WO2016140338A1 - Gas barrier film - Google Patents

Gas barrier film Download PDF

Info

Publication number
WO2016140338A1
WO2016140338A1 PCT/JP2016/056735 JP2016056735W WO2016140338A1 WO 2016140338 A1 WO2016140338 A1 WO 2016140338A1 JP 2016056735 W JP2016056735 W JP 2016056735W WO 2016140338 A1 WO2016140338 A1 WO 2016140338A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas barrier
inorganic
film
barrier layer
Prior art date
Application number
PCT/JP2016/056735
Other languages
French (fr)
Japanese (ja)
Inventor
晃矢子 和地
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017503725A priority Critical patent/JPWO2016140338A1/en
Publication of WO2016140338A1 publication Critical patent/WO2016140338A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to a gas barrier film.
  • an ultraviolet curable resin layer cured by irradiating an ultraviolet curable resin with ultraviolet rays (UV) may be provided so as to be adjacent to the inorganic barrier layer.
  • An example of such an ultraviolet curable resin layer is a protective layer (hard coat layer) for protecting the surface of the inorganic barrier layer.
  • JP 2013-544018 A discloses a gas barrier film so as to sandwich a quantum dot layer (light emitting layer) in which phosphor particles functioning as quantum dots (QD) are dispersed in an ultraviolet curable resin or a thermosetting resin. Is disclosed.
  • JP-A-10-156998 an inorganic oxide thin film is provided on one surface of a flexible plastic substrate, and a silane coupling agent thin film is formed on the inorganic oxide thin film.
  • a technique for forming a transparent barrier film by providing a film is disclosed.
  • a silane coupling agent what was organized by a vinyl group, a methacryloxy group (methacryloyl group), an amino group, an epoxy group, a mercapto group, etc. is disclosed.
  • a silane coupling agent what was organized by a vinyl group, a methacryloxy group (methacryloyl group), an amino group, an epoxy group, a mercapto group, etc. is disclosed.
  • Japanese Patent Laid-Open No. 10-156998 by providing a thin film made of a silane coupling agent, adhesion between an inorganic oxide thin film (inorganic barrier layer) and a heat-meltable heat-sealable resin is improved. We are trying to improve.
  • the present inventor has conducted various studies on the performance of the laminate in which the ultraviolet curable resin layer as described above is disposed so as to be adjacent to the inorganic barrier layer made of an inorganic compound disposed on the substrate.
  • the inorganic barrier layer of a gas barrier film using a conventionally known inorganic barrier layer is disposed as it is adjacent to the ultraviolet curable resin layer, the inorganic barrier layer and the ultraviolet curable resin layer
  • the adhesion decreases with time. It has also been found that such a problem of lowering adhesiveness is particularly prominent when the laminate is placed under conditions of high temperature and high humidity.
  • the present inventor further sought out means for improving the adhesion between the inorganic barrier layer and the ultraviolet curable resin layer.
  • an attempt was made to bond using a silane coupling agent as disclosed in JP-A-10-156998, but only by applying the technique disclosed in JP-A-10-156998, As a result, it was impossible to prevent a decrease in adhesion.
  • the ultraviolet curable resin layer is a protective layer (hard coat layer)
  • the adhesiveness is not sufficient, the protective effect by the protective layer may be reduced.
  • the ultraviolet curable resin layer is a quantum dot layer
  • the adhesion is not sufficient, the effect of blocking oxygen and moisture by the inorganic barrier layer against the quantum dot layer is reduced, and as a result, the emission luminance from the quantum dot layer May decrease.
  • the present invention has been made in view of the above circumstances, and when the inorganic barrier layer is used so as to be adjacent to the ultraviolet curable resin layer, the inorganic barrier layer and the ultraviolet curable resin layer (In particular, an object is to provide means capable of suppressing the deterioration of adhesion and gas barrier properties over time (under high temperature and high humidity conditions).
  • the present inventor has conducted intensive research to solve the above problems. As a result, it has been found that the above problem can be solved by configuring the gas barrier film so that the acryloyl group is exposed on the surface (exposed surface) of the inorganic barrier layer adjacent to the ultraviolet curable resin layer. It came to complete.
  • a gas barrier film having a base material and an inorganic barrier layer made of an inorganic compound and disposed on at least one surface of the base material. An acryloyl group is exposed on the surface opposite to the substrate, and a gas barrier film is provided.
  • a gas barrier film having a base material and an inorganic barrier layer made of an inorganic compound disposed on at least one surface of the base material, wherein the base of the inorganic barrier layer A gas barrier film is provided in which an acryloyl group is exposed on a surface (exposed surface) opposite to a material.
  • the inorganic barrier layer when the inorganic barrier layer is disposed and used adjacent to the ultraviolet curable resin layer, the inorganic barrier layer and the ultraviolet curable resin layer It is possible to suppress a decrease in adhesion and gas barrier properties over time (particularly under high temperature and high humidity conditions).
  • the acryloyl group exposed on the exposed surface of the inorganic barrier layer is an ultraviolet curable resin that constitutes the ultraviolet curable resin layer.
  • a gas barrier film 11 in FIG. 1, includes a base material 12 and an inorganic barrier layer 13 disposed on one surface of the base material 12.
  • the inorganic barrier layer 13 is characterized in that the acryloyl group is exposed on the surface (exposed surface) opposite to the substrate 12.
  • the substrate of the gas barrier film according to the present invention is not particularly limited as long as the inorganic barrier layer can be retained.
  • a resin substrate plastic film or sheet
  • a film or sheet made of a colorless and transparent resin is preferably used as the substrate.
  • the resin substrate used is not particularly limited in material, thickness, etc. as long as it is a film that can hold an inorganic barrier layer or a layer (hard coat layer, quantum dot layer, etc.) provided on the inorganic barrier layer in the future. It can be appropriately selected according to the purpose of use.
  • poly (meth) acrylic acid ester polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP ), Polystyrene (PS), nylon (Ny), aromatic polyamide, polyether ether ketone, polysulfone, polyether sulfone, polyimide, polyetherimide, cycloolefin polymer, cycloolefin copolymer, and other resin films, organic-inorganic hybrid structures
  • a heat-resistant transparent film product name: Sila-DEC, manufactured by Chisso Corporation having a silsesquioxane having a basic skeleton, and a resin film formed by laminating two or more layers of the above resin It can gel.
  • the thickness of the substrate is not particularly limited, but is preferably 5 to 300 ⁇ m, and more preferably 10 to 100 ⁇ m.
  • the substrate may have a functional layer such as a transparent conductive layer, a primer layer, or a clear hard coat layer.
  • a functional layer such as a transparent conductive layer, a primer layer, or a clear hard coat layer.
  • the functional layer in addition to those described above, those described in paragraph numbers “0036” to “0038” of JP-A-2006-289627 can be preferably used.
  • the base material according to the present invention is preferably transparent. Since the base material is transparent and the layer formed on the base material is also transparent, it becomes possible to make a transparent gas barrier film, so that it becomes possible to make a transparent substrate such as an organic EL element. It is.
  • the substrate preferably has a high surface smoothness.
  • the surface smoothness those having an average surface roughness (Ra) of 2 nm or less are preferable. Although there is no particular lower limit, it is practically 0.01 nm or more. If necessary, both surfaces of the substrate, at least the side on which the inorganic barrier layer is provided, may be polished to improve smoothness.
  • various known treatments for improving adhesion such as corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, or a smooth layer described later. Lamination etc. may be performed and it is preferable to perform combining the said process as needed.
  • Inorganic barrier layer In the gas barrier film of the present invention, at least one inorganic barrier layer is formed on a substrate.
  • the inorganic barrier layer does not need to be formed on the surface of the base material, and a base layer (smooth layer, primer layer), anchor coat layer (anchor layer), protective layer, hygroscopic layer or charged between the base material and the base material.
  • a functional layer or the like of the prevention layer may be provided.
  • the inorganic barrier layer contains an inorganic compound.
  • the inorganic compound is not particularly limited, and examples thereof include metal oxides, metal nitrides, metal carbides, metal oxynitrides, and metal oxycarbides.
  • oxides, nitrides, carbides, oxynitrides or oxycarbides containing one or more metals selected from Si, Al, In, Sn, Zn, Ti, Cu, Ce and Ta in terms of gas barrier performance are preferably used, and an oxide, nitride, oxynitride or oxycarbide of a metal selected from Si, Al, In, Sn, Zn and Ti is more preferable, and in particular, at least one of Si and Al, Oxides, nitrides, oxynitrides or oxycarbides are preferred.
  • the inorganic compound preferably contains silicon (Si), and is most preferably an oxide of Si (composition SiO), an oxynitride (composition SiON), or an
  • the chemical composition in the inorganic barrier layer can be measured by measuring the atomic composition ratio using an XPS surface analyzer. It can also be measured by cutting the inorganic barrier layer and measuring the atomic composition ratio of the cut surface with an XPS surface analyzer. Further, the chemical composition in the inorganic barrier layer can be controlled by the type and amount of raw materials used when forming the inorganic barrier layer, conditions for forming or modifying the coating layer, and the like.
  • the content of the inorganic compound contained in the inorganic barrier layer is not particularly limited, but is preferably 50% by mass or more, more preferably 80% by mass or more, and 95% by mass or more in the inorganic barrier layer. Is more preferably 98% by mass or more, and most preferably 100% by mass (that is, the inorganic barrier layer is made of an inorganic compound).
  • the inorganic barrier layer has high density and further has gas barrier properties.
  • the gas barrier property of the inorganic barrier layer is calculated using a laminate in which the inorganic barrier layer is formed on the substrate.
  • the water vapor transmission rate (WVTR) is 0.1 g / (m 2 ⁇ day) or less. Is preferable, and it is more preferable that it is 0.01 g / (m 2 ⁇ day) or less.
  • the method for forming the inorganic barrier layer is not particularly limited, but a vacuum film formation method such as physical vapor deposition (PVD method) or chemical vapor deposition (CVD), or a liquid containing an inorganic compound, preferably a silicon compound And a method of reforming and forming a coating film formed by applying a liquid containing a liquid (hereinafter also simply referred to as a coating method).
  • PVD method physical vapor deposition
  • CVD chemical vapor deposition
  • CVD chemical vapor deposition
  • the physical vapor deposition method is a method of depositing a target material, for example, a thin film such as a carbon film, on the surface of the material in a gas phase by a physical method.
  • a target material for example, a thin film such as a carbon film
  • Examples thereof include a DC sputtering method, an RF sputtering method, an ion beam sputtering method, and a magnetron sputtering method, a vacuum deposition method, and an ion plating method.
  • Sputtering is a method in which a target is placed in a vacuum chamber, a rare gas element (usually argon) ionized by applying a high voltage is collided with the target, and atoms on the target surface are ejected and adhered to the substrate.
  • a reactive sputtering method may be used in which an inorganic layer is formed by causing nitrogen and oxygen gas to flow into the chamber to react nitrogen and oxygen with an element ejected from the target by argon gas. .
  • the chemical vapor deposition method (Chemical Vapor Deposition, CVD method) is a method of depositing a film by supplying a source gas containing a target thin film component onto a substrate and performing a chemical reaction on the surface of the substrate or in the gas phase. It is. In addition, for the purpose of activating the chemical reaction, there is a method of generating plasma or the like.
  • Known CVD such as thermal CVD method, catalytic chemical vapor deposition method, photo CVD method, vacuum plasma CVD method, atmospheric pressure plasma CVD method, etc. The method etc. are mentioned. Although not particularly limited, it is preferable to apply the plasma CVD method from the viewpoint of film forming speed and processing area.
  • the inorganic barrier layer obtained by the vacuum plasma CVD method, or the plasma CVD method under atmospheric pressure or a pressure near atmospheric pressure has conditions such as the metal compound (decomposition material), decomposition gas, decomposition temperature, and input power as raw materials. This is preferable because the desired compound can be produced.
  • the conditions for forming the barrier layer by the plasma CVD method for example, the conditions described in paragraphs “0033” to “0051” of International Publication No. 2012/067186 can be appropriately employed.
  • the inorganic barrier layer formed by such a method is preferably a layer containing an oxide, nitride, oxynitride or oxycarbide.
  • the inorganic barrier layer according to the present invention is formed, for example, by a method (coating method) in which a coating film formed by applying a liquid containing an inorganic compound, preferably a liquid containing a silicon compound, is reformed. May be.
  • a coating film formed by applying a liquid containing an inorganic compound preferably a liquid containing a silicon compound
  • the silicon compound will be described as an example of the inorganic compound, but the inorganic compound is not limited to the silicon compound.
  • the silicon compound is not particularly limited as long as a coating solution containing a silicon compound can be prepared.
  • a coating solution containing a silicon compound can be prepared.
  • polysilazane compounds, silazane compounds, aminosilane compounds, silylacetamide compounds, silylimidazole compounds, and other silicon compounds containing nitrogen are used.
  • the polysilazane compound is a polymer having a silicon-nitrogen bond.
  • polysilazane compound is also abbreviated as “polysilazane”.
  • Examples of polysilazane used in the present invention are not particularly limited and include known ones. For example, those disclosed in paragraphs “0043” to “0058” of JP2013-022799A, paragraphs “0038” to “0056” of JP2013-226758A are appropriately adopted.
  • the polysilazane compound is commercially available in a solution in an organic solvent.
  • examples of commercially available polysilazane solutions include NN120-10, NN120-20, NAX120-20, NN110, NN310 manufactured by AZ Electronic Materials Co., Ltd. NN320, NL110A, NL120A, NL120-20, NL150A, NP110, NP140, SP140, and the like.
  • Glycidol-added polysilazane obtained by reaction, alcohol-added polysilazane (JP-A-6-240208) obtained by reacting an alcohol, and metal carboxylic acid obtained by reacting a metal carboxylate Obtained by adding a salt-added polysilazane (JP-A-6-299118), an acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), and metal fine particles.
  • Addition of fine metal particles Rishirazan JP 7-196986, such as, include polysilazane compounds ceramic at low temperatures.
  • silazane compound examples include dimethyldisilazane, trimethyldisilazane, tetramethyldisilazane, pentamethyldisilazane, hexamethyldisilazane, and 1,3-divinyl-1,1,3,3- Examples thereof include, but are not limited to, tetramethyldisilazane.
  • aminosilane compound examples include 3-aminopropyltrimethoxysilane, 3-aminopropyldimethylethoxysilane, 3-arylaminopropyltrimethoxysilane, propylethylenediaminesilane, N- [3- (trimethoxysilyl) ) Propyl] ethylenediamine, 3-butylaminopropyltrimethylsilane, 3-dimethylaminopropyldiethoxymethylsilane, 2- (2-aminoethylthioethyl) triethoxysilane, and bis (butylamino) dimethylsilane.
  • silylacetamide compound examples include N-methyl-N-trimethylsilylacetamide, N, O-bis (tert-butyldimethylsilyl) acetamide, N, O-bis (diethylhydrogensilyl) trifluoroacetamide , N, O-bis (trimethylsilyl) acetamide, and N-trimethylsilylacetamide, but are not limited thereto.
  • silylimidazole compound examples include 1- (tert-butyldimethylsilyl) imidazole, 1- (dimethylethylsilyl) imidazole, 1- (dimethylisopropylsilyl) imidazole, and N-trimethylsilylimidazole. However, it is not limited to these.
  • silicon compound containing nitrogen for example, bis (trimethylsilyl) carbodiimide, trimethylsilylazide, N, O-bis (trimethylsilyl) hydroxylamine, N, N′-bis (trimethylsilyl) urea, 3 -Bromo-1- (triisopropylsilyl) indole, 3-bromo-1- (triisopropylsilyl) pyrrole, N-methyl-N, O-bis (trimethylsilyl) hydroxylamine, 3-isocyanatopropyltriethoxysilane, and silicon Although tetraisothiocyanate etc. are used, it is not limited to these.
  • polysilazane such as perhydropolysilazane and organopolysilazane; polysiloxane such as silsesquioxane, etc. are preferable in terms of film formation, fewer defects such as cracks, and less residual organic matter, and high gas barrier performance.
  • Polysilazane is more preferable, and perhydropolysilazane is particularly preferable because gas barrier performance is maintained even when bent and under high temperature and high humidity conditions.
  • the content of polysilazane in the inorganic barrier layer before the modification treatment may be 100% by mass when the total mass of the inorganic barrier layer is 100% by mass.
  • the content of polysilazane in the layer is preferably 10% by mass or more and 99% by mass or less, and 40% by mass or more and 95% by mass or less. Is more preferably 70% by mass or more and 95% by mass or less.
  • the formation method by the coating method of the inorganic barrier layer as described above is not particularly limited, and a known method can be applied. However, an inorganic barrier layer forming coating solution containing a silicon compound and, if necessary, a catalyst in an organic solvent is used. It is preferable to apply a known wet coating method, evaporate and remove the solvent, and then perform a modification treatment.
  • the modification treatment of the inorganic barrier layer formed by the coating method in the present invention refers to a conversion reaction of a silicon compound to silicon oxide or silicon oxynitride.
  • the gas barrier film as a whole has a gas barrier property (water vapor) transmittance refers to a process for forming the levels of inorganic thin films can contribute to expressing the 1 ⁇ 10 -3 g / m 2 ⁇ day or less).
  • the conversion reaction of the silicon compound to silicon oxide or silicon oxynitride can be applied by appropriately selecting a known method.
  • Specific examples of the modification treatment include plasma treatment, ultraviolet irradiation treatment, and heat treatment.
  • modification by heat treatment formation of a silicon oxide film or a silicon oxynitride layer by a substitution reaction of a silicon compound requires a high temperature of 450 ° C. or higher, so that it is difficult to adapt to a flexible substrate such as plastic. . For this reason, it is preferable to perform the heat treatment in combination with other reforming treatments.
  • a plasma treatment capable of a conversion reaction at a lower temperature or a conversion reaction by ultraviolet irradiation treatment is preferable.
  • a known method can be used for the plasma treatment that can be used as the reforming treatment, and an atmospheric pressure plasma treatment or the like can be preferably used.
  • the atmospheric pressure plasma CVD method which performs plasma CVD processing near atmospheric pressure, does not need to be reduced in pressure and is more productive than the plasma CVD method under vacuum.
  • the film speed is high, and further, under a high pressure condition under atmospheric pressure as compared with the conditions of a normal CVD method, the gas mean free process is very short, so that a very homogeneous film can be obtained.
  • nitrogen gas or a gas containing Group 18 atoms of the long-period periodic table specifically helium, neon, argon, krypton, xenon, radon, or the like is used.
  • nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.
  • the modification treatment can be efficiently performed by heat-treating the coating film containing the silicon compound in combination with another modification treatment, preferably an excimer irradiation treatment described later.
  • a layer is formed using a sol-gel method
  • the heating conditions are preferably 50 to 300 ° C., more preferably 70 to 200 ° C., preferably 0.005 to 60 minutes, more preferably 0.01 to 10 minutes. Condensation is performed to form an inorganic barrier layer.
  • the heat treatment for example, a method of heating a coating film by contacting a substrate with a heating element such as a heat block, a method of heating an atmosphere by an external heater such as a resistance wire, an infrared region such as an IR heater
  • a heating element such as a heat block
  • an external heater such as a resistance wire
  • an infrared region such as an IR heater
  • the temperature of the coating film during the heat treatment is preferably adjusted appropriately in the range of 50 to 250 ° C, and more preferably in the range of 50 to 120 ° C.
  • the heating time is preferably in the range of 1 second to 10 hours, more preferably in the range of 10 seconds to 1 hour.
  • UV irradiation treatment As one of the modification treatment methods, treatment by ultraviolet irradiation is preferable. Ozone and active oxygen atoms generated by ultraviolet rays (synonymous with ultraviolet light) have high oxidation ability, and can form silicon oxide films or silicon oxynitride films with high density and insulation at low temperatures It is.
  • the base material is heated, and O 2 and H 2 O contributing to ceramicization (silica conversion), an ultraviolet absorber, and polysilazane itself are excited and activated. Ceramics are promoted, and the resulting inorganic barrier layer becomes denser. Irradiation with ultraviolet rays is effective at any time after the formation of the coating film.
  • any commonly used ultraviolet ray generator can be used.
  • the ultraviolet ray referred to in the present invention generally refers to an electromagnetic wave having a wavelength of 10 to 400 nm, but in the case of an ultraviolet irradiation treatment other than the vacuum ultraviolet ray (10 to 200 nm) treatment described later, it is preferably 210 to 375 nm. Use ultraviolet light.
  • the irradiation intensity and the irradiation time are set within a range where the substrate carrying the irradiated inorganic barrier layer is not damaged.
  • a 2 kW (80 W / cm ⁇ 25 cm) lamp is used, and the strength of the base material surface is 20 to 300 mW / cm 2 , preferably 50 to 200 mW / cm.
  • the distance between the base material and the ultraviolet irradiation lamp is set so as to be 2, and irradiation can be performed for 0.1 seconds to 10 minutes.
  • the substrate temperature during ultraviolet irradiation treatment is 150 ° C. or more
  • the properties of the substrate are impaired, such as deformation of the substrate or deterioration of its strength.
  • a modification treatment at a higher temperature is possible.
  • the substrate temperature at the time of ultraviolet irradiation there is no general upper limit for the substrate temperature at the time of ultraviolet irradiation, and it can be appropriately set by those skilled in the art depending on the type of substrate.
  • ultraviolet ray generating means examples include metal halide lamps, high pressure mercury lamps, low pressure mercury lamps, xenon arc lamps, carbon arc lamps, and excimer lamps (single wavelengths of 172 nm, 222 nm, and 308 nm, for example, USHIO INC. Manufactured by MD Excimer Co., Ltd.), UV light laser, and the like.
  • metal halide lamps high pressure mercury lamps, low pressure mercury lamps, xenon arc lamps, carbon arc lamps, and excimer lamps (single wavelengths of 172 nm, 222 nm, and 308 nm, for example, USHIO INC. Manufactured by MD Excimer Co., Ltd.), UV light laser, and the like.
  • UV irradiation can be applied to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate used.
  • a laminate having an inorganic barrier layer on the surface can be processed in an ultraviolet baking furnace equipped with an ultraviolet source as described above.
  • the ultraviolet baking furnace itself is generally known.
  • an ultraviolet baking furnace manufactured by I-Graphics Co., Ltd. can be used.
  • the ceramic is obtained by continuously irradiating ultraviolet rays in the drying zone having the ultraviolet ray generation source as described above while being conveyed.
  • the time required for ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the composition and concentration of the substrate used and the inorganic barrier layer.
  • the most preferable modification treatment method is treatment by vacuum ultraviolet irradiation (excimer irradiation treatment).
  • the treatment by the vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy of a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and bonds atoms with only photons called photon processes.
  • This is a method of forming a silicon oxide film at a relatively low temperature (about 200 ° C. or lower) by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by action.
  • the radiation source in the present invention may be any radiation source that emits light having a wavelength of 100 to 180 nm, but is preferably an excimer radiator having a maximum emission at about 172 nm (eg, Xe excimer lamp), and has an emission line at about 185 nm.
  • Excimer radiator having a maximum emission at about 172 nm (eg, Xe excimer lamp)
  • the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.
  • the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. Due to the high energy possessed by the active oxygen, ozone and ultraviolet radiation, the polysilazane coating can be modified in a short time.
  • ⁇ Excimer lamps have high light generation efficiency and can be lit with low power.
  • light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated in the ultraviolet region, that is, in a short wavelength, so that the increase in the surface temperature of the target object is suppressed.
  • it is suitable for flexible film materials such as PET that are easily affected by heat.
  • Oxygen is required for the reaction at the time of ultraviolet irradiation, but since vacuum ultraviolet rays are absorbed by oxygen, the efficiency in the ultraviolet irradiation process tends to decrease. It is preferable to perform in a state where the water vapor concentration is low. That is, the oxygen concentration at the time of irradiation with vacuum ultraviolet rays is preferably 10 to 20,000 volume ppm, more preferably 50 to 10,000 volume ppm. Also, the water vapor concentration during the conversion process is preferably in the range of 1000 to 4000 ppm by volume.
  • the gas satisfying the irradiation atmosphere used at the time of irradiation with vacuum ultraviolet rays is preferably a dry inert gas, and particularly preferably dry nitrogen gas from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
  • the illuminance of the vacuum ultraviolet light on the coating surface received by the polysilazane coating is preferably 1 mW / cm 2 to 10 W / cm 2 , more preferably 30 mW / cm 2 to 200 mW / cm 2. preferably, further preferably at 50mW / cm 2 ⁇ 160mW / cm 2. If it is 1 mW / cm 2 or more, sufficient reforming efficiency is obtained, and if it is 10 W / cm 2 or less, it is difficult to cause ablation in the coating film and damage the substrate.
  • Irradiation energy amount of the VUV in the coated surface it preferably from 10 ⁇ 10000mJ / cm 2, more preferably 100 ⁇ 8000mJ / cm 2, a 200 ⁇ 6000mJ / cm 2 Is more preferable. If it is 10 mJ / cm 2 or more, the modification can proceed sufficiently. If it is 10,000 mJ / cm 2 or less, cracking due to over-reformation and thermal deformation of the substrate are unlikely to occur.
  • the vacuum ultraviolet light used for reforming may be generated by plasma formed in a gas containing at least one of CO 2 and CH 4.
  • the gas containing at least one of CO, CO 2 and CH 4 hereinafter also referred to as carbon-containing gas
  • the carbon-containing gas may be used alone, but carbon containing rare gas or H 2 as the main gas. It is preferable to add a small amount of the contained gas. Examples of plasma generation methods include capacitively coupled plasma.
  • the film composition of the inorganic barrier layer can be measured by measuring the atomic composition ratio using an XPS surface analyzer. It can also be measured by cutting the inorganic barrier layer and measuring the atomic composition ratio of the cut surface with an XPS surface analyzer.
  • the film density of the inorganic barrier layer can be appropriately set according to the purpose.
  • the film density of the inorganic barrier layer is preferably in the range of 1.5 to 2.6 g / cm 3 . If it is this range, the density of the film will be higher, and it will be difficult for the gas barrier property to deteriorate and the film to deteriorate due to humidity.
  • each inorganic barrier layer may have the same composition or a different composition.
  • the inorganic barrier layer may consist only of a layer formed by a vacuum film forming method or only a layer formed by a coating method.
  • a combination of a layer formed by a vacuum film forming method and a layer formed by a coating method may be used.
  • the inorganic barrier layer preferably contains a nitrogen element or a carbon element from the viewpoints of stress relaxation and absorption of ultraviolet rays used for forming a metal atom-containing layer described later.
  • a nitrogen element or a carbon element from the viewpoints of stress relaxation and absorption of ultraviolet rays used for forming a metal atom-containing layer described later.
  • it has properties such as stress relaxation and ultraviolet absorption, and by improving the adhesion between the inorganic barrier layer and the metal atom-containing layer, effects such as improved gas barrier properties can be obtained. preferable.
  • the chemical composition of the inorganic barrier layer can be controlled by the type and amount of the silicon compound and the like when forming the inorganic barrier layer, and the conditions when modifying the layer containing the silicon compound.
  • the gas barrier film 11 according to the present invention is characterized in that an acryloyl group is exposed on the surface (exposed surface) opposite to the substrate 12 of the inorganic barrier layer 13.
  • the acryloyl group is an acyl group derived from acrylic acid represented by “CH 2 ⁇ CH—C ( ⁇ O) —”.
  • a form in which the acryloyl group is exposed as a result of the acryloyl group-containing compound adhering to the surface of the inorganic barrier layer 13 without a chemical bond is mentioned.
  • the reactive group other than the acryloyl group of the acryloyl group-containing compound forms a chemical bond (covalent bond) with the constituent material of the inorganic barrier layer, so that the acryloyl group is exposed. Of these, the latter is preferred.
  • region 14 shown in FIG. 1 is also referred to as “adhesive layer”.
  • the “adhesion layer” it should be noted that it may not be observed as a layer having a certain thickness independent of the inorganic barrier layer 13. Even in such a case, as long as the acryloyl group is exposed on the surface of the inorganic barrier layer 13, it is included in the technical scope of the present invention. The thinner the adhesive layer is, the better.
  • the thickness of the adhesive layer is preferably 50 nm or less, and more preferably 20 nm or less.
  • the acryloyl group is exposed on the surface of the inorganic barrier layer 13 means that the surface layer is scraped off and measured by pyrolysis gas chromatography as described in the Examples section below. It is possible to confirm by checking.
  • acryloyl group-containing compound used for “the form in which the acryloyl group is exposed as a result of the acryloyl group-containing compound adhering to the surface of the inorganic barrier layer 13 without a chemical bond”
  • acryloyl Among the compounds containing a group, those other than the acryloyl group-containing silane coupling agent described later can be mentioned.
  • Examples of the acryloyl group-containing compound other than the acryloyl group-containing silane coupling agent include polyol polyacrylate, epoxy acrylate, urethane acrylate, acrylic monomer, and the like.
  • Polyol polyacrylate is an ester compound of polyol and acrylic acid.
  • the polyol selected here is not particularly limited.
  • polyester polyols such as succinate and polycaprolactone, and ⁇ , ⁇ -poly (1,6-hexylene carbonate) diol, ⁇ , ⁇ -poly (3-methyl-1,5- Styrene carbonate) diol, ⁇ , ⁇ -poly [(1,6-hexylene: 3-methyl-pentamethylene) carbonate] diol, ⁇ , ⁇ -poly [(1,9-nonylene: 2-methyl-1,8 (Octylene) carbonate] (poly) carbonate diols such as diols. These may be used alone or in combination of two or more.
  • Epoxy acrylate is a compound obtained by adding acrylic acid to the terminal epoxy group of an epoxy resin.
  • an epoxy resin There is no restriction
  • bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, glycidyl ester type epoxy resin, biphenyl type epoxy resin and the like can be mentioned. These may be used alone or in combination of two or more.
  • Urethane acrylate is a compound obtained by reacting polyol, polyisocyanate, and hydroxyl group-containing acrylate, or polyol and isocyanato group-containing acrylate. There are no particular restrictions on the polyol, polyisocyanate, hydroxyl group-containing acrylate, and isocyanato group-containing acrylate selected at this time.
  • the polyol is the same as the polyol used in the polyol polyacrylate.
  • polyisocyanate examples include 1,4-cyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, , 4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, lysine triisocyanate, lysine diisocyanate, hexamethylene diisocyanate 2,4,4-trimethylhexamethylene diisocyanate, 2,2,4-trimethylhexanemethylene diisocyanate, norbornane diisocyanate, etc.
  • hydroxyl group-containing acrylate examples include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, 2- Hydroxy-3- (o-phenylphenoxy) propyl acrylate, 2-hydroxyethylacrylamide and the like can be mentioned. These may be used alone or in combination of two or more.
  • isocyanato group-containing acrylate examples include 2-isocyanatoethyl acrylate. These may be used alone or in combination of two or more.
  • the acrylic monomer is a compound obtained by removing the polyol polyacrylate, the epoxy acrylate, and the urethane acrylate from the acryloyl group-containing compound.
  • acrylic monomers include acryloyl-containing compounds having a cyclic ether group such as glycidyl acrylate and tetrahydrofurfuryl acrylate, cyclohexyl acrylate, isobornyl acrylate, dicyclopentenyl acrylate, dicyclopentenyloxyethyl acrylate, and dicyclopentanyl acrylate.
  • a cyclic ether group such as glycidyl acrylate and tetrahydrofurfuryl acrylate, cyclohexyl acrylate, isobornyl acrylate, dicyclopentenyl acrylate, dicyclopentenyloxyethyl acrylate, and dicyclopentanyl acrylate.
  • a monofunctional acryloyl group-containing compound having a cyclic aliphatic group such as dicyclopentanylethyl acrylate, 4-tert-butylcyclohexyl acrylate, lauryl acrylate, isononyl acrylate, 2-ethylhexyl acrylate, isobutyl acrylate, tert-butyl acrylate, Monofunctional acryloyl having a chain aliphatic group such as isooctyl acrylate and isoamyl acrylate Group-containing compounds, monofunctional acryloyl group-containing compounds having aromatic rings such as benzyl acrylate, phenoxyethyl acrylate, polyethylene glycol diacrylate, decanediol diacrylate, nonanediol diacrylate, hexanediol diacrylate, tricyclodecane dimethanol diacrylate And polyfunctional acryloyl group-containing compounds such as trimethylolprop
  • the acryloyl group-containing compound As a method for exposing an acryloyl group to the surface of the inorganic barrier layer 13 by attaching an acryloyl group-containing compound other than the acryloyl group-containing silane coupling agent as described above to the surface of the inorganic barrier layer 13, the acryloyl group-containing compound is used.
  • An example is a method in which a solution in which is dissolved in an appropriate solvent is applied to the surface of the inorganic barrier layer 13 and dried. At this time, a suitable photopolymerization initiator is added to the solution, and the coating solution obtained by applying the solution and drying is subjected to a light irradiation treatment to polymerize a part of the acryloyl group-containing compound. May be. However, if it is completely polymerized, the unreacted acryloyl group contained in the adhesive layer disappears, so the polymerization should not be performed completely.
  • Solvents include, for example, toluene, xylene and other high boiling aromatic solvents; ester solvents such as butyl acetate, ethyl acetate and cellosolve acetate; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; methanol, ethanol, isopropyl alcohol And alcohol solvents such as diethyl ether, dibutyl ether, tetrahydrofuran, dioxane, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, and diethylene glycol monomethyl ether.
  • the photopolymerization initiator is not particularly limited as long as it is a compound that generates radicals that contribute to the initiation of radical polymerization upon irradiation with light such as near infrared rays, visible rays, and ultraviolet rays.
  • photopolymerization initiator examples include acetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, xanthone, fluorenone, benzaldehyde, fluorene, anthraquinone, tri Phenylamine, carbazole, 3-methylacetophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, 4,4'-diaminobenzophenone, benzoin propyl ether, benzoin ethyl ether, benzyldimethyl ketal, 1- (4-isopropylphenyl) ) -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, thioxanthone, diethylthioxanthone, -Isopropylthiox
  • the above solution may contain a filler for the purpose of improving the slipperiness and increasing the hardness of the uppermost layer.
  • the filler include silica-based inorganic fillers such as quartz, fumed silica, precipitated silica, anhydrous silica, fused silica, crystalline silica, and ultrafine powder amorphous silica; titanium oxide, zinc oxide, zirconium oxide, niobium oxide And metal oxide inorganic fillers such as aluminum oxide, cerium oxide, and yttrium oxide.
  • silica-based inorganic fillers are particularly preferable.
  • the shape of the filler is preferably spherical, and the particle size is preferably in the range of 10 to 50 ⁇ m.
  • the content of the acryloyl group-containing compound is preferably 80 to 100% by mass with respect to 100% by mass of the solid content in the solution obtained by dissolving the acryloyl group-containing compound in a solvent, and the content of the photopolymerization initiator Is preferably 0 to 5% by mass, and the filler content is preferably 0 to 20% by mass.
  • the acryloyl group-containing compound to be obtained examples include compounds containing an acryloyl group and an alkoxysilyl group in one molecule.
  • the inorganic compound constituting the inorganic barrier layer 13 contains a silicon atom (for example, having a composition such as SiO, SiON, or SiOC), a compound containing an acryloyl group and an alkoxysilyl group in one molecule is used as the acryloyl group-containing compound.
  • the alkoxysilyl site contained in the silane coupling agent can form a siloxane bond with the silicon atom.
  • the acryloyl group contained in the silane coupling agent forms a chemical bond with the silicon atom contained in the inorganic compound via another atom.
  • the acryloyl group can be more firmly bonded to the inorganic barrier layer, and as a result, when the ultraviolet curable resin layer is provided adjacent to the inorganic barrier layer, these two layers There is an advantage that the adhesion at the interface can be further improved.
  • a silane coupling agent containing an acryloyl group (acryloyl group-containing silane coupling agent) is preferably used.
  • the acryloyl group-containing silane coupling agent include 3-acryloyloxypropyltrimethoxysilane, 3-acryloyloxypropyltriethoxysilane, 3-acryloyloxypropylmethyldimethoxysilane, and 3-acryloyloxypropylmethyldiethoxysilane.
  • an acryloyl group-containing silane coupling agent KBM-5103 (manufactured by Shin-Etsu Chemical Co., Ltd.) can be mentioned.
  • One of these acryloyl group-containing silane coupling agents may be used alone, or two or more thereof may be used in combination.
  • Examples of the “compound containing an acryloyl group and an alkoxysilyl group in one molecule” other than an acryloyl group-containing silane coupling agent include, for example, polyorganosilsesquioxane having an introduced (meth) acryloyl group, Examples thereof include organic-inorganic hybrid materials such as polysiloxane-modified acrylic resins containing a heavy bond. These materials may be prepared independently with reference to conventionally known knowledge, or commercially available products may be used.
  • the acryloyl group may be exposed.
  • a “compound containing an acryloyl group and an alkoxysilyl group in one molecule” such as an acryloyl group-containing silane coupling agent as described above
  • the acryloyl group may be exposed.
  • An example is a method in which a solution in which the contained compound is dissolved in a suitable solvent is applied to the surface of the inorganic barrier layer 13 and dried.
  • examples of the solvent that can be used include the same solvents as described above.
  • an adhesive layer is formed using a “compound containing an acryloyl group and an alkoxysilyl group in one molecule” such as an acryloyl group-containing silane coupling agent. Once formed, the hydrolysis / condensation reaction between the alkoxysilyl group contained in the “compound containing an acryloyl group and an alkoxysilyl group in one molecule” with the silicon atom contained in the inorganic compound as time elapses. Wake up.
  • a “compound containing an acryloyl group and an alkoxysilyl group in one molecule” such as an acryloyl group-containing silane coupling agent.
  • the acryloyl group contained in the “compound containing acryloyl group and alkoxysilyl group in one molecule” forms a chemical bond with the silicon atom contained in the inorganic compound via another atom.
  • the surface of the inorganic barrier layer 13 is increased for the purpose of increasing the reaction points on the inorganic barrier layer 13 side where the hydrolysis / condensation reaction described above occurs.
  • examples of the surface modification treatment that can be performed to increase the reaction point include oxygen plasma treatment, corona treatment, excimer (vacuum ultraviolet) treatment, and UV ozone treatment.
  • the surface of the inorganic barrier layer is hydrophilized.
  • the inorganic compound constituting the inorganic barrier layer contains silicon atoms, a large number of silanol groups (—Si—OH groups) are formed. It forms on the surface of the inorganic barrier layer.
  • the adhesive layer is formed in this state, the silanol group reacts with the alkoxysilyl group contained in the “compound containing acryloyl group and alkoxysilyl group in one molecule” such as an acryloyl group-containing silane coupling agent. It becomes possible to increase the number (density) of acryloyl groups exposed on the surface of the layer.
  • the ultraviolet curable resin layer is provided so as to be adjacent to the inorganic barrier layer, there is an advantage that the adhesion at the interface between these two layers can be further improved.
  • the gas barrier film according to one embodiment of the present invention essentially includes a base material and an inorganic barrier layer, but may further include other members.
  • the gas barrier film according to this embodiment is formed, for example, between a base material and an inorganic barrier layer; between the inorganic barrier layers (when a plurality of inorganic barrier layers are present); or the base material inorganic barrier layer is formed. You may have another member in the surface which is not.
  • other members are not particularly limited, and members used for conventional gas barrier films can be used in the same manner or appropriately modified.
  • Specific examples include a base layer (smooth layer, primer layer), an anchor coat layer (anchor layer), a bleed-out prevention layer, a protective layer, a functional layer such as a moisture absorption layer and an antistatic layer, and the like.
  • the other members may be used alone or in combination of two or more.
  • the other member may exist as a single layer or may have a laminated structure of two or more layers.
  • the inorganic barrier layer may exist as a single layer (a layer that can be produced in one step) or may have a laminated structure of two or more layers. By providing a plurality of layers, the gas barrier property can be further improved. In the latter case, one or more inorganic barrier layers may exist as one unit, or two or more of the above units may be laminated.
  • the gas barrier film of the present invention may have a base layer (smooth layer, primer layer) between the base material and the inorganic barrier layer, for example.
  • the underlayer is provided for flattening the rough surface of the substrate on which protrusions and the like exist, or for filling the unevenness and pinholes generated in the inorganic barrier layer with the protrusions existing on the substrate to flatten the surface.
  • Such an underlayer may be formed of any material, but preferably includes a carbon-containing polymer, and more preferably includes a carbon-containing polymer. That is, it is preferable that the gas barrier film of the present invention further has an underlayer containing a carbon-containing polymer between the base material and the inorganic barrier layer.
  • the underlayer also contains a carbon-containing polymer, preferably a curable resin.
  • the curable resin is not particularly limited, and the active energy ray curable resin or the thermosetting material obtained by irradiating the active energy ray curable material or the like with an active energy ray such as an ultraviolet ray to be cured is heated. And thermosetting resins obtained by curing. These curable resins may be used alone or in combination of two or more.
  • UV curable organic / inorganic hybrid hard coating material manufactured by JSR Corporation OPSTAR (registered trademark) series (polymerizable unsaturated group on silica fine particles) And a compound obtained by bonding an organic compound having a compound (a).
  • thermosetting materials specifically, TutProm series (Organic polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid silicone manufactured by Adeka, manufactured by DIC Corporation Unidic (registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistance epoxy resin), silicon resin X-12-2400 (trade name) manufactured by Shin-Etsu Chemical Co., Ltd., Nittobo Co., Ltd.
  • thermosetting urethane resin consisting of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, silicone resin, polyamidoamine-epichlorohydride Resins.
  • the smoothness of the underlayer is a value expressed by the surface roughness specified in JIS B 0601: 2001, and the maximum cross-sectional height Rt (p) is preferably 10 nm or more and 30 nm or less.
  • the surface roughness is calculated from an uneven cross-sectional curve continuously measured by an AFM (Atomic Force Microscope) with a detector having a stylus having a minimum tip radius, and the measurement direction is several tens by the stylus having a minimum tip radius. It is the roughness related to the amplitude of fine irregularities measured in a section of ⁇ m many times.
  • AFM Anamic Force Microscope
  • the thickness of the underlayer is not particularly limited, but is preferably in the range of 0.1 to 10 ⁇ m.
  • an anchor coat layer On the surface of the substrate according to the present invention, an anchor coat layer (anchor layer) may be formed as an easy adhesion layer for the purpose of improving adhesiveness (adhesion).
  • the anchor coating agent used in this anchor coat layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicon resin, and alkyl titanate. One type or two or more types can be used in combination.
  • a commercially available product may be used as the anchor coating agent. Specifically, a siloxane-based UV curable polymer solution (manufactured by Shin-Etsu Chemical Co., Ltd., “X-12-2400” 3% isopropyl alcohol solution) can be used.
  • the thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10.0 ⁇ m.
  • the gas barrier film of the present invention can further have a bleed-out preventing layer.
  • the bleed-out prevention layer is a base (smooth) for the purpose of suppressing the phenomenon that unreacted oligomers migrate from the film base to the surface when the film having the base layer is heated and contaminates the contact surface. ) Provided on the opposite side of the substrate having the layer.
  • the bleed-out prevention layer may basically have the same configuration as the base (smooth) layer as long as it has this function.
  • Compounds that can be included in the bleed-out prevention layer include polyunsaturated organic compounds having two or more polymerizable unsaturated groups in the molecule, or one polymerizable unsaturated group in the molecule.
  • Hard coat agents such as unitary unsaturated organic compounds can be mentioned.
  • the thickness of the bleed-out prevention layer is 1 to 10 ⁇ m, preferably 2 to 7 ⁇ m.
  • the gas barrier film of the present invention can be used for various applications, it is preferably used for applications in which an ultraviolet curable resin layer is provided so as to be adjacent to the exposed surface of the inorganic barrier layer (the acryloyl group is exposed). It is done.
  • the ultraviolet curable resin layer is not particularly limited as long as it is a layer made of a cured product of an ultraviolet curable resin, but as a function thereof, in addition to a protective layer for protecting the inorganic barrier layer, a quantum dot (semiconductor nanoparticle) is used. The function as a quantum dot layer (light emitting layer) containing particle
  • quantum dots semiconductor nanoparticles
  • the UV curable resin layer is a quantum dot layer (light emitting layer)
  • two gas barrier films are used to form an inorganic barrier.
  • a laminated body (light emitting body) formed by sandwiching the quantum dot layer (light emitting layer) so that the layer is disposed on the quantum dot layer (light emitting layer) side is preferable.
  • the gas barrier film according to the present invention a configuration in which the above-described quantum dot layer (light emitting layer) is disposed adjacent to the inorganic barrier property will be described in detail.
  • the quantum dot layer (light emitting layer) usually contains semiconductor nanoparticles that function as quantum dots and an ultraviolet curable resin (cured product of an ultraviolet curable resin).
  • “Semiconductor nanoparticles” refers to fine particles having a quantum confinement effect (quantum dot effect) composed of a crystal of a semiconductor material and having a size of several nanometers to several tens of nanometers.
  • the energy level E of such semiconductor nanoparticles is generally expressed by the following formula (1) when the Planck constant is “h”, the effective mass of electrons is “m”, and the radius of the semiconductor nanoparticles is “R”. expressed.
  • the band gap of the semiconductor nanoparticles increases in proportion to “R ⁇ 2 ” (so-called quantum confinement effect).
  • the band gap value of the semiconductor nanoparticles can be controlled, and diversity that does not exist in ordinary atoms can be provided. Therefore, it can be excited by light, or converted into light having a desired wavelength and emitted.
  • such luminescent semiconductor nanoparticles are used as a luminescent material of the luminescent layer.
  • the content of the semiconductor nanoparticles contained in the quantum dot layer (light emitting layer) is preferably 0.01 to 50% by mass with respect to the total mass of the quantum dot layer (light emitting layer), 0.5 to 30% by mass is more preferable, and 2.0 to 25% by mass is even more preferable. If the content is 0.01% by mass or more, sufficient luminance can be obtained, and if it is 50% by mass or less, an appropriate inter-particle distance of the semiconductor nanoparticles is maintained in the quantum dot layer (light emitting layer). And the quantum size effect can be sufficiently exerted.
  • the average particle diameter of the semiconductor nanoparticles is about several nm to several tens of nm as described above, but is set to the average particle diameter corresponding to the target emission color.
  • the average particle diameter of the semiconductor nanoparticles is preferably 3.0 to 20 nm, and when green light emission is desired, it is preferably 1.5 to 10 nm.
  • the thickness is preferably 1.0 to 3.0 nm.
  • the size (particle diameter) of the semiconductor nanoparticles is the shell region or the surface when the semiconductor nanoparticles have a core / shell structure as described later, or are modified with a surface modifier. It means the total size including the region composed of the modifier.
  • a known method can be used. For example, a method of observing semiconductor nanoparticles using a transmission electron microscope (TEM) and obtaining the number average particle size of the particle size distribution therefrom, or a method of obtaining an average particle size using an atomic force microscope (AFM)
  • the particle size can be measured using a particle size measuring apparatus using a dynamic light scattering method, for example, “ZETASIZER Nano Series Nano-ZS” manufactured by Malvern.
  • a method of deriving the particle size distribution from the spectrum obtained by the X-ray small angle scattering method using the particle size distribution simulation calculation of the semiconductor nanoparticles can be used.
  • the average particle diameter of the semiconductor nanoparticle in this specification shall mean the average value of the particle diameter of 300 particle
  • the average aspect ratio (major axis diameter / minor axis diameter) of the semiconductor nanoparticles is preferably 1.0 to 2.0, and preferably 1.1 to 1.7. Is more preferable.
  • the average aspect ratio of the semiconductor nanoparticles in this specification means the average value of the aspect values of 300 particles observed using an atomic force microscope (AFM).
  • Constituent material of semiconductor nanoparticles for example, a simple substance of Group 14 element of periodic table such as carbon, silicon, germanium, tin, etc., Group 15 of periodic table such as phosphorus (black phosphorus), etc.
  • Elemental element simple substance, periodic table group 16 element such as selenium, tellurium, etc., compound consisting of a plurality of periodic table group 14 elements such as silicon carbide (SiC), tin (IV) oxide (SnO 2 ), tin sulfide ( II, IV) (Sn (II) Sn (IV) S 3 ), tin sulfide (IV) (SnS 2 ), tin sulfide (II) (SnS), tin selenide (II) (SnSe), tin telluride ( II) (SnTe), lead sulfide (II) (PbS), lead selenide (II) (PbSe), lead telluride (II) (PbTe) periodic table group 14 elements and periodic table group 16 elements Compounds of boron nitride (BN), lithium Boron nitride (BP), Boron arsenide (BAs), Aluminum nitride (
  • a compound of a group element and a group 15 element of the periodic table (or a group III-V compound semiconductor), aluminum sulfide (Al 2 S 3 ), aluminum selenide (Al 2 Se 3 ), gallium sulfide (Ga 2 S 3 ), gallium selenide (Ga 2 Se 3), telluride gallium (Ga 2 Te 3), acid Indium (In 2 O 3), indium sulfide (In 2 S 3), indium selenide (In 2 Se 3), periodic table Group 13 element and Periodic Table Group 16 such as a telluride, indium (In 2 Te 3)
  • ZincO zinc oxide
  • ZnS zinc sulfide
  • ZnSe zinc selenide
  • ZnTe zinc telluride
  • CdO cadmium oxide
  • CdS cadmium sulfide
  • CdSe cadmium selenide
  • CdTe cadmium telluride
  • HgS mercury sulfide
  • HgSe mercury selenide
  • HgTe mercury telluride
  • arsenic sulfide (III) (As 2 S 3), selenium arsenic (III) (As 2 Se 3), tellurium arsenic (III) (As 2 Te 3), sulfide antimony (III) (Sb 2 S 3 ), selenium antimony (III) (Sb 2 Se 3 ), antimony telluride (III) (Sb 2 Te 3 ), bismuth sulfide (III) (Bi 2 S 3 ), selenium Compounds of periodic table group 15 elements and periodic table group 16 elements such as bismuth (III) iodide (Bi 2 Se 3 ) and bismuth telluride (III) (Bi 2 Te 3 ), copper oxide (I) (Cu 2 O), copper (I) selenide (Cu 2 Se) and other compounds of Group 11 elements and Group 16 elements of the periodic table, copper chloride (I) (CuCl), copper bromide (I) ( CuBr), copper io
  • Group 13 semiconductors such as Ga 2 O 3 , Ga 2 S 3 , Ga 2 Se 3 , Ga 2 Te 3 , In 2 O 3 , In 2 S 3 , In 2 Se 3 , In 2 Te 3 the compounds of the elements and the periodic table group 16 element, ZnO, ZnS, ZnSe, ZnTe , CdO, CdS, CdSe, CdTe, HgO, HgS, HgSe, II-VI group compound semiconductor such as HgTe, as 2 O 3, as 2 S 3 , As 2 Se 3 , As 2 Te 3 , Sb 2 O 3 , Sb 2 S 3 , Sb 2 Se 3 , Sb 2 Te 3 , Bi 2 O 3 , Bi 2 S 3 , Bi 2 Se 3 , Bi 2 Te 3 periodic table group 15 element and periodic table group 16 element compound, MgS, MgSe periodic table group 2 element and periodic table group 16 element Compounds.
  • Si, Ge, GaN, GaP, InN, InP, Ga 2 O 3 , Ga 2 S 3 , In 2 O 3 , In 2 S 3 , ZnO, ZnS, CdO, and CdS are more preferable. Since these substances do not contain highly toxic negative elements, they are excellent in environmental pollution resistance and safety to living organisms, and because a pure spectrum can be stably obtained in the visible light region, optical devices Is advantageous for the formation of In particular, CdSe, ZnSe, and CdS are preferable from the viewpoint of light emission stability, and ZnO and ZnS are preferable from the viewpoint of light emission efficiency, high refractive index, safety, and economy. In addition, these light emitting materials may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the semiconductor nanoparticles described above can be doped with trace amounts of various elements as impurities as necessary. By adding such a doping substance, the emission characteristics can be greatly improved.
  • the band gap refers to the energy difference between the valence band of the semiconductor nanoparticles and the conductor.
  • the band gap (eV) of the semiconductor nanoparticles can be obtained using a Tauc plot.
  • Tauc plot which is one of the optical scientific measurement methods of the band gap (eV), will be described.
  • the methods for estimating the energy levels of these materials include a method for obtaining energy levels obtained by scanning tunneling spectroscopy, ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, Auger electron spectroscopy, and There is a method of optically estimating the band gap.
  • the semiconductor nanoparticles according to this embodiment preferably have a coating layer composed of an inorganic coating layer or an organic ligand. That is, the semiconductor nanoparticles according to the present embodiment include a core region composed of the materials listed in the above “(1) Constituent material of semiconductor nanoparticles” and a shell region composed of an inorganic coating layer or an organic ligand. It is preferable to have a core-shell structure having
  • the core / shell structure is preferably formed of at least two kinds of compounds, and may form a gradient structure (gradient structure) composed of two or more kinds of compounds.
  • a gradient structure composed of two or more kinds of compounds.
  • the semiconductor nanoparticles have a shell region on the surface, a surface modifier as described later can be reliably supported near the surface of the semiconductor nanoparticles.
  • the thickness of the shell region is not particularly limited, but is preferably 0.1 to 10 nm, and more preferably 0.1 to 5 nm.
  • the emission color of semiconductor nanoparticles can be controlled by the average particle diameter.
  • the thickness of the shell region is within the above range (thickness corresponding to several atoms to a thickness less than one semiconductor nanoparticle)
  • the semiconductor nanoparticles are densely contained in the quantum dot layer (light emitting layer). And a sufficient amount of light emission can be obtained. Further, due to the presence of the shell region, it is possible to suppress the transfer of non-emission electron energy due to the defects existing on the surfaces of the core regions and the electron traps on the dangling bonds, and the decrease in quantum efficiency can be suppressed.
  • the semiconductor nanoparticle of this form has a surface modifier in the surface vicinity. Thereby, the dispersion stability of the semiconductor nanoparticles in the light emitting layer forming coating solution can be made particularly excellent.
  • the shape of the semiconductor nanoparticles has a high sphericity, and the particle size distribution of the semiconductor nanoparticles can be kept narrow, so that its light emission characteristics are particularly excellent. Can do.
  • the functional surface modifier that can be applied in the present invention may be one directly attached to the surface of the semiconductor nanoparticles, or one attached via a shell (the surface modifier is directly attached to the shell). And may not be in contact with the core of the semiconductor nanoparticles.
  • the surface modifier examples include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, and polyoxyethylene oleyl ether; tripropylphosphine, tributylphosphine, trihexylphosphine, trioctylphosphine, and the like.
  • Trialkylphosphines polyoxyethylene alkylphenyl ethers such as polyoxyethylene n-octylphenyl ether and polyoxyethylene n-nonylphenyl ether; tri (n-hexyl) amine, tri (n-octyl) amine, tri ( tertiary amines such as n-decyl) amine; tripropylphosphine oxide, tributylphosphine oxide, trihexylphosphine oxide, trioctylphosphineoxy Organic phosphorus compounds such as tridecylphosphine oxide; polyethylene glycol diesters such as polyethylene glycol dilaurate and polyethylene glycol distearate; organic nitrogen compounds such as nitrogen-containing aromatic compounds such as pyridine, lutidine, collidine and quinolines; hexylamine; Aminoalkanes such as octylamine, decylamine, dodecyl
  • the surface modifier is preferably a substance that coordinates and stabilizes in the fine particles constituting the semiconductor nanoparticles in a high-temperature liquid phase.
  • trialkylphosphines, organic phosphorus compounds, aminoalkanes, tertiary amines, organic nitrogen compounds, dialkyl sulfides, dialkyl sulfoxides, organic sulfur compounds, higher fatty acids, and alcohols are preferable.
  • the dispersibility of the semiconductor nanoparticles in the coating liquid for forming the quantum dot layer (light emitting layer) can be made particularly excellent.
  • the shape can be made higher in sphericity, the particle size distribution can be made sharper, and the light emission characteristics of the semiconductor nanoparticles can be made particularly excellent.
  • the conventionally well-known method (The manufacturing method under a high vacuum, the manufacturing method in a liquid phase, etc.) can be used suitably. Moreover, it can also be purchased as a commercial item from Aldrich, CrystalPlex, NNLab, etc.
  • an aqueous raw material is used, for example, an alkane such as n-heptane, n-octane, isooctane, or benzene.
  • a reverse micelle method in which crystals are grown in a reverse micelle phase in a non-polar organic solvent such as an aromatic hydrocarbon such as toluene and xylene, and a thermally decomposable raw material as a high-temperature liquid-phase organic medium.
  • Examples thereof include a hot soap method in which crystal growth is performed by injection, and a solution reaction method in which crystal growth is performed at a relatively low temperature using an acid-base reaction as a driving force, as in the hot soap method. Any method can be used from these production methods, and among these, a production method in a liquid phase is preferable. It is possible to exchange with the functional surface modifier described above by an exchange reaction performed in the liquid phase.
  • the ultraviolet curable resin functions as a matrix for dispersing the semiconductor nanoparticles.
  • An ultraviolet curable resin is used as a raw material for the ultraviolet curable resin used in this embodiment.
  • the ultraviolet curable resin for example, urethane (meth) acrylate resin, polyester (meth) acrylate resin, epoxy (meth) acrylate resin, polyol (meth) acrylate resin, or epoxy resin is preferably used.
  • urethane (meth) acrylate resin polyester (meth) acrylate resin, epoxy (meth) acrylate resin, polyol (meth) acrylate resin, or epoxy resin is preferably used.
  • Specific examples of these include “acryloyl group-containing compounds other than acryloyl group-containing silane coupling agents” (that is, polyol polyacrylates, epoxy acrylates, urethane acrylates, acrylic monomers) described above as constituent materials of the adhesive layer, The material which substituted the acryloyl group by the methacryloyl group is mentioned.
  • an epoxy (meth) acrylate resin for example, Unidic (registered trademark) V-5500 ( DIC Corporation)
  • urethane (meth) acrylate resins are preferably used.
  • the photopolymerization initiator of the ultraviolet curable resin the above-described materials can be similarly used as the constituent material of the adhesive layer.
  • the thickness of the quantum dot layer (light emitting layer) according to this embodiment is not particularly limited, but is preferably 10 to 500 ⁇ m, and more preferably 30 to 300 ⁇ m.
  • the thickness of the quantum dot layer (light emitting layer) is 10 ⁇ m or more, it is easy to adjust the light emission balance of B, G, and R, and good color gamut reproducibility can be obtained.
  • the thickness of the quantum dot layer (light emitting layer) is 500 ⁇ m or less, the quantum dot layer (light emitting layer) can be efficiently cured, and good productivity can be obtained.
  • a method for forming a quantum dot layer (light emitting layer) will be described by taking a laminated body (light emitting body) in which a quantum dot layer (light emitting layer) is sandwiched between two gas barrier films according to the present invention as an example.
  • Quantum dot layer (light emitting layer) containing semiconductor nanoparticles and ultraviolet curable resin (resin component and photopolymerization initiator) on the surface of the inorganic barrier layer (exposed acryloyl group) of the gas barrier film according to the invention After applying the coating liquid for formation, the film is dried, and another gas barrier film according to the present invention is laminated so that the inorganic barrier layer is adjacent to the coating film.
  • a quantum dot layer (light emitting layer) is formed, and at the same time, a laminate (light emitting body) is obtained in which the quantum dot layer (light emitting layer) is sandwiched between two gas barrier films according to the present invention.
  • Door can be.
  • the laminated body (light emitting body) including the quantum dot layer (light emitting layer) obtained as described above can be applied to various optical devices. That is, according to one form of this invention, an optical device provided with the said laminated body (light-emitting body) is provided.
  • the laminated body (light emitting body) according to the present invention can be used as, for example, a high-brightness film disposed between a light source and a polarizing plate in a liquid crystal display (LCD).
  • the ultraviolet curable resin layer adjacent to the exposed surface of the inorganic barrier layer is a quantum dot layer (light emitting layer) containing semiconductor nanoparticles is taken as an example.
  • the use of the gas barrier film has been described.
  • the ultraviolet curable resin layer adjacent to the exposed surface of the inorganic barrier layer does not contain semiconductor nanoparticles and is a layer that functions as a simple protective layer for the inorganic barrier layer
  • An ultraviolet curable resin layer can be formed in the same manner as described above using a coating liquid obtained by removing semiconductor nanoparticles from the components contained in the coating liquid used for forming the quantum dot layer (light emitting layer) described above. it can. In this case, needless to say, it is not necessary to use two gas barrier films.
  • the gas barrier film according to the present invention is used in applications where the ultraviolet curable resin layer and the inorganic barrier layer are adjacent to each other as described above, so that the inorganic barrier layer is adjacent to the inorganic barrier layer when the film is placed under a high temperature and high humidity condition. Decrease in adhesion between the UV curable resin layer is suppressed.
  • the ultraviolet curable resin layer is a quantum dot layer (light-emitting layer) (when the laminate is used as a light-emitting body), it is possible to suppress a decrease in luminance of the light-emitting body. Can be expressed.
  • UV curable organic / inorganic hybrid hard coating material OPSTAR (registered trademark) Z7501 diluted with butyl acetate to a solid content concentration of 35% is coated with the above-mentioned base material so that the dry film thickness becomes 2 ⁇ m.
  • OPSTAR registered trademark
  • Z7501 diluted with butyl acetate to a solid content concentration of 35%
  • ultraviolet irradiation treatment was performed with a high-pressure mercury lamp under conditions of 700 mW / cm 2 and 250 mJ / cm 2 to form an underlayer.
  • An inorganic barrier layer (composition SiO 2 ) having a thickness of 150 nm was formed.
  • Adhesion layer formation acrylic resin
  • a solution obtained by diluting dipentaerythritol hexaacrylate, which is a polyfunctional acrylate compound, with butyl acetate to a solid content concentration of 5% 3% polymerization initiator (BASF Japan, Irgacure (registered) (Trademark) 184) was added to prepare a coating solution for forming an adhesive layer.
  • this adhesive layer forming coating solution was applied to the exposed surface of the inorganic barrier layer with a bar coater so that the dry film thickness was 50 nm, and then dried at 80 ° C. for 1 minute as drying conditions.
  • an ultraviolet irradiation treatment was performed with a high-pressure mercury lamp under conditions of 500 mW / cm 2 and 200 mJ / cm 2 in an air atmosphere to form an adhesive layer, and thus a gas barrier film 1 was produced.
  • the surface layer on the inorganic barrier layer side of the gas barrier film 1 is scraped off, measured by pyrolysis gas chromatography, and checked with the standard, so that the acryloyl group is exposed on the exposed surface of the adhesive layer. It was confirmed.
  • a gas barrier film 2 was prepared by the same method as the preparation of the gas barrier film 1 described above, except that the adhesive layer was formed by the following method. In addition, it was confirmed in the same manner as described above that the acryloyl group was exposed on the exposed surface of the adhesive layer of the gas barrier film 2.
  • this adhesive layer forming coating solution was applied to the exposed surface of the inorganic barrier layer with a bar coater so that the dry film thickness was 50 nm, and then dried at 80 ° C. for 1 minute as drying conditions.
  • an ultraviolet irradiation treatment was performed with a high-pressure mercury lamp under conditions of 500 mW / cm 2 and 200 mJ / cm 2 in an air atmosphere to form an adhesive layer.
  • a gas barrier film 3 was produced by the same method as the production of the gas barrier film 1 described above except that the adhesive layer was formed by the following method. In addition, it was confirmed in the same manner as described above that the acryloyl group was exposed on the exposed surface of the adhesive layer of the gas barrier film 3.
  • Adhesion layer formation acryloyl group-containing silane coupling agent / acrylic resin (lamination)
  • a coating solution obtained by diluting acryloyl group-containing silane coupling agent KBM-5103 (manufactured by Shin-Etsu Chemical Co., Ltd.) with propylene glycol monomethyl ether (PGME) to a solid content concentration of 5% was applied with a bar coater, and then at 80 ° C. By drying for 1 minute, an adhesive layer (lower layer) made of an acryloyl group-containing silane coupling agent was formed.
  • TEM transmission electron microscope
  • the gas barrier film 4 was produced by the same method as the production of the gas barrier film 3 described above, except that the adhesive layer (upper layer) was not formed after the adhesive layer (lower layer) was formed. . In addition, it was confirmed in the same manner as described above that the acryloyl group was exposed on the exposed surface of the adhesive layer of the gas barrier film 4.
  • gas barrier film 5 Prior to forming the adhesive layer, the exposed surface of the inorganic barrier layer was subjected to the surface modification treatment (oxygen plasma treatment) by the following method, and was the same as the production of the gas barrier film 2 described above. The gas barrier film 5 was produced by the method. In addition, it was confirmed in the same manner as described above that the acryloyl group was exposed on the exposed surface of the adhesive layer of the gas barrier film 5.
  • oxygen plasma treatment oxygen plasma treatment
  • gas barrier film 6 The gas barrier film described above except that the surface modification treatment (oxygen plasma treatment) similar to the production of the gas barrier film 5 was performed on the exposed surface of the inorganic barrier layer before forming the adhesive layer.
  • a gas barrier film 6 was produced by the same method as in the production of 4. It was confirmed in the same manner as above that the acryloyl group was exposed on the exposed surface of the adhesive layer of the gas barrier film 6.
  • a gas barrier film 7 was produced by the same method as the production of the gas barrier film 6 described above except that the inorganic barrier layer was formed by the following technique. It was confirmed in the same manner as above that the acryloyl group was exposed on the exposed surface of the adhesive layer of the gas barrier film 7.
  • the coating liquid prepared above with the bar coater to the exposed surface by the side of the base layer of the laminated
  • the dried coating film was subjected to a vacuum ultraviolet ray irradiation treatment using an Xe excimer lamp having a wavelength of 172 nm under the conditions of an oxygen concentration of 0.1% by volume and an irradiation energy of 3.0 J / cm 2 to obtain a film thickness of 150 nm.
  • An inorganic barrier layer (composition SiON) was formed.
  • a gas barrier film 8 was produced by the same method as the production of the gas barrier film 6 described above except that the inorganic barrier layer was formed by the following method. In addition, it was confirmed in the same manner as described above that the acryloyl group was exposed on the exposed surface of the adhesive layer of the gas barrier film 8.
  • inorganic barrier layer vacuum plasma CVD method
  • a roll-to-roll type in which two apparatuses each having a film forming unit composed of opposing film forming rolls described in Japanese Patent No. 4268195 are connected (having a first film forming unit and a second film forming unit)
  • An inorganic barrier layer was formed using a vacuum CVD film forming apparatus.
  • the film forming conditions are as follows: the transport speed is 7 m / min, the supply amount of source gas (HMDSO) is 150 cc / min, the supply amount of oxygen gas is 150 cc / min, the degree of vacuum is 1.5 Pa, the applied power is 4.5 kW, and the inorganic film has a thickness of 150 nm.
  • a barrier layer composition SiOC
  • gas barrier film 9 The same method as the production of the gas barrier film 6 described above, except that the exposed surface of the inorganic barrier layer was subjected to a surface modification treatment (corona treatment) by the following method before forming the adhesive layer. Thus, a gas barrier film 9 was produced. In addition, it was confirmed in the same manner as described above that the acryloyl group was exposed on the exposed surface of the adhesive layer of the gas barrier film 9.
  • gas barrier film 11 In the formation of the adhesive layer, in place of dipentaerythritol hexaacrylate, which is a polyfunctional acrylate compound, trimethylolpropane trimethacrylate (TMPT) (manufactured by Shin-Nakamura Chemical Co., Ltd.), which is a polyfunctional methacrylate compound, was used.
  • TMPT trimethylolpropane trimethacrylate
  • a gas barrier film 11 was produced by the same method as the production of the gas barrier film 2 described above.
  • KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM-5103 which is an acryloyl group-containing silane coupling agent
  • gas barrier film 13 The adhesive layer was formed as described above, except that KBM-1003 (manufactured by Shin-Etsu Chemical Co., Ltd.), a vinyl group-containing silane coupling agent, was used instead of KBM-5103, which is an acryloyl group-containing silane coupling agent.
  • KBM-1003 manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM-5103 vinyl group-containing silane coupling agent
  • gas barrier film 14 In the formation of the adhesive layer, the gas barrier described above was used except that KBM-602 (manufactured by Shin-Etsu Chemical Co., Ltd.), which is an amino group-containing silane coupling agent, was used instead of KBM-5103, which is an acryloyl group-containing silane coupling agent.
  • KBM-602 manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM-5103 which is an acryloyl group-containing silane coupling agent.
  • the gas barrier film 14 was produced by the same method as the production of the conductive film 4.
  • gas barrier films 1 to 14 produced above were evaluated for adhesion and barrier properties when an ultraviolet curable resin layer was provided adjacent to the adhesive layer according to the following method.
  • Resin A was prepared by adding 3% of a polymerization initiator (BASF Japan, Irgacure (registered trademark) 184) to pentaerythritol diacrylate, which is a polyfunctional acrylate compound, with respect to 100% of the resin amount.
  • a polymerization initiator BASF Japan, Irgacure (registered trademark) 184
  • This resin A is applied on the adhesive layer of the gas barrier film, and then arranged so that the adhesive layer side of the same gas barrier film is in contact with the layer made of resin A (a layer made of resin A with two gas barrier films)
  • the resin A was cured by applying an ultraviolet irradiation treatment with a high-pressure mercury lamp under the conditions of 800 mW / cm 2 and 300 mJ / cm 2 to prepare an adhesive evaluation sample A.
  • the film thickness of the ultraviolet curable resin layer made of resin A was 50 ⁇ m.
  • the quantum dot layer-forming coating solution prepared above was applied on the adhesive layer of the gas barrier film to form a quantum dot-containing coating film.
  • the same gas barrier film is placed so that the adhesive layer side is in contact with the quantum dot-containing coating film (two gas barrier films are sandwiched between the quantum dot-containing coating films), and the conditions are 800 mW / cm 2 and 300 mJ / cm 2 .
  • the quantum dot-containing coating film was cured by applying an ultraviolet irradiation treatment with a high-pressure mercury lamp to produce an adhesion evaluation sample B.
  • the film thickness of the cured layer of the quantum dot-containing coating film was 100 ⁇ m.
  • evaluation of adhesion About evaluation sample A and evaluation sample B produced above, after leaving still for 500 hours under high-temperature, high-humidity conditions (60 ° C. and 90% RH), adhesion between the inorganic barrier layer and the ultraviolet curable resin layer in each sample Sex was evaluated. In addition, the sample was cut into a size of 1 inch in length and 20 cm in width, peel strength was measured in the vertical direction, and five-stage evaluation was performed based on the following criteria.
  • the evaluation sample B produced above was measured for luminance immediately after production. Further, the luminance was measured in the same manner after the sample was allowed to stand for 1000 hours under high temperature and high humidity conditions (60 ° C. and 90% RH). Then, the luminance reduction ratio after standing under high temperature and high humidity conditions when the luminance before standing under high temperature and high humidity conditions is taken as 100% is calculated, and a five-step evaluation is performed based on the following criteria. It was.
  • the gas barrier films (No. 1 to 10) according to the present invention are films having no such structure (No. 1) because the acryloyl group is exposed on the exposed surface of the inorganic barrier layer. 11-14), a decrease in adhesion between the inorganic barrier layer and the UV curable resin layer adjacent to the film when the film is placed under a high temperature and high humidity condition is suppressed, and UV curing is achieved. It turns out that the fall of the brightness

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided is a means of reducing the deterioration over time in gas barrier properties and adhesion between an inorganic barrier layer and a UV-curable resin layer (particularly under high-temperature high-humidity conditions), when the inorganic barrier layer is used in a position adjoining the UV-curable resin layer. This gas barrier film (11) comprises a substrate (12) and an inorganic barrier layer (13) made from an inorganic oxide and positioned on at least one side of the substrate, characterized in that an acryloyl group is exposed on the reverse side of the inorganic barrier layer from the substrate.

Description

ガスバリア性フィルムGas barrier film
 本発明は、ガスバリア性フィルムに関する。 The present invention relates to a gas barrier film.
 食品、包装材料、医薬品などの分野で、従来から樹脂フィルムの表面に金属酸化物などの無機化合物からなる蒸着膜や樹脂などの塗布膜を設けた、比較的簡易な水蒸気や酸素などの透過を防ぐガスバリア層(無機バリア層)を備えたガスバリア性フィルムが知られている。また、近年、液晶表示素子(LCD)、太陽電池(PV)、有機エレクトロルミネッセンス(EL)、量子ドット(QD)などの電子デバイス分野においても、軽くて割れにくく、フレキシブル性を持たせることを目的として樹脂基材を用いたガスバリア性フィルムへの要望が高まっている。 In the fields of food, packaging materials, pharmaceuticals, etc., it has been a relatively simple method to transmit water vapor, oxygen, etc. by providing a deposition film made of an inorganic compound such as a metal oxide or a coating film made of a resin on the surface of a resin film. A gas barrier film having a gas barrier layer (inorganic barrier layer) to prevent is known. In recent years, in the field of electronic devices such as liquid crystal display elements (LCD), solar cells (PV), organic electroluminescence (EL), quantum dots (QD), etc., the purpose is to make them light and difficult to break. There is an increasing demand for gas barrier films using a resin base material.
 このようなガスバリア性フィルムでは、無機バリア層と隣接するように、紫外線硬化型樹脂に紫外線(UV)を照射することによって硬化させた紫外線硬化樹脂層を設けることがある。かような紫外線硬化樹脂層としては、例えば、無機バリア層の表面を保護するための保護層(ハードコート層)が挙げられる。また、特表2013-544018号公報には、量子ドット(QD)として機能する蛍光体粒子を紫外線硬化樹脂や熱硬化樹脂に分散させた量子ドット層(発光層)を挟持するようにガスバリア性フィルムを配置することが開示されている。 In such a gas barrier film, an ultraviolet curable resin layer cured by irradiating an ultraviolet curable resin with ultraviolet rays (UV) may be provided so as to be adjacent to the inorganic barrier layer. An example of such an ultraviolet curable resin layer is a protective layer (hard coat layer) for protecting the surface of the inorganic barrier layer. JP 2013-544018 A discloses a gas barrier film so as to sandwich a quantum dot layer (light emitting layer) in which phosphor particles functioning as quantum dots (QD) are dispersed in an ultraviolet curable resin or a thermosetting resin. Is disclosed.
 なお、特開平10-156998号公報には、可撓性プラスチック基材の一方の面に、無機酸化物の薄膜を設け、更に、該無機酸化物の薄膜の上に、シランカップリング剤の薄膜を設けることで透明バリアフィルムを構成する技術が開示されている。ここで、シランカップリング剤としては、ビニル基、メタクリロキシ基(メタクリロイル基)、アミノ基、エポキシ基、メルカプト基等で編成されたものが開示されている。特開平10-156998号公報に開示の技術では、シランカップリング剤からなる薄膜を設けることで、無機酸化物の薄膜(無機バリア層)と、熱溶融性のヒートシール性樹脂との密着性の向上を図っている。 In JP-A-10-156998, an inorganic oxide thin film is provided on one surface of a flexible plastic substrate, and a silane coupling agent thin film is formed on the inorganic oxide thin film. A technique for forming a transparent barrier film by providing a film is disclosed. Here, as a silane coupling agent, what was organized by a vinyl group, a methacryloxy group (methacryloyl group), an amino group, an epoxy group, a mercapto group, etc. is disclosed. In the technique disclosed in Japanese Patent Laid-Open No. 10-156998, by providing a thin film made of a silane coupling agent, adhesion between an inorganic oxide thin film (inorganic barrier layer) and a heat-meltable heat-sealable resin is improved. We are trying to improve.
 本発明者は、基材上に配置された無機化合物からなる無機バリア層に隣接するように、上述したような紫外線硬化樹脂層を配置した積層体の性能について種々検討を行った。その結果、従来公知の無機バリア層を用いたガスバリア性フィルムの当該無機バリア層を、そのまま紫外線硬化樹脂層に隣接するように配置したような場合には、無機バリア層と紫外線硬化樹脂層との密着性が経時的に低下することを見出した。また、このような密着性の低下の問題は、積層体が高温高湿の条件下に置かれたときに特に顕著に生じることも見出した。 The present inventor has conducted various studies on the performance of the laminate in which the ultraviolet curable resin layer as described above is disposed so as to be adjacent to the inorganic barrier layer made of an inorganic compound disposed on the substrate. As a result, when the inorganic barrier layer of a gas barrier film using a conventionally known inorganic barrier layer is disposed as it is adjacent to the ultraviolet curable resin layer, the inorganic barrier layer and the ultraviolet curable resin layer It has been found that the adhesion decreases with time. It has also been found that such a problem of lowering adhesiveness is particularly prominent when the laminate is placed under conditions of high temperature and high humidity.
 そこで、本発明者はさらに、無機バリア層と紫外線硬化樹脂層との密着性を向上させうる手段を鋭意探索した。その過程で、特開平10-156998号公報に開示されているようなシランカップリング剤を用いて接着することも試みたが、特開平10-156998号公報に開示の技術を適用しただけでは、やはり密着性の低下を防止することができない結果となった。ここで、紫外線硬化樹脂層が保護層(ハードコート層)である場合に密着性が十分ではないと、保護層による保護効果が低減してしまう虞がある。また、紫外線硬化樹脂層が量子ドット層である場合に密着性が十分ではないと、量子ドット層に対する無機バリア層による酸素や水分の遮断効果が低減してしまい、ひいては量子ドット層からの発光輝度が低下してしまう虞もある。 Therefore, the present inventor further sought out means for improving the adhesion between the inorganic barrier layer and the ultraviolet curable resin layer. In that process, an attempt was made to bond using a silane coupling agent as disclosed in JP-A-10-156998, but only by applying the technique disclosed in JP-A-10-156998, As a result, it was impossible to prevent a decrease in adhesion. Here, when the ultraviolet curable resin layer is a protective layer (hard coat layer), if the adhesiveness is not sufficient, the protective effect by the protective layer may be reduced. In addition, when the ultraviolet curable resin layer is a quantum dot layer, if the adhesion is not sufficient, the effect of blocking oxygen and moisture by the inorganic barrier layer against the quantum dot layer is reduced, and as a result, the emission luminance from the quantum dot layer May decrease.
 本発明は、上記事情を鑑みてなされたものであり、無機バリア層が紫外線硬化樹脂層に隣接するように配置されて用いられた場合に、当該無機バリア層と当該紫外線硬化樹脂層との(特に、高温高湿条件下における)密着性やガスバリア性の経時的な低下を抑制しうる手段を提供することを目的とする。 The present invention has been made in view of the above circumstances, and when the inorganic barrier layer is used so as to be adjacent to the ultraviolet curable resin layer, the inorganic barrier layer and the ultraviolet curable resin layer ( In particular, an object is to provide means capable of suppressing the deterioration of adhesion and gas barrier properties over time (under high temperature and high humidity conditions).
 本発明者は、上記の課題を解決すべく、鋭意研究を行った。その結果、無機バリア層の紫外線硬化樹脂層と隣接する側の表面(露出表面)にアクリロイル基が露出するようにガスバリア性フィルムを構成することで、上記課題が解決されうることを見出し、本発明を完成させるに至った。 The present inventor has conducted intensive research to solve the above problems. As a result, it has been found that the above problem can be solved by configuring the gas barrier film so that the acryloyl group is exposed on the surface (exposed surface) of the inorganic barrier layer adjacent to the ultraviolet curable resin layer. It came to complete.
 すなわち、本発明の一形態によれば、基材と、前記基材の少なくとも一方の面に配置された、無機化合物からなる無機バリア層とを有するガスバリア性フィルムであって、前記無機バリア層の前記基材とは反対側の面にアクリロイル基が露出していることを特徴とする、ガスバリア性フィルムが提供される。 That is, according to one aspect of the present invention, there is provided a gas barrier film having a base material and an inorganic barrier layer made of an inorganic compound and disposed on at least one surface of the base material. An acryloyl group is exposed on the surface opposite to the substrate, and a gas barrier film is provided.
本発明のガスバリア性フィルムの層構成の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the laminated constitution of the gas barrier film of this invention.
 本発明の一形態によれば、基材と、前記基材の少なくとも一方の面に配置された、無機化合物からなる無機バリア層とを有するガスバリア性フィルムであって、前記無機バリア層の前記基材とは反対側の面(露出表面)にアクリロイル基が露出していることを特徴とする、ガスバリア性フィルムが提供される。 According to one aspect of the present invention, there is provided a gas barrier film having a base material and an inorganic barrier layer made of an inorganic compound disposed on at least one surface of the base material, wherein the base of the inorganic barrier layer A gas barrier film is provided in which an acryloyl group is exposed on a surface (exposed surface) opposite to a material.
 上述したように、本発明に係るガスバリア性フィルムによれば、無機バリア層が紫外線硬化樹脂層に隣接するように配置されて用いられた場合に、当該無機バリア層と当該紫外線硬化樹脂層との(特に、高温高湿条件下における)密着性やガスバリア性の経時的な低下を抑制することが可能となる。ここで、本発明の構成による上記作用効果が発揮されるメカニズムについては完全には明らかではないが、無機バリア層の露出表面に露出しているアクリロイル基が、紫外線硬化樹脂層を構成する紫外線硬化樹脂との間で化学結合を形成することによって界面に強固な接合領域が生じる結果、密着性の向上が図られ、ガスバリア性の経時的な低下が抑制されるものと推定している。また、上記接合領域の厚さが極めて薄く構成されることから、接合領域からの酸素や水分の侵入も抑えられ、このこともガスバリア性の低下を抑制することに繋がっているものと考えられる。なお、本発明は当該メカニズムによっていかようにも限定解釈されないものとする。 As described above, according to the gas barrier film of the present invention, when the inorganic barrier layer is disposed and used adjacent to the ultraviolet curable resin layer, the inorganic barrier layer and the ultraviolet curable resin layer It is possible to suppress a decrease in adhesion and gas barrier properties over time (particularly under high temperature and high humidity conditions). Here, although the mechanism by which the above-described effects by the configuration of the present invention are exhibited is not completely clear, the acryloyl group exposed on the exposed surface of the inorganic barrier layer is an ultraviolet curable resin that constitutes the ultraviolet curable resin layer. It is presumed that by forming a chemical bond with the resin, a strong bonding region is formed at the interface, so that the adhesion is improved and the deterioration of the gas barrier property over time is suppressed. In addition, since the thickness of the bonding region is extremely thin, oxygen and moisture can be prevented from entering from the bonding region, which is considered to lead to the suppression of gas barrier properties. In addition, this invention shall not be limitedly interpreted by the said mechanism in any way.
 以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。さらに、特記しない限り、操作および物性等の測定は室温(25℃)/相対湿度40~50%RHの条件下で測定する。 Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited only to the following embodiment. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios. In this specification, “X to Y” indicating a range means “X or more and Y or less”. Further, unless otherwise specified, the measurement of operation and physical properties is performed under the conditions of room temperature (25 ° C.) / Relative humidity 40-50% RH.
 <ガスバリア性フィルム>
 本発明の一形態に係るガスバリア性フィルムの層構成について、図1を用いて説明する。
<Gas barrier film>
The layer structure of the gas barrier film according to one embodiment of the present invention will be described with reference to FIG.
 図1において、本発明の一形態に係るガスバリア性フィルム11は、基材12と、当該基材12の一方の表面に配置された無機バリア層13と、から構成される。そして、無機バリア層13の基材12とは反対側の面(露出表面)にアクリロイル基が露出している点に特徴がある。 In FIG. 1, a gas barrier film 11 according to an embodiment of the present invention includes a base material 12 and an inorganic barrier layer 13 disposed on one surface of the base material 12. The inorganic barrier layer 13 is characterized in that the acryloyl group is exposed on the surface (exposed surface) opposite to the substrate 12.
 [基材]
 本発明に係るガスバリア性フィルムの基材としては、無機バリア層を保持することができるものであれば特に限定されるものではない。当該基材としては、通常、樹脂基材(プラスチックフィルムまたはシート)が用いられ、無色透明な樹脂からなるフィルムまたはシート(樹脂基材)が基材として好ましく用いられる。用いられる樹脂基材は、無機バリア層や、将来的にさらに無機バリア層上に設けられる層(ハードコート層や量子ドット層等)を保持できるフィルムであれば材質、厚み等に特に制限はなく、使用目的等に応じて適宜選択することができる。
[Base material]
The substrate of the gas barrier film according to the present invention is not particularly limited as long as the inorganic barrier layer can be retained. As the substrate, a resin substrate (plastic film or sheet) is usually used, and a film or sheet (resin substrate) made of a colorless and transparent resin is preferably used as the substrate. The resin substrate used is not particularly limited in material, thickness, etc. as long as it is a film that can hold an inorganic barrier layer or a layer (hard coat layer, quantum dot layer, etc.) provided on the inorganic barrier layer in the future. It can be appropriately selected according to the purpose of use.
 例えば、ポリ(メタ)アクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド、シクロオレフィンポリマー、シクロオレフィンコポリマー等の各樹脂フィルム、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(製品名Sila-DEC、チッソ株式会社製)、さらには前記樹脂を2層以上積層して成る樹脂フィルム等を挙げることができる。 For example, poly (meth) acrylic acid ester, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP ), Polystyrene (PS), nylon (Ny), aromatic polyamide, polyether ether ketone, polysulfone, polyether sulfone, polyimide, polyetherimide, cycloolefin polymer, cycloolefin copolymer, and other resin films, organic-inorganic hybrid structures A heat-resistant transparent film (product name: Sila-DEC, manufactured by Chisso Corporation) having a silsesquioxane having a basic skeleton, and a resin film formed by laminating two or more layers of the above resin It can gel.
 基材の厚さは、特に制限されないが、5~300μmであることが好ましく、10~100μmであることがより好ましい。該基材は、透明導電層、プライマー層、クリアハードコート層等の機能層を有していてもよい。機能層については、上述したもののほか、特開2006-289627号公報の段落番号「0036」~「0038」に記載されているものを好ましく採用できる。 The thickness of the substrate is not particularly limited, but is preferably 5 to 300 μm, and more preferably 10 to 100 μm. The substrate may have a functional layer such as a transparent conductive layer, a primer layer, or a clear hard coat layer. As the functional layer, in addition to those described above, those described in paragraph numbers “0036” to “0038” of JP-A-2006-289627 can be preferably used.
 また、本発明に係る基材は、透明であることが好ましい。基材が透明であり、基材上に形成する層も透明であることにより、透明なガスバリア性フィルムとすることが可能となるため、有機EL素子等の透明基板とすることも可能となるからである。 The base material according to the present invention is preferably transparent. Since the base material is transparent and the layer formed on the base material is also transparent, it becomes possible to make a transparent gas barrier film, so that it becomes possible to make a transparent substrate such as an organic EL element. It is.
 基材は、表面の平滑性が高いものが好ましい。表面の平滑性としては、平均表面粗さ(Ra)が2nm以下であるものが好ましい。下限は特にないが、実用上、0.01nm以上である。必要に応じて、基材の両面、少なくとも無機バリア層を設ける側を研摩し、平滑性を向上させておいてもよい。 The substrate preferably has a high surface smoothness. As the surface smoothness, those having an average surface roughness (Ra) of 2 nm or less are preferable. Although there is no particular lower limit, it is practically 0.01 nm or more. If necessary, both surfaces of the substrate, at least the side on which the inorganic barrier layer is provided, may be polished to improve smoothness.
 基材の少なくとも本発明に係る無機バリア層を設ける側には、密着性向上のための公知の種々の処理、例えばコロナ放電処理、火炎処理、酸化処理、またはプラズマ処理や、後述する平滑層の積層等を行ってもよく、必要に応じて上記処理を組み合わせて行うことが好ましい。 At least on the side of the substrate on which the inorganic barrier layer according to the present invention is provided, various known treatments for improving adhesion, such as corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, or a smooth layer described later. Lamination etc. may be performed and it is preferable to perform combining the said process as needed.
 [無機バリア層]
 本発明のガスバリア性フィルムは、基材上に少なくとも1層の無機バリア層が形成される。ここで、無機バリア層は、基材表面に形成される必要はなく、基材との間に下地層(平滑層、プライマー層)、アンカーコート層(アンカー層)、保護層、吸湿層や帯電防止層の機能化層などが設けられてもよい。
[Inorganic barrier layer]
In the gas barrier film of the present invention, at least one inorganic barrier layer is formed on a substrate. Here, the inorganic barrier layer does not need to be formed on the surface of the base material, and a base layer (smooth layer, primer layer), anchor coat layer (anchor layer), protective layer, hygroscopic layer or charged between the base material and the base material. A functional layer or the like of the prevention layer may be provided.
 無機バリア層は、無機化合物を含む。ここで、無機化合物としては、特に限定されないが、例えば、金属酸化物、金属窒化物、金属炭化物、金属酸窒化物または金属酸炭化物が挙げられる。中でも、ガスバリア性能の点で、Si、Al、In、Sn、Zn、Ti、Cu、CeおよびTaから選ばれる1種以上の金属を含む、酸化物、窒化物、炭化物、酸窒化物または酸炭化物などを好ましく用いることができ、Si、Al、In、Sn、ZnおよびTiから選ばれる金属の酸化物、窒化物、酸窒化物または酸炭化物がより好ましく、特にSiおよびAlの少なくとも1種の、酸化物、窒化物、酸窒化物または酸炭化物が好ましい。特に、無機化合物はケイ素(Si)を含むことが好ましく、Siの酸化物(組成SiO)、酸窒化物(組成SiON)または酸炭化物(組成SiOC)が最も好ましい。 The inorganic barrier layer contains an inorganic compound. Here, the inorganic compound is not particularly limited, and examples thereof include metal oxides, metal nitrides, metal carbides, metal oxynitrides, and metal oxycarbides. Among these, oxides, nitrides, carbides, oxynitrides or oxycarbides containing one or more metals selected from Si, Al, In, Sn, Zn, Ti, Cu, Ce and Ta in terms of gas barrier performance Are preferably used, and an oxide, nitride, oxynitride or oxycarbide of a metal selected from Si, Al, In, Sn, Zn and Ti is more preferable, and in particular, at least one of Si and Al, Oxides, nitrides, oxynitrides or oxycarbides are preferred. In particular, the inorganic compound preferably contains silicon (Si), and is most preferably an oxide of Si (composition SiO), an oxynitride (composition SiON), or an acid carbide (composition SiOC).
 無機バリア層における化学組成は、XPS表面分析装置を用いて、原子組成比を測定することで測定できる。また、無機バリア層を切断して切断面をXPS表面分析装置で原子組成比を測定することでも測定することができる。また、無機バリア層における化学組成は、無機バリア層を形成する際に用いる原料の種類や量、ならびに塗膜層を形成したり改質したりする際の条件等により、制御することができる。 The chemical composition in the inorganic barrier layer can be measured by measuring the atomic composition ratio using an XPS surface analyzer. It can also be measured by cutting the inorganic barrier layer and measuring the atomic composition ratio of the cut surface with an XPS surface analyzer. Further, the chemical composition in the inorganic barrier layer can be controlled by the type and amount of raw materials used when forming the inorganic barrier layer, conditions for forming or modifying the coating layer, and the like.
 無機バリア層に含まれる無機化合物の含有量は特に限定されないが、無機バリア層中、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、98質量%以上であることが特に好ましく、100質量%である(すなわち、無機バリア層は無機化合物からなる)ことが最も好ましい。 The content of the inorganic compound contained in the inorganic barrier layer is not particularly limited, but is preferably 50% by mass or more, more preferably 80% by mass or more, and 95% by mass or more in the inorganic barrier layer. Is more preferably 98% by mass or more, and most preferably 100% by mass (that is, the inorganic barrier layer is made of an inorganic compound).
 無機バリア層は無機化合物を含むことで、高い緻密性を有し、さらにガスバリア性を有する。ここで、無機バリア層のガスバリア性は、基材上に無機バリア層を形成させた積層体で算出した際、水蒸気透過度(WVTR)が0.1g/(m・day)以下であることが好ましく、0.01g/(m・day)以下であることがより好ましい。 By including an inorganic compound, the inorganic barrier layer has high density and further has gas barrier properties. Here, when the gas barrier property of the inorganic barrier layer is calculated using a laminate in which the inorganic barrier layer is formed on the substrate, the water vapor transmission rate (WVTR) is 0.1 g / (m 2 · day) or less. Is preferable, and it is more preferable that it is 0.01 g / (m 2 · day) or less.
 無機バリア層の形成方法は、特に制限されないが、物理気相成長法(PVD法)、化学気相成長法(CVD法)などの真空成膜法、または無機化合物を含む液、好ましくはケイ素化合物を含有する液を塗布して形成される塗膜を改質処理して形成する方法(以下、単に塗布法とも称する)などが挙げられる。これらのうち、物理気相成長法または化学気相成長法がより好ましく、化学気相成長法(CVD法)が特に好ましい。 The method for forming the inorganic barrier layer is not particularly limited, but a vacuum film formation method such as physical vapor deposition (PVD method) or chemical vapor deposition (CVD), or a liquid containing an inorganic compound, preferably a silicon compound And a method of reforming and forming a coating film formed by applying a liquid containing a liquid (hereinafter also simply referred to as a coating method). Of these, physical vapor deposition or chemical vapor deposition is more preferred, and chemical vapor deposition (CVD) is particularly preferred.
 以下、真空成膜法および塗布法について説明する。 Hereinafter, the vacuum film forming method and the coating method will be described.
 <真空成膜法>
 物理気相成長法(Physical Vapor Deposition、PVD法)は、気相中で物質の表面に物理的手法により、目的とする物質、例えば、炭素膜等の薄膜を堆積する方法であり、例えば、スパッタ法(DCスパッタ法、RFスパッタ法、イオンビームスパッタ法、およびマグネトロンスパッタ法等)、真空蒸着法、イオンプレーティング法などが挙げられる。
<Vacuum deposition method>
The physical vapor deposition method (PVD method) is a method of depositing a target material, for example, a thin film such as a carbon film, on the surface of the material in a gas phase by a physical method. Examples thereof include a DC sputtering method, an RF sputtering method, an ion beam sputtering method, and a magnetron sputtering method, a vacuum deposition method, and an ion plating method.
 スパッタ法は、真空チャンバ内にターゲットを設置し、高電圧をかけてイオン化した希ガス元素(通常はアルゴン)をターゲットに衝突させて、ターゲット表面の原子をはじき出し、基材に付着させる方法である。このとき、チャンバ内に窒素ガスや酸素ガスを流すことにより、アルゴンガスによってターゲットからはじき出された元素と、窒素や酸素とを反応させて無機層を形成する、反応性スパッタ法を用いてもよい。 Sputtering is a method in which a target is placed in a vacuum chamber, a rare gas element (usually argon) ionized by applying a high voltage is collided with the target, and atoms on the target surface are ejected and adhered to the substrate. . At this time, a reactive sputtering method may be used in which an inorganic layer is formed by causing nitrogen and oxygen gas to flow into the chamber to react nitrogen and oxygen with an element ejected from the target by argon gas. .
 化学気相成長法(Chemical Vapor Deposition、CVD法)は、基材上に、目的とする薄膜の成分を含む原料ガスを供給し、基材表面または気相での化学反応により膜を堆積する方法である。また、化学反応を活性化する目的で、プラズマなどを発生させる方法などがあり、熱CVD法、触媒化学気相成長法、光CVD法、真空プラズマCVD法、大気圧プラズマCVD法など公知のCVD方式等が挙げられる。特に限定されるものではないが、製膜速度や処理面積の観点から、プラズマCVD法を適用することが好ましい。 The chemical vapor deposition method (Chemical Vapor Deposition, CVD method) is a method of depositing a film by supplying a source gas containing a target thin film component onto a substrate and performing a chemical reaction on the surface of the substrate or in the gas phase. It is. In addition, for the purpose of activating the chemical reaction, there is a method of generating plasma or the like. Known CVD such as thermal CVD method, catalytic chemical vapor deposition method, photo CVD method, vacuum plasma CVD method, atmospheric pressure plasma CVD method, etc. The method etc. are mentioned. Although not particularly limited, it is preferable to apply the plasma CVD method from the viewpoint of film forming speed and processing area.
 真空プラズマCVD法、大気圧または大気圧近傍の圧力下でのプラズマCVD法により得られる無機バリア層は、原材料(原料ともいう)である金属化合物、分解ガス、分解温度、投入電力などの条件を選ぶことで、目的の化合物を製造できるため好ましい。プラズマCVD法によるバリア層の形成条件の詳細については、例えば、国際公開第2012/067186号の段落「0033」~「0051」に記載される条件が適宜採用されうる。このような方法により形成される無機バリア層は、酸化物、窒化物、酸窒化物または酸炭化物を含む層であることが好ましい。 The inorganic barrier layer obtained by the vacuum plasma CVD method, or the plasma CVD method under atmospheric pressure or a pressure near atmospheric pressure, has conditions such as the metal compound (decomposition material), decomposition gas, decomposition temperature, and input power as raw materials. This is preferable because the desired compound can be produced. For details of the conditions for forming the barrier layer by the plasma CVD method, for example, the conditions described in paragraphs “0033” to “0051” of International Publication No. 2012/067186 can be appropriately employed. The inorganic barrier layer formed by such a method is preferably a layer containing an oxide, nitride, oxynitride or oxycarbide.
 <塗布法>
 本発明に係る無機バリア層は、例えば無機化合物を含有する液、好ましくはケイ素化合物を含有する液を塗布して形成される塗膜を改質処理して形成する方法(塗布法)で形成されてもよい。以下、無機化合物としてケイ素化合物を例に挙げて説明するが、前記無機化合物はケイ素化合物に限定されるものではない。
<Coating method>
The inorganic barrier layer according to the present invention is formed, for example, by a method (coating method) in which a coating film formed by applying a liquid containing an inorganic compound, preferably a liquid containing a silicon compound, is reformed. May be. Hereinafter, the silicon compound will be described as an example of the inorganic compound, but the inorganic compound is not limited to the silicon compound.
 (ケイ素化合物)
 前記ケイ素化合物としては、ケイ素化合物を含有する塗布液の調製が可能であれば特に限定はされない。例えば、ポリシラザン化合物、シラザン化合物、アミノシラン化合物、シリルアセトアミド化合物、シリルイミダゾール化合物、およびその他の窒素を含有するケイ素化合物などが用いられる。
(Silicon compound)
The silicon compound is not particularly limited as long as a coating solution containing a silicon compound can be prepared. For example, polysilazane compounds, silazane compounds, aminosilane compounds, silylacetamide compounds, silylimidazole compounds, and other silicon compounds containing nitrogen are used.
 (ポリシラザン化合物)
 本発明において、ポリシラザン化合物とは、ケイ素-窒素結合を有するポリマーである。具体的に、その構造内にSi-N、Si-H、N-Hなどの結合を有し、SiO、Si、および両方の中間固溶体SiOなどのセラミック前駆体無機ポリマーである。なお、本明細書において「ポリシラザン化合物」を「ポリシラザン」とも略称する。
(Polysilazane compound)
In the present invention, the polysilazane compound is a polymer having a silicon-nitrogen bond. Specifically, ceramic precursor inorganic polymers having bonds such as Si—N, Si—H, and N—H in their structure, such as SiO 2 , Si 3 N 4 , and both intermediate solid solutions SiO x N y It is. In the present specification, “polysilazane compound” is also abbreviated as “polysilazane”.
 本発明に用いられるポリシラザンの例としては、特に限定されず、公知のものが挙げられる。例えば、特開2013-022799号公報の段落「0043」~「0058」や特開2013-226758号公報の段落「0038」~「0056」などに開示されているものが適宜採用される。 Examples of polysilazane used in the present invention are not particularly limited and include known ones. For example, those disclosed in paragraphs “0043” to “0058” of JP2013-022799A, paragraphs “0038” to “0056” of JP2013-226758A are appropriately adopted.
 また、ポリシラザン化合物は、有機溶媒に溶解した溶液状態で市販されており、ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のNN120-10、NN120-20、NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL120-20、NL150A、NP110、NP140、SP140などが挙げられる。 The polysilazane compound is commercially available in a solution in an organic solvent. Examples of commercially available polysilazane solutions include NN120-10, NN120-20, NAX120-20, NN110, NN310 manufactured by AZ Electronic Materials Co., Ltd. NN320, NL110A, NL120A, NL120-20, NL150A, NP110, NP140, SP140, and the like.
 本発明で使用できるポリシラザン化合物の別の例としては、以下に制限されないが、例えば、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7-196986号公報)などの、低温でセラミック化するポリシラザン化合物が挙げられる。 Other examples of the polysilazane compound that can be used in the present invention include, but are not limited to, for example, a silicon alkoxide-added polysilazane obtained by reacting the above polysilazane with a silicon alkoxide (Japanese Patent Laid-Open No. 5-238827), and a reaction with glycidol. Glycidol-added polysilazane (JP-A-6-122852) obtained by reaction, alcohol-added polysilazane (JP-A-6-240208) obtained by reacting an alcohol, and metal carboxylic acid obtained by reacting a metal carboxylate Obtained by adding a salt-added polysilazane (JP-A-6-299118), an acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), and metal fine particles. Addition of fine metal particles Rishirazan (JP 7-196986), such as, include polysilazane compounds ceramic at low temperatures.
 (シラザン化合物)
 本発明に好ましく用いられるシラザン化合物の例として、ジメチルジシラザン、トリメチルジシラザン、テトラメチルジシラザン、ペンタメチルジシラザン、ヘキサメチルジシラザン、および1,3-ジビニル-1,1,3,3-テトラメチルジシラザンなどが挙げられるが、これらに限定されない。
(Silazane compound)
Examples of silazane compounds preferably used in the present invention include dimethyldisilazane, trimethyldisilazane, tetramethyldisilazane, pentamethyldisilazane, hexamethyldisilazane, and 1,3-divinyl-1,1,3,3- Examples thereof include, but are not limited to, tetramethyldisilazane.
 (アミノシラン化合物)
 本発明に好ましく用いられるアミノシラン化合物の例として、3-アミノプロピルトリメトキシシラン、3-アミノプロピルジメチルエトキシシラン、3-アリールアミノプロピルトリメトキシシラン、プロピルエチレンジアミンシラン、N-[3-(トリメトキシシリル)プロピル]エチレンジアミン、3-ブチルアミノプロピルトリメチルシラン、3-ジメチルアミノプロピルジエトキシメチルシラン、2-(2-アミノエチルチオエチル)トリエトキシシラン、およびビス(ブチルアミノ)ジメチルシランなどが挙げられるが、これらに限定されない。
(Aminosilane compound)
Examples of aminosilane compounds preferably used in the present invention include 3-aminopropyltrimethoxysilane, 3-aminopropyldimethylethoxysilane, 3-arylaminopropyltrimethoxysilane, propylethylenediaminesilane, N- [3- (trimethoxysilyl) ) Propyl] ethylenediamine, 3-butylaminopropyltrimethylsilane, 3-dimethylaminopropyldiethoxymethylsilane, 2- (2-aminoethylthioethyl) triethoxysilane, and bis (butylamino) dimethylsilane. However, it is not limited to these.
 (シリルアセトアミド化合物)
 本発明に好ましく用いられるシリルアセトアミド化合物の例として、N-メチル-N-トリメチルシリルアセトアミド、N,O-ビス(tert-ブチルジメチルシリル)アセトアミド、N,O-ビス(ジエチルヒドロゲンシリル)トリフルオロアセトアミド、N,O-ビス(トリメチルシリル)アセトアミド、およびN-トリメチルシリルアセトアミドなどが挙げられるが、これらに限定されない。
(Silylacetamide compound)
Examples of silylacetamide compounds preferably used in the present invention include N-methyl-N-trimethylsilylacetamide, N, O-bis (tert-butyldimethylsilyl) acetamide, N, O-bis (diethylhydrogensilyl) trifluoroacetamide , N, O-bis (trimethylsilyl) acetamide, and N-trimethylsilylacetamide, but are not limited thereto.
 (シリルイミダゾール化合物)
 本発明に好ましく用いられるシリルイミダゾール化合物の例として、1-(tert-ブチルジメチルシリル)イミダゾール、1-(ジメチルエチルシリル)イミダゾール、1-(ジメチルイソプロピルシリル)イミダゾール、およびN-トリメチルシリルイミダゾールなどが挙げられるが、これらに限定されない。
(Silylimidazole compound)
Examples of silylimidazole compounds preferably used in the present invention include 1- (tert-butyldimethylsilyl) imidazole, 1- (dimethylethylsilyl) imidazole, 1- (dimethylisopropylsilyl) imidazole, and N-trimethylsilylimidazole. However, it is not limited to these.
 (その他の窒素を含有するケイ素化合物)
 本発明において、上述の窒素を含有するケイ素化合物の他に、例えば、ビス(トリメチルシリル)カルボジイミド、トリメチルシリルアジド、N,O-ビス(トリメチルシリル)ヒドロキシルアミン、N,N’-ビス(トリメチルシリル)尿素、3-ブロモ-1-(トリイソプロピルシリル)インドール、3-ブロモ-1-(トリイソプロピルシリル)ピロール、N-メチル-N,O-ビス(トリメチルシリル)ヒドロキシルアミン、3-イソシアネートプロピルトリエトキシシラン、およびシリコンテトライソチオシアナートなどが用いられるがこれらに限定されない。
(Other silicon compounds containing nitrogen)
In the present invention, in addition to the above silicon compound containing nitrogen, for example, bis (trimethylsilyl) carbodiimide, trimethylsilylazide, N, O-bis (trimethylsilyl) hydroxylamine, N, N′-bis (trimethylsilyl) urea, 3 -Bromo-1- (triisopropylsilyl) indole, 3-bromo-1- (triisopropylsilyl) pyrrole, N-methyl-N, O-bis (trimethylsilyl) hydroxylamine, 3-isocyanatopropyltriethoxysilane, and silicon Although tetraisothiocyanate etc. are used, it is not limited to these.
 中でも、成膜性、クラック等の欠陥が少ないこと、残留有機物の少なさの点で、パーヒドロポリシラザン、オルガノポリシラザン等のポリシラザン;シルセスキオキサン等のポリシロキサン等が好ましく、ガスバリア性能が高く、屈曲時および高温高湿条件下であってもガスバリア性能が維持されることから、ポリシラザンがより好ましく、パーヒドロポリシラザンが特に好ましい。 Among them, polysilazane such as perhydropolysilazane and organopolysilazane; polysiloxane such as silsesquioxane, etc. are preferable in terms of film formation, fewer defects such as cracks, and less residual organic matter, and high gas barrier performance. Polysilazane is more preferable, and perhydropolysilazane is particularly preferable because gas barrier performance is maintained even when bent and under high temperature and high humidity conditions.
 ポリシラザンを用いる場合、改質処理前の無機バリア層中におけるポリシラザンの含有率としては、無機バリア層の全質量を100質量%としたとき、100質量%でありうる。また、無機バリア層がポリシラザン以外のものを含む場合には、層中におけるポリシラザンの含有率は、10質量%以上99質量%以下であることが好ましく、40質量%以上95質量%以下であることがより好ましく、特に好ましくは70質量%以上95質量%以下である。 When polysilazane is used, the content of polysilazane in the inorganic barrier layer before the modification treatment may be 100% by mass when the total mass of the inorganic barrier layer is 100% by mass. Further, when the inorganic barrier layer contains a material other than polysilazane, the content of polysilazane in the layer is preferably 10% by mass or more and 99% by mass or less, and 40% by mass or more and 95% by mass or less. Is more preferably 70% by mass or more and 95% by mass or less.
 上記のような無機バリア層の塗布法による形成方法は、特に制限されず、公知の方法が適用できるが、有機溶媒中にケイ素化合物および必要に応じて触媒を含む無機バリア層形成用塗布液を公知の湿式塗布方法により塗布し、この溶媒を蒸発させて除去し、次いで、改質処理を行う方法が好ましい。 The formation method by the coating method of the inorganic barrier layer as described above is not particularly limited, and a known method can be applied. However, an inorganic barrier layer forming coating solution containing a silicon compound and, if necessary, a catalyst in an organic solvent is used. It is preferable to apply a known wet coating method, evaporate and remove the solvent, and then perform a modification treatment.
 <塗布法により形成された無機バリア層の改質処理>
 本発明における塗布法により形成された無機バリア層の改質処理とは、ケイ素化合物の酸化ケイ素または酸窒化ケイ素等への転化反応を指し、具体的にはガスバリア性フィルムが全体としてガスバリア性(水蒸気透過率が、1×10-3g/m・day以下)を発現するに貢献できるレベルの無機薄膜を形成する処理をいう。
<Modification treatment of inorganic barrier layer formed by coating method>
The modification treatment of the inorganic barrier layer formed by the coating method in the present invention refers to a conversion reaction of a silicon compound to silicon oxide or silicon oxynitride. Specifically, the gas barrier film as a whole has a gas barrier property (water vapor) transmittance refers to a process for forming the levels of inorganic thin films can contribute to expressing the 1 × 10 -3 g / m 2 · day or less).
 ケイ素化合物の酸化ケイ素または酸窒化ケイ素等への転化反応は、公知の方法を適宜選択して適用することができる。改質処理としては、具体的には、プラズマ処理、紫外線照射処理、加熱処理が挙げられる。ただし、加熱処理による改質の場合、ケイ素化合物の置換反応による酸化ケイ素膜または酸窒化ケイ素層の形成には450℃以上の高温が必要であるため、プラスチック等のフレキシブル基板においては、適応が難しい。このため、熱処理は他の改質処理と組み合わせて行うことが好ましい。 The conversion reaction of the silicon compound to silicon oxide or silicon oxynitride can be applied by appropriately selecting a known method. Specific examples of the modification treatment include plasma treatment, ultraviolet irradiation treatment, and heat treatment. However, in the case of modification by heat treatment, formation of a silicon oxide film or a silicon oxynitride layer by a substitution reaction of a silicon compound requires a high temperature of 450 ° C. or higher, so that it is difficult to adapt to a flexible substrate such as plastic. . For this reason, it is preferable to perform the heat treatment in combination with other reforming treatments.
 したがって、改質処理としては、プラスチック基板への適応という観点から、より低温で、転化反応が可能なプラズマ処理や紫外線照射処理による転化反応が好ましい。 Therefore, as the modification treatment, from the viewpoint of adapting to a plastic substrate, a plasma treatment capable of a conversion reaction at a lower temperature or a conversion reaction by ultraviolet irradiation treatment is preferable.
 (プラズマ処理)
 本発明において、改質処理として用いることのできるプラズマ処理は、公知の方法を用いることができるが、好ましくは大気圧プラズマ処理等をあげることが出来る。大気圧近傍でのプラズマCVD処理を行う大気圧プラズマCVD法は、真空下のプラズマCVD法に比べ、減圧にする必要がなく生産性が高いだけでなく、プラズマ密度が高密度であるために成膜速度が速く、さらには通常のCVD法の条件に比較して、大気圧下という高圧力条件では、ガスの平均自由工程が非常に短いため、極めて均質の膜が得られる。
(Plasma treatment)
In the present invention, a known method can be used for the plasma treatment that can be used as the reforming treatment, and an atmospheric pressure plasma treatment or the like can be preferably used. The atmospheric pressure plasma CVD method, which performs plasma CVD processing near atmospheric pressure, does not need to be reduced in pressure and is more productive than the plasma CVD method under vacuum. The film speed is high, and further, under a high pressure condition under atmospheric pressure as compared with the conditions of a normal CVD method, the gas mean free process is very short, so that a very homogeneous film can be obtained.
 大気圧プラズマ処理の場合は、放電ガスとしては窒素ガスまたは長周期型周期表の第18族原子を含むガス、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。 In the case of atmospheric pressure plasma treatment, as the discharge gas, nitrogen gas or a gas containing Group 18 atoms of the long-period periodic table, specifically helium, neon, argon, krypton, xenon, radon, or the like is used. Among these, nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.
 (加熱処理)
 ケイ素化合物を含有する塗膜を他の改質処理、好適には後述のエキシマ照射処理等と組み合わせて、加熱処理することで、改質処理を効率よく行うことが出来る。
(Heat treatment)
The modification treatment can be efficiently performed by heat-treating the coating film containing the silicon compound in combination with another modification treatment, preferably an excimer irradiation treatment described later.
 また、ゾルゲル法を用いて層形成する場合には、加熱処理を用いることが好ましい。加熱条件としては、好ましくは50~300℃、より好ましくは70~200℃の温度で、好ましくは0.005~60分間、より好ましくは0.01~10分間、加熱・乾操することにより、縮合が行われ、無機バリア層を形成することができる。 In addition, when a layer is formed using a sol-gel method, it is preferable to use a heat treatment. The heating conditions are preferably 50 to 300 ° C., more preferably 70 to 200 ° C., preferably 0.005 to 60 minutes, more preferably 0.01 to 10 minutes. Condensation is performed to form an inorganic barrier layer.
 加熱処理としては、例えば、ヒートブロック等の発熱体に基材を接触させ熱伝導により塗膜を加熱する方法、抵抗線等による外部ヒーターにより雰囲気を加熱する方法、IRヒーターの様な赤外領域の光を用いた方法等が上げられるが特に限定はされない。また、ケイ素化合物を含有する塗膜の平滑性を維持できる方法を適宜選択してよい。 As the heat treatment, for example, a method of heating a coating film by contacting a substrate with a heating element such as a heat block, a method of heating an atmosphere by an external heater such as a resistance wire, an infrared region such as an IR heater There are no particular limitations on the method using the above light. Moreover, you may select suitably the method which can maintain the smoothness of the coating film containing a silicon compound.
 加熱処理時の塗膜の温度としては、50~250℃の範囲に適宜調整することが好ましく、50~120℃の範囲であることがより好ましい。 The temperature of the coating film during the heat treatment is preferably adjusted appropriately in the range of 50 to 250 ° C, and more preferably in the range of 50 to 120 ° C.
 また、加熱時間としては、1秒~10時間の範囲が好ましく、10秒~1時間の範囲がより好ましい。 The heating time is preferably in the range of 1 second to 10 hours, more preferably in the range of 10 seconds to 1 hour.
 (紫外線照射処理)
 改質処理の方法の1つとして、紫外線照射による処理が好ましい。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化ケイ素膜または酸窒化ケイ素膜を形成することが可能である。
(UV irradiation treatment)
As one of the modification treatment methods, treatment by ultraviolet irradiation is preferable. Ozone and active oxygen atoms generated by ultraviolet rays (synonymous with ultraviolet light) have high oxidation ability, and can form silicon oxide films or silicon oxynitride films with high density and insulation at low temperatures It is.
 この紫外線照射により、基材が加熱され、セラミックス化(シリカ転化)に寄与するOとHOや、紫外線吸収剤、ポリシラザン自身が励起、活性化されるため、ポリシラザンが励起し、ポリシラザンのセラミックス化が促進され、また得られる無機バリア層が一層緻密になる。紫外線照射は、塗膜形成後であればいずれの時点で実施しても有効である。 By this ultraviolet irradiation, the base material is heated, and O 2 and H 2 O contributing to ceramicization (silica conversion), an ultraviolet absorber, and polysilazane itself are excited and activated. Ceramics are promoted, and the resulting inorganic barrier layer becomes denser. Irradiation with ultraviolet rays is effective at any time after the formation of the coating film.
 紫外線照射処理においては、常用されているいずれの紫外線発生装置を使用することも可能である。 In the ultraviolet irradiation treatment, any commonly used ultraviolet ray generator can be used.
 なお、本発明でいう紫外線とは、一般には、10~400nmの波長を有する電磁波をいうが、後述する真空紫外線(10~200nm)処理以外の紫外線照射処理の場合は、好ましくは210~375nmの紫外線を用いる。 The ultraviolet ray referred to in the present invention generally refers to an electromagnetic wave having a wavelength of 10 to 400 nm, but in the case of an ultraviolet irradiation treatment other than the vacuum ultraviolet ray (10 to 200 nm) treatment described later, it is preferably 210 to 375 nm. Use ultraviolet light.
 紫外線の照射は、照射される無機バリア層を担持している基材がダメージを受けない範囲で、照射強度や照射時間を設定することが好ましい。 In the irradiation of ultraviolet rays, it is preferable to set the irradiation intensity and the irradiation time within a range where the substrate carrying the irradiated inorganic barrier layer is not damaged.
 基材としてプラスチックフィルムを用いた場合を例にとると、例えば、2kW(80W/cm×25cm)のランプを用い、基材表面の強度が20~300mW/cm、好ましくは50~200mW/cmになるように基材-紫外線照射ランプ間の距離を設定し、0.1秒~10分間の照射を行うことができる。 Taking the case of using a plastic film as a base material, for example, a 2 kW (80 W / cm × 25 cm) lamp is used, and the strength of the base material surface is 20 to 300 mW / cm 2 , preferably 50 to 200 mW / cm. The distance between the base material and the ultraviolet irradiation lamp is set so as to be 2, and irradiation can be performed for 0.1 seconds to 10 minutes.
 一般に、紫外線照射処理時の基材温度が150℃以上になると、プラスチックフィルム等の場合には、基材が変形したり、その強度が劣化したりする等、基材の特性が損なわれることになる。しかしながら、ポリイミド等の耐熱性の高いフィルムの場合には、より高温での改質処理が可能である。したがって、この紫外線照射時の基材温度としては、一般的な上限はなく、基材の種類によって当業者が適宜設定することができる。また、紫外線照射雰囲気に特に制限はなく、空気中で実施すればよい。 In general, when the substrate temperature during ultraviolet irradiation treatment is 150 ° C. or more, in the case of a plastic film or the like, the properties of the substrate are impaired, such as deformation of the substrate or deterioration of its strength. Become. However, in the case of a film having high heat resistance such as polyimide, a modification treatment at a higher temperature is possible. Accordingly, there is no general upper limit for the substrate temperature at the time of ultraviolet irradiation, and it can be appropriately set by those skilled in the art depending on the type of substrate. Moreover, there is no restriction | limiting in particular in ultraviolet irradiation atmosphere, What is necessary is just to implement in air.
 このような紫外線の発生手段としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ(172nm、222nm、308nmの単一波長、例えば、ウシオ電機株式会社製、MDエキシマ社製など)、UV光レーザー、等が挙げられるが、特に限定されない。また、発生させた紫外線を無機バリア層に照射する際には、効率向上と均一な照射を達成する観点から、発生源からの紫外線を反射板で反射させてから無機バリア層に当てることが好ましい。 Examples of such ultraviolet ray generating means include metal halide lamps, high pressure mercury lamps, low pressure mercury lamps, xenon arc lamps, carbon arc lamps, and excimer lamps (single wavelengths of 172 nm, 222 nm, and 308 nm, for example, USHIO INC. Manufactured by MD Excimer Co., Ltd.), UV light laser, and the like. Further, when irradiating the generated ultraviolet ray to the inorganic barrier layer, it is preferable to apply the ultraviolet ray from the generation source to the inorganic barrier layer after reflecting the ultraviolet ray from the generation source with a reflector from the viewpoint of achieving efficiency improvement and uniform irradiation. .
 紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する基材の形状によって適宜選定することができる。例えば、バッチ処理の場合には、無機バリア層を表面に有する積層体を上記のような紫外線発生源を具備した紫外線焼成炉で処理することができる。紫外線焼成炉自体は一般に知られており、例えば、アイグラフィクス株式会社製の紫外線焼成炉を使用することができる。また、無機バリア層を表面に有する積層体が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することによりセラミックス化することができる。紫外線照射に要する時間は、使用する基材や無機バリア層の組成、濃度にもよるが、一般に0.1秒~10分であり、好ましくは0.5秒~3分である。 UV irradiation can be applied to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate used. For example, in the case of batch processing, a laminate having an inorganic barrier layer on the surface can be processed in an ultraviolet baking furnace equipped with an ultraviolet source as described above. The ultraviolet baking furnace itself is generally known. For example, an ultraviolet baking furnace manufactured by I-Graphics Co., Ltd. can be used. In addition, when the laminate having an inorganic barrier layer on the surface is a long film, the ceramic is obtained by continuously irradiating ultraviolet rays in the drying zone having the ultraviolet ray generation source as described above while being conveyed. Can be The time required for ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the composition and concentration of the substrate used and the inorganic barrier layer.
 (真空紫外線照射処理:エキシマ照射処理)
 本発明において、最も好ましい改質処理方法は、真空紫外線照射による処理(エキシマ照射処理)である。真空紫外線照射による処理は、ポリシラザン化合物内の原子間結合力より大きい100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で、酸化ケイ素膜の形成を行う方法である。なお、エキシマ照射処理を行う際は、上述したように熱処理を併用することが好ましく、その際の熱処理条件の詳細は上述したとおりである。
(Vacuum ultraviolet irradiation treatment: excimer irradiation treatment)
In the present invention, the most preferable modification treatment method is treatment by vacuum ultraviolet irradiation (excimer irradiation treatment). The treatment by the vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy of a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and bonds atoms with only photons called photon processes. This is a method of forming a silicon oxide film at a relatively low temperature (about 200 ° C. or lower) by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by action. In addition, when performing an excimer irradiation process, it is preferable to use heat processing together as mentioned above, and the detail of the heat processing conditions in that case is as having mentioned above.
 本発明においての放射線源は、100~180nmの波長の光を発生させるものであれば良いが、好適には約172nmに最大放射を有するエキシマラジエータ(例えば、Xeエキシマランプ)、約185nmに輝線を有する低圧水銀蒸気ランプ、並びに230nm以下の波長成分を有する中圧および高圧水銀蒸気ランプ、および約222nmに最大放射を有するエキシマランプである。 The radiation source in the present invention may be any radiation source that emits light having a wavelength of 100 to 180 nm, but is preferably an excimer radiator having a maximum emission at about 172 nm (eg, Xe excimer lamp), and has an emission line at about 185 nm. Low pressure mercury vapor lamps, and medium and high pressure mercury vapor lamps having a wavelength component of 230 nm or less, and excimer lamps having maximum emission at about 222 nm.
 このうち、Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから、発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。 Among these, the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.
 また、波長の短い172nmの光のエネルギーは、有機物の結合を解離させる能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン塗膜の改質を実現できる。 Also, it is known that the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. Due to the high energy possessed by the active oxygen, ozone and ultraviolet radiation, the polysilazane coating can be modified in a short time.
 エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で、すなわち短い波長でエネルギーを照射するため、解射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。 ¡Excimer lamps have high light generation efficiency and can be lit with low power. In addition, light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated in the ultraviolet region, that is, in a short wavelength, so that the increase in the surface temperature of the target object is suppressed. For this reason, it is suitable for flexible film materials such as PET that are easily affected by heat.
 紫外線照射時の反応には、酸素が必要であるが、真空紫外線は、酸素による吸収があるため紫外線照射工程での効率が低下しやすいことから、真空紫外線の照射は、可能な限り酸素濃度および水蒸気濃度の低い状態で行うことが好ましい。すなわち、真空紫外線照射時の酸素濃度は、10~20,000体積ppmとすることが好ましく、より好ましくは50~10,000体積ppmである。また、転化プロセスの間の水蒸気濃度は、好ましくは1000~4000体積ppmの範囲である。 Oxygen is required for the reaction at the time of ultraviolet irradiation, but since vacuum ultraviolet rays are absorbed by oxygen, the efficiency in the ultraviolet irradiation process tends to decrease. It is preferable to perform in a state where the water vapor concentration is low. That is, the oxygen concentration at the time of irradiation with vacuum ultraviolet rays is preferably 10 to 20,000 volume ppm, more preferably 50 to 10,000 volume ppm. Also, the water vapor concentration during the conversion process is preferably in the range of 1000 to 4000 ppm by volume.
 真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。 The gas satisfying the irradiation atmosphere used at the time of irradiation with vacuum ultraviolet rays is preferably a dry inert gas, and particularly preferably dry nitrogen gas from the viewpoint of cost. The oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
 真空紫外線照射工程において、ポリシラザン塗膜が受ける塗膜面での該真空紫外線の照度は1mW/cm~10W/cmであると好ましく、30mW/cm~200mW/cmであることがより好ましく、50mW/cm~160mW/cmであるとさらに好ましい。1mW/cm以上であれば、十分な改質効率が得られ、10W/cm以下であれば、塗膜にアブレーションを生じにくく、基材にダメージを与えにくい。 In the vacuum ultraviolet irradiation step, the illuminance of the vacuum ultraviolet light on the coating surface received by the polysilazane coating is preferably 1 mW / cm 2 to 10 W / cm 2 , more preferably 30 mW / cm 2 to 200 mW / cm 2. preferably, further preferably at 50mW / cm 2 ~ 160mW / cm 2. If it is 1 mW / cm 2 or more, sufficient reforming efficiency is obtained, and if it is 10 W / cm 2 or less, it is difficult to cause ablation in the coating film and damage the substrate.
 塗膜面における真空紫外線の照射エネルギー量(積算光量)は、10~10000mJ/cmであることが好ましく、100~8000mJ/cmであることがより好ましく、200~6000mJ/cmであることがさらに好ましい。10mJ/cm以上であれば、改質が十分に進行しうる。10000mJ/cm以下であれば、過剰改質によるクラック発生や、基材の熱変形が生じにくい。 Irradiation energy amount of the VUV in the coated surface (integrated quantity of light), it preferably from 10 ~ 10000mJ / cm 2, more preferably 100 ~ 8000mJ / cm 2, a 200 ~ 6000mJ / cm 2 Is more preferable. If it is 10 mJ / cm 2 or more, the modification can proceed sufficiently. If it is 10,000 mJ / cm 2 or less, cracking due to over-reformation and thermal deformation of the substrate are unlikely to occur.
 また、改質に用いられる真空紫外光は、CO、COおよびCHの少なくとも一種を含むガスで形成されたプラズマにより発生させてもよい。さらに、CO、COおよびCHの少なくとも一種を含むガス(以下、炭素含有ガスとも称する)は、炭素含有ガスを単独で使用してもよいが、希ガスまたはHを主ガスとして、炭素含有ガスを少量添加することが好ましい。プラズマの生成方式としては容量結合プラズマなどが挙げられる。 Further, the vacuum ultraviolet light used for reforming, CO, may be generated by plasma formed in a gas containing at least one of CO 2 and CH 4. Further, as the gas containing at least one of CO, CO 2 and CH 4 (hereinafter also referred to as carbon-containing gas), the carbon-containing gas may be used alone, but carbon containing rare gas or H 2 as the main gas. It is preferable to add a small amount of the contained gas. Examples of plasma generation methods include capacitively coupled plasma.
 無機バリア層の膜組成は、XPS表面分析装置を用いて、原子組成比を測定することで測定できる。また、無機バリア層を切断して切断面をXPS表面分析装置で原子組成比を測定することでも測定することができる。 The film composition of the inorganic barrier layer can be measured by measuring the atomic composition ratio using an XPS surface analyzer. It can also be measured by cutting the inorganic barrier layer and measuring the atomic composition ratio of the cut surface with an XPS surface analyzer.
 また、無機バリア層の膜密度は、目的に応じて適切に設定されうる。例えば、無機バリア層の膜密度は、1.5~2.6g/cmの範囲にあることが好ましい。この範囲であれば、膜の緻密さがより高くなり、ガスバリア性の劣化や、湿度による膜の酸化劣化が起こりくい。 Further, the film density of the inorganic barrier layer can be appropriately set according to the purpose. For example, the film density of the inorganic barrier layer is preferably in the range of 1.5 to 2.6 g / cm 3 . If it is this range, the density of the film will be higher, and it will be difficult for the gas barrier property to deteriorate and the film to deteriorate due to humidity.
 該無機バリア層が2層以上の積層構造である場合、各無機バリア層は同じ組成であっても異なる組成であってもよい。また、無機バリア層が2層以上の積層構造である場合、無機バリア層は真空成膜法により形成される層のみからなってもよいし、塗布法により形成される層のみからなってもよいし、真空成膜法により形成される層と塗布法により形成される層との組み合わせであってもよい。 When the inorganic barrier layer has a laminated structure of two or more layers, each inorganic barrier layer may have the same composition or a different composition. In addition, when the inorganic barrier layer has a laminated structure of two or more layers, the inorganic barrier layer may consist only of a layer formed by a vacuum film forming method or only a layer formed by a coating method. In addition, a combination of a layer formed by a vacuum film forming method and a layer formed by a coating method may be used.
 また、前記無機バリア層は、応力緩和性や、後述の金属原子含有層の形成で使用される紫外線を吸収させるなどの観点から、窒素元素または炭素元素を含むことも好ましい。これらの元素を含むことで、応力緩和や紫外線吸収などの性質を有するようになり、無機バリア層と金属原子含有層との密着性を向上させることでガスバリア性が向上するなどの効果が得られ好ましい。 The inorganic barrier layer preferably contains a nitrogen element or a carbon element from the viewpoints of stress relaxation and absorption of ultraviolet rays used for forming a metal atom-containing layer described later. By including these elements, it has properties such as stress relaxation and ultraviolet absorption, and by improving the adhesion between the inorganic barrier layer and the metal atom-containing layer, effects such as improved gas barrier properties can be obtained. preferable.
 無機バリア層における化学組成は、無機バリア層を形成する際にケイ素化合物等の種類および量、ならびにケイ素化合物を含む層を改質する際の条件等により、制御することができる。 The chemical composition of the inorganic barrier layer can be controlled by the type and amount of the silicon compound and the like when forming the inorganic barrier layer, and the conditions when modifying the layer containing the silicon compound.
 [接着層]
 図1に示すように、本発明に係るガスバリア性フィルム11においては、無機バリア層13の基材12とは反対側の面(露出表面)にアクリロイル基が露出している点に特徴がある。ここで、アクリロイル基とは、「CH=CH-C(=O)-」で表される、アクリル酸由来のアシル基である。
[Adhesive layer]
As shown in FIG. 1, the gas barrier film 11 according to the present invention is characterized in that an acryloyl group is exposed on the surface (exposed surface) opposite to the substrate 12 of the inorganic barrier layer 13. Here, the acryloyl group is an acyl group derived from acrylic acid represented by “CH 2 ═CH—C (═O) —”.
 図1に示すように無機バリア層13の露出表面にアクリロイル基が露出している形態について特に制限はない。例えば、アクリロイル基含有化合物が無機バリア層13の表面に化学結合を介することなく付着している結果、アクリロイル基が露出している形態が挙げられる。また、アクリロイル基含有化合物のアクリロイル基以外の反応性基が無機バリア層の構成材料との間で化学結合(共有結合)を形成している結果、アクリロイル基が露出している形態も挙げられる。なかでも、後者が好ましい。なお、以下では、図1における無機バリア層13の表面よりも上のアクリロイル基が存在する領域(図1に示す領域14)を「接着層」とも称する。ただし、場合によっては(例えば、アクリロイル基含有化合物としてアクリロイル基含有シランカップリング剤が用いられる場合などには)、透過型電子顕微鏡(TEM)のような観察手段を用いても、「接着層」を無機バリア層13から独立した一定の膜厚を有する層として観察できない場合もありうることに留意すべきである。このような場合であっても、無機バリア層13の表面にアクリロイル基が露出している限り、本発明の技術的範囲に包含されるものとする。なお、接着層は薄いほど好ましく、接着層の存在がTEM等の観察手段によって確認できる場合には、接着層の膜厚は50nm以下であることが好ましく、20nm以下であることがより好ましい。ただし、上述したように接着層は薄いほど好ましいことから、TEM等の観察手段によっても接着層の存在が確認できない程度の膜厚であることがさらに好ましい。また、「無機バリア層13の表面にアクリロイル基が露出している」ことは、後述する実施例の欄に記載のように、表層を掻き取って熱分解ガスクロマトグラフィーにより測定を行い、標品と照合することによって確認することが可能である。 As shown in FIG. 1, there is no particular limitation on the form in which the acryloyl group is exposed on the exposed surface of the inorganic barrier layer 13. For example, a form in which the acryloyl group is exposed as a result of the acryloyl group-containing compound adhering to the surface of the inorganic barrier layer 13 without a chemical bond is mentioned. Moreover, the reactive group other than the acryloyl group of the acryloyl group-containing compound forms a chemical bond (covalent bond) with the constituent material of the inorganic barrier layer, so that the acryloyl group is exposed. Of these, the latter is preferred. In the following, the region where the acryloyl group above the surface of the inorganic barrier layer 13 in FIG. 1 exists (region 14 shown in FIG. 1) is also referred to as “adhesive layer”. However, in some cases (for example, when an acryloyl group-containing silane coupling agent is used as the acryloyl group-containing compound), even if an observation means such as a transmission electron microscope (TEM) is used, the “adhesion layer” It should be noted that it may not be observed as a layer having a certain thickness independent of the inorganic barrier layer 13. Even in such a case, as long as the acryloyl group is exposed on the surface of the inorganic barrier layer 13, it is included in the technical scope of the present invention. The thinner the adhesive layer is, the better. When the presence of the adhesive layer can be confirmed by an observation means such as TEM, the thickness of the adhesive layer is preferably 50 nm or less, and more preferably 20 nm or less. However, as described above, the thinner the adhesive layer is, the more preferable it is, and it is further preferable that the film thickness be such that the presence of the adhesive layer cannot be confirmed even by observation means such as TEM. In addition, “the acryloyl group is exposed on the surface of the inorganic barrier layer 13” means that the surface layer is scraped off and measured by pyrolysis gas chromatography as described in the Examples section below. It is possible to confirm by checking.
 ここで、「アクリロイル基含有化合物が無機バリア層13の表面に化学結合を介することなく付着している結果、アクリロイル基が露出している形態」に用いられるアクリロイル基含有化合物の例としては、アクリロイル基を含有する化合物のうち、後述するアクリロイル基含有シランカップリング剤以外のものが挙げられる。 Here, as an example of the acryloyl group-containing compound used for “the form in which the acryloyl group is exposed as a result of the acryloyl group-containing compound adhering to the surface of the inorganic barrier layer 13 without a chemical bond”, acryloyl Among the compounds containing a group, those other than the acryloyl group-containing silane coupling agent described later can be mentioned.
 アクリロイル基含有シランカップリング剤以外のアクリロイル基含有化合物としては、ポリオールポリアクリレート、エポキシアクリレート、ウレタンアクリレート、アクリルモノマー等が挙げられる。 Examples of the acryloyl group-containing compound other than the acryloyl group-containing silane coupling agent include polyol polyacrylate, epoxy acrylate, urethane acrylate, acrylic monomer, and the like.
 ポリオールポリアクリレートとは、ポリオールと、アクリル酸とのエステル化合物である。ここで選ばれるポリオールに特に制限はないが、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,10-デカンジオール、1,12-ドデカンジオール、ポリオレフィンポリオール、水添ポリオレフィンポリオール等の鎖状脂肪族ポリオールが挙げられ、さらには、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、トリシクロ[5.2.1.02,6]デカンジメタノール、2-メチルシクロヘキサン-1,1-ジメタノール等の脂環構造を有するポリオールが挙げられ、さらには、トリマートリオール、p-キシリレングリコール、ビスフェノールAエチレンオキサイド付加物、ビスフェノールFエチレンオキサイド付加物、ビフェノールエチレンオキサイド付加物等の芳香環を有するポリオールが挙げられ、さらには、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオールが挙げられ、さらには、ポリヘキサメチレンアジペート、ポリヘキサメチレンサクシネート、ポリカプロラクトン等のポリエステルポリオールが挙げられ、さらには、α,ω-ポリ(1,6-ヘキシレンカーボネート)ジオール、α,ω-ポリ(3-メチル-1,5-ペンチレンカーボネート)ジオール、α,ω-ポリ[(1,6-ヘキシレン:3-メチル-ペンタメチレン)カーボネート]ジオール、α,ω-ポリ[(1,9-ノニレン:2-メチル-1,8-オクチレン)カーボネート]ジオール等の(ポリ)カーボネートジオールが挙げられる。これらは単独でも、あるいは2種以上を適宜組み合わせて使用してもよい。 Polyol polyacrylate is an ester compound of polyol and acrylic acid. The polyol selected here is not particularly limited. For example, 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, neopentyl glycol, 3-methyl- 1,5-pentanediol, 1,6-hexanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 2-ethyl-2-butyl-1,3-propanediol, 2,4 -Chain aliphatic polyols such as diethyl-1,5-pentanediol, 1,10-decanediol, 1,12-dodecanediol, polyolefin polyol, hydrogenated polyolefin polyol and the like, and 1,4-cyclohexane dimethanol, 1,3-cyclohexane dimethanol, tricyclo [5.2.1.0 2, 6] Dekanji Examples include polyols having an alicyclic structure such as tanol and 2-methylcyclohexane-1,1-dimethanol, and further trimer triol, p-xylylene glycol, bisphenol A ethylene oxide adduct, bisphenol F ethylene oxide adduct And polyols having an aromatic ring such as biphenolethylene oxide adduct, and further polyether polyols such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol, and further, polyhexamethylene adipate and polyhexamethylene. And polyester polyols such as succinate and polycaprolactone, and α, ω-poly (1,6-hexylene carbonate) diol, α, ω-poly (3-methyl-1,5- Styrene carbonate) diol, α, ω-poly [(1,6-hexylene: 3-methyl-pentamethylene) carbonate] diol, α, ω-poly [(1,9-nonylene: 2-methyl-1,8 (Octylene) carbonate] (poly) carbonate diols such as diols. These may be used alone or in combination of two or more.
 エポキシアクリレートとは、エポキシ樹脂の末端エポキシ基にアクリル酸を付加させることで得られる化合物である。この際選ばれるエポキシ樹脂に、特に制限はない。具体的には、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、ビフェニル型エポキシ樹脂等が挙げられる。これらは単独でも、あるいは2種以上を適宜組み合わせて使用してもよい。 Epoxy acrylate is a compound obtained by adding acrylic acid to the terminal epoxy group of an epoxy resin. There is no restriction | limiting in particular in the epoxy resin selected in this case. Specifically, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, glycidyl ester type epoxy resin, biphenyl type epoxy resin and the like can be mentioned. These may be used alone or in combination of two or more.
 ウレタンアクリレートとは、ポリオールとポリイソシアネートと水酸基含有アクリレート、またはポリオールとイソシアナト基含有アクリレートとを反応させることで得られる化合物である。この際選ばれるポリオール、ポリイソシアネート、水酸基含有アクリレート、イソシアナト基含有アクリレートに特に制限はない。ポリオールは、ポリオールポリアクリレートにおいて使用されるポリオールと同様である。ポリイソシアネートとしては、例えば、1,4-シクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、リシントリイソシアネート、リシンジイソシアネート、ヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサンメチレンジイソシアネートおよびノルボルナンジイソシアネート等が挙げられる。これらは単独でも、あるいは2種以上を適宜組み合わせて使用してもよい。水酸基含有アクリレートとしては、例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、3-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、2-ヒドロキシ-3-(o-フェニルフェノキシ)プロピルアクリレート、2-ヒドロキシエチルアクリルアミド等が挙げられる。これらは単独でも、あるいは2種以上を適宜組み合わせて使用してもよい。イソシアナト基含有アクリレートとしては、2-イソシアナトエチルアクリレート等が挙げられる。これらは単独でも、あるいは2種以上を適宜組み合わせて使用してもよい。 Urethane acrylate is a compound obtained by reacting polyol, polyisocyanate, and hydroxyl group-containing acrylate, or polyol and isocyanato group-containing acrylate. There are no particular restrictions on the polyol, polyisocyanate, hydroxyl group-containing acrylate, and isocyanato group-containing acrylate selected at this time. The polyol is the same as the polyol used in the polyol polyacrylate. Examples of the polyisocyanate include 1,4-cyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, , 4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, lysine triisocyanate, lysine diisocyanate, hexamethylene diisocyanate 2,4,4-trimethylhexamethylene diisocyanate, 2,2,4-trimethylhexanemethylene diisocyanate, norbornane diisocyanate, etc. And the like. These may be used alone or in combination of two or more. Examples of the hydroxyl group-containing acrylate include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, 2- Hydroxy-3- (o-phenylphenoxy) propyl acrylate, 2-hydroxyethylacrylamide and the like can be mentioned. These may be used alone or in combination of two or more. Examples of the isocyanato group-containing acrylate include 2-isocyanatoethyl acrylate. These may be used alone or in combination of two or more.
 アクリルモノマーは、上述したアクリロイル基含有化合物から、前記ポリオールポリアクリレート、前記エポキシアクリレートおよび前記ウレタンアクリレートを除いた化合物である。 The acrylic monomer is a compound obtained by removing the polyol polyacrylate, the epoxy acrylate, and the urethane acrylate from the acryloyl group-containing compound.
 アクリルモノマーとしては、例えば、グリシジルアクリレート、テトラヒドロフルフリルアクリレート等の環状エーテル基を有するアクリロイル含有化合物、シクロヘキシルアクリレート、イソボルニルアクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンタニルエチルアクリレート、4-tert-ブチルシクロヘキシルアクリレート等の環状脂肪族基を有する単官能アクリロイル基含有化合物、ラウリルアクリレート、イソノニルアクリレート、2-エチルヘキシルアクリレート、イソブチルアクリレート、tert-ブチルアクリレート、イソオクチルアクリレート、イソアミルアクリレート等の鎖状脂肪族基を有する単官能アクリロイル基含有化合物、ベンジルアクリレート、フェノキシエチルアクリレート等の芳香環を有する単官能アクリロイル基含有化合物、ポリエチレングリコールジアクリレート、デカンジオールジアクリレート、ノナンジオールジアクリレート、ヘキサンジオールジアクリレート、トリシクロデカンジメタノールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート等の多官能アクリロイル基含有化合物を挙げることができる。なお、本明細書では、単官能(多官能)アクリロイル基含有化合物を単に「単官能(多官能)アクリレート化合物」とも称する。 Examples of acrylic monomers include acryloyl-containing compounds having a cyclic ether group such as glycidyl acrylate and tetrahydrofurfuryl acrylate, cyclohexyl acrylate, isobornyl acrylate, dicyclopentenyl acrylate, dicyclopentenyloxyethyl acrylate, and dicyclopentanyl acrylate. A monofunctional acryloyl group-containing compound having a cyclic aliphatic group such as dicyclopentanylethyl acrylate, 4-tert-butylcyclohexyl acrylate, lauryl acrylate, isononyl acrylate, 2-ethylhexyl acrylate, isobutyl acrylate, tert-butyl acrylate, Monofunctional acryloyl having a chain aliphatic group such as isooctyl acrylate and isoamyl acrylate Group-containing compounds, monofunctional acryloyl group-containing compounds having aromatic rings such as benzyl acrylate, phenoxyethyl acrylate, polyethylene glycol diacrylate, decanediol diacrylate, nonanediol diacrylate, hexanediol diacrylate, tricyclodecane dimethanol diacrylate And polyfunctional acryloyl group-containing compounds such as trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, and dipentaerythritol hexaacrylate. In the present specification, the monofunctional (polyfunctional) acryloyl group-containing compound is also simply referred to as “monofunctional (polyfunctional) acrylate compound”.
 上述したようなアクリロイル基含有シランカップリング剤以外のアクリロイル基含有化合物を無機バリア層13の表面に付着させることで無機バリア層13の表面にアクリロイル基を露出させる方法としては、上記アクリロイル基含有化合物を適当な溶媒に溶解させた溶液を無機バリア層13の表面に塗布し、乾燥させる方法が例示される。この際、上記溶液に適当な光重合開始剤を添加しておき、上記溶液を塗布し、乾燥させて得られた塗膜に、光照射処理を施してアクリロイル基含有化合物の一部を重合させてもよい。ただし、完全に重合させてしまうと、接着層に含まれる未反応のアクリロイル基がなくなってしまうため、重合は完全には行うべきではない。 As a method for exposing an acryloyl group to the surface of the inorganic barrier layer 13 by attaching an acryloyl group-containing compound other than the acryloyl group-containing silane coupling agent as described above to the surface of the inorganic barrier layer 13, the acryloyl group-containing compound is used. An example is a method in which a solution in which is dissolved in an appropriate solvent is applied to the surface of the inorganic barrier layer 13 and dried. At this time, a suitable photopolymerization initiator is added to the solution, and the coating solution obtained by applying the solution and drying is subjected to a light irradiation treatment to polymerize a part of the acryloyl group-containing compound. May be. However, if it is completely polymerized, the unreacted acryloyl group contained in the adhesive layer disappears, so the polymerization should not be performed completely.
 溶媒としては、例えば、トルエン、キシレン、その他高沸点の芳香族系溶媒;酢酸ブチル、酢酸エチル、セロソルブアセテートなどのエステル系溶媒;メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒;メタノール、エタノール、イソプロピルアルコールなどのアルコール系溶媒;ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルジエチレングリコールモノメチルエーテル等のエーテル系溶媒などが挙げられる。また、光重合開始剤としては、近赤外線、可視光線、紫外線等の光の照射により、ラジカル重合の開始に寄与するラジカルを発生する化合物であれば、特に制限はない。光重合開始剤としては、例えば、アセトフェノン、アセトフェノンベンジルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、キサントン、フルオレノン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、3-メチルアセトフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、4,4’-ジアミノベンゾフェノン、ベンゾインプロピルエーテル、ベンゾインエチルエーテル、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、チオキサントン、ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1,4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキシド、オリゴ(2-ヒドロキシ-2-メチル-1-(4-(1-メチルビニル)フェニル)プロパノン)等が挙げられる。また、光重合開始剤として、メタロセン化合物を使用することもできる。これらの光重合開始剤は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。 Solvents include, for example, toluene, xylene and other high boiling aromatic solvents; ester solvents such as butyl acetate, ethyl acetate and cellosolve acetate; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; methanol, ethanol, isopropyl alcohol And alcohol solvents such as diethyl ether, dibutyl ether, tetrahydrofuran, dioxane, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, and diethylene glycol monomethyl ether. The photopolymerization initiator is not particularly limited as long as it is a compound that generates radicals that contribute to the initiation of radical polymerization upon irradiation with light such as near infrared rays, visible rays, and ultraviolet rays. Examples of the photopolymerization initiator include acetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, xanthone, fluorenone, benzaldehyde, fluorene, anthraquinone, tri Phenylamine, carbazole, 3-methylacetophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, 4,4'-diaminobenzophenone, benzoin propyl ether, benzoin ethyl ether, benzyldimethyl ketal, 1- (4-isopropylphenyl) ) -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, thioxanthone, diethylthioxanthone, -Isopropylthioxanthone, 2-chlorothioxanthone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholino Phenyl) -butanone-1,4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis- (2,6-dimethoxybenzoyl) ) -2,4,4-trimethylpentylphosphine oxide, oligo (2-hydroxy-2-methyl-1- (4- (1-methylvinyl) phenyl) propanone) and the like. Moreover, a metallocene compound can also be used as a photopolymerization initiator. These photopolymerization initiators can be used alone or in combination of two or more.
 なお、上記溶液は、易滑性の向上や最上層の高硬度化の目的で、フィラーを含有してもよい。フィラーとしては、例えば、石英、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカ等のシリカ系無機フィラー;酸化チタン、酸化亜鉛、酸化ジルコニウム、酸化ニオブ、酸化アルミニウム、酸化セリウム、酸化イットリウム等の金属酸化物系無機フィラー等が挙げられる。これらの中でもシリカ系無機フィラーが特に好ましい。また、フィラーの形状は球状が好ましく、粒径は10~50μmの範囲が好ましい。 The above solution may contain a filler for the purpose of improving the slipperiness and increasing the hardness of the uppermost layer. Examples of the filler include silica-based inorganic fillers such as quartz, fumed silica, precipitated silica, anhydrous silica, fused silica, crystalline silica, and ultrafine powder amorphous silica; titanium oxide, zinc oxide, zirconium oxide, niobium oxide And metal oxide inorganic fillers such as aluminum oxide, cerium oxide, and yttrium oxide. Among these, silica-based inorganic fillers are particularly preferable. Further, the shape of the filler is preferably spherical, and the particle size is preferably in the range of 10 to 50 μm.
 上記アクリロイル基含有化合物を溶媒に溶解させた溶液に含まれる固形分100質量%に対して、上記アクリロイル基含有化合物の含有量は好ましくは80~100質量%であり、光重合開始剤の含有量は好ましくは0~5質量%であり、フィラーの含有量は好ましくは0~20質量%である。 The content of the acryloyl group-containing compound is preferably 80 to 100% by mass with respect to 100% by mass of the solid content in the solution obtained by dissolving the acryloyl group-containing compound in a solvent, and the content of the photopolymerization initiator Is preferably 0 to 5% by mass, and the filler content is preferably 0 to 20% by mass.
 一方、「アクリロイル基含有化合物のアクリロイル基以外の反応性基が無機バリア層の構成材料との間で化学結合(共有結合)を形成している結果、アクリロイル基が露出している形態」に用いられるアクリロイル基含有化合物の例としては、アクリロイル基およびアルコキシシリル基を一分子中に含む化合物が挙げられる。無機バリア層13を構成する無機化合物がケイ素原子を含む(例えば、SiO、SiON、SiOCなどの組成を有する)場合に、アクリロイル基およびアルコキシシリル基を一分子中に含む化合物をアクリロイル基含有化合物として用いることで、当該シランカップリング剤に含まれるアルコキシシリル部位が上記ケイ素原子との間でシロキサン結合を形成することができる。その結果、上記シランカップリング剤に含まれるアクリロイル基が他の原子を介して上記無機化合物に含まれるケイ素原子との間で化学結合を形成することになる。かような構成とすることで、アクリロイル基が無機バリア層との間でより強固に結びつくことができ、ひいては無機バリア層に隣接するように紫外線硬化樹脂層が設けられたときに、これら二層間の界面における密着性がよりいっそう向上しうるという利点がある。 On the other hand, used for "a form in which acryloyl groups are exposed as a result of chemical groups (covalent bonds) forming with the reactive material other than the acryloyl group of the acryloyl group-containing compound with the constituent material of the inorganic barrier layer" Examples of the acryloyl group-containing compound to be obtained include compounds containing an acryloyl group and an alkoxysilyl group in one molecule. When the inorganic compound constituting the inorganic barrier layer 13 contains a silicon atom (for example, having a composition such as SiO, SiON, or SiOC), a compound containing an acryloyl group and an alkoxysilyl group in one molecule is used as the acryloyl group-containing compound. By using it, the alkoxysilyl site contained in the silane coupling agent can form a siloxane bond with the silicon atom. As a result, the acryloyl group contained in the silane coupling agent forms a chemical bond with the silicon atom contained in the inorganic compound via another atom. By adopting such a configuration, the acryloyl group can be more firmly bonded to the inorganic barrier layer, and as a result, when the ultraviolet curable resin layer is provided adjacent to the inorganic barrier layer, these two layers There is an advantage that the adhesion at the interface can be further improved.
 アクリロイル基およびアルコキシシリル基を一分子中に含む化合物としては、アクリロイル基を含有するシランカップリング剤(アクリロイル基含有シランカップリング剤)が好ましく用いられる。アクリロイル基含有シランカップリング剤としては、3-アクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルトリエトキシシラン、3-アクリロイルオキシプロピルメチルジメトキシシラン、3-アクリロイルオキシプロピルメチルジエトキシシランなどが挙げられる。なお、アクリロイル基含有シランカップリング剤の市販品としては、KBM-5103(信越化学工業社製)が挙げられる。これらのアクリロイル基含有シランカップリング剤は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。また、アクリロイル基含有シランカップリング剤以外の「アクリロイル基およびアルコキシシリル基を一分子中に含む化合物」としては、例えば、(メタ)アクリロイル基を導入したポリオルガノシルセスキオキサンや、不飽和二重結合を含有するポリシロキサン変性アクリル樹脂などの有機無機ハイブリッド材料などが挙げられる。これらの材料は従来公知の知見を参照しつつ独自に調液してもよいし、市販品を用いてもよい。 As a compound containing an acryloyl group and an alkoxysilyl group in one molecule, a silane coupling agent containing an acryloyl group (acryloyl group-containing silane coupling agent) is preferably used. Examples of the acryloyl group-containing silane coupling agent include 3-acryloyloxypropyltrimethoxysilane, 3-acryloyloxypropyltriethoxysilane, 3-acryloyloxypropylmethyldimethoxysilane, and 3-acryloyloxypropylmethyldiethoxysilane. . In addition, as a commercial item of an acryloyl group-containing silane coupling agent, KBM-5103 (manufactured by Shin-Etsu Chemical Co., Ltd.) can be mentioned. One of these acryloyl group-containing silane coupling agents may be used alone, or two or more thereof may be used in combination. Examples of the “compound containing an acryloyl group and an alkoxysilyl group in one molecule” other than an acryloyl group-containing silane coupling agent include, for example, polyorganosilsesquioxane having an introduced (meth) acryloyl group, Examples thereof include organic-inorganic hybrid materials such as polysiloxane-modified acrylic resins containing a heavy bond. These materials may be prepared independently with reference to conventionally known knowledge, or commercially available products may be used.
 上述したようなアクリロイル基含有シランカップリング剤等の「アクリロイル基およびアルコキシシリル基を一分子中に含む化合物」を用いて無機バリア層13の表面にアクリロイル基を露出させる方法としては、上記アクリロイル基含有化合物を適当な溶媒に溶解させた溶液を無機バリア層13の表面に塗布し、乾燥させる方法が例示される。この際、用いられうる溶媒としては、上述したのと同様の溶媒が挙げられる。また、無機バリア層13を構成する無機化合物がケイ素原子を含むものである場合に、アクリロイル基含有シランカップリング剤等の「アクリロイル基およびアルコキシシリル基を一分子中に含む化合物」を用いて接着層を形成すると、時間が経過するにつれて、当該「アクリロイル基およびアルコキシシリル基を一分子中に含む化合物」に含まれるアルコキシシリル基が、上記無機化合物に含まれるケイ素原子との間で加水分解・縮合反応を起こす。これにより、「アクリロイル基およびアルコキシシリル基を一分子中に含む化合物」に含まれるアクリロイル基が、他の原子を介して上記無機化合物に含まれるケイ素原子との間で化学結合を形成するようになる。 As a method for exposing an acryloyl group on the surface of the inorganic barrier layer 13 using a “compound containing an acryloyl group and an alkoxysilyl group in one molecule” such as an acryloyl group-containing silane coupling agent as described above, the acryloyl group may be exposed. An example is a method in which a solution in which the contained compound is dissolved in a suitable solvent is applied to the surface of the inorganic barrier layer 13 and dried. At this time, examples of the solvent that can be used include the same solvents as described above. When the inorganic compound constituting the inorganic barrier layer 13 contains a silicon atom, an adhesive layer is formed using a “compound containing an acryloyl group and an alkoxysilyl group in one molecule” such as an acryloyl group-containing silane coupling agent. Once formed, the hydrolysis / condensation reaction between the alkoxysilyl group contained in the “compound containing an acryloyl group and an alkoxysilyl group in one molecule” with the silicon atom contained in the inorganic compound as time elapses. Wake up. As a result, the acryloyl group contained in the “compound containing acryloyl group and alkoxysilyl group in one molecule” forms a chemical bond with the silicon atom contained in the inorganic compound via another atom. Become.
 ここで、無機バリア層13を構成する無機化合物がケイ素原子を含むものである場合に、上述した加水分解・縮合反応が起こる無機バリア層13側の反応点を増やす目的で、無機バリア層13の表面に表面改質処理を施してから、「アクリロイル基およびアルコキシシリル基を一分子中に含む化合物」を用いて接着層を形成することが好ましい。ここで、上記反応点を増やすために行われうる表面改質処理としては、酸素プラズマ処理、コロナ処理、エキシマ(真空紫外線)処理、UVオゾン処理などが挙げられる。これらの表面改質処理を行うための具体的な手法について特に制限はなく、従来公知の知見が適宜参照されうる。かような表面改質処理を行うと、無機バリア層表面が親水化され、例えば無機バリア層を構成する無機化合物がケイ素原子を含む場合には、多数のシラノール基(-Si-OH基)が無機バリア層の表面に生成する。この状態で接着層を形成すると、シラノール基はアクリロイル基含有シランカップリング剤等の「アクリロイル基およびアルコキシシリル基を一分子中に含む化合物」に含まれるアルコキシシリル基と反応することから、無機バリア層の表面に露出するアクリロイル基の数(密度)を増大させることが可能となる。その結果、無機バリア層に隣接するように紫外線硬化樹脂層が設けられたときに、これら二層間の界面における密着性がよりいっそう向上しうるという利点がある。 Here, when the inorganic compound constituting the inorganic barrier layer 13 contains a silicon atom, the surface of the inorganic barrier layer 13 is increased for the purpose of increasing the reaction points on the inorganic barrier layer 13 side where the hydrolysis / condensation reaction described above occurs. After performing the surface modification treatment, it is preferable to form an adhesive layer using a “compound containing an acryloyl group and an alkoxysilyl group in one molecule”. Here, examples of the surface modification treatment that can be performed to increase the reaction point include oxygen plasma treatment, corona treatment, excimer (vacuum ultraviolet) treatment, and UV ozone treatment. There is no restriction | limiting in particular about the specific method for performing these surface modification processes, A conventionally well-known knowledge can be referred suitably. When such a surface modification treatment is performed, the surface of the inorganic barrier layer is hydrophilized. For example, when the inorganic compound constituting the inorganic barrier layer contains silicon atoms, a large number of silanol groups (—Si—OH groups) are formed. It forms on the surface of the inorganic barrier layer. When the adhesive layer is formed in this state, the silanol group reacts with the alkoxysilyl group contained in the “compound containing acryloyl group and alkoxysilyl group in one molecule” such as an acryloyl group-containing silane coupling agent. It becomes possible to increase the number (density) of acryloyl groups exposed on the surface of the layer. As a result, when the ultraviolet curable resin layer is provided so as to be adjacent to the inorganic barrier layer, there is an advantage that the adhesion at the interface between these two layers can be further improved.
 [他の部材]
 本発明の一形態に係るガスバリア性フィルムは、基材および無機バリア層を必須に有するが、他の部材をさらに含むものであってもよい。本形態に係るガスバリア性フィルムは、例えば、基材と無機バリア層との間に;(複数の無機バリア層が存在する場合には)無機バリア層間に;または基材の無機バリア層が形成されていない側の面に、他の部材を有していてもよい。
[Other parts]
The gas barrier film according to one embodiment of the present invention essentially includes a base material and an inorganic barrier layer, but may further include other members. The gas barrier film according to this embodiment is formed, for example, between a base material and an inorganic barrier layer; between the inorganic barrier layers (when a plurality of inorganic barrier layers are present); or the base material inorganic barrier layer is formed. You may have another member in the surface which is not.
 ここで、他の部材としては、特に制限されず、従来のガスバリア性フィルムに使用される部材が同様にしてあるいは適宜修飾して使用できる。具体的には、下地層(平滑層、プライマー層)、アンカーコート層(アンカー層)、ブリードアウト防止層、ならびに保護層、吸湿層や帯電防止層の機能化層などが挙げられる。上記他の部材は、単独で使用されてもあるいは2種以上を組み合わせて使用してもよい。また、他の部材は、単層として存在してもあるいは2層以上の積層構造を有していてもよい。 Here, other members are not particularly limited, and members used for conventional gas barrier films can be used in the same manner or appropriately modified. Specific examples include a base layer (smooth layer, primer layer), an anchor coat layer (anchor layer), a bleed-out prevention layer, a protective layer, a functional layer such as a moisture absorption layer and an antistatic layer, and the like. The other members may be used alone or in combination of two or more. Moreover, the other member may exist as a single layer or may have a laminated structure of two or more layers.
 上記に代えてまたは上記に加えて、無機バリア層は、単層(1工程で作製可能な層)として存在してもあるいは2層以上の積層構造を有していてもよい。複数の層を設けることで、ガスバリア性をいっそう向上させることができる。後者の場合には、1層または複数層の無機バリア層が1つのユニットとして存在しても、あるいは上記ユニットが2以上積層した状態で存在していてもよい。 Alternatively or in addition to the above, the inorganic barrier layer may exist as a single layer (a layer that can be produced in one step) or may have a laminated structure of two or more layers. By providing a plurality of layers, the gas barrier property can be further improved. In the latter case, one or more inorganic barrier layers may exist as one unit, or two or more of the above units may be laminated.
 [下地層(平滑層、プライマー層)]
 本発明のガスバリア性フィルムは、例えば基材と無機バリア層との間に下地層(平滑層、プライマー層)を有していてもよい。下地層は突起等が存在する基材の粗面を平坦化するために、あるいは、基材に存在する突起により、無機バリア層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような下地層は、いずれの材料で形成されてもよいが、炭素含有ポリマーを含むことが好ましく、炭素含有ポリマーから構成されることがより好ましい。すなわち、本発明のガスバリア性フィルムは、基材と無機バリア層との間に、炭素含有ポリマーを含む下地層をさらに有することが好ましい。
[Underlayer (smooth layer, primer layer)]
The gas barrier film of the present invention may have a base layer (smooth layer, primer layer) between the base material and the inorganic barrier layer, for example. The underlayer is provided for flattening the rough surface of the substrate on which protrusions and the like exist, or for filling the unevenness and pinholes generated in the inorganic barrier layer with the protrusions existing on the substrate to flatten the surface. . Such an underlayer may be formed of any material, but preferably includes a carbon-containing polymer, and more preferably includes a carbon-containing polymer. That is, it is preferable that the gas barrier film of the present invention further has an underlayer containing a carbon-containing polymer between the base material and the inorganic barrier layer.
 また、下地層は、炭素含有ポリマー、好ましくは硬化性樹脂を含む。前記硬化性樹脂としては特に制限されず、活性エネルギー線硬化性材料等に対して紫外線等の活性エネルギー線を照射し硬化させて得られる活性エネルギー線硬化性樹脂や、熱硬化性材料を加熱することにより硬化して得られる熱硬化性樹脂等が挙げられる。該硬化性樹脂は、単独でもまたは2種以上組み合わせて用いてもよい。 The underlayer also contains a carbon-containing polymer, preferably a curable resin. The curable resin is not particularly limited, and the active energy ray curable resin or the thermosetting material obtained by irradiating the active energy ray curable material or the like with an active energy ray such as an ultraviolet ray to be cured is heated. And thermosetting resins obtained by curing. These curable resins may be used alone or in combination of two or more.
 下地層の形成に用いられる活性エネルギー線硬化性材料として、具体的には、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)シリーズ(シリカ微粒子に重合性不飽和基を有する有機化合物を結合させてなる化合物)を用いることができる。また、熱硬化性材料として、具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、アデカ社製のナノハイブリッドシリコーン、DIC株式会社製のユニディック(登録商標)V-8000シリーズ、EPICLON(登録商標) EXA-4710(超高耐熱性エポキシ樹脂)、信越化学工業株式会社製のシリコン樹脂 X-12-2400(商品名)、日東紡績株式会社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂、ポリアミドアミン-エピクロルヒドリン樹脂等が挙げられる。 As an active energy ray-curable material used for forming the underlayer, specifically, UV curable organic / inorganic hybrid hard coating material manufactured by JSR Corporation OPSTAR (registered trademark) series (polymerizable unsaturated group on silica fine particles) And a compound obtained by bonding an organic compound having a compound (a). Further, as thermosetting materials, specifically, TutProm series (Organic polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid silicone manufactured by Adeka, manufactured by DIC Corporation Unidic (registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistance epoxy resin), silicon resin X-12-2400 (trade name) manufactured by Shin-Etsu Chemical Co., Ltd., Nittobo Co., Ltd. Company-made inorganic / organic nanocomposite material SSG coat, thermosetting urethane resin consisting of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, silicone resin, polyamidoamine-epichlorohydride Resins.
 下地層の平滑性は、JIS B 0601:2001年で規定される表面粗さで表現される値で、最大断面高さRt(p)が、10nm以上、30nm以下であることが好ましい。 The smoothness of the underlayer is a value expressed by the surface roughness specified in JIS B 0601: 2001, and the maximum cross-sectional height Rt (p) is preferably 10 nm or more and 30 nm or less.
 表面粗さは、AFM(原子間力顕微鏡)で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が数十μmの区間内を多数回測定し、微細な凹凸の振幅に関する粗さである。 The surface roughness is calculated from an uneven cross-sectional curve continuously measured by an AFM (Atomic Force Microscope) with a detector having a stylus having a minimum tip radius, and the measurement direction is several tens by the stylus having a minimum tip radius. It is the roughness related to the amplitude of fine irregularities measured in a section of μm many times.
 下地層の厚さとしては、特に制限されないが、0.1~10μmの範囲が好ましい。 The thickness of the underlayer is not particularly limited, but is preferably in the range of 0.1 to 10 μm.
 [アンカーコート層(アンカー層)]
 本発明に係る基材の表面には、接着性(密着性)の向上を目的として、アンカーコート層(アンカー層)を易接着層として形成してもよい。このアンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を、1種または2種以上併せて使用することができる。上記アンカーコート剤は、市販品を使用してもよい。具体的には、シロキサン系UV硬化型ポリマー溶液(信越化学工業株式会社製、「X-12-2400」の3%イソプロピルアルコール溶液)を用いることができる。
[Anchor coat layer (anchor layer)]
On the surface of the substrate according to the present invention, an anchor coat layer (anchor layer) may be formed as an easy adhesion layer for the purpose of improving adhesiveness (adhesion). Examples of the anchor coating agent used in this anchor coat layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicon resin, and alkyl titanate. One type or two or more types can be used in combination. A commercially available product may be used as the anchor coating agent. Specifically, a siloxane-based UV curable polymer solution (manufactured by Shin-Etsu Chemical Co., Ltd., “X-12-2400” 3% isopropyl alcohol solution) can be used.
 また、アンカーコート層の厚さは、特に制限されないが、0.5~10.0μm程度が好ましい。 The thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10.0 μm.
 [ブリードアウト防止層]
 本発明のガスバリア性フィルムは、ブリードアウト防止層をさらに有することができる。ブリードアウト防止層は、下地層を有するフィルムを加熱した際に、フィルム基材中から未反応のオリゴマー等が表面へ移行して、接触する面を汚染する現象を抑制する目的で、下地(平滑)層を有する基材の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的に下地(平滑)層と同じ構成をとっても構わない。
[Bleed-out prevention layer]
The gas barrier film of the present invention can further have a bleed-out preventing layer. The bleed-out prevention layer is a base (smooth) for the purpose of suppressing the phenomenon that unreacted oligomers migrate from the film base to the surface when the film having the base layer is heated and contaminates the contact surface. ) Provided on the opposite side of the substrate having the layer. The bleed-out prevention layer may basically have the same configuration as the base (smooth) layer as long as it has this function.
 ブリードアウト防止層に含ませることが可能な化合物としては、分子中に2個以上の重合性不飽和基を有する多価不飽和有機化合物、あるいは分子中に1個の重合性不飽和基を有する単価不飽和有機化合物等のハードコート剤を挙げることができる。 Compounds that can be included in the bleed-out prevention layer include polyunsaturated organic compounds having two or more polymerizable unsaturated groups in the molecule, or one polymerizable unsaturated group in the molecule. Hard coat agents such as unitary unsaturated organic compounds can be mentioned.
 ブリードアウト防止層の厚さとしては、1~10μm、好ましくは2~7μmである。 The thickness of the bleed-out prevention layer is 1 to 10 μm, preferably 2 to 7 μm.
 [ガスバリア性フィルムの用途]
 本発明のガスバリア性フィルムは、種々の用途に用いられうるが、無機バリア層の露出表面(アクリロイル基が露出している)に隣接するように、紫外線硬化樹脂層が設けられる用途に好適に用いられる。この紫外線硬化樹脂層としては、紫外線硬化型樹脂の硬化物からなる層であれば特に制限はないが、その機能としては、無機バリア層を保護するための保護層のほか、量子ドット(半導体ナノ粒子)を含む量子ドット層(発光層)としての機能が挙げられる。量子ドット(半導体ナノ粒子)は水蒸気や酸素との接触により劣化しやすいことから、上記紫外線硬化樹脂層が量子ドット層(発光層)である場合には、2枚のガスバリア性フィルムで、無機バリア層が量子ドット層(発光層)側に配置されるように当該量子ドット層(発光層)を挟持してなる積層体(発光体)の形態が好ましい。以下、本発明に係るガスバリア性フィルムの好ましい実施形態として、上述した量子ドット層(発光層)が無機バリア性に隣接するように配置される構成について、詳細に説明する。
[Use of gas barrier film]
Although the gas barrier film of the present invention can be used for various applications, it is preferably used for applications in which an ultraviolet curable resin layer is provided so as to be adjacent to the exposed surface of the inorganic barrier layer (the acryloyl group is exposed). It is done. The ultraviolet curable resin layer is not particularly limited as long as it is a layer made of a cured product of an ultraviolet curable resin, but as a function thereof, in addition to a protective layer for protecting the inorganic barrier layer, a quantum dot (semiconductor nanoparticle) is used. The function as a quantum dot layer (light emitting layer) containing particle | grains is mentioned. Since quantum dots (semiconductor nanoparticles) are easily deteriorated by contact with water vapor or oxygen, when the UV curable resin layer is a quantum dot layer (light emitting layer), two gas barrier films are used to form an inorganic barrier. A laminated body (light emitting body) formed by sandwiching the quantum dot layer (light emitting layer) so that the layer is disposed on the quantum dot layer (light emitting layer) side is preferable. Hereinafter, as a preferred embodiment of the gas barrier film according to the present invention, a configuration in which the above-described quantum dot layer (light emitting layer) is disposed adjacent to the inorganic barrier property will be described in detail.
 (量子ドット層(発光層))
 量子ドット層(発光層)は通常、量子ドットとして機能する半導体ナノ粒子と、紫外線硬化樹脂(紫外線硬化型樹脂の硬化物)を含む。
(Quantum dot layer (light emitting layer))
The quantum dot layer (light emitting layer) usually contains semiconductor nanoparticles that function as quantum dots and an ultraviolet curable resin (cured product of an ultraviolet curable resin).
 「半導体ナノ粒子」とは、半導体材料の結晶で構成された量子閉じ込め効果(量子ドット効果)を有する数nm~数十nm程度の微粒子をいう。このような半導体ナノ粒子のエネルギー準位Eは、一般に、プランク定数を「h」、電子の有効質量を「m」、半導体ナノ粒子の半径を「R」としたとき、下式(1)で表される。 “Semiconductor nanoparticles” refers to fine particles having a quantum confinement effect (quantum dot effect) composed of a crystal of a semiconductor material and having a size of several nanometers to several tens of nanometers. The energy level E of such semiconductor nanoparticles is generally expressed by the following formula (1) when the Planck constant is “h”, the effective mass of electrons is “m”, and the radius of the semiconductor nanoparticles is “R”. expressed.
 式(1) E∝h/mR
 式(1)で示されるように、半導体ナノ粒子のバンドギャップは、「R-2」に比例して大きくなる(いわゆる、量子閉じ込め効果)。このように、半導体ナノ粒子の粒子径を制御、規定することによって、半導体ナノ粒子のバンドギャップ値を制御することができ、通常の原子にはない多様性を持たせることができる。そのため、光によって励起させたり、光を所望の波長の光に変換して出射させたりすることが可能となるのである。本形態では、このような発光性の半導体ナノ粒子を発光層の発光材料として使用する。
Formula (1) E∝h 2 / mR 2
As shown by the formula (1), the band gap of the semiconductor nanoparticles increases in proportion to “R −2 ” (so-called quantum confinement effect). In this way, by controlling and defining the particle diameter of the semiconductor nanoparticles, the band gap value of the semiconductor nanoparticles can be controlled, and diversity that does not exist in ordinary atoms can be provided. Therefore, it can be excited by light, or converted into light having a desired wavelength and emitted. In this embodiment, such luminescent semiconductor nanoparticles are used as a luminescent material of the luminescent layer.
 本形態において、量子ドット層(発光層)中に含まれる半導体ナノ粒子の含有量は、量子ドット層(発光層)の総質量に対し、0.01~50質量%が好ましく、0.5~30質量%がより好ましく、2.0~25質量%がさらに好ましい。含有量が0.01質量%以上であれば、十分な輝度を得ることができ、50質量%以下であれば、量子ドット層(発光層)中において適度な半導体ナノ粒子の粒子間距離を維持でき、量子サイズ効果を十分に発揮させることができる。 In the present embodiment, the content of the semiconductor nanoparticles contained in the quantum dot layer (light emitting layer) is preferably 0.01 to 50% by mass with respect to the total mass of the quantum dot layer (light emitting layer), 0.5 to 30% by mass is more preferable, and 2.0 to 25% by mass is even more preferable. If the content is 0.01% by mass or more, sufficient luminance can be obtained, and if it is 50% by mass or less, an appropriate inter-particle distance of the semiconductor nanoparticles is maintained in the quantum dot layer (light emitting layer). And the quantum size effect can be sufficiently exerted.
 半導体ナノ粒子の平均粒子径は、上述したように、数nm~数十nm程度であるが、目的とする発光色に対応する平均粒子径に設定される。例えば、赤発光を得たい場合には、半導体ナノ粒子の平均粒子径を3.0~20nmとすることが好ましく、緑発光を得たい場合には、1.5~10nmとすることが好ましく、青色発光を得たい場合には、1.0~3.0nmとすることが好ましい。 The average particle diameter of the semiconductor nanoparticles is about several nm to several tens of nm as described above, but is set to the average particle diameter corresponding to the target emission color. For example, when red light emission is desired, the average particle diameter of the semiconductor nanoparticles is preferably 3.0 to 20 nm, and when green light emission is desired, it is preferably 1.5 to 10 nm. When it is desired to obtain blue light emission, the thickness is preferably 1.0 to 3.0 nm.
 なお、本明細書において、半導体ナノ粒子のサイズ(粒子径)は、半導体ナノ粒子が後述のようにコア・シェル構造を有する場合や、表面修飾剤で修飾されている場合は、シェル領域や表面修飾剤で構成された領域を含めたトータルのサイズ意味するものとする。 In the present specification, the size (particle diameter) of the semiconductor nanoparticles is the shell region or the surface when the semiconductor nanoparticles have a core / shell structure as described later, or are modified with a surface modifier. It means the total size including the region composed of the modifier.
 平均粒子径の測定方法としては、公知の方法を用いることができる。例えば、透過型電子顕微鏡(TEM)により半導体ナノ粒子の粒子観察を行い、そこから粒子径分布の数平均粒子径として求める方法や、原子間力顕微鏡(AFM)を用いて平均粒子径を求める方法、動的光散乱法による粒径測定装置、例えば、Malvern社製、「ZETASIZERNano Series Nano-ZS」を用いて測定することができる。その他にも、X線小角散乱法により得られたスペクトルから半導体ナノ粒子の粒子径分布シミュレーション計算を用いて粒子径分布を導出する方法などが挙げられる。なお、本明細書における半導体ナノ粒子の平均粒子径は、原子間力顕微鏡(AFM)を用いて観察された粒子300個の粒子径の平均値を意味するものとする。 As a method for measuring the average particle diameter, a known method can be used. For example, a method of observing semiconductor nanoparticles using a transmission electron microscope (TEM) and obtaining the number average particle size of the particle size distribution therefrom, or a method of obtaining an average particle size using an atomic force microscope (AFM) The particle size can be measured using a particle size measuring apparatus using a dynamic light scattering method, for example, “ZETASIZER Nano Series Nano-ZS” manufactured by Malvern. In addition, a method of deriving the particle size distribution from the spectrum obtained by the X-ray small angle scattering method using the particle size distribution simulation calculation of the semiconductor nanoparticles can be used. In addition, the average particle diameter of the semiconductor nanoparticle in this specification shall mean the average value of the particle diameter of 300 particle | grains observed using atomic force microscope (AFM).
 また、本形態においては、半導体ナノ粒子の平均アスペクト比(長軸径/短軸径)の値が、1.0~2.0であることが好ましく、1.1~1.7であることがより好ましい。なお本明細書における半導体ナノ粒子の平均アスペクト比は、原子間力顕微鏡(AFM)を用いて観察された粒子300個のアスペクト値の平均値を意味するものとする。 In this embodiment, the average aspect ratio (major axis diameter / minor axis diameter) of the semiconductor nanoparticles is preferably 1.0 to 2.0, and preferably 1.1 to 1.7. Is more preferable. In addition, the average aspect ratio of the semiconductor nanoparticles in this specification means the average value of the aspect values of 300 particles observed using an atomic force microscope (AFM).
 (1)半導体ナノ粒子の構成材料
 半導体ナノ粒子の構成材料としては、例えば、炭素、ケイ素、ゲルマニウム、スズ等の周期表第14族元素の単体、リン(黒リン)等の周期表第15族元素の単体、セレン、テルル等の周期表第16族元素の単体、炭化ケイ素(SiC)等の複数の周期表第14族元素からなる化合物、酸化スズ(IV)(SnO)、硫化スズ(II、IV)(Sn(II)Sn(IV)S)、硫化スズ(IV)(SnS)、硫化スズ(II)(SnS)、セレン化スズ(II)(SnSe)、テルル化スズ(II)(SnTe)、硫化鉛(II)(PbS)、セレン化鉛(II)(PbSe)、テルル化鉛(II)(PbTe)等の周期表第14族元素と周期表第16族元素との化合物、窒化ホウ素(BN)、リン化ホウ素(BP)、ヒ化ホウ素(BAs)、窒化アルミニウム(AlN)、リン化アルミニウム(AlP)、ヒ化アルミニウム(AlAs)、アンチモン化アルミニウム(AlSb)、窒化ガリウム(GaN)、リン化ガリウム(GaP)、ヒ化ガリウム(GaAs)、アンチモン化ガリウム(GaSb)、窒化インジウム(InN)、リン化インジウム(InP)、ヒ化インジウム(InAs)、アンチモン化インジウム(InSb)等の周期表第13族元素と周期表第15族元素との化合物(あるいはIII-V族化合物半導体)、硫化アルミニウム(Al)、セレン化アルミニウム(AlSe)、硫化ガリウム(Ga)、セレン化ガリウム(GaSe)、テルル化ガリウム(GaTe)、酸化インジウム(In)、硫化インジウム(In)、セレン化インジウム(InSe)、テルル化インジウム(InTe)等の周期表第13族元素と周期表第16族元素との化合物、塩化タリウム(I)(TlCl)、臭化タリウム(I)(TlBr)、ヨウ化タリウム(I)(TlI)等の周期表第13族元素と周期表第17族元素との化合物、酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)、酸化カドミウム(CdO)、硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、テルル化カドミウム(CdTe)、硫化水銀(HgS)、セレン化水銀(HgSe)、テルル化水銀(HgTe)等の周期表第12族元素と周期表第16族元素との化合物(あるいはII-VI族化合物半導体)、硫化ヒ素(III)(As)、セレン化ヒ素(III)(AsSe)、テルル化ヒ素(III)(AsTe)、硫化アンチモン(III)(Sb)、セレン化アンチモン(III)(SbSe)、テルル化アンチモン(III)(SbTe)、硫化ビスマス(III)(Bi)、セレン化ビスマス(III)(BiSe)、テルル化ビスマス(III)(BiTe)等の周期表第15族元素と周期表第16族元素との化合物、酸化銅(I)(CuO)、セレン化銅(I)(CuSe)等の周期表第11族元素と周期表第16族元素との化合物、塩化銅(I)(CuCl)、臭化銅(I)(CuBr)、ヨウ化銅(I)(CuI)、塩化銀(AgCl)、臭化銀(AgBr)等の周期表第11族元素と周期表第17族元素との化合物、酸化ニッケル(II)(NiO)等の周期表第10族元素と周期表第16族元素との化合物、酸化コバルト(II)(CoO)、硫化コバルト(II)(CoS)等の周期表第9族元素と周期表第16族元素との化合物、四酸化三鉄(Fe)、硫化鉄(II)(FeS)等の周期表第8族元素と周期表第16族元素との化合物、酸化マンガン(II)(MnO)等の周期表第7族元素と周期表第16族元素との化合物、硫化モリブデン(IV)(MoS)、酸化タングステン(IV)(WO)等の周期表第6族元素と周期表第16族元素との化合物、酸化バナジウム(II)(VO)、酸化バナジウム(IV)(VO)、酸化タンタル(V)(Ta)等の周期表第5族元素と周期表第16族元素との化合物、酸化チタン(TiO、Ti、Ti、Ti等)等の周期表第4族元素と周期表第16族元素との化合物、硫化マグネシウム(MgS)、セレン化マグネシウム(MgSe)等の周期表第2族元素と周期表第16族元素との化合物、酸化カドミウム(II)クロム(III)(CdCr)、セレン化カドミウム(II)クロム(III)(CdCrSe)、硫化銅(II)クロム(III)(CuCr)、セレン化水銀(II)クロム(III)(HgCrSe)等のカルコゲンスピネル類、バリウムチタネート(BaTiO)等が挙げられるが、SnS、SnS、SnSe、SnTe、PbS、PbSe、PbTe等の周期表第14族元素と周期表第16族元素との化合物、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb等のIII-V族化合物半導体、Ga、Ga、GaSe、GaTe、In、In、InSe、InTe等の周期表第13族元素と周期表第16族元素との化合物、ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe、HgO、HgS、HgSe、HgTe等のII-VI族化合物半導体、As、As、AsSe、AsTe、Sb、Sb、SbSe、SbTe、Bi、Bi、BiSe、BiTe等の周期表第15族元素と周期表第16族元素との化合物、MgS、MgSe等の周期表第2族元素と周期表第16族元素との化合物が挙げられる。中でも、Si、Ge、GaN、GaP、InN、InP、Ga、Ga、In、In、ZnO、ZnS、CdO、CdSがより好ましい。これらの物質は、毒性の高い陰性元素を含まないので耐環境汚染性や生物への安全性に優れており、また、可視光領域で純粋なスペクトルを安定して得ることができるので、光学デバイスの形成に有利である。特に、発光の安定性の観点から、CdSe、ZnSe、CdSが好ましく、発光効率、高屈折率、安全性、経済性の観点から、ZnO、ZnSが好ましい。なお、これらの発光材料は、1種のみを単独で使用してもよいし、2種以上を組み合わせて使用しても構わない。
(1) Constituent material of semiconductor nanoparticles As constituent materials of semiconductor nanoparticles, for example, a simple substance of Group 14 element of periodic table such as carbon, silicon, germanium, tin, etc., Group 15 of periodic table such as phosphorus (black phosphorus), etc. Elemental element simple substance, periodic table group 16 element such as selenium, tellurium, etc., compound consisting of a plurality of periodic table group 14 elements such as silicon carbide (SiC), tin (IV) oxide (SnO 2 ), tin sulfide ( II, IV) (Sn (II) Sn (IV) S 3 ), tin sulfide (IV) (SnS 2 ), tin sulfide (II) (SnS), tin selenide (II) (SnSe), tin telluride ( II) (SnTe), lead sulfide (II) (PbS), lead selenide (II) (PbSe), lead telluride (II) (PbTe) periodic table group 14 elements and periodic table group 16 elements Compounds of boron nitride (BN), lithium Boron nitride (BP), Boron arsenide (BAs), Aluminum nitride (AlN), Aluminum phosphide (AlP), Aluminum arsenide (AlAs), Aluminum antimonide (AlSb), Gallium nitride (GaN), Gallium phosphide Periodic tables of (GaP), gallium arsenide (GaAs), gallium antimonide (GaSb), indium nitride (InN), indium phosphide (InP), indium arsenide (InAs), indium antimonide (InSb), etc. A compound of a group element and a group 15 element of the periodic table (or a group III-V compound semiconductor), aluminum sulfide (Al 2 S 3 ), aluminum selenide (Al 2 Se 3 ), gallium sulfide (Ga 2 S 3 ), gallium selenide (Ga 2 Se 3), telluride gallium (Ga 2 Te 3), acid Indium (In 2 O 3), indium sulfide (In 2 S 3), indium selenide (In 2 Se 3), periodic table Group 13 element and Periodic Table Group 16 such as a telluride, indium (In 2 Te 3) A compound with an element, thallium chloride (I) (TlCl), thallium bromide (I) (TlBr), thallium iodide (I) (TlI), etc. Compound, zinc oxide (ZnO), zinc sulfide (ZnS), zinc selenide (ZnSe), zinc telluride (ZnTe), cadmium oxide (CdO), cadmium sulfide (CdS), cadmium selenide (CdSe), cadmium telluride (CdTe), mercury sulfide (HgS), mercury selenide (HgSe), mercury telluride (HgTe), etc. Objects (or II-VI compound semiconductor), arsenic sulfide (III) (As 2 S 3), selenium arsenic (III) (As 2 Se 3), tellurium arsenic (III) (As 2 Te 3), sulfide antimony (III) (Sb 2 S 3 ), selenium antimony (III) (Sb 2 Se 3 ), antimony telluride (III) (Sb 2 Te 3 ), bismuth sulfide (III) (Bi 2 S 3 ), selenium Compounds of periodic table group 15 elements and periodic table group 16 elements such as bismuth (III) iodide (Bi 2 Se 3 ) and bismuth telluride (III) (Bi 2 Te 3 ), copper oxide (I) (Cu 2 O), copper (I) selenide (Cu 2 Se) and other compounds of Group 11 elements and Group 16 elements of the periodic table, copper chloride (I) (CuCl), copper bromide (I) ( CuBr), copper iodide (I (CuI), silver chloride (AgCl), periodic table group 11 elements such as silver bromide (AgBr) and group 17 elements, periodic table group 10 such as nickel oxide (II) (NiO) Compound of element and group 16 element of periodic table, compound of group 9 element of periodic table and group 16 element of periodic table such as cobalt (II) oxide (CoO), cobalt sulfide (II) (CoS), tetraoxide Compounds of Group 8 elements of the periodic table such as triiron (Fe 3 O 4 ) and iron sulfide (II) (FeS) and Group 16 elements of the periodic table, Periodic Table 7 of manganese (II) oxide (MnO), etc. Compounds of group elements and group 16 elements of the periodic table, compounds of group 6 elements of the periodic table and group 16 elements of the periodic table such as molybdenum sulfide (IV) (MoS 2 ), tungsten oxide (IV) (WO 2 ), etc. , Vanadium oxide (II) (VO), vanadium oxide (IV) (VO 2), compounds of the periodic table group 5 element and the periodic table group 16 element such as tantalum oxide (V) (Ta 2 O 5 ), titanium oxide (TiO 2, Ti 2 O 5 , Ti 2 O 3 , Ti 5 O 9 etc.) periodic table group 4 element and periodic table group 16 element compound, periodic table group 2 element such as magnesium sulfide (MgS), magnesium selenide (MgSe) and periodic table Compounds with group 16 elements, cadmium (II) chromium (III) (CdCr 2 O 4 ), cadmium selenide (II) chromium (III) (CdCr 2 Se 4 ), copper (II) chromium (III) sulfide (III) ( CuCr 2 S 4), chalcogen spinels such as mercury selenide (II) chromium (III) (HgCr 2 Se 4 ), although barium titanate (BaTiO 3) can be mentioned, SnS 2, S Compounds of periodic table group 14 elements such as S, SnSe, SnTe, PbS, PbSe, PbTe, and periodic table group 16 elements, III-V such as GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, etc. Group 13 semiconductors such as Ga 2 O 3 , Ga 2 S 3 , Ga 2 Se 3 , Ga 2 Te 3 , In 2 O 3 , In 2 S 3 , In 2 Se 3 , In 2 Te 3 the compounds of the elements and the periodic table group 16 element, ZnO, ZnS, ZnSe, ZnTe , CdO, CdS, CdSe, CdTe, HgO, HgS, HgSe, II-VI group compound semiconductor such as HgTe, as 2 O 3, as 2 S 3 , As 2 Se 3 , As 2 Te 3 , Sb 2 O 3 , Sb 2 S 3 , Sb 2 Se 3 , Sb 2 Te 3 , Bi 2 O 3 , Bi 2 S 3 , Bi 2 Se 3 , Bi 2 Te 3 periodic table group 15 element and periodic table group 16 element compound, MgS, MgSe periodic table group 2 element and periodic table group 16 element Compounds. Among these, Si, Ge, GaN, GaP, InN, InP, Ga 2 O 3 , Ga 2 S 3 , In 2 O 3 , In 2 S 3 , ZnO, ZnS, CdO, and CdS are more preferable. Since these substances do not contain highly toxic negative elements, they are excellent in environmental pollution resistance and safety to living organisms, and because a pure spectrum can be stably obtained in the visible light region, optical devices Is advantageous for the formation of In particular, CdSe, ZnSe, and CdS are preferable from the viewpoint of light emission stability, and ZnO and ZnS are preferable from the viewpoint of light emission efficiency, high refractive index, safety, and economy. In addition, these light emitting materials may be used individually by 1 type, and may be used in combination of 2 or more type.
 なお、上述した半導体ナノ粒子には、必要に応じて微量の各種元素を不純物としてドープすることができる。このようなドープ物質を添加することにより発光特性を大きく向上させることができる。 The semiconductor nanoparticles described above can be doped with trace amounts of various elements as impurities as necessary. By adding such a doping substance, the emission characteristics can be greatly improved.
 本発明において、バンドギャップは、半導体ナノ粒子の価電子帯と伝導体とのエネルギー差をいう。半導体ナノ粒子の発光波長(nm)は、発光波長(nm)=1240/バンドギャップ(eV)で表される。半導体ナノ粒子のバンドギャップ(eV)は、Taucプロットを用いて求めることができる。以下、バンドギャップ(eV)の光科学的測定手法の一つであるTaucプロットについて説明する。 In the present invention, the band gap refers to the energy difference between the valence band of the semiconductor nanoparticles and the conductor. The emission wavelength (nm) of the semiconductor nanoparticles is represented by emission wavelength (nm) = 1240 / band gap (eV). The band gap (eV) of the semiconductor nanoparticles can be obtained using a Tauc plot. Hereinafter, the Tauc plot, which is one of the optical scientific measurement methods of the band gap (eV), will be described.
 まず、Taucプロットを用いたバンドギャップ(E)の測定原理を以下に示す。 First, the measurement principle of the band gap (E 0 ) using the Tauc plot is shown below.
 半導体材料の長波長側の光学吸収端近傍の比較的吸収の大きい領域において、光吸収係数αと光エネルギーhν(ただし、hはプランク常数、νは振動数)、及びバンドキャップエネルギーEの間には次式(A)が成り立つと考えられている。 In the region of relatively large absorption near the optical absorption edge on the long wavelength side of the semiconductor material, between the light absorption coefficient α and the light energy hν (where h is the Planck constant and ν is the frequency) and the band cap energy E 0 It is considered that the following equation (A) holds.
 式(A)
   αhν=B(hν-E
 したがって、吸収スペクトルを測定し、そこから(αhν)の0.5乗に対してhνをプロット(いわゆる、Taucプロット)し、直線区間を外挿したα=0におけるhνの値が求めようとする半導体ナノ粒子のバンドギャップエネルギーEとなる。なお、半導体ナノ粒子の場合は、吸収と発光のスペクトルの差異(ストークスシフト)が小さく、また波形もシャープであるため、簡便には発光スペクトルの極大波長をバンドギャップの指標として用いることもできる。
Formula (A)
αhν = B (hν−E 0 ) 2
Therefore, an absorption spectrum is measured, and hν is plotted (so-called Tauc plot) with respect to (αhν) raised to the 0.5th power, and the value of hν at α = 0 obtained by extrapolating the straight section is sought. The band gap energy E 0 of the semiconductor nanoparticles is obtained. In the case of semiconductor nanoparticles, since the difference between absorption and emission spectra (Stokes shift) is small and the waveform is sharp, the maximum wavelength of the emission spectrum can be used as an index of the band gap.
 また、上記方法以外に、これら材料のエネルギー準位を見積もる方法としては、走査型トンネル分光法、紫外線光電子分光法、X線光電子分光法、オージェ電子分光法により求められるエネルギー準位から求める方法及び光学的にバンドギャップを見積もる方法が挙げられる。 In addition to the above methods, the methods for estimating the energy levels of these materials include a method for obtaining energy levels obtained by scanning tunneling spectroscopy, ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, Auger electron spectroscopy, and There is a method of optically estimating the band gap.
 本形態に係る半導体ナノ粒子は、無機物の被覆層または有機配位子で構成された被膜を有するものであることが好ましい。すなわち、本形態に係る半導体ナノ粒子は、上記「(1)半導体ナノ粒子の構成材料」で挙げた材料で構成されたコア領域と、無機物の被覆層または有機配位子で構成されたシェル領域とを有するコア・シェル構造を有するものであるのが好ましい。 The semiconductor nanoparticles according to this embodiment preferably have a coating layer composed of an inorganic coating layer or an organic ligand. That is, the semiconductor nanoparticles according to the present embodiment include a core region composed of the materials listed in the above “(1) Constituent material of semiconductor nanoparticles” and a shell region composed of an inorganic coating layer or an organic ligand. It is preferable to have a core-shell structure having
 このコア・シェル構造は、少なくとも2種類の化合物で形成されていることが好ましく、2種類以上の化合物からなるグラジエント構造(傾斜構造)を形成していてもよい。これにより、発光層を形成する際の塗布液(以下、「発光層形成用塗布液」とも称する)中において、半導体ナノ粒子の凝集を効果的に防止することができ、半導体ナノ粒子の分散性を向上させることができるとともに、輝度効率が向上し、本形態に係る量子ドット層(発光層)を備えた光学デバイスを連続駆動させた場合に色ズレの発生を抑制することができる。また、シェル領域の存在により、安定的に発光特性が得られる。また、半導体ナノ粒子が、表面にシェル領域を有していると、後述するような表面修飾剤を半導体ナノ粒子の表面付近に確実に担持させることができる。シェル領域の厚さは、特に限定されないが、0.1~10nmが好ましく、0.1~5nmがより好ましい。 The core / shell structure is preferably formed of at least two kinds of compounds, and may form a gradient structure (gradient structure) composed of two or more kinds of compounds. As a result, in the coating liquid for forming the light emitting layer (hereinafter, also referred to as “light emitting layer forming coating liquid”), aggregation of the semiconductor nanoparticles can be effectively prevented, and the dispersibility of the semiconductor nanoparticles can be prevented. In addition, the luminance efficiency is improved, and the occurrence of color misregistration can be suppressed when an optical device including the quantum dot layer (light emitting layer) according to this embodiment is continuously driven. Further, the light emission characteristics can be stably obtained due to the presence of the shell region. In addition, when the semiconductor nanoparticles have a shell region on the surface, a surface modifier as described later can be reliably supported near the surface of the semiconductor nanoparticles. The thickness of the shell region is not particularly limited, but is preferably 0.1 to 10 nm, and more preferably 0.1 to 5 nm.
 一般に、半導体ナノ粒子は、その平均粒子径により発光色を制御することができる。シェル領域の厚さが上記範囲内(原子数個分に相当する厚さ~半導体ナノ粒子1個に満たない厚さ)であると、量子ドット層(発光層)中に半導体ナノ粒子を高密度で充填することができ、十分な発光量が得られる。また、シェル領域の存在により、お互いのコア領域の表面に存在する欠陥、ダングリングボンドへの電子トラップによる非発光の電子エネルギーの転移を抑制でき、量子効率の低下を抑えることができる。 Generally, the emission color of semiconductor nanoparticles can be controlled by the average particle diameter. When the thickness of the shell region is within the above range (thickness corresponding to several atoms to a thickness less than one semiconductor nanoparticle), the semiconductor nanoparticles are densely contained in the quantum dot layer (light emitting layer). And a sufficient amount of light emission can be obtained. Further, due to the presence of the shell region, it is possible to suppress the transfer of non-emission electron energy due to the defects existing on the surfaces of the core regions and the electron traps on the dangling bonds, and the decrease in quantum efficiency can be suppressed.
 (2)表面修飾剤
 本形態の半導体ナノ粒子は、その表面近傍に、表面修飾剤を有するものであることが好ましい。これにより、発光層形成用塗布液中における半導体ナノ粒子の分散安定性を特に優れたものとすることができる。また、表面修飾剤を有することにより、半導体ナノ粒子の形状が真球度の高いものとなり、また、半導体ナノ粒子の粒子径分布を狭く抑えられるため、その発光特性を特に優れたものとすることができる。
(2) Surface modifier It is preferable that the semiconductor nanoparticle of this form has a surface modifier in the surface vicinity. Thereby, the dispersion stability of the semiconductor nanoparticles in the light emitting layer forming coating solution can be made particularly excellent. In addition, by having a surface modifier, the shape of the semiconductor nanoparticles has a high sphericity, and the particle size distribution of the semiconductor nanoparticles can be kept narrow, so that its light emission characteristics are particularly excellent. Can do.
 本発明で適用可能な機能性の表面修飾剤としては、半導体ナノ粒子の表面に直接付着したものであってもよいし、シェルを介して付着したもの(表面修飾剤が直接付着するのはシェルで、半導体ナノ粒子のコア部には接触していないもの)であってもよい。 The functional surface modifier that can be applied in the present invention may be one directly attached to the surface of the semiconductor nanoparticles, or one attached via a shell (the surface modifier is directly attached to the shell). And may not be in contact with the core of the semiconductor nanoparticles.
 表面修飾剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類;トリプロピルホスフィン、トリブチルホスフィン、トリヘキシルホスフィン、トリオクチルホスフィン等のトリアルキルホスフィン類;ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル類;トリ(n-ヘキシル)アミン、トリ(n-オクチル)アミン、トリ(n-デシル)アミン等の第3級アミン類;トリプロピルホスフィンオキシド、トリブチルホスフィンオキシド、トリヘキシルホスフィンオキシド、トリオクチルホスフィンオキシド、トリデシルホスフィンオキシド等の有機リン化合物;ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のポリエチレングリコールジエステル類;ピリジン、ルチジン、コリジン、キノリン類の含窒素芳香族化合物等の有機窒素化合物;ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン等のアミノアルカン類;ジブチルスルフィド等のジアルキルスルフィド類;ジメチルスルホキシドやジブチルスルホキシド等のジアルキルスルホキシド類;チオフェン等の含硫黄芳香族化合物等の有機硫黄化合物;パルミチン酸、ステアリン酸、オレイン酸等の高級脂肪酸;アルコール類;ソルビタン脂肪酸エステル類;脂肪酸変性ポリエステル類;3級アミン変性ポリウレタン類;ポリエチレンイミン類等が挙げられる。半導体ナノ粒子が後述するような方法で調製されるものである場合、表面修飾剤としては、高温液相において半導体ナノ粒子を構成する微粒子に配位して、安定化する物質であることが好ましく、具体的には、トリアルキルホスフィン類、有機リン化合物、アミノアルカン類、第3級アミン類、有機窒素化合物、ジアルキルスルフィド類、ジアルキルスルホキシド類、有機硫黄化合物、高級脂肪酸、アルコール類が好ましい。このような表面修飾剤を用いることにより、量子ドット層(発光層)形成用塗布液中における半導体ナノ粒子の分散性を特に優れたものとすることができる。また、より真球度高い形状とすることができ、また、粒子径分布をよりシャープなものとすることができ、半導体ナノ粒子の発光特性を特に優れたものとすることができる。 Examples of the surface modifier include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, and polyoxyethylene oleyl ether; tripropylphosphine, tributylphosphine, trihexylphosphine, trioctylphosphine, and the like. Trialkylphosphines; polyoxyethylene alkylphenyl ethers such as polyoxyethylene n-octylphenyl ether and polyoxyethylene n-nonylphenyl ether; tri (n-hexyl) amine, tri (n-octyl) amine, tri ( tertiary amines such as n-decyl) amine; tripropylphosphine oxide, tributylphosphine oxide, trihexylphosphine oxide, trioctylphosphineoxy Organic phosphorus compounds such as tridecylphosphine oxide; polyethylene glycol diesters such as polyethylene glycol dilaurate and polyethylene glycol distearate; organic nitrogen compounds such as nitrogen-containing aromatic compounds such as pyridine, lutidine, collidine and quinolines; hexylamine; Aminoalkanes such as octylamine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, octadecylamine; dialkyl sulfides such as dibutyl sulfide; dialkyl sulfoxides such as dimethyl sulfoxide and dibutyl sulfoxide; sulfur-containing aromatics such as thiophene Organic sulfur compounds such as compounds; higher fatty acids such as palmitic acid, stearic acid and oleic acid; alcohols; sorbitan fatty acid esters; fatty acid-modified poly Ester ethers; tertiary amine-modified polyurethanes, polyethylene imines, and the like. When the semiconductor nanoparticles are prepared by a method as described later, the surface modifier is preferably a substance that coordinates and stabilizes in the fine particles constituting the semiconductor nanoparticles in a high-temperature liquid phase. Specifically, trialkylphosphines, organic phosphorus compounds, aminoalkanes, tertiary amines, organic nitrogen compounds, dialkyl sulfides, dialkyl sulfoxides, organic sulfur compounds, higher fatty acids, and alcohols are preferable. By using such a surface modifier, the dispersibility of the semiconductor nanoparticles in the coating liquid for forming the quantum dot layer (light emitting layer) can be made particularly excellent. Further, the shape can be made higher in sphericity, the particle size distribution can be made sharper, and the light emission characteristics of the semiconductor nanoparticles can be made particularly excellent.
 (3)半導体ナノ粒子の製造方法
 半導体ナノ粒子の製造方法としては、従来行われている公知の方法(高真空下における製造方法、液相における製造方法など)を適宜用いることができる。また、Aldrich社、CrystalPlex社、NNLab社等から市販品として購入することもできる。
(3) Manufacturing method of semiconductor nanoparticle As a manufacturing method of a semiconductor nanoparticle, the conventionally well-known method (The manufacturing method under a high vacuum, the manufacturing method in a liquid phase, etc.) can be used suitably. Moreover, it can also be purchased as a commercial item from Aldrich, CrystalPlex, NNLab, etc.
 例えば、高真空下における製造方法としては、分子ビームエピタキシー法、CVD法等;液相における製造方法としては、原料水溶液を、例えば、n-ヘプタン、n-オクタン、イソオクタン等のアルカン類、またはベンゼン、トルエン、キシレン等の芳香族炭化水素等の非極性有機溶媒中で逆ミセルとして存在させ、この逆ミセル相中にて結晶成長させる逆ミセル法、熱分解性原料を高温の液相有機媒体に注入して結晶成長させるホットソープ法、さらに、ホットソープ法と同様に、酸塩基反応を駆動力として比較的低い温度で結晶成長を伴う溶液反応法等が挙げられる。これらの製造方法から任意の方法を使用することができるが、中でも、液相における製造方法が好ましい。液相中で行う交換反応により、上述の機能性の表面修飾剤と交換することが可能である。 For example, as a production method under high vacuum, a molecular beam epitaxy method, a CVD method or the like; as a production method in a liquid phase, an aqueous raw material is used, for example, an alkane such as n-heptane, n-octane, isooctane, or benzene. , A reverse micelle method in which crystals are grown in a reverse micelle phase in a non-polar organic solvent such as an aromatic hydrocarbon such as toluene and xylene, and a thermally decomposable raw material as a high-temperature liquid-phase organic medium. Examples thereof include a hot soap method in which crystal growth is performed by injection, and a solution reaction method in which crystal growth is performed at a relatively low temperature using an acid-base reaction as a driving force, as in the hot soap method. Any method can be used from these production methods, and among these, a production method in a liquid phase is preferable. It is possible to exchange with the functional surface modifier described above by an exchange reaction performed in the liquid phase.
 (紫外線硬化樹脂)
 本形態に係る量子ドット層(発光層)において、紫外線硬化樹脂は、半導体ナノ粒子を分散させるためのマトリックスとして機能する。本形態で用いられる紫外線硬化樹脂の原料としては、紫外線硬化型樹脂が用いられる。
(UV curable resin)
In the quantum dot layer (light emitting layer) according to this embodiment, the ultraviolet curable resin functions as a matrix for dispersing the semiconductor nanoparticles. An ultraviolet curable resin is used as a raw material for the ultraviolet curable resin used in this embodiment.
 紫外線硬化型樹脂としては、例えば、ウレタン(メタ)アクリレート系樹脂、ポリエステル(メタ)アクリレート系樹脂、エポキシ(メタ)アクリレート系樹脂、ポリオール(メタ)アクリレート系樹脂、またはエポキシ樹脂等が好ましく用いられ、これらの具体例としては、接着層の構成材料として上述した「アクリロイル基含有シランカップリング剤以外のアクリロイル基含有化合物」(すなわち、ポリオールポリアクリレート、エポキシアクリレート、ウレタンアクリレート、アクリルモノマー)や、これらのアクリロイル基をメタクリロイル基で置換した材料が挙げられる。なかでも、ガス透過抑制(シート端面からのガス透過)と無機バリア層表面との接着性の観点から、組成中にエポキシ(メタ)アクリレート系樹脂(例えば、ユニディック(登録商標)V-5500(DIC株式会社製))、ウレタン(メタ)アクリレート系樹脂を用いることが好ましい。 As the ultraviolet curable resin, for example, urethane (meth) acrylate resin, polyester (meth) acrylate resin, epoxy (meth) acrylate resin, polyol (meth) acrylate resin, or epoxy resin is preferably used. Specific examples of these include “acryloyl group-containing compounds other than acryloyl group-containing silane coupling agents” (that is, polyol polyacrylates, epoxy acrylates, urethane acrylates, acrylic monomers) described above as constituent materials of the adhesive layer, The material which substituted the acryloyl group by the methacryloyl group is mentioned. Among these, from the viewpoint of gas permeation suppression (gas permeation from the sheet end face) and the adhesion between the inorganic barrier layer surface, an epoxy (meth) acrylate resin (for example, Unidic (registered trademark) V-5500 ( DIC Corporation)) and urethane (meth) acrylate resins are preferably used.
 また、紫外線硬化型樹脂の光重合開始剤としても、接着層の構成材料として上述した材料が同様に用いられうる。 Also, as the photopolymerization initiator of the ultraviolet curable resin, the above-described materials can be similarly used as the constituent material of the adhesive layer.
 本形態に係る量子ドット層(発光層)の厚さは、特に制限されないが、10~500μmが好ましく、30~300μmがより好ましい。量子ドット層(発光層)の厚さが10μm以上であると、B、G、Rの発光バランスを調整しやすく、良好な色域再現性を得ることができる。一方、量子ドット層(発光層)の厚さが500μm以下であると、量子ドット層(発光層)の硬化を効率的に行うことができ、良好な生産性を得ることができる。 The thickness of the quantum dot layer (light emitting layer) according to this embodiment is not particularly limited, but is preferably 10 to 500 μm, and more preferably 30 to 300 μm. When the thickness of the quantum dot layer (light emitting layer) is 10 μm or more, it is easy to adjust the light emission balance of B, G, and R, and good color gamut reproducibility can be obtained. On the other hand, when the thickness of the quantum dot layer (light emitting layer) is 500 μm or less, the quantum dot layer (light emitting layer) can be efficiently cured, and good productivity can be obtained.
 (量子ドット層(発光層)の形成方法)
 2枚の本発明に係るガスバリア性フィルムで量子ドット層(発光層)が挟持されてなる積層体(発光体)を例に挙げて、量子ドット層(発光層)の形成方法を説明すると、本発明に係るガスバリア性フィルムの無機バリア層(アクリロイル基が露出している)の表面に、半導体ナノ粒子および紫外線硬化型樹脂(樹脂成分および光重合開始剤)を含有する量子ドット層(発光層)形成用塗布液を塗布後、乾燥し、さらにこの塗膜に無機バリア層が隣接するように、別の本発明に係るガスバリア性フィルムを積層して、得られた積層体に対して最後に紫外線照射処理を施すことにより、量子ドット層(発光層)を形成すると同時に、2枚の本発明に係るガスバリア性フィルムで量子ドット層(発光層)が挟持されてなる積層体(発光体)を得ることができる。
(Method of forming quantum dot layer (light emitting layer))
A method for forming a quantum dot layer (light emitting layer) will be described by taking a laminated body (light emitting body) in which a quantum dot layer (light emitting layer) is sandwiched between two gas barrier films according to the present invention as an example. Quantum dot layer (light emitting layer) containing semiconductor nanoparticles and ultraviolet curable resin (resin component and photopolymerization initiator) on the surface of the inorganic barrier layer (exposed acryloyl group) of the gas barrier film according to the invention After applying the coating liquid for formation, the film is dried, and another gas barrier film according to the present invention is laminated so that the inorganic barrier layer is adjacent to the coating film. By performing irradiation treatment, a quantum dot layer (light emitting layer) is formed, and at the same time, a laminate (light emitting body) is obtained in which the quantum dot layer (light emitting layer) is sandwiched between two gas barrier films according to the present invention. Door can be.
 上記のようにして得られた、量子ドット層(発光層)を含む積層体(発光体)は、各種光学デバイスに適用可能である。すなわち、本発明の一形態によると、上記積層体(発光体)を備える光学デバイスが提供される。本発明に係る積層体(発光体)は、例えば、液晶ディスプレイ(LCD)において、光源と偏光板との間に配置される高輝度フィルムとして用いることが可能である。 The laminated body (light emitting body) including the quantum dot layer (light emitting layer) obtained as described above can be applied to various optical devices. That is, according to one form of this invention, an optical device provided with the said laminated body (light-emitting body) is provided. The laminated body (light emitting body) according to the present invention can be used as, for example, a high-brightness film disposed between a light source and a polarizing plate in a liquid crystal display (LCD).
 以上、無機バリア層の露出表面(アクリロイル基が露出している)に隣接する紫外線硬化樹脂層が、半導体ナノ粒子を含む量子ドット層(発光層)である場合を例に挙げて、本発明に係るガスバリア性フィルムの用途について説明した。一方、無機バリア層の露出表面(アクリロイル基が露出している)に隣接する紫外線硬化樹脂層が、半導体ナノ粒子を含まず、無機バリア層に対する単なる保護層として機能する層である場合には、上述した量子ドット層(発光層)の形成に用いる塗布液に含まれる成分から半導体ナノ粒子を除いた塗布液を用いて、上記と同様にして紫外線硬化樹脂層(保護層)を形成することができる。この場合、2枚のガスバリア性フィルムを用いる必要がないことは言うまでもない。 In the present invention, the case where the ultraviolet curable resin layer adjacent to the exposed surface of the inorganic barrier layer (the acryloyl group is exposed) is a quantum dot layer (light emitting layer) containing semiconductor nanoparticles is taken as an example. The use of the gas barrier film has been described. On the other hand, when the ultraviolet curable resin layer adjacent to the exposed surface of the inorganic barrier layer (the acryloyl group is exposed) does not contain semiconductor nanoparticles and is a layer that functions as a simple protective layer for the inorganic barrier layer, An ultraviolet curable resin layer (protective layer) can be formed in the same manner as described above using a coating liquid obtained by removing semiconductor nanoparticles from the components contained in the coating liquid used for forming the quantum dot layer (light emitting layer) described above. it can. In this case, needless to say, it is not necessary to use two gas barrier films.
 本発明に係るガスバリア性フィルムを、上述したような紫外線硬化樹脂層と無機バリア層とが隣接する用途に用いることで、フィルムを高温高湿条件下に置いたときの無機バリア層とこれに隣接する紫外線硬化樹脂層との間の密着性の低下が抑制される。また、特に紫外線硬化樹脂層が量子ドット層(発光層)である場合(積層体が発光体として用いられる場合)には、発光体の輝度の低下も抑制することができるという、優れた作用効果を発現することができる。 The gas barrier film according to the present invention is used in applications where the ultraviolet curable resin layer and the inorganic barrier layer are adjacent to each other as described above, so that the inorganic barrier layer is adjacent to the inorganic barrier layer when the film is placed under a high temperature and high humidity condition. Decrease in adhesion between the UV curable resin layer is suppressed. In particular, when the ultraviolet curable resin layer is a quantum dot layer (light-emitting layer) (when the laminate is used as a light-emitting body), it is possible to suppress a decrease in luminance of the light-emitting body. Can be expressed.
 本発明を、以下の実施例および比較例を用いて具体的に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、特記しない限り、「%」および「部」は、それぞれ、「質量%」および「質量部」を意味する。また、下記実施例において、特記しない限り、操作は室温(25℃)/相対湿度40~50%の条件下で行われた。 The present invention will be specifically described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. Unless otherwise specified, “%” and “part” mean “% by mass” and “part by mass”, respectively. Further, in the following examples, unless otherwise specified, the operation was performed under conditions of room temperature (25 ° C.) / Relative humidity 40 to 50%.
 《ガスバリア性フィルムの作製》
 〔ガスバリア性フィルム1の作製〕
 (基材の準備)
 厚さ50μmの両面易接着層付きポリエチレンテレフタレート(PET)フィルム(帝人デュポンフィルム(株)製、KEL86W)を、基材として用いた。
<< Production of gas barrier film >>
[Preparation of gas barrier film 1]
(Preparation of base material)
A polyethylene terephthalate (PET) film with a double-sided easy-adhesion layer having a thickness of 50 μm (manufactured by Teijin DuPont Films Ltd., KEL86W) was used as a substrate.
 (下地層の形成)
 JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)Z7501を酢酸ブチルで固形分濃度35%まで希釈した塗布液を、乾燥膜厚が2μmとなるように上記基材の易接着面側にバーコーターで塗布した後、乾燥条件として80℃で2分間の乾燥を行った。次いで、空気雰囲気下で、700mW/cm、250mJ/cmの条件で高圧水銀ランプにより紫外線照射処理を施して、下地層を形成した。
(Formation of underlayer)
JSR Co., Ltd. UV curable organic / inorganic hybrid hard coating material OPSTAR (registered trademark) Z7501 diluted with butyl acetate to a solid content concentration of 35% is coated with the above-mentioned base material so that the dry film thickness becomes 2 μm. After coating on the easy-adhesive surface side with a bar coater, drying was performed at 80 ° C. for 2 minutes as a drying condition. Next, under an air atmosphere, ultraviolet irradiation treatment was performed with a high-pressure mercury lamp under conditions of 700 mW / cm 2 and 250 mJ / cm 2 to form an underlayer.
 (無機バリア層の形成:スパッタ法)
 上記で得られた基材と下地層との積層フィルムを、巻き取り式マグネトロンスパッタリング装置内に設置して3×10-6Torrまで排気した。その後、上記積層フィルムの巻き返しを行い、十分脱ガス処理を行って、積層フィルムを搬送させても水分圧の変動がないことを確認した。ここで、スパッタのターゲットにはBドープしたSiターゲットを用いた。その後、O/Ar混合ガス(O/Ar=30/100(体積%))を槽内に100sccm導入した。圧力を8.0×10-4Torrに保った後、メインロールの温度を室温、投入電力密度を1W/cmに設定して、フィルム速度をVf=1.0m/minとしてスパッタリングを行い、膜厚150nmの無機バリア層(組成SiO)を形成した。
(Formation of inorganic barrier layer: sputtering method)
The laminated film of the base material and the underlayer obtained above was placed in a take-up magnetron sputtering apparatus and evacuated to 3 × 10 −6 Torr. Thereafter, the laminated film was rolled back, sufficiently degassed, and it was confirmed that there was no fluctuation in moisture pressure even when the laminated film was conveyed. Here, a B-doped Si target was used as a sputtering target. Thereafter, an O 2 / Ar mixed gas (O 2 / Ar = 30/100 (volume%)) was introduced into the tank at 100 sccm. After maintaining the pressure at 8.0 × 10 −4 Torr, sputtering was performed by setting the temperature of the main roll to room temperature, the input power density to 1 W / cm 2 , and the film speed to Vf = 1.0 m / min. An inorganic barrier layer (composition SiO 2 ) having a thickness of 150 nm was formed.
 (接着層の形成:アクリル樹脂)
 多官能アクリレート化合物であるジペンタエリスリトールヘキサアクリレートを酢酸ブチルで固形分濃度5%まで希釈した溶液に、この樹脂固形分100%に対して3%の重合開始剤(BASFジャパン社製、イルガキュア(登録商標)184)を添加して、接着層形成用塗布液を調製した。次いで、この接着層形成用塗布液を、乾燥膜厚が50nmとなるように上記無機バリア層の露出表面にバーコーターで塗布した後、乾燥条件として80℃で1分間の乾燥を行った。次いで、空気雰囲気下で、500mW/cm、200mJ/cmの条件で高圧水銀ランプにより紫外線照射処理を施して、接着層を形成して、ガスバリア性フィルム1を作製した。なお、ガスバリア性フィルム1の無機バリア層側の表層を掻き取って熱分解ガスクロマトグラフィーにより測定を行い、標品と照合することで、接着層の露出表面にはアクリロイル基が露出していることを確認した。
(Adhesion layer formation: acrylic resin)
In a solution obtained by diluting dipentaerythritol hexaacrylate, which is a polyfunctional acrylate compound, with butyl acetate to a solid content concentration of 5%, 3% polymerization initiator (BASF Japan, Irgacure (registered) (Trademark) 184) was added to prepare a coating solution for forming an adhesive layer. Next, this adhesive layer forming coating solution was applied to the exposed surface of the inorganic barrier layer with a bar coater so that the dry film thickness was 50 nm, and then dried at 80 ° C. for 1 minute as drying conditions. Next, an ultraviolet irradiation treatment was performed with a high-pressure mercury lamp under conditions of 500 mW / cm 2 and 200 mJ / cm 2 in an air atmosphere to form an adhesive layer, and thus a gas barrier film 1 was produced. In addition, the surface layer on the inorganic barrier layer side of the gas barrier film 1 is scraped off, measured by pyrolysis gas chromatography, and checked with the standard, so that the acryloyl group is exposed on the exposed surface of the adhesive layer. It was confirmed.
 〔ガスバリア性フィルム2の作製〕
 接着層の形成を以下の手法により行ったこと以外は、上述したガスバリア性フィルム1の作製と同様の手法により、ガスバリア性フィルム2を作製した。なお、ガスバリア性フィルム2の接着層の露出表面には、アクリロイル基が露出していることを、上記と同様にして確認した。
[Preparation of gas barrier film 2]
A gas barrier film 2 was prepared by the same method as the preparation of the gas barrier film 1 described above, except that the adhesive layer was formed by the following method. In addition, it was confirmed in the same manner as described above that the acryloyl group was exposed on the exposed surface of the adhesive layer of the gas barrier film 2.
 (接着層の形成:アクリル樹脂+SiO粒子)
 多官能アクリレート化合物であるジペンタエリスリトールヘキサアクリレートを酢酸ブチルで固形分濃度5%まで希釈した溶液に、重合開始剤(BASFジャパン社製、イルガキュア(登録商標)184)を上記樹脂固形分100%に対して3%およびシリカ(SiO)粒子としてELCOM V-8804(日揮触媒化成社製)を上記樹脂固形分100%に対して30%添加して、接着層形成用塗布液を調製した。次いで、この接着層形成用塗布液を、乾燥膜厚が50nmとなるように上記無機バリア層の露出表面にバーコーターで塗布した後、乾燥条件として80℃で1分間の乾燥を行った。次いで、空気雰囲気下で、500mW/cm、200mJ/cmの条件で高圧水銀ランプにより紫外線照射処理を施して、接着層を形成した。
(Formation of adhesive layer: acrylic resin + SiO 2 particles)
In a solution obtained by diluting dipentaerythritol hexaacrylate, which is a polyfunctional acrylate compound, with butyl acetate to a solid content concentration of 5%, a polymerization initiator (BASF Japan, Irgacure (registered trademark) 184) is added to the resin solid content of 100%. On the other hand, 3% and ELCOM V-8804 (manufactured by JGC Catalysts & Chemicals Co., Ltd.) as silica (SiO 2 ) particles were added by 30% with respect to 100% of the resin solid content to prepare a coating solution for forming an adhesive layer. Next, this adhesive layer forming coating solution was applied to the exposed surface of the inorganic barrier layer with a bar coater so that the dry film thickness was 50 nm, and then dried at 80 ° C. for 1 minute as drying conditions. Next, an ultraviolet irradiation treatment was performed with a high-pressure mercury lamp under conditions of 500 mW / cm 2 and 200 mJ / cm 2 in an air atmosphere to form an adhesive layer.
 〔ガスバリア性フィルム3の作製〕
 接着層の形成を以下の手法により行ったこと以外は、上述したガスバリア性フィルム1の作製と同様の手法により、ガスバリア性フィルム3を作製した。なお、ガスバリア性フィルム3の接着層の露出表面には、アクリロイル基が露出していることを、上記と同様にして確認した。
[Preparation of gas barrier film 3]
A gas barrier film 3 was produced by the same method as the production of the gas barrier film 1 described above except that the adhesive layer was formed by the following method. In addition, it was confirmed in the same manner as described above that the acryloyl group was exposed on the exposed surface of the adhesive layer of the gas barrier film 3.
 (接着層の形成:アクリロイル基含有シランカップリング剤/アクリル樹脂(積層))
 アクリロイル基含有シランカップリング剤であるKBM-5103(信越化学工業社製)をプロピレングリコールモノメチルエーテル(PGME)で固形分濃度5%まで希釈した塗布液を、バーコーターで塗布した後、80℃で1分間乾燥することにより、アクリロイル基含有シランカップリング剤からなる接着層(下層)を形成した。なお、この接着層(下層)の膜厚は透過型電子顕微鏡(TEM)では測定できなかったが、理論上は20nm以下である。
(Adhesion layer formation: acryloyl group-containing silane coupling agent / acrylic resin (lamination))
A coating solution obtained by diluting acryloyl group-containing silane coupling agent KBM-5103 (manufactured by Shin-Etsu Chemical Co., Ltd.) with propylene glycol monomethyl ether (PGME) to a solid content concentration of 5% was applied with a bar coater, and then at 80 ° C. By drying for 1 minute, an adhesive layer (lower layer) made of an acryloyl group-containing silane coupling agent was formed. In addition, although the film thickness of this contact bonding layer (lower layer) was not able to be measured with the transmission electron microscope (TEM), it is theoretically 20 nm or less.
 次いで、多官能アクリレート化合物であるジペンタエリスリトールヘキサアクリレートを酢酸ブチルで固形分濃度5%まで希釈した溶液に、この樹脂固形分100%に対して3%の重合開始剤(BASFジャパン社製、イルガキュア(登録商標)184)を添加して、塗布液を調製した。 Next, in a solution obtained by diluting dipentaerythritol hexaacrylate, which is a polyfunctional acrylate compound, with butyl acetate to a solid content concentration of 5%, a polymerization initiator (BASF Japan, Irgacure 3% with respect to 100% of the resin solid content) (Registered trademark) 184) was added to prepare a coating solution.
 その後、この塗布液を、乾燥膜厚が50nmとなるように上記無機バリア層の露出表面にバーコーターで塗布した後、乾燥条件として80℃で1分間の乾燥を行った。次いで、空気雰囲気下で、500mW/cm、200mJ/cmの条件で高圧水銀ランプにより紫外線照射処理を施して、接着層(上層)を形成して、ガスバリア性フィルム3を作製した。なお、ガスバリア性フィルム3の接着層の露出表面には、アクリロイル基が露出していることを、上記と同様にして確認した。 Then, after apply | coating this coating liquid to the exposed surface of the said inorganic barrier layer with a bar coater so that a dry film thickness may be set to 50 nm, drying was performed for 1 minute at 80 degreeC as drying conditions. Then, in an air atmosphere, and subjected to ultraviolet irradiation treatment with high-pressure mercury lamp under the condition of 500mW / cm 2, 200mJ / cm 2, to form an adhesive layer (upper layer) to prepare a gas barrier film 3. In addition, it was confirmed in the same manner as described above that the acryloyl group was exposed on the exposed surface of the adhesive layer of the gas barrier film 3.
 〔ガスバリア性フィルム4の作製〕
 接着層の形成において、接着層(下層)の形成後に接着層(上層)の形成を行わなかったこと以外は、上述したガスバリア性フィルム3の作製と同様の手法により、ガスバリア性フィルム4を作製した。なお、ガスバリア性フィルム4の接着層の露出表面には、アクリロイル基が露出していることを、上記と同様にして確認した。
[Preparation of gas barrier film 4]
In the formation of the adhesive layer, the gas barrier film 4 was produced by the same method as the production of the gas barrier film 3 described above, except that the adhesive layer (upper layer) was not formed after the adhesive layer (lower layer) was formed. . In addition, it was confirmed in the same manner as described above that the acryloyl group was exposed on the exposed surface of the adhesive layer of the gas barrier film 4.
 〔ガスバリア性フィルム5の作製〕
 接着層の形成を行う前に、無機バリア層の露出表面に対して、以下の手法により表面改質処理(酸素プラズマ処理)を施したこと以外は、上述したガスバリア性フィルム2の作製と同様の手法により、ガスバリア性フィルム5を作製した。なお、ガスバリア性フィルム5の接着層の露出表面には、アクリロイル基が露出していることを、上記と同様にして確認した。
[Preparation of gas barrier film 5]
Prior to forming the adhesive layer, the exposed surface of the inorganic barrier layer was subjected to the surface modification treatment (oxygen plasma treatment) by the following method, and was the same as the production of the gas barrier film 2 described above. The gas barrier film 5 was produced by the method. In addition, it was confirmed in the same manner as described above that the acryloyl group was exposed on the exposed surface of the adhesive layer of the gas barrier film 5.
 (表面改質処理:酸素プラズマ処理)
 大気圧プラズマ装置(株式会社ウェル製)を用い、放電ガスとして窒素ガスを導入し、酸素濃度を1体積%に制御し、周波数5kHz、および印加電力5kVの条件で、無機バリア層の露出表面の表面改質処理(酸素プラズマ処理)を行った。
(Surface modification treatment: oxygen plasma treatment)
Using an atmospheric pressure plasma apparatus (manufactured by Well Co., Ltd.), nitrogen gas is introduced as a discharge gas, the oxygen concentration is controlled to 1% by volume, the frequency of 5 kHz, and the applied power of 5 kV, on the exposed surface of the inorganic barrier layer. Surface modification treatment (oxygen plasma treatment) was performed.
 〔ガスバリア性フィルム6の作製〕
 接着層の形成を行う前に、無機バリア層の露出表面に対して、上記ガスバリア性フィルム5の作製と同様の表面改質処理(酸素プラズマ処理)を施したこと以外は、上述したガスバリア性フィルム4の作製と同様の手法により、ガスバリア性フィルム6を作製した。なお、ガスバリア性フィルム6の接着層の露出表面には、アクリロイル基が露出していることを、上記と同様にして確認した。
[Preparation of gas barrier film 6]
The gas barrier film described above except that the surface modification treatment (oxygen plasma treatment) similar to the production of the gas barrier film 5 was performed on the exposed surface of the inorganic barrier layer before forming the adhesive layer. A gas barrier film 6 was produced by the same method as in the production of 4. It was confirmed in the same manner as above that the acryloyl group was exposed on the exposed surface of the adhesive layer of the gas barrier film 6.
 〔ガスバリア性フィルム7の作製〕
 無機バリア層の形成を以下の手法により行ったこと以外は、上述したガスバリア性フィルム6の作製と同様の手法により、ガスバリア性フィルム7を作製した。なお、ガスバリア性フィルム7の接着層の露出表面には、アクリロイル基が露出していることを、上記と同様にして確認した。
[Preparation of gas barrier film 7]
A gas barrier film 7 was produced by the same method as the production of the gas barrier film 6 described above except that the inorganic barrier layer was formed by the following technique. It was confirmed in the same manner as above that the acryloyl group was exposed on the exposed surface of the adhesive layer of the gas barrier film 7.
 (無機バリア層の形成:PHPS塗布法)
 パーヒドロポリシラザン(PHPS)を20%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NN120-20)と、アミン触媒(N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン(TMDAH))とを含むパーヒドロポリシラザンの20%ジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NAX120-20)とを、4:1(質量比)の割合で混合し、さらに乾燥膜厚調整のためジブチルエーテルで固形分濃度5%まで希釈して、塗布液を調製した。
(Formation of inorganic barrier layer: PHPS coating method)
A dibutyl ether solution containing 20% perhydropolysilazane (PHPS, manufactured by AZ Electronic Materials Co., Ltd., NN120-20) and an amine catalyst (N, N, N ′, N′-tetramethyl-1,6-diaminohexane) (TMDAH)) and a 20% dibutyl ether solution (manufactured by AZ Electronic Materials Co., Ltd., NAX120-20) in a ratio of 4: 1 (mass ratio), and further adjusting the dry film thickness Therefore, a coating solution was prepared by diluting with dibutyl ether to a solid content concentration of 5%.
 その後、基材と下地層との積層フィルムの下地層側の露出表面に、上記で調製した塗布液をバーコーターで塗布した後、乾燥条件として80℃で2分間の乾燥を行った。次いで、乾燥した塗膜に対して、波長172nmのXeエキシマランプを用い、酸素濃度0.1体積%、および照射エネルギー3.0J/cmの条件で真空紫外線照射処理を施して、膜厚150nmの無機バリア層(組成SiON)を形成した。 Then, after apply | coating the coating liquid prepared above with the bar coater to the exposed surface by the side of the base layer of the laminated | multilayer film of a base material and a base layer, it dried for 2 minutes at 80 degreeC as drying conditions. Next, the dried coating film was subjected to a vacuum ultraviolet ray irradiation treatment using an Xe excimer lamp having a wavelength of 172 nm under the conditions of an oxygen concentration of 0.1% by volume and an irradiation energy of 3.0 J / cm 2 to obtain a film thickness of 150 nm. An inorganic barrier layer (composition SiON) was formed.
 〔ガスバリア性フィルム8の作製〕
 無機バリア層の形成を以下の手法により行ったこと以外は、上述したガスバリア性フィルム6の作製と同様の手法により、ガスバリア性フィルム8を作製した。なお、ガスバリア性フィルム8の接着層の露出表面には、アクリロイル基が露出していることを、上記と同様にして確認した。
[Preparation of gas barrier film 8]
A gas barrier film 8 was produced by the same method as the production of the gas barrier film 6 described above except that the inorganic barrier layer was formed by the following method. In addition, it was confirmed in the same manner as described above that the acryloyl group was exposed on the exposed surface of the adhesive layer of the gas barrier film 8.
 (無機バリア層の形成:真空プラズマCVD法)
 特許第4268195号公報に記載の、対向する成膜ロールからなる成膜部を有する装置を2台つなげたタイプ(第1成膜部、第2成膜部を有する)のロール・トゥ・ロール型真空CVD成膜装置を用いて、無機バリア層を形成した。成膜条件は、搬送速度7m/min、原料ガス(HMDSO)の供給量150cc/min、酸素ガスの供給量150cc/min、真空度1.5Pa、印加電力4.5kwとして、膜厚150nmの無機バリア層(組成SiOC)を形成した。
(Formation of inorganic barrier layer: vacuum plasma CVD method)
A roll-to-roll type in which two apparatuses each having a film forming unit composed of opposing film forming rolls described in Japanese Patent No. 4268195 are connected (having a first film forming unit and a second film forming unit) An inorganic barrier layer was formed using a vacuum CVD film forming apparatus. The film forming conditions are as follows: the transport speed is 7 m / min, the supply amount of source gas (HMDSO) is 150 cc / min, the supply amount of oxygen gas is 150 cc / min, the degree of vacuum is 1.5 Pa, the applied power is 4.5 kW, and the inorganic film has a thickness of 150 nm. A barrier layer (composition SiOC) was formed.
 〔ガスバリア性フィルム9の作製〕
 接着層の形成を行う前に、無機バリア層の露出表面に対して、以下の手法により表面改質処理(コロナ処理)を施したこと以外は、上述したガスバリア性フィルム6の作製と同様の手法により、ガスバリア性フィルム9を作製した。なお、ガスバリア性フィルム9の接着層の露出表面には、アクリロイル基が露出していることを、上記と同様にして確認した。
[Preparation of gas barrier film 9]
The same method as the production of the gas barrier film 6 described above, except that the exposed surface of the inorganic barrier layer was subjected to a surface modification treatment (corona treatment) by the following method before forming the adhesive layer. Thus, a gas barrier film 9 was produced. In addition, it was confirmed in the same manner as described above that the acryloyl group was exposed on the exposed surface of the adhesive layer of the gas barrier film 9.
 (表面改質処理:コロナ処理)
 コロナ処理装置(春日電機社製)を用い、出力300W、電極長240mm、ワーク電極間距離3.0mm、搬送速度4m/minの条件で、無機バリア層の露出表面の表面改質処理(コロナ処理)を行った。
(Surface modification treatment: Corona treatment)
Using a corona treatment device (manufactured by Kasuga Denki Co., Ltd.), surface modification treatment of the exposed surface of the inorganic barrier layer (corona treatment) under the conditions of an output of 300 W, an electrode length of 240 mm, a work electrode distance of 3.0 mm, and a conveying speed of 4 m / min. )
 〔ガスバリア性フィルム10の作製〕
 接着層の形成を行う前に、無機バリア層の露出表面に対して、以下の手法により表面改質処理(エキシマ処理)を施したこと以外は、上述したガスバリア性フィルム6の作製と同様の手法により、ガスバリア性フィルム10を作製した。なお、ガスバリア性フィルム10の接着層の露出表面には、アクリロイル基が露出していることを、上記と同様にして確認した。
[Production of Gas Barrier Film 10]
The same method as the production of the gas barrier film 6 described above, except that the exposed surface of the inorganic barrier layer was subjected to a surface modification treatment (excimer treatment) by the following method before forming the adhesive layer. Thus, a gas barrier film 10 was produced. In addition, it confirmed that the acryloyl group was exposed on the exposed surface of the contact bonding layer of the gas barrier film 10 like the above.
 (表面改質処理:エキシマ処理)
 波長172nmのXeエキシマランプを用い、酸素濃度0.1体積%、および照射エネルギー1.0J/cmの条件で、無機バリア層の露出表面の表面改質処理(エキシマ処理)を行った。
(Surface modification treatment: excimer treatment)
Using an Xe excimer lamp with a wavelength of 172 nm, the surface modification treatment (excimer treatment) of the exposed surface of the inorganic barrier layer was performed under conditions of an oxygen concentration of 0.1 vol% and an irradiation energy of 1.0 J / cm 2 .
 〔ガスバリア性フィルム11の作製〕
 接着層の形成において、多官能アクリレート化合物であるジペンタエリスリトールヘキサアクリレートに代えて、多官能メタクリレート化合物であるトリメチロールプロパントリメタクリレート(TMPT)(新中村化学工業社製)を用いたこと以外は、上述したガスバリア性フィルム2の作製と同様の手法により、ガスバリア性フィルム11を作製した。
[Preparation of gas barrier film 11]
In the formation of the adhesive layer, in place of dipentaerythritol hexaacrylate, which is a polyfunctional acrylate compound, trimethylolpropane trimethacrylate (TMPT) (manufactured by Shin-Nakamura Chemical Co., Ltd.), which is a polyfunctional methacrylate compound, was used. A gas barrier film 11 was produced by the same method as the production of the gas barrier film 2 described above.
 〔ガスバリア性フィルム12の作製〕
 接着層の形成において、アクリロイル基含有シランカップリング剤であるKBM-5103に代えて、メタクリロイル基含有シランカップリング剤であるKBM-503(信越化学工業社製)を用いたこと以外は、上述したガスバリア性フィルム4の作製と同様の手法により、ガスバリア性フィルム12を作製した。
〔ガスバリア性フィルム13の作製〕
 接着層の形成において、アクリロイル基含有シランカップリング剤であるKBM-5103に代えて、ビニル基含有シランカップリング剤であるKBM-1003(信越化学工業社製)を用いたこと以外は、上述したガスバリア性フィルム4の作製と同様の手法により、ガスバリア性フィルム13を作製した。
[Preparation of gas barrier film 12]
As described above, KBM-503 (manufactured by Shin-Etsu Chemical Co., Ltd.), which is a methacryloyl group-containing silane coupling agent, was used instead of KBM-5103, which is an acryloyl group-containing silane coupling agent, in the formation of the adhesive layer. A gas barrier film 12 was produced in the same manner as the production of the gas barrier film 4.
[Preparation of gas barrier film 13]
The adhesive layer was formed as described above, except that KBM-1003 (manufactured by Shin-Etsu Chemical Co., Ltd.), a vinyl group-containing silane coupling agent, was used instead of KBM-5103, which is an acryloyl group-containing silane coupling agent. A gas barrier film 13 was produced in the same manner as the production of the gas barrier film 4.
 〔ガスバリア性フィルム14の作製〕
 接着層の形成において、アクリロイル基含有シランカップリング剤であるKBM-5103代えて、アミノ基含有シランカップリング剤であるKBM-602(信越化学工業社製)を用いたこと以外は、上述したガスバリア性フィルム4の作製と同様の手法により、ガスバリア性フィルム14を作製した。
[Preparation of gas barrier film 14]
In the formation of the adhesive layer, the gas barrier described above was used except that KBM-602 (manufactured by Shin-Etsu Chemical Co., Ltd.), which is an amino group-containing silane coupling agent, was used instead of KBM-5103, which is an acryloyl group-containing silane coupling agent. The gas barrier film 14 was produced by the same method as the production of the conductive film 4.
 《ガスバリア性フィルムの評価》
 上記で作製したガスバリア性フィルム1~14について、下記方法に従って、接着層に隣接するように紫外線硬化樹脂層を設けた場合の密着性、およびバリア性を評価した。
<< Evaluation of gas barrier film >>
The gas barrier films 1 to 14 produced above were evaluated for adhesion and barrier properties when an ultraviolet curable resin layer was provided adjacent to the adhesive layer according to the following method.
 (密着性の評価サンプルAの作製:紫外線硬化樹脂層が保護層である場合)
 多官能アクリレート化合物であるペンタエリスリトールジアクリレートに、上記樹脂量100%に対して3%の重合開始剤(BASFジャパン社製、イルガキュア(登録商標)184)を添加して、樹脂Aを調製した。この樹脂Aを、ガスバリア性フィルムの接着層上に塗布し、次いで、同じガスバリア性フィルムの接着層側が樹脂Aからなる層に接するように配置し(2枚のガスバリア性フィルムで樹脂Aからなる層を挟んだ)、800mW/cm、300mJ/cmの条件で高圧水銀ランプにより紫外線照射処理を施すことにより樹脂Aを硬化させて、密着性の評価サンプルAを作製した。なお、樹脂Aからなる紫外線硬化樹脂層の膜厚は50μmとした。
(Preparation of Adhesion Evaluation Sample A: When UV-curable resin layer is a protective layer)
Resin A was prepared by adding 3% of a polymerization initiator (BASF Japan, Irgacure (registered trademark) 184) to pentaerythritol diacrylate, which is a polyfunctional acrylate compound, with respect to 100% of the resin amount. This resin A is applied on the adhesive layer of the gas barrier film, and then arranged so that the adhesive layer side of the same gas barrier film is in contact with the layer made of resin A (a layer made of resin A with two gas barrier films) The resin A was cured by applying an ultraviolet irradiation treatment with a high-pressure mercury lamp under the conditions of 800 mW / cm 2 and 300 mJ / cm 2 to prepare an adhesive evaluation sample A. The film thickness of the ultraviolet curable resin layer made of resin A was 50 μm.
 (密着性の評価サンプルBの作製:紫外線硬化樹脂層が量子ドット層である場合)
 特表2013-505347号公報に記載の方法に従い、赤色と緑色に発光する半導体ナノ粒子(CdSe/ZnS)をそれぞれ合成した。当該半導体ナノ粒子を赤色成分、緑色成分がそれぞれ0.75mg、4.12mgになるようにトルエン溶媒に分散させた。この分散液に、上記密着性の評価サンプルAの作製で調製した樹脂Aを添加し、半導体ナノ粒子の含有量が1%(対固形分)となる量子ドット層形成用塗布液を調製した。
(Preparation of Adhesion Evaluation Sample B: When the UV-curable resin layer is a quantum dot layer)
Semiconductor nanoparticles (CdSe / ZnS) emitting red and green light were respectively synthesized according to the method described in JP-T-2013-505347. The semiconductor nanoparticles were dispersed in a toluene solvent so that the red component and the green component were 0.75 mg and 4.12 mg, respectively. To this dispersion, the resin A prepared in the preparation of the adhesion evaluation sample A was added to prepare a coating solution for forming a quantum dot layer in which the content of semiconductor nanoparticles was 1% (solid content).
 上記で調製した量子ドット層形成用塗布液を、ガスバリア性フィルムの接着層上に塗布し、量子ドット含有塗膜を形成した。次いで、同じガスバリア性フィルムの接着層側が量子ドット含有塗膜に接するように配置し(2枚のガスバリア性フィルムで量子ドット含有塗膜を挟んだ)、800mW/cm、300mJ/cmの条件で高圧水銀ランプにより紫外線照射処理を施すことにより量子ドット含有塗膜を硬化させて、密着性の評価サンプルBを作製した。なお、量子ドット含有塗膜の硬化層の膜厚は100μmとした。 The quantum dot layer-forming coating solution prepared above was applied on the adhesive layer of the gas barrier film to form a quantum dot-containing coating film. Next, the same gas barrier film is placed so that the adhesive layer side is in contact with the quantum dot-containing coating film (two gas barrier films are sandwiched between the quantum dot-containing coating films), and the conditions are 800 mW / cm 2 and 300 mJ / cm 2 . Then, the quantum dot-containing coating film was cured by applying an ultraviolet irradiation treatment with a high-pressure mercury lamp to produce an adhesion evaluation sample B. The film thickness of the cured layer of the quantum dot-containing coating film was 100 μm.
 (密着性の評価)
 上記で作製した評価サンプルAおよび評価サンプルBについて、それぞれ高温高湿条件(60℃90%RH)下に500時間静置した後に、各サンプルにおける無機バリア層と紫外線硬化樹脂層との間の密着性を評価した。なお、サンプルは縦1インチ×横20cmの大きさにカットしたものを用い、縦方向に剥離強度を測定して、下記基準に基づいて5段階評価を行った。結果を下記の表1に示す:
1:剥離強度が2N未満;
2:剥離強度が2N以上3N未満;
3:剥離強度が3N以上4N未満;
4:剥離強度が4N以上5N未満;
5:5N以上(測定不可:基材が破壊されて評価できなかった)。
(Evaluation of adhesion)
About evaluation sample A and evaluation sample B produced above, after leaving still for 500 hours under high-temperature, high-humidity conditions (60 ° C. and 90% RH), adhesion between the inorganic barrier layer and the ultraviolet curable resin layer in each sample Sex was evaluated. In addition, the sample was cut into a size of 1 inch in length and 20 cm in width, peel strength was measured in the vertical direction, and five-stage evaluation was performed based on the following criteria. The results are shown in Table 1 below:
1: Peel strength is less than 2N;
2: Peel strength is 2N or more and less than 3N;
3: The peel strength is 3N or more and less than 4N;
4: Peel strength is 4N or more and less than 5N;
5: 5 N or more (not measurable: the substrate was destroyed and could not be evaluated).
 (バリア性の評価)
 上記で作製した評価サンプルBについて、作製直後に輝度を測定した。また、サンプルを高温高湿条件(60℃90%RH)下に1000時間静置した後にも同様にして輝度を測定した。そして、高温高湿条件下に静置する前の輝度を100%とした場合の高温高湿条件下に静置後の輝度の低下割合を算出して、下記基準に基づいて5段階評価を行った。なお、輝度の測定は、発光波長450nmの青色LED上に評価サンプルBを置き、高さを10cmに固定した分光放射輝度計CS-2000(コニカミノルタ社製)を用いて輝度(L)を測定することにより行った。結果を下記の表1に示す:
1:輝度の低下割合が30%以上;
2:輝度の低下割合が20%以上30%未満;
3:輝度の低下割合が10%以上20%未満;
4:輝度の低下割合が5%以上10%未満;
5:輝度の低下割合が5%未満。
(Evaluation of barrier properties)
The evaluation sample B produced above was measured for luminance immediately after production. Further, the luminance was measured in the same manner after the sample was allowed to stand for 1000 hours under high temperature and high humidity conditions (60 ° C. and 90% RH). Then, the luminance reduction ratio after standing under high temperature and high humidity conditions when the luminance before standing under high temperature and high humidity conditions is taken as 100% is calculated, and a five-step evaluation is performed based on the following criteria. It was. The measurement of the luminance, position the evaluation sample B on a blue LED with an emission wavelength of 450 nm, the brightness with high spectral radiance meter was fixed at 10cm a of CS-2000 (manufactured by Konica Minolta Co., Ltd.) (L *) This was done by measuring. The results are shown in Table 1 below:
1: Decrease in luminance is 30% or more;
2: The rate of decrease in luminance is 20% or more and less than 30%;
3: The rate of decrease in luminance is 10% or more and less than 20%;
4: The luminance reduction ratio is 5% or more and less than 10%;
5: The luminance reduction rate is less than 5%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1の結果から、本発明に係るガスバリア性フィルム(No.1~10)は、無機バリア層の露出表面にアクリロイル基が露出していることにより、そのような構成を有しないフィルム(No.11~14)と比較して、フィルムを高温高湿条件下に置いたときの無機バリア層とこれに隣接する紫外線硬化樹脂層との間の密着性の低下が抑制され、しかも、紫外線硬化樹脂層が量子ドット層である場合の輝度の低下も抑制することができることがわかる。 From the results of Table 1 above, the gas barrier films (No. 1 to 10) according to the present invention are films having no such structure (No. 1) because the acryloyl group is exposed on the exposed surface of the inorganic barrier layer. 11-14), a decrease in adhesion between the inorganic barrier layer and the UV curable resin layer adjacent to the film when the film is placed under a high temperature and high humidity condition is suppressed, and UV curing is achieved. It turns out that the fall of the brightness | luminance in case a resin layer is a quantum dot layer can also be suppressed.
 本出願は、2015年3月4日に出願された日本特許出願番号2015-043013号に基づいており、その開示内容は、参照により全体として組み入れられている。 This application is based on Japanese Patent Application No. 2015-043013 filed on March 4, 2015, the disclosure of which is incorporated by reference in its entirety.
11  ガスバリア性フィルム、
12  基材、
13  無機バリア層、
14  接着層。
11 Gas barrier film,
12 substrate,
13 Inorganic barrier layer,
14 Adhesive layer.

Claims (5)

  1.  基材と、
     前記基材の少なくとも一方の面に配置された、無機化合物からなる無機バリア層と、
    を有するガスバリア性フィルムであって、
     前記無機バリア層の前記基材とは反対側の面にアクリロイル基が露出していることを特徴とする、ガスバリア性フィルム。
    A substrate;
    An inorganic barrier layer made of an inorganic compound, disposed on at least one surface of the substrate;
    A gas barrier film having
    A gas barrier film, wherein an acryloyl group is exposed on a surface of the inorganic barrier layer opposite to the substrate.
  2.  前記無機化合物がケイ素原子を含み、前記アクリロイル基が他の原子を介して前記ケイ素原子との間で化学結合を形成している、請求項1に記載のガスバリア性フィルム。 The gas barrier film according to claim 1, wherein the inorganic compound contains a silicon atom, and the acryloyl group forms a chemical bond with the silicon atom via another atom.
  3.  前記アクリロイル基および前記ケイ素原子が、アクリロイル基およびアルコキシシリル基を一分子中に含む化合物由来のものである、請求項1または2に記載のガスバリア性フィルム。 The gas barrier film according to claim 1 or 2, wherein the acryloyl group and the silicon atom are derived from a compound containing an acryloyl group and an alkoxysilyl group in one molecule.
  4.  前記化合物がアクリロイル基含有シランカップリング剤である、請求項3に記載のガスバリア性フィルム。 The gas barrier film according to claim 3, wherein the compound is an acryloyl group-containing silane coupling agent.
  5.  前記無機化合物が、SiO、SiONまたはSiOCの組成を有するケイ素化合物である、請求項1~4のいずれか1項に記載のガスバリア性フィルム。 The gas barrier film according to any one of claims 1 to 4, wherein the inorganic compound is a silicon compound having a composition of SiO, SiON or SiOC.
PCT/JP2016/056735 2015-03-04 2016-03-04 Gas barrier film WO2016140338A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017503725A JPWO2016140338A1 (en) 2015-03-04 2016-03-04 Gas barrier film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-043013 2015-03-04
JP2015043013 2015-03-04

Publications (1)

Publication Number Publication Date
WO2016140338A1 true WO2016140338A1 (en) 2016-09-09

Family

ID=56848584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056735 WO2016140338A1 (en) 2015-03-04 2016-03-04 Gas barrier film

Country Status (2)

Country Link
JP (1) JPWO2016140338A1 (en)
WO (1) WO2016140338A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1044303A (en) * 1996-05-16 1998-02-17 Mitsubishi Chem Corp Gas barrier film
JP2007269957A (en) * 2006-03-31 2007-10-18 Fujifilm Corp Gas-barrier film, method for producing the same, and image display element using the same
JP2008087163A (en) * 2006-09-29 2008-04-17 Fujifilm Corp Gas barrier laminated film and image display element using it
JP2009196318A (en) * 2008-02-25 2009-09-03 Fujifilm Corp Manufacturing method for laminated body and barrier type film board, barrier material, device, and optical member
JP2011200780A (en) * 2010-03-25 2011-10-13 Fujifilm Corp Barrier laminated body, method for manufacturing the same, gas barrier film, and device
JP2013226773A (en) * 2012-03-29 2013-11-07 Mitsubishi Plastics Inc Gas barrier film
JP2014118492A (en) * 2012-12-17 2014-06-30 Mitsubishi Chemicals Corp Active energy ray-curable resin composition and laminate using the same
JP2016072422A (en) * 2014-09-30 2016-05-09 富士フイルム株式会社 Manufacturing method of wavelength conversion member, wavelength conversion member, backlight unit, and liquid crystal display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1044303A (en) * 1996-05-16 1998-02-17 Mitsubishi Chem Corp Gas barrier film
JP2007269957A (en) * 2006-03-31 2007-10-18 Fujifilm Corp Gas-barrier film, method for producing the same, and image display element using the same
JP2008087163A (en) * 2006-09-29 2008-04-17 Fujifilm Corp Gas barrier laminated film and image display element using it
JP2009196318A (en) * 2008-02-25 2009-09-03 Fujifilm Corp Manufacturing method for laminated body and barrier type film board, barrier material, device, and optical member
JP2011200780A (en) * 2010-03-25 2011-10-13 Fujifilm Corp Barrier laminated body, method for manufacturing the same, gas barrier film, and device
JP2013226773A (en) * 2012-03-29 2013-11-07 Mitsubishi Plastics Inc Gas barrier film
JP2014118492A (en) * 2012-12-17 2014-06-30 Mitsubishi Chemicals Corp Active energy ray-curable resin composition and laminate using the same
JP2016072422A (en) * 2014-09-30 2016-05-09 富士フイルム株式会社 Manufacturing method of wavelength conversion member, wavelength conversion member, backlight unit, and liquid crystal display device

Also Published As

Publication number Publication date
JPWO2016140338A1 (en) 2017-12-14

Similar Documents

Publication Publication Date Title
EP3116972B1 (en) Composite nanoparticles including a thiol-substituted silicone
WO2017033665A1 (en) Gas barrier film, method for producing same and optical film
TWI565651B (en) Optical materials, optical films and light-emitting devices
JP7031325B2 (en) Barrier film and wavelength conversion sheet using barrier film
WO2016043141A1 (en) Gas barrier film
WO2015111572A1 (en) Gas barrier film
US10014492B2 (en) Organic electroluminescent device
JP2015153887A (en) Optical film, manufacturing method of the same, and light-emitting device having the optical film
WO2015141242A1 (en) Functional laminated film, method for producing functional laminated film, and organic electroluminescent device including functional laminated film
WO2016140340A1 (en) Optical film, and optical device in which same is used
WO2014178332A1 (en) Gas barrier film and method for producing same
WO2015163422A1 (en) Gas barrier film and gas barrier film manufacturing method
KR20090074998A (en) A multi-layer plastic substrate having good dimensional stability and gas barrier properties and method for preparing the same
WO2017014083A1 (en) Functional film and electronic device provided with same
WO2016140338A1 (en) Gas barrier film
WO2016140339A1 (en) Method for producing gas barrier film
JP6185867B2 (en) Functional laminated material, method for producing functional laminated material, and organic electroluminescent device including functional laminated material
WO2015087792A1 (en) Optical film and method for producing optical film
WO2016076219A1 (en) Optical film and method for manufacturing optical film
JP6645137B2 (en) Gas barrier pressure-sensitive adhesive sheet and electronic device having the same
JP6918446B2 (en) Gas barrier film
JP2015104691A (en) Optical film manufacturing method and optical film
WO2024075804A1 (en) Antireflection film and method for producing antireflection film
WO2022249674A1 (en) Layered body and method for manufacturing same, and image display device
JP2016015380A (en) Optical film and optical device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16759030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503725

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16759030

Country of ref document: EP

Kind code of ref document: A1