WO2017041602A1 - 一种光栅和辐射成像装置 - Google Patents

一种光栅和辐射成像装置 Download PDF

Info

Publication number
WO2017041602A1
WO2017041602A1 PCT/CN2016/093274 CN2016093274W WO2017041602A1 WO 2017041602 A1 WO2017041602 A1 WO 2017041602A1 CN 2016093274 W CN2016093274 W CN 2016093274W WO 2017041602 A1 WO2017041602 A1 WO 2017041602A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
grating
thickness
grid
stacked
Prior art date
Application number
PCT/CN2016/093274
Other languages
English (en)
French (fr)
Inventor
张丽
洪明志
黄清萍
沈乐
Original Assignee
清华大学
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 同方威视技术股份有限公司 filed Critical 清华大学
Priority to EP16843540.2A priority Critical patent/EP3349220A4/en
Publication of WO2017041602A1 publication Critical patent/WO2017041602A1/zh
Priority to US15/802,473 priority patent/US10643759B2/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1838Diffraction gratings for use with ultraviolet radiation or X-rays
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/025Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/067Construction details
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2207/00Particular details of imaging devices or methods using ionizing electromagnetic radiation such as X-rays or gamma rays
    • G21K2207/005Methods and devices obtaining contrast from non-absorbing interaction of the radiation with matter, e.g. phase contrast

Definitions

  • the invention relates to a grating and a radiation imaging device, and belongs to the technical field of radiation imaging.
  • a grating is an instrument that measures on the basis of grid line distance. According to the principle of forming moire fringes, it can be divided into geometric grating (amplitude grating) and diffraction grating (phase grating).
  • the grating measurement of micron and submicron is a geometric grating.
  • the grating pitch is 100 ⁇ m to 20 ⁇ m, which is much larger than the wavelength of the light source.
  • the diffraction phenomenon can be neglected. When the two gratings move relative to each other, the low frequency beat phenomenon forms Moiré.
  • the principle of measurement is called the principle of imaging.
  • the nano-scale grating measurement uses a diffraction grating. At present, the grating pitch is 8 ⁇ m or 4 ⁇ m.
  • the width of the gate line is close to the wavelength of the light, and diffraction and interference phenomena are formed to form moiré fringes.
  • the measurement principle is called the interference principle.
  • the grating includes a light transmitting portion (hereinafter may be simply referred to as "grid gap”) and a light shielding portion (hereinafter may be simply referred to as "grid”), whereby the light emitted thereto is divided and formed into a plurality of light beams.
  • grid gap a light transmitting portion
  • grid shielding portion hereinafter may be simply referred to as "grid”
  • the diffraction grating diffracts light from the source grating and forms an interference pattern according to the Talbot effect.
  • a light detector detects light from the diffraction grating.
  • the filled heavy metal portion (grid) of the X-ray absorption grating absorbs X-rays, and the other part of the grating (grid gap)
  • the absorption grating and the ordinary grating X-ray source together form an X-ray source having one-dimensional spatial coherence.
  • the existing grating fabrication methods mainly include mechanical scribing, laser holography, and electron beam direct writing.
  • Mechanical marking conditions Extremely demanding, not only long time, but also low precision, difficult to produce, it is difficult to scribe sub-micron lines.
  • electron beam direct writing nanoscale high-resolution graphics can be produced, but the efficiency is very low, and high-aspect ratio graphics cannot be produced.
  • laser holography can produce gratings with a deep submicron level, the control precision is high, the cost is high, and the productivity is low.
  • the technical problem to be solved by the present invention is to solve the problem that the X-ray grating in the prior art is formed by chemical etching, the molding efficiency is low in cost, and it cannot be applied to high-energy X-ray occasions.
  • the present invention provides a grating and radiation imaging apparatus.
  • the invention provides a grating comprising:
  • the grid unit includes a first sheet and a second sheet having two mutually parallel planes; the second sheet and the first sheet are stacked along a length of the first sheet;
  • the first sheet is a sheet that is less permeable to radiation.
  • the second sheet length is smaller than the first sheet length, and the second sheet is at least two sheets;
  • the second sheet is stacked on both ends of the first sheet in the longitudinal direction of the first sheet to form a grid gap between adjacent first sheets.
  • the grid gap is filled with a permeable material.
  • the thickness of the first sheet is different from the thickness of the second sheet.
  • the first sheet and the second sheet have a thickness of from 0.001 mm to 3 mm.
  • the grid unit further comprises a third sheet
  • the third sheet length is smaller than the first sheet length, and at least three sheets of the second sheet are stacked on both ends and the middle portion of the first sheet in the longitudinal direction of the first sheet;
  • the third sheet is stacked on a first sheet between any two of the second sheets.
  • the thickness of the third sheet is smaller than the thickness of the second sheet.
  • the second sheet is the same length as the first sheet
  • the second sheet is a ray permeable sheet.
  • the thickness of the first sheet is different from the thickness of the second sheet.
  • the first sheet and the second sheet have a thickness of from 0.001 mm to 3 mm.
  • the first sheet is a high density sheet.
  • the first sheet is a tungsten alloy sheet.
  • the plurality of grid units are assembled by pressing or tooling to form a grating.
  • the invention provides a radiation imaging apparatus characterized by the grating described above.
  • the grating and the radiation field image device provided by the invention adopts a stack of sheets of different specifications to form a grating with uniform grating gap, and the thickness of the grating is not limited, and can be used for high energy ray occasions.
  • Figure 1 is a schematic view of a grating made in accordance with a first embodiment of the present invention
  • Figure 2 is a schematic view of a grating made in accordance with a fourth embodiment of the present invention.
  • Figure 3 is a side elevational view of the grating unit of the first embodiment of the present invention.
  • Figure 4 is a front elevational view of a grating unit according to a first embodiment of the present invention.
  • 5-6 are schematic side views of a grating unit made of different thickness sheets according to the first embodiment of the present invention.
  • Figure 7 is a schematic view of a grating made in accordance with a second embodiment of the present invention.
  • Figure 8 is a side elevational view of a grating unit of a second embodiment of the present invention.
  • Figure 9 is a front elevational view of a grating unit of a second embodiment of the present invention.
  • Figure 10 is a schematic view showing a grating made by a third embodiment of the present invention.
  • Figure 11 is a side elevational view of a grating unit in accordance with a fourth embodiment of the present invention.
  • Figure 12 is a schematic view showing the structure of a grating produced in accordance with a fourth embodiment of the present invention.
  • the present invention provides a grating comprising: a plurality of stacked grid cells 1, a plurality of grid cells 1 stacked to form a grid; and the grid unit 1 comprising two mutually parallel planes
  • the first sheets 11, 21 and the second sheets 12, 22; the second sheets 12, 22 and the first sheets 11, 21 are stacked along the length of the first sheets 11, 21; the first sheets 11, 21 are not easily permeable A thin sheet of light.
  • a detailed description of the grating provided by the present invention will be given below.
  • the grid unit 1 includes a first sheet 11 and a second sheet 12; the length of the second sheet 12 is smaller than the length of the first sheet 11, and at least two sheets of the second sheet 12 are along the first sheet 11
  • the lengthwise direction is stacked on both ends of the same side of the first sheet 11, so that a grid gap is formed between the adjacent first sheets 11.
  • the grid unit 1 is formed by two sheets of different lengths, wherein the first sheet 11 and the second sheet 12 are different in length, two pieces.
  • the second sheet 12 is stacked on both ends of the first sheet 11, and the two sheets 12 are stacked on the same side of the first sheet 11, in which case the thickness of the first sheet 1 may be the thickness of the second sheet 12. The same may be different from the thickness of the second sheet 12.
  • the thickness of the first sheet 11 determines the width of the grating grid
  • the thickness of the second sheet 12 determines the width of the grating grid gap.
  • FIG. 1 shows a grating made of a grid unit 1 composed of a first sheet 11 and a second sheet 12 of the same thickness, the grating grid width and the grid gap width being the same.
  • a grating of different duty ratios can be made by adjusting the thickness of the first sheet 11 and the thickness of the second sheet 12.
  • the thickness of the first sheet and the second sheet may preferably be adjusted between 0.001 mm and 3 mm.
  • the thickness of the first sheet 11 is smaller than the thickness of the second sheet 112, and the grating unit 1 composed of the scheme has a grating grid width smaller than the width of the grid gap.
  • a grid gap is formed between adjacent first sheets 1 to prevent deformation of the first sheet when the grating is formed by the multi-grid unit 1, and is filled with a thin substance in the grid gap, and the thin substance is permeable to radiation. Substance.
  • the thickness of the first sheet 11 is larger than the thickness of the second sheet 112, and the grating unit 1 composed of the scheme has a grating grid width larger than the width of the grid gap.
  • the present embodiment is basically the same as Embodiment 1, except that in the present embodiment, the grid unit 1 is formed of three sheets of different lengths, wherein the first sheet 11 and the second sheet 12 are formed. Different lengths, further including a third sheet 13; the length of the third sheet 13 is smaller than the length of the first sheet 11, and at least three sheets of the second sheet 12 are stacked on the same side of the first sheet 11 along the length of the first sheet 11 and Middle portion; the third sheet 13 is stacked on the first sheet 11 between any two of the second sheets 12.
  • the length of the third sheet 13 may be determined according to the length of the slit formed by the first sheet 11 and the second sheet 12.
  • the length of the third sheet 13 may be the length of the slit formed by the first sheet 11 and the second sheet 12, of course, if first The length of the slit formed by the sheet 11 and the second sheet 12 is the same as the length of the second sheet 12, and the length of the third sheet 13 may be the same as the length of the second sheet 12. As shown in FIG. 9, of course, in order to form a grating structure of another duty ratio on the same grating, it is necessary to adjust the thickness of the third sheet 13 correspondingly when the third sheet 13 is stacked in the third sheet 13 When the first sheet 11 between any two second sheets 12 is on, the thickness of the third sheet 13 is smaller than the thickness of the second sheet 12.
  • this embodiment is basically the same as Embodiment 1, except that in the present embodiment, the grid unit 1 Four different sheets are selected and a fourth sheet 14 is added. At least four second sheets 12 are stacked on the same side of the first sheet 11 along the length of the first sheet 11; and a third sheet 13 is stacked on the first sheet 11 between any two of the second sheets 12. A fourth sheet is also stacked on the third sheet 13.
  • the first sheet 11 and the second sheet 12 in the grid unit 1 select a sheet which is less permeable to radiation, such as a sheet made of a high-density material, preferably a tungsten alloy sheet. Since the various sheets constituting the grid unit 1 of the present invention have a certain width, the gratings made of the plurality of grid units 1 have a grating thickness which is uniform with the sheet width, and the present invention can be applied to high-energy X-ray applications. However, the grating prepared by the existing chemical method has a small thickness and cannot be applied to high-energy X-ray applications.
  • the invention forms a uniform gap by using a stack of sheets, the width of the sheet is not limited, the thickness of the grating is not limited, and it can be used for high-energy rays, and the sheets are independently formed, and the toughness and strength are good.
  • the plurality of grid units provided by the present invention can be assembled by using a bonding method or a tooling method when assembling a grating.
  • this embodiment is basically the same as Embodiment 1, except that the second sheet 22 has the same length as the first sheet 21, and the first sheet 21 is a sheet which is not easily ray-transmissive, and the second sheet 22 is a sheet that is easily ray-transmissive.
  • the thickness of the first sheet 21 and the second sheet 22 in the embodiment may be changed according to the actual requirements according to the scheme in the embodiment, and the thickness of the first sheet 21 may be the same as The thickness of the two sheets 22 may be the same as the thickness of the second sheet 22.
  • the first sheet 21 and the second sheet of different thicknesses are made into gratings of different grid gaps. Additionally, other embodiments can be derived by combining Example 4 with Examples 1-3. In order to save space, we will not repeat them here.
  • the grating and radiation field image device adopt different specifications.
  • the stack of sheets forms a grating with a uniform grating gap, and the thickness of the grating is not limited, and can be used in high-energy ray applications.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种光栅和辐射成像装置,其中光栅包括:若干个叠摞的栅格单元(1),若干个栅格单元(1)叠摞形成栅格;栅格单元(1)包括具有两个相互平行平面的第一薄片(11、21)和第二薄片(12、22);第一薄片(11、21)与第二薄片(12、22)沿第一薄片(11、21)长度方向叠摞;第一薄片(11、21)为不易透过射线的薄片。采用不同规格的薄片叠摞形成光栅间隙均匀的光栅,光栅厚度不受限制,可以用于高能射线场合。

Description

一种光栅和辐射成像装置 技术领域
本发明涉及一种光栅和辐射成像装置,属于辐射成像技术领域。
背景技术
光栅是一种以栅线距离为基准进行测量的仪器。根据形成莫尔条纹原理的不同,可分为几何光栅(幅值光栅)和衍射光栅(相位光栅)。微米级和亚微米级的光栅测量是采用几何光栅,光栅栅距为100μm至20μm,远大于光源光波波长,衍射现象可以忽略,当两块光栅相对移动时产生低频拍现象形成莫尔条纹,其测量原理称为影像原理。纳米级的光栅测量是采用衍射光栅,目前光栅栅距为8μm或4μm,栅线的宽度与光的波长很接近,产生衍射和干涉现象形成莫尔条纹,其测量原理称为干涉原理。
光栅包括光线透过部(以下可简称为“栅格间隙”)和光线屏蔽部(以下可简称为“栅格”),由此发射到它的光线被分割并形成为多个光线束。这允许衍射光栅被具有空间相干性的光线束所照射。衍射光栅衍射来自源光栅的光线,并且根据Talbot效应形成干涉图案。光线检测器检测来自衍射光栅的光线。在基于光栅的X射线相衬成像系统中,需将X射线吸收光栅置于X射线源后,X射线吸收光栅的填充重金属部分(栅格)吸收X射线,而光栅的另外部分(栅格间隙)透过X射线,这样,吸收光栅与普通光栅X射线源共同构成了具有一维空间相干性的X射线源。
众所周知,随着辐射成像技术的不断发展,需要成像的精度要求越来越高,进而使成像设备所需要的元件越来越精密。例如,在辐射成像设备中对光栅的要求也越来越高。现有的光栅制作方法主要有机械刻划、激光全息光刻、电子束直写等三种。机械刻划条件 极为苛刻,不仅时间长而且精度不高、生产难度大、很难刻划出亚微米的线条。利用电子束直写制作可以制作出纳米级的高分辨率图形,但是效率非常低,而且不能够制作高高宽比的图形。激光全息光刻虽然能够制作出深亚微米水平的光栅,但是控制精度较高、成本高、产能低。
发明内容
本发明要解决的技术问题是:解决现有技术中X射线光栅采用化学腐蚀成型,成型效率低成本高,不能应用于高能X射线场合的问题。
为实现上述的发明目的,本发明提供了一种光栅和辐射成像装置。
一方面,本发明提供一种光栅,包括:
若干个叠摞的栅格单元,若干个栅格单元叠摞形成栅格;
所述栅格单元包括具有两个相互平行平面的第一薄片和第二薄片;所述第二薄片与所述第一薄片沿第一薄片长度方向叠摞;
所述第一薄片为不易透过射线的薄片。
其中较优地,所述第二薄片长度小于所述第一薄片长度,所述第二薄片是至少两片;
所述第二薄片沿所述第一薄片长度方向上叠摞在所述第一薄片同一面两端,从而在相邻第一薄片之间形成栅格间隙。
其中较优地,所述栅格间隙用易透过射线的物质填充。
其中较优地,所述第一薄片的厚度与所述第二薄片的厚度不同。
其中较优地,所述第一薄片和第二薄片的厚度为0.001毫米至3毫米。
其中较优地,所述栅格单元还包括第三薄片;
所述第三薄片长度小于所述第一薄片长度,至少三片所述第二薄片沿所述第一薄片长度方向上叠摞在所述第一薄片同一面的两端和中部;
所述第三薄片叠摞在其中任意两片所述第二薄片之间的第一薄片上。
其中较优地,所述第三薄片厚度小于所述第二薄片厚度。
其中较优地,所述第二薄片与所述第一薄片长度相同;
所述第二薄片是易透过射线的薄片。
其中较优地,所述第一薄片的厚度与所述第二薄片的厚度不同。
其中较优地,所述第一薄片和第二薄片的厚度为0.001毫米至3毫米。
其中较优地,所述第一薄片是高密度薄片。
其中较优地,所述第一薄片是钨合金薄片。
其中较优地,所述多个栅格单元以粘接或工装压紧组装形成光栅。
另一方面,本发明提供一种辐射成像装置,其特征在于,上述的光栅。
本发明提供的光栅和辐射场像装置,采用不同规格的薄片叠摞形成光栅间隙均匀的光栅,光栅厚度不受限制,可以用于高能射线场合。
附图说明
图1是本发明第一种实施方案制成的光栅示意图;
图2是本发明第四种实施方案制成的光栅示意图;
图3是本发明第一种实施方案光栅单元侧视示意图;
图4是本发明第一种实施方案光栅单元正面示意图;
图5-图6是本发明第一种实施方案不同厚度薄片制成光栅单元侧视示意图;
图7是本发明第二种实施方案制成的光栅示意图;
图8是本发明第二种实施方案光栅单元侧视示意图;
图9是本发明第二种实施方案光栅单元正面示意图;
图10是本发明第三种实施方案制成的光栅单示意图;
图11是本发明第四种实施方案光栅单元侧视示意图;
图12是本发明第四种实施方案制成的光栅结构示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
如图1所示,本发明提供一种光栅,该光栅包括:若干个叠摞的栅格单元1,若干个栅格单元1叠摞形成栅格;栅格单元1包括具有两个相互平行平面的第一薄片11、21和第二薄片12、22;第二薄片12、22与第一薄片11、21沿第一薄片11、21的长度方向叠摞;第一薄片11、21为不易透过射线的薄片。下面对本发明提供的光栅展开详细的说明。
实施例1
如图3、图4所示,栅格单元1包括第一薄片11和第二薄片12;第二薄片12的长度小于第一薄片11的长度,至少两片第二薄片12沿第一薄片11长度方向上叠摞在第一薄片11同一面两端,从而在相邻第一薄片11之间形成栅格间隙。
如图1、图3至图4所示,在本发明的一种实施方案中,栅格单元1采用两种不同长度的薄片形成,其中第一薄片11和第二薄片12长度不同,两片第二薄片12叠摞在第一薄片11的两端,两片第二薄片12叠摞在第一薄片11的同一面,该方案中,第一薄片1的厚度可以与第二薄片12的厚度相同也可以与第二薄片12的厚度不同。第一薄片11的厚度决定了光栅栅格的宽度,第二薄片12的厚度决定了光栅栅格间隙的宽度。图1示出了本发明由厚度相同的第一薄片11与第二薄片12组成的栅格单元1制成的光栅,光栅栅格宽度和栅格间隙宽度相同。通过调整第一薄片11的厚度与第二薄片12的厚度可以制成不同占空比的光栅。第一薄片和第二薄片的厚度优选可以在0.001毫米至3毫米之间调节。
如图5所示,该方案中第一薄片11的厚度小于第二薄片112的厚度,按该方案组成的栅格单元1制成的光栅,光栅栅格宽度小于栅格间隙的宽度。在本发明中,相邻第一薄片1之间形成栅格间隙,为防止多栅格单元1形成光栅时第一薄片发生变形,在栅格间隙用薄物质填充,薄物质为易透过射线的物质。
如图6所示,该方案中第一薄片11的厚度大于第二薄片112的厚度,按该方案组成的栅格单元1制成的光栅,光栅栅格宽度大于栅格间隙的宽度。
实施例2
如图7至图9所示,本实施例与实施例1基本相同,其区别在于本实施方案中,栅格单元1采用三种不同长度的薄片形成,其中第一薄片11和第二薄片12长度不同,还包括第三薄片13;第三薄片13长度小于第一薄片11长度,至少三片第二薄片12沿第一薄片11长度方向上叠摞在第一薄片11同一面的两端和中部;第三薄片13叠摞在其中任意两片第二薄片12之间的第一薄片11上。第三薄片13的长度可以根据第一薄片11与第二薄片12组成的缝隙长度决定,第三薄片13的长度可以是第一薄片11与第二薄片12组成的缝隙长度,当然,如果第一薄片11与第二薄片12组成的缝隙长度与第二薄片12的长度相同,则第三薄片13的长度可以与第二薄片12的长度相同。如图9所示,当然为了在同一光栅上形成另一种占空比的光栅结构,需要将第三薄片13的厚度作相应的调整,当第三薄片13在第三薄片13叠摞在其中任意两片第二薄片12之间的第一薄片11上时,第三薄片13的厚度小于第二薄片12的厚度。
实施例3
当然可以理解,本发明不仅限于此,本发明还可以通过设置更多种不同薄片相互组合产生更多种不同占空比的光栅。如图10所示,本实施例与实施例1基本相同,其区别在于在本实施方案中,栅格单元1 选择四种不同的薄片,增设第四薄片14。至少四片第二薄片12沿第一薄片11长度方向上叠摞在第一薄片11同一面;第三薄片13叠摞在其中任意两片第二薄片12之间的第一薄片11上。在第三薄片13上还叠摞有第四薄片。1片第一薄片11、4片第二薄片12、2片第三薄片13、1片第四薄片14共同组成栅格单元1,若干个叠摞的栅格单元1制成的多种占空比的光栅。应当可以理解,按照上述不同薄片叠摞形成光栅的思路可以拓展设置形成多种占空比的光栅。
在本发明中,栅格单元1中的第一薄片11和第二薄片12选择不易透过射线的薄片,例如采用高密度材料制成的薄片,优选是钨合金薄片。由于本发明中组成栅格单元1的各种薄片都具有一定的宽度,多个栅格单元1制成的光栅具有和薄片宽度一致的光栅厚度,本发明可以用于高能X射线场合。而现有的化学方法制备的光栅厚度较小,不能应用于高能X射线场合。本发明通过采用薄片叠摞的方式形成均匀的缝隙,薄片的宽度不受限制,光栅的厚度就不受限制,可用于高能射线,薄片独立成型,其韧性和强度好。本发明提供的多个栅格单元组装形成光栅时可以采用粘接方式或工装方式压紧。
实施例4
如图11、图12所示,本实施例与实施例1基本相同,其区别在于第二薄片22与第一薄片21的长度相同,第一薄片21是不易透过射线的薄片,第二薄片22是易透过射线的薄片。在此需要说明的是,应当可以理解,本实施例中第一薄片21与第二薄片22的厚度可以根据实际需求参照实施例中的方案作相应的改变,第一薄片21的厚度可以与第二薄片22的厚度相同也可以与第二薄片22的厚度不同。不同厚度差别的第一薄片21和第二薄片制成不同栅格间隙的光栅。另外,可以将实施例4与实施例1-3相结合衍生出其它的实施方案。为节约篇幅,在此就不再一一赘述了。
综上所述,本发明提供的光栅和辐射场像装置,采用不同规格的 薄片叠摞形成光栅间隙均匀的光栅,光栅厚度不受限制,可以用于高能射线场合。
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。

Claims (14)

  1. 一种光栅,其特征在于,包括:
    若干个叠摞的栅格单元,若干个栅格单元叠摞形成栅格;
    所述栅格单元包括具有两个相互平行平面的第一薄片和第二薄片;所述第二薄片与所述第一薄片沿第一薄片长度方向叠摞;
    所述第一薄片为不易透过射线的薄片。
  2. 如权利要求1所述的光栅,其特征在于,所述第二薄片长度小于所述第一薄片长度,所述第二薄片是至少两片;
    所述第二薄片沿所述第一薄片长度方向上叠摞在所述第一薄片同一面两端,从而在相邻第一薄片之间形成栅格间隙。
  3. 如权利要求2所述的光栅,其特征在于,所述栅格间隙用易透过射线的物质填充。
  4. 如权利要求2所述的光栅,其特征在于,所述第一薄片的厚度与所述第二薄片的厚度不同。
  5. 如权利要求2所述的光栅,其特征在于,所述第一薄片和第二薄片的厚度为0.001毫米至3毫米。
  6. 如权利要求2所述的光栅,其特征在于,所述栅格单元还包括第三薄片;
    所述第三薄片长度小于所述第一薄片长度,至少三片所述第二薄片沿所述第一薄片长度方向上叠摞在所述第一薄片同一面的两端和中部;
    所述第三薄片叠摞在其中任意两片所述第二薄片之间的第一薄片上。
  7. 如权利要求6所述的光栅,其特征在于,所述第三薄片厚度小于所述第二薄片厚度。
  8. 如权利要求1所述的光栅,其特征在于,所述第二薄片与所述第一薄片长度相同;
    所述第二薄片是易透过射线的薄片。
  9. 如权利要求8所述的光栅,其特征在于,所述第一薄片的厚度与所述第二薄片的厚度不同。
  10. 如权利要求8所述的光栅,其特征在于,所述第一薄片和第二薄片的厚度为0.001毫米至3毫米。
  11. 如权利要求1-10任意一项所述的光栅,其特征在于,所述第一薄片是高密度薄片。
  12. 如权利要求11所述的光栅,其特征在于,所述第一薄片是钨合金薄片。
  13. 如权利要求12所述的光栅,其特征在于,所述多个栅格单元以粘接或工装压紧组装形成光栅。
  14. 一种辐射成像装置,其特征在于,应用权利要求1至13任意一项所述的光栅。
PCT/CN2016/093274 2015-09-08 2016-08-04 一种光栅和辐射成像装置 WO2017041602A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16843540.2A EP3349220A4 (en) 2015-09-08 2016-08-04 ENGRAVED NETWORK AND RADIATION IMAGING DEVICE
US15/802,473 US10643759B2 (en) 2015-09-08 2017-11-03 Grating and radiation imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510568450.5A CN105139913B (zh) 2015-09-08 2015-09-08 一种光栅和辐射成像装置
CN201510568450.5 2015-09-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/802,473 Continuation US10643759B2 (en) 2015-09-08 2017-11-03 Grating and radiation imaging device

Publications (1)

Publication Number Publication Date
WO2017041602A1 true WO2017041602A1 (zh) 2017-03-16

Family

ID=54725230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093274 WO2017041602A1 (zh) 2015-09-08 2016-08-04 一种光栅和辐射成像装置

Country Status (4)

Country Link
US (1) US10643759B2 (zh)
EP (1) EP3349220A4 (zh)
CN (1) CN105139913B (zh)
WO (1) WO2017041602A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105139913B (zh) * 2015-09-08 2017-10-13 清华大学 一种光栅和辐射成像装置
CN107093487B (zh) * 2017-04-25 2023-06-27 中国科学院深圳先进技术研究院 高密度光栅的制作方法
CN111053977B (zh) * 2019-12-20 2022-08-16 上海联影医疗科技股份有限公司 多叶光栅和放射治疗装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030035512A1 (en) * 1999-01-27 2003-02-20 Katsuhiro Kohda Scattered ray removal grid and method of producing the same
US6980629B1 (en) * 2002-09-06 2005-12-27 Siemens Aktiengesellschaft Antiscatter grid or collimator, and a method of production
CN201965938U (zh) * 2011-01-14 2011-09-07 沈阳航天新阳机电有限责任公司 一种医用ct机x射线准直光栅
CN102525541A (zh) * 2010-11-26 2012-07-04 富士胶片株式会社 用于放射线图像摄影的栅格及制造方法和放射线成像系统
CN102930917A (zh) * 2011-08-08 2013-02-13 西门子公司 X射线防散射光栅及其制造方法
CN103901516A (zh) * 2012-12-26 2014-07-02 清华大学 光栅的制备方法
CN203787096U (zh) * 2014-03-07 2014-08-20 上海联影医疗科技有限公司 多叶光栅及多叶光栅装置
CN105139913A (zh) * 2015-09-08 2015-12-09 清华大学 一种光栅和辐射成像装置
CN204926815U (zh) * 2015-09-08 2015-12-30 清华大学 一种光栅和辐射成像装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138294A (en) * 1977-05-10 1978-12-02 Toppan Printing Co Ltd Xxray camera grid and method of producing same
US4414679A (en) * 1982-03-01 1983-11-08 North American Philips Corporation X-Ray sensitive electrophoretic imagers
JPH07119837B2 (ja) * 1990-05-30 1995-12-20 株式会社日立製作所 Ct装置及び透過装置並びにx線発生装置
DE10151562B4 (de) * 2001-10-23 2004-07-22 Siemens Ag Anordnung aus Röntgen- oder Gammadetektor und Streustrahlenraster oder Kollimator
JP4900390B2 (ja) * 2006-08-25 2012-03-21 株式会社島津製作所 中空グリッドおよびその製造方法
JP4748282B2 (ja) * 2008-08-11 2011-08-17 株式会社島津製作所 放射線グリッドおよびそれを備えた放射線撮影装置
DE102009019647B4 (de) * 2009-04-30 2014-07-10 Siemens Aktiengesellschaft Beugungsgitter und Verfahren zur Herstellung
JP5660910B2 (ja) * 2010-03-30 2015-01-28 富士フイルム株式会社 放射線画像撮影用グリッドの製造方法
JP2012093117A (ja) * 2010-10-25 2012-05-17 Fujifilm Corp 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP5714968B2 (ja) * 2011-04-15 2015-05-07 株式会社日立ハイテクサイエンス X線タルボ干渉計用回折格子及びその製造方法、並びにx線タルボ干渉計
JP6448206B2 (ja) * 2014-03-31 2019-01-09 株式会社フジキン 積層型x線グリッド、その製造装置及び製法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030035512A1 (en) * 1999-01-27 2003-02-20 Katsuhiro Kohda Scattered ray removal grid and method of producing the same
US6980629B1 (en) * 2002-09-06 2005-12-27 Siemens Aktiengesellschaft Antiscatter grid or collimator, and a method of production
CN102525541A (zh) * 2010-11-26 2012-07-04 富士胶片株式会社 用于放射线图像摄影的栅格及制造方法和放射线成像系统
CN201965938U (zh) * 2011-01-14 2011-09-07 沈阳航天新阳机电有限责任公司 一种医用ct机x射线准直光栅
CN102930917A (zh) * 2011-08-08 2013-02-13 西门子公司 X射线防散射光栅及其制造方法
CN103901516A (zh) * 2012-12-26 2014-07-02 清华大学 光栅的制备方法
CN203787096U (zh) * 2014-03-07 2014-08-20 上海联影医疗科技有限公司 多叶光栅及多叶光栅装置
CN105139913A (zh) * 2015-09-08 2015-12-09 清华大学 一种光栅和辐射成像装置
CN204926815U (zh) * 2015-09-08 2015-12-30 清华大学 一种光栅和辐射成像装置

Also Published As

Publication number Publication date
CN105139913A (zh) 2015-12-09
CN105139913B (zh) 2017-10-13
EP3349220A1 (en) 2018-07-18
EP3349220A4 (en) 2019-05-01
US10643759B2 (en) 2020-05-05
US20180075938A1 (en) 2018-03-15

Similar Documents

Publication Publication Date Title
Nöhammer et al. Diamond planar refractive lenses for third-and fourth-generation X-ray sources
WO2017041602A1 (zh) 一种光栅和辐射成像装置
US8737561B2 (en) X-ray phase grating and method for producing the same
EP1810085B1 (en) A system and a method for generating periodic and/or quasi-periodic pattern on a sample
US8243879B2 (en) Source grating for X-rays, imaging apparatus for X-ray phase contrast image and X-ray computed tomography system
EP2659264B1 (en) X-ray source with target and integrated multilayer optics
JP2017012814A (ja) 傾けられた格子及び傾けられた格子の製造方法
EP2827339A1 (en) Source grating, interferometer, and object information acquisition system
CA2939811A1 (en) X-ray collimator
Sawhney et al. Compensation of X-ray mirror shape-errors using refractive optics
Kazazis et al. Improving the resolution and throughput of achromatic Talbot lithography
JP5341416B2 (ja) X線集光レンズ
Jung et al. Mapping of near field light and fabrication of complex nanopatterns by diffraction lithography
JP4659015B2 (ja) X線集光レンズ
CN110088682A (zh) 辐射源设备和方法、光刻设备和检查设备
US8761346B2 (en) Multilayer total internal reflection optic devices and methods of making and using the same
US20080095320A1 (en) Fine geometry X-ray collimator and construction method
JP5431900B2 (ja) X線集光レンズ
KR102038510B1 (ko) Euv 범위의 계측 애플리케이션들을 위한 콤팩트 광원
JPS63316434A (ja) X線露光法
Nazmov et al. Multi-field x-ray microscope based on array of refractive lenses
US20220199278A1 (en) Stabilized grating structures
JP4602944B2 (ja) X線集光レンズ
Akhsakhalyan et al. A method for manufacturing multilayer mirrors in the form of the sector of revolution figure for hard X-rays
JP2008281421A (ja) X線集光レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843540

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016843540

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE