WO2016141798A1 - 一种光栅、制造方法和辐射成像装置 - Google Patents

一种光栅、制造方法和辐射成像装置 Download PDF

Info

Publication number
WO2016141798A1
WO2016141798A1 PCT/CN2016/073917 CN2016073917W WO2016141798A1 WO 2016141798 A1 WO2016141798 A1 WO 2016141798A1 CN 2016073917 W CN2016073917 W CN 2016073917W WO 2016141798 A1 WO2016141798 A1 WO 2016141798A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
piece
grating
sheet
gap
Prior art date
Application number
PCT/CN2016/073917
Other languages
English (en)
French (fr)
Inventor
张丽
张金宇
洪明志
黄清萍
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Publication of WO2016141798A1 publication Critical patent/WO2016141798A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens

Definitions

  • the invention relates to a grating, a manufacturing method and a radiation imaging device, and belongs to the technical field of radiation imaging.
  • a grating is an instrument that measures on the basis of grid line distance. According to the principle of forming moire fringes, it can be divided into geometric grating (amplitude grating) and diffraction grating (phase grating).
  • the grating measurement of micron and submicron is a geometric grating.
  • the grating pitch is 100 ⁇ m to 20 ⁇ m, which is much larger than the wavelength of the light source.
  • the diffraction phenomenon can be neglected. When the two gratings move relative to each other, the low frequency beat phenomenon forms Moiré.
  • the principle of measurement is called the principle of imaging.
  • the nano-scale grating measurement uses a diffraction grating. At present, the grating pitch is 8 ⁇ m or 4 ⁇ m.
  • the width of the gate line is close to the wavelength of the light, and diffraction and interference phenomena are formed to form moiré fringes.
  • the measurement principle is called the interference principle.
  • the grating includes a light transmitting portion (hereinafter may be simply referred to as "grid gap”) and a light shielding portion (hereinafter may be simply referred to as "grid”), whereby the light emitted thereto is divided and formed into a plurality of light beams.
  • grid gap a light transmitting portion
  • grid shielding portion hereinafter may be simply referred to as "grid”
  • the diffraction grating diffracts light from the source grating and forms an interference pattern according to the Talbot effect.
  • a light detector detects light from the diffraction grating.
  • the filled heavy metal portion (grid) of the X-ray absorption grating absorbs X-rays, and the other part of the grating (grid gap)
  • the absorption grating and the ordinary grating X-ray source together form an X-ray source having one-dimensional spatial coherence.
  • the existing grating fabrication methods mainly include mechanical scribing, laser holography, and electron beam direct writing.
  • Mechanical scribing conditions are extremely demanding, not only for long time but also with low precision, difficult production, and it is difficult to scribe sub-micron lines.
  • electron beam direct writing nanoscale high-resolution graphics can be produced, but the efficiency is very low, and high-aspect ratio graphics cannot be produced.
  • laser holography can produce gratings with a deep submicron level, the control precision is high, the cost is high, and the productivity is low.
  • the technical problem to be solved by the invention is to solve the problem that the prior art grating adopts chemical corrosion molding, the molding efficiency is low cost, and the grating gap obtained by physical molding is large.
  • the present invention provides a grating, a manufacturing method, and a radiation imaging apparatus.
  • the invention provides a grating comprising:
  • first grid piece having a plurality of grids and a second grid piece identical to the first grid piece;
  • the first grid piece is superimposed with the second grid piece of the grid, and the grid of the first grid piece is parallel to the grid of the second grid piece;
  • the first grid piece and the second grid piece are misaligned along the width direction of the grid, and the grid of the first grid piece does not completely block the grid gap of the second grid piece .
  • the grid width of the first grid piece is the same as the grid gap width.
  • the grid of the first grid piece blocks half of the grid gap of the second grid piece.
  • the grid gap width of the first grid piece is three times the grid width of the first grid piece.
  • the first grid piece and the second grid piece are offset by 2 grid widths along the width direction of the grid.
  • the grid is a plurality of ribs disposed on a side of the first grid sheet perpendicular to a plane of the grid sheet.
  • the first grid piece has a side of the grid adjacent to a side of the second grid piece having a grid, and the grid of the first grid piece is located on the second grid. In the grid gap of the slice.
  • connection pad is disposed between the first grid piece and the second grid piece.
  • the present invention provides a grating manufacturing method comprising the following steps:
  • the first grid piece and the second grid piece are misaligned along the width direction of the grid, and the grid of the first grid piece is parallel to the grid of the second grid piece; Having the grid of the first grid sheet not completely obscure the grid gap of the second grid sheet.
  • the present invention also provides a radiation imaging apparatus to which the above-described grating is applied.
  • the grating, the manufacturing method and the radiation imaging device provided by the invention form a grid piece with a wide gap by using a mechanical processing method, and combine two pieces of the grid pieces in a superposition manner to form a grating with a reduced gap.
  • the invention realizes the processing of the grating by the physical forming process, reduces the machining precision requirement and the difficulty, thereby greatly reducing the cost and shortening the production cycle.
  • FIG. 1 is a schematic view showing the structure of a grating according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of a grating according to a second embodiment of the present invention.
  • Figure 3 is a schematic view showing the structure of a grating according to a third embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a first grid sheet according to Embodiment 1 of the present invention.
  • Figure 5 is a schematic structural view of a second grid sheet according to Embodiment 1 of the present invention.
  • Figure 6 is a schematic view showing the structure of a grating of Embodiment 1 of the present invention.
  • FIG. 7 is a schematic structural view of a first grid sheet according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic structural view of a second grid sheet according to Embodiment 2 of the present invention.
  • Figure 9 is a schematic view showing the structure of a grating of Embodiment 2 of the present invention.
  • Figure 10 is a schematic structural view of a first grid sheet according to Embodiment 3 of the present invention.
  • FIG. 11 is a schematic structural view of a first grid sheet according to Embodiment 3 of the present invention.
  • Figure 12 is a schematic structural view of a second grid sheet according to Embodiment 3 of the present invention.
  • Figure 13 is a schematic diagram of a grating assembly of Embodiment 3 of the present invention.
  • Figure 14 is a schematic diagram of a grating assembly of Embodiment 4 of the present invention.
  • Figure 15 is a schematic structural view of a first grid sheet according to Embodiment 5 of the present invention.
  • Figure 16 is a schematic structural view of a second grid sheet according to Embodiment 5 of the present invention.
  • FIG. 17 is a schematic view showing the through holes of the first and second grid sheets according to Embodiment 5 of the present invention.
  • Figure 18 is a schematic view showing the grating combination of Embodiment 5 of the present invention.
  • the present invention provides a grating comprising: a first grid piece provided with a plurality of grids and a second grid piece identical to the first grid piece; the first grid piece Superimposing with the second grid piece of the grid, the grid of the first grid piece is parallel to the grid of the second grid piece; the first grid piece and the second grid piece are misaligned along the width direction of the grid, A grid of grid sheets does not completely obscure the grid gap of the second grid piece.
  • the grating provided by the present invention will be described in detail below in conjunction with a plurality of embodiments.
  • the embodiment provides a grating, including: a first grid sheet 1 and a second grid sheet 2. Since the first grid piece 1 is identical to the second grid piece 2, the width of the grid 11 of the first grid piece 1 is the same as the width of the grid 21 of the second grid piece 2, and the grid of the first grid piece 1 The gap 12 is the same as the grid gap 22 of the second grid piece 2. As shown in FIG. 4, the width of the grid 11 of the first grid sheet 1 is the same as the width of the grid gap 12. Therefore, as shown in FIG. 5, the width of the grid 21 of the second grid piece 2 is the same as the width of the grid gap 21.
  • the first grid sheet 1 of FIG. 4 is superimposed with the grid second grid sheet 2 of FIG. 5 to form a grating as shown in FIG.
  • the grid 11 of the first grid piece 1 is parallel to the grid 21 of the second grid piece 2; the first grid piece 1 and the second grid piece 2 are displaced along the width direction of the grids 21, 22, The grid 11 of a grid sheet 1 does not completely obscure the grid gap 22 of the second grid sheet 2.
  • the grating formed by the first grid piece 1 and the second grid piece 2 is left with a slit through which the rays pass.
  • the gap formed by the grating formed by the first grid piece 1 and the second grid piece 2 for the passage of rays is exactly half of the grids 11, 21 or the grid gaps 12, 22.
  • this embodiment is basically the same as Embodiment 1, except that in the present embodiment, the width of the grid 11 of the first grid sheet 1 is 1/3 of the width of the grid gap 12. Similarly, as shown in FIG. 8, the width of the grid 21 of the second grid piece 2 is 1/3 of the width of the grid gap 22.
  • the first grid sheet 1 of FIG. 7 is superimposed with the grid second grid sheet 2 of FIG. 8 to form a grating as shown in FIG.
  • the grid 11 of the first grid piece 1 is parallel to the grid 21 of the second grid piece 2; the first grid piece 1 and the second grid piece 2 are displaced along the width direction of the grids 21, 22, The grid 11 of a grid sheet 1 does not completely obscure the grid gap 22 of the second grid sheet 2.
  • the grating formed by the first grid piece 1 and the second grid piece 2 is left with a slit through which the rays pass.
  • the grid 21 of the first grid piece 1 blocks the second grid. 1/3 of the grid gap 22 of the patch 2.
  • the grid 11 of the first grid piece 1 and the grid 22 of the second grid piece 2 are left for the passage of rays.
  • the gap width is exactly the width of the grid 11, 21.
  • the embodiment provides a grating including: a first grid sheet 1 and a second grid sheet 2 .
  • the grid 11 is a plurality of ribs disposed on a side of the first grid sheet 1 perpendicular to the plane of the first grid sheet 1, and the through holes between the ribs form a grid gap 12. Since the first grid piece 1 is identical to the second grid piece 2, the grid on the second grid piece 2 is also disposed on the side of the second grid piece 2 perpendicular to the plane of the second grid piece 2. Ribs.
  • the width of the grid 11 of the first grid piece 1 is the same as the width of the grid 21 of the second grid piece 2, and the grid gap 12 of the first grid piece 1 is the same as the grid gap 22 of the second grid piece 2.
  • the width of the grid 11 of the first grid sheet 1 is the same as the width of the grid gap 12. Therefore, as shown in FIG. 12, the width of the grid 21 of the second grid piece 2 is the same as the width of the grid gap 21.
  • the first grid piece 1 of Fig. 11 and the second grid piece 2 of Fig. 12 are superimposed in the manner shown in Fig. 13 to form a grating as shown in Fig. 1.
  • the grid 11 of the first grid piece 1 is parallel to the grid 21 of the second grid piece 2; the first grid piece 1 and the second grid piece 2 are displaced along the width direction of the grids 21, 22, The grid 11 of a grid sheet 1 does not completely obscure the grid gap 22 of the second grid sheet 2.
  • the grating formed by the first grid piece 1 and the second grid piece 2 is left with a slit through which the rays pass.
  • the first grid piece 1 and the second grid piece 2 are misaligned in the width direction of the grids 21, 22, it is preferable to miss half of the width of the grids 11, 21, that is, the grid 21 of the first grid piece 1 is occluded.
  • the gap formed by the grating formed by the first grid piece 1 and the second grid piece 2 for the passage of rays is exactly half of the grids 11, 21 or the grid gaps 12, 22.
  • FIG. 1 and FIG. 13 when the first grid piece 1 and the second grid piece 2 are stacked, the first grid piece 1 has a side of the grid 11 away from the second grid piece 2 and has a grid. One side of the grid 21 is superimposed. As shown in FIG.
  • the width of the grid 11 of the first grid sheet 1 is not the same as the width of the grid gap 12 , and it should be understood that other first grids can be implemented.
  • the present invention can be implemented by the arrangement in which the grid 11 of the sheet 1 does not completely obscure the grid gap 22 of the second grid sheet 2.
  • the width of the grid 11 of the first grid sheet 1 can be 1/3 of the width of the grid gap 12.
  • the gap width is exactly the width of the grid 11, 21.
  • this embodiment is basically the same as the embodiment 3, except that in the embodiment, the first grid sheet 1 in FIG. 11 and the second grid sheet in FIG. 12 are used.
  • the patches 2 are superimposed in the manner shown in Fig. 14 to form a grating as shown in Fig. 2.
  • the grid 11 of the first grid piece 1 is parallel to the grid 21 of the second grid piece 2; the first grid piece 1 and the second grid piece 2 are displaced along the width direction of the grids 21, 22,
  • the grid 11 of a grid sheet 1 does not completely obscure the grid gap 22 of the second grid sheet 2.
  • the grating formed by the first grid piece 1 and the second grid piece 2 is left with a slit through which the rays pass.
  • the first grid piece 1 and the second grid piece 2 are misaligned in the width direction of the grids 21, 22, it is preferable to miss half of the width of the grids 11, 21, that is, the grid 21 of the first grid piece 1 is occluded.
  • the gap formed by the grating formed by the first grid piece 1 and the second grid piece 2 for the passage of rays is exactly half of the grids 11, 21 or the grid gaps 12, 22.
  • FIG. 2 and FIG. 14 when the first grid piece 1 and the second grid piece 2 are superposed, the first grid piece 1 has a side of the grid 11 away from the second grid piece 2 and has a grid. One side of the grid 21 is superimposed. As shown in FIG. 2, FIG.
  • the width of the grid 11 of the first grid piece 1 is the same as the width of the grid gap 12, it should be understood that other can be realized.
  • the present invention can be implemented by the scheme in which the grid 11 of the first grid sheet 1 does not completely obscure the grid gap 22 of the second grid sheet 2.
  • the width of the grid 11 of the first grid sheet 1 may be 1/3 of the width of the grid gap 12.
  • the grid 11 of the first grid piece 1 and the grid 22 of the second grid piece 2 are left for the passage of rays.
  • the gap width is exactly the width of the grid 11, 21.
  • the first grid piece 1 and the second grid piece 2 are preferably superposed in close proximity so that the grid 11 of the first grid piece 1 enters the grid gap of the second grid piece 2 In 22, the grid 21 of the second grid piece 2 is brought into the grid gap 12 of the first grid piece 1.
  • the grid 11 and the grid 21 have the same height. This structure is equivalent to an etched grating.
  • this embodiment is different from the embodiment 3 and the embodiment 4.
  • the embodiment provides a grating, including: a first grid sheet 1 and a second grid. Tile 2.
  • the grid 11 on the first grid sheet 1 is in the same plane as the first grid.
  • a long through hole is formed in the first grid sheet 1 to form a grid gap 12, and a communicating portion between the adjacent two grid gaps 12 forms a grid 11.
  • the long via structure formed on the first grid sheet 1 is as shown in FIG.
  • the width of the grid 11 of the first grid piece 1 is the same as the width of the grid 21 of the second grid piece 2, and the grid of the first grid piece 1
  • the gap 12 is the same as the grid gap 22 of the second grid piece 2.
  • the width of the grid 11 of the first grid sheet 1 is the same as the width of the grid gap 12. Therefore, as shown As shown in Fig. 16, the width of the grid 21 of the second grid piece 2 is the same as the width of the grid gap 21.
  • the first grid sheet 1 of FIG. 15 is superimposed with the second grid sheet 2 of FIG. 16 to form a grating as shown in FIG.
  • the grid 11 of the first grid piece 1 is parallel to the grid 21 of the second grid piece 2; the first grid piece 1 and the second grid piece 2 are displaced along the width direction of the grids 21, 22, The grid 11 of a grid sheet 1 does not completely obscure the grid gap 22 of the second grid sheet 2.
  • the grating formed by the first grid piece 1 and the second grid piece 2 is left with a slit through which the rays pass.
  • the present invention can be implemented by other schemes in which the grid 11 which can realize the first grid sheet 1 does not completely obscure the grid gap 22 of the second grid sheet 2.
  • the width of the grid 11 of the first grid sheet 1 can be 1/3 of the width of the grid gap 12.
  • the grid width is missed twice, that is, the grid 21 of the first grid piece 1 blocks the second grid. 1/3 of the grid gap 22 of the sheet 2.
  • the grid 11 of the first grid piece 1 and the grid 22 of the second grid piece 2 are left for the passage of rays.
  • the gap width is exactly the width of the grid 11, 21.
  • the present invention further provides a grating manufacturing method, comprising the steps of: forming a grid of equal width and a grid of equal width grid gaps on the first grid sheet; forming and the first grid a second grid piece having a completely identical grid; the first grid piece and the second grid piece are misaligned along the width direction of the grid, and the grid of the first grid piece is parallel to the grid of the second grid piece ; the grid of the first grid piece does not completely obscure the grid gap of the second grid piece.
  • the first grid piece and the second grid piece may adopt the grid piece in the first embodiment, the second embodiment, the third embodiment, and the fifth embodiment, the first grid piece and the second grid.
  • the superimposing manner of the embodiment 1 - the embodiment 5 can be adopted. After the superposition of the first grid piece and the second grid piece is completed, the first grid piece and the second grid piece are screwed to form a grating.
  • the bumps of the same length as the substrate are formed on one or two identical and parallel substrates; the wire and the protrusion of the wire cutter are made.
  • the width direction of the block is parallel, and the bump is cut in the thickness direction of the bump; the bump is cut to the long through hole.
  • the through holes are grid gaps, and the grid gaps are grids on both sides. Repeat the above steps to form multiple grids and grid gaps.
  • the second grid sheet is formed in the same manner. The first grid piece and the second grid piece are misaligned along the width direction of the grid, and the grid of the first grid piece is parallel to the grid of the second grid piece; the grid of the first grid piece is not The grid gap of the second grid piece is completely obscured.
  • holes that are vertically displaced are formed on a planar grid substrate; the electrode wires are passed through the small holes so that the electrode wires are perpendicular to the plane of the grid substrate. Cut in the width direction of the grid substrate to form a long through hole.
  • the through holes are grid gaps, and the grid gaps are grids on both sides. Repeat the above steps to form multiple grids and grid gaps.
  • the second grid sheet is formed in the same manner. The first grid piece and the second grid piece are misaligned along the width direction of the grid, and the grid of the first grid piece is parallel to the grid of the second grid piece; A grid of grid sheets does not completely obscure the grid gap of the second grid piece.
  • the grating, the manufacturing method, and the radiation imaging apparatus provided by the present invention form a grid sheet having a wider gap by using a mechanical processing method, and a combination of two grid sheets are superposed and stacked.
  • the invention realizes the processing of the grating by the physical forming process, reduces the machining precision requirement and the difficulty, thereby greatly reducing the cost and shortening the production cycle.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种光栅、制造方法和辐射成像装置,该光栅包括:设有若干个栅格(11)的第一栅格片(1)和与所述第一栅格片(1)相同的第二栅格片(2);所述第一栅格片(1)与第二栅格片(2)叠加,所述第一栅格片(1)的栅格(11)与所述第二栅格片(2)的栅格(21)平行;所述第一栅格片(1)与所述第二栅格片(2)沿所述栅格(11,21)的宽度方向上错位,所述第一栅格片(1)的栅格(11)不完全遮挡所述第二栅格片(2)的栅格间隙(22)。与现有技术相比,通过物理方式形成栅格片,将两片栅格片叠加的方式组合形成光栅。采用物理成型工艺实现了光栅的加工,从而大幅降低了成本,缩短了生产周期。

Description

一种光栅、制造方法和辐射成像装置
本申请基于申请号为201510107091.3、申请日为2015年3月11日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及一种光栅、制造方法和辐射成像装置,属于辐射成像技术领域。
背景技术
光栅是一种以栅线距离为基准进行测量的仪器。根据形成莫尔条纹原理的不同,可分为几何光栅(幅值光栅)和衍射光栅(相位光栅)。微米级和亚微米级的光栅测量是采用几何光栅,光栅栅距为100μm至20μm,远大于光源光波波长,衍射现象可以忽略,当两块光栅相对移动时产生低频拍现象形成莫尔条纹,其测量原理称为影像原理。纳米级的光栅测量是采用衍射光栅,目前光栅栅距为8μm或4μm,栅线的宽度与光的波长很接近,产生衍射和干涉现象形成莫尔条纹,其测量原理称为干涉原理。
光栅包括光线透过部(以下可简称为“栅格间隙”)和光线屏蔽部(以下可简称为“栅格”),由此发射到它的光线被分割并形成为多个光线束。这允许衍射光栅被具有空间相干性的光线束所照射。衍射光栅衍射来自源光栅的光线,并且根据Talbot效应形成干涉图案。光线检测器检测来自衍射光栅的光线。在基于光栅的X射线相衬成像系统中,需将X射线吸收光栅置于X射线源后,X射线吸收光栅的填充重金属部分(栅格)吸收X射线,而光栅的另外部分(栅格间隙)透过X射线,这样,吸收光栅与普通光栅X射线源共同构成了具有一维空间相干性的X射线源。
众所周知,随着辐射成像技术的不断发展,需要成像的精度要求越来越高,进而使成像设备所需要的元件越来越精密。例如,在辐射成像设备中对光栅的要求也越来越高。现有的光栅制作方法主要有机械刻划、激光全息光刻、电子束直写等三种。机械刻划条件极为苛刻,不仅时间长而且精度不高、生产难度大、很难刻划出亚微米的线条。利用电子束直写制作可以制作出纳米级的高分辨率图形,但是效率非常低,而且不能够制作高高宽比的图形。激光全息光刻虽然能够制作出深亚微米水平的光栅,但是控制精度较高、成本高、产能低。
发明内容
本发明要解决的技术问题是:解决现有技术中光栅采用化学腐蚀成型,成型效率低成本高,采用物理成型制得的光栅间隙大的问题。
为实现上述发明目的,本发明提供了一种光栅、制造方法和辐射成像装置。
一方面,本发明提供一种光栅,包括:
设有若干个栅格的第一栅格片和与所述第一栅格片相同的第二栅格片;
所述第一栅格片与格片第二栅格片叠加,所述第一栅格片的栅格与所述第二栅格片的栅格平行;
所述第一栅格片与所述第二栅格片沿所述栅格的宽度方向上错位,所述第一栅格片的栅格不完全遮挡所述第二栅格片的栅格间隙。
其中较优地,所述第一栅格片的栅格宽度与栅格间隙宽度相同。
其中较优地,所述第一栅格片的栅格遮挡所述第二栅格片的栅格间隙的一半。
其中较优地,所述第一栅格片的栅格间隙宽度为所述第一栅格片的栅格宽度的3倍。
其中较优地,所述第一栅格片与所述第二栅格片沿所述栅格的宽度方向上错位2个栅格宽度。
其中较优地,所述栅格是设置在所述第一栅格片一侧的垂直于栅格片所在平面的若干凸棱。
其中较优地,所述第一栅格片有栅格的一面靠近与所述第二栅格片有栅格的一面叠加,所述第一栅格片的栅格位于所述第二栅格片的栅格间隙中。
其中较优地,所述第一栅格片与所述第二栅格片之间设置有连接垫板。
另一方面,本发明提供一种光栅制造方法,包括如下步骤:
在第一栅格片上形成等宽度的栅格和等宽度的栅格间隙的若干个栅格;
形成与所述第一栅格片完全一致的第二栅格片;
所述第一栅格片与所述第二栅格片沿所述栅格的宽度方向上错位叠加,所述第一栅格片的栅格与所述第二栅格片的栅格平行;使所述第一栅格片的栅格不完全遮挡所述第二栅格片的栅格间隙。
再一方面,本发明还提供一种辐射成像装置,所述辐射成像装置应用了上述的光栅。
本发明提供的光栅、制造方法和辐射成像装置与现有技术相比,使用机械加工的方式形成缝隙较宽的栅格片,将两片栅格片错位叠加的方式组合形成缝隙减小的光栅。本发明采用物理成型工艺实现了光栅的加工,降低了机加工精度要求和难度,从而大幅降低了成本,缩短了生产周期。
附图说明
图1是本发明一种实施例光栅结构示意图;
图2是本发明第二种实施例光栅结构示意图;
图3是本发明第三种实施例光栅结构示意图;
图4是本发明实施例1第一栅格片结构示意图;
图5是本发明实施例1第二栅格片结构示意图;
图6是本发明实施例1光栅结构示意图;
图7是本发明实施例2第一栅格片结构示意图;
图8是本发明实施例2第二栅格片结构示意图;
图9是本发明实施例2光栅结构示意图;
图10是本发明实施例3第一栅格片结构示意图;
图11是本发明实施例3第一栅格片结构示意图;
图12是本发明实施例3第二栅格片结构示意图;
图13是本发明实施例3光栅组合示意图;
图14是本发明实施例4光栅组合示意图;
图15是本发明实施例5第一栅格片结构示意图;
图16是本发明实施例5第二栅格片结构示意图;
图17是本发明实施例5第一、二栅格片通孔示意图;
图18是本发明实施例5光栅组合示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
如图1-图3所示,本发明提供一种光栅,包括:设有若干个栅格的第一栅格片和与第一栅格片相同的第二栅格片;第一栅格片与格片第二栅格片叠加,第一栅格片的栅格与第二栅格片的栅格平行;第一栅格片与第二栅格片沿栅格的宽度方向上错位,第一栅格片的栅格不完全遮挡第二栅格片的栅格间隙。下面结合多个实施例对本发明提供的光栅展开详细的说明。
实施例1
如图4、图5所示,本实施例提供一种光栅,包括:第一栅格片1和第二栅格片2。由于第一栅格片1与第二栅格片2相同,第一栅格片1的栅格11宽度与第二栅格片2的栅格21宽度相同,第一栅格片1的栅格间隙12与第二栅格片2的栅格间隙22相同。如图4所示,第一栅格片1的栅格11宽度与栅格间隙12宽度相同。因此,如图5所示,第二栅格片2的栅格21宽度与栅格间隙21宽度相同。
如图6所示,将图4中的第一栅格片1与图5中的格片第二栅格片2叠加,形成如图6所示的光栅。其中第一栅格片1的栅格11与第二栅格片2的栅格21平行;第一栅格片1与第二栅格片2沿栅格21、22的宽度方向上错位,第一栅格片1的栅格11不完全遮挡第二栅格片2的栅格间隙22。最终使第一栅格片1和第二栅格片2构成的光栅留有供射线通过的缝隙。第一栅格片1与第二栅格片2沿栅格21、22的宽度方向上错位时优选错过栅格11、21宽度的一半,也就是第一栅格片1的栅格21遮挡第二栅格片2的栅格间隙22的一半。此时,第一栅格片1和第二栅格片2构成的光栅留有的供射线通过的缝隙宽度恰好是栅格11、21或栅格间隙12、22的一半。
实施例2
如图7所示,本实施例与实施例1基本相同,其区别在于,在本实施例中,第一栅格片1的栅格11宽度为栅格间隙12宽度的1/3。同样的,如图8所示,第二栅格片2的栅格21宽度为栅格间隙22宽度的1/3.
如图9所示,将图7中的第一栅格片1与图8中的格片第二栅格片2叠加,形成如图9所示的光栅。其中第一栅格片1的栅格11与第二栅格片2的栅格21平行;第一栅格片1与第二栅格片2沿栅格21、22的宽度方向上错位,第一栅格片1的栅格11不完全遮挡第二栅格片2的栅格间隙22。最终使第一栅格片1和第二栅格片2构成的光栅留有供射线通过的缝隙。第一栅格片1与第二栅格片2沿栅格21、22的宽度方向上错位时优选错过栅格宽度的二倍,也就是第一栅格片1的栅格21遮挡第二栅格片2的栅格间隙22的1/3。此时,第一栅格片1和第二栅格片2构成的光栅中,第一栅格片1的栅格11和第二栅格片2的栅格22两边留有的供射线通过的缝隙宽度恰好是栅格11、21宽度。
实施例3
如图1、图10-图13所示,本实施例提供一种光栅,包括:第一栅格片1和第二栅格片2。栅格11是设置在所述第一栅格片1一侧的垂直于第一栅格片1所在平面的若干凸棱,凸棱之间的通孔形成栅格间隙12。由于第一栅格片1与第二栅格片2相同,第二栅格片2上的栅格也是设置在第二栅格片2一侧的垂直于第二栅格片2所在平面的若干凸棱。第一栅格片1的栅格11宽度与第二栅格片2的栅格21宽度相同,第一栅格片1的栅格间隙12与第二栅格片2的栅格间隙22相同。如图10、图11所示,第一栅格片1的栅格11宽度与栅格间隙12宽度相同。因此,如图12所示,第二栅格片2的栅格21宽度与栅格间隙21宽度相同。
如图1所示,将图11中的第一栅格片1与图12中的第二栅格片2按图13所示的方式叠加,形成如图1所示的光栅。其中第一栅格片1的栅格11与第二栅格片2的栅格21平行;第一栅格片1与第二栅格片2沿栅格21、22的宽度方向上错位,第一栅格片1的栅格11不完全遮挡第二栅格片2的栅格间隙22。最终使第一栅格片1和第二栅格片2构成的光栅留有供射线通过的缝隙。第一栅格片1与第二栅格片2沿栅格21、22的宽度方向上错位时优选错过栅格11、21宽度的一半,也就是第一栅格片1的栅格21遮挡第二栅格片2的栅格间隙22的一半。此时,第一栅格片1和第二栅格片2构成的光栅留有的供射线通过的缝隙宽度恰好是栅格11、21或栅格间隙12、22的一半。在图1、图13中,第一栅格片1与第二栅格片2叠加时,所述第一栅格片1有栅格11的一面远离与所述第二栅格片2有栅格21的一面叠加。如图1、图10-图13所示在本实施例中,不仅限于第一栅格片1的栅格11宽度与栅格间隙12宽度相同,应当可以理解,采用其他可以实现第一栅格片1的栅格11不完全遮挡第二栅格片2的栅格间隙22的方案均可以实现本发明。例如,可以将第一栅格片1的栅格11宽度为栅格间隙12宽度的1/3。第一栅格片1与第二栅格片2沿栅格21、22的宽度方向上错位时错过栅格宽度的二倍,也就是第一栅格片1 的栅格21遮挡第二栅格片2的栅格间隙22的1/3。此时,第一栅格片1和第二栅格片2构成的光栅中,第一栅格片1的栅格11和第二栅格片2的栅格22两边留有的供射线通过的缝隙宽度恰好是栅格11、21宽度。
实施例4
如图2、图14所示,本实施例与实施例3基本相同,其区别在于,在本实施例中,将图11中的第一栅格片1与图12中的格片第二栅格片2按图14所示的方式叠加,形成如图2所示的光栅。其中第一栅格片1的栅格11与第二栅格片2的栅格21平行;第一栅格片1与第二栅格片2沿栅格21、22的宽度方向上错位,第一栅格片1的栅格11不完全遮挡第二栅格片2的栅格间隙22。最终使第一栅格片1和第二栅格片2构成的光栅留有供射线通过的缝隙。第一栅格片1与第二栅格片2沿栅格21、22的宽度方向上错位时优选错过栅格11、21宽度的一半,也就是第一栅格片1的栅格21遮挡第二栅格片2的栅格间隙22的一半。此时,第一栅格片1和第二栅格片2构成的光栅留有的供射线通过的缝隙宽度恰好是栅格11、21或栅格间隙12、22的一半。在图2、图14中,第一栅格片1与第二栅格片2叠加时,所述第一栅格片1有栅格11的一面远离与所述第二栅格片2有栅格21的一面叠加。如图2、图10-图12、图14所示,在本实施例中,不仅限于第一栅格片1的栅格11宽度与栅格间隙12宽度相同,应当可以理解,采用其他可以实现第一栅格片1的栅格11不完全遮挡第二栅格片2的栅格间隙22的方案均可以实现本发明。例如,如图2所示,可以将第一栅格片1的栅格11宽度为栅格间隙12宽度的1/3。第一栅格片1与第二栅格片2沿栅格21、22的宽度方向上错位时错过栅格宽度的二倍,也就是第一栅格片1的栅格21遮挡第二栅格片2的栅格间隙22的1/3。此时,第一栅格片1和第二栅格片2构成的光栅中,第一栅格片1的栅格11和第二栅格片2的栅格22两边留有的供射线通过的缝隙宽度恰好是栅格11、21宽度。在本实施例中,优选将第一栅格片1和第二栅格片2近一步叠加靠近,使第一栅格片1的栅格11进入所述第二栅格片2的栅格间隙22中,使第二栅格片2的栅格21进入所述第一栅格片1的栅格间隙12中。在本实施例中,第一栅格片1和第二栅格片2构成的光栅中,栅格11和栅格21高度一样。这种结构等同于蚀刻成的光栅。为了进一步保证第一栅格片1与第二栅格片固定时更稳固,不易在栅格宽度方向上活动,在所述第一栅格片1与所述第二栅格片2之间设置有连接垫板3。
实施例5
如图3、图15-18所示,本实施例与实施例3、实施例4不同,在本实施例中,本实施例提供一种光栅,包括:第一栅格片1和第二栅格片2。在本实施例中,第一栅格片1上的栅格11与第一栅格在同一平面内。在第一栅格片1开设长通孔形成栅格间隙12,相邻两个栅格间隙12之间的连通部分形成栅格11。在第一栅格片1上形成的长通孔结构如图17所示。由于第一栅格片1与第二栅格片2相同,第一栅格片1的栅格11宽度与第二栅格片2的栅格21宽度相同,第一栅格片1的栅格间隙12与第二栅格片2的栅格间隙22相同。如图15所示,第一栅格片1的栅格11宽度与栅格间隙12宽度相同。因此,如图 16所示,第二栅格片2的栅格21宽度与栅格间隙21宽度相同。
如图3、图18所示,将图15中的第一栅格片1与图16中的第二栅格片2叠加,形成如图3所示的光栅。其中第一栅格片1的栅格11与第二栅格片2的栅格21平行;第一栅格片1与第二栅格片2沿栅格21、22的宽度方向上错位,第一栅格片1的栅格11不完全遮挡第二栅格片2的栅格间隙22。最终使第一栅格片1和第二栅格片2构成的光栅留有供射线通过的缝隙。第一栅格片1与第二栅格片2沿栅格21、22的宽度方向上错位时优选错过栅格11、21宽度的一半,也就是第一栅格片1的栅格21遮挡第二栅格片2的栅格间隙22的一半。此时,第一栅格片1和第二栅格片2构成的光栅留有的供射线通过的缝隙宽度恰好是栅格11、21或栅格间隙12、22的一半。应当可以理解,采用其他可以实现第一栅格片1的栅格11不完全遮挡第二栅格片2的栅格间隙22的方案均可以实现本发明。例如,参考实施例2,可以将第一栅格片1的栅格11宽度为栅格间隙12宽度的1/3。第一栅格片1与第二栅格片2沿栅格21、22的宽度方向上错位时错过栅格宽度的二倍,也就是第一栅格片1的栅格21遮挡第二栅格片2的栅格间隙22的1/3。此时,第一栅格片1和第二栅格片2构成的光栅中,第一栅格片1的栅格11和第二栅格片2的栅格22两边留有的供射线通过的缝隙宽度恰好是栅格11、21宽度。
实施例6
在本实施例中,本发明还提供一种光栅制造方法,包括如下步骤:在第一栅格片上形成等宽度的栅格和等宽度的栅格间隙的若干个栅格;形成与第一栅格片完全一致的第二栅格片;第一栅格片与第二栅格片沿栅格的宽度方向上错位叠加,第一栅格片的栅格与第二栅格片的栅格平行;使第一栅格片的栅格不完全遮挡第二栅格片的栅格间隙。在本实施例中,第一栅格片、第二栅格片可以采用实施例1、实施例2、实施例3、实施例5中的栅格片,第一栅格片、第二栅格片的叠加方式可以采用实施例1-实施例5中的叠加方式。在第一栅格片、第二栅格片的叠加完成之后将第一栅格片、第二栅格片用螺丝固定即可形成光栅。
在制备图1、图2、图10-图14所示的栅格片时,在一两条完全相同且平行的基板上形成与基板等长度的凸块;使线切割机的电极丝与凸块的宽度方向平行,在凸块厚度方向上切割凸块;切割凸块至长通孔。通孔为栅格间隙,栅格间隙两侧为栅格。重复上述步骤形成多条栅格和栅格间隙。以上述方法形成第一栅格片后,再以同样的方法形成第二栅格片。第一栅格片与第二栅格片沿栅格的宽度方向上错位叠加,第一栅格片的栅格与第二栅格片的栅格平行;使第一栅格片的栅格不完全遮挡第二栅格片的栅格间隙。
在制备图3、图15-图18所示的栅格片时,在一平面的栅格基板上形成上下错位的孔;从小孔中穿过电极丝,使电极丝垂直于栅格基板平面,在栅格基板宽度方向切割,使其形成长通孔。通孔为栅格间隙,栅格间隙两侧为栅格。重复上述步骤形成多条栅格和栅格间隙。以上述方法形成第一栅格片后,再以同样的方法形成第二栅格片。第一栅格片与第二栅格片沿栅格的宽度方向上错位叠加,第一栅格片的栅格与第二栅格片的栅格平行;使第 一栅格片的栅格不完全遮挡第二栅格片的栅格间隙。
实施例7
在本实施例中,提供一种辐射成像装置,该辐射成像装置应用了实施例1至5的光栅。
综上所述,本发明提供的光栅、制造方法和辐射成像装置与现有技术相比,使用机械加工的方式形成缝隙较宽的栅格片,将两片栅格片错位叠加的方式组合形成缝隙减小的光栅。本发明采用物理成型工艺实现了光栅的加工,降低了机加工精度要求和难度,从而大幅降低了成本,缩短了生产周期。
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。

Claims (10)

  1. 一种光栅,其特征在于,包括:
    设有若干个栅格的第一栅格片和与所述第一栅格片相同的第二栅格片;
    所述第一栅格片与格片第二栅格片叠加,所述第一栅格片的栅格与所述第二栅格片的栅格平行;
    所述第一栅格片与所述第二栅格片沿所述栅格的宽度方向上错位,所述第一栅格片的栅格不完全遮挡所述第二栅格片的栅格间隙。
  2. 如权利要求1所述的光栅,其特征在于,所述第一栅格片的栅格宽度与栅格间隙宽度相同。
  3. 如权利要求2所述的光栅,其特征在于,所述第一栅格片的栅格遮挡所述第二栅格片的栅格间隙的一半。
  4. 如权利要求1所述的光栅,其特征在于,所述第一栅格片的栅格间隙宽度为所述第一栅格片的栅格宽度的3倍。
  5. 如权利要求4所述的光栅,其特征在于,
    所述第一栅格片与所述第二栅格片沿所述栅格的宽度方向上错位2个栅格宽度。
  6. 如权利要求1所述的光栅,其特征在于,所述栅格是设置在所述第一栅格片一侧的垂直于栅格片所在平面的若干凸棱。
  7. 如权利要求6所述的光栅,其特征在于,所述第一栅格片有栅格的一面靠近与所述第二栅格片有栅格的一面叠加,所述第一栅格片的栅格位于所述第二栅格片的栅格间隙中。
  8. 如权利要求7所述的光栅,其特征在于,所述第一栅格片与所述第二栅格片之间设置有连接垫板。
  9. 一种光栅制造方法,其特征在于,包括如下步骤:
    在第一栅格片上形成等宽度的栅格和等宽度的栅格间隙的若干个栅格;
    形成与所述第一栅格片完全一致的第二栅格片;
    所述第一栅格片与所述第二栅格片沿所述栅格的宽度方向上错位叠加,所述第一栅格片的栅格与所述第二栅格片的栅格平行;使所述第一栅格片的栅格不完全遮挡所述第二栅格片的栅格间隙。
  10. 一种辐射成像装置,其特征在于,应用权利要求1至8所述的光栅。
PCT/CN2016/073917 2015-03-11 2016-02-17 一种光栅、制造方法和辐射成像装置 WO2016141798A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510107091.3A CN106033133B (zh) 2015-03-11 2015-03-11 一种光栅、制造方法和辐射成像装置
CN201510107091.3 2015-03-11

Publications (1)

Publication Number Publication Date
WO2016141798A1 true WO2016141798A1 (zh) 2016-09-15

Family

ID=56879994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073917 WO2016141798A1 (zh) 2015-03-11 2016-02-17 一种光栅、制造方法和辐射成像装置

Country Status (2)

Country Link
CN (1) CN106033133B (zh)
WO (1) WO2016141798A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110833427B (zh) * 2019-11-29 2021-01-29 清华大学 光栅成像系统及其扫描方法
CN113050210B (zh) * 2019-12-27 2023-03-24 段晓东 X光光栅及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050286680A1 (en) * 2002-12-26 2005-12-29 Atsushi Momose X-ray imaging system and imaging method
CN102047344A (zh) * 2008-04-15 2011-05-04 佳能株式会社 用于x射线的源光栅、用于x射线相衬图像的成像装置和x射线计算层析成像系统
US20120250133A1 (en) * 2011-03-31 2012-10-04 Lawrence Livermore National Security, Llc Ultrafast Transient Grating Radiation to Optical Image Converter
CN103168228A (zh) * 2010-10-19 2013-06-19 皇家飞利浦电子股份有限公司 微分相位对比成像
CN103188996A (zh) * 2010-10-29 2013-07-03 富士胶片株式会社 放射线照相相衬成像设备
CN103200874A (zh) * 2010-11-08 2013-07-10 皇家飞利浦电子股份有限公司 用于相位对比成像的光栅

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103086607B (zh) * 2011-10-28 2015-08-26 清华大学 光栅的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050286680A1 (en) * 2002-12-26 2005-12-29 Atsushi Momose X-ray imaging system and imaging method
CN102047344A (zh) * 2008-04-15 2011-05-04 佳能株式会社 用于x射线的源光栅、用于x射线相衬图像的成像装置和x射线计算层析成像系统
CN103168228A (zh) * 2010-10-19 2013-06-19 皇家飞利浦电子股份有限公司 微分相位对比成像
CN103188996A (zh) * 2010-10-29 2013-07-03 富士胶片株式会社 放射线照相相衬成像设备
CN103200874A (zh) * 2010-11-08 2013-07-10 皇家飞利浦电子股份有限公司 用于相位对比成像的光栅
US20120250133A1 (en) * 2011-03-31 2012-10-04 Lawrence Livermore National Security, Llc Ultrafast Transient Grating Radiation to Optical Image Converter

Also Published As

Publication number Publication date
CN106033133A (zh) 2016-10-19
CN106033133B (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
TWI461098B (zh) A method of manufacturing a vapor deposition mask, and a method of manufacturing an organic semiconductor device
JP4547043B2 (ja) 荷電粒子ビーム照射装置
WO2016141798A1 (zh) 一种光栅、制造方法和辐射成像装置
JP2011078669A (ja) X線位相コントラスト像の撮像に用いられる位相格子、該位相格子を用いた撮像装置、x線コンピューター断層撮影システム
US20150023465A1 (en) Source grating, interferometer, and object information acquisition system
JP2012045099A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP2012032387A (ja) X線源、x線撮像装置及びx線コンピュータ断層撮像システム
JP2016145420A (ja) 蒸着マスクの製造方法、蒸着マスク製造装置、レーザー用マスクおよび有機半導体素子の製造方法
JP6288497B2 (ja) マスク及びその製造方法
CN103901519A (zh) 矩形孔单级衍射光栅
JP2011172914A (ja) X線遮蔽格子の製造方法、x線遮蔽格子及びx線撮像装置
WO2017041602A1 (zh) 一种光栅和辐射成像装置
JP2012053436A (ja) 光照射装置および光照射方法
CN111172496A (zh) 激光用掩模
JP4213536B2 (ja) 高次高調波エックス線発生装置及びその発生方法、並びに高次高調波エックス線を利用したエックス線干渉計測装置
US9494296B2 (en) Method of manufacturing light emitting element of fluorescent light source forming highly precise photonic structure in fluorescence emitting surface of light emitting element
CN103576221B (zh) 一种提高光栅结构均匀度的电子束曝光方法
WO2015033552A1 (en) Absorption grating and talbot interferometer
JP2020038931A (ja) 半導体製造装置、および半導体装置の製造方法
CN103885296B (zh) 一种掩模板、曝光方法和曝光设备
JP2012143536A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに、放射線画像撮影システム
JP2014039569A (ja) 放射線画像撮影用グリッド及び放射線画像撮影システム
JP5152615B2 (ja) 微小な規則的パターンの配列の乱れ検出測定方法
US20160154309A1 (en) Method of manufacturing structure on substrate
JP2017210687A5 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761025

Country of ref document: EP

Kind code of ref document: A1