方が、より適切に聴診対象に接触していると判断するようにすればよい。
 <6>
 本実施形態に係る第1及び第2の聴診器の一態様では、前記接触検出部は、前記聴診対象からの圧力により接触を検出する。
 この態様によれば、例えば静電容量方式のセンサや電気抵抗方式のセンサ等と比べて、接触検出部間の距離を離して配置することができる。このため、接触検出部と聴診音取得部とが重なることにより、感度や周波数特性の点で不利となってしまうことを回避できる。また、製造コストの低減を図ることも可能である。
 <7>
 本実施形態に係る第1及び第2の聴診器の一態様では、前記聴診音におけるノイズを低減するノイズキャンセル処理を実行可能なノイズキャンセル手段と、前記出力手段から出力された前記接触に関する情報に基づいて、前記ノイズキャンセル処理の強度を調整する調整手段とを更に備える。
 この態様によれば、聴診音取得部で取得された聴診音には、ノイズキャンセル手段でノイズキャンセル処理が施される。ノイズキャンセル処理を行う場合には、調整手段によりノイズキャンセル処理の強度が調整される。より具体的には、調整手段は、出力手段から出力された接触に関する情報に基づいて、ノイズキャンセル処理の強度を調整する。例えば、チェストピースと聴診対象との接触状態が適切でない場合には、ノイズが多く混在していると判断し、ノイズキャンセルの強度を高くする。一方で、チェストピースと聴診対象との接触状態が適切である場合には、ノイズが少ないと判断し、ノイズキャンセルの強度を低くする(或いは、ノイズキャンセル処理を停止する)。
 上述したように、接触に関する情報を利用すれば、聴診音に含まれるノイズの大小を判断し、適切な強度でノイズキャンセル処理を実行することができる。従って、より高品質な聴診音を出力することが可能となる。
 <8>
 本実施形態に係る第1及び第2の聴診器の一態様では、前記出力手段から前記接触に関する情報が出力されてから所定期間が経過するまで、前記聴診音の音量を小さくする音量制限手段を更に備える。
 この態様によれば、最初にチェストピースを聴診対象に接触させた際の衝撃音を小さくすることができるため、聴診器の使用者の不快感を低減できる。なお、ここでの「所定期間」とは、衝撃音が十分に小さくなるような期間として理論的又は実験的に求められ、予め設定されている。音量制限手段は、聴診音の音量を小さくするだけでなく、完全にミュート(消音)するようにしてもよい。
 本実施形態に係る聴診器の作用及び他の利得については、以下に示す実施例において、より詳細に説明する。
 以下では、図面を参照して聴診器の実施例について詳細に説明する。
 <全体構成>
 先ず、図1及び図2を参照して、本実施例に係る聴診器が有するチェストピースの全体構成について説明する。ここに図1は、実施例に係る聴診器のチェストピースの全体構成を示す分解斜視図である。また図2は、実施例に係る聴診器のチェストピースの構成を示す断面図である。
 図1及び図2において、本実施例に係るチェストピース100は、聴診音センサ110と、センサダンパ120と、接触検出センサ130と、リング140と、リングカバー150と、センサキャップ160とを備えて構成されている。
 聴診音センサ110は、聴診対象から聴診音を取得可能なセンサである。聴診音センサ110は、例えば振動センサとして構成されており、取得した聴診音を聴診音信号として出力可能に構成されている。聴診音センサ110は、センサダンパ120を介して、チェストピース上の概ね中心位置に配置されている。聴診音センサ110は、「聴診音取得部」の一具体例である。
 接触検出センサ130は、聴診対象との接触を検出可能なセンサである。接触検出センサ130は、例えば圧力センサとして構成されており、検出された圧力に応じて接触の有無を示す信号を出力可能に構成されている。接触検出センサ130は、聴診音センサ110の周囲に複数配置されている。なお、接触検出センサ130の具体的なレイアウトについては後に詳述する。接触検出センサ130は、「接触検出部」の一具体例である。
 上述した聴診音センサ110及び接触検出センサ130は、筐体であるリング140に支持されている。また、接触検出センサ130が配置されている領域を覆うように、リングカバー150が取り付けられている。更に、リングカバー150の上から、聴診音センサ110及び接触検出センサ130が配置される領域を覆うセンサキャップ160が取り付けられている。センサキャップ160は、聴診対象に直接触れるものであるため、例えば衛生上の観点から容易に取り替え可能であることが好ましい。
 次に、図3及び図4を参照して、変形例に係る聴診器が有するチェストピースの全体構成について説明する。ここに図3は、変形例に係る聴診器のチェストピースの全体構成を示す分解斜視図である。また図4は、変形例に係る聴診器のチェストピースの構成を示す断面図である。
 図3及び図4において、変形例に係るチェストピース1100は、聴診音センサ1110と、センサダンパ1120と、接触検出センサ1130と、ボディー1140と、リング1150と、センサキャップ1160とを備えて構成されている。
 変形例に係るチェストピース1110は、図1及び図2で説明した本実施例に係るチェストピース100と比較した場合、リングカバー150を備えていない点が異なる。また、変形例に係るチェストピース1110では、リング140がボディー1140及び1150に置き換えられている。
 変形例に係るチェストピース1110では更に、接触検出センサ1130の位置が変更されている。具体的には、本実施例に係るチェストピース100のように、リングカバー150が接触検出センサ130を直接押す(即ち、圧力を加える)のではなく、聴診音センサ1110に加えられた圧力がセンサダンパ1120を介して接触検出センサ1130に加えられる構成となっている。
 変形例に係るチェストピース1110によれば、本実施例に係るチェストピース100と比較して、組立性が向上する。また、接触検出センサ1130が容易に触れられない箇所に配置されているため、例えばアルコール綿等を利用した清掃や静電気対策に有利である。加えて、リングカバー150の機能をセンサダンパ1120が担うため、部品点数が減っている。更に、聴診音センサ1110を保持しているセンサダンパ1120が接触検出センサ1130に圧力を加えるため、聴診音センサ1110の接触状態を、より正確に接触検出センサ1130に伝えることができる。
 なお、以降の説明は、本実施例に係るチェストピース100について行うが、変形例に係るチェストピース1110についても同様である。即ち、変形例に係る接触検出センサ1130を、以降の本実施例に係る接触検出センサ130のように配置すれば、同様の効果を得ることができる。
 <接触検出センサの構成>
 以下では、図5から図13を参照しながら、接触検出センサ130の構成(レイアウト)及び接触判定ロジックについて、複数の実施例を挙げて説明する。
 <第1実施例>
 第1実施例に係る接触検出センサの配置例について、図5を参照して説明する。ここに図5は、第1実施例に係る接触検出センサの構成を示す平面図である。
 図5において、第1実施例に係る接触検出センサ130は、聴診音センサ110の周囲に4つ配置されている。具体的には、図中の聴診音センサ110から見て、上方向に接触検出センサ130A、右方向に接触検出センサ130B、下方向に接触検出センサ130C、左方向に接触検出センサ130Dがそれぞれ配置されている。接触検出センサ130A、130B、130C及び130Dの各々は、接触判定部210に接触検出信号を出力可能に構成されている。
 ここで特に、接触検出センサ130Aと130Cとは対をなすセンサとして構成されている。同様に、接触検出センサ130Bと130Dとは対をなすセンサとして構成されている。即ち、これら1組のセンサは、「接触検出対」の一具体例である。そして、接触検出センサ130A、130B、130C及び130Dの各々は、接触検出センサ130A及び130Cを結ぶ仮想的な線と、接触検出センサ130B及び130Dを結ぶ仮想的な線とが、聴診音センサ110の中心部分において直交するように配置されている。このように配置すれば、接触検出センサ130A、130B、130C及び130Dの各々から出力される接触検出信号を利用して、チェストピース100が聴診対象に正しく押し当てられているか否かを好適に判定できる。
 以下では、第1実施例に係る接触検出センサ130を利用した判定ロジックについて、図6を参照して具体的に説明する。ここに図6は、第1実施例に係る接触検出センサによる判定ロジックを示す表である。
 図6に示すように、第1実施例では、4つの接触検出センサ130A、130B、130C及び130Dのうち、対をなす2つのセンサの両方で接触が検出されている場合に、チェストピース100が聴診対象に正しく押し当てられていると判定する。具体的には、対をなす接触検出センサ130A及び130Cがいずれも接触を検出している状態(即ち、ON状態)であれば、チェストピース100が聴診対象に正しく押し当てられていると判定する。同様に、対をなす接触検出センサ130B及び130Dがいずれも接触を検出している状態であれば、チェストピース100が聴診対象に正しく押し当てられていると判定する。なお、少なくとも1つの対において接触判定されるような場合には、その他のセンサの検出状態は問わずに、チェストピース100が聴診対象に正しく押し当てられていると判定する。
 一方で、対をなす2つのセンサの両方で接触が検出されていない場合には、その他のセンサで接触が検出されていても、チェストピース100が聴診対象に正しく押し当てられているとは判定しない。具体的には、例えば接触検出センサ130A及び130Bがいずれも接触を検出している状態であっても、接触検出センサ130C及び130Dがいずれも接触を検出していない状態であれば、チェストピース100が聴診対象に正しく押し当てられているとは判定しない。
 上述した判定ロジックを利用すれば、単にチェストピース100が聴診対象に接触しているか否かではなく、聴診音を適切に取得することが可能な正しい状態で(例えば、傾きのない状態で)聴診対象に接触しているか否かを判定できる。従って、極めて好適に聴診対象の聴診音を取得することができる。
 <第2実施例>
 次に、第2実施例に係る接触検出センサの配置例について、図7を参照して説明する。ここに図7は、第2実施例に係る接触検出センサの構成を示す平面図である。
 図7において、第2実施例に係る接触検出センサ130は、聴診音センサ110の周囲に3つ配置されている。具体的には、図中の聴診音センサ110から見て、上方向に接触検出センサ130A、右下方向に接触検出センサ130B、左下方向に接触検出センサ130Cがそれぞれ配置されている。接触検出センサ130A、130B及び130Cの各々は、接触判定部210に接触検出信号を出力可能に構成されている。
 ここで特に、接触検出センサ130A、130B及び130Cの各々は、接触検出センサ130A及び130Bを結ぶ仮想的な線と、接触検出センサ130B及び130Cを結ぶ仮想的な線と、接触検出センサ130C及び130Aを結ぶ仮想的な線とによって形成される三角形が、聴診音センサ110の中心部分と重なるように(即ち、三角形の内部に聴診音センサ110の中心部分が含まれるように)配置されている。このように配置すれば、接触検出センサ130A、130B及び130Cの各々から出力される接触検出信号を利用して、チェストピース100が聴診対象に正しく押し当てられているか否かを好適に判定できる。
 以下では、第2実施例に係る接触検出センサ130を利用した判定ロジックについて、図8を参照して具体的に説明する。ここに図8は、第2実施例に係る接触検出センサによる判定ロジックを示す表である。
 図8に示すように、第2実施例では、接触を検出している(即ち、ON状態である)接触検出センサ130が形成する多角形が、聴診音センサ110の中心部分を含んでいる場合に、チェストピース100が聴診対象に正しく押し当てられていると判定する。なお、第2実施例では、接触を検出している接触検出センサ130が多角形を形成するためには、接触検出センサ130A、130B及び130Cの全てにおいて接触が検出されることが要求される。このため、接触検出センサ130A、130B及び130Cの全てにおいて接触が検出される場合にのみ、チェストピース100が聴診対象に正しく押し当てられていると判定される。
 一方で、接触検出センサ130A、130B及び130Cのうち、少なくとも1つで接触が検出されない場合には、接触を検出している接触検出センサ130が多角形を形成しない。よって、接触検出センサ130A、130B及び130Cのうち、少なくとも1つで接触が検出されない場合には、チェストピース100が聴診対象に正しく押し当てられているとは判定しない。
 上述した判定ロジックを利用すれば、単にチェストピース100が聴診対象に接触しているか否かではなく、聴診音を適切に取得することが可能な正しい状態で聴診対象に接触しているか否かを判定できる。従って、極めて好適に聴診対象の聴診音を取得することができる。
 <第3実施例>
 次に、第2実施例に係る接触検出センサの配置例について、図9を参照して説明する。ここに図9は、第3実施例に係る接触検出センサの構成を示す平面図である。
 図9において、第3実施例に係る接触検出センサ130は、聴診音センサ110の周囲に5つ配置されている。具体的には、図中の聴診音センサ110から見て、上方向に接触検出センサ130A、右方向に接触検出センサ130B、右下方向に接触検出センサ130C、左下方向に接触検出センサ130D、左方向に接触検出センサ130Eがそれぞれ配置されている。接触検出センサ130A、130B、130C、130D及び130Eの各々は、接触判定部210に接触検出信号を出力可能に構成されている。
 ここで特に、接触検出センサ130A、130B、130C、130D及び130Eの各々は、互いを結ぶ仮想的な線を一辺として形成され得る複数の多角形(即ち、三角形、四角形又は五角形)のうち、少なくとも一部の多角形が、聴診音センサ110の中心部分と重なるように(即ち、多角形の内部に聴診音センサ110の中心部分が含まれるように)配置されている。このように配置すれば、接触検出センサ130A、130B、130C、130D及び130Eの各々から出力される接触検出信号を利用して、チェストピース100が聴診対象に正しく押し当てられているか否かを好適に判定できる。
 以下では、第3実施例に係る接触検出センサ130を利用した判定ロジックについて、図10を参照して具体的に説明する。ここに図10は、第3実施例に係る接触検出センサによる判定ロジックを示す表である。
 図10に示すように、第3実施例では、接触を検出している(即ち、ON状態である)接触検出センサ130が形成する多角形が、聴診音センサ110の中心部分を含んでいる場合に、チェストピース100が聴診対象に正しく押し当てられていると判定する。具体的には、接触検出センサ130A、130C及び130Dにおいて接触が検出されている場合には、三角形ACDに聴診音センサ110の中心部分が含まれるため、チェストピース100が聴診対象に正しく押し当てられていると判定される。同様に、接触検出センサ130B、130D及び130Eにおいて接触が検出されている場合、接触検出センサ130A、130C及び130Eにおいて接触が検出されている場合、接触検出センサ130A、130B及び130Dにおいて接触が検出されている場合、接触検出センサ130B、130C及び130Eにおいて接触が検出されている場合にも、チェストピース100が聴診対象に正しく押し当てられていると判定される。
 一方で、例えば接触検出センサ130A、130B及び130Cにおいて接触が検出されている場合、三角形ABCには聴診音センサ110の中心部分が含まれないため、チェストピース100が聴診対象に正しく押し当てられていると判定されない。即ち、3つ以上の接触検出センサ130において接触が検出されている場合であっても、形成される多角形に聴診音センサ110の中心部分が含まれない場合は、チェストピース100が聴診対象に正しく押し当てられていると判定されない。なお、接触が検出されている接触検出センサ130が2つ以下である場合にも、多角形が形成されないため、チェストピース100が聴診対象に正しく押し当てられていると判定されない。
 上述した判定ロジックを利用すれば、単にチェストピース100が聴診対象に接触しているか否かではなく、聴診音を適切に取得することが可能な正しい状態で聴診対象に接触しているか否かを判定できる。従って、極めて好適に聴診対象の聴診音を取得することができる。
 <第4実施例>
 次に、第4実施例に係る接触検出センサの配置例について、図11を参照して説明する。ここに図11は、第4実施例に係る接触検出センサの構成を示す平面図である。
 図11において、第4実施例に係る接触検出センサ130は、聴診音センサ110の周囲に6つ配置されている。具体的には、図中の聴診音センサ110から見て、上方向に接触検出センサ130A、右上方向に接触検出センサ130B、右下方向に接触検出センサ130C、下方向に接触検出センサ130D、左下方向に接触検出センサ130E、左上方向に接触検出センサ130Fがそれぞれ配置されている。接触検出センサ130A、130B、130C、130D、130E及び130Fの各々は、接触判定部210に接触検出信号を出力可能に構成されている。
 ここで特に、接触検出センサ130A及び130Dは対をなすセンサとして構成されている。同様に、接触検出センサ130B及び130E、接触検出センサ130C及び130Fも対をなすセンサとして構成されている。即ち、これら1組のセンサは、「接触検出対」の一具体例である。そして、接触検出センサ130A、130B、130C、130D、130E及び130Fの各々は、接触検出センサ130A及び130Dを結ぶ仮想的な線と、接触検出センサ130B及び130Eを結ぶ仮想的な線と、接触検出センサ130C及び130Fを結ぶ仮想的な線とが、聴診音センサ110の中心部分において交わるように配置されている。
 本実施例では更に、接触検出センサ130A、130B、130C、130D、130E及び130Fの各々は、互いを結ぶ仮想的な線を一辺として形成され得る複数の多角形(即ち、三角形、四角形、五角形又は六角形)のうち、少なくとも一部の多角形が、聴診音センサ110の中心部分と重なるように(即ち、多角形の内部に聴診音センサ110の中心部分が含まれるように)配置されている。
 このように配置すれば、接触検出センサ130A、130B、130C、130D、130E及び130Fの各々から出力される接触検出信号を利用して、チェストピース100が聴診対象に正しく押し当てられているか否かを好適に判定できる。また本実施例では特に、2つの判定ロジックを選択的に利用して接触を判定することが可能である。
 以下では、第4実施例に係る接触検出センサ130を利用した判定ロジックについて、図12及び図13を参照して具体的に説明する。ここに図12は、第4実施例に係る接触検出センサによる判定ロジックを示す表(その1)である。また図13は、第4実施例に係る接触検出センサによる判定ロジックを示す表(その2)である。
 図12に示すように、第4実施例の1つ目の判定ロジックでは、6つの接触検出センサ130A、130B、130C、130D、130E及び130Fのうち、対をなす2つのセンサの両方で接触が検出されている場合に、チェストピース100が聴診対象に正しく押し当てられていると判定する。具体的には、対をなす接触検出センサ130A及び130Dがいずれも接触を検出している状態(即ち、ON状態)であれば、チェストピース100が聴診対象に正しく押し当てられていると判定する。同様に、対をなす接触検出センサ130B及び130Eがいずれも接触を検出している状態、或いは対をなす接触検出センサ130C及び130Fがいずれも接触を検出している状態であれば、チェストピース100が聴診対象に正しく押し当てられていると判定する。なお、少なくとも1つの対において接触判定されるような場合には、その他のセンサの検出状態は問わずに、チェストピース100が聴診対象に正しく押し当てられていると判定する。
 一方で、対をなす2つのセンサの両方で接触が検出されていない場合には、その他のセンサで接触が検出されていても、チェストピース100が聴診対象に正しく押し当てられているとは判定しない。具体的には、例えば接触検出センサ130A、130B及び130Cがいずれも接触を検出している状態であっても、接触検出センサ130D、130E及び130Fがいずれも接触を検出していない状態であれば、チェストピース100が聴診対象に正しく押し当てられているとは判定しない。
 図13に示すように、第4実施例の2つ目の判定ロジックでは、接触を検出している(即ち、ON状態である)接触検出センサ130が形成する多角形が、聴診音センサ110の中心部分を含んでいる場合に、チェストピース100が聴診対象に正しく押し当てられていると判定する。具体的には、接触検出センサ130A、130C及び130Eにおいて接触が検出されている場合には、三角形ACEに聴診音センサ110の中心部分が含まれるため、チェストピース100が聴診対象に正しく押し当てられていると判定される。同様に、接触検出センサ130B、130D及び130Fにおいて接触が検出されている場合、接触検出センサ130A、130B、130D及び130Eにおいて接触が検出されている場合、接触検出センサ130B、130C、130E及び130Fにおいて接触が検出されている場合、接触検出センサ130A、130C、130D及び130Fにおいて接触が検出されている場合にも、チェストピース100が聴診対象に正しく押し当てられていると判定される。
 一方で、例えば接触検出センサ130A、130B及び130Cにおいて接触が検出されている場合、三角形ABCには聴診音センサ110の中心部分が含まれないため、チェストピース100が聴診対象に正しく押し当てられていると判定されない。即ち、3つ以上の接触検出センサ130において接触が検出されている場合であっても、形成される多角形に聴診音センサ110の中心部分が含まれない場合は、チェストピース100が聴診対象に正しく押し当てられていると判定されない。なお、接触が検出されている接触検出センサ130が2つ以下である場合にも、多角形が形成されないため、チェストピース100が聴診対象に正しく押し当てられていると判定されない。
 上述した2種類の判定ロジックを利用すれば、単にチェストピース100が聴診対象に接触しているか否かではなく、聴診音を適切に取得することが可能な正しい状態で聴診対象に接触しているか否かを判定できる。従って、極めて好適に聴診対象の聴診音を取得することができる。
 以上のように、本実施例に係る聴診器では、接触検出センサ130を適切な位置に配置しているため、好適に聴診対象との接触状態を判定することができる。なお、上述した第1から第4実施例の配置例はあくまで一例であり、対をなす接触検出センサ130を結ぶ線が聴診音センサ110と重なる領域で交わるように、或いは接触検出センサ130同士を結ぶ仮想的な線を一辺として形成され得る複数の多角形のうち、少なくとも一部の多角形が、聴診音センサ110の中心部分と重なるように配置される場合であれば、上述した判定ロジックを利用して好適に接触状態を判定できる。
 <ノイズキャンセル処理>
 次に、図14及び12を参照して、本実施例に係る聴診器で実行されるノイズキャンセル処理について説明する。ここに図14は、ノイズキャンセル処理に関連する構成を示すブロック図である。また図15は、ノイズキャンセル処理の流れを示すフローチャートである。
 図14において、本実施例に係る聴診器では、既に説明したように、接触検出センサ130から出力されたセンサ信号(即ち、接触検出信号)が、接触判定部210に入力される構成となっている。接触判定部210は、接触検出信号に基づいて、チェストピース100が聴診対象に正しく接触しているか否かを判定し、判定結果を接触検出信号として出力する。
 接触判定部210から出力された接触検出信号は、強度調整部220に入力される構成となっている。強度調整部220は、接触検出信号が示す接触判定結果に基づいて、ノイズキャンセル処理の強度を調整するための強度調整信号を出力する。なお、強度調整部220は、「調整手段」の一具体例である。
 強度調整部220から出力された強度調整信号は、ノイズキャンセル処理部230に入力される構成となっている。また、ノイズキャンセル処理部230には、聴診音センサ110から出力されたセンサ信号(即ち、聴診音信号)も入力される構成となっている。ノイズキャンセル処理部230は、聴診音信号に対して、強度調整信号に応じた強度でノイズキャンセル処理を施して出力する。なお、ノイズキャンセル処理部230は、「ノイズキャンセル手段」の一具体例である。
 図15において、本実施例に係る聴診器による聴診音取得時には、先ず接触検出センサ130から接触検出信号が取得される(ステップS101)。接触検出信号が取得されると、接触判定部210において、チェストピース100が聴診対象に正しく接触しているか否かが判定される(ステップS102)。
 ここで、チェストピース100が聴診対象に正しく接触していると判定された場合(ステップS102:YES)、聴診音信号に含まれるノイズは少なくなると判断できる。このため、強度調整部220は、ノイズキャンセル処理を弱くするような強度調整信号を出力する(ステップS103)。これにより、ノイズキャンセル処理部230で実行されるノイズキャンセル処理の強度は弱くなり、過度なノイズキャンセル処理により音質が悪化してしまうことを抑制することができる。なお、ノイズキャンセル処理の強度を弱めるのではなく、ノイズキャンセル処理を停止するようにしてもよい。
 他方で、チェストピース100が聴診対象に正しく接触していると判定されない場合(ステップS102:NO)、例えば外部からの音を多く集音してしまうおそれがあるため、聴診音信号に含まれるノイズは多くなると判断できる。このため、強度調整部220は、ノイズキャンセル処理を強くするような強度調整信号を出力する(ステップS104)。これにより、ノイズキャンセル処理部230で実行されるノイズキャンセル処理の強度は強くなり、ノイズが多い場合であっても、鮮明な聴診音を出力することができる。
 <ミュート処理>
 次に、図16から図18を参照して、本実施例に係る聴診器で実行されるミュート処理について説明する。ここに図16はミュート処理に関連する構成を示すブロック図である。また図17は、ミュート処理の流れを示すフローチャートである。更に図18は、ミュート処理時の動作例を示すタイムチャートである。
 図16において、本実施例に係る聴診器では、既に説明したように、接触検出センサ130から出力されたセンサ信号(即ち、接触検出信号)が、接触判定部210に入力される構成となっている。接触判定部210は、接触検出信号に基づいて、チェストピース100が聴診対象に正しく接触しているか否かを判定し、判定結果を接触検出信号として出力する。
 接触判定部210から出力された接触検出信号は、ミュート制御部240に入力される構成となっている。ミュート制御部240は、接触検出信号が示す接触判定結果に基づいて、ミュート処理のON/OFFを切り替えるためのミュート制御信号を出力する。
 ミュート制御部240から出力されたミュート制御信号は、ミュート処理部250に入力される構成となっている。また、ミュート処理部250には、聴診音センサ110から出力されたセンサ信号(即ち、聴診音信号)も入力される構成となっている。ミュート処理部250は、聴診音信号に対して、ミュート制御信号に応じたミュート処理を施して出力する。なお、ミュート処理部250は、「音量制限手段」の一具体例である。
 図17において、本実施例に係る聴診器の使用開始時(即ち、チェストピース100を聴診対象に初めて接触させる際)には、先ず接触検出センサ130から接触検出信号が取得される(ステップS201)。接触検出信号が取得されると、接触判定部210において、チェストピース100が聴診対象に正しく接触しているか否かが判定される(ステップS202)。
 ここで、チェストピース100が聴診対象に正しく接触していると判定されない場合(ステップS202:NO)、接触時の衝撃音が出力される可能性があると判断できる。このため、ミュート制御部240は、ミュート処理をONとするミュート制御信号を出力する(ステップS203)。これにより、ミュート処理部240では聴診音がミュートされ、接触時の衝撃音に起因する不快感を低減することができる。なお、ミュート処理では、聴診音を完全に消音するのではなく、聴診音を小さくして出力するようにしてもよい。
 他方で、チェストピース100が聴診対象に正しく接触していると判定される場合(ステップS102:YES)、新たに衝撃音が発生する可能性は低いと判断できる。このため、ミュート制御部240は、所定期間の経過後(ステップS204:YES)、ミュート処理をOFFとするようなミュート制御信号を出力する(ステップS205)。これにより、ミュート処理部240ではミュート処理が実行されなくなり、聴診音の出力が開始される。
 図18に示すように、接触時の衝撃音は、チェストピース100と聴診対象との接触の瞬間だけでなく、その後もしばらく減衰しながら検出される。このため、仮に接触が検出されると同時にミュート処理をOFFにしてしまうと、衝撃音が含まれる聴診音が出力されてしまうおそれがある。
 これに対し本実施例では、上述したように、接触が検出されてから所定期間後にミュート処理がOFFとされる。よって、聴診音は、衝撃音が消えてから出力開始されることになる。このように、衝撃音の減衰時間に基づいて所定期間を設定しておけば、より好適に衝撃音による不快感を低減することが可能である。
 以上説明したように、本実施例に係る聴診器によれば、聴診対象との接触を好適に検出することが可能である。従って、極めて好適に聴診対象の聴診音を取得することができる。
 本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う聴診器もまた本発明の技術的範囲に含まれるものである。
 100 チェストピース
 110 聴診音センサ
 120 センサダンパ
 130 接触検出センサ
 140 リング
 150 リングカバー
 160 センサキャップ
 210 接触判定部
 220 強度調整部
 230 ノイズキャンセル処理部
 240 ミュート制御部
 250 ミュート処理部
 1100 チェストピース
 1110 聴診音センサ
 1120 センサダンパ
 1130 接触検出センサ
 1140 ボディー
 1150 リング
 1160 センサキャップ

Claims (8)

  1.  チェストピースに配置されており、聴診対象から聴診音を取得する聴診音取得部と、
     前記聴診対象との接触を検出する2つの接触検出部を有する複数の接触検出対と
     を備え、
     前記複数の接触検出対は、前記2つの接触検出部を結ぶ仮想的な線が、前記聴診音取得部と重なる領域において互いに交わるように、前記チェストピースに配置されている
     ことを特徴とする聴診器。
  2.  前記複数の接触検出対は、前記2つの接触検出部を結ぶ仮想的な線が、前記聴診音取得部の中心部分において互いに交わるように、前記チェストピースに配置されていることを特徴とする請求項1に記載の聴診器。
  3.  前記複数の接触検出対のうち、少なくとも1つで接触が検出された場合に、前記チェストピースと前記聴診対象との接触に関する情報を出力する出力手段を更に備えることを特徴とする請求項1又は2に記載の聴診器。
  4.  チェストピースに配置されており、聴診対象から聴診音を取得する聴診音取得部と、
     前記聴診対象との接触を検出する少なくとも3つの接触検出部と
     を備え、
     前記接触検出部は、互いを結ぶ仮想的な線を1つの辺とする多角形と、前記聴診音取得部の中心部分とが平面的に重なるように、前記チェストピースに配置されている
     ことを特徴とする聴診器。
  5.  前記多角形を形成する前記接触検出部の全部で接触が検出された場合に、前記チェストピースと前記聴診対象との接触に関する情報を出力する出力手段を更に備えることを特徴とする請求項4に記載の聴診器。
  6.  前記接触検出部は、前記聴診対象からの圧力により接触を検出することを特徴とする請求項1から5のいずれか一項に記載の聴診器。
  7.  前記聴診音におけるノイズを低減するノイズキャンセル処理を実行可能なノイズキャンセル手段と、
     前記出力手段から出力された前記接触に関する情報に基づいて、前記ノイズキャンセル処理の強度を調整する調整手段と
     を更に備えることを特徴とする請求項1から6のいずれか一項に記載の聴診器。
  8.  前記出力手段から前記接触に関する情報が出力されてから所定期間が経過するまで、前記聴診音の音量を小さくする音量制限手段を更に備えることを特徴とする請求項1から7のいずれか一項に記載の聴診器。
PCT/JP2015/057288 2015-03-12 2015-03-12 聴診器 WO2016143116A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017504520A JP6396575B2 (ja) 2015-03-12 2015-03-12 聴診器
PCT/JP2015/057288 WO2016143116A1 (ja) 2015-03-12 2015-03-12 聴診器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057288 WO2016143116A1 (ja) 2015-03-12 2015-03-12 聴診器

Publications (1)

Publication Number Publication Date
WO2016143116A1 true WO2016143116A1 (ja) 2016-09-15

Family

ID=56878626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057288 WO2016143116A1 (ja) 2015-03-12 2015-03-12 聴診器

Country Status (2)

Country Link
JP (1) JP6396575B2 (ja)
WO (1) WO2016143116A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159752A1 (ja) * 2016-03-18 2017-09-21 Ami株式会社 聴診器
JP2017170112A (ja) * 2016-03-18 2017-09-28 Ami株式会社 聴診器
JP2017175335A (ja) * 2016-03-23 2017-09-28 パイオニア株式会社 振動検出装置
JP2018102849A (ja) * 2016-12-28 2018-07-05 オムロンヘルスケア株式会社 生体音測定装置
WO2019203097A1 (ja) * 2018-04-18 2019-10-24 オムロンヘルスケア株式会社 生体音測定装置、生体音測定支援方法、生体音測定支援プログラム
WO2019240118A1 (ja) * 2018-06-15 2019-12-19 パイオニア株式会社 音取得装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220079548A1 (en) * 2019-01-10 2022-03-17 3M Innovative Properties Company Electronic stethoscope with volume adjustment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1024033A (ja) * 1996-07-10 1998-01-27 Hitachi Ltd 電気聴診器
JP2013219532A (ja) * 2012-04-09 2013-10-24 Foster Electric Co Ltd 振動検出装置
JP2015020030A (ja) * 2013-07-23 2015-02-02 シャープ株式会社 生体音収集装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1024033A (ja) * 1996-07-10 1998-01-27 Hitachi Ltd 電気聴診器
JP2013219532A (ja) * 2012-04-09 2013-10-24 Foster Electric Co Ltd 振動検出装置
JP2015020030A (ja) * 2013-07-23 2015-02-02 シャープ株式会社 生体音収集装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159752A1 (ja) * 2016-03-18 2017-09-21 Ami株式会社 聴診器
JP2017170112A (ja) * 2016-03-18 2017-09-28 Ami株式会社 聴診器
JP2017175335A (ja) * 2016-03-23 2017-09-28 パイオニア株式会社 振動検出装置
JP2018102849A (ja) * 2016-12-28 2018-07-05 オムロンヘルスケア株式会社 生体音測定装置
WO2019203097A1 (ja) * 2018-04-18 2019-10-24 オムロンヘルスケア株式会社 生体音測定装置、生体音測定支援方法、生体音測定支援プログラム
JP2019187528A (ja) * 2018-04-18 2019-10-31 オムロンヘルスケア株式会社 生体音測定装置、生体音測定支援方法、生体音測定支援プログラム
JP7073879B2 (ja) 2018-04-18 2022-05-24 オムロンヘルスケア株式会社 生体音測定装置、生体音測定支援方法、生体音測定支援プログラム
WO2019240118A1 (ja) * 2018-06-15 2019-12-19 パイオニア株式会社 音取得装置
JPWO2019240118A1 (ja) * 2018-06-15 2021-07-26 パイオニア株式会社 音取得装置
JP7112489B2 (ja) 2018-06-15 2022-08-03 エア・ウォーター・バイオデザイン株式会社 音取得装置

Also Published As

Publication number Publication date
JPWO2016143116A1 (ja) 2017-11-02
JP6396575B2 (ja) 2018-09-26

Similar Documents

Publication Publication Date Title
JP6396575B2 (ja) 聴診器
TWI528944B (zh) 應用於電子聽診器的疾病診斷方法
JP6073253B2 (ja) タッチスクリーンを有する技術医用装置及び方法
US9459221B2 (en) Electronic device, information processing apparatus, information processing method, and program
US20070049837A1 (en) Acoustic sensor
US10335087B2 (en) Biosignal processing apparatus and biosignal processing method
WO2015170772A2 (ja) 循環呼吸機能測定装置
WO2015012265A1 (ja) 生体音収集装置および生体音収集方法
TWI474803B (zh) 心電訊號感測模組、裝置及可與其組裝結合之電腦
JP2017176269A (ja) 生体音取得装置
JP2009279122A (ja) 状態検出装置
JP2020089400A (ja) 胎動検知装置及び胎動検知システム
US20210401404A1 (en) Ultrasound device with touch sensor
JP6010261B1 (ja) 内視鏡装置
JP7112489B2 (ja) 音取得装置
JP2014137738A (ja) 携帯型電子機器
JP7457438B2 (ja) 生体情報取得装置
SE1950682A1 (en) Ultrasonic imaging device and method for image acquisition in the ultrasonic device
JP6726007B2 (ja) 振動検出装置
JP6681740B2 (ja) 超音波診断装置及びその制御プログラム
JP7206928B2 (ja) 生体音測定装置
JP2024027214A (ja) 電子機器
WO2023162992A1 (ja) チェストピース及び聴診器
JP2017060598A (ja) シャント振動情報検出装置
Ramana Markers of HIV-1 disease progression and treatment response in highly active antiretroviral therapy (HAART) Era: A review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884606

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017504520

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884606

Country of ref document: EP

Kind code of ref document: A1