WO2016140370A1 - 溶融AI-Zn-Mg-Siめっき鋼板とその製造方法 - Google Patents

溶融AI-Zn-Mg-Siめっき鋼板とその製造方法 Download PDF

Info

Publication number
WO2016140370A1
WO2016140370A1 PCT/JP2016/057255 JP2016057255W WO2016140370A1 WO 2016140370 A1 WO2016140370 A1 WO 2016140370A1 JP 2016057255 W JP2016057255 W JP 2016057255W WO 2016140370 A1 WO2016140370 A1 WO 2016140370A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
mass
molten
plated steel
plating
Prior art date
Application number
PCT/JP2016/057255
Other languages
English (en)
French (fr)
Inventor
大居 利彦
洋平 佐藤
飛山 洋一
俊之 大熊
古田 彰彦
昌浩 吉田
善継 鈴木
安藤 聡
松崎 晃
Original Assignee
Jfe鋼板株式会社
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56848151&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016140370(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Jfe鋼板株式会社, Jfeスチール株式会社 filed Critical Jfe鋼板株式会社
Priority to AU2016226812A priority Critical patent/AU2016226812C1/en
Priority to SG11201706948RA priority patent/SG11201706948RA/en
Priority to JP2016540699A priority patent/JP6059408B1/ja
Priority to US15/553,658 priority patent/US10662516B2/en
Priority to EP16759061.1A priority patent/EP3266900B1/en
Priority to CN201680012543.2A priority patent/CN107250418B/zh
Priority to KR1020177027400A priority patent/KR20170122242A/ko
Priority to MYPI2017703141A priority patent/MY182583A/en
Publication of WO2016140370A1 publication Critical patent/WO2016140370A1/ja
Priority to PH12017501577A priority patent/PH12017501577A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only

Definitions

  • the present invention relates to a molten Al-Zn-Mg-Si plated steel sheet having excellent flat plate portion and end portion corrosion resistance and excellent corrosion resistance of a processed portion, and a method for producing the same.
  • Patent Document 1 discloses a molten Al—Zn-based plated steel sheet containing 25 to 75% by mass of Al in a plating film. Due to its excellent corrosion resistance, the demand for molten Al-Zn plated steel sheets has increased in recent years, mainly in the field of construction materials such as roofs and walls exposed to the outdoors for a long period of time, and in civil engineering and construction fields such as guardrails, wiring piping, and soundproof walls. ing.
  • the plated film of the molten Al—Zn-based plated steel sheet is composed of an alloy layer present at the interface between the main layer and the underlying steel sheet and the main layer, and the main layer mainly contains Zn in supersaturation and Al is a dendrite solidified portion ( ⁇ -Al phase dendrite part) and the remaining dendrite gap part (interdendrite), and has a structure in which a plurality of ⁇ -Al phases are laminated in the film thickness direction of the plating film.
  • Such a characteristic coating structure complicates the corrosion path from the surface, making it difficult for corrosion to reach the underlying steel sheet. Excellent corrosion resistance compared to plated steel sheet.
  • Patent Document 2 includes an Al—Zn—Si alloy containing Mg in a plating film as a technique related to a molten Al—Zn-based plated steel sheet containing Mg (hot Al—Zn—Mg—Si plated steel sheet).
  • the Al—Zn—Si alloy is an alloy containing 45 to 60 wt% elemental aluminum, 37 to 46 wt% elemental zinc and 1.2 to 2.3 wt% elemental silicon, and the Mg concentration is An Al—Zn—Mg—Si plated steel sheet of 1 to 5% by weight is disclosed.
  • Patent Document 3 contains, in mass%, Mg: 2 to 10%, Ca: 0.01 to 10%, Si: 3 to 15%, the balance being Al and inevitable impurities, and Mg / An Al-based surface-treated steel material having a specific mass ratio of Si is disclosed.
  • this plating steel plate is used for the automobile maker etc. in the state where it gave even plating with the continuous hot-dip plating equipment, and there is a panel part there.
  • chemical conversion treatment, and electrodeposition coating, intermediate coating, and top coating overall coating for automobiles are performed.
  • the outer panel using the molten Al-Zn-based plated steel sheet results in selective corrosion of the interdendrite containing a large amount of Zn at the coating film / plating interface starting from the scratch when the coating film is damaged.
  • the molten Al—Zn-based plated steel sheet is often used in the field of building materials such as roofs and walls exposed to the outdoors for a long period of time due to its excellent corrosion resistance. Therefore, development of a molten Al—Zn—Mg—Si plated steel sheet with higher corrosion resistance has been desired in order to extend the life of the product due to recent demands for resource and energy savings. Moreover, about the fusion
  • Cited Document 2 the ductility degradation is improved by making the ductility degradation caused by the addition of Mg a “small” spangle size.
  • Cited Document 2 substantially uses a plating layer. It is essential to have TiB in the steel, and it cannot be said that an essential solution has been disclosed.
  • the present invention has a molten Al—Zn—Mg—Si plated steel sheet having excellent flat plate portion and end portion corrosion resistance and excellent processed portion corrosion resistance, and the molten Al—Zn—Mg— It aims at providing the manufacturing method of Si plating steel plate.
  • Mg 2 Si present in the interdendrite in the main layer of the plating film is initially present when the molten Al—Zn—Mg—Si plated steel sheet is corroded. This contributes to the improvement of corrosion resistance by concentrating Mg on the surface of the corrosion product, and the single-phase Si present in the main layer becomes a cathode site, which causes dissolution of the surrounding plating film. Therefore, attention was paid to the need to eliminate single-phase Si.
  • the present inventors have further conducted intensive studies to specify the contents of Al, Mg, and Si components present in the main layer of the plating film, and specify the contents of Mg and Si in the plating film by controlling the range, since it is the Mg 2 Si be finely and uniformly dispersed in the inter dendrite, it found that can greatly improve the processing unit corrosion resistance, also isolated by Mg 2 Si in fine and homogeneous product It has been found that since the phase Si can be eliminated from the plating film main layer, the corrosion resistance of the flat plate portion and the end portion can also be improved. In addition to the above, it has also been found that excellent post-coating corrosion resistance can be obtained by controlling the Mg content in the plating film within a specific range.
  • M Mg Mg content (mass%)
  • M Si Si content (mass%)
  • the main layer has an ⁇ -Al phase dendrite part, and the average dendrite diameter of the dendrite part and the thickness of the plating film satisfy the following formula (2): 5.
  • the plating film contains 25 to 80% by mass of Al, more than 2.3 to 5% by mass of Si, and 3 to 10% by mass of Mg.
  • a molten Al-Zn-Mg-Si plated steel sheet having excellent flat plate part and end part corrosion resistance and excellent in processed part corrosion resistance, and production of the molten Al-Zn-Mg-Si plated steel sheet Can provide a method.
  • (A) is the figure which showed the state before and behind corrosion about the process part of the fusion
  • (b) is the conventional Al-Zn-Mg-Si plating steel plate. It is the figure which showed the state before and behind corrosion about the process part.
  • the state of each element when the processed part of the molten Al-Zn-Mg-Si plated steel sheet according to the present invention corrodes is shown by energy dispersive X-ray spectroscopy (SEM-EDX) of a scanning electron microscope.
  • SEM-EDX energy dispersive X-ray spectroscopy
  • the molten Al—Zn—Mg—Si plated steel sheet subject to the present invention has a plating film on the surface of the steel sheet, and the plating film is formed on the interface alloy layer existing at the interface with the base steel sheet and the alloy layer. Consists of existing main layers.
  • the plating film contains 25 to 80% by mass of Al, 0.6 to 15% by mass of Si and 0.1 to 25% by mass of Mg, with the balance being Zn and inevitable impurities.
  • the Al content in the plating film is 25 to 80% by mass, preferably 35 to 65% by mass, from the balance between corrosion resistance and operation. If the Al content of the plating main layer is 25% by mass or more, Al dendrite solidification occurs. As a result, the main layer mainly contains Zn in a supersaturated state, and Al is composed of a dendrite solidified part ( ⁇ -Al phase dendrite part) and a remaining dendrite gap part (interdendrite part), and the dendrite part is plated. A structure excellent in corrosion resistance laminated in the film thickness direction of the film can be secured.
  • the Al content in the main layer is more preferably 35% by mass or more.
  • the Al content in the main layer exceeds 80% by mass, the content of Zn having a sacrificial anticorrosive action with respect to Fe decreases, and the corrosion resistance deteriorates. For this reason, Al content of a main layer shall be 80 mass% or less.
  • the Al content of the main layer is 65% by mass or less, the amount of adhesion of plating decreases, and even when the steel substrate is easily exposed, it has a sacrificial anticorrosive action against Fe and has sufficient corrosion resistance. Is obtained. Therefore, the Al content in the plating main layer is preferably set to 65% by mass or less.
  • Si is added to the plating bath for the purpose of suppressing the growth of the interfacial alloy layer generated at the interface with the base steel sheet and for the purpose of improving the corrosion resistance and workability, and is necessarily contained in the plating main layer.
  • the steel sheet is immersed in the plating bath and at the same time Fe on the steel sheet surface and in the bath Al or Si undergoes an alloying reaction to produce Fe-Al and / or Fe-Al-Si compounds.
  • the formation of the Fe—Al—Si based interface alloy layer suppresses the growth of the interface alloy layer.
  • the Si content of the plating film exceeds 0.6% by mass, it is possible to sufficiently suppress the growth of the interface alloy layer.
  • the Si content of the plating film exceeds 15%, it becomes a propagation path of cracks in the plating film, so that the workability is lowered and the Si phase that becomes the cathode site is easily precipitated.
  • precipitation of the Si phase can be suppressed by increasing the Mg content, this method increases the manufacturing cost and makes the composition management of the plating bath more difficult. For this reason, Si content in a plating film shall be 15% or less.
  • the Si content in the plating film is preferably more than 2.3 to 5%, and more than 2.3. It is particularly preferable to set it to ⁇ 3.5%.
  • the plating film contains Mg in an amount exceeding 0.1 to 25% by mass.
  • Mg is contained in the corrosion product, so that the stability of the corrosion product is improved and the progress of the corrosion is delayed. As a result, the corrosion resistance is improved.
  • Mg of the main layer of the plating film is combined with Si described above to generate Mg 2 Si. Since this Mg 2 Si dissolves in the initial stage when the plated steel sheet corrodes, Mg is included in the corrosion product. Mg concentrates on the surface of the corrosion product and has an effect of densifying the corrosion product, and can improve the stability of the corrosion product and the barrier property against foreign corrosion factors.
  • the reason why the Mg content of the plating film exceeds 0.1% by mass is that when it exceeds 0.1% by mass, Mg 2 Si can be generated, and a corrosion retardation effect can be obtained. Because it can.
  • the Mg content is set to 25% by mass or less because when the Mg content exceeds 25%, in addition to saturation of the effect of improving the corrosion resistance, it is difficult to increase the manufacturing cost and manage the composition of the plating bath. Because. Further, from the viewpoint of realizing a better corrosion delay effect while improving the reduction of the manufacturing cost at a higher level, the Mg content in the plating film is preferably 3 to 10%, preferably 4 to 6 % Is more preferable.
  • the plating film by containing 5% or more of Mg in the plating film, it is possible to improve the post-coating corrosion resistance, which is a problem in the present invention.
  • the plating layer of the conventional molten Al—Zn-plated steel sheet not containing Mg is exposed to the atmosphere, a dense and stable Al 2 O 3 oxide film is immediately formed around the ⁇ -Al phase. Due to the protective action, the solubility of the ⁇ -Al phase is very low compared to the solubility of the Zn-rich phase in the interdendrite.
  • Corrosion products containing Mg are very stable, and this suppresses corrosion at an early stage. Therefore, a Zn-rich phase is a problem in the case of a coated steel sheet using a conventional Al-Zn-based plated steel sheet as a base. It is possible to suppress large film swelling due to selective corrosion. As a result, the molten Al—Zn-based plated steel sheet containing Mg in the plating layer exhibits excellent post-coating corrosion resistance. When Mg is 5% or less, the amount of Mg that dissolves during corrosion is small, and the above-described stable corrosion product is not sufficiently produced, so that the corrosion resistance after coating may not be improved.
  • Mg exceeds 10%, not only the effect is saturated, but also the corrosion of the Mg compound occurs vigorously and the solubility of the entire plating layer is excessively increased, so that the corrosion product is stabilized.
  • the dissolution rate is increased, a large swollen width is generated, which may deteriorate the corrosion resistance after coating. Therefore, in order to stably obtain excellent post-coating corrosion resistance, it is preferable to contain Mg in a range of more than 5 to 10%.
  • the molten Al-Zn-Mg-Si plated steel sheet of the present invention effectively disperses Mg 2 Si in the interdendrite, reduces the possibility that the single-phase Si is formed, and has a more excellent processed portion corrosion resistance.
  • the contents of Mg and Si in the plating film satisfy the following formula (1).
  • M Si Si content (mass%)
  • Mg 2 Si By fine and uniform dispersion of the Mg 2 Si, gradually dissolved with Zn in the entire surface of the crack fracture surface Mg 2 Si enters the plated surface and processing unit at the time the corrosion of the steel sheet, Mg is incorporated in a large amount in the corrosion products Since the Mg-enriched part is formed thick on the entire surface of the corrosion product and the progress of the corrosion can be suppressed, the corrosion resistance of the processed part can be dramatically improved. Further, since the Mg 2 Si is not distributed unevenly and finely and uniformly dispersed throughout the plating film main layer, the single-phase Si serving as the cathode site can be eliminated from the main layer, so that the flat plate portion and the end portion Corrosion resistance can be improved.
  • Mg 2 Si is a lump of a certain size or more (specifically, the major axis is 10 ⁇ m or more and the major axis is the minor axis).
  • the ratio is 0.4 or more.
  • Mg 2 Si is large and non-uniform in distribution, so that the dissolution rate of Mg 2 Si at the initial stage of corrosion is significantly faster than that of Zn, and Mg 2 Si is preferentially dissolved and flows out, resulting in corrosion generation.
  • Mg is not effectively taken into the product, and there are few Mg-concentrated portions on the surface of the corrosion product, and the desired corrosion resistance improvement effect cannot be obtained.
  • FIG. 5 shows the relationship between the Si content and the Mg content in the plating film, and the state of the phase generated in the main layer of the plating film. From FIG. 5, within the range of the composition of the present invention (the portion surrounded by the broken line in FIG. 5), the single layer Si can be surely eliminated from the main layer by satisfying the above formula (1). I understand that.
  • the main layer of the plating film has an ⁇ -Al phase dendrite part, and the average dendrite diameter of the dendrite part and the thickness of the plating film satisfy the following formula (1).
  • t plating film thickness ( ⁇ m)
  • d average dendrite diameter ( ⁇ m)
  • FIG. 1 schematically shows a change in the state of the plating film main layer when the processed portion of the hot-dip Al—Zn—Mg—Si plated steel sheet of the present invention and the prior art corrodes.
  • the dendrite is small with respect to the thickness t of the plating film, so that Mg 2 Si tends to be finely and uniformly dispersed. I understand that.
  • the processing part (working part has a plurality of cracks) of the hot-dip Al-Zn-Mg-Si plated steel sheet of the present invention corrodes, the crack fracture surface which entered the processing part of the plating film Mg 2 Si dissolved in Mg is concentrated on the surface of the corrosion product.
  • the dendrite is large with respect to the thickness t of the plating film, so that Mg 2 Si is finely and uniformly dispersed. I find it difficult.
  • the Mg 2 Si was in the processing unit to enter the crack fracture surface dissolves, Mg of surface corrosion products one Although the concentration is concentrated in the portion, the Mg 2 Si dispersion degree of the entire plating main layer is inferior to that of the present invention, so that the Mg concentration portion covering the surface of the corrosion product is reduced. As a result, the corrosion of the processed part is likely to proceed, and it is considered that the processed part has insufficient corrosion resistance.
  • FIG. 2 shows the state of each element when the processed part corrodes in the molten Al—Zn—Mg—Si plated steel sheet of the present invention, and energy dispersive X-ray spectroscopy (SEM-) using a scanning electron microscope. EDS).
  • FIG. 2 shows that in the molten Al—Zn—Mg—Si plated steel sheet according to the present invention, Mg is concentrated on the surface of the plating film main layer when the processed part is corroded (photo of Mg in FIG. 2). See).
  • FIG. 3 shows the average dendrite diameter of the dendrite portion of the main layer, although the composition of the plating film is included in the scope of the present invention (Al: 55%, Si: 1.6%, Mg: 2.5%).
  • the thickness of the plating film shows the state of each element by SEM-EDS for the molten Al—Zn—Mg—Si plated steel sheet that does not satisfy the formula (1).
  • Si single phase is precipitated although the amount is small, and it is estimated that the corrosion resistance is lowered (see the photograph of Si in FIG. 3).
  • the dendrite diameter means the center distance between adjacent dendrite arms (dendrite arm spacing).
  • the dendrite diameter is measured according to the secondary branch method (see [Light Metal Society, Casting and Solidification Section, “Light Metals”, Vol. 38, P54, 1988]). This is because the dendite portion in the plating film main layer of the molten Al—Zn—Mg—Si plated steel sheet of the present invention has high orientation and a large number of portions where the arms are aligned.
  • the surface of the polished and / or etched plating film main layer is magnified using a scanning electron microscope (SEM) or the like (for example, observed at a magnification of 200 times).
  • SEM scanning electron microscope
  • Molten Al-Zn-Mg-Si-plated steel sheet of the present invention although the main layer contains Mg 2 Si as described above, the content of Mg 2 Si in the main layer, 1.0 wt% The above is preferable. More reliably, Mg 2 Si can be finely and uniformly dispersed throughout the plating film main layer, and desired corrosion resistance can be realized.
  • Mg 2 Si in the present invention for example, after a plating film of an Al—Zn—Mg—Si plated steel sheet is dissolved in an acid, SiP is analyzed by ICP analysis (high frequency inductively coupled plasma emission spectroscopy). And the amount of Mg (g / m 2 ) is measured.
  • the Si amount, interfacial alloy layer containing fraction (interfacial alloy layer 1 ⁇ m per, 0.45 g / m 2) pull the, terms of the amount of by multiplying 2.7 Mg 2 Si (g / m 2), plating
  • a method of calculating the mass% of Mg 2 Si by dividing by the amount (g / m 2 ) is used, but any analysis method may be used as long as the content of Mg 2 Si is known.
  • the area ratio of Mg 2 Si in the main layer in the main layer is preferably 1% or more in cross-sectional view of the main layer. More reliably, Mg 2 Si can be finely and uniformly dispersed throughout the plating film main layer, and desired corrosion resistance can be realized.
  • the area ratio of Mg 2 Si in the present invention for example, the cross section of the plating film of an Al—Zn—Mg—Si plated steel sheet is mapped by SEM-EDX, and Mg and Si are present in one field of view. A method of deriving the area ratio (%) of the overlapping part (the part where Mg 2 Si exists) by image processing is used, but the area ratio of the part where Mg 2 Si exists can be grasped. If it is a method, it will not specifically limit.
  • the ratio of the single diameter to the long diameter is preferably 0.4 or less, and more preferably 0.3 or less.
  • the Mg 2 Si particles have a ratio of the minor axis to the major axis of 0.4 or more.
  • Mg 2 Si since Mg 2 Si is large and the distribution is not uniform, the dissolution rate of Mg 2 Si in the initial stage of corrosion is significantly faster than that of Zn, and Mg 2 Si is preferentially dissolved and flows out. Mg is not effectively taken into the product, and there are few Mg-concentrated portions on the surface of the corrosion product, and the corrosion resistance improvement effect cannot be obtained.
  • the Mg 2 Si particles existing on the surface of the plating film and the crack fracture surface entering the processed part are fine and uniform. Contributes to good dispersion.
  • Mg 2 Si gradually dissolves together with Zn during corrosion, a large amount of Mg is taken into the corrosion product, and a thick Mg-concentrated part is formed on the entire surface of the corrosion product to suppress the progress of corrosion and processing.
  • the corrosion resistance can be dramatically improved.
  • the longer diameter of the Mg 2 Si, and that the longest diameter in the Mg 2 Si particles, said the minor axis of the Mg 2 Si, the shortest diameter among Mg 2 Si particles Means that.
  • the plating film further contains Ca.
  • the total content is preferably 0.2 to 25% by mass. By setting it as the said total content, it is because sufficient corrosion delay effect can be acquired and an effect is not saturated.
  • the main layer further includes Mn, V, Cr, Mo, Ti, Sr, and the like, since it has the effect of improving the stability of the corrosion product and delaying the progress of corrosion. It is preferable to contain a total of 0.01 to 10% by mass of one or more selected from Ni, Co, Sb and B.
  • the interfacial alloy layer is present at the interface with the base steel plate, and as described above, the Fe-Al system inevitably formed by alloying reaction between Fe on the steel plate surface and Al or Si in the bath. And / or Fe—Al—Si compounds. Since this interface alloy layer is hard and brittle, if it grows thick, it becomes the starting point of crack generation during processing, and therefore it is preferably as thin as possible.
  • the interface alloy layer and the main layer can be observed by using a scanning electron microscope or the like for the cross section of the polished and / or etched plating film.
  • a scanning electron microscope There are several types of methods for polishing and etching the cross section, but there is no particular limitation as long as it is a method generally used for observing the cross section of the plating film.
  • the observation conditions with a scanning electron microscope are, for example, an acceleration voltage of 15 kV and a magnification of 1000 times or more in a reflected electron image, the alloy layer and the main layer can be clearly observed.
  • the main layer whether or not one or two or more selected from Mg, Ca, Mn, V, Cr, Mo, Ti, Sr, Ni, Co, Sb and B is present is present.
  • the use of a glow discharge optical emission analyzer is merely an example, and the presence / distribution of Mg, Ca, Mn, V, Cr, Mo, Ti, Sr, Ni, Co, Sb and B in the plating main layer is determined. Other methods can be used as long as they can be investigated.
  • One or more selected from the above-mentioned Ca, Mn, V, Cr, Mo, Ti, Sr, Ni, Co, Sb and B are Zn, Al and Si in the plating main layer. It is preferable to produce an intermetallic compound with one or more selected from In the process of providing the plating film, the ⁇ -Al phase solidifies before the Zn-rich phase, and therefore, the intermetallic compound is discharged from the ⁇ -Al phase and collects in the Zn-rich phase in the plating main layer. Since the Zn-rich phase corrodes before the ⁇ -Al phase, one or two selected from Ca, Mn, V, Cr, Mo, Ti, Sr, Ni, Co, Sb, and B are included in the corrosion product.
  • the intermetallic compound contains Si
  • the intermetallic compound absorbs Si in the plating film, and as a result, the excess Si in the plating main layer is reduced.
  • insoluble Si Si phase
  • one or two or more selected from Mg, Ca, Mn, V, Cr, Mo, Ti, Sr, Ni, Co, Sb, and B are selected from Zn, Al, and Si.
  • a method of detecting these intermetallic compounds from the surface of the plated steel sheet by wide-angle X-ray diffraction or a method of detecting the cross section of the plating film by electron diffraction in a transmission electron microscope is used.
  • any method other than these may be used as long as the method can detect the intermetallic compound.
  • melting Al-Zn-Mg-Si plating steel plate of this invention is 15 micrometers or more and 27 micrometers or less.
  • the interface alloy layer preferably has a thickness of 1 ⁇ m or less. This is because, by setting the thickness of the interface alloy layer to 1 ⁇ m or less, high workability can be realized, and more excellent processed portion corrosion resistance can be obtained.
  • the thickness of the interface alloy layer can be 1 ⁇ m or less.
  • the method of obtaining the thickness of the plating film and the interface alloy layer is not particularly limited as long as it is a method that can be accurately grasped.
  • the cross section of a molten Al—Zn—Mg—Si plated steel sheet is observed with an SEM, the thickness of three places is measured for each visual field, and the average of the nine thicknesses measured in three visual fields is calculated. Can be grasped.
  • the molten Al-Zn-Mg-Si plated steel sheet of the present invention can be a surface-treated steel sheet further provided with a chemical conversion coating and / or a coating film on the surface thereof.
  • the method for producing a molten Al—Zn—Mg—Si plated steel sheet of the present invention includes 25 to 80% by mass of Al, 0.6 to 15% by mass of Si, and 0.1 to 25% by mass of Mg, After the base steel sheet is immersed in a plating bath consisting of Zn and unavoidable impurities and subjected to hot dipping, the steel sheet after plating is subjected to a first cooling at a bath temperature of ⁇ 50 ° C. from the bath temperature of the plating bath.
  • Cooling is performed at an average cooling rate of less than 10 ° C./sec until the temperature, and cooling is performed at an average cooling rate of 10 ° C./sec or more from the first cooling temperature to 380 ° C.
  • a manufacturing method it is possible to manufacture a molten Al—Zn—Mg—Si plated steel sheet having excellent flat plate portion and end portion corrosion resistance and excellent in processed portion corrosion resistance.
  • the method for producing a molten Al—Zn—Mg—Si plated steel sheet of the present invention is not particularly limited, but a method of producing in a continuous hot dip plating facility is usually employed.
  • base steel plate used for the molten Al—Zn—Mg—Si plated steel plate of the present invention there is no particular limitation on the type of base steel plate used for the molten Al—Zn—Mg—Si plated steel plate of the present invention.
  • a hot-rolled steel plate or steel strip that has been pickled and descaled, or a cold-rolled steel plate or steel strip obtained by cold rolling them can be used.
  • the conditions for the hot dipping are not particularly limited as long as an Al—Zn plating film can be formed on the base steel sheet, and can be performed according to a conventional method.
  • the base steel sheet is subjected to reduction annealing, it is cooled to the vicinity of the plating bath temperature, immersed in the plating bath, and then subjected to wiping to obtain a plating film having a desired film thickness.
  • the plating bath for the hot dipping contains 25 to 80% by mass of Al, 0.6 to 15% by mass of Si and 0.1 to 25% by mass of Mg, with the balance being Zn and unavoidable impurities.
  • the plating bath may further contain Ca for the purpose of further improving the corrosion resistance.
  • the plating bath contains 0.01 to 10% by mass in total of one or more selected from Mn, V, Cr, Mo, Ti, Sr, Ni, Co, Sb and B You can also By using a plating bath having such a composition, the plating film can be obtained.
  • the temperature of the plating bath is not particularly limited as long as the plating bath can be subjected to molten Al-Zn-Mg-Si plating without solidifying, and a known plating bath temperature should be adopted. Can do.
  • the temperature of the plating bath having an Al concentration of 55% by mass is preferably 575 to 620 ° C., and more preferably 580 to 605 ° C.
  • the Al—Zn-based plating film is composed of an interface alloy layer that exists at the interface with the base steel plate and a main layer that exists on the interface alloy layer.
  • the composition of the main layer is almost the same as the composition of the plating bath as a whole, although Al and Si are slightly lower on the interface alloy layer side. Therefore, the composition of the plating main layer can be accurately controlled by controlling the plating bath composition.
  • the manufacturing method of this invention cools the steel plate after the said hot dipping at the average cooling rate of less than 10 degree-C / sec to the said 1st cooling temperature, and 10 degreeC / from this 1st cooling temperature to 380 degreeC. Cool at an average cooling rate of sec or more.
  • Mg 2 Si is likely to be generated in a temperature range of bath temperature to bath temperature ⁇ 50 ° C. (first cooling temperature) of the plating bath. I'll be the cooling rate to the cooling temperature and the average 10 ° C.
  • the average cooling rate from the first cooling temperature to 380 ° C. is preferably 20 ° C./sec or more, and preferably 40 ° C./sec or more. More preferred.
  • a hot-dip Al-Zn-Mg-Si plated steel plate can be manufactured according to a conventional method.
  • a chemical conversion treatment film can be provided on the surface of the molten Al—Zn—Mg—Si plated steel sheet (chemical conversion treatment step), or a coating film can be provided in a separate coating facility (coating film formation step).
  • a chromate treatment solution or a chromium-free chemical treatment solution is applied by a chromate treatment or a chromium-free chemical treatment treatment in which a drying treatment is performed at a temperature of 80 to 300 ° C. without applying water and washing with water.
  • These chemical conversion treatment films may be a single layer or multiple layers, and in the case of multiple layers, a plurality of chemical conversion treatments may be performed sequentially.
  • Examples of the method for forming the coating film include roll coater coating, curtain flow coating, and spray coating. After coating a paint containing an organic resin, it is possible to provide a coating film by heating and drying by means of hot air drying, infrared heating, induction heating or the like.
  • Example 1 Using a cold-rolled steel sheet with a thickness of 0.5 mm produced by a conventional method as a base steel sheet, samples 1 to 57 of molten Al—Zn—Mg—Si plated steel sheets were produced in a continuous hot-dip plating facility.
  • Manufacturing conditions (plating temperature, the first cooling temperature, cooling rate), and the conditions of plating film (composition, Mg 2 Si major axis, minor axis / major axis of the Mg 2 Si, the thickness of the plating film, the above-mentioned formula ( 1) and the left side of formula (2), the content of Mg 2 Si in the main layer, the area ratio of Mg 2 Si in the cross section of the main layer, the strength ratio of Mg 2 Si to Al, and the film thickness of the interface alloy layer) Table 1 shows.
  • the bath temperature of the plating bath was set to 590 ° C.
  • maintained for 30 minutes at 200 degreeC after plating was implemented.
  • the composition of the plating film is in the same range as the invention disclosed in Patent Document 2, and for samples 28, 29 and 32, the composition of the plating film is Patent Document 3. It was the same range as the invention disclosed in.
  • Red rust generation cycle number ⁇ 600 cycles
  • Red rust generation cycle number ⁇ 600 cycles
  • red rust generation cycle number ⁇ 600 cycles
  • 300 cycles Red rust generation cycle number
  • Red rust generation cycle number ⁇ 400 cycles
  • Red rust generation cycle number ⁇ 300 cycles
  • each sample of the present invention is superior in corrosion resistance of each of the flat plate portion, the end portion, and the processed portion as compared with each sample of the comparative example.
  • Example 2 Among the molten Al-Zn-Mg-Si plated steel sheets produced in Example 1, a plurality of samples (see Table 2 for sample numbers), a urethane resin-based chemical conversion film (Nippon Parkerizing Co., Ltd. CT) -E-364). In addition, the adhesion amount of a chemical conversion film is 1 g / m ⁇ 2 >.
  • Manufacturing conditions plating temperature, the first cooling temperature, cooling rate), and the conditions of plating film (composition, Mg 2 Si major axis, minor axis / major axis of the Mg 2 Si, the thickness of the plating film, the above-mentioned formula ( 1) and the left side of formula (2), the content of Mg 2 Si in the main layer, the area ratio of Mg 2 Si in the cross section of the main layer, the strength ratio of Mg 2 Si to Al, and the film thickness of the interface alloy layer) Table 2 shows.
  • each sample of the present invention is superior in corrosion resistance of each of the flat plate portion, the end portion, and the processed portion as compared with each sample of the comparative example.
  • Example 3 About the sample of the fusion
  • a top coat Nippon Fine Coatings Co., Ltd.
  • Manufacturing conditions (plating temperature, the first cooling temperature, cooling rate), and the conditions of plating film (composition, Mg 2 Si major axis, minor axis / major axis of the Mg 2 Si, the thickness of the plating film, the above-mentioned formula ( 1) and the left side of formula (2), the content of Mg 2 Si in the main layer, the area ratio of Mg 2 Si in the cross section of the main layer, the strength ratio of Mg 2 Si to Al, and the film thickness of the interface alloy layer) are shown in Table 3.
  • each sample of the present invention is superior in corrosion resistance of the processed part as compared with each sample of the comparative example.
  • Example 4 Among the molten Al—Zn—Mg—Si plated steel sheets produced in Example 1, a plurality of samples (see Table 4 for sample numbers) were each sheared to a size of 90 mm ⁇ 70 mm, and then coated for an automobile outer plate Similarly to the treatment, after the zinc phosphate treatment was performed as a chemical conversion treatment, electrodeposition coating, intermediate coating, and top coating were performed.
  • Electrodeposition coating An electrodeposition coating was applied using GT-100, an electrodeposition coating made by Kansai Paint Co., so that the film thickness was 15 ⁇ m.
  • Intermediate coating Spray coating was performed using TP-65-P, which is an intermediate coating made by Kansai Paint Co., so that the film thickness was 30 ⁇ m.
  • Top coating Spray coating was performed using Neo6000, an intermediate coating made by Kansai Paint Co., so that the film thickness was 30 ⁇ m.
  • Manufacturing conditions (plating temperature, the first cooling temperature, cooling rate), and the conditions of plating film (composition, Mg 2 Si major axis, minor axis / major axis of the Mg 2 Si, the thickness of the plating film, the above-mentioned formula ( 1) and the left side of formula (2), the content of Mg 2 Si in the main layer, the area ratio of Mg 2 Si in the cross section of the main layer, the strength ratio of Mg 2 Si to Al, and the film thickness of the interface alloy layer) Are shown in Table 4.
  • the sample with Mg content exceeding 5% by mass is different from the sample with 5% by mass or less, and the maximum film swelling width is suppressed to 2.5 mm or less, and the melt has excellent corrosion resistance after coating. It can be seen that an Al—Zn-based plated steel sheet was obtained. Therefore, in the sample of the present invention example, a molten Al-Zn-Mg-Si plated steel sheet having excellent post-coating corrosion resistance can be obtained by controlling the Mg content in the plating layer to an appropriate range. I understand.
  • the molten Al-Zn-Mg-Si plated steel sheet having excellent flat plate portion and end portion corrosion resistance and excellent processed portion corrosion resistance, and the molten Al-Zn-Mg-Si plated steel sheet The manufacturing method of can be provided.

Abstract

 良好な平板部及び端部の耐食性を有するとともに、加工部耐食性にも優れた溶融Al-Zn-Mg-Siめっき鋼板を提供する。 上記目的を達成するべく、本発明は、鋼鋼板表面にめっき皮膜を有する溶融Al-Zn-Mg-Siめっき鋼板であって、 前記めっき皮膜は、下地鋼板との界面に存在する界面合金層と該合金層の上に存在する主層とからなり、25~80質量%のAl、0.6超え~15質量%のSi及び0.1超え~25質量%のMgを含有し、前記めっき皮膜中のMg及びSiの含有量が、以下の式(1)を満足することを特徴とする。 MMg/(MSi-0.6)>1.7・・・(1) MMg:Mgの含有量(質量%)、MSi:Siの含有量(質量%)

Description

溶融Al−Zn−Mg−Siめっき鋼板とその製造方法
 本発明は、良好な平板部及び端部の耐食性を有するとともに、加工部の耐食性にも優れた溶融Al−Zn−Mg−Siめっき鋼板及びその製造方法に関するものである。
 溶融Al−Zn系めっき鋼板は、Znの犠牲防食性とAlの高い耐食性とが両立できているため、溶融亜鉛めっき鋼板の中でも高い耐食性を示す。例えば、特許文献1には、めっき皮膜中にAlを25~75質量%含有する溶融Al−Zn系めっき鋼板が開示されている。そして、溶融Al−Znめっき鋼板は、その優れた耐食性から、長期間屋外に曝される屋根や壁等の建材分野、ガードレール、配線配管、防音壁等の土木建築分野を中心に近年需要が伸びている。
 溶融Al−Zn系めっき鋼板のめっき皮膜は、主層及び下地鋼板と主層との界面に存在する合金層からなり、主層は、主としてZnを過飽和に含有しAlがデンドライト凝固した部分(α−Al相のデンドライト部分)と、残りのデンドライト間隙の部分(インターデンドライト)とから構成され、α−Al相がめっき皮膜の膜厚方向に複数積層した構造を有する。このような特徴的な皮膜構造により、表面からの腐食進行経路が複雑になるため、腐食が容易に下地鋼板に到達しにくくなり、溶融Al−Zn系めっき鋼板はめっき皮膜厚が同一の溶融亜鉛めっき鋼板に比べ優れた耐食性を実現できる。
 また、溶融Al−Zn系めっきのめっき皮膜中にMgを含有することで、耐食性のさらなる向上を目的とした技術が知られている。
 Mgを含有する溶融Al−Zn系めっき鋼板(溶融Al−Zn−Mg−Siめっき鋼板)に関する技術として、例えば特許文献2には、めっき皮膜にMgを含むAl−Zn−Si合金を含み、該Al−Zn−Si合金が、45~60重量%の元素アルミニウム、37~46重量%の元素亜鉛及び1.2~2.3重量%の元素ケイ素を含有する合金であり、該Mgの濃度が1~5重量%である、Al−Zn−Mg−Siめっき鋼板が開示されている。
 また、特許文献3には、質量%で、Mg:2~10%、Ca:0.01~10%、Si:3~15%を含有し、残部Al及び不可避的不純物であり、且つMg/Siの質量比特定の範囲にしたAl系めっき系表面処理鋼材が開示されている。
 また、溶融Al−Zn系めっき鋼板を自動車分野、特に外板パネルに用いようとした場合、該めっき鋼板は連続式溶融めっき設備でめっきまで施した状態で自動車メーカー等に供され、そこでパネル部品形状に加工された後に化成処理、さらに電着塗装、中塗り塗装、上塗り塗装の自動車用総合塗装が施されることが一般的である。しかしながら、溶融Al−Zn系めっき鋼板を用いた外板パネルは、塗膜に損傷が生じた際、傷部を起点に塗膜/めっき界面におけるZnを多く含むインターデンドライトの選択腐食が起こる結果、溶融Znめっきに比べて著しく大きな塗膜膨れを生じ、十分な耐食性(塗装後耐食性)を確保できない場合があった。そのため、例えば特許文献4には、めっき組成にMg又はSn等を添加し、めっき層中にMgSi、MgZn、MgSn等のMg化合物を形成させることで、鋼板端面からの赤錆発生を改善した溶融Al−Zn系めっき鋼板が開示されている。
特公昭46−7161号公報 特許5020228号公報 特許5000039号公報 特開2002−12959号公報
 ここで、溶融Al−Zn系めっき鋼板については、上述したように、その優れた耐食性から長期間屋外に曝される屋根や壁などの建材分野に使用されることが多い。そのため、近年の省資源・省エネルギーについての要求から、製品の長寿命化を図るべく、より耐食性に優れた溶融Al−Zn−Mg−Siめっき鋼板の開発が望まれていた。
 また、引用文献2及び3に開示された溶融Al−Zn−Mg−Siめっき鋼板については、めっき皮膜の主層が硬質化しているため、曲げ加工を行った際にめっき皮膜が割れてクラックを生じ、結果として加工部の耐食性(加工部耐食性)が劣るという問題があった。そのため、加工部耐食性の改善についても望まれていた。なお、引用文献2では、Mg添加による延性低下を、「小さい」スパングルサイズとすることで延性低下を改良しているが、この目的を達成するためには引用文献2では実質的にはめっき層にTiBを有することが必須とされており、本質的な解決策が開示されているとはいえなかった。
 さらに、特許文献4に開示された溶融Al−Zn系めっき鋼板に塗装を施した場合でも、塗装後耐食性の問題は、依然として解消されておらず、溶融Al−Zn系めっき鋼板の用途によっては、塗装後耐食性についてもさらなる向上が望まれていた。
 本発明は、かかる事情に鑑み、良好な平板部及び端部の耐食性を有するとともに、加工部耐食性にも優れた溶融Al−Zn−Mg−Siめっき鋼板、並びに、該溶融Al−Zn−Mg−Siめっき鋼板の製造方法を提供することを目的とする。
 本発明者らは、上記の課題を解決すべく検討を重ねた結果、溶融Al−Zn−Mg−Siめっき鋼板の腐食時、めっき皮膜の主層中のインターデンドライトに存在するMgSiが初期に溶解し、腐食生成物の表面にMgを濃化させることによって耐食性の向上に寄与すること、また、前記主層中に存在する単相Siはカソードサイトとなり、周囲のめっき皮膜の溶解を招くため、単相Siはなくす必要があることに着目した。そして、本発明者らは、さらに鋭意研究を重ね、前記めっき皮膜の主層中に存在するAl、Mg及びSi成分の含有量を規定すると共に、めっき皮膜中のMg及びSiの含有量を特定範囲に制御することによって、インターデンドライト中にMgSiを微細且つ均一に分散させることができるため、加工部耐食性を大幅に向上できることを見出し、また、MgSiの微細且つ均一な生成によって単相Siをめっき皮膜主層中からなくすことができるため、平板部及び端部の耐食性についても向上できることを見出した。
 また、上記に加え、めっき皮膜中のMg含有量を特定の範囲に制御することで、優れた塗装後耐食性を得ることも見出した。
 本発明は、以上の知見に基づきなされたものであり、その要旨は以下の通りである。
1.鋼板表面にめっき皮膜を有する溶融Al−Zn−Mg−Siめっき鋼板であって、
 前記めっき皮膜は、下地鋼板との界面に存在する界面合金層と該合金層の上に存在する主層とからなり、25~80質量%のAl、0.6超え~15質量%のSi及び0.1超え~25質量%のMgを含有し、
 前記めっき皮膜中のMg及びSiの含有量が、以下の式(1)を満足することを特徴とする、溶融Al−Zn−Mg−Siめっき鋼板。
Mg/(MSi−0.6)>1.7 ・・・(1)
Mg:Mgの含有量(質量%)、MSi:Siの含有量(質量%)
2.前記主層がMgSiを含有し、前記主層におけるMgSiの含有量が1.0質量%以上であることを特徴とする、前記1に記載の溶融Al−Zn−Mg−Siめっき鋼板。
3.前記主層がMgSiを含有し、該主層の断面におけるMgSiの面積率が1%以上であることを特徴とする、前記1に記載の溶融Al−Zn−Mg−Siめっき鋼板。
4.前記主層がMgSiを含有し、X線回折によるMgSiの(111)面(面間隔d=0.367nm)のAlの(200)面(面間隔d=0.202nm)に対する強度比が、0.01以上であることを特徴とする、前記1に記載の溶融Al−Zn−Mg−Siめっき鋼板。
5.前記界面合金層の厚さが、1μm以下であることを特徴とする、前記1~4のいずれか1項に記載の溶融Al−Zn−Mg−Siめっき鋼板。
6.前記主層がα−Al相のデンドライト部分を有し、該デンドライト部分の平均デンドライト径と、前記めっき皮膜の厚さとが、以下の式(2)を満足することを特徴とする、前記1~4のいずれか1項に記載の溶融Al−Zn−Mg−Siめっき鋼板。
t/d≧1.5 ・・・(2)
t:めっき皮膜の厚さ(μm)、d:平均デンドライト径(μm)
7.前記めっき皮膜が、25~80質量%のAl、2.3超え~5質量%のSi及び3~10質量%のMgを含有することを特徴とする、前記1~6のいずれか1項に記載の溶融Al−Zn−Mg−Siめっき鋼板。
8.前記めっき皮膜が、25~80質量%のAl、0.6超え~15質量%のSi及び5超え~10質量%のMgを含有することを特徴とする、前記1~6のいずれか1項に記載の溶融Al−Zn−Mg−Siめっき鋼板。
9.25~80質量%のAl、0.6超え~15質量%のSi及び0.1超え~25質量%のMgを含み、残部がZn及び不可避的不純物からなるめっき浴中に、下地鋼板を浸漬させて溶融めっきを施した後、めっき後の鋼板を、前記めっき浴の浴温~浴温−50℃である第1冷却温度までは10℃/sec未満の平均冷却速度で冷却し、該第1冷却温度から380℃までは10℃/sec以上の平均冷却速度で冷却することを特徴とする、溶融Al−Zn−Mg−Siめっき鋼板の製造方法。
 本発明により、良好な平板部及び端部の耐食性を有するとともに、加工部耐食性にも優れた溶融Al−Zn−Mg−Siめっき鋼板、並びに、該溶融Al−Zn−Mg−Siめっき鋼板の製造方法を提供できる。
(a)は、本発明による溶融Al−Zn−Mg−Siめっき鋼板の加工部について腐食前後の状態を示した図であり、(b)は、従来のAl−Zn−Mg−Siめっき鋼板の加工部について腐食前後の状態を示した図である。 本発明による溶融Al−Zn−Mg−Siめっき鋼板の加工部が腐食した際の、各元素の状態を走査電子顕微鏡のエネルギー分散型X線分光法(SEM−EDX)により示したものである。 従来の溶融Al−Zn−Mg−Siめっき鋼板の、各元素の状態をSEM−EDXにより示したものである。 デンドライト径の測定方法を説明するための図である。 めっき皮膜中のSiの含有量とMgの含有量との関係、及び、めっき皮膜の主層中に生成する相の状態を示した図である。 日本自動車規格の複合サイクル試験(JASO−CCT)の流れを説明するための図である。 塗装後耐食性の評価用サンプルを示した図である。 腐食促進試験(SAE J 2334)のサイクルを示した図である。
(溶融Al−Zn−Mg−Siめっき鋼板)
 本発明の対象とする溶融Al−Zn−Mg−Siめっき鋼板は、鋼板表面にめっき皮膜を有し、該めっき皮膜は、下地鋼板との界面に存在する界面合金層と該合金層の上に存在する主層からなる。そして、前記めっき皮膜は、25~80質量%のAl、0.6超え~15質量%のSi及び0.1超え~25質量%のMgを含有し、残部がZn及び不可避的不純物からなる組成を有する。
 前記めっき皮膜中のAl含有量は、耐食性と操業面のバランスから、25~80質量%とし、好ましくは35~65質量%である。めっき主層のAl含有量が25質量%以上であれば、Alのデンドライト凝固が起こる。これにより、主層は主としてZnを過飽和に含有し、Alがデンドライト凝固した部分(α−Al相のデンドライト部分)と残りのデンドライト間隙の部分(インターデンドライト部分)からなり、且つ該デンドライト部分がめっき皮膜の膜厚方向に積層した耐食性に優れる構造を確保できる。またこのα−Al相のデンドライト部分が、多く積層するほど、腐食進行経路が複雑になり、腐食が容易に下地鋼板に到達しにくくなるので、耐食性が向上する。極めて高い耐食性を得るためには、主層のAl含有量を35質量%以上とすることがより好ましい。一方、主層のAl含有量が80質量%を超えると、Feに対して犠牲防食作用をもつZnの含有量が少なくなり、耐食性が劣化する。このため、主層のAl含有量は80質量%以下とする。また、主層のAl含有量が65質量%以下であれば、めっきの付着量が少なくなり、鋼素地が露出しやすくなった場合にもFeに対して犠牲防食作用を有し、十分な耐食性が得られる。よって、めっき主層のAl含有量は65質量%以下とすることが好ましい。
 また、Siは下地鋼板との界面に生成する界面合金層の成長を抑制する目的で、耐食性や加工性の向上を目的にめっき浴中に添加され、必然的にめっき主層に含有される。具体的には、Al−Zn−Mg−Siめっき鋼板の場合、めっき浴中にSiを含有させめっき処理を行うと、鋼板がめっき浴中に浸漬されると同時に鋼板表面のFeと浴中のAlやSiが合金化反応し、Fe−Al系及び/又はFe−Al−Si系の化合物を生成する。このFe−Al−Si系界面合金層の生成により、界面合金層の成長が抑制される。めっき皮膜のSi含有量が0.6質量%を越える場合に界面合金層の十分な成長抑制が可能となる。一方、めっき皮膜のSi含有量が、15%を超えた場合、めっき皮膜においてクラックの伝播経路となるため、加工性を低下させ、カソードサイトとなるSi相が析出し易くなる。Si相の析出は、Mg含有量を増やすことで抑制できるが、この方法は製造コストの上昇を招き、まためっき浴の組成管理をより困難にしてしまう。このため、めっき皮膜中のSi含有量は15%以下とする。さらにまた、より高いレベルで、界面合金層の成長及びSi相の析出を抑制できる点からは、めっき皮膜中のSi含有量を2.3超え~5%とすることが好ましく、2.3超え~3.5%とすることが特に好ましい。
 さらに、前記めっき皮膜は、Mgを0.1超え~25質量%含有する。前記めっき皮膜の主層が腐食した際、腐食生成物中にMgが含まれることとなり、腐食生成物の安定性が向上し、腐食の進行が遅延する結果、耐食性が向上するという効果がある。より具体的には、前記めっき皮膜の主層のMgは、上述したSiと結合し、MgSiを生成する。このMgSiは、めっき鋼板が腐食した際、初期に溶解するためMgが腐食生成物に含まれる。Mgは腐食生成物の表面に濃化して、腐食生成物を緻密化させる効果があり、腐食生成物の安定性及び外来腐食因子に対するバリア性を向上できる。
 ここで、前記めっき皮膜のMg含有量を0.1質量%超えとしたのは、0.1質量%超えとすることで、MgSiを生成できるようになり、腐食遅延効果を得ることができるからである。一方、前記Mgの含有量を25質量%以下としたのは、Mgの含有量が25%を超える場合、耐食性の向上効果の飽和に加え、製造コストの上昇とめっき浴の組成管理が難しくなるためである。また、より高いレベルで、製造コストの低減を向上させつつ、より優れた腐食遅延効果を実現する点からは、めっき皮膜中のMg含有量を3~10%とすることが好ましく、4~6%とすることがより好ましい。
 また、めっき皮膜中にMgを5%以上含有することで、本発明で課題とする塗装後耐食性の改善が可能となる。Mgを含まない従来の溶融Al−Zn系めっき鋼板のめっき層が大気に触れると、α−Al相の周囲に緻密、且つ安定なAlの酸化膜が直ぐに形成され、この酸化膜による保護作用によってα−Al相の溶解性はインターデンドライト中のZnリッチ相の溶解性に比べ非常に低くなる。この結果、従来のAl−Zn系めっき鋼板を下地に用いた塗装鋼板は、塗膜に損傷が生じた場合、傷部を起点に塗膜/めっき界面でZnリッチ相の選択腐食を起こし、塗装健全部の奥深くに向けて進行して大きな塗膜膨れを起こすことから、塗装後耐食性が劣る。一方、Mgを含有した溶融Al−Zn系めっき鋼板を下地に用いた塗装鋼板の場合、インターデンドライト中に析出するMgSi相やMg−Zn化合物(MgZn、Mg32(Al,Zn)49等)が腐食の初期段階で溶け出し、腐食生成物中にMgが取込まれる。Mgを含有した腐食生成物は非常に安定であり、これにより腐食が初期段階で抑制されるため、従来のAl−Zn系めっき鋼板を下地に用いた塗装鋼板の場合に問題となるZnリッチ相の選択腐食による大きな塗膜膨れを抑制できる。その結果、めっき層にMgを含有させた溶融Al−Zn系めっき鋼板は優れた塗装後耐食性を示す。Mgが5%以下の場合には、腐食時に溶け出すMgの量が少なく、上記に示した安定な腐食生成物が十分に生成されないことから、塗装後耐食性が向上しないおそれがある。逆に、Mgが10%超えの場合には、効果が飽和するだけでなく、Mg化合物の腐食が激しく起こり、めっき層全体の溶解性が過度に上昇する結果、腐食生成物を安定化させても、その溶解速度が大きくなるため、大きな膨れ幅を生じ、塗装後耐食性が劣化するおそれがある。よって、優れた塗装後耐食性を安定的に得るためには、Mgを5越え~10%の範囲で含有させることが好ましい。
 そして本発明の溶融Al−Zn−Mg−Siめっき鋼板は、前記インターデンドライト中にMgSiを効果的に分散させ、前記単相Siが生成する可能性を低減し、より優れた加工部耐食性を実現する観点から、前記めっき皮膜中のMg及びSiの含有量が、以下の式(1)を満足することが好ましい。
Mg/(MSi−0.6)>1.7 ・・・(1)
Mg:Mgの含有量(質量%)、MSi:Siの含有量(質量%)
 MgSiの微細且つ均一な分散によって、鋼板の腐食時にMgSiがめっき表面及び加工部に入ったクラック破面の全面でZnとともに徐々に溶解し、腐食生成物にMgが多量に取り込まれ、腐食生成物表面の全面にMg濃化部が厚く生成して腐食の進行を抑えることができるため、加工部耐食性を飛躍的に向上できる。また、MgSiを偏在することなく、めっき皮膜主層全体に微細且つ均一に分散させることによって、カソードサイトとなる単相Siについても前記主層からなくすことができるため、平板部及び端部の耐食性についても向上できる。
 これに対し、従来技術では、例えば上述した特許文献3に述べられているように、MgSiがある一定量以上の大きさの塊状(具体的には長径が10μm以上、短径の長径に対する比率が0.4以上)となっている。それによって、MgSiが大きく且つ分布も不均一になるため、腐食初期のMgSiの溶解速度がZnに比べて著しく速く、MgSiが優先的に溶解して流出する結果、腐食生成物にMgが有効に取り込まれず、腐食生成物表面のMg濃化部も少なく局所的になり、所望の耐食性向上効果が得られない。
 ここで、図5は、前記めっき皮膜中のSiの含有量とMgの含有量との関係、及び、めっき皮膜の主層中に生成する相の状態を示したものである。図5から、本発明の組成の範囲内(図5の破線で囲まれた部分)では、上記式(1)を満足することで、確実に主層から単相Siをなくすことができていることがわかる。
 また、前記めっき皮膜の主層が、α−Al相のデンドライト部分を有し、該デンドライト部分の平均デンドライト径と、前記めっき皮膜の厚さとが、以下の式(1)を満足することを特徴とする。
t/d≧1.5 ・・・(1)
t:めっき皮膜の厚さ(μm)、d:平均デンドライト径(μm)
 上記(1)式を満足することで、上述したα−Al相からなるデンドライト部分のアーム(平均デンドライト径)を相対的に小さくでき、前記インターデンドライト中にMgSiを効果的に分散させ、めっき主層全体にMgSiが偏在することなく微細且つ均一に分散した状態を得ることが可能となる。
 ここで、図1は、本発明及び従来技術の溶融Al−Zn−Mg−Siめっき鋼板の加工部が腐食した際のめっき皮膜主層の状態変化を模式的に示したものである。
 図1(a)に示すように、本発明の溶融Al−Zn−Mg−Siめっき鋼板では、めっき皮膜の厚さtに対してデンドライトが小さいため、MgSiが微細且つ均一に分散しやすいことがわかる。そして、本発明の溶融Al−Zn−Mg−Siめっき鋼板の加工部(加工部は、複数のクラックを有している。)が腐食した際、前記めっき皮膜の加工部に入ったクラック破面にあるMgSiが溶解し、Mgが腐食生成物の表面に濃化することとなる。
 一方、図1(b)に示すように、従来の溶融Al−Zn−Mg−Siめっき鋼板では、めっき皮膜の厚さtに対してデンドライトが大きいため、MgSiが微細且つ均一に分散しにくいことがわかる。そして、従来の溶融Al−Zn−Mg−Siめっき鋼板の加工部が腐食した際、前記加工部に入ったクラック破面にあったMgSiは溶解し、Mgが腐食生成物の表面の一部に濃化しているものの、めっき主層全体のMgSiの分散度が本願発明に比べて劣るため、前記腐食生成物の表面を覆うMg濃化部分が少なくなる。その結果、加工部の腐食が進行し易く、加工部耐食性が十分でないことが考えられる。
 また、図2は、本発明の溶融Al−Zn−Mg−Siめっき鋼板について、加工部が腐食した際の各元素の状態を、走査電子顕微鏡を用いたエネルギー分散型X線分光法(SEM−EDS)により示したものである。図2から、本願発明の溶融Al−Zn−Mg−Siめっき鋼板では、加工部が腐食した際、めっき皮膜主層の表面にMgが濃化していることがわかる(図2中のMgの写真を参照。)。
 また、図3は、めっき皮膜の組成が本発明の範囲に含まれるものの(Al:55%、Si:1.6%、Mg:2.5%)、主層のデンドライト部分の平均デンドライト径と、めっき皮膜の厚さとが、式(1)を満たさない溶融Al−Zn−Mg−Siめっき鋼板について、各元素の状態をSEM−EDSにより示したものである。観察の結果、少量ではあるがSi単相が析出していることが確認でき、耐食性の低下が推測される(図3中のSiの写真を参照。)。
 なお、前記デンドライト径とは、隣接するデンドライトアーム間の中心距離(デンドライトアームスペーシング)のことを意味する。本発明では、前記デンドライト径を、2次枝法([軽金属学会 鋳造・凝固部会、「軽金属」38巻、P54、1988年]を参照。)に従って測定する。本発明の溶融Al−Zn−Mg−Siめっき鋼板のめっき皮膜主層におけるデンドイト部分は、配向性が高く、アームが整列している部分が多いためである。
 具体的には、図4に示すように、研磨及び/又はエッチングしためっき皮膜主層の表面を、走査型電子顕微鏡(SEM)等を用いて拡大観察し(例えば200倍で観察し)、無作為に選択した視野の中で、デンドライトアームが3本以上整列している部分を選択し(図4では、A−B間の3本を選択している。)、アームが整列している方向に沿って距離(図4では、距離L)を測定する。その後、測定した距離をデンドライトアームの本数で除して(図4では、L/3)、デンドライト径を算出する。当該デンドライト径は、1つの視野の中で、3箇所以上測定し、それぞれ得られたデンドライト径の平均を算出したものを平均デンドライト径とする。
 本発明の溶融Al−Zn−Mg−Siめっき鋼板は、上述したように前記主層がMgSiを含有しているが、該主層におけるMgSiの含有量が、1.0質量%以上であることが好ましい。より確実に、MgSiをめっき皮膜主層全体に微細且つ均一に分散させることができ、所望の耐食性を実現できる。
 ここで、本発明でのMgSiの含有量については、例えばAl−Zn−Mg−Siめっき鋼板のめっき皮膜を酸に溶解させた後、ICP分析(高周波誘導結合プラズマ発光分光分析)でSi及びMgの量(g/m)を測定する。そして、Si量から、界面合金層含有分(界面合金層1μmあたり、0.45g/m)を引き、2.7を乗じてMgSiの量(g/m)に換算し、めっき量(g/m)で除して、MgSiの質量%を算出する方法が用いられるが、MgSiの含有量がわかればどのような分析方法を用いても良い。
 また、前記主層における主層におけるMgSiの面積率が、該主層の断面で見て1%以上であることが好ましい。より確実に、MgSiをめっき皮膜主層全体に微細且つ均一に分散させることができ、所望の耐食性を実現できる。
 ここで、本発明でのMgSiの面積率については、例えば、Al−Zn−Mg−Siめっき鋼板のめっき皮膜の断面を、SEM−EDXでマッピングし、1つの視野中でMgとSiが重なって検出される部分(MgSiが存在する部分)の面積率(%)を、画像処理によって導出する方法が用いられるが、MgSiが存在する部分の面積率が把握することができる方法であれば、特に限定されない。
 さらに、前記主層に含まれるMgSiについては、X線回折によるMgSiの(111)面(面間隔d=0.367nm)のAlの(200)面(面間隔d=0.202nm)に対する強度比が、0.01以上であることが好ましい。より確実に、MgSiをめっき皮膜主層全体に微細且つ均一に分散させることができ、所望の耐食性を実現できる。
 ここで、本発明での強度比の算出については、X線回折パターンを、例えば管電圧:30kV、管電流:10mA、Cu Kα管球(波長λ=0.154nm)、測定角度2θ=10°~90°の条件で取得し、Alを示す(200)面(面間隔d=0.2024nm)及びMgSiを示す(111)面(面間隔d=0.367nm)の強度をそれぞれ測定し、後者を前者で除することによって行うが、X線回折の条件は特に限定するものではない。
 また、前記インターデンドライト中に微細且つ均一に分散するMgSiの粒子については、長径に対する単径の比が0.4以下であることが好ましく、0.3以下であることがより好ましい。
 従来技術では、例えば上述した特許文献3に述べられているように、MgSiの粒子については、短径の長径に対する比率で0.4以上としている。この場合MgSiが大きく且つ分布も不均一になるため、腐食初期のMgSiの溶解速度がZnに比べて著しく速く、MgSiが優先的に溶解して流出することから、腐食生成物にMgが有効に取り込まれず、腐食生成物表面のMg濃化部も少なく局所的になり、耐食性向上効果は得られない。
 一方、本発明技術では、長径と短径との差(アスペクト比)を大きくすることで、前記めっき皮膜の表面及び加工部に入ったクラック破面に存在するMgSiの粒子が微細且つ均一な分散に寄与する。その結果、腐食時にMgSiがZnとともに徐々に溶解し、腐食生成物にMgが多量に取り込まれ、腐食生成物表面の全面にMg濃化部が厚く生成して腐食の進行を抑え、加工部耐食性を飛躍的に向上できる。
 ここで、前記MgSiの長径とは、MgSiの粒子の中で最も長い径のことであり、前記MgSiの短径とは、MgSiの粒子の中で最も短い径のことを意味する。
 また、より優れた耐食性を得る点からは、前記めっき皮膜にCaをさらに含有することが好ましい。さらに、前記めっき皮膜がCaをさらに含有する場合には、合計含有量が0.2~25質量%であることが好ましい。上記合計含有量とすることで、十分な腐食遅延効果を得ることができ、効果が飽和することもないためである。
 さらに、前記MgやCaと同様に、腐食生成物の安定性を向上させ、腐食の進行を遅延させる効果を奏することから、前記主層は、さらにMn、V、Cr、Mo、Ti、Sr、Ni、Co、Sb及びBのうちから選択される一種又は二種以上を、合計で0.01~10質量%含有することが好ましい。
 なお、前記界面合金層は、下地鋼板との界面に存在するものであり、前述の通り、鋼板表面のFeと浴中のAlやSiが合金化反応して必然的に生成するFe−Al系及び/又はFe−Al−Si系の化合物である。この界面合金層は、硬くて脆いため、厚く成長すると加工時のクラック発生の起点となることから可能な限り薄いことが好ましい。
 ここで、界面合金層及び主層は、研磨及び/又はエッチングしためっき皮膜の断面を、走査型電子顕微鏡等を用いることによって観察できる。断面の研磨方法やエッチング方法はいくつか種類があるが、一般的にめっき皮膜断面を観察する際に用いられる方法であれば特に限定はされない。また、走査型電子顕微鏡での観察条件は、例えば加速電圧15kVで、反射電子像にて1000倍以上の倍率であれば、合金層及び主層を明確に観察することが可能である。
 また、主層中に、Mgや、Ca、Mn、V、Cr、Mo、Ti、Sr、Ni、Co、Sb及びBのうちから選択される一種又は二種以上が存在するか否かについては、例えばグロー放電発光分析装置でめっき皮膜を貫通分析することにより確認することができる。ただし、グロー放電発光分析装置を用いるのはあくまでも一例であり、めっき主層中のMgや、Ca、Mn、V、Cr、Mo、Ti、Sr、Ni、Co、Sb及びBの有無・分布を調べることができる方法であれば、他の方法を用いることも可能である。
 また、上述したCa、Mn、V、Cr、Mo、Ti、Sr、Ni、Co、Sb及びBのうちから選択される一種又は二種以上は、前記めっき主層中において、Zn、Al及びSiから選択される一種又は二種以上と金属間化合物を生成していることが好ましい。めっき皮膜を設ける過程において、α−Al相がZnリッチ相より先に凝固するため、めっき主層において金属間化合物は凝固過程でα−Al相から排出されてZnリッチ相に集まる。Znリッチ相はα−Al相より先に腐食するため、腐食生成物中にCa、Mn、V、Cr、Mo、Ti、Sr、Ni、Co、Sb及びBのうちから選択される一種又は二種以上が取り込まれることになる。この結果、より効果的に腐食の初期段階における腐食生成物の安定化を図れる。また、前記金属間化合物がSiを含む場合には、金属間化合物がめっき皮膜中のSiを吸収して、めっき主層中の余剰Siが減少する結果、非固溶Si(Si相)がめっき主層に生成することによる曲げ加工性の低下を防止できるため、さらに好ましい。
 なお、前記Mgや、Ca、Mn、V、Cr、Mo、Ti、Sr、Ni、Co、Sb及びBのうちから選択される一種又は二種以上が、Zn、Al及びSiから選択される一種又は二種以上と金属間化合物を生成しているか否かを確認する方法としては、次の方法がある。めっき鋼板の表面から広角X線回折によってこれらの金属間化合物を検出する方法、若しくは、めっき皮膜の断面を透過電子顕微鏡中で電子線回折によって検出するなどの方法等が用いられる。また、これら以外の方法でも、前記金属間化合物を検出できる方法であれば、いずれの方法を用いても構わない。
 なお、本発明の溶融Al−Zn−Mg−Siめっき鋼板のめっき皮膜の膜厚は、15μm以上27μm以下であることが好ましい。一般的に、前記めっき皮膜が薄いほど、耐食性が悪化する傾向にあり、厚いほど、加工性が劣化する傾向があるためである。
 また、前記界面合金層の厚さは、1μm以下であることが好ましい。界面合金層の厚さを1μm以下とすることで、高い加工性が実現でき、より優れた加工部耐食性が得られるからである。例えば、前述したように、めっき皮膜中のSi含有量を0.6質量%超えとすることで、界面合金層の成長を抑制できるので、界面合金層の厚みを1μm以下とすることが可能になる。
ここで、前記めっき皮膜及び前記界面合金層の厚さを得る方法は、正確に把握できる方法であれば特に限定はされない。例えば、溶融Al−Zn−Mg−Siめっき鋼板の断面をSEMにより観察し、1視野ごとに3か所の厚さを測定し、3視野で測定した9か所の厚さの平均を算出することで把握することができる。
 さらに、本発明の溶融Al−Zn−Mg−Siめっき鋼板は、その表面に、化成処理皮膜及び/又は塗膜をさらに備える表面処理鋼板とすることもできる。
 なお、本発明の溶融Al−Zn−Mg−Siめっき鋼板に用いられる素地鋼板については特に限定されず、通常の溶融Al−Zn系めっき鋼板に用いられる鋼板と同様の鋼板のみならず高張力鋼板等についても用いることができる。
(溶融Al−Zn−Mg−Siめっき鋼板の製造方法)
 次に、本発明の溶融Al−Zn−Mg−Siめっき鋼板の製造方法について説明する。
 本発明の溶融Al−Zn−Mg−Siめっき鋼板の製造方法は、25~80質量%のAl、0.6超え~15質量%のSi及び0.1超え~25質量%のMgを含み、残部がZn及び不可避的不純物からなるめっき浴中に、下地鋼板を浸漬させて溶融めっきを施した後、めっき後の鋼板を、前記めっき浴の浴温~浴温−50℃である第1冷却温度までは10℃/sec未満の平均冷却速度で冷却し、該第1冷却温度から380℃までは10℃/sec以上の平均冷却速度で冷却することを特徴とする。
 かかる製造方法によって、良好な平板部及び端部の耐食性を有するとともに、加工部耐食性にも優れた溶融Al−Zn−Mg−Siめっき鋼板を製造できる。
 本発明の溶融Al−Zn−Mg−Siめっき鋼板の製造方法では、特に限定はされないが、連続式溶融めっき設備において製造を行う方法が通常採用される。
 本発明の溶融Al−Zn−Mg−Siめっき鋼板に用いられる下地鋼板の種類については、特に限定はされない。例えば、酸洗脱スケールした熱延鋼板若しくは鋼帯、又は、それらを冷間圧延して得られた冷延鋼板若しくは鋼帯を用いることができる。
 また、前記前処理工程及び焼鈍工程の条件についても特に限定はされず、任意の方法を採用することができる。
 前記溶融めっきの条件については、前記下地鋼板にAl−Zn系めっき皮膜を形成できれば特に限定はされず、常法に従って行うことができる。例えば、前記下地鋼板を還元焼鈍した後、めっき浴温近傍まで冷却し、めっき浴に浸漬させ、その後、ワイピングを行うことによって所望の膜厚のめっき皮膜を得ることができる。
 前記溶融めっきのめっき浴は、25~80質量%のAl、0.6超え~15質量%のSi及び0.1超え~25質量%のMgを含み、残部がZn及び不可避的不純物からなる。
 また、前記めっき浴は、さらなる耐食性の向上を目的として、Caをさらに含むこともできる。
 さらに、前記めっき浴には、Mn、V、Cr、Mo、Ti、Sr、Ni、Co、Sb及びBのうちから選択される一種又は二種以上を、合計で0.01~10質量%含有することもできる。このような組成のめっき浴とすることにより、前記めっき皮膜を得ることが可能となる。
 なお、前記めっき浴の温度については、めっき浴が凝固せずに溶融Al−Zn−Mg−Siめっきを施すことができるものであれば特に限定はされず、公知のめっき浴温度を採用することができる。例えば、Al濃度が55質量%であるめっき浴の温度は、575~620℃が好ましく、580~605℃がより好ましい。
 また、上述したように、Al−Zn系めっき皮膜は、下地鋼板との界面に存在する界面合金層と該界面合金層の上に存在する主層からなる。該主層の組成は界面合金層側でAlとSiがやや低くなるものの、全体としてはめっき浴の組成とほぼ同等となる。よって、めっき主層の組成の制御は、めっき浴組成を制御することにより精度良く行うことができる。
 そして、本発明の製造方法は、前記溶融めっき後の鋼板について、前記第1冷却温度までは10℃/sec未満の平均冷却速度で冷却し、該第1冷却温度から380℃までは10℃/sec以上の平均冷却速度で冷却する。本発明者らの研究の結果、MgSiについては、めっき浴の浴温~浴温−50℃程度(第1冷却温度)の温度域までに生成しやすいことがわかっており、該第1冷却温度までの冷却速度を平均10℃/sec未満とすることよって、めっき主層中でMgSiが生成する時間が長くなって生成量が最大化し、MgSiがめっき主層全体に偏在することなく微細且つ均一に分散する結果、優れた加工部耐食性を得ることが可能となる。一方、第1冷却温度~380℃までの温度域では、単相Siが析出しやすいことがわかっており、第1冷却温度から380℃までを平均10℃/sec以上の冷却速度とすることで、単相Siの析出を抑制することが可能となる。
 また、より確実に単相Siの析出を防ぐ点からは、第1冷却温度から380℃までの平均冷却速度を、20℃/sec以上とすることが好ましく、40℃/sec以上とすることがより好ましい。
 なお、本発明の製造方法において前記溶融めっき時及び溶融めっき後の冷却条件以外については、特に限定はされず、常法に従って溶融Al−Zn−Mg−Siめっき鋼板を製造することができる。
 例えば、溶融Al−Zn−Mg−Siめっき鋼板表面に、化成処理皮膜を設けること(化成処理工程)や、別途塗装設備において塗膜を設けること(塗膜形成工程)もできる。
 前記化成処理皮膜については、例えば、クロメート処理液又はクロムフリー化成処理液を塗布し、水洗することなく、鋼板温度として80~300℃となる乾燥処理を行うクロメート処理又はクロムフリー化成処理により設けることが可能である。これら化成処理皮膜は単層でも複層でもよく、複層の場合には複数の化成処理を順次行えばよい。
 また、前記塗膜の形成方法としては、ロールコーター塗装、カーテンフロー塗装、スプレー塗装等が挙げられる。有機樹脂を含有する塗料を塗装した後、熱風乾燥、赤外線加熱、誘導加熱等の手段により加熱乾燥して塗膜を設けることが可能である。
 次に、本発明の実施例を説明する。
(実施例1)
 常法で製造した板厚0.5mmの冷延鋼板を下地鋼板として用い、連続式溶融めっき設備において、サンプル1~57の溶融Al−Zn−Mg−Siめっき鋼板の製造を行った。
 製造条件(めっき浴温、第1冷却温度、冷却速度)、さらに、めっき皮膜の条件(組成、MgSiの長径、MgSiの短径/長径、めっき皮膜の厚さ、上述した式(1)及び式(2)の左辺、主層中のMgSiの含有量、主層断面におけるMgSiの面積率、MgSiのAlに対する強度比、界面合金層の膜厚)については、表1に示す。
 なお、サンプルとなる全ての溶融Al−Zn−Mg−Siめっき鋼板の製造では、めっき浴の浴温は590℃とした。
 また、サンプル10については、めっき後に200℃で30分保持する処理を実施した。さらに、サンプル11~13、20及び21については、めっき皮膜の組成が特許文献2に開示された発明と同様の範囲であり、サンプル28、29及び32については、めっき皮膜の組成が特許文献3に開示された発明と同様の範囲であった。
○MgSiの短径及び長径
 なお、溶融Al−Zn−Mg−Siめっき鋼板の各サンプルについて、光学顕微鏡(100倍)でめっき表面を撮影し、無作為に5個のMgSiを選択してそれぞれの長径及び短径を測定し、測定した全ての長径及び短径の平均を算出することで、MgSiの長径及び短径を導出した。得られたMgSiの長径(μm)、及び、長径に対する短径の比を、表1に示す。
○デンドライト径
 また、溶融Al−Zn−Mg−Siめっき鋼板の各サンプルについて、研磨しためっき主層表面を、SEMを用いて200倍で観察し、無作為に選択した視野の中で、デンドライトアームが3本以上整列している部分を選択し、アームが整列している方向に沿って距離を測定した後、測定した距離をデンドライトアームの本数で除すことによって、デンドライト径を算出する。デンドライト径は、1つの視野の中で、3箇所測定し、それぞれ得られたデンドライト径の平均を算出したものを平均デンドライト径とした。得られたデンドライト径を表1に示す。
(めっき耐食性の評価)
(1)平板部及び端部耐食性評価
 溶融Al−Zn−Mg−Siめっき鋼板の各サンプルについて、日本自動車規格の複合サイクル試験(JASO−CCT)を行った。JASO−CCTについては、図6に示すように、特定の条件で、塩水噴霧、乾燥及び湿潤を1サイクルとした試験である。
 各サンプルの平板部及び端部について、赤錆が発生するまでのサイクル数を測定し、以下の基準に従って評価した。
 ◎:赤錆発生サイクル数≧600サイクル
 ○:400サイクル≦赤錆発生サイクル数<600サイクル
 △:300サイクル≦赤錆発生サイクル数<400サイクル
 ×:赤錆発生サイクル数<300サイクル
(2)曲げ加工部耐食性評価
 溶融Al−Zn−Mg−Siめっき鋼板の各サンプルについて、同板厚の板を内側に3枚挟んで180°曲げの加工(3T曲げ)を施した後、曲げの外側に日本自動車規格の複合サイクル試験(JASO−CCT)を行った。JASO−CCTについては、図6に示すように、特定の条件で、塩水噴霧、乾燥及び湿潤を1サイクルとした試験である。
 各サンプルの加工部について、赤錆が発生するまでのサイクル数を測定し、以下の基準に従って評価した。
 ◎:赤錆発生サイクル数≧600サイクル
 ○:400サイクル≦赤錆発生サイクル数<600サイクル
 △:300サイクル≦赤錆発生サイクル数<400サイクル
 ×:赤錆発生サイクル数<300サイクル
Figure JPOXMLDOC01-appb-T000001
 表1から、本発明例の各サンプルは、比較例の各サンプルに比べて、平板部、端部及び加工部のいずれの耐食性についても優れることがわかる。
(実施例2)
 実施例1において製造した溶融Al−Zn−Mg−Siめっき鋼板のうち、複数のサンプル(サンプル番号については表2を参照。)について、ウレタン樹脂系ベースの化成皮膜(日本パーカライジング(株)製 CT−E−364)を施した。なお、化成皮膜の付着量は1g/mである。
 製造条件(めっき浴温、第1冷却温度、冷却速度)、さらに、めっき皮膜の条件(組成、MgSiの長径、MgSiの短径/長径、めっき皮膜の厚さ、上述した式(1)及び式(2)の左辺、主層中のMgSiの含有量、主層断面におけるMgSiの面積率、MgSiのAlに対する強度比、界面合金層の膜厚)については、表2に示す。
(化成耐食性の評価)
(1)平板部及び端部耐食性評価
 化成皮膜を形成した溶融Al−Zn−Mg−Siめっき鋼板の各サンプルについて、日本自動車規格の複合サイクル試験(JASO−CCT)を行った。JASO−CCTについては、図6に示すように、特定の条件で、塩水噴霧、乾燥及び湿潤を1サイクルとした試験である。
 各サンプルの平板部及び端部について、赤錆が発生するまでのサイクル数を測定し、以下の基準に従って評価した。
 ◎:赤錆発生サイクル数≧700サイクル
 ○:500サイクル≦赤錆発生サイクル数<700サイクル
 △:400サイクル≦赤錆発生サイクル数<500サイクル
 ×:赤錆発生サイクル数<400サイクル
(2)曲げ加工部耐食性評価
 化成皮膜を形成した溶融Al−Zn−Mg−Siめっき鋼板の各サンプルについて、同板厚の板を内側に3枚挟んで180°曲げの加工(3T曲げ)を施した後、曲げの外側に、日本自動車規格の複合サイクル試験(JASO−CCT)を行った。JASO−CCTについては、図6に示すように、特定の条件で、塩水噴霧、乾燥及び湿潤を1サイクルとした試験である。
 各サンプルの加工部について、赤錆が発生するまでのサイクル数を測定し、以下の基準に従って評価した。
 ◎:赤錆発生サイクル数≧700サイクル
 ○:500サイクル≦赤錆発生サイクル数<700サイクル
 △:400サイクル≦赤錆発生サイクル数<500サイクル
 ×:赤錆発生サイクル数<400サイクル
Figure JPOXMLDOC01-appb-T000002
 表2から、本発明例の各サンプルは、比較例の各サンプルに比べて、平板部、端部及び加工部のいずれの耐食性についても優れることがわかる。
(実施例3)
 実施例2において製造した化成皮膜を施した溶融Al−Zn−Mg−Siめっき鋼板のサンプルについて、エポキシ樹脂系のプライマー(日本ファインコーティングス(株)社製 JT−25)を5μm、メラミン硬化ポリエステル系の上塗り(日本ファインコーティングス(株)社製 NT−GLT)を15μm、順次塗布し、乾燥させることで、塗装鋼板のサンプルを製造した。
 製造条件(めっき浴温、第1冷却温度、冷却速度)、さらに、めっき皮膜の条件(組成、MgSiの長径、MgSiの短径/長径、めっき皮膜の厚さ、上述した式(1)及び式(2)の左辺、主層中のMgSiの含有量、主層断面におけるMgSiの面積率、MgSiのAlに対する強度比、界面合金層の膜厚)については、については表3に示す。
(塗装耐食性の評価)
(1)曲げ加工部耐食性評価
 塗装鋼板の各サンプルについて、同板厚の板を内側に3枚挟んで180°曲げの加工(3T曲げ)を施した後、曲げの外側に、日本自動車規格の複合サイクル試験(JASO−CCT)を行った。JASO−CCTについては、図6に示すように、特定の条件で、塩水噴霧、乾燥及び湿潤を1サイクルとした試験である。
 各サンプルの加工部について、赤錆が発生するまでのサイクル数を測定し、以下の基準に従って評価した。
 ◎:赤錆発生サイクル数≧600サイクル
 ○:400サイクル≦赤錆発生サイクル数<600サイクル
 △:300サイクル≦赤錆発生サイクル数<400サイクル
 ×:赤錆発生サイクル数<300サイクル
Figure JPOXMLDOC01-appb-T000003
 表3から、本発明例の各サンプルは、比較例の各サンプルに比べて、加工部の耐食性について優れることがわかる。
(実施例4)
 実施例1において製造した溶融Al−Zn−Mg−Siめっき鋼板のうち、複数のサンプル(サンプル番号については表4を参照。)について、それぞれ90mm×70mmのサイズに剪断後、自動車外板用塗装処理と同様に、化成処理としてリン酸亜鉛処理を行った後、電着塗装、中塗り、及び上塗り塗装を施した。
 リン酸亜鉛処理:日本パーカライジング社製の脱脂剤であるFC−E2001、日本パーカライジング社製の表面調整剤であるPL−X、及び、日本パーカライジング社製のリン酸亜鉛処理剤であるPB−AX35M(温度:35℃)を用いて、リン酸亜鉛処理液のフリーフッ素濃度を200ppm、リン酸亜鉛処理液の浸漬時間を120秒の条件で行った。
 電着塗装:関西ペイント社製の電着塗料であるGT−100を用いて、膜厚が15μmとなるように電着塗装を施した。
 中塗り塗装:関西ペイント社製の中塗り塗料であるTP−65−Pを用いて、膜厚が30μmとなるようにスプレー塗装を施した。
 上塗り塗装:関西ペイント社製の中塗り塗料であるNeo6000を用いて、膜厚が30μmとなるようにスプレー塗装を施した。
 製造条件(めっき浴温、第1冷却温度、冷却速度)、さらに、めっき皮膜の条件(組成、MgSiの長径、MgSiの短径/長径、めっき皮膜の厚さ、上述した式(1)及び式(2)の左辺、主層中のMgSiの含有量、主層断面におけるMgSiの面積率、MgSiのAlに対する強度比、界面合金層の膜厚)については、については表4に示す。
(塗装耐食性の評価)
 塗装処理を施した溶融Al−Zn−Mg−Siめっき鋼板の各サンプルについて、図7に示すとおり、評価面の端部5mm、及び非評価面(背面)を、テープでシール処理を行った後、評価面の中央にカッターナイフでめっき鋼板の地鉄に到達する深さまで、長さ60mm、中心角90°のクロスカット傷を加えたものを塗装後耐食性の評価用サンプルとした。
 上記評価用サンプルを用いて図8に示すサイクルで腐食促進試験(SAE J 2334)を実施した。腐食促進試験を湿潤からスタートし、30サイクル後まで行った後、傷部からの塗膜膨れが最大である部分の塗膜膨れ幅(最大塗膜膨れ幅)を測定し、塗装後耐食性を下記の基準で評価した。評価結果を表4に示す。
 ◎:最大塗膜膨れ幅≦2.5mm
 ○:2.5mm<最大塗膜膨れ幅≦3.0mm
 ×:3.0mm<最大塗膜膨れ幅
Figure JPOXMLDOC01-appb-T000004
 表4より、Mgの含有量が5質量%越えのサンプルでは、5質量%以下のサンプルとは異なって、最大塗膜膨れ幅が2.5mm以下抑えられており、塗装後耐食性に優れた溶融Al−Zn系めっき鋼板が得られたことがわかる。
 そのため、本発明例のサンプルの中において、めっき層中のMg含有量をそれぞれ適切な範囲に制御することで、優れた塗装後耐食性を有する溶融Al−Zn−Mg−Siめっき鋼板が得られることがわかる。
 本発明によれば、良好な平板部及び端部の耐食性を有するとともに、加工部耐食性にも優れた溶融Al−Zn−Mg−Siめっき鋼板、並びに、該溶融Al−Zn−Mg−Siめっき鋼板の製造方法を提供することができる。

Claims (9)

  1.  鋼板表面にめっき皮膜を有する溶融Al−Zn−Mg−Siめっき鋼板であって、
     前記めっき皮膜は、下地鋼板との界面に存在する界面合金層と該合金層の上に存在する主層とからなり、25~80質量%のAl、0.6超え~15質量%のSi及び0.1超え~25質量%のMgを含有し、
     前記めっき皮膜中のMg及びSiの含有量が、以下の式(1)を満足することを特徴とする、溶融Al−Zn−Mg−Siめっき鋼板。
    Mg/(MSi−0.6)>1.7 ・・・(1)
    Mg:Mgの含有量(質量%)、MSi:Siの含有量(質量%)
  2.  前記主層がMgSiを含有し、前記主層におけるMgSiの含有量が1.0質量%以上であることを特徴とする、請求項1に記載の溶融Al−Zn−Mg−Siめっき鋼板。
  3.  前記主層がMgSiを含有し、該主層の断面におけるMgSiの面積率が1%以上であることを特徴とする、請求項1に記載の溶融Al−Zn−Mg−Siめっき鋼板。
  4.  前記主層がMgSiを含有し、X線回折によるMgSiの(111)面(面間隔d=0.367nm)のAlの(200)面(面間隔d=0.202nm)に対する強度比が、0.01以上であることを特徴とする、請求項1に記載の溶融Al−Zn−Mg−Siめっき鋼板。
  5.  前記界面合金層の厚さが、1μm以下であることを特徴とする、請求項1~4のいずれか1項に記載の溶融Al−Zn−Mg−Siめっき鋼板。
  6.  前記主層がα−Al相のデンドライト部分を有し、該デンドライト部分の平均デンドライト径と、前記めっき皮膜の厚さとが、以下の式(2)を満足することを特徴とする、請求項1~4のいずれか1項に記載の溶融Al−Zn−Mg−Siめっき鋼板。
    t/d≧1.5 ・・・(2)
    t:めっき皮膜の厚さ(μm)、d:平均デンドライト径(μm)
  7.  前記めっき皮膜が、25~80質量%のAl、2.3超え~5質量%のSi及び3~10質量%のMgを含有することを特徴とする、請求項1~6のいずれか1項に記載の溶融Al−Zn−Mg−Siめっき鋼板。
  8.  前記めっき皮膜が、25~80質量%のAl、0.6超え~15質量%のSi及び5超え~10質量%のMgを含有することを特徴とする、請求項1~6のいずれか1項に記載の溶融Al−Zn−Mg−Siめっき鋼板。
  9.  25~80質量%のAl、0.6超え~15質量%のSi及び0.1超え~25質量%のMgを含み、残部がZn及び不可避的不純物からなるめっき浴中に、下地鋼板を浸漬させて溶融めっきを施した後、めっき後の鋼板を、前記めっき浴の浴温~浴温−50℃である第1冷却温度までは10℃/sec未満の平均冷却速度で冷却し、該第1冷却温度から380℃までは10℃/sec以上の平均冷却速度で冷却することを特徴とする、溶融Al−Zn−Mg−Siめっき鋼板の製造方法。
PCT/JP2016/057255 2015-03-02 2016-03-02 溶融AI-Zn-Mg-Siめっき鋼板とその製造方法 WO2016140370A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2016226812A AU2016226812C1 (en) 2015-03-02 2016-03-02 HOT-DIP Al-Zn-Mg-Si COATED STEEL SHEET AND METHOD OF PRODUCING SAME
SG11201706948RA SG11201706948RA (en) 2015-03-02 2016-03-02 HOT-DIP Al-Zn-Mg-Si COATED STEEL SHEET AND METHOD OF PRODUCING THE SAME
JP2016540699A JP6059408B1 (ja) 2015-03-02 2016-03-02 溶融Al−Zn−Mg−Siめっき鋼板とその製造方法
US15/553,658 US10662516B2 (en) 2015-03-02 2016-03-02 Hot-dip Al—Zn—Mg—Si coated steel sheet and method of producing same
EP16759061.1A EP3266900B1 (en) 2015-03-02 2016-03-02 Molten al-zn-mg-si-plated steel sheet
CN201680012543.2A CN107250418B (zh) 2015-03-02 2016-03-02 热浸镀Al-Zn-Mg-Si钢板及其制造方法
KR1020177027400A KR20170122242A (ko) 2015-03-02 2016-03-02 용융 Al-Zn-Mg-Si 도금 강판과 그 제조 방법
MYPI2017703141A MY182583A (en) 2015-03-02 2016-03-02 Hot-dip al-zn-mg-si coated steel sheet and method of producing same
PH12017501577A PH12017501577A1 (en) 2015-03-02 2017-08-31 HOT-DIP Al-Zn-Mg-Si COATED STEEL SHEET AND METHOD OF PRODUCING SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-040643 2015-03-02
JP2015040643 2015-03-02

Publications (1)

Publication Number Publication Date
WO2016140370A1 true WO2016140370A1 (ja) 2016-09-09

Family

ID=56848151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057255 WO2016140370A1 (ja) 2015-03-02 2016-03-02 溶融AI-Zn-Mg-Siめっき鋼板とその製造方法

Country Status (11)

Country Link
US (1) US10662516B2 (ja)
EP (1) EP3266900B1 (ja)
JP (2) JP6059408B1 (ja)
KR (1) KR20170122242A (ja)
CN (1) CN107250418B (ja)
AU (1) AU2016226812C1 (ja)
MY (1) MY182583A (ja)
PH (1) PH12017501577A1 (ja)
SG (1) SG11201706948RA (ja)
TW (1) TWI592499B (ja)
WO (1) WO2016140370A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6365807B1 (ja) * 2017-01-27 2018-08-01 新日鐵住金株式会社 めっき鋼材
JP2020504238A (ja) * 2016-12-23 2020-02-06 ポスコPosco 加工部耐食性に優れたアルミニウム系合金めっき鋼板
JP2022501508A (ja) * 2018-09-27 2022-01-06 ポスコPosco 溶接液化脆性に対する抵抗性及びめっき密着性に優れた高耐食めっき鋼板
KR20230082044A (ko) 2020-10-30 2023-06-08 제이에프이 스틸 가부시키가이샤 용융 Al-Zn-Si-Mg계 도금 강판, 표면 처리 강판 및 도장 강판
KR20230082043A (ko) 2020-10-30 2023-06-08 제이에프이 스틸 가부시키가이샤 용융 Al-Zn-Si-Mg계 도금 강판, 표면 처리 강판 및 도장 강판
KR20230082045A (ko) 2020-10-30 2023-06-08 제이에프이 스틸 가부시키가이샤 용융 Al-Zn-Si-Mg-Sr계 도금 강판, 표면 처리 강판 및 도장 강판
WO2023248975A1 (ja) * 2022-06-22 2023-12-28 日本製鉄株式会社 めっき鋼板

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014017790A1 (de) * 2014-12-03 2016-06-09 Man Truck & Bus Ag Abgasnachbehandlungssystem für ein mit einer Brennkraftmaschine betriebenes Fahrzeug, insbesondere für ein Wasserfahrzeug
WO2017017484A1 (en) * 2015-07-30 2017-02-02 Arcelormittal Method for the manufacture of a hardened part which does not have lme issues
WO2018181391A1 (ja) * 2017-03-31 2018-10-04 Jfeスチール株式会社 溶融Al系めっき鋼板及び溶融Al系めっき鋼板の製造方法
MY194386A (en) 2017-09-08 2022-11-30 Nippon Steel Corp Zn-Al-Mg Based Plated Steel Sheet
JP7167343B2 (ja) * 2018-11-30 2022-11-08 ポスコ 水素遅延破壊特性及びスポット溶接性に優れた熱間プレス用アルミニウム系めっき鋼板及びその製造方法
CN113316664B (zh) 2018-12-18 2023-12-08 浦项股份有限公司 合金涂覆钢板及其制造方法
JPWO2020129473A1 (ja) * 2018-12-20 2021-02-15 Jfeスチール株式会社 表面処理鋼板
WO2020179148A1 (ja) * 2019-03-01 2020-09-10 Jfe鋼板株式会社 溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法
WO2020179147A1 (ja) * 2019-03-01 2020-09-10 Jfe鋼板株式会社 溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法
KR20220142517A (ko) * 2020-02-27 2022-10-21 닛폰세이테츠 가부시키가이샤 핫 스탬프 성형체
WO2021171514A1 (ja) * 2020-02-27 2021-09-02 日本製鉄株式会社 めっき鋼材
JP7277857B2 (ja) * 2020-02-27 2023-05-19 日本製鉄株式会社 ホットスタンプ成形体
US11692249B2 (en) * 2020-02-27 2023-07-04 Nippon Steel Corporation Hot stamped body
KR102590172B1 (ko) * 2020-04-21 2023-10-19 닛폰세이테츠 가부시키가이샤 용융 도금 강판, 및 그 제조 방법
WO2022154082A1 (ja) * 2021-01-14 2022-07-21 日本製鉄株式会社 めっき鋼材
JP7156573B1 (ja) * 2021-01-18 2022-10-19 日本製鉄株式会社 めっき鋼材
CN115558877A (zh) * 2022-09-15 2023-01-03 首钢集团有限公司 一种锌铝镁镀层、锌铝镁镀层钢板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010135779A1 (en) * 2009-05-28 2010-12-02 Bluescope Steel Limited Metal-coated steel strip
WO2011102434A1 (ja) * 2010-02-18 2011-08-25 日鉄住金鋼板株式会社 溶融めっき鋼材及びその製造方法
JP2013044024A (ja) * 2011-08-24 2013-03-04 Nippon Steel & Sumitomo Metal Corp 表面処理溶融めっき鋼材
WO2014019020A1 (en) * 2012-08-01 2014-02-06 Bluescope Steel Limited Metal-coated steel strip

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3782909A (en) 1972-02-11 1974-01-01 Bethlehem Steel Corp Corrosion resistant aluminum-zinc coating and method of making
TW507021B (en) 1999-03-19 2002-10-21 Nippon Steel Corp Tin plating-type or aluminum plating-type surface treated steel material excellent in corrosion resistance
JP4136286B2 (ja) * 1999-08-09 2008-08-20 新日本製鐵株式会社 耐食性に優れたZn−Al−Mg−Si合金めっき鋼材およびその製造方法
JP2002012959A (ja) 2000-04-26 2002-01-15 Nippon Steel Corp 加工部及び端面耐食性に優れたAl系めっき鋼板
MY141385A (en) 2005-04-05 2010-04-30 Bluescope Steel Ltd Metal-coated steel strip
EP2250296B1 (en) 2008-03-13 2020-10-14 Bluescope Steel Limited Metal-coated steel strip and method of manufacturing thereof
CN101457320A (zh) * 2009-01-04 2009-06-17 上海大学 钢材热浸镀用Al-Zn-Mg-Si合金
US8911879B2 (en) 2009-01-16 2014-12-16 Nippon Steel & Sumitomo Metal Corporation Hot-dip Zn—Al—Mg—Si—Cr alloy-coated steel material with excellent corrosion resistance
MY185522A (en) 2009-03-13 2021-05-19 Bluescope Steel Ltd Corrosion protection with al/zn-based coatings
AU2013332257A1 (en) * 2012-10-17 2015-04-09 Bluescope Steel Limited Method of producing metal-coated steel strip
CN105483594B (zh) * 2016-01-14 2018-10-30 上海大学 一种钢材表面连续热浸镀Al–Zn–Mg–Si合金镀层的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010135779A1 (en) * 2009-05-28 2010-12-02 Bluescope Steel Limited Metal-coated steel strip
WO2011102434A1 (ja) * 2010-02-18 2011-08-25 日鉄住金鋼板株式会社 溶融めっき鋼材及びその製造方法
JP2013044024A (ja) * 2011-08-24 2013-03-04 Nippon Steel & Sumitomo Metal Corp 表面処理溶融めっき鋼材
WO2014019020A1 (en) * 2012-08-01 2014-02-06 Bluescope Steel Limited Metal-coated steel strip

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7167025B2 (ja) 2016-12-23 2022-11-08 ポスコ 加工部耐食性に優れたアルミニウム系合金めっき鋼板
US10837094B2 (en) 2016-12-23 2020-11-17 Posco Aluminum-based alloy plated steel sheet having excellent processing part corrosion resistance
JP2020504238A (ja) * 2016-12-23 2020-02-06 ポスコPosco 加工部耐食性に優れたアルミニウム系合金めっき鋼板
EP3561139A4 (en) * 2016-12-23 2020-02-19 Posco PLATED ALUMINUM-BASED ALLOY ALLOY WITH EXCELLENT PROCESSING PART CORROSION RESISTANCE
JP6365807B1 (ja) * 2017-01-27 2018-08-01 新日鐵住金株式会社 めっき鋼材
WO2018139620A1 (ja) * 2017-01-27 2018-08-02 新日鐵住金株式会社 めっき鋼材
US11555235B2 (en) 2017-01-27 2023-01-17 Nippon Steel Corporation Metallic coated steel product
JP2022501508A (ja) * 2018-09-27 2022-01-06 ポスコPosco 溶接液化脆性に対する抵抗性及びめっき密着性に優れた高耐食めっき鋼板
JP7187686B2 (ja) 2018-09-27 2022-12-12 ポスコ 溶接液化脆性に対する抵抗性及びめっき密着性に優れた高耐食めっき鋼板
KR20230082043A (ko) 2020-10-30 2023-06-08 제이에프이 스틸 가부시키가이샤 용융 Al-Zn-Si-Mg계 도금 강판, 표면 처리 강판 및 도장 강판
KR20230082044A (ko) 2020-10-30 2023-06-08 제이에프이 스틸 가부시키가이샤 용융 Al-Zn-Si-Mg계 도금 강판, 표면 처리 강판 및 도장 강판
KR20230082045A (ko) 2020-10-30 2023-06-08 제이에프이 스틸 가부시키가이샤 용융 Al-Zn-Si-Mg-Sr계 도금 강판, 표면 처리 강판 및 도장 강판
WO2023248975A1 (ja) * 2022-06-22 2023-12-28 日本製鉄株式会社 めっき鋼板
JP7460943B1 (ja) 2022-06-22 2024-04-03 日本製鉄株式会社 めっき鋼板

Also Published As

Publication number Publication date
PH12017501577A1 (en) 2018-02-26
AU2016226812C1 (en) 2019-10-10
TW201634712A (zh) 2016-10-01
JP6433960B2 (ja) 2018-12-05
EP3266900A4 (en) 2018-01-17
KR20170122242A (ko) 2017-11-03
CN107250418B (zh) 2020-06-23
US20180051366A1 (en) 2018-02-22
AU2016226812B2 (en) 2019-05-02
EP3266900B1 (en) 2021-05-05
JP6059408B1 (ja) 2017-01-11
JP2017057502A (ja) 2017-03-23
TWI592499B (zh) 2017-07-21
US10662516B2 (en) 2020-05-26
EP3266900A1 (en) 2018-01-10
JPWO2016140370A1 (ja) 2017-04-27
AU2016226812A1 (en) 2017-09-07
MY182583A (en) 2021-01-25
SG11201706948RA (en) 2017-09-28
CN107250418A (zh) 2017-10-13

Similar Documents

Publication Publication Date Title
JP6059408B1 (ja) 溶融Al−Zn−Mg−Siめっき鋼板とその製造方法
JP6368730B2 (ja) 溶融Al−Zn−Mg−Siめっき鋼板とその製造方法
JP6715400B1 (ja) 溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法
JP6715399B1 (ja) 溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法
TWI658149B (zh) 鍍敷鋼板
JP6645273B2 (ja) 溶融Al−Zn−Mg−Siめっき鋼板とその製造方法
TWI737066B (zh) 熔融Al-Zn-Mg-Si-Sr鍍覆鋼板及其製造方法
WO2010137736A1 (ja) 溶融Al-Zn系めっき鋼板
WO2014119268A1 (ja) 溶融Al-Zn系めっき鋼板とその製造方法
KR20190120284A (ko) 도금 강판
TWI724674B (zh) 熔融Al-Zn-Mg-Si-Sr鍍覆鋼板及其製造方法
WO2018181391A1 (ja) 溶融Al系めっき鋼板及び溶融Al系めっき鋼板の製造方法
JP2018172783A (ja) 溶融Al系めっき鋼板とその製造方法
JP2020143370A (ja) 溶融Al−Zn−Mg−Si系めっき鋼板及びその製造方法、並びに、塗装鋼板及びその製造方法
JP7475162B2 (ja) 塗装鋼板及び塗装鋼板の製造方法
JP2020164986A (ja) 溶融Al−Zn−Mg−Si系めっき鋼板及びその製造方法、並びに、塗装鋼板及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016540699

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16759061

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201706948R

Country of ref document: SG

Ref document number: 15553658

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 12017501577

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016226812

Country of ref document: AU

Date of ref document: 20160302

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016759061

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177027400

Country of ref document: KR

Kind code of ref document: A