WO2017033665A1 - Gas barrier film, method for producing same and optical film - Google Patents

Gas barrier film, method for producing same and optical film Download PDF

Info

Publication number
WO2017033665A1
WO2017033665A1 PCT/JP2016/072272 JP2016072272W WO2017033665A1 WO 2017033665 A1 WO2017033665 A1 WO 2017033665A1 JP 2016072272 W JP2016072272 W JP 2016072272W WO 2017033665 A1 WO2017033665 A1 WO 2017033665A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
adhesive layer
layer
barrier film
film
Prior art date
Application number
PCT/JP2016/072272
Other languages
French (fr)
Japanese (ja)
Inventor
晃矢子 和地
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017536707A priority Critical patent/JPWO2017033665A1/en
Publication of WO2017033665A1 publication Critical patent/WO2017033665A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to a gas barrier film, a production method thereof, and an optical film. More specifically, the present invention relates to a gas barrier film having a high gas barrier property and heat resistance, and the gas barrier film having the gas barrier film, and adhesion to the phosphor particle-containing layer in a high temperature and high humidity environment, The present invention relates to an optical film containing phosphor particles having excellent side leak resistance.
  • a gas barrier layer that prevents the permeation of water vapor, oxygen, etc. by providing a deposition film made of an inorganic compound such as a metal oxide or a coating film of a resin on the surface of a resin substrate A gas barrier film provided with is known.
  • liquid crystal display elements LCD
  • solar cells PV
  • organic electroluminescence elements hereinafter also referred to as “organic EL elements”
  • QD quantum dots
  • phosphor particles Also in the field of electronic devices using QD films having QD particles ”), there is an increasing demand for gas barrier films using a resin base material for the purpose of providing lightness, resistance to cracking, and flexibility. Yes.
  • a quantum dot-containing layer containing quantum dots that emit light at various wavelengths is made transparent.
  • An optical film (hereinafter also referred to as “QD film”) that has been formed into a sheet by being sandwiched by a conductive sheet member has been studied. Since the QD particles used in this QD film are not sufficiently resistant to moisture, oxygen, etc., the translucent sheet that sandwiches the QD particle-containing layer in order to protect the QD particle-containing layer from deterioration due to moisture or oxygen As a member, it is necessary to laminate with a gas barrier film.
  • a gas barrier layer composed of an inorganic material and an ultraviolet curable resin layer containing an ultraviolet curable resin that is cured by irradiating with ultraviolet rays (UV) are provided adjacent to the gas barrier layer.
  • an ultraviolet curable resin layer include a protective layer (hard coat layer) for protecting the surface of the gas barrier layer.
  • a gas barrier film is disposed so as to sandwich a quantum dot layer (light emitting layer) in which phosphor particles functioning as quantum dots (QD) are dispersed in an ultraviolet curable resin or a thermosetting resin. A configuration is disclosed.
  • the problem that the adhesiveness deteriorates has appeared.
  • the QD particle-containing layer needs to have a thickness of several tens of ⁇ m, even if the upper or lower surface of the QD particle-containing layer is protected with a gas barrier film, the QD particle-containing layer has a thick film structure. Since moisture and oxygen penetrate from the side surface (also referred to as a cross section or edge) of the layer, the QD particles located at the end are damaged, so that the QD particle-containing layer itself However, a certain level of gas barrier resistance is required.
  • an inorganic oxide thin film is provided on one surface of a flexible resin substrate, and the inorganic oxide is further provided.
  • a method for forming a thin film containing a silane coupling agent and adhering the QD particle-containing layer is disclosed (for example, see Patent Document 2).
  • silane coupling agents those modified with a vinyl group, a methacryloxy group (methacryloyl group), an amino group, an epoxy group, a mercapto group or the like are disclosed.
  • a thin film composed of a silane coupling agent by providing a thin film composed of a silane coupling agent, adhesion between a thin layer of inorganic oxide (inorganic barrier layer) and a heat-meltable heat-sealable resin is improved. We are trying to improve.
  • the adhesion between the QD particle-containing layer and the inorganic oxide layer is improved by the effect of the silane coupling agent.
  • the gas barrier film is subjected to thermal deformation, the gas barrier property is improved.
  • the refractive index difference between the gas barrier film and the QD particle-containing layer is increased, and the efficiency of taking out light emitted by the QD particles is reduced due to optical loss.
  • the present invention has been made in view of the above-described problems and situations, and the solution is to use a gas barrier film having high gas barrier properties and heat resistance, and a phosphor particle-containing layer using the gas barrier film.
  • the present invention provides a phosphor particle-containing optical film that is excellent in adhesion and side leak resistance in a high-temperature and high-humidity environment with excellent luminous efficiency.
  • the resin base material has a gas barrier layer and an adhesive layer in this order, and the gas barrier layer contains at least silicon atoms.
  • a gas barrier film having high gas barrier properties and heat resistance can be realized by the film, and the gas barrier film has a gas barrier layer and an adhesive layer in this order on a resin substrate, and the gas barrier layer Contains an inorganic oxide containing at least a silicon atom, and the adhesive layer is an adhesive layer 1 satisfying a specific condition (1) or an adhesive layer 2 satisfying a condition (2),
  • the phosphor film-containing layer and the adhesive layer are disposed adjacent to each other to suppress deterioration of the QD particles due to moisture and oxygen and to increase the temperature of the phosphor particle-containing layer at a high temperature. It has been found that a phosphor particle-containing optical film can be obtained that has excellent adhesion in a wet environment and resistance to side leaks, as well as excellent luminous
  • a gas barrier film having a gas barrier layer and an adhesive layer in this order on a resin substrate,
  • the gas barrier layer contains an inorganic oxide containing at least silicon atoms,
  • the gas barrier property wherein the adhesive layer contains at least a compound containing an unreacted acryloyl group and a compound containing a silicon atom, and the thickness of the adhesive layer is in the range of 100 to 1000 nm. the film.
  • Item 4 The gas barrier film according to any one of Items 1 to 3, wherein the adhesive layer contains organic fine particles having an average particle diameter in the range of 300 to 1000 nm.
  • a method for producing a gas barrier film for producing the gas barrier film according to any one of items 1 to 4 After forming a gas barrier layer composed of an inorganic oxide containing at least a silicon atom on a resin substrate, a compound containing at least an unreacted acryloyl group and a compound containing a silicon atom are formed on the gas barrier layer.
  • An optical film including a gas barrier film having a gas barrier layer and an adhesive layer in this order on a resin substrate,
  • the gas barrier layer contains an inorganic oxide containing at least silicon atoms
  • the adhesive layer is an adhesive layer 1 that satisfies the condition (1) defined below or an adhesive layer 2 that satisfies the condition (2), Condition (1):
  • the adhesive layer 1 contains at least a compound containing an acryloyl group and a compound containing a silicon atom, and the thickness of the adhesive layer is in the range of 100 to 1000 nm.
  • the adhesive layer 2 contains inorganic fine particles having an average primary particle size in the range of 30 to 100 nm, organic fine particles having an average primary particle size in the range of 300 to 1000 nm, and a binder component.
  • An optical film characterized in that a phosphor particle-containing layer is disposed adjacent to the adhesive layer.
  • Item 9 The optical film according to Item 7 or 8, wherein the thickness of the adhesive layer 1 is in the range of 100 to 500 nm.
  • Item 11 The optical film according to any one of Items 7 to 10, wherein the adhesive layer 1 contains organic fine particles having an average particle diameter in the range of 300 to 1000 nm.
  • Item 9 The optical film according to Item 7 or 8, wherein the inorganic fine particles contained in the adhesive layer 2 are silica particles.
  • Item 17 The optical film as described in Item 16, wherein the silane coupling agent is a polymer type silane coupling agent.
  • Item 17 The optical film as described in Item 16, wherein the acryloyl group-containing compound is an acrylic polymer.
  • a gas barrier film having high gas barrier properties and heat resistance and the gas barrier film, adhesion with a phosphor particle-containing layer in a high temperature and high humidity environment, and side leak resistance
  • the gas barrier film of the present invention contains a compound containing an acryloyl group and a compound containing a silicon atom together with a gas barrier layer containing an inorganic oxide containing a silicon atom on a resin substrate, and the layer thickness is 100.
  • an adhesive layer in the range of ⁇ 1000 nm, a gas barrier film having high gas barrier properties and heat resistance can be realized, and the gas barrier film can be used as an optical film having a phosphor particle-containing layer. By applying, both adhesiveness and the side leak resistance of the phosphor particle-containing layer can be improved.
  • an unreacted acryloyl group (hereinafter also simply referred to as an acryloyl group) is formed on a gas barrier layer composed of an inorganic oxide containing a silicon atom.
  • an adhesive layer containing a compound containing silicon and a compound containing silicon atoms By providing an adhesive layer containing a compound containing silicon and a compound containing silicon atoms, the silicon atoms contained in the gas barrier layer interact with the silicon atoms contained in the adhesive layer, and the gas barrier layer is formed inside the adhesive layer.
  • a concentration gradient structure of silicon atoms is formed, and the hardness in the adhesive layer has a gradient structure in conjunction therewith.
  • the hardness pattern having this inclined structure can effectively relieve stress, resulting in excellent heat resistance and It is speculated that gas barrier properties can be obtained.
  • the phosphor particle-containing layer is formed by forming an adhesive layer containing inorganic fine particles and organic fine particles having different average particle diameters and refractive indexes at positions adjacent to the phosphor particle-containing layer. It has been found that the light emitted from can be efficiently extracted to the outside and the luminous efficiency can be increased.
  • inorganic fine particles with a small average particle diameter have the effect of scattering the light emitted from the phosphor particle-containing layer inside the adhesive layer, and the average particle diameter of the organic fine particles constitutes the adhesive layer. Since the refractive index is averaged by the uneven portions formed at the interface between the phosphor particle-containing layer and the adhesive layer, the optical component is estimated to be improved optically. .
  • the anchoring effect due to the resin component constituting the phosphor particle-containing layer entering the gap portion of the concavo-convex structure is exhibited.
  • adhesion can be improved by forming a strong bond with the phosphor particle-containing layer. It is.
  • a silane coupling agent or the like as a binder component on a gas barrier layer composed of an inorganic oxide containing silicon atoms, a silicon atom contained in the gas barrier layer and an adhesive layer are formed. By interacting with the silicon atoms contained, many silicon atoms are oriented on the gas barrier layer interface side inside the adhesive layer, thereby forming a concentration gradient structure of silicon atoms. Regarding the hardness, it is presumed that the adhesion can be improved by having an inclined structure.
  • Schematic sectional view showing an example of the configuration of the gas barrier film Schematic sectional view showing an example of the orientation state of the acryloyl group in the adhesive layer of the gas barrier film
  • the gas barrier film of the present invention is a gas barrier film having a gas barrier layer and an adhesive layer in this order on a resin substrate, wherein the gas barrier layer contains an inorganic oxide containing at least silicon atoms. And the adhesive layer contains at least a compound containing an acryloyl group and a compound containing a silicon atom, and the thickness of the adhesive layer is in the range of 100 to 1000 nm. This feature is a technical feature common to or corresponding to the claimed invention.
  • the present invention from the standpoint that the effects of the present invention can be further manifested, it is possible to maintain good adhesion and to prevent side leakage when the thickness of the adhesive layer is in the range of 100 to 500 nm. This is preferable in that the resistance can be further improved.
  • an acryloyl group-containing silane coupling polymer as the compound containing the acryloyl group contained in the adhesive layer in terms of further improving the adhesion, which is an object effect of the present invention.
  • the adhesive layer contains organic fine particles having an average particle size in the range of 300 to 1000 nm from the viewpoint that heat resistance can be further improved.
  • a gas barrier layer composed of an inorganic oxide containing at least silicon atoms is formed on a resin substrate, and then at least an acryloyl group is formed on the gas barrier layer.
  • An adhesive layer containing a compound containing a compound containing a silicon atom and a compound containing a silicon atom is formed in a thickness range of 100 to 1000 nm. Furthermore, it is a preferable embodiment that the adhesiveness and side leak resistance can be further improved when the gas barrier film is not subjected to a curing treatment by irradiation with actinic rays such as ultraviolet rays.
  • the optical film of the present invention comprises a gas barrier film on at least one surface side of the phosphor particle-containing layer, and the gas barrier film has a gas barrier layer and an adhesive layer on the resin substrate.
  • the gas barrier layer contains an inorganic oxide containing at least a silicon atom, and the adhesive layer satisfies the specific condition (1) or the adhesive layer 1 that satisfies the condition (2) 2 and the phosphor particle-containing layer and the adhesive layer are disposed adjacent to each other.
  • the adhesive layer constituting the gas barrier film contains at least a compound containing an acryloyl group and a compound containing a silicon atom, and the thickness of the adhesive layer is from 100 to 100.
  • the adhesive layer 1 is in the range of 1000 nm.
  • the adhesive layer constituting the gas barrier film includes an inorganic fine particle having an average primary particle size in the range of 30 to 100 nm and an average primary particle size in the range of 300 to 1000 nm. It is characterized by being the adhesive layer 2 containing the organic fine particles and the binder component.
  • the phosphor particle-containing layer is a quantum dot-containing layer containing quantum dots as phosphor particles, so that more excellent emission characteristics are obtained. It is preferable in that it can be obtained.
  • the inorganic fine particles contained in the adhesive layer are silica particles, have a refractive index approximate to the binder component constituting the adhesive layer, and can exhibit an efficient light scattering effect in the adhesive layer, This is preferable from the viewpoint of realizing higher luminous efficiency.
  • the adhesive layer is formed at the interface between the phosphor particle-containing layer and the adhesive layer by setting the layer thickness to be equal to or greater than the average primary particle size of the inorganic fine particles and less than the average primary particle size of the organic fine particles. It is preferable from the viewpoint that higher luminous efficiency can be realized by averaging the refractive index by the uneven structure.
  • a silane coupling agent or a polymer-type silane coupling agent as a binder component constituting the adhesive layer, adhesion between the phosphor particle-containing layer and the adhesive layer, or an adhesive layer and a gas barrier. This is preferable from the viewpoint of improving the adhesion between the layers.
  • the adhesiveness between the phosphor particle-containing layer and the adhesive layer, or the adhesiveness between the adhesive layer and the gas barrier layer is included.
  • the gas barrier film of the present invention has a gas barrier layer and an adhesive layer in this order on a resin substrate, the gas barrier layer contains an inorganic oxide containing at least silicon atoms, and the adhesive layer 1 includes a compound containing at least an acryloyl group and a compound containing a silicon atom, and the thickness of the adhesive layer 1 is in the range of 100 to 1000 nm.
  • the “gas barrier film” as used in the present invention is a water vapor permeability measured by a method in accordance with JIS K 7129-1992 (abbreviation: WVTR, temperature: 38 ° C., relative humidity (RH): 100%). Of 1.0 g / m 2 ⁇ 24 h or less.
  • the water vapor permeability can be measured, for example, with a water vapor permeability measuring device (trade name: Permatran, manufactured by Mocon) in an atmosphere of 38 ° C. and 100% RH.
  • a water vapor permeability measuring device (trade name: Permatran, manufactured by Mocon) in an atmosphere of 38 ° C. and 100% RH.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a gas barrier film.
  • a gas barrier film (1) comprises a gas barrier layer (3) composed of an inorganic oxide containing at least silicon atoms on a resin substrate (2), and an adhesive layer 1 ( 4).
  • the adhesive layer 1 contains at least a compound containing an unreacted acryloyl group and a compound containing a silicon atom, and the layer thickness is in the range of 100 to 1000 nm.
  • the thickness of the adhesive layer 1 is in the range of 100 to 500 nm, or the compound containing an acryloyl group contained in the adhesive layer 1 is an acryloyl group-containing silane coupling polymer. is there.
  • FIG. 2 is a schematic cross-sectional view showing an example of the orientation state of the acryloyl group in the adhesive layer 1 of the gas barrier film.
  • the gas barrier film (1) shown in FIG. 2 is composed of a resin substrate (2), a gas barrier layer (3), and an adhesive layer 1 (4), and contributes to improving heat resistance and adhesion.
  • a state in which (5) is oriented in the surface region of the adhesive layer 1 is shown as a schematic diagram.
  • acryloyl group is an acyl group derived from acrylic acid represented by the structure shown below.
  • the amount of acryloyl group (mol / m 2 ) in the surface region of the adhesive layer 1 can be determined by the following method.
  • the surface region of the adhesive layer 1 in the present invention refers to a region from the outermost surface part to 10 nm in the depth direction, and the amount of acryloyl group (mol / m 2) with respect to the surface region according to the following measurement method. ) Can be obtained by measuring.
  • the ratio of the amount of Br on the surface is quantified to determine the unreacted acrylate group Can be quantified.
  • the acryloyl group content in the surface region of the adhesive layer 1 is preferably 0.1 mol / m 2 or more, more preferably 0.5 mol / m 2 or more.
  • a gas barrier layer and an adhesive layer 2 are provided in this order on a resin substrate, and the gas barrier layer is an inorganic material containing at least silicon atoms.
  • the gas barrier layer is an inorganic material containing at least silicon atoms.
  • FIG. 3 is a schematic cross-sectional view showing an example of the configuration of a gas barrier film having a second configuration having a gas barrier layer and an adhesive layer 2 containing inorganic fine particles and organic fine particles.
  • a gas barrier layer (103) composed of an inorganic oxide containing at least silicon atoms is formed on a resin substrate (102), and a second barrier film is formed thereon. It is the structure which has the contact bonding layer 2 (104) which is embodiment.
  • the adhesive layer 2 (104) includes inorganic fine particles (106) having an average primary particle diameter in the range of 30 to 100 nm and an average primary particle diameter in the range of 300 to 1000 nm. It consists of organic fine particles (107) and a binder component (105) inside.
  • the inorganic fine particles (106) contained in the adhesive layer 2 (104) are silica particles.
  • the layer thickness of the adhesive layer 2 (104) is not less than the average primary particle size of the inorganic fine particles (106) and less than the average primary particle size of the organic fine particles (107).
  • the layer thickness of the binder component satisfying the above conditions is 30 nm or more and less than 1000 nm, but the practical layer thickness is 100 nm or more and less than 1000 nm, more preferably in the range of 100 to 800 nm, particularly preferably. Is in the range of 200 to 500 nm.
  • the layer thickness of the adhesive layer 2 (104) referred to in the present invention is, as shown in FIG. 3, when the organic fine particles (107) which are large particles protrude from the upper surface to form a concavo-convex structure.
  • the interface with the gas barrier layer (103) is A and the bottom surface of the concave structure on the surface of the adhesive layer (4) is B, the average thickness (Ad) from A to B is the adhesive layer 2 ( 104).
  • the optical film of the present invention has a gas barrier film having a structure defined in the present invention and a phosphor particle-containing layer containing phosphor particles, and a surface region constituting the gas barrier film of the present invention.
  • An adhesive layer having an acryloyl group and a phosphor particle-containing layer are disposed adjacent to each other, and the adhesive layer contains at least a compound containing an acryloyl group and a compound containing a silicon atom, and the thickness of the adhesive layer
  • the adhesive layer 1 in the range of 100 to 1000 nm, or the adhesive layer has inorganic fine particles having an average primary particle size in the range of 30 to 100 nm, and an average primary particle size of 300 to It is an adhesive layer 2 (second embodiment) containing organic fine particles within a range of 1000 nm and a binder component.
  • the adhesive layer contains at least a compound containing an acryloyl group and a compound containing a silicon atom as the adhesive layer, and the thickness of the adhesive layer is in the range of 100 to 1000 nm.
  • One feature is that 1 is applied.
  • 4A and 4B are schematic cross-sectional views illustrating an example of a first configuration of an optical film including a gas barrier film having an adhesive layer 1 (4, 4A, 4B) and a phosphor particle-containing layer. .
  • the gas barrier layer (3) a compound containing at least an acryloyl group, a compound containing a silicon atom, and a layer thickness are formed on the resin substrate (2).
  • the gas barrier film (1) having a structure in which the adhesive layer 1 (4) within the range of 100 to 1000 nm is laminated and the position facing the adhesive layer 1 (4).
  • An example of a configuration in which a phosphor particle-containing layer (6) configured by dispersing phosphor particles (7, QD particles) is arranged is shown.
  • a structure in which a sealing member (9) or the like is provided on the opposite surface of the phosphor particle-containing layer (6) provided with the gas barrier film to prevent the phosphor particles from being affected by moisture, oxygen, or the like. preferable.
  • the phosphor particle-containing layer (6) containing the phosphor particles (7) is sandwiched between gas barrier films (1A and 1B) having a pair of adhesive layers 1.
  • the configuration is shown.
  • the adhesive layer 1 (4A and 4B) having an acryloyl group in the surface region constituting each gas barrier film and the phosphor particle-containing layer (6) are adjacent to each other. Has been placed.
  • optical film of the second configuration In the optical film of the present invention having the second configuration, as the adhesive layer, inorganic fine particles having an average primary particle size in the range of 30 to 100 nm, organic fine particles having an average primary particle size in the range of 300 to 1000 nm, and One feature is to apply the adhesive layer 2 containing a binder component.
  • FIG. 5A and FIG. 5B are schematic cross-sectional views showing an example of the configuration of the optical film (F) of the second configuration configured by the gas barrier film having the adhesive layer 2 and the phosphor particle-containing layer.
  • 5A contains a gas barrier layer (103A), inorganic fine particles (106A), organic fine particles (107A), and a binder component (105A) on the resin substrate (102A).
  • Gas barrier film (101A) having a structure in which adhesive layer 2 (104A) is laminated, and phosphor particles (109, QD particles) in resin binder (110) at a position adjacent to adhesive layer 2 (104A).
  • distributing is shown.
  • a sealing member (111) is used to prevent the phosphor particles (109) from being affected by moisture, oxygen, or the like. Etc.) is preferable.
  • FIG. 5B is a schematic cross-sectional view showing an example of an optical film having a structure in which a phosphor particle-containing layer is sandwiched between gas barrier films having an adhesive layer 2 according to a pair of second embodiments.
  • both sides of the phosphor particle-containing layer (108) containing the phosphor particles (109) are formed on the gas barrier films (101A and 101B) according to the second configuration of the present invention.
  • the adhesive layers 2 (104A and 104B) of the gas barrier films (101A and 101B) are disposed at positions adjacent to both surfaces of the phosphor particle-containing layer (8).
  • the gas barrier films (101A and 101B) may be gas barrier films having the same structure that satisfies the conditions defined in the present invention.
  • the gas barrier films (101A and 101B) are gas barrier films having different structures, at least one of the gas barrier films (1A and 1B) has the adhesive layer 2 defined in the present invention. Any gas barrier film may be used.
  • the resin base material applicable to the gas barrier film of the present invention is not particularly limited as long as it can hold the gas barrier layer and the adhesive layer.
  • a flexible plastic film or sheet is usually used, and a film or sheet made of a colorless and transparent resin is preferably used.
  • the resin base material used includes various functional layers (hard coat layer, etc.) provided as appropriate according to the purpose, and phosphor particle-containing layers constituting the optical film.
  • the material, thickness, and the like are not particularly limited and can be appropriately selected depending on the purpose of use.
  • Examples of the resin substrate applicable to the present invention include poly (meth) acrylate, polyethylene terephthalate (abbreviation: PET), polybutylene terephthalate, polyethylene naphthalate (abbreviation: PEN), polycarbonate (abbreviation: PC), Polyarylate, polyvinyl chloride (abbreviation: PVC), polyethylene (abbreviation: PE), polypropylene (abbreviation: PP), polystyrene (abbreviation: PS), nylon (abbreviation: Ny), aromatic polyamide, polyetheretherketone, polysulfone Resin film composed of resin components such as polyethersulfone, polyimide, polyetherimide, cycloolefin polymer, cycloolefin copolymer, etc., and heat-resistant transparent with silsesquioxane having organic-inorganic hybrid structure as the basic skeleton Film (e.g., product name Sila-DEC, manufactured by Chisso Corporation), and
  • the thickness of the resin substrate is not particularly limited, but is preferably 5 to 300 ⁇ m, and more preferably 10 to 100 ⁇ m.
  • various functional layers such as a transparent conductive layer, a primer layer, and a clear hard-coat layer, as needed.
  • functional layers described in paragraph numbers “0036” to “0038” of JP-A-2006-289627 can be appropriately selected and employed depending on the purpose. .
  • the resin base material according to the present invention is preferably transparent. Since the resin base material is transparent and the layer formed on the resin base material is also transparent, it becomes possible to make a transparent gas barrier film, so that it can be used as a transparent substrate such as an organic EL element. Because it becomes.
  • “Transparent” in the present invention means that the visible light transmittance measured by a method in accordance with JIS S3107 (2013) is 50% or more, preferably 65% or more, more preferably 80% or more, More preferably, it is 90% or more.
  • the resin base material preferably has high surface smoothness.
  • the surface smoothness those having an average surface roughness (Ra) of 2 nm or less are preferable. Although there is no particular lower limit, it is practically 0.01 nm or more. If necessary, both surfaces of the resin substrate, at least the side on which the gas barrier layer is provided, may be polished to improve smoothness.
  • various known treatments for improving adhesion such as corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, Layers may be stacked or the above treatments may be combined.
  • gas barrier layer One feature of the gas barrier film of the present invention is that it has a gas barrier layer composed of an inorganic oxide containing at least one silicon atom on a resin substrate.
  • the gas barrier layer according to the present invention has an undercoat layer (for example, a smooth layer, a primer layer), an anchor coat between the resin substrate and the gas barrier layer, in addition to an embodiment in which the gas barrier layer is directly formed on the resin substrate surface.
  • Various functional layers such as layers (anchor layers) may be provided as necessary.
  • the gas barrier layer is composed of an inorganic compound containing at least silicon atoms. That is, it is an inorganic oxide containing silicon atoms (composition: SiO x ).
  • the chemical composition in the gas barrier layer can be determined by measuring the atomic composition ratio using an XPS surface analyzer (for example, QUANTERASXM manufactured by ULVAC-PHI). It can also be determined by cutting the side surface of the gas barrier layer and measuring the exposed cut surface by measuring the atomic composition ratio with an XPS surface analyzer.
  • the chemical composition in the gas barrier layer can be controlled by the type and amount of raw materials used when forming the gas barrier layer, the formation conditions during film formation, the modification treatment conditions after formation, and the like.
  • the content of the inorganic compound containing a silicon atom constituting the gas barrier layer is not particularly limited, but is preferably 50% by mass or more, more preferably 80% by mass or more based on the total mass of the gas barrier layer.
  • the content is more preferably 95% by mass or more, particularly preferably 98% by mass or more, and most preferably 100% by mass, that is, the gas barrier layer is most preferably composed only of an inorganic compound.
  • the gas barrier layer By constituting the gas barrier layer from an inorganic compound containing a silicon atom as a main component, it has high density and can exhibit excellent gas barrier properties.
  • the gas barrier property of the gas barrier layer is, as described above, the water vapor permeability (abbreviation: WVTR, temperature: 38 ° C., relative humidity (RH)): 100 measured by a method according to JIS K 7129-1992. %) Is 1.0 g / (m 2 ⁇ 24 h) or less, preferably 0.1 g / (m 2 ⁇ 24 h) or less, and 0.01 g / (m 2 ⁇ 24 h) or less. It is more preferable that
  • the method for forming the gas barrier layer is not particularly limited.
  • the gas barrier layer is formed by a vapor deposition method such as physical vapor deposition (PVD) or chemical vapor deposition (CVD) using a silicon-containing compound.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • a coating film containing a precursor for forming a gas barrier layer by applying a coating solution containing a silicon compound (for example, polysilazane, etc.)
  • a gas barrier layer is formed by performing a modification treatment using vacuum ultraviolet rays or the like. And the like (hereinafter also referred to as a coating method).
  • the physical vapor deposition method is a method in which a target substance, for example, a thin film such as a silicon atom-containing film is deposited on the surface of a substrate in the gas phase by physical means.
  • the physical film forming means includes, for example, a sputtering method (for example, a DC sputtering method, an RF sputtering method, an ion beam sputtering method, a magnetron sputtering method), a vacuum deposition method, an ion plating method, and the like.
  • a target is placed in a vacuum chamber, a high-voltage ionized rare gas element (usually argon) is collided with the target, and silicon atoms are ejected from the target surface to adhere to the resin substrate. It is a method of depositing. At this time, by flowing nitrogen gas or oxygen gas into the chamber, the silicon atoms ejected from the target by argon gas react with nitrogen and oxygen to form an inorganic oxide layer containing silicon atoms. A sputtering method may be used.
  • the chemical vapor deposition method (Chemical Vapor Deposition, CVD method) is a method of supplying a raw material gas containing silicon atoms as a target thin film component onto a resin base material, on the surface of the resin base material or in the gas phase.
  • CVD method is a method of supplying a raw material gas containing silicon atoms as a target thin film component onto a resin base material, on the surface of the resin base material or in the gas phase.
  • an inorganic oxide film containing silicon atoms is deposited by a chemical reaction.
  • Known CVD such as thermal CVD method, catalytic chemical vapor deposition method, photo CVD method, vacuum plasma CVD method, atmospheric pressure plasma CVD method, etc. The method etc. are mentioned.
  • the gas barrier layer obtained by the vacuum plasma CVD method or the plasma CVD method under atmospheric pressure or a pressure near atmospheric pressure is based on conditions such as the silicon-containing compound, decomposition gas, decomposition temperature, and input power that are raw materials (also referred to as raw materials) Is preferable because a silicon atom-containing oxide having a desired composition can be produced.
  • the conditions for forming the barrier layer by the plasma CVD method for example, by appropriately adopting the conditions described in paragraphs (0033) to (0051) of International Publication No. 2012/067186, an inorganic oxide containing a silicon atom is used.
  • a gas barrier layer containing an object can be formed.
  • the gas barrier layer according to the present invention is, for example, a coating film formed by applying a coating solution for forming a gas barrier layer containing an inorganic compound containing a silicon atom on a resin base material. You may form by the method (application
  • an inorganic compound containing a silicon element according to the present invention hereinafter referred to as a silicon compound
  • a silicon compound an inorganic compound containing a silicon element according to the present invention
  • the silicon compound according to the present invention is not particularly limited as long as a coating solution containing a silicon compound can be prepared.
  • a coating solution containing a silicon compound can be prepared.
  • polysilazane compounds, silazane compounds, aminosilane compounds, silylacetamide compounds, silylimidazole compounds, and other silicon compounds containing nitrogen are used.
  • the polysilazane compound (hereinafter also simply referred to as polysilazane) preferably used in the present invention is a polymer having a silicon-nitrogen bond.
  • Examples of polysilazane used in the present invention are not particularly limited and include known ones.
  • compounds specifically described in paragraphs (0043) to (0058) of JP2013-022799A and paragraphs (0038) to (0056) of JP2013-226758A are appropriately employed. can do.
  • Polysilazane is also commercially available in a solution in an organic solvent.
  • examples of commercially available polysilazane solutions include NN120-10, NN120-20, NAX120-20, NN110, NN310, manufactured by AZ Electronic Materials Co., Ltd. NN320, NL110A, NL120A, NL120-20, NL150A, NP110, NP140, SP140 and the like.
  • a silicon alkoxide-added polysilazane obtained by reacting the above polysilazane with a silicon alkoxide see, for example, JP-A-5-238827)
  • glycidol A glycidol-added polysilazane obtained (for example, see JP-A-6-122852), an alcohol-added polysilazane obtained by reacting an alcohol (for example, see JP-A-6-240208), and a metal carboxylate are reacted.
  • Metal carboxylate-added polysilazane for example, see JP-A-6-299118
  • acetylacetonate complex-added polysilazane for example, JP-A-6-306329 obtained by reacting a metal-containing acetylacetonate complex.
  • Polysilazane added with metal fine particles for example, see JP-A-7-196986
  • silazane compounds that are monomers preferably used in the present invention include dimethyldisilazane, trimethyldisilazane, tetramethyldisilazane, pentamethyldisilazane, hexamethyldisilazane, and 1,3-divinyl-1,1. , 3,3-tetramethyldisilazane and the like, but not limited thereto.
  • aminosilane compounds preferably used in the present invention include 3-aminopropyltrimethoxysilane, 3-aminopropyldimethylethoxysilane, 3-arylaminopropyltrimethoxysilane, propylethylenediaminesilane, N- [3- (trimethoxysilyl) ) Propyl] ethylenediamine, 3-butylaminopropyltrimethylsilane, 3-dimethylaminopropyldiethoxymethylsilane, 2- (2-aminoethylthioethyl) triethoxysilane, and bis (butylamino) dimethylsilane.
  • silylacetamide compounds preferably used in the present invention include N-methyl-N-trimethylsilylacetamide, N, O-bis (tert-butyldimethylsilyl) acetamide, N, O-bis (diethylhydrogensilyl) trifluoroacetamide , N, O-bis (trimethylsilyl) acetamide, N-trimethylsilylacetamide and the like, but are not limited thereto.
  • silylimidazole compounds preferably used in the present invention include 1- (tert-butyldimethylsilyl) imidazole, 1- (dimethylethylsilyl) imidazole, 1- (dimethylisopropylsilyl) imidazole, and N-trimethylsilylimidazole. However, it is not limited to these.
  • ⁇ Other nitrogen-containing silicon compounds in addition to the above silicon compound containing nitrogen, for example, bis (trimethylsilyl) carbodiimide, trimethylsilyl azide, N, O-bis (trimethylsilyl) hydroxylamine, N, N′-bis (trimethylsilyl) urea, 3 -Bromo-1- (triisopropylsilyl) indole, 3-bromo-1- (triisopropylsilyl) pyrrole, N-methyl-N, O-bis (trimethylsilyl) hydroxylamine, 3-isocyanatopropyltriethoxysilane, and silicon Although tetraisothiocyanate etc. are used, it is not limited to these.
  • polysilazane such as perhydropolysilazane and organopolysilazane; polysiloxane such as silsesquioxane and the like are preferable from the viewpoints of film formation, few defects such as cracks, and small amount of residual organic matter, and high gas barrier performance.
  • Polysilazane is more preferred, and perhydropolysilazane (PHPS) is particularly preferred because gas barrier performance is maintained even when bent and under high temperature and high humidity conditions.
  • PHPS perhydropolysilazane
  • the content of polysilazane in the gas barrier layer before the modification treatment is 100% by mass when the total mass of the gas barrier layer is 100% by mass, that is, the entire layer is formed of polysilazane. Can do.
  • the polysilazane content in the layer is preferably in the range of 10 to 99% by mass, and in the range of 40 to 95% by mass. More preferably, it is particularly preferably in the range of 70 to 95% by mass.
  • the formation method by the coating method of the gas barrier layer as described above is not particularly limited, and a known method can be applied. However, a coating solution for forming a gas barrier layer containing a silicon compound and, if necessary, a catalyst in an organic solvent is used. It is preferable to apply a known wet coating method, evaporate and remove the solvent, and then perform a modification treatment.
  • the modification treatment of the gas barrier layer formed by the coating method in the present invention refers to a conversion reaction of a silicon compound to silicon oxide, silicon oxynitride, or the like.
  • the gas barrier film as a whole has gas barrier properties. This refers to a process for forming an inorganic oxide thin film containing a silicon element at a level that can contribute to the development of (water vapor permeability is preferably 1 ⁇ 10 ⁇ 3 g / m 2 ⁇ day or less).
  • the conversion reaction of the silicon compound as a precursor to silicon oxide or silicon oxynitride can be applied by appropriately selecting a known method.
  • Specific examples of the modification treatment include plasma treatment, ultraviolet irradiation treatment (for example, excimer irradiation treatment), and heat treatment.
  • the modification treatment include plasma treatment, ultraviolet irradiation treatment (for example, excimer irradiation treatment), and heat treatment.
  • the formation of a silicon oxide layer or silicon oxynitride layer by a substitution reaction of a silicon compound requires a high temperature of 450 ° C. or higher, so that it can be applied to flexible substrates such as plastics. difficult. For this reason, it is preferable to perform heat treatment in combination with other reforming treatments by limiting the upper limit temperature to be applied.
  • the modification treatment from the viewpoint of adapting to a plastic substrate, a conversion method using a plasma treatment or an ultraviolet irradiation treatment capable of a conversion reaction at a lower temperature is preferable.
  • a known method can be used as the plasma treatment that can be used as the modification treatment, and an atmospheric pressure plasma treatment or the like can be preferably used.
  • the atmospheric pressure plasma CVD method which performs plasma CVD processing near atmospheric pressure, does not require a reduced pressure environment and does not require a large vacuum facility.
  • the deposition rate is high, and the average free path of gas is very high under high pressure conditions under atmospheric pressure compared to the conditions of normal CVD. Since it is short, a very homogeneous film can be obtained.
  • nitrogen gas or a gas containing Group 18 atoms of the long-period periodic table specifically helium, neon, argon, krypton, xenon, radon, or the like is used.
  • nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.
  • the modification treatment can be efficiently performed by heat-treating the coating film containing the silicon compound in combination with another modification treatment, preferably an excimer irradiation treatment described later.
  • the gas barrier layer is formed using a sol-gel method
  • the heating temperature is preferably in the temperature range of 50 to 300 ° C., more preferably in the temperature range of 70 to 200 ° C.
  • the heating time is preferably in the range of 0.005 to 60 minutes, more preferably.
  • Heat treatment methods include, for example, a method in which a resin substrate is brought into contact with a heating element such as a heat block, the coating film is heated by heat conduction, a method in which the atmosphere is heated by an external heater such as a resistance wire, and a red color such as an IR heater.
  • a heating element such as a heat block
  • the coating film is heated by heat conduction
  • a method in which the atmosphere is heated by an external heater such as a resistance wire
  • a red color such as an IR heater.
  • UV irradiation treatment As one of the modification treatment methods, treatment by ultraviolet irradiation is preferable.
  • Ozone and active oxygen atoms generated by ultraviolet rays (synonymous with ultraviolet light) have high oxidation ability, and can form silicon oxide films or silicon oxynitride films with high density and insulation at low temperatures It is.
  • the resin base material is heated, and O 2 and H 2 O contributing to ceramicization (silica conversion), an ultraviolet absorber, and polysilazane itself are excited and activated, so that polysilazane is excited and polysilazane is excited.
  • the formation of ceramics is promoted, and the resulting gas barrier layer becomes denser. Irradiation with ultraviolet rays is effective at any time after the formation of the coating film.
  • any commonly used ultraviolet ray generator can be used.
  • the ultraviolet ray referred to in the present invention generally refers to an electromagnetic wave having a wavelength in the range of 10 to 400 nm, but in the case of an ultraviolet irradiation treatment other than the vacuum ultraviolet ray (10 to 200 nm) treatment described later, preferably 210. Ultraviolet light in the wavelength range of ⁇ 375 nm is used.
  • the ultraviolet irradiation it is preferable to set the irradiation intensity and the irradiation time within a range in which the resin base material carrying the irradiated gas barrier layer is not damaged.
  • a 2 kW (80 W / cm ⁇ 25 cm) lamp is used, and the irradiation intensity of the resin substrate surface is 20 to 300 mW / cm 2 , preferably 50 to
  • the distance between the resin substrate and the ultraviolet irradiation lamp can be set to 200 mW / cm 2 and irradiation can be performed for 0.1 seconds to 10 minutes.
  • the temperature of the resin base material during the ultraviolet irradiation treatment is 150 ° C. or higher, the properties of the resin base material are impaired, such as the plastic base material being deformed or its strength deteriorated in the case of a plastic film or the like. In many cases. However, in the case of a film having high heat resistance such as polyimide, a modification treatment at a higher temperature is possible. Therefore, there is no general upper limit as the temperature of the resin substrate at the time of ultraviolet irradiation, and it can be appropriately set by those skilled in the art depending on the type of resin substrate. Moreover, there is no restriction
  • ultraviolet ray generating means examples include metal halide lamps, high pressure mercury lamps, low pressure mercury lamps, xenon arc lamps, carbon arc lamps, and excimer lamps (single wavelengths of 172 nm, 222 nm, and 308 nm, for example, USHIO INC. Manufactured by MD Excimer Co., Ltd.), UV light laser, and the like.
  • excimer lamps single wavelengths of 172 nm, 222 nm, and 308 nm, for example, USHIO INC. Manufactured by MD Excimer Co., Ltd.
  • UV light laser and the like.
  • UV irradiation can be performed either batchwise or continuously, and can be selected as appropriate depending on the shape of the resin substrate used.
  • a laminate having a gas barrier layer on the surface can be processed in an ultraviolet baking furnace equipped with an ultraviolet source as described above.
  • the ultraviolet baking furnace itself is generally known.
  • an ultraviolet baking furnace manufactured by I-Graphics Co., Ltd. can be used.
  • the ceramic is obtained by continuously irradiating ultraviolet rays in the drying zone having the ultraviolet ray generation source as described above while transporting the laminate.
  • the time required for ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the composition and concentration of the resin substrate and gas barrier layer used.
  • the most preferable modification treatment method in forming the gas barrier layer is treatment by vacuum ultraviolet irradiation (also referred to as excimer irradiation treatment).
  • the treatment by the vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy of a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and bonds atoms with only photons called photon processes. This is a method of forming a silicon oxide film at a relatively low temperature (about 200 ° C.
  • the radiation source in the excimer irradiation treatment may be any radiation source that generates light having a wavelength in the range of 100 to 180 nm, and preferably an excimer radiator having a maximum emission at about 172 nm (for example, an Xe excimer lamp). ), Low pressure mercury vapor lamps having an emission line at about 185 nm, and medium and high pressure mercury vapor lamps having a wavelength component of 230 nm or less, and excimer lamps having a maximum emission at about 222 nm.
  • the Xe excimer lamp is excellent in luminous efficiency because it can emit ultraviolet light having a short wavelength of 172 nm as a single wavelength. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.
  • the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. Due to the high energy possessed by the active oxygen, ozone and ultraviolet radiation, the polysilazane coating can be modified in a short time.
  • ⁇ Excimer lamps have high light generation efficiency and can be lit with low power.
  • light having a long wavelength that causes a temperature rise due to light is not emitted, and energy is irradiated in the ultraviolet region, that is, a short wavelength, so that the rise in the surface temperature of the object to be fired is suppressed.
  • a gas barrier film using a flexible film material such as polyethylene terephthalate (abbreviation: PET) that is easily affected by heat as a resin base material.
  • PET polyethylene terephthalate
  • Oxygen is required for the reaction at the time of ultraviolet irradiation, but since vacuum ultraviolet rays are absorbed by oxygen, the efficiency in the ultraviolet irradiation process tends to decrease. It is preferable to carry out in a state where the water vapor concentration is low. That is, the oxygen concentration at the time of irradiation with vacuum ultraviolet rays is preferably in the range of 10 to 20000 ppm by volume, and more preferably in the range of 50 to 10,000 ppm by volume. Also, the water vapor concentration during the conversion process is preferably in the range of 1000 to 4000 ppm by volume.
  • a gas used for vacuum ultraviolet irradiation and satisfying the irradiation atmosphere is preferably a dry inert gas, and particularly preferably a dry nitrogen gas from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and controlling the flow rate ratio.
  • the illuminance of the vacuum ultraviolet rays on the coating surface received by the polysilazane coating is preferably in the range of 1 mW / cm 2 to 10 W / cm 2 , and in the range of 30 to 200 mW / cm 2. More preferably, it is more preferably in the range of 50 to 160 mW / cm 2 . If the illuminance of the vacuum ultraviolet ray is 1 mW / cm 2 or more, sufficient reforming efficiency is obtained, and if it is 10 W / cm 2 or less, the coating film is less likely to be ablated and the resin substrate is less likely to be damaged.
  • the amount of irradiation energy (integrated light amount) of vacuum ultraviolet rays on the coating surface is preferably within the range of 10 to 10000 mJ / cm 2 , more preferably within the range of 100 to 8000 mJ / cm 2 , and 200 to 6000 mJ. More preferably within the range of / cm 2 . If the amount of irradiation energy of vacuum ultraviolet rays is 10 mJ / cm 2 or more, the modification can be sufficiently advanced. If it is 10,000 mJ / cm ⁇ 2 > or less, the generation
  • the vacuum ultraviolet light used for the modification may be generated by plasma formed of a gas containing at least one of CO, CO 2 and CH 4 .
  • a gas containing at least one of CO, CO 2 and CH 4 hereinafter also referred to as carbon-containing gas
  • a carbon-containing gas may be used alone, but a rare gas or H 2 is used as a main gas. It is preferable to add a small amount of the contained gas.
  • plasma generation methods include capacitively coupled plasma.
  • the film composition of the gas barrier layer can be determined by measuring the atomic composition ratio using an XPS surface analyzer. It can also be determined by cutting the gas barrier layer and measuring the cut surface with an XPS surface analyzer to measure the atomic composition ratio.
  • the film density of the gas barrier layer can be appropriately set according to the purpose.
  • the film density of the gas barrier layer is preferably in the range of 1.5 to 2.6 g / cm 3 . If it is in this range, the density of the film will be higher, and it will be difficult for the gas barrier property to deteriorate and the film to be oxidized by humidity.
  • the gas barrier layers may have the same composition or different compositions.
  • the gas barrier layer may consist only of a layer formed by a vacuum film-forming method or only a layer formed by a coating method.
  • a combination of a layer formed by a vacuum film forming method and a layer formed by a coating method may be used.
  • the gas barrier layer preferably contains a nitrogen element or a carbon element from the viewpoints of stress relaxation and absorption of ultraviolet rays used in forming a metal atom-containing layer described later.
  • a nitrogen element or a carbon element from the viewpoints of stress relaxation and absorption of ultraviolet rays used in forming a metal atom-containing layer described later.
  • it has properties such as stress relaxation and ultraviolet absorption, and by improving the adhesion between the gas barrier layer and the metal atom-containing layer, effects such as improved gas barrier properties are obtained. It is preferable.
  • the chemical composition of the gas barrier layer can be controlled by the type and amount of the silicon compound and the like when forming the gas barrier layer, and the conditions when modifying the layer containing the silicon compound.
  • the gas barrier film constituting the optical film of the present invention has a gas barrier layer and an adhesive layer on the resin substrate, and the adhesive layer 1 satisfies the condition (1) defined below or The adhesive layer 2 satisfies the condition (2).
  • Adhesive layer 1 containing a compound containing at least an acryloyl group and a compound containing a silicon atom, and the thickness of the adhesive layer is in the range of 100 to 1000 nm.
  • Adhesive layer 2 containing inorganic fine particles having an average primary particle size in the range of 30 to 100 nm, organic fine particles having an average primary particle size in the range of 300 to 1000 nm, and a binder component.
  • the gas barrier film (1) of the present invention has a gas barrier layer (3) on the resin base material (2), and further has at least unreacted acryloyl thereon.
  • An adhesive layer 1 (4) containing a compound containing a group and a compound containing a silicon atom and having a layer thickness in the range of 100 to 1000 nm is provided.
  • a specific amount of unreacted acryloyl group (CH 2 ⁇ CH—C ( ⁇ O) —) is present in the surface region of the adhesive layer 1 (4). It is preferable.
  • the acryloyl group here is an acyl group derived from acrylic acid.
  • FIG. 2 there is no particular limitation on the form in which a specific amount of acryloyl group (5) is present in the surface region of adhesive layer 1 (4).
  • the adhesive layer 1 (4) according to the present invention is formed as a thick film having a thickness of 100 to 1000 nm, and the layer thickness of the adhesive layer 1 can be confirmed by an observation means such as TEM.
  • a compound containing an acryloyl group and a compound containing a silicon atom may be individually contained, or a compound containing an acryloyl group and a silicon atom in the same structure may be used. Also good.
  • the compound containing an acryloyl group include an acryloyl group-containing compound (including an acryloyl group-containing polymer) such as an acrylate compound, an acrylsilane coupling agent containing an acryloyl group, and the like.
  • a silane coupling agent, a silicon dioxide particle (silica particle), etc. can be mentioned.
  • the compound containing an acryloyl group is not particularly limited, but an acryloyl group-containing compound (including an acryloyl group-containing polymer) such as an acrylate compound or an acrylsilane coupling agent containing an acryloyl group is preferably used. Can do.
  • acryloyl group-containing compound examples include a polymer type and a monomer type, and examples thereof include polyol polyacrylate, epoxy acrylate, urethane acrylate, and acrylic monomer.
  • Polyol polyacrylate is an ester compound of polyol and acrylic acid.
  • the polyol selected here is not particularly limited.
  • polyester polyols such as succinate and polycaprolactone, and ⁇ , ⁇ -poly (1,6-hexylene carbonate) diol, ⁇ , ⁇ -poly (3-methyl-1,5- Styrene carbonate) diol, ⁇ , ⁇ -poly [(1,6-hexylene: 3-methyl-pentamethylene) carbonate] diol, ⁇ , ⁇ -poly [(1,9-nonylene: 2-methyl-1,8 (Octylene) carbonate] (poly) carbonate diols such as diols. These may be used alone or in combination of two or more.
  • Epoxy acrylate is a compound obtained by adding acrylic acid to the terminal epoxy group of an epoxy resin.
  • an epoxy resin There is no restriction
  • bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, glycidyl ester type epoxy resin, biphenyl type epoxy resin and the like can be mentioned. These may be used alone or in combination of two or more.
  • Urethane acrylate is a compound obtained by reacting polyol, polyisocyanate, and hydroxyl group-containing acrylate, or polyol and isocyanato group-containing acrylate. At this time, there is no particular limitation on the polyol, polyisocyanate, hydroxyl group-containing acrylate, and isocyanate group-containing acrylate to be selected.
  • the polyol is the same as the polyol used in the polyol polyacrylate.
  • polyisocyanate examples include 1,4-cyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, , 4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, lysine triisocyanate, lysine diisocyanate, hexamethylene diisocyanate 2,4,4-trimethylhexamethylene diisocyanate, 2,2,4-trimethylhexanemethylene diisocyanate, norbornane diisocyanate, etc.
  • hydroxyl group-containing acrylate examples include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, 2- Hydroxy-3- (o-phenylphenoxy) propyl acrylate, 2-hydroxyethylacrylamide and the like can be mentioned. These may be used alone or in combination of two or more.
  • isocyanato group-containing acrylate examples include 2-isocyanatoethyl acrylate. These may be used alone or in combination of two or more.
  • the acrylic monomer is a compound obtained by removing the polyol polyacrylate, the epoxy acrylate, and the urethane acrylate from the acryloyl group-containing compound.
  • acrylic monomers include acryloyl-containing compounds having a cyclic ether group such as glycidyl acrylate and tetrahydrofurfuryl acrylate, cyclohexyl acrylate, isobornyl acrylate, dicyclopentenyl acrylate, dicyclopentenyloxyethyl acrylate, and dicyclopentanyl acrylate.
  • a cyclic ether group such as glycidyl acrylate and tetrahydrofurfuryl acrylate, cyclohexyl acrylate, isobornyl acrylate, dicyclopentenyl acrylate, dicyclopentenyloxyethyl acrylate, and dicyclopentanyl acrylate.
  • a monofunctional acryloyl group-containing compound having a cyclic aliphatic group such as dicyclopentanylethyl acrylate, 4-tert-butylcyclohexyl acrylate, lauryl acrylate, isononyl acrylate, 2-ethylhexyl acrylate, isobutyl acrylate, tert-butyl acrylate, Monofunctional acryloyl having a chain aliphatic group such as isooctyl acrylate and isoamyl acrylate Group-containing compounds, monofunctional acryloyl group-containing compounds having aromatic rings such as benzyl acrylate, phenoxyethyl acrylate, polyethylene glycol diacrylate, decanediol diacrylate, nonanediol diacrylate, hexanediol diacrylate, tricyclodecane dimethanol diacrylate And polyfunctional acryloyl group-containing compounds such as trimethylolprop
  • an acrylate compound monomer or a methacrylate compound monomer it is also possible to obtain as a commercial product, for example, a photocurable monomer (trade name: NK ester) sold by Shin-Nakamura Chemical Co., Ltd.
  • a photocurable monomer (trade name: NK ester) sold by Shin-Nakamura Chemical Co., Ltd.
  • Monofunctional acrylates eg, A-LEN-10, AM-90G, AM-130G, AMP-20GY, A-SA, S-1800A, etc.
  • bifunctional acrylates eg, 701A, A-200, A-400
  • polyfunctional acrylates for example, A-9300, A-GLY-9E, A-TMM-3, A-TMPT, AD-TMP, A-TMMT, A-DPH, etc.
  • methacrylate compound monomer monofunctional methacrylate (for example, CB-1, M-90G, PHE-1G, S, SA, etc.), bifunctional methacrylate (for example, 1G to 4G, BPE-80N, DCP, HD-N, HOD-N, NPG, 9PG, etc.).
  • monofunctional methacrylate for example, CB-1, M-90G, PHE-1G, S, SA, etc.
  • bifunctional methacrylate for example, 1G to 4G, BPE-80N, DCP, HD-N, HOD-N, NPG, 9PG, etc.
  • the acrylic silane coupling agent containing an acryloyl group in the present invention is a compound containing an acryloyl group and a silicon atom in the same structure, and may be a monomer tarp or a polymer type.
  • silane coupling agents containing acryloyl groups examples include 3-acryloyloxypropyltrimethoxysilane, 3-acryloyloxypropyltriethoxysilane, 3-acryloyloxypropylmethyldimethoxysilane, 3- Examples include acryloyloxypropylmethyldiethoxysilane.
  • acryloyl group-containing silane coupling agents include, as monomer types, KBM-5103 (3-acryloxypropyltrimethoxysilane) and KMB-502 (3-methacryloxypropylmethyldimethoxy) manufactured by Shin-Etsu Silicone.
  • KBM-503 (3-methacryloxypropyltrimethoxysilane), KBE-502 (3-methacryloxypropylmethyldiethoxysilane), KBE-503 (3-methacryloxypropyltriethoxysilane), manufactured by Dow Corning Z-6030 (3-methacryloxypropyltrimethoxysilane), Z-6033 (3-methacryloxypropylmethyldimethoxysilane), A1597 (3- (trimethoxysilyl) propyl acrylate) manufactured by Tokyo Chemical Industry Co., Ltd.
  • D4679 (3- [dimethoxy (methyl) silyl] propyl methacrylate), M0725 (3- (trimethoxysilyl) propyl methacrylate), M1324 (3- [tris (trimethylsilyloxy) silyl] propyl methacrylate, M1530 (3- [dimethoxy (Methyl) silyl] propyl methacrylate, M2525 (3-methoxydimethylsilyl) propyl acrylate, T2676 (3- (triethoxysilyl) methacrylate, etc. can be mentioned, and the polymer type is X-12-1048 (Shin-Etsu).
  • acryloyl group-containing silane coupling agents may be used alone or in combination of two or more, and acryloyl group-containing silane cups may also be used.
  • ring Examples of “compounds containing an acryloyl group and an alkoxysilyl group in one molecule” include, for example, polyorganosilsesquioxane introduced with a (meth) acryloyl group and polysiloxane-modified acrylic containing an unsaturated double bond Examples thereof include organic-inorganic hybrid materials such as resins, etc. These materials may be independently prepared with reference to conventionally known knowledge, or commercially available products may be used.
  • silane coupling agent (Compounds containing silicon atoms) ⁇ Silane coupling agent>
  • the silane coupling agent applicable to the present invention is not particularly limited, and examples thereof include the silane coupling agents listed below.
  • a silane coupling agent having a functional group such as an epoxy group (glycidoxy group), an amino group, a mercapto group, or a (meth) acryloyl group, and a functional group having reactivity with these functional groups.
  • a compound having a hydrolyzable silyl group obtained by reacting an agent, another coupling agent, polyisocyanate and the like with each functional group in an arbitrary ratio can also be used.
  • the silane coupling agent can be obtained as a commercial product.
  • KBM-1003 and KBE-1003 having a vinyl group as a functional group KBM-303, KBM-402, KMB-403, KBE-402 and KBE-403 having an epoxy group as a functional group, and a styryl group as a functional group.
  • KBM-1403 having an amino group as a functional group, KBM-602, KBM-603, KBM-903, KBE-903, KBE-9103, KBM-573, KBM-575 as a functional group, KBM- having an isocyanurate group as a functional group 9659, KBE-585 having a ureido group as a functional group, KBM-802, KBM-803 having a mercapto group as a functional group, and the like (manufactured by Shin-Etsu Silicone).
  • Z-6610, Z-6011, Z-6020, Z-6094, Z-6883, Z-6032 having an amino group as a functional group and Z having an epoxy group as a functional group are commercially available from Dow Corning. -6040, Z-6044, Z-6043, Z-6075, Z-6300, Z-6519, etc. having a vinyl group as a functional group.
  • olefinyl silanes glycidyloxyalkyl silanes, alkyl silanes, aryl silanes, aryl alkyl silanes, fluoroalkyl, which are described as “silane coupling agents” on the website of Tokyo Chemical Industry Co., Ltd. Silanes etc. can be mentioned.
  • silicon dioxide particles can be used as the compound containing silicon atoms.
  • silica particles produced by a gas phase method, a melting method, a sol-gel method or the like can be used.
  • a silica particle a well-known thing can be used.
  • the shape may be spherical or indeterminate, and is not limited to ordinary colloidal silica, and may be hollow particles, porous particles, core / shell type particles, or the like.
  • silica particles include Aerosil 200, 200V, 300, R972, R972V, R974, R976, R976S, R202, R812, R805, OX50, TT600, RY50, RX50, manufactured by Nippon Aerosil Co., Ltd. NY50, NAX50, NA50H, NA50Y, NX90, RY200S, RY200, RX200, R8200, RA200H, RA200HS, NA200Y, R816, R104, RY300, RX300, R106, and the like.
  • colloidal silica can be mentioned. Colloidal silica is obtained by heat-aging a silica sol obtained by metathesis of sodium silicate with an acid or the like or passing through an ion exchange resin layer.
  • an organosilica sol that can stably disperse nano-level colloidal silica in an organic solvent.
  • Organosilica sol an organic solvent-dispersed silica sol, is commercially available from Nissan Chemical Industries, Ltd.
  • the general grades are methanol silica sol (dispersion medium: methanol, average particle size: 10 to 15 nm), MA-ST-M ( Dispersion medium: methanol, average particle diameter: 20 to 25 nm), MA-ST-L (dispersion medium: methanol, average particle diameter: 40 to 50 nm), IPA-ST (dispersion medium: isopropyl alcohol, average particle diameter: 10 to 15 nm), IPA-ST-L (dispersion medium: isopropyl alcohol, average particle diameter: 40 to 50 nm), EG-ST (dispersion medium: ethylene glycol, average particle diameter: 10 to 15 nm), PMA-ST (dispersion medium: Propylene glycol monomethyl ether acetate, average particle size: 10-15 nm), MEK-ST-40 (min Medium: methyl ethyl ketone, average particle size:
  • the particle size of the silica particles is not particularly limited, but the average particle size is preferably 3 to 200 nm.
  • the average particle size of primary particles of silicon dioxide dispersed in a primary particle state is more preferably 3 to 200 nm, and further preferably 3 to 100 nm. Particularly preferred is 3 to 50 nm.
  • the adhesive layer contains organic fine particles having an average particle diameter in the range of 300 to 1000 nm from the viewpoint of further improving the heat resistance.
  • organic fine particles applicable to the present invention include organic fine particles composed of resin components below, but the present invention is not limited to these.
  • Acrylic resin Polymethyl methacrylate, polyethyl methacrylate, propyl methacrylate, dimethylaminoethyl methacrylate, methyl acrylate, ethyl acrylate, methoxyethyl acrylate
  • Copolymer acrylic resin 1) Resin monomers and vinyl chloride, chloride Vinylidene, vinylpyridine, styrene, acrylonitrile, acrylic acid, methacrylic acid copolymer resin 3) Vinyl chloride resin: polyvinyl chloride, vinyl chloride and vinyl acetate, vinylidene chloride, acrylic acid, methacrylic acid, maleic acid, maleic acid ester Copolymer resin with acrylonitrile 4) Polyvinyl acetate and its partially saponified resin 5) Styrene resin: Copolymer resin of polystyrene, styrene and acrylonitrile 6) Vinylidene chloride resin: Poly salt Vinylidene, vinylidene chloride and
  • the average particle size of the organic fine particles is preferably 300 to 1000 nm, more preferably 400 to 900 nm.
  • the average particle diameter of the organic fine particles is obtained by calculating the equivalent circle diameter from the projected area using an electron microscope.
  • Method for forming adhesive layer 1 As a method for forming an adhesive layer according to the present invention, a solution (adhesive layer forming coating solution) in which each constituent material of the adhesive layer described above is dissolved in an appropriate solvent is applied to the surface of the gas barrier layer and dried. A method is illustrated.
  • the method for forming the adhesive layer is not particularly limited, and a coating solution for forming the adhesive layer containing the adhesive layer forming material is prepared by dipping, spraying, slide coating, bar coating, roll coater, die coater, gravure coater. It can be formed by coating on the gas barrier layer by a known method such as screen printing and removing the organic solvent by a drying treatment in an atmosphere such as air or nitrogen.
  • An appropriate photopolymerization initiator is added to the coating solution for forming the adhesive layer, the coating solution obtained by applying the coating solution and drying is subjected to a light irradiation treatment to obtain an acryloyl group-containing compound. Part may be polymerized. However, if it is completely polymerized, the unreacted acryloyl group contained in the adhesive layer disappears, so the polymerization should not be performed completely.
  • Solvents include, for example, toluene, xylene and other high boiling aromatic solvents; ester solvents such as butyl acetate, ethyl acetate and cellosolve acetate; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; methanol, ethanol, isopropyl alcohol And alcohol solvents such as diethyl ether, dibutyl ether, tetrahydrofuran, dioxane, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, and diethylene glycol monomethyl ether.
  • the photopolymerization initiator is not particularly limited as long as it is a compound that generates radicals that contribute to the initiation of radical polymerization upon irradiation with light such as near infrared rays, visible rays, and ultraviolet rays.
  • photopolymerization initiator examples include acetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, xanthone, fluorenone, benzaldehyde, fluorene, anthraquinone, tri Phenylamine, carbazole, 3-methylacetophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, 4,4'-diaminobenzophenone, benzoin propyl ether, benzoin ethyl ether, benzyldimethyl ketal, 1- (4-isopropylphenyl) ) -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, thioxanthone, diethylthioxanthone, -Isopropylthiox
  • the gas barrier film (101) of the second configuration according to the present invention has a gas barrier layer (103) on the resin base material (102), and further has an average on it.
  • Adhesive layer 2 containing inorganic fine particles (106) having a primary particle size in the range of 30 to 100 nm, organic fine particles (107) having an average primary particle size in the range of 300 to 1000 nm, and a binder component (105). 104).
  • the inorganic fine particles contained in the adhesive layer 2 are silica particles.
  • the binder component is preferably a silane coupling agent, and more preferably a polymer type silane coupling agent.
  • the binder component is an acryloyl group-containing compound, and further an acrylic polymer.
  • One feature of the adhesive layer according to the present invention is that it contains inorganic fine particles having an average primary particle size in the range of 30 to 100 nm.
  • inorganic fine particles applicable to the present invention include titanium oxide, zinc oxide, alumina (aluminum oxide), silica (silicon oxide), tin oxide, antimony oxide, indium oxide, bismuth oxide, magnesium oxide, lead oxide, and oxidation.
  • the fine particles include tantalum, yttrium oxide, cobalt oxide, copper oxide, manganese oxide, selenium oxide, iron oxide, zirconium oxide, germanium oxide, niobium oxide, molybdenum oxide, and vanadium oxide.
  • Particles (TiO 2 ) or silica particles (silicon dioxide, SiO 2 ) are preferable, and silica particles are more preferable.
  • silica particles are preferably used as the inorganic fine particles.
  • the refractive index of silica particles is in the range of 1.44 to 1.50.
  • silicon dioxide As silicon dioxide, the same thing as the silicon dioxide particle (silica particle) used for formation of the above-mentioned adhesion layer 1 can be mentioned.
  • the titanium oxide preferably contains anatase type (tetragonal) titanium dioxide or brookite type (orthorhombic) titanium oxide. Further, the BET specific surface area of titanium oxide is preferably 10 to 300 m 2 / g, and more preferably 20 to 100 m 2 / g. The particle size distribution of titanium oxide is preferably sharp. The refractive index of titanium oxide is in the range of 2.50 to 2.72.
  • an aqueous titanium oxide sol preferably has a solid content of 40% or less, more preferably 30% or less.
  • aqueous titanium oxide sol a commercially available product may be used, or it may be prepared and used.
  • preparation method any conventionally known method can be used.
  • Titanium oxide particles are also available as commercial products, for example, commercial products T-805 and T-604 manufactured by Nippon Aerosil Co., Ltd., commercial products MT-100S, MT-100B, and MT-500BS manufactured by Teica. , MT-600, MT-600SS, JA-1, commercial products TA-300SI, TA-500, TAF-130, TAF-510, TAF-510T manufactured by Fuji Titanium, commercial products IT-S manufactured by Idemitsu Kosan , IT-OA, IT-OB, IT-OC, etc., titanium oxide particles having an average primary particle size in the range of 30 to 100 nm can be selected and used.
  • a commercial product manufactured by Ishihara Sangyo Co., Ltd. can also be applied, and is a TOO-55 series manufactured by a firing method of ultrafine titanium oxide, TTO-55 (A) (rutile crystal, surface treatment: Al ( OH) 3 , average particle size: 30-50 nm), TTO-55 (B) (rutile crystal, surface treatment: Al (OH) 3 , average particle size: 30-50 nm), TTO-55 (C) (rutile crystal) Surface treatment: Al (OH) 3 / stearic acid, average particle size: 30 to 50 nm).
  • the particle size of the inorganic fine particles such as silica particles is characterized in that the average primary particle size is in the range of 30 to 100 nm, preferably in the range of 30 to 80 nm, and more preferably It is within the range of 40 to 70 nm.
  • the average primary particle size of the inorganic fine particles according to the present invention including the silica particles was photographed by magnifying the inorganic fine particles 10,000 times with a transmission electron microscope, and 300 particles were randomly observed as the primary particles, and image analysis was performed. Is a value obtained by calculating the measured value as the number average diameter of the ferret diameter.
  • the cross section was cut out, the cross section was photographed with a transmission electron microscope, the diameter of 300 inorganic fine particles present was randomly measured, and the arithmetic average value was averaged.
  • the primary particle size can also be determined. At this time, when the inorganic fine particles were not circular, a diameter corresponding to a circle having the same area was obtained and used as the diameter of the inorganic fine particles.
  • the amount of the inorganic fine particles according to the present invention added to the adhesive layer is not particularly limited, and is in the range of 0.5 to 50% by mass with respect to the total solid content of the adhesive layer, preferably 1.0 to It is within the range of 40% by mass, and more preferably within the range of 5.0 to 30% by mass.
  • Organic fine particles One feature of the adhesive layer according to the present invention is that it contains organic fine particles having an average primary particle size in the range of 300 to 1000 nm.
  • organic fine particles applicable to the present invention include organic fine particles having an average primary particle size comprised of the following resin components in the range of 300 to 1000 nm, but the present invention is not limited to these. is not.
  • Acrylic resin polymethyl methacrylate, polyethyl methacrylate, propyl methacrylate, dimethylaminoethyl methacrylate, methyl acrylate, ethyl acrylate, methoxyethyl acrylate, etc.
  • Copolymer acrylic resin 1) Resin monomer and vinyl chloride, Vinylidene chloride, vinyl pyridine, styrene, acrylonitrile, acrylic acid, methacrylic acid copolymer resin, etc.
  • Vinyl chloride resin polyvinyl chloride, vinyl chloride and vinyl acetate, vinylidene chloride, acrylic acid, methacrylic acid, maleic acid, maleic Acidic ester, copolymer resin with acrylonitrile, etc.
  • Polyvinyl acetate and its partially saponified resin 5) Styrol resin: Copolymer resin of polystyrene, styrene and acrylonitrile, etc. 6) Vinylidene chloride resin Polyvinylidene chloride, vinylidene chloride and acrylonitrile copolymer resin, etc. 7) Acetal resin: Polyvinyl formal, polybutyl butyral, etc.
  • Fiber tree Cellulose acetate, cellulose propionate, cellulose butyrate, cellulose nitrate, etc.
  • Melamine resin Melamine-formaldehyde Condensation resin, benzoguanamine-melamine-formaldehyde condensation resin, etc.
  • organic fine particle dispersions are prepared by dissolving the polymer in an organic solvent and mixing and dispersing with water or an aqueous gelatin solution with vigorous stirring, or emulsion polymerization, precipitation polymerization, Alternatively, a method of depositing particles while polymerizing monomers by pearl polymerization, or a fine particle powder of a matting agent, using a stirrer, a homogenizer, a colloid mill, a flow jet mixer, an ultrasonic disperser, etc. Obtained by dispersing in a liquid.
  • the average primary particle size of the organic fine particles was measured by magnifying the organic fine particles at a magnification of 10000 times with a transmission electron microscope, randomly observing 300 particles as primary particles, and measuring the number average diameter of the ferret diameter by image analysis. The value can be calculated and obtained.
  • the cross-sectional part was image
  • the average particle diameter of the organic fine particles is characterized by 300 to 1000 nm, but preferably 400 to 900 nm.
  • the amount of the organic fine particles according to the present invention added to the adhesive layer is not particularly limited, and is within the range of 0.5 to 50% by mass, preferably 1.0 to It is within the range of 40% by mass, and more preferably within the range of 5.0 to 30% by mass.
  • the mass ratio of the inorganic fine particles to the organic fine particles in the adhesive layer according to the present invention is not particularly limited, and can be appropriately selected from the range of 1:99 to 99: 1 as inorganic fine particles: organic fine particles, Preferably, it is in the range of 10:90 to 90:10, more preferably in the range of 20:80 to 80:20.
  • the adhesive layer according to the present invention contains a binder component together with the inorganic fine particles and the organic fine particles described above.
  • a silane coupling agent, a polymer type silane coupling agent, an acryloyl group containing compound, an acrylic polymer, etc. are preferable aspects, More specifically, as an acryloyl group containing compound, silane coupling Examples thereof include an acryloyl group-containing acrylic silane coupling agent and a polymer type acrylic silane coupling agent containing an agent in the structure.
  • silane coupling agent ⁇ Monomer type silane coupling agent>
  • Specific examples of the silane coupling agent applicable to the present invention include the same compounds as the silane coupling agent applicable to the formation of the adhesive layer 1.
  • the acrylic silane coupling agent containing an acryloyl group in the present invention is a compound containing an unreacted acryloyl group and a silicon atom in the same structure, and may be a monomer type or a polymer type.
  • Specific examples of the acrylsilane coupling agent containing an acryloyl group include the same compounds as the acrylsilane coupling agent containing an acryloyl group applicable to the formation of the adhesive layer 1 described above.
  • acryloyl group-containing compound examples include polymer tarps and monomer types, and examples include polyol polyacrylates, epoxy acrylates, urethane acrylates, and acrylic monomers. Specific examples of the acryloyl group-containing compound include the same compounds as the acryloyl group-containing compound applicable to the formation of the adhesive layer 1 described above.
  • the layer thickness of the adhesive layer 2 according to the present invention is preferably an aspect in which the average primary particle size of the inorganic fine particles is equal to or greater than and less than the average primary particle size of the organic fine particles.
  • the actual layer thickness is 100 nm or more and less than 1000 nm, more preferably in the range of 100 to 800 nm, and particularly preferably in the range of 200 to 500 nm.
  • the method for forming the adhesive layer 2 is not particularly limited, and a coating solution for forming an adhesive layer containing an adhesive layer forming material is prepared by dipping, spraying, slide coating, bar coating, roll coater, die coater, gravure. It can be formed by coating on the gas barrier layer by a known method such as a coater method or a screen printing method, and removing the organic solvent by a drying treatment in an atmosphere such as air or nitrogen.
  • An appropriate photopolymerization initiator is added to the coating solution for forming the adhesive layer, the coating solution obtained by applying the coating solution and drying is subjected to a light irradiation treatment to obtain an acryloyl group-containing compound. Part may be polymerized.
  • Solvents include, for example, toluene, xylene and other high boiling aromatic solvents; ester solvents such as butyl acetate, ethyl acetate and cellosolve acetate; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; methanol, ethanol, isopropyl alcohol And alcohol solvents such as diethyl ether, dibutyl ether, tetrahydrofuran, dioxane, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, and diethylene glycol monomethyl ether.
  • the photopolymerization initiator is not particularly limited as long as it is a compound that generates radicals that contribute to the initiation of radical polymerization upon irradiation with light such as near infrared rays, visible rays, and ultraviolet rays.
  • photopolymerization initiator examples include acetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, xanthone, fluorenone, benzaldehyde, fluorene, anthraquinone, tri Phenylamine, carbazole, 3-methylacetophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, 4,4'-diaminobenzophenone, benzoin propyl ether, benzoin ethyl ether, benzyldimethyl ketal, 1- (4-isopropylphenyl) ) -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, thioxanthone, diethylthioxanthone, -Isopropylthiox
  • the gas barrier layer and the adhesive layer 1 or the adhesive layer 2 are formed on the resin base material, but other functions are provided within the range not impairing the object effects of the present invention.
  • An adhesive layer may be provided.
  • Specific other functional layers include an underlayer (also referred to as a smooth layer or a primer layer), an anchor coat layer (also referred to as an anchor layer), a bleed-out prevention layer, a protective layer, a moisture absorption layer, or an antistatic layer. Examples include functionalized layers.
  • the gas barrier film of the present invention may have, for example, a smooth layer or a primer layer as a base layer between the resin substrate and the gas barrier layer.
  • the underlayer is for flattening the rough surface of the resin base material with protrusions or the like, or for flattening by filling the unevenness and pinholes generated in the gas barrier layer with the protrusions present on the resin base material.
  • Such an underlayer may be formed of any material, but is preferably composed of a carbon-containing polymer.
  • the underlayer is preferably configured to include a carbon-containing polymer, for example, a curable resin.
  • a curable resin is not particularly limited, and the active energy ray curable resin or the thermosetting material obtained by irradiating the active energy ray curable material with an active energy ray such as ultraviolet ray to be cured is heated.
  • the thermosetting resin etc. which are obtained by curing by the above method.
  • UV curable organic / inorganic hybrid hard coating material manufactured by JSR Corporation OPSTAR (registered trademark) series (polymerizable unsaturated group on silica fine particles) And a compound obtained by bonding an organic compound having a compound (a).
  • thermosetting materials specifically, TutProm series (Organic polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid silicone manufactured by Adeka, manufactured by DIC Corporation Unidic (registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistance epoxy resin), silicone resin X-12-2400 (trade name) manufactured by Shin-Etsu Chemical Co., Ltd., Nittobo Co., Ltd.
  • thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, silicone resin, polyamidoamine-epichlorohi Phosphorus resins.
  • the smoothness of the underlayer is a value expressed by the surface roughness specified in JIS B 0601: 2001, and the maximum cross-sectional height Rt (p) is preferably in the range of 10 to 30 nm.
  • the surface roughness is calculated from an uneven cross-sectional curve continuously measured by an AFM (Atomic Force Microscope) with a detector having a stylus having a minimum tip radius, and the measurement direction is several tens by the stylus having a minimum tip radius. It is the roughness related to the amplitude of fine irregularities measured in a section of ⁇ m many times.
  • AFM Anamic Force Microscope
  • the thickness of the underlayer is not particularly limited, but is preferably in the range of 0.1 to 10 ⁇ m.
  • an anchor coat layer On the surface of the resin substrate according to the present invention, an anchor coat layer (anchor layer) may be formed as an easy adhesion layer for the purpose of improving adhesiveness (adhesion).
  • the anchor coat agent used in this anchor coat layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicone resin, and alkyl titanate. One type or two or more types can be used in combination.
  • a commercially available product may be used as the anchor coating agent. Specifically, a siloxane-based UV curable polymer solution (manufactured by Shin-Etsu Chemical Co., Ltd., “X-12-2400” 3% isopropyl alcohol solution) can be used.
  • the thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10.0 ⁇ m.
  • the gas barrier film of the present invention can further have a bleed-out preventing layer.
  • the bleed-out prevention layer is used for the purpose of suppressing the bleed-out phenomenon in which unreacted oligomers are transferred from the film base material to the surface when the film having the base layer is heated to contaminate the contact surface. It is provided on the opposite surface of the resin substrate having a (smooth) layer.
  • the bleed-out prevention layer may basically have the same configuration as the base (smooth) layer as long as it has this function.
  • Compounds that can be included in the bleed-out prevention layer include polyunsaturated organic compounds having two or more polymerizable unsaturated groups in the molecule, or one polymerizable unsaturated group in the molecule.
  • Hard coat agents such as unitary unsaturated organic compounds can be mentioned.
  • the thickness of the bleed-out prevention layer is in the range of 1 to 10 ⁇ m, preferably in the range of 2 to 7 ⁇ m.
  • the gas barrier film of the present invention can be used for various applications.
  • the ultraviolet curable resin layer is disposed adjacent to the exposed surface of the adhesive layer having an acryloyl group (unreacted acryloyl group is exposed). It is suitably used for the intended use.
  • the ultraviolet curable resin layer is not particularly limited as long as it is a layer made of a cured product of an ultraviolet curable resin, but as a function thereof, in addition to a protective layer for protecting the gas barrier layer, a quantum dot (phosphor) The function as a resin layer containing particle
  • the ultraviolet curable resin layer is a quantum dot layer
  • at least one gas barrier as shown in FIG. 3A described above is used.
  • the adhesive layer constituting the gas barrier film and the phosphor particle-containing layer are disposed adjacent to each other, or two gas barrier properties as shown in FIG. 3B
  • the film is used to constitute an optical film that is arranged so that the adhesive layer containing the compound containing each acryloyl group is adjacently adhered to both surfaces of the phosphor particle-containing layer.
  • optical film the structure of the optical film in which the gas barrier film of the present invention is used and the adhesive layer of the gas barrier film and the phosphor particle-containing layer are disposed adjacent to each other will be described.
  • phosphor particles according to the present invention various phosphor particles conventionally used in various modes of light-emitting devices can be used, but it is preferable to use particles that function as quantum dots. In particular, it is preferable to use semiconductor nanoparticles described later.
  • the main components such as quantum dots and resin will be described.
  • Quantum dot In general, phosphor particles that exhibit a quantum confinement effect with a semiconductor material of nanometer size are also referred to as “quantum dots”. Such a quantum dot is a small lump within about 10 and several nanometers in which several hundred to several thousand semiconductor atoms are gathered, but when absorbing energy from an excitation source and reaching an energy excited state, the energy of the quantum dot Releases energy corresponding to the band gap.
  • quantum dots have unique optical characteristics due to the quantum size effect. Specifically, (1) By controlling the size of the particles, various wavelengths and colors can be emitted. (2) The absorption band is wide and fine particles of various sizes can be obtained with a single wavelength of excitation light. It has the characteristics that it can emit light, (3) it has a symmetrical fluorescence spectrum, and (4) it has excellent durability and fading resistance compared to organic dyes.
  • the quantum dots contained in the quantum dot-containing layer according to the present invention may be known, and can be generated using any method known to those skilled in the art.
  • suitable quantum dots and methods for forming suitable quantum dots include US Pat. No. 6,225,198, US Patent Application Publication No. 2002/0066401, US Pat. No. 6,207,229, US Pat. No. 6,322,901, US Pat. No. 6,949,206, US Pat. No. 7,572,393, US Pat. No. 7,267,865, US Pat. No. 7,374,807, US Pat. No. 2011/299299, US Pat. No. 6,861,155 Refer to the contents described in Japanese Patent Application Laid-Open No. 2012-133158, 2012-169460, 2014-078381, 2015-099636, 2015-103728, 2015-127362, etc. Can do.
  • the quantum dots according to the present invention are generated from an arbitrary material, preferably an inorganic material, more preferably an inorganic conductor or a semiconductor material.
  • Suitable semiconductor materials include any type of semiconductor, including II-VI, III-V, IV-VI and IV semiconductors.
  • Suitable semiconductor materials include Si, Ge, Sn, Se, Te, B, C (including diamond), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb. , InN, InP, InAs, InSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe , BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si 3 N 4 , Ge 3 N 4 , Al 2 O 3 , (Al,
  • the following core / shell type quantum dots for example, CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, CdTe / ZnS, and the like can be preferably used.
  • Resin can be used for the quantum dot content layer concerning the present invention as a binder holding a quantum dot.
  • the following resins can be used.
  • Polycarbonate polyarylate, polysulfone (including polyethersulfone), polyethylene terephthalate, polyester such as polyethylene naphthalate, polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate propionate , Cellulose esters such as cellulose acetate butyrate, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, syndiotactic polystyrene, norbornene, polymethylpentene, polyether ketone, polyether ketone imide, Examples thereof include polyamide resins, fluororesins, nylon resins, and acrylic resins such as polymethyl methacrylate.
  • the quantum dot-containing layer preferably has a thickness in the range of 50 to 200 ⁇ m.
  • the optimum amount of quantum dots in the quantum dot-containing layer varies depending on the compound used, but is generally preferably in the range of 15 to 60% by volume.
  • the gas barrier film of the present invention can be preferably applied to a device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air. That is, in this invention, the electronic device containing the gas barrier film of this invention and an electronic device main body can be provided.
  • Examples of the electronic device body used in the electronic device provided with the gas barrier film of the present invention include, for example, an organic electroluminescence element (organic EL element), a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, and the sun. Examples thereof include a battery (PV), a QD film having quantum dots which are phosphor particles, and the like. From the viewpoint that the effects of the present invention can be obtained more efficiently, the electronic device body is preferably an organic EL element or a solar cell, and more preferably an organic EL element.
  • Example 1 Production of gas barrier film >> [Preparation of gas barrier film 1] A gas barrier film 1 was produced according to the following method.
  • a polyethylene terephthalate (PET) film with a double-sided easy-adhesion layer having a thickness of 50 ⁇ m was used as the resin substrate (2).
  • the film forming conditions are: conveyance speed: 7 m / min, supply amount of source gas (hexamethyldisiloxane, abbreviation: HMDSO): 150 mL / min, supply amount of oxygen gas: 150 mL / min, degree of vacuum: 1.5 Pa, application A gas barrier layer (3, composition SiOx) having a film thickness of 150 nm was formed at an electric power of 4.5 kw.
  • source gas hexamethyldisiloxane, abbreviation: HMDSO
  • HMDSO hexamethyldisiloxane
  • oxygen gas 150 mL / min
  • degree of vacuum 1.5 Pa
  • application A gas barrier layer (3, composition SiOx) having a film thickness of 150 nm was formed at an electric power of 4.5 kw.
  • ⁇ Corona treatment> Using a corona treatment device (manufactured by Kasuga Denki Co., Ltd.), surface modification of the exposed surface of the gas barrier layer under the conditions of output: 300 W, electrode length: 240 mm, work electrode distance: 3.0 mm, transport speed: 4 m / min Treatment (corona treatment) was performed.
  • DPEHA dipentaerythritol hexaacrylate
  • Silica sol PGM-AC-2140Y disersion medium: propylene glycol monomethyl ether, average particle size: 10 to 15 nm, silica content: 42% by mass, manufactured by Nissan Chemical Industries, Ltd.
  • this adhesive layer forming coating solution 1 was applied onto the gas barrier layer with a bar coater so that the layer thickness after drying was 800 nm, and then dried at 80 ° C. for 1 minute as drying conditions. .
  • an ultraviolet irradiation treatment is performed with a high-pressure mercury lamp under an air atmosphere under the conditions of an illuminance of 500 mW / cm 2 and an irradiation energy amount of 200 mJ / cm 2 , thereby forming the adhesive layer 1 (4) of the first embodiment.
  • a gas barrier film 1 (1) was produced.
  • a gas barrier film 2 was produced in the same manner as in the production of the gas barrier film 1 except that the layer thickness of the adhesive layer 1 (4) was changed to 100 nm.
  • a gas barrier film 3 was produced in the same manner as in the production of the gas barrier film 1 except that the layer thickness of the adhesive layer 1 (4) was changed to 500 nm.
  • gas barrier film 4 In the production of the gas barrier film 1, the gas barrier film 4 was produced in the same manner except that the adhesive layer 4 (4) was formed according to the following method.
  • the adhesive layer 4 (4) was formed by a method in which the polymerization layer was removed from the adhesive layer 1 except for the polymerization initiator.
  • Formation of adhesive layer 4 As a compound containing acryloyl group, dipentaerythritol hexaacrylate, which is a polyfunctional acrylate compound, is diluted with butyl acetate to a solid content concentration of 5% by mass, and as a silicon atom-containing compound, PGM-AC-, which is an organosilica sol, is used. 2140Y (dispersion medium: propylene glycol monomethyl ether, average particle size: 10 to 15 nm, silica content: 42% by mass, manufactured by Nissan Chemical Industries, Ltd.) with respect to 100% by mass of the solid content of the compound containing the acryloyl group A coating solution 4 for forming an adhesive layer was prepared by adding 50% by mass.
  • gas barrier film 5 In the production of the gas barrier film 1, the gas barrier film 5 was produced in the same manner except that the adhesive layer 5 (4) was formed using the adhesive layer forming coating solution 5 prepared by the following method.
  • the equivalent of 50% by mass is added to 100% by mass of the solid content of the group-containing compound, and Irgacure 184 manufactured by BASF Japan Ltd. is further added as a polymerization initiator to 100% by mass of the compound solid content containing the acryloyl group.
  • an amount corresponding to 3.0% by mass is added, and the adhesive layer forming coating solution 5 is added. It was manufactured.
  • this adhesive layer forming coating solution 5 was used to coat the gas barrier layer with a bar coater so that the layer thickness after drying was 300 nm, and then dried at 80 ° C. for 1 minute as a drying condition.
  • an ultraviolet irradiation treatment was performed with a high-pressure mercury lamp under an air atmosphere under the conditions of an illuminance of 500 mW / cm 2 and an irradiation energy amount of 200 mJ / cm 2 to form an adhesive layer 5 (4).
  • gas barrier film 6 In production of the gas barrier film 1, a gas barrier film 6 was produced in the same manner except that the adhesive layer 6 (4) was formed using the adhesive layer forming coating solution 6 prepared by the following method.
  • the equivalent of 50% by mass to 100% by mass of Irgacure 184 manufactured by BASF Japan Ltd. as a polymerization initiator is equivalent to 3.0% by mass with respect to 100% by mass of the compound solid content containing the acryloyl group.
  • a coating solution 6 for forming an adhesive layer was prepared.
  • this adhesive layer forming coating solution 6 was used to apply a bar coater on the gas barrier layer so that the layer thickness after drying was 300 nm, followed by drying at 80 ° C. for 1 minute as drying conditions.
  • an ultraviolet irradiation process is performed with a high-pressure mercury lamp in an air atmosphere under the conditions of an illuminance of 500 mW / cm 2 and an irradiation energy amount of 200 mJ / cm 2 , thereby forming the adhesive layer 6 (4) of the first embodiment. did.
  • the coating liquid 6 for forming the adhesive layer used in the production of the gas barrier film 6 is further mixed with PGM-AC-2140Y (dispersion medium: propylene glycol monomethyl ether, average particle diameter: organosilica sol) as a silicon atom-containing compound. 10 to 15 nm, silica content: 42% by mass, manufactured by Nissan Chemical Industries, Ltd.) is added in an amount corresponding to 30% by mass with respect to 100% by mass of the solid content of the acryloyl group-containing compound. Liquid 7 was prepared.
  • the gas barrier film 6 In the production of the gas barrier film 6, a gas was formed in the same manner except that the adhesive layer 7 (4) was formed using the prepared adhesive layer forming coating solution 7 instead of the adhesive layer forming coating solution 6. A barrier film 7 was produced.
  • the coating liquid 7 for forming the adhesive layer was further mixed with HIL-2070 (manufactured by Seiko PMC) as an acrylic group-containing polymer (abbreviation: AP), and a solid compound containing an acryloyl group.
  • HIL-2070 manufactured by Seiko PMC
  • AP acrylic group-containing polymer
  • AP solid compound containing an acryloyl group.
  • the gas barrier property is the same except that the coating solution 8 for forming the adhesive layer is prepared by adding an amount corresponding to 100% by mass with respect to 100% by mass, and the adhesive layer 8 (4) is formed using the coating solution 8.
  • Film 8 was produced.
  • gas barrier film 9 In the production of the gas barrier film 8, the gas barrier film 9 was produced in the same manner except that the ultraviolet irradiation treatment was not performed with a high-pressure mercury lamp.
  • gas barrier film 11 In the production of the gas barrier film 6, X-12-1048 (abbreviated name: manufactured by Shin-Etsu Silicone Co., Ltd.) which is a terminal acrylic silane coupling agent polymer containing an acryloyl group and a silicon atom simultaneously from the coating liquid 6 for forming an adhesive layer. A gas barrier film 11 was prepared in the same manner except that ASCP) was changed and the thickness of the adhesive layer was changed to 10 nm.
  • a gas barrier film 12 was produced in the same manner as in the production of the gas barrier film 7 except that the layer thickness of the adhesive layer (4) was changed to 80 nm.
  • a gas barrier film 13 was produced in the same manner as in the production of the gas barrier film 7, except that the layer thickness of the adhesive layer (4) was changed to 1200 nm.
  • Table 1 shows the structure of each gas barrier film produced above.
  • the CdO solution was cooled to room temperature.
  • 8.0 g of trioctylphosphine oxide (TOPO) and 12.0 g of 1-heptadecyl-octadecylamine (HDA) were added, and the mixture was heated again to 150 ° C., and then TOP-Se stock was added thereto. The solution was added quickly.
  • TOPO trioctylphosphine oxide
  • HDA 1-heptadecyl-octadecylamine
  • the temperature of the chamber was heated to 220 ° C., and further increased to 250 ° C. over 120 minutes at a constant rate (0.25 ° C./min). Thereafter, the temperature was lowered to 100 ° C., zinc acetate dihydrate was added and dissolved by stirring, and then a trioctylphosphine solution of hexamethyldisilylthiane was dropped, and stirring was continued for several hours to complete the reaction. Phosphor particles (7) made of CdSe / ZnS were obtained.
  • the particle size of the phosphor particle component contained in the phosphor particles is adjusted so as to emit light in red and green, and further, the red and green components of the phosphor particles contained therein are 0.75 mg and 4.12 mg.
  • Irgacure 184 manufactured by BASF Japan
  • a UV curable resin adjusted to 95/5 was added to prepare phosphor particle-containing layer forming coating solution 1 with a phosphor particle content of 1.0 mass%.
  • the prepared phosphor particle-containing layer forming coating solution 1 is applied on the adhesive layer 1 (4A) constituting the gas barrier film 1 (1A) so that the dry layer thickness is 100 ⁇ m, and the coating solution is formed at 75 ° C. for 3 minutes.
  • the phosphor particle-containing layer (6) was formed by heating. However, the curing process by ultraviolet irradiation is not performed at this stage.
  • the number in a parenthesis is the code
  • optical films 102 to 113 In the production of the optical film 101, the produced gas barrier films 2 to 13 are used in place of the gas barrier film 1 used as the gas barrier film 1 (1A) and the gas barrier film 1 (1B). Optical films 102 to 113 were produced in the same manner except that
  • the water vapor permeability 2 is measured in the same manner, and the rate of decrease (percentage) of the water vapor permeability 2 with respect to the water vapor permeability 1 is measured.
  • the heat resistance was evaluated according to the following criteria.
  • Reduction rate of water vapor transmission rate is less than 5.0% 4: Reduction rate of water vapor transmission rate is 5.0% or more and less than 10% 3: Reduction rate of water vapor transmission rate is 10% Above, less than 20% 2: Reduction rate of water vapor transmission rate is 20% or more and less than 30% 1: Reduction rate of water vapor transmission rate is 30% or more ⁇ Evaluation of Optical Film >> [Durability: Evaluation of adhesion] Each optical film produced above was allowed to stand for 500 hours under high temperature and high humidity conditions (60 ° C., 90% RH), and then the adhesion between the adhesive layer and the phosphor particle layer in each optical film was evaluated.
  • Each optical film was cut into a width of 50 mm and a length of 200 mm, and then the peel force was measured using a tensile tester specified in JIS B 7721. About the edge part of each optical film, after peeling the adhesive layer and the phosphor particle layer, each is sandwiched in a tensile tester, and it is required to peel off from the edge part peeled off at a pulling speed of 300 m / min in the 180 ° direction. The force was measured, and the adhesion was evaluated in five stages based on the following criteria.
  • each optical film subjected to forced deterioration treatment under the above-described high-temperature and high-humidity conditions 60 ° C., 90% RH is placed on a blue LED that emits light at 450 nm, respectively.
  • MS-804 manufactured by MS-804, lens MP-ZE25-200
  • the width of the region that does not emit light in the end region of the optical film was randomly measured at six points, and the average value was calculated.
  • the growth rate of the non-light-emitting region of the sample by forced degradation treatment was measured for the sample immediately after fabrication, and side leak resistance was evaluated according to the following criteria.
  • the gas barrier film of the present invention having an adhesive layer containing a compound containing an acryloyl group and a compound containing a silicon atom and having a layer thickness in the range of 100 to 1000 nm.
  • the optical film having a gas barrier layer excellent in heat resistance and having a phosphor particle-containing layer using the same has an adhesive property after being stored in a high-temperature and high-humidity environment with respect to the comparative example. It can also be seen that it has excellent side leak resistance.
  • Example 2 Production of optical film >> Optical films 201 to 216 were produced according to the following method.
  • the numerical values described in parentheses after each component are the reference numbers described in FIGS. 5A and 5B, respectively.
  • Optical film 201 was produced according to the following method [Production of gas barrier film 51] (Preparation of resin base material (102A)) A polyethylene terephthalate (PET) film with a double-sided easy-adhesion layer having a thickness of 50 ⁇ m (manufactured by Teijin DuPont Films Ltd., KEL86W) was used as the resin substrate (102A).
  • PET polyethylene terephthalate
  • Formation of gas barrier layer (103A) vacuum plasma CVD method
  • the film forming conditions are as follows: transfer speed 7 m / min, source gas (hexamethyldisiloxane, HMDSO) supply amount 150 mL / min, oxygen gas supply amount 150 mL / min, vacuum degree 1.5 Pa, applied power 4.5 kW, A gas barrier layer (composition SiO x ) having a thickness of 150 nm was formed.
  • source gas hexamethyldisiloxane, HMDSO
  • ⁇ Corona treatment> Using a corona treatment device (manufactured by Kasuga Denki Co., Ltd.), surface modification treatment of the exposed surface of the gas barrier layer 51 (corona) under the conditions of an output of 300 W, an electrode length of 240 mm, a work electrode distance of 3.0 mm, and a conveying speed of 4 m / min. Treatment).
  • DPEHA dipentaerythritol hexaacrylate
  • 106A inorganic fine particles
  • TTO-55 (A) titanium oxide, sintering method, rutile crystal, surface treatment: Al (OH) 3 , average primary particle size: 45 nm
  • the phosphor particle-containing layer (108) is formed on the gas barrier film 51 (101A), and the surface thereof is sealed with the gas barrier film 51 (101B), which is shown in FIG. 5B.
  • An optical film 201 (F) having the following structure was produced.
  • TOPO trioctylphosphine oxide
  • HDA 1-heptadecyl-octadecylamine
  • the temperature of the chamber was heated to 220 ° C., and further increased to 250 ° C. over 120 minutes at a constant rate (0.25 ° C./min). Thereafter, the temperature was lowered to 100 ° C., zinc acetate dihydrate was added and dissolved by stirring, and then a trioctylphosphine solution of hexamethyldisilylthiane was dropped, and stirring was continued for several hours to complete the reaction.
  • Phosphor particles (109) made of CdSe / ZnS were obtained.
  • ⁇ Preparation of phosphor particle layer forming coating solution 51> The particle size of the phosphor particle component contained in the phosphor particles is adjusted so as to emit light in red and green, and further, the red and green components of the phosphor particles contained therein are 0.75 mg and 4.12 mg. Dispersed in a toluene solvent, and further, a photopolymerization initiator Irgacure 184 (manufactured by BASF Japan) was added as a resin component (110) to UV curable resin Unidic V-5500 manufactured by Epoxy Acrylate DIC Co., Ltd. %)) was added to the resin / initiator: 95/5 to prepare a phosphor particle layer forming coating solution 51 having a phosphor particle content of 1.0 mass%.
  • ⁇ Coating of phosphor particle layer forming coating solution 51 The prepared phosphor particle layer forming coating solution 51 is applied on the adhesive layer 51 (104A) constituting the gas barrier film 51 (101A described in FIG. 5B) so that the dry layer thickness is 1000 ⁇ m, The phosphor particle layer (108) was formed by heating at 75 ° C. for 3 minutes. However, the curing process by ultraviolet irradiation is not performed at this stage.
  • optical film 202 In the production of the optical film 201, an optical film 202 was produced in the same manner except that the gas barrier film 52 produced by the following method was used instead of the gas barrier film 51.
  • gas barrier film 52 In the production of the gas barrier film 51, a gas barrier film 52 was produced in the same manner except that the adhesive layer 52 having the following constitution was used instead of the adhesive layer 51.
  • DPEHA dipentaerythritol hexaacrylate
  • PGM-AC-4130Y sica particles, dispersion medium: propylene glycol monomethyl ether, average primary particle size: 45 nm, silica content: 30% by mass
  • 1% polymethyl methacrylate fine particles (average primary particle size: 800 nm) are added as organic fine particles (107A) to 100% of the solid content of the acryloyl group-containing compound, and BASF Japan Ltd. is further used as a polymerization initiator.
  • Irgacure 184 made from acryloyl group 3% was added relative to 100% solids containing compound, to prepare a bonding layer-forming coating liquid 52.
  • this adhesive layer forming coating solution 52 was applied onto the gas barrier layer with a bar coater so that the layer thickness after drying was 800 nm, and then dried at 80 ° C. for 1 minute as drying conditions.
  • an ultraviolet irradiation treatment is performed with a high-pressure mercury lamp under an air atmosphere under the conditions of an illuminance of 500 mW / cm 2 and an irradiation energy amount of 200 mJ / cm 2 , thereby forming an adhesive layer 52 (104A) and gas barrier properties.
  • Film 52 (101A) was produced.
  • optical film 203 In the production of the optical film 202, an optical film 203 was produced in the same manner except that the gas barrier film 53 produced by the following method was used instead of the gas barrier film 52.
  • a gas barrier film 53 was produced in the same manner as in the production of the gas barrier film 52 except that the thickness of the adhesive layer 52 was changed to 500 nm.
  • optical film 204 In the production of the optical film 203, an optical film 204 was produced in the same manner except that the gas barrier film 54 produced by the following method was used instead of the gas barrier film 53.
  • gas barrier film 54 In the production of the gas barrier film 53, a gas barrier film 54 was produced in the same manner except that the adhesive layer 54 having the following constitution was used instead of the adhesive layer 53.
  • a binder component (105A) As a binder component (105A), inorganic fine particles were added to a solution obtained by diluting X-12-1048 (abbreviation: ASCP) manufactured by Shin-Etsu Silicone Co., Ltd., which is a polymer type silane coupling agent, with butyl acetate to a solid content concentration of 5% by mass.
  • ASCP diluting X-12-1048
  • PGM-AC-4130Y (dispersion medium: propylene glycol monomethyl ether, average primary particle size: 45 nm, silica content: 30 mass%) is used as a solid content of the above polymer type silane coupling agent (ASCP) 100
  • ASCP polymer type silane coupling agent
  • An amount equivalent to 80% by mass is added to mass%, and polymethyl methacrylate fine particles (average primary particle size: 800 nm) are added as organic fine particles (107A) to a solid content of a polymer type silane coupling agent (ASCP) 100.
  • the solid content 100 wt% of the polymer type of the silane coupling agent (ASCP) was added 3.0 wt% equivalent amount to prepare an adhesive layer coating solution 54.
  • the adhesive layer forming coating solution 54 prepared above was applied on the gas barrier layer (103A) with a bar coater so that the layer thickness after drying was 500 nm, and then dried at 80 ° C. for 1 minute. Drying was performed.
  • an ultraviolet ray irradiation treatment is performed with a high-pressure mercury lamp under an air atmosphere under the conditions of an illuminance of 500 mW / cm 2 and an irradiation energy amount of 200 mJ / cm 2 , thereby forming an adhesive layer 54 (104A), and gas barrier properties Film 54 (101A) was produced.
  • optical film 205 In the production of the optical film 204, an optical film 205 was produced in the same manner except that the gas barrier film 55 (101A) produced by the following method was used in place of the gas barrier film 54.
  • a gas barrier film 55 was produced in the same manner as in the production of the gas barrier film 54 except that an adhesive layer 55 having the following configuration was used instead of the adhesive layer 54.
  • a binder component (105A) As a binder component (105A), a polymer type silane coupling agent X-12-1048 (abbreviation: ASCP) manufactured by Shin-Etsu Silicone Co., Ltd. was diluted with butyl acetate to a solid content concentration of 5.0% by mass, Furthermore, as the second binder component, a silane coupling agent monomer (abbreviation: SCM), an acryloyl group-containing silane coupling agent KBM-5103 (3-acryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Silicone) is used as a polymer type.
  • SCM silane coupling agent monomer
  • KBM-5103 3-acryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Silicone
  • An amount equivalent to 10.0% by mass is added to 100% by mass of the solid content of the silane coupling agent (ASCP), and then PGM-AC-4130Y (dispersion medium: propylene glycol monomethyl ether, as inorganic fine particles (106A), Average primary particle size: 45 nm, silica content: 30% by mass)
  • the polymer type silane coupling agent (ASCP) is added in an amount equivalent to 80% by mass with respect to 100% by mass of the solid content, and polymethyl methacrylate fine particles (average primary particle size: 800 nm) are polymerized as organic fine particles (107A).
  • a coating solution 55 for forming an adhesive layer was prepared by adding an amount equivalent to 3.0% by mass with respect to 100% by mass of ASCP).
  • optical film 206 In the production of the optical film 205, an optical film 206 was produced in the same manner except that the gas barrier film 56 produced by the following method was used in place of the gas barrier film 55.
  • gas barrier film 56 In the production of the gas barrier film 55, HIL-2070 manufactured by Seiko PMC Co., Ltd. was used as a polymer type silane coupling agent as an acryloyl group-containing polymer (abbreviation: AP) for the coating solution 55 for forming an adhesive layer.
  • AP acryloyl group-containing polymer
  • a gas barrier was prepared in the same manner except that an adhesive layer-forming coating solution 56 was prepared by adding an equivalent amount of 10% by mass to (ASCP) solid content of 100% by mass, and the adhesive layer 56 was formed using the same. Film 56 was produced.
  • optical film 207 In the production of the optical film 206, an optical film 107 was produced in the same manner except that the gas barrier film 57 produced by the following method was used instead of the gas barrier film 56.
  • gas barrier film 57 In the production of the gas barrier film 56, the inorganic fine particles (SiO 2 , average primary particle size: 45 nm) used for the preparation of the coating liquid 56 for forming the adhesive layer were changed to silica particles having an average primary particle size of 30 nm. A gas barrier film 57 was prepared in the same manner except that the adhesive layer 57 was formed using the adhesive layer forming coating solution 57 prepared in the same manner.
  • optical film 208 In the production of the optical film 206, an optical film 208 was produced in the same manner except that the gas barrier film 58 produced by the following method was used instead of the gas barrier film 56.
  • gas barrier film 58 Preparation of gas barrier film 58
  • the inorganic fine particles (SiO 2 , average primary particle size: 45 nm) used for the preparation of the coating liquid 56 for forming the adhesive layer were changed to silica particles having an average primary particle size of 90 nm.
  • a gas barrier film 58 was produced in the same manner except that the adhesive layer 58 was formed using the prepared adhesive layer forming coating solution 58.
  • optical film 209 In the production of the optical film 206, an optical film 209 was produced in the same manner except that the gas barrier film 59 produced by the following method was used instead of the gas barrier film 56.
  • the organic fine particles (PMMA, average primary particle size: 800 nm) used for the preparation of the coating liquid 56 for forming the adhesive layer are changed to PMMA particles having an average primary particle size of 300 nm.
  • a gas barrier film 59 was produced in the same manner except that the adhesive layer forming coating solution 59 was used and the layer thickness was further changed to 200 nm to form the adhesive layer 59.
  • optical film 210 In the production of the optical film 206, an optical film 210 was produced in the same manner except that the gas barrier film 60 produced by the following method was used instead of the gas barrier film 56.
  • the organic fine particles (PMMA, average primary particle size: 800 nm) used for the preparation of the coating liquid 56 for forming the adhesive layer are changed to PMMA particles having an average primary particle size of 1000 nm.
  • the gas barrier film 60 was produced in the same manner except that the adhesive layer forming coating solution 60 was used and the adhesive layer 60 was formed by changing the layer thickness to 600 nm.
  • optical film 211 In the production of the optical film 206, an optical film 211 was produced in the same manner except that the gas barrier film 61 produced by the following method was used instead of the gas barrier film 56.
  • the adhesive layer 61 was formed using the adhesive layer forming coating solution 61 prepared by removing the organic fine particles (PMMA) used for the preparation of the adhesive layer forming coating solution 56. Similarly, a gas barrier film 61 was produced.
  • optical film 212 In the production of the optical film 206, an optical film 212 was produced in the same manner except that the gas barrier film 62 produced by the following method was used instead of the gas barrier film 56.
  • the adhesive layer 62 was formed using the adhesive layer forming coating liquid 62 prepared by removing the inorganic fine particles (silica particles) used for the preparation of the adhesive layer forming coating liquid 56. In the same manner, a gas barrier film 62 was produced.
  • optical film 213 In the production of the optical film 211, an optical film 213 was produced in the same manner except that the gas barrier film 63 produced by the following method was used instead of the gas barrier film 61.
  • the adhesive layer 63 was formed using the adhesive layer forming coating solution 63 prepared by further removing the inorganic fine particles (silica particles) used in the preparation of the adhesive layer forming coating solution 61. Except for this, a gas barrier film 63 was produced in the same manner.
  • optical film 214 In the production of the optical film 206, an optical film 214 was produced in the same manner except that the gas barrier film 64 produced by the following method was used instead of the gas barrier film 56.
  • the inorganic fine particles (average primary particle size: 45 nm) used for the preparation of the coating solution 56 for forming the adhesive layer were converted to silica particles (organosilica sol, PGM-AC) having an average primary particle size of 15 nm.
  • -2140Y disersion medium: propylene glycol monomethyl ether, average particle size: 15 nm, manufactured by Nissan Chemical Industries, Ltd.
  • a gas barrier film 64 was produced.
  • optical film 215 In the production of the optical film 214, an optical film 215 was produced in the same manner except that the gas barrier film 65 produced by the following method was used instead of the gas barrier film 64.
  • gas barrier film 65 In the production of the gas barrier film 64, the organic fine particles (PMMA, average primary particle size: 800 nm) used for the preparation of the coating liquid 64 for forming the adhesive layer are changed to PMMA particles having an average primary particle size of 200 nm.
  • a gas barrier film 65 was produced in the same manner except that the adhesive layer forming coating liquid 65 was used and the adhesive layer 65 having a layer thickness of 300 nm was formed.
  • optical film 216 In the production of the optical film 206, an optical film 216 was produced in the same manner except that the gas barrier film 66 produced by the following method was used instead of the gas barrier film 56.
  • gas barrier film 66 In the production of the gas barrier film 56, the organic fine particles (PMMA, average primary particle size: 800 nm) used for the preparation of the coating liquid 56 for forming the adhesive layer are changed to PMMA particles having an average primary particle size of 100 nm.
  • a gas barrier film 66 was produced in the same manner except that the adhesive layer forming coating solution 66 was used and the adhesive layer 66 having a layer thickness of 300 nm was formed.
  • Table 3 shows the configuration of each optical film produced above.
  • Relative luminous efficiency is 115 or more 4: Relative luminous efficiency is 105 or more and less than 115 3: Relative luminous efficiency is 95 or more and less than 105 2: Relative luminous efficiency is 85 or more, 95 Less than 1: The relative luminous efficiency is less than 85 Table 4 shows the evaluation results obtained as described above.
  • the optical film provided with the gas barrier film having the structure defined in the present invention has an adhesive property after being stored in a high-temperature and high-humidity environment with respect to the comparative example, and It turns out that it is excellent in luminous efficiency.
  • a gas barrier film having high gas barrier properties and heat resistance, and the gas barrier film, adhesion with a phosphor particle-containing layer in a high temperature and high humidity environment, and side leak resistance The phosphor film-containing optical film having excellent luminous efficiency and light emission efficiency can be provided, and the optical film provided with the gas barrier film of the present invention includes an organic electroluminescence element (organic EL element) and a liquid crystal display element. (LCD), thin film transistor, touch panel, electronic paper, solar cell (PV), QD film having quantum dots that are phosphor particles, and the like.

Abstract

The objective of the present invention is to provide: a gas barrier film having high gas barrier properties and heat resistance; and a phosphor particle-containing optical film which uses this gas barrier film and exhibits excellent side leakage resistance and excellent adhesion to a phosphor particle-containing layer in a high-temperature high-humidity environment. A gas barrier film according to the present invention is characterized by comprising, on a resin base, a gas barrier layer and a bonding layer in this order, and is also characterized in that: the gas barrier layer contains an inorganic oxide containing at least a silicon atom; the bonding layer contains a compound containing at least an acryloyl group and a compound containing a silicon atom; and the thickness of the bonding layer is within the range of 100-1,000 nm.

Description

ガスバリアー性フィルムとその製造方法、及び光学フィルムGas barrier film, method for producing the same, and optical film
 本発明は、ガスバリアー性フィルムとその製造方法、及び光学フィルムに関する。更に詳しくは、本発明は、高いガスバリアー性及び耐熱性を有するガスバリアー性フィルムと、当該ガスバリアー性フィルムを有し、蛍光体粒子含有層との高温高湿環境下での密着性と、サイドリーク耐性に優れた蛍光体粒子含有の光学フィルムに関する。 The present invention relates to a gas barrier film, a production method thereof, and an optical film. More specifically, the present invention relates to a gas barrier film having a high gas barrier property and heat resistance, and the gas barrier film having the gas barrier film, and adhesion to the phosphor particle-containing layer in a high temperature and high humidity environment, The present invention relates to an optical film containing phosphor particles having excellent side leak resistance.
 食品、包装材料、医薬品などの分野で、従来、樹脂基材の表面に金属酸化物などの無機化合物からなる蒸着膜や樹脂などの塗布膜を設け、水蒸気や酸素などの透過を防ぐガスバリアー層を備えたガスバリアー性フィルムが知られている。 Conventionally, in the fields of food, packaging materials, pharmaceuticals, etc., a gas barrier layer that prevents the permeation of water vapor, oxygen, etc. by providing a deposition film made of an inorganic compound such as a metal oxide or a coating film of a resin on the surface of a resin substrate A gas barrier film provided with is known.
 また、近年、液晶表示素子(LCD)、太陽電池(PV)、有機エレクトロルミネッセンス素子(以下、「有機EL素子」ともいう。)、蛍光体粒子である量子ドット(以下、「QD」、あるいは「QD粒子」ともいう。)を有するQDフィルムなどを用いた電子デバイス分野においても、軽くて割れにくく、フレキシブル性を持たせることを目的として樹脂基材を用いたガスバリアー性フィルムの要望が高まっている。 In recent years, liquid crystal display elements (LCD), solar cells (PV), organic electroluminescence elements (hereinafter also referred to as “organic EL elements”), quantum dots (hereinafter referred to as “QD”) or “phosphor particles”. Also in the field of electronic devices using QD films having QD particles ”), there is an increasing demand for gas barrier films using a resin base material for the purpose of providing lightness, resistance to cracking, and flexibility. Yes.
 上記フレキシブル性を備えた電子デバイス、特に、液晶表示装置(例えば、LCDTV等。)の色再現性を拡大する波長変換部材として、様々な波長で発光する量子ドットを含む量子ドット含有層を透光性シート部材で挟持してシート状にした光学フィルム(以下、「QDフィルム」ともいう。)が検討されている。このQDフィルムで使用されているQD粒子は、水分や酸素等に対する耐性が十分ではないため、QD粒子含有層を水分や酸素による劣化を保護するため、QD粒子含有層を挟持する透光性シート部材として、ガスバリアー性フィルムでラミネートする必要がある。 As a wavelength conversion member that expands the color reproducibility of an electronic device having the above flexibility, particularly a liquid crystal display device (for example, LCDTV), a quantum dot-containing layer containing quantum dots that emit light at various wavelengths is made transparent. An optical film (hereinafter also referred to as “QD film”) that has been formed into a sheet by being sandwiched by a conductive sheet member has been studied. Since the QD particles used in this QD film are not sufficiently resistant to moisture, oxygen, etc., the translucent sheet that sandwiches the QD particle-containing layer in order to protect the QD particle-containing layer from deterioration due to moisture or oxygen As a member, it is necessary to laminate with a gas barrier film.
 このようなガスバリアー性フィルムでは、無機材料より構成されるガスバリアー層と、それに隣接する位置に、紫外線(UV)を照射することによって硬化する紫外線硬化型樹脂を含有する紫外線硬化樹脂層を設けることがある。このような紫外線硬化樹脂層としては、例えば、ガスバリアー層の表面を保護するための保護層(ハードコート層)が挙げられる。また、特許文献1には、量子ドット(QD)として機能する蛍光体粒子を紫外線硬化樹脂や熱硬化樹脂に分散させた量子ドット層(発光層)を挟持するようにガスバリアー性フィルムを配置する構成が開示されている。 In such a gas barrier film, a gas barrier layer composed of an inorganic material and an ultraviolet curable resin layer containing an ultraviolet curable resin that is cured by irradiating with ultraviolet rays (UV) are provided adjacent to the gas barrier layer. Sometimes. Examples of such an ultraviolet curable resin layer include a protective layer (hard coat layer) for protecting the surface of the gas barrier layer. In Patent Document 1, a gas barrier film is disposed so as to sandwich a quantum dot layer (light emitting layer) in which phosphor particles functioning as quantum dots (QD) are dispersed in an ultraviolet curable resin or a thermosetting resin. A configuration is disclosed.
 しかしながら、上記の様なガスバリアー性フィルムと、QD粒子含有層とを積層した構成においては、例えば、高温高湿環境下で長期間にわたり保存した際に、密着性が劣化するという問題が発現した。また、QD粒子含有層は、層厚として数十μmという膜厚が必要とされるため、QD粒子含有層の上面あるいは下面をガスバリアー性フィルムで保護しても、厚膜構成のQD粒子含有層の側面部(断面部、あるいはエッジ部ともいう。)より、水分や酸素が侵入することにより、端部に位置しているQD粒子がダメージを受けることとなるため、QD粒子含有層自身としても、ある程度のガスバリアー耐性が求められている。 However, in the configuration in which the gas barrier film as described above and the QD particle-containing layer are laminated, for example, when stored for a long period of time in a high temperature and high humidity environment, the problem that the adhesiveness deteriorates has appeared. . In addition, since the QD particle-containing layer needs to have a thickness of several tens of μm, even if the upper or lower surface of the QD particle-containing layer is protected with a gas barrier film, the QD particle-containing layer has a thick film structure. Since moisture and oxygen penetrate from the side surface (also referred to as a cross section or edge) of the layer, the QD particles located at the end are damaged, so that the QD particle-containing layer itself However, a certain level of gas barrier resistance is required.
 上記問題であるガスバリアー性フィルムとQD粒子含有層との密着性を改良する方法としては、フレキシブル性の樹脂基材の一方の面に、無機酸化物の薄膜を設け、更に、該無機酸化物上に、シランカップリング剤を含む薄膜を成膜して、QD粒子含有層を密着させる方法が開示されている(例えば、特許文献2参照。)。 As a method for improving the adhesion between the gas barrier film and the QD particle-containing layer, which is the above problem, an inorganic oxide thin film is provided on one surface of a flexible resin substrate, and the inorganic oxide is further provided. A method for forming a thin film containing a silane coupling agent and adhering the QD particle-containing layer is disclosed (for example, see Patent Document 2).
 ここでは、シランカップリング剤としては、ビニル基、メタクリロキシ基(メタクリロイル基)、アミノ基、エポキシ基、メルカプト基等で変性されたものが開示されている。この特許文献2に開示の技術では、シランカップリング剤より構成される薄膜を設けることで、無機酸化物の薄層(無機バリアー層)と、熱溶融性のヒートシール性樹脂との密着性の向上を図っている。 Here, as silane coupling agents, those modified with a vinyl group, a methacryloxy group (methacryloyl group), an amino group, an epoxy group, a mercapto group or the like are disclosed. In the technique disclosed in Patent Document 2, by providing a thin film composed of a silane coupling agent, adhesion between a thin layer of inorganic oxide (inorganic barrier layer) and a heat-meltable heat-sealable resin is improved. We are trying to improve.
 上記提案されている方法では、シランカップリング剤の効果により、QD粒子含有層と無機酸化物層間の密着性は向上するが、ガスバリアー性フィルムが熱変形を受けた際に、ガスバリアー性が低下するという問題や、ガスバリアー性フィルムとQD粒子含有層間の屈折率差が大きくなり、光学的なロスにより、QD粒子による発光の外部への取り出し効率が低下するという問題を有している。 In the proposed method, the adhesion between the QD particle-containing layer and the inorganic oxide layer is improved by the effect of the silane coupling agent. However, when the gas barrier film is subjected to thermal deformation, the gas barrier property is improved. There is a problem that the refractive index difference between the gas barrier film and the QD particle-containing layer is increased, and the efficiency of taking out light emitted by the QD particles is reduced due to optical loss.
 以上のような状況を踏まえ、高いガスバリアー性及び耐熱性を有し、かつ高温高湿環境下においても優れた密着性を有する、電子デバイス用のガスバリアー性フィルムと、発光効率に優れた蛍光体粒子を含有する光学フィルムの開発が求められている。 Based on the above situation, a gas barrier film for electronic devices having high gas barrier properties and heat resistance, and excellent adhesion even in a high temperature and high humidity environment, and fluorescence excellent in luminous efficiency. Development of an optical film containing body particles is required.
特表2013-544018号公報Special table 2013-544018 gazette 特開平10-156998号公報Japanese Patent Laid-Open No. 10-156998
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、高いガスバリアー性及び耐熱性を有するガスバリアー性フィルムと、当該ガスバリアー性フィルムを用い、蛍光体粒子含有層との高温高湿環境下での密着性、サイドリーク耐性に優れるとともに、発光効率に優れた蛍光体粒子含有の光学フィルムを提供することである。 The present invention has been made in view of the above-described problems and situations, and the solution is to use a gas barrier film having high gas barrier properties and heat resistance, and a phosphor particle-containing layer using the gas barrier film. The present invention provides a phosphor particle-containing optical film that is excellent in adhesion and side leak resistance in a high-temperature and high-humidity environment with excellent luminous efficiency.
 本発明に係る上記課題を解決すべく、上記問題の原因等について検討した結果、樹脂基材上に、ガスバリアー層と、接着層をこの順で有し、前記ガスバリアー層が、少なくともケイ素原子を含む無機酸化物を含有し、前記接着層が、少なくともアクリロイル基を含む化合物と、ケイ素原子を含む化合物を含有し、かつ所定の層厚の接着層構成とすることを特徴とするガスバリアー性フィルムにより、高いガスバリアー性及び耐熱性を有するガスバリアー性フィルムを実現でき、かつガスバリアー性フィルムが、樹脂基材上に、ガスバリアー層と接着層とをこの順に有し、前記ガスバリアー層が、少なくともケイ素原子を含む無機酸化物を含有し、前記接着層が、特定の条件(1)を満たす接着層1又は条件(2)を満たす接着層2とし、かつ、前記蛍光体粒子含有層と前記接着層を、隣接して配置されることを特徴とする光学フィルムにより、QD粒子の水分や酸素による劣化を抑制し、かつ蛍光体粒子含有層との高温高湿環境下での密着性と、サイドリーク耐性に優れるとともに、発光効率に優れた蛍光体粒子含有の光学フィルムを得ることができることを見いだした。 As a result of investigating the cause of the above-mentioned problems in order to solve the above-mentioned problems according to the present invention, the resin base material has a gas barrier layer and an adhesive layer in this order, and the gas barrier layer contains at least silicon atoms. A gas barrier property characterized by comprising an inorganic oxide containing, wherein the adhesive layer comprises a compound containing at least an acryloyl group and a compound containing a silicon atom, and has an adhesive layer configuration having a predetermined layer thickness A gas barrier film having high gas barrier properties and heat resistance can be realized by the film, and the gas barrier film has a gas barrier layer and an adhesive layer in this order on a resin substrate, and the gas barrier layer Contains an inorganic oxide containing at least a silicon atom, and the adhesive layer is an adhesive layer 1 satisfying a specific condition (1) or an adhesive layer 2 satisfying a condition (2), The phosphor film-containing layer and the adhesive layer are disposed adjacent to each other to suppress deterioration of the QD particles due to moisture and oxygen and to increase the temperature of the phosphor particle-containing layer at a high temperature. It has been found that a phosphor particle-containing optical film can be obtained that has excellent adhesion in a wet environment and resistance to side leaks, as well as excellent luminous efficiency.
 すなわち、本発明に係る課題は、以下の手段により解決される。 That is, the problem according to the present invention is solved by the following means.
 1.樹脂基材上に、ガスバリアー層と接着層をこの順で有するガスバリアー性フィルムであって、
 前記ガスバリアー層が、少なくともケイ素原子を含む無機酸化物を含有し、
 前記接着層が、少なくとも未反応のアクリロイル基を含む化合物と、ケイ素原子を含む化合物を含有し、かつ当該接着層の層厚が、100~1000nmの範囲内であることを特徴とするガスバリアー性フィルム。
1. A gas barrier film having a gas barrier layer and an adhesive layer in this order on a resin substrate,
The gas barrier layer contains an inorganic oxide containing at least silicon atoms,
The gas barrier property, wherein the adhesive layer contains at least a compound containing an unreacted acryloyl group and a compound containing a silicon atom, and the thickness of the adhesive layer is in the range of 100 to 1000 nm. the film.
 2.前記接着層の層厚が、100~500nmの範囲内であることを特徴とする第1項に記載のガスバリアー性フィルム。 2. 2. The gas barrier film according to item 1, wherein the thickness of the adhesive layer is in the range of 100 to 500 nm.
 3.前記接着層が含有する前記未反応のアクリロイル基を含む化合物が、アクリロイル基含有シランカップリングポリマーであることを特徴とする第1項又は第2項に記載のガスバリアー性フィルム。 3. The gas barrier film according to item 1 or 2, wherein the compound containing the unreacted acryloyl group contained in the adhesive layer is an acryloyl group-containing silane coupling polymer.
 4.前記接着層が、平均粒径が300~1000nmの範囲内にある有機微粒子を含有することを特徴とする第1項から第3項までのいずれか一項に記載のガスバリアー性フィルム。 4. Item 4. The gas barrier film according to any one of Items 1 to 3, wherein the adhesive layer contains organic fine particles having an average particle diameter in the range of 300 to 1000 nm.
 5.第1項から第4項までのいずれか一項に記載のガスバリアー性フィルムを製造するガスバリアー性フィルムの製造方法であって、
 樹脂基材上に、少なくともケイ素原子を含む無機酸化物より構成されるガスバリアー層を形成した後、当該ガスバリアー層上に、少なくとも未反応のアクリロイル基を含む化合物と、ケイ素原子を含む化合物を含有する接着層を、層厚が100~1000nmの範囲内で形成することを特徴とするガスバリアー性フィルムの製造方法。
5). A method for producing a gas barrier film for producing the gas barrier film according to any one of items 1 to 4,
After forming a gas barrier layer composed of an inorganic oxide containing at least a silicon atom on a resin substrate, a compound containing at least an unreacted acryloyl group and a compound containing a silicon atom are formed on the gas barrier layer. A method for producing a gas barrier film, characterized in that the adhesive layer is formed within a thickness of 100 to 1000 nm.
 6.前記接着層を形成した後、当該接着層に活性光線照射処理を行わないことを特徴とする第5項に記載のガスバリアー性フィルムの製造方法。 6. 6. The method for producing a gas barrier film according to item 5, wherein the adhesive layer is not subjected to actinic ray irradiation treatment after the adhesive layer is formed.
 7.樹脂基材上に、ガスバリアー層と接着層をこの順で有するガスバリアー性フィルムを備えた光学フィルムであって、
 前記ガスバリアー層が、少なくともケイ素原子を含む無機酸化物を含有し、
 前記接着層が、下記で規定する条件(1)を満たす接着層1又は条件(2)を満たす接着層2であり、
 条件(1):前記接着層1が、少なくともアクリロイル基を含む化合物と、ケイ素原子を含む化合物を含有し、かつ当該接着層の層厚が、100~1000nmの範囲内である。
7). An optical film including a gas barrier film having a gas barrier layer and an adhesive layer in this order on a resin substrate,
The gas barrier layer contains an inorganic oxide containing at least silicon atoms,
The adhesive layer is an adhesive layer 1 that satisfies the condition (1) defined below or an adhesive layer 2 that satisfies the condition (2),
Condition (1): The adhesive layer 1 contains at least a compound containing an acryloyl group and a compound containing a silicon atom, and the thickness of the adhesive layer is in the range of 100 to 1000 nm.
 条件(2):前記接着層2が、平均一次粒径が30~100nmの範囲内にある無機微粒子と、平均一次粒径が300~1000nmの範囲内にある有機微粒子及びバインダー成分を含有する。 Condition (2): The adhesive layer 2 contains inorganic fine particles having an average primary particle size in the range of 30 to 100 nm, organic fine particles having an average primary particle size in the range of 300 to 1000 nm, and a binder component.
 かつ、当該接着層に隣接して蛍光体粒子含有層が配置されていることを特徴とする光学フィルム。 An optical film characterized in that a phosphor particle-containing layer is disposed adjacent to the adhesive layer.
 8.前記蛍光体粒子含有層が、蛍光体粒子として量子ドットを含有する量子ドット含有層であることを特徴とする第7項に記載の光学フィルム。 8. The optical film according to item 7, wherein the phosphor particle-containing layer is a quantum dot-containing layer containing quantum dots as phosphor particles.
 9.前記接着層1の層厚が、100~500nmの範囲内であることを特徴とする第7項又は第8項に記載の光学フィルム。 9. Item 9. The optical film according to Item 7 or 8, wherein the thickness of the adhesive layer 1 is in the range of 100 to 500 nm.
 10.前記接着層1が含有する前記アクリロイル基を含む化合物が、アクリロイル基含有シランカップリングポリマーであることを特徴とする第7項から第9項までのいずれか一項に記載の光学フィルム。 10. The optical film according to any one of Items 7 to 9, wherein the compound containing the acryloyl group contained in the adhesive layer 1 is an acryloyl group-containing silane coupling polymer.
 11.前記接着層1が、平均粒径が300~1000nmの範囲内にある有機微粒子を含有することを特徴とする第7項から第10項までのいずれか一項に記載の光学フィルム。 11. Item 11. The optical film according to any one of Items 7 to 10, wherein the adhesive layer 1 contains organic fine particles having an average particle diameter in the range of 300 to 1000 nm.
 12.前記接着層2が含有する前記無機微粒子が、シリカ粒子であることを特徴とする第7項又は第8項に記載の光学フィルム。 12. Item 9. The optical film according to Item 7 or 8, wherein the inorganic fine particles contained in the adhesive layer 2 are silica particles.
 13.前記接着層2の層厚が、前記無機微粒子の平均一次粒径以上で、かつ前記有機微粒子の平均一次粒径未満であることを特徴とする第7項、第8項又は第12項に記載の光学フィルム。 13. Item 7, Item 8 or Item 12, wherein the thickness of the adhesive layer 2 is not less than the average primary particle size of the inorganic particles and less than the average particle size of the organic particles. Optical film.
 14.前記接着層2が、バインダー成分としてシランカップリング剤を含有することを特徴とする第7項、第8項、第12項又は第13項に記載の光学フィルム。 14. The optical film according to item 7, 8, 12, or 13, wherein the adhesive layer 2 contains a silane coupling agent as a binder component.
 15.前記シランカップリング剤が、ポリマータイプのシランカップリング剤であることを特徴とする第16項に記載の光学フィルム。 15. Item 17. The optical film as described in Item 16, wherein the silane coupling agent is a polymer type silane coupling agent.
 16.前記接着層2が、バインダー成分としてアクリロイル基含有化合物を含有することを特徴とする第7項、第8項、第12項、第13項、第14項又は第15項に記載の光学フィルム。 16. The optical film of Item 7, Item 8, Item 12, Item 13, Item 15, wherein the adhesive layer 2 contains an acryloyl group-containing compound as a binder component.
 17.前記アクリロイル基含有化合物が、アクリルポリマーであることを特徴とする第16項に記載の光学フィルム。 17. Item 17. The optical film as described in Item 16, wherein the acryloyl group-containing compound is an acrylic polymer.
 本発明によれば、高いガスバリアー性及び耐熱性を有するガスバリアー性フィルムと、当該ガスバリアー性フィルムを用い、蛍光体粒子含有層との高温高湿環境下での密着性と、サイドリーク耐性に優れるとともに、発光効率に優れた蛍光体粒子含有の光学フィルムを提供することができる。 According to the present invention, a gas barrier film having high gas barrier properties and heat resistance, and the gas barrier film, adhesion with a phosphor particle-containing layer in a high temperature and high humidity environment, and side leak resistance In addition, it is possible to provide an optical film containing phosphor particles having excellent luminous efficiency.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 本発明のガスバリアー性フィルムにおいては、樹脂基材上に、ケイ素原子を含む無機酸化物を含有するガスバリアー層と共に、アクリロイル基を含む化合物とケイ素原子を含む化合物を含有し、層厚が100~1000nmの範囲内にある接着層を形成することにより、高いガスバリアー性及び耐熱性を有するガスバリアー性フィルムを実現でき、更に当該ガスバリアー性フィルムを、蛍光体粒子含有層を有する光学フィルムに適用することにより、両者の密着性及び蛍光体粒子含有層のサイドリーク耐性を向上させることができたものである。 The gas barrier film of the present invention contains a compound containing an acryloyl group and a compound containing a silicon atom together with a gas barrier layer containing an inorganic oxide containing a silicon atom on a resin substrate, and the layer thickness is 100. By forming an adhesive layer in the range of ˜1000 nm, a gas barrier film having high gas barrier properties and heat resistance can be realized, and the gas barrier film can be used as an optical film having a phosphor particle-containing layer. By applying, both adhesiveness and the side leak resistance of the phosphor particle-containing layer can be improved.
 このような効果を発現することができる技術的な作用機構としては、ケイ素原子を含む無機酸化物より構成されるガスバリアー層上に、未反応のアクリロイル基(以下、単にアクリロイル基ともいう。)を含む化合物とケイ素原子を含む化合物を含有する接着層を設けることにより、ガスバリアー層が含有するケイ素原子と、接着層が含有するケイ素原子とが相互作用し、接着層内部において、ガスバリアー層との界面側にケイ素原子が多く配向することにより、ケイ素原子の濃度傾斜構造が形成され、それに連動して接着層内の硬度が傾斜構造を有することになる。その結果、ガスバリアー性フィルムとして、高温環境下で熱変形を受けた際にも、この傾斜構造を有する硬度パターンにより、応力を効果的に緩和することができ、その結果、優れた耐熱性とガスバリアー性を得ることができると推測している。 As a technical working mechanism capable of exhibiting such an effect, an unreacted acryloyl group (hereinafter also simply referred to as an acryloyl group) is formed on a gas barrier layer composed of an inorganic oxide containing a silicon atom. By providing an adhesive layer containing a compound containing silicon and a compound containing silicon atoms, the silicon atoms contained in the gas barrier layer interact with the silicon atoms contained in the adhesive layer, and the gas barrier layer is formed inside the adhesive layer. As a result of the large number of silicon atoms oriented on the interface side, a concentration gradient structure of silicon atoms is formed, and the hardness in the adhesive layer has a gradient structure in conjunction therewith. As a result, even when subjected to thermal deformation in a high temperature environment as a gas barrier film, the hardness pattern having this inclined structure can effectively relieve stress, resulting in excellent heat resistance and It is speculated that gas barrier properties can be obtained.
 また、未反応のアクリロイル基を含む化合物を含有する接着層と、蛍光体粒子含有層とを隣接配置して、光学フィルムを形成することにより、熱エネルギーを付与した際に、接着層と蛍光体粒子含有層の界面に存在するアクリロイル基の反応が進行し、接着層自身の硬度が加熱と共に上昇することから、ガスバリアー層に加わる応力を吸収するとともに、接着層と蛍光体粒子含有層の界面における密着性の向上と、加えて、アクリロイル基の反応により蛍光体粒子含有層の硬度が進行し、厚膜構成の蛍光体粒子含有層のサイドリークを防止することができたものと推測している。 In addition, when an adhesive layer containing a compound containing an unreacted acryloyl group and a phosphor particle-containing layer are arranged adjacent to each other to form an optical film, heat energy is applied to the adhesive layer and the phosphor. Since the reaction of the acryloyl group present at the interface of the particle-containing layer proceeds and the hardness of the adhesive layer itself increases with heating, the stress applied to the gas barrier layer is absorbed and the interface between the adhesive layer and the phosphor particle-containing layer In addition to the improvement in adhesion, the hardness of the phosphor particle-containing layer progressed due to the reaction of the acryloyl group, and it was assumed that the side leakage of the phosphor particle-containing layer having a thick film structure could be prevented. Yes.
 また、本発明の光学フィルムにおいては、蛍光体粒子含有層に隣接した位置に、平均粒径と屈折率の異なる無機微粒子と有機微粒子を含有する接着層を形成することにより、蛍光体粒子含有層で発光した光が効率よく外部に取り出され、発光効率を高めることができることを見出した。 In the optical film of the present invention, the phosphor particle-containing layer is formed by forming an adhesive layer containing inorganic fine particles and organic fine particles having different average particle diameters and refractive indexes at positions adjacent to the phosphor particle-containing layer. It has been found that the light emitted from can be efficiently extracted to the outside and the luminous efficiency can be increased.
 上記効果が発現する機構としては、平均粒径が小さい無機微粒子が接着層内部で、蛍光体粒子含有層から放射された光の散乱効果をもたらし、有機微粒子の平均粒径が、接着層を構成するバインダー成分の層厚よりも大きいため、蛍光体粒子含有層と接着層の界面で形成される凹凸部により屈折率が平均化されることから、光学的に改善が見られると推定している。 As a mechanism that the above effect is manifested, inorganic fine particles with a small average particle diameter have the effect of scattering the light emitted from the phosphor particle-containing layer inside the adhesive layer, and the average particle diameter of the organic fine particles constitutes the adhesive layer. Since the refractive index is averaged by the uneven portions formed at the interface between the phosphor particle-containing layer and the adhesive layer, the optical component is estimated to be improved optically. .
 更に、表面に凹凸構造を有する接着層上に、蛍光体粒子含有層を形成することにより、蛍光体粒子含有層を構成する樹脂成分が、凹凸構造の間隙部に入り込むことによるアンカー効果を発現し、加えて、接着層を構成するバインダー成分として、シランカップリング剤を適用することにより、蛍光体粒子含有層との間で、強い結合を形成することで、密着性を向上させることができるものである。 Furthermore, by forming the phosphor particle-containing layer on the adhesive layer having a concavo-convex structure on the surface, the anchoring effect due to the resin component constituting the phosphor particle-containing layer entering the gap portion of the concavo-convex structure is exhibited. In addition, by applying a silane coupling agent as a binder component constituting the adhesive layer, adhesion can be improved by forming a strong bond with the phosphor particle-containing layer. It is.
 同様に、ケイ素原子を含む無機酸化物より構成されるガスバリアー層上に、バインダー成分としてシランカップリング剤等をバインダー成分として適用することにより、ガスバリアー層が含有するケイ素原子と、接着層が含有するケイ素原子とが相互作用することにより、接着層内部において、ガスバリアー層界面側にケイ素原子が多く配向することにより、ケイ素原子の濃度傾斜構造が形成され、それに連動して接着層内の硬度に関しても傾斜構造を有することにより、密着性を向上させることができるものと推測している。 Similarly, by applying a silane coupling agent or the like as a binder component on a gas barrier layer composed of an inorganic oxide containing silicon atoms, a silicon atom contained in the gas barrier layer and an adhesive layer are formed. By interacting with the silicon atoms contained, many silicon atoms are oriented on the gas barrier layer interface side inside the adhesive layer, thereby forming a concentration gradient structure of silicon atoms. Regarding the hardness, it is presumed that the adhesion can be improved by having an inclined structure.
ガスバリアー性フィルムの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the gas barrier film ガスバリアー性フィルムの接着層におけるアクリロイル基の配向状態の一例を示す概略断面図Schematic sectional view showing an example of the orientation state of the acryloyl group in the adhesive layer of the gas barrier film ガスバリアー層と、無機微粒子と有機微粒子を含有する接着層とを有するガスバリアー性フィルムの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of a gas barrier film having a gas barrier layer and an adhesive layer containing inorganic fine particles and organic fine particles ガスバリアー性フィルムと蛍光体粒子含有層より構成される光学フィルムの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of an optical film composed of a gas barrier film and a phosphor particle-containing layer ガスバリアー性フィルムで蛍光体粒子含有層を挟持した構成の光学フィルムの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of an optical film having a configuration in which a phosphor particle-containing layer is sandwiched between gas barrier films ガスバリアー性フィルムと蛍光体粒子含有層を積層した構成の光学フィルムの他の一例を示す概略断面図Schematic sectional view showing another example of an optical film having a structure in which a gas barrier film and a phosphor particle-containing layer are laminated. 一対のガスバリアー性フィルムで蛍光体粒子含有層を挟持した構成の光学フィルムの他の一例を示す概略断面図Schematic sectional view showing another example of an optical film having a configuration in which a phosphor particle-containing layer is sandwiched between a pair of gas barrier films
 本発明のガスバリアー性フィルムは、樹脂基材上に、ガスバリアー層と、接着層をこの順で有するガスバリアー性フィルムであって、前記ガスバリアー層が、少なくともケイ素原子を含む無機酸化物を含有し、前記接着層が、少なくともアクリロイル基を含む化合物と、ケイ素原子を含む化合物を含有し、かつ当該接着層の層厚が、100~1000nmの範囲内であることを特徴とする。この特徴は、各請求項に係る発明に共通する又は対応する技術的特徴である。 The gas barrier film of the present invention is a gas barrier film having a gas barrier layer and an adhesive layer in this order on a resin substrate, wherein the gas barrier layer contains an inorganic oxide containing at least silicon atoms. And the adhesive layer contains at least a compound containing an acryloyl group and a compound containing a silicon atom, and the thickness of the adhesive layer is in the range of 100 to 1000 nm. This feature is a technical feature common to or corresponding to the claimed invention.
 本発明においては、本発明の目的とする効果をより発現できる観点から、接着層の層厚が100~500nmの範囲内とすることが、良好な密着性を維持することができると共に、サイドリーク耐性をより一層向上させることができる点で好ましい。 In the present invention, from the standpoint that the effects of the present invention can be further manifested, it is possible to maintain good adhesion and to prevent side leakage when the thickness of the adhesive layer is in the range of 100 to 500 nm. This is preferable in that the resistance can be further improved.
 また、接着層が含有する前記アクリロイル基を含む化合物として、アクリロイル基含有シランカップリングポリマーを用いることが、本発明の目的効果である密着性をより向上させることができる点で好ましい。 In addition, it is preferable to use an acryloyl group-containing silane coupling polymer as the compound containing the acryloyl group contained in the adhesive layer in terms of further improving the adhesion, which is an object effect of the present invention.
 また、接着層が、平均粒径が300~1000nmの範囲内にある有機微粒子を含有することが、耐熱性をより向上させることができる点で好ましい。 In addition, it is preferable that the adhesive layer contains organic fine particles having an average particle size in the range of 300 to 1000 nm from the viewpoint that heat resistance can be further improved.
 本発明のガスバリアー性フィルムの製造方法としては、樹脂基材上に、少なくともケイ素原子を含む無機酸化物より構成されるガスバリアー層を形成した後、当該ガスバリアー層上に、少なくともアクリロイル基を含む化合物と、ケイ素原子を含む化合物を含有する接着層を、層厚が100~1000nmの範囲内で形成することを特徴とする。更に、ガスバリアー性フィルム製造時に、活性光線、例えば、紫外線照射による硬化処理を施さないことが、密着性及びサイドリーク耐性をさらに向上させることができる点で好ましい態様である。 As a method for producing a gas barrier film of the present invention, a gas barrier layer composed of an inorganic oxide containing at least silicon atoms is formed on a resin substrate, and then at least an acryloyl group is formed on the gas barrier layer. An adhesive layer containing a compound containing a compound containing a silicon atom and a compound containing a silicon atom is formed in a thickness range of 100 to 1000 nm. Furthermore, it is a preferable embodiment that the adhesiveness and side leak resistance can be further improved when the gas barrier film is not subjected to a curing treatment by irradiation with actinic rays such as ultraviolet rays.
 また、本発明の光学フィルムは、蛍光体粒子含有層の少なくとも一方の面側に、ガスバリアー性フィルムを具備し、前記ガスバリアー性フィルムが、樹脂基材上に、ガスバリアー層と接着層とをこの順に有し、前記ガスバリアー層が、少なくともケイ素原子を含む無機酸化物を含有し、前記接着層が、前記特定の条件(1)を満たす接着層1又は条件(2)を満たす接着層2とし、かつ、前記蛍光体粒子含有層と前記接着層を、隣接して配置されることを特徴とする。 Further, the optical film of the present invention comprises a gas barrier film on at least one surface side of the phosphor particle-containing layer, and the gas barrier film has a gas barrier layer and an adhesive layer on the resin substrate. In this order, the gas barrier layer contains an inorganic oxide containing at least a silicon atom, and the adhesive layer satisfies the specific condition (1) or the adhesive layer 1 that satisfies the condition (2) 2 and the phosphor particle-containing layer and the adhesive layer are disposed adjacent to each other.
 すなわち、第1の構成の光学フィルムでは、ガスバリアー性フィルムを構成する接着層が、少なくともアクリロイル基を含む化合物と、ケイ素原子を含む化合物を含有し、かつ当該接着層の層厚が、100~1000nmの範囲内である接着層1である。また、第2の構成の光学フィルムでは、ガスバリアー性フィルムを構成する接着層が、平均一次粒径が30~100nmの範囲内にある無機微粒子と、平均一次粒径が300~1000nmの範囲内にある有機微粒子及びバインダー成分を含有する接着層2であることを特徴とする。 That is, in the optical film having the first structure, the adhesive layer constituting the gas barrier film contains at least a compound containing an acryloyl group and a compound containing a silicon atom, and the thickness of the adhesive layer is from 100 to 100. The adhesive layer 1 is in the range of 1000 nm. In the optical film having the second configuration, the adhesive layer constituting the gas barrier film includes an inorganic fine particle having an average primary particle size in the range of 30 to 100 nm and an average primary particle size in the range of 300 to 1000 nm. It is characterized by being the adhesive layer 2 containing the organic fine particles and the binder component.
 本発明においては、本発明の目的とする効果をより発現できる観点から、蛍光体粒子含有層が、蛍光体粒子として量子ドットを含有する量子ドット含有層であることが、より優れた発光特性を得ることができる点で好ましい。 In the present invention, from the viewpoint that the effect intended by the present invention can be further expressed, the phosphor particle-containing layer is a quantum dot-containing layer containing quantum dots as phosphor particles, so that more excellent emission characteristics are obtained. It is preferable in that it can be obtained.
 また、接着層が含有する無機微粒子がシリカ粒子であることが、接着層を構成するバインダー成分と近似の屈折率を有し、接着層内で効率的な光散乱効果を発現させることができ、より高い発光効率を実現することができる観点から好ましい。 Further, the inorganic fine particles contained in the adhesive layer are silica particles, have a refractive index approximate to the binder component constituting the adhesive layer, and can exhibit an efficient light scattering effect in the adhesive layer, This is preferable from the viewpoint of realizing higher luminous efficiency.
 また、接着層の層厚として、含有する無機微粒子の平均一次粒径以上で、かつ有機微粒子の平均一次粒径未満の条件とすることにより、蛍光体粒子含有層と接着層の界面に形成する凹凸構造により、屈折率が平均化させることにより、より高い発光効率を実現することができる観点から好ましい。 In addition, the adhesive layer is formed at the interface between the phosphor particle-containing layer and the adhesive layer by setting the layer thickness to be equal to or greater than the average primary particle size of the inorganic fine particles and less than the average primary particle size of the organic fine particles. It is preferable from the viewpoint that higher luminous efficiency can be realized by averaging the refractive index by the uneven structure.
 また、接着層を構成するバインダー成分として、シランカップリング剤、更にはポリマータイプのシランカップリング剤を用いることにより、蛍光体粒子含有層と接着層間での密着性、あるいは、接着層とガスバリアー層間における密着性をより向上させることができる観点から好ましい。 In addition, by using a silane coupling agent or a polymer-type silane coupling agent as a binder component constituting the adhesive layer, adhesion between the phosphor particle-containing layer and the adhesive layer, or an adhesive layer and a gas barrier. This is preferable from the viewpoint of improving the adhesion between the layers.
 同じく、接着層を構成するバインダー成分として、アクリロイル基含有化合物、更にはアクリルポリマーを含有させることにより、蛍光体粒子含有層と接着層間での密着性、あるいは、接着層とガスバリアー層間における密着性をより向上させることができる観点から好ましい。 Similarly, by including an acryloyl group-containing compound and further an acrylic polymer as the binder component constituting the adhesive layer, the adhesiveness between the phosphor particle-containing layer and the adhesive layer, or the adhesiveness between the adhesive layer and the gas barrier layer. From the viewpoint that can be further improved.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。また、各図の説明で、構成要素の後の括弧内に記載の数字は、各図に記載している符号を示してある。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value. In the explanation of each figure, numerals in parentheses after the constituent elements indicate the symbols shown in each figure.
 《ガスバリアー性フィルム及び光学フィルムの全体構成》
 〔ガスバリアー性フィルムの構成〕
 本発明のガスバリアー性フィルムは、樹脂基材上に、ガスバリアー層と、接着層をこの順で有し、前記ガスバリアー層が、少なくともケイ素原子を含む無機酸化物を含有し、前記接着層1が、少なくともアクリロイル基を含む化合物と、ケイ素原子を含む化合物を含有し、かつ当該接着層1の層厚が、100~1000nmの範囲内であることを特徴とする。
<< Overall configuration of gas barrier film and optical film >>
[Composition of gas barrier film]
The gas barrier film of the present invention has a gas barrier layer and an adhesive layer in this order on a resin substrate, the gas barrier layer contains an inorganic oxide containing at least silicon atoms, and the adhesive layer 1 includes a compound containing at least an acryloyl group and a compound containing a silicon atom, and the thickness of the adhesive layer 1 is in the range of 100 to 1000 nm.
 また、本発明でいう「ガスバリアー性フィルム」とは、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(略称:WVTR、温度:38℃、相対湿度(RH):100%)が1.0g/m・24h以下のフィルムであることを意味する。 The “gas barrier film” as used in the present invention is a water vapor permeability measured by a method in accordance with JIS K 7129-1992 (abbreviation: WVTR, temperature: 38 ° C., relative humidity (RH): 100%). Of 1.0 g / m 2 · 24 h or less.
 水蒸気透過度は、例えば、水蒸気透過度測定装置(商品名:パーマトラン モコン社製)により、38℃、100%RHの雰囲気下で測定することができる。 The water vapor permeability can be measured, for example, with a water vapor permeability measuring device (trade name: Permatran, manufactured by Mocon) in an atmosphere of 38 ° C. and 100% RH.
 図1は、ガスバリアー性フィルムの構成の一例を示す概略断面図である。 FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a gas barrier film.
 図1において、ガスバリアー性フィルム(1)は、樹脂基材(2)上に、少なくともケイ素原子を含む無機酸化物より構成されるガスバリアー層(3)と、その上に、接着層1(4)を有する構成である。 In FIG. 1, a gas barrier film (1) comprises a gas barrier layer (3) composed of an inorganic oxide containing at least silicon atoms on a resin substrate (2), and an adhesive layer 1 ( 4).
 本発明においては、当該接着層1が、少なくとも未反応のアクリロイル基を含む化合物と、ケイ素原子を含む化合物を含有し、かつ層厚が、100~1000nmの範囲内であることを特徴とする。 In the present invention, the adhesive layer 1 contains at least a compound containing an unreacted acryloyl group and a compound containing a silicon atom, and the layer thickness is in the range of 100 to 1000 nm.
 更には、接着層1の層厚が、100~500nmの範囲内であること、あるいは、接着層1が含有するアクリロイル基を含む化合物が、アクリロイル基含有シランカップリングポリマーであることが好ましい態様である。 Further, in a preferred embodiment, the thickness of the adhesive layer 1 is in the range of 100 to 500 nm, or the compound containing an acryloyl group contained in the adhesive layer 1 is an acryloyl group-containing silane coupling polymer. is there.
 図2は、ガスバリアー性フィルムの接着層1におけるアクリロイル基の配向状態の一例を示す概略断面図である。 FIG. 2 is a schematic cross-sectional view showing an example of the orientation state of the acryloyl group in the adhesive layer 1 of the gas barrier film.
 図2に記載のガスバリアー性フィルム(1)は、樹脂基材(2)、ガスバリアー層(3)及び接着層1(4)で構成され、耐熱性や密着性の向上に寄与するアクリロイル基(5)が接着層1の表面領域に配向している状態を模式図として示している。 The gas barrier film (1) shown in FIG. 2 is composed of a resin substrate (2), a gas barrier layer (3), and an adhesive layer 1 (4), and contributes to improving heat resistance and adhesion. A state in which (5) is oriented in the surface region of the adhesive layer 1 is shown as a schematic diagram.
 本発明に係る「アクリロイル基」とは、下記に示す構造で表される、アクリル酸由来のアシル基である。 The “acryloyl group” according to the present invention is an acyl group derived from acrylic acid represented by the structure shown below.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 〈アクリロイル基の定量〉
 本発明においては、接着層1の表面領域におけるアクリロイル基量(mol/m)は、下記の方法により求めることができる。
<Quantification of acryloyl group>
In the present invention, the amount of acryloyl group (mol / m 2 ) in the surface region of the adhesive layer 1 can be determined by the following method.
 本発明でいう接着層1の表面領域とは、最表面部から深さ方向で10nmまでの領域をいい、当該表面領域に対し、下記の測定方法に準じて、アクリロイル基量(mol/m)を測定して求めることができる。 The surface region of the adhesive layer 1 in the present invention refers to a region from the outermost surface part to 10 nm in the depth direction, and the amount of acryloyl group (mol / m 2) with respect to the surface region according to the following measurement method. ) Can be obtained by measuring.
 具体的には臭素含有の溶液に接着層付きバリアフィルムを10分間含浸し、十分乾燥させたサンプルのXPS測定を行うことにより、表面のBr量の比率を定量化することで未反応のアクリレート基を定量化することができる。 Specifically, by impregnating a bromine-containing solution with a barrier film with an adhesive layer for 10 minutes and performing a XPS measurement on a sufficiently dried sample, the ratio of the amount of Br on the surface is quantified to determine the unreacted acrylate group Can be quantified.
 本発明においては、接着層1の表面領域におけるアクリロイル基の含有量としては、0.1mol/m以上であることが好ましく、さらに好ましくは0.5mol/m以上である。 In the present invention, the acryloyl group content in the surface region of the adhesive layer 1 is preferably 0.1 mol / m 2 or more, more preferably 0.5 mol / m 2 or more.
 また、第2の構成の光学フィルムに適用するガスバリアー性フィルムとしては、樹脂基材上に、ガスバリアー層と接着層2とをこの順に有し、ガスバリアー層が、少なくともケイ素原子を含む無機酸化物を含有し、接着層2が、平均一次粒径が30~100nmの範囲内にある無機微粒子と、平均一次粒径が300~1000nmの範囲内にある有機微粒子及びバインダー成分を含有する構成であることを特徴とする。 Moreover, as a gas barrier film applied to the optical film having the second configuration, a gas barrier layer and an adhesive layer 2 are provided in this order on a resin substrate, and the gas barrier layer is an inorganic material containing at least silicon atoms. A structure containing an oxide, the adhesive layer 2 containing inorganic fine particles having an average primary particle size in the range of 30 to 100 nm, organic fine particles having an average primary particle size in the range of 300 to 1000 nm, and a binder component It is characterized by being.
 図3は、ガスバリアー層と、無機微粒子と有機微粒子を含有する接着層2とを有する第2の構成のガスバリアー性フィルムの構成の一例を示す概略断面図である。 FIG. 3 is a schematic cross-sectional view showing an example of the configuration of a gas barrier film having a second configuration having a gas barrier layer and an adhesive layer 2 containing inorganic fine particles and organic fine particles.
 図3に示すガスバリアー性フィルム(101)においては、樹脂基材(102)上に、少なくともケイ素原子を含む無機酸化物より構成されるガスバリアー層(103)と、その上に、第2の実施形態である接着層2(104)を有する構成である。 In the gas barrier film (101) shown in FIG. 3, a gas barrier layer (103) composed of an inorganic oxide containing at least silicon atoms is formed on a resin substrate (102), and a second barrier film is formed thereon. It is the structure which has the contact bonding layer 2 (104) which is embodiment.
 本発明においては、第2の実施形態である接着層2(104)は、平均一次粒径が30~100nmの範囲内にある無機微粒子(106)と、平均一次粒径が300~1000nmの範囲内にある有機微粒子(107)及びバインダー成分(105)により構成されている。 In the present invention, the adhesive layer 2 (104) according to the second embodiment includes inorganic fine particles (106) having an average primary particle diameter in the range of 30 to 100 nm and an average primary particle diameter in the range of 300 to 1000 nm. It consists of organic fine particles (107) and a binder component (105) inside.
 更には、接着層2(104)が含有する無機微粒子(106)が、シリカ粒子であることが好ましい構成である。 Furthermore, it is preferable that the inorganic fine particles (106) contained in the adhesive layer 2 (104) are silica particles.
 また、接着層2(104)の層厚が、無機微粒子(106)の平均一次粒径以上で、かつ有機微粒子(107)の平均一次粒径未満であることが好ましい態様である。上記条件を満たすバインダー成分の層厚は、30nm以上、1000nm未満となるが、現実的な層厚としては、100nm以上、1000nm未満であり、更に好ましくは、100~800nmの範囲であり、特に好ましくは200~500nmの範囲内である。 Further, it is a preferred embodiment that the layer thickness of the adhesive layer 2 (104) is not less than the average primary particle size of the inorganic fine particles (106) and less than the average primary particle size of the organic fine particles (107). The layer thickness of the binder component satisfying the above conditions is 30 nm or more and less than 1000 nm, but the practical layer thickness is 100 nm or more and less than 1000 nm, more preferably in the range of 100 to 800 nm, particularly preferably. Is in the range of 200 to 500 nm.
 本発明でいう接着層2(104)の層厚とは、図3で示すように、大粒子である有機微粒子(107)が、表面上部より突出して、凹凸構造を形成している場合には、ガスバリアー層(103)との界面をAとし、接着層(4)表面における凹構造の底面をBとした時、AからBまでの厚さの平均値(hd)を、接着層2(104)の層厚と定義する。 The layer thickness of the adhesive layer 2 (104) referred to in the present invention is, as shown in FIG. 3, when the organic fine particles (107) which are large particles protrude from the upper surface to form a concavo-convex structure. When the interface with the gas barrier layer (103) is A and the bottom surface of the concave structure on the surface of the adhesive layer (4) is B, the average thickness (Ad) from A to B is the adhesive layer 2 ( 104).
 〔光学フィルムの構成〕
 本発明の光学フィルムは、本発明で規定する構成よりなるガスバリアー性フィルムと、蛍光体粒子を含有する蛍光体粒子含有層とを有する構成で、本発明のガスバリアー性フィルムを構成する表面領域にアクリロイル基を有する接着層と、蛍光体粒子含有層とが隣接して配置され、接着層が、少なくともアクリロイル基を含む化合物と、ケイ素原子を含む化合物を含有し、かつ当該接着層の層厚が、100~1000nmの範囲内である接着層1(第1の実施形態)、又は接着層が、平均一次粒径が30~100nmの範囲内にある無機微粒子と、平均一次粒径が300~1000nmの範囲内にある有機微粒子及びバインダー成分を含有する接着層2(第2の実施形態)であることを特徴とする。
[Configuration of optical film]
The optical film of the present invention has a gas barrier film having a structure defined in the present invention and a phosphor particle-containing layer containing phosphor particles, and a surface region constituting the gas barrier film of the present invention. An adhesive layer having an acryloyl group and a phosphor particle-containing layer are disposed adjacent to each other, and the adhesive layer contains at least a compound containing an acryloyl group and a compound containing a silicon atom, and the thickness of the adhesive layer However, the adhesive layer 1 (first embodiment) in the range of 100 to 1000 nm, or the adhesive layer has inorganic fine particles having an average primary particle size in the range of 30 to 100 nm, and an average primary particle size of 300 to It is an adhesive layer 2 (second embodiment) containing organic fine particles within a range of 1000 nm and a binder component.
 (第1の構成の光学フィルム)
 第1の構成の光学フィルムにおいては、接着層として、少なくともアクリロイル基を含む化合物と、ケイ素原子を含む化合物を含有し、かつ当該接着層の層厚が、100~1000nmの範囲内である接着層1を適用することを1つの特徴とする。
(Optical film of the first configuration)
In the optical film having the first structure, the adhesive layer contains at least a compound containing an acryloyl group and a compound containing a silicon atom as the adhesive layer, and the thickness of the adhesive layer is in the range of 100 to 1000 nm. One feature is that 1 is applied.
 図4A及び図4Bは、接着層1(4、4A、4B)を有するガスバリアー性フィルムと、蛍光体粒子含有層より構成される光学フィルムの第1の構成の一例を示す概略断面図である。 4A and 4B are schematic cross-sectional views illustrating an example of a first configuration of an optical film including a gas barrier film having an adhesive layer 1 (4, 4A, 4B) and a phosphor particle-containing layer. .
 図4Aに示す構成の光学フィルム(10)では、樹脂基材(2)上に、ガスバリアー層(3)と、少なくともアクリロイル基を含む化合物と、ケイ素原子を含む化合物を含有し、かつ層厚が、100~1000nmの範囲内である接着層1(4)を積層した構成のガスバリアー性フィルム(1)と、当該接着層1(4)に対向する位置に、樹脂バインダー(8)中に蛍光体粒子(7、QD粒子)を分散して構成する蛍光体粒子含有層(6)を配置した構成の一例を示してある。蛍光体粒子含有層(6)のガスバリアー性フィルムを設けた反対側の面には、蛍光体粒子への水分や酸素等による影響を防止するため、封止部材(9)等を設ける構成が好ましい。 In the optical film (10) having the structure shown in FIG. 4A, the gas barrier layer (3), a compound containing at least an acryloyl group, a compound containing a silicon atom, and a layer thickness are formed on the resin substrate (2). However, in the resin binder (8), the gas barrier film (1) having a structure in which the adhesive layer 1 (4) within the range of 100 to 1000 nm is laminated and the position facing the adhesive layer 1 (4). An example of a configuration in which a phosphor particle-containing layer (6) configured by dispersing phosphor particles (7, QD particles) is arranged is shown. A structure in which a sealing member (9) or the like is provided on the opposite surface of the phosphor particle-containing layer (6) provided with the gas barrier film to prevent the phosphor particles from being affected by moisture, oxygen, or the like. preferable.
 図4Bに示す光学フィルム(10)では、蛍光体粒子(7)を含有する蛍光体粒子含有層(6)を、一対の接着層1を有するガスバリアー性フィルム(1A及び1B)で挟持している構成を示してある。図4Bに示す光学フィルム(10)でも、各ガスバリアー性フィルムを構成する表面領域にアクリロイル基を有する接着層1(4A及び4B)と、蛍光体粒子含有層(6)がそれぞれ隣接した位置に配置されている。 In the optical film (10) shown in FIG. 4B, the phosphor particle-containing layer (6) containing the phosphor particles (7) is sandwiched between gas barrier films (1A and 1B) having a pair of adhesive layers 1. The configuration is shown. In the optical film (10) shown in FIG. 4B, the adhesive layer 1 (4A and 4B) having an acryloyl group in the surface region constituting each gas barrier film and the phosphor particle-containing layer (6) are adjacent to each other. Has been placed.
 (第2の構成の光学フィルム)
 第2の構成の本発明の光学フィルムにおいては、接着層として、平均一次粒径が30~100nmの範囲内にある無機微粒子と、平均一次粒径が300~1000nmの範囲内にある有機微粒子及びバインダー成分を含有する接着層2を適用することを1つの特徴とする。
(Optical film of the second configuration)
In the optical film of the present invention having the second configuration, as the adhesive layer, inorganic fine particles having an average primary particle size in the range of 30 to 100 nm, organic fine particles having an average primary particle size in the range of 300 to 1000 nm, and One feature is to apply the adhesive layer 2 containing a binder component.
 図5A及び図5Bは、接着層2を有するガスバリアー性フィルムと蛍光体粒子含有層より構成される第2の構成の光学フィルム(F)の構成の一例を示す概略断面図である。 FIG. 5A and FIG. 5B are schematic cross-sectional views showing an example of the configuration of the optical film (F) of the second configuration configured by the gas barrier film having the adhesive layer 2 and the phosphor particle-containing layer.
 図5Aに示す構成の光学フィルム(F)では、樹脂基材(102A)上に、ガスバリアー層(103A)と、無機微粒子(106A)、有機微粒子(107A)及びバインダー成分(105A)を含有する接着層2(104A)を積層した構成のガスバリアー性フィルム(101A)と、当該接着層2(104A)に隣接する位置に、樹脂バインダー(110)中に蛍光体粒子(109、QD粒子)を分散して構成する蛍光体粒子含有層(108)を配置した構成の第2の構成の光学フィルムの構成の一例を示してある。蛍光体粒子含有層(108)のガスバリアー性フィルム(101A)を設けた反対側の面には、蛍光体粒子(109)への水分や酸素等による影響を防止するため、封止部材(111)等を設ける構成が好ましい。 5A contains a gas barrier layer (103A), inorganic fine particles (106A), organic fine particles (107A), and a binder component (105A) on the resin substrate (102A). Gas barrier film (101A) having a structure in which adhesive layer 2 (104A) is laminated, and phosphor particles (109, QD particles) in resin binder (110) at a position adjacent to adhesive layer 2 (104A). An example of the structure of the optical film of the 2nd structure of the structure which has arrange | positioned the fluorescent substance particle content layer (108) comprised by disperse | distributing is shown. On the opposite surface of the phosphor particle-containing layer (108) where the gas barrier film (101A) is provided, a sealing member (111) is used to prevent the phosphor particles (109) from being affected by moisture, oxygen, or the like. Etc.) is preferable.
 図5Bは、一対の第2の実施形態である接着層2を有するガスバリアー性フィルムで蛍光体粒子含有層を挟持した構成の光学フィルムの一例を示す概略断面図である。 FIG. 5B is a schematic cross-sectional view showing an example of an optical film having a structure in which a phosphor particle-containing layer is sandwiched between gas barrier films having an adhesive layer 2 according to a pair of second embodiments.
 図5Bに示す光学フィルム(F)では、蛍光体粒子(109)を含有する蛍光体粒子含有層(108)の両面を、本発明に係る第2の構成であるガスバリアー性フィルム(101A及び101B)で挟持している構成を示してある。この時、蛍光体粒子含有層(8)の両面に隣接する位置に、ガスバリアー性フィルム(101A及び101B)の接着層2(104A及び104B)を配置させる。 In the optical film (F) shown in FIG. 5B, both sides of the phosphor particle-containing layer (108) containing the phosphor particles (109) are formed on the gas barrier films (101A and 101B) according to the second configuration of the present invention. ) Shows the structure sandwiched. At this time, the adhesive layers 2 (104A and 104B) of the gas barrier films (101A and 101B) are disposed at positions adjacent to both surfaces of the phosphor particle-containing layer (8).
 本発明の光学フィルム(F)が図5Bで示すような構成をとる場合、ガスバリアー性フィルム(101A及び101B)は、本発明で規定する条件を満たす同一構造のガスバリアー性フィルムであっても、あるいは、ガスバリアー性フィルム(101A及び101B)が、それぞれ異なる構成のガスバリー性フィルムである場合には、ガスバリアー性フィルム(1A及び1B)の少なくとも一方が、本発明で規定する接着層2を有するガスバリアー性フィルムであればよい。 When the optical film (F) of the present invention has the configuration shown in FIG. 5B, the gas barrier films (101A and 101B) may be gas barrier films having the same structure that satisfies the conditions defined in the present invention. Alternatively, when the gas barrier films (101A and 101B) are gas barrier films having different structures, at least one of the gas barrier films (1A and 1B) has the adhesive layer 2 defined in the present invention. Any gas barrier film may be used.
 《ガスバリアー性フィルムの構成について》
 はじめに、本発明のガスバリアー性フィルムの各構成要素の詳細について説明する。
<About the configuration of the gas barrier film>
First, the detail of each component of the gas barrier film of this invention is demonstrated.
 [樹脂基材]
 本発明のガスバリアー性フィルムに適用可能な樹脂基材としては、ガスバリアー層及び接着層を保持することができるものであれば特に限定されるものではない。当該樹脂基材としては、通常、フレキシブル性を有するプラスチックフィルムまたはシートが用いられ、無色透明な樹脂からなるフィルムまたはシートが好ましく用いられる。用いられる樹脂基材は、本発明に係るガスバリアー層や接着層の他に、更に、目的により適宜設けられる各種機能層(ハードコート層等)や、光学フィルムを構成する蛍光体粒子含有層を保持できるフィルムであれば、材質や厚み等に特に制限はなく、使用目的等に応じて適宜選択することができる。
[Resin substrate]
The resin base material applicable to the gas barrier film of the present invention is not particularly limited as long as it can hold the gas barrier layer and the adhesive layer. As the resin substrate, a flexible plastic film or sheet is usually used, and a film or sheet made of a colorless and transparent resin is preferably used. In addition to the gas barrier layer and the adhesive layer according to the present invention, the resin base material used includes various functional layers (hard coat layer, etc.) provided as appropriate according to the purpose, and phosphor particle-containing layers constituting the optical film. As long as it is a film that can be held, the material, thickness, and the like are not particularly limited and can be appropriately selected depending on the purpose of use.
 本発明に適用可能な樹脂基材としては、例えば、ポリ(メタ)アクリル酸エステル、ポリエチレンテレフタレート(略称:PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(略称:PEN)、ポリカーボネート(略称:PC)、ポリアリレート、ポリ塩化ビニル(略称:PVC)、ポリエチレン(略称:PE)、ポリプロピレン(略称:PP)、ポリスチレン(略称:PS)、ナイロン(略称:Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド、シクロオレフィンポリマー、シクロオレフィンコポリマー等の樹脂成分により構成される各樹脂フィルムや、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(例えば、製品名Sila-DEC、チッソ株式会社製)、さらには前記樹脂を2層以上積層して構成される積層型樹脂フィルム等を挙げることができる。 Examples of the resin substrate applicable to the present invention include poly (meth) acrylate, polyethylene terephthalate (abbreviation: PET), polybutylene terephthalate, polyethylene naphthalate (abbreviation: PEN), polycarbonate (abbreviation: PC), Polyarylate, polyvinyl chloride (abbreviation: PVC), polyethylene (abbreviation: PE), polypropylene (abbreviation: PP), polystyrene (abbreviation: PS), nylon (abbreviation: Ny), aromatic polyamide, polyetheretherketone, polysulfone Resin film composed of resin components such as polyethersulfone, polyimide, polyetherimide, cycloolefin polymer, cycloolefin copolymer, etc., and heat-resistant transparent with silsesquioxane having organic-inorganic hybrid structure as the basic skeleton Film (e.g., product name Sila-DEC, manufactured by Chisso Corporation), and further can be mentioned laminated resin film formed by laminating the resin two or more layers.
 樹脂基材の厚さは、特に制限されないが、5~300μmであることが好ましく、10~100μmであることがより好ましい。該樹脂基材上には、必要に応じて、透明導電層、プライマー層、クリアハードコート層等の各種機能層を有していてもよい。適用可能な各種機能層については、上述したもののほか、特開2006-289627号公報の段落番号「0036」~「0038」に記載されている機能層を、目的に応じて適宜選択して採用できる。 The thickness of the resin substrate is not particularly limited, but is preferably 5 to 300 μm, and more preferably 10 to 100 μm. On this resin base material, you may have various functional layers, such as a transparent conductive layer, a primer layer, and a clear hard-coat layer, as needed. As for various applicable functional layers, in addition to those described above, functional layers described in paragraph numbers “0036” to “0038” of JP-A-2006-289627 can be appropriately selected and employed depending on the purpose. .
 また、本発明に係る樹脂基材は、透明であることが好ましい。樹脂基材が透明であり、樹脂基材上に形成する層も透明であることにより、透明なガスバリアー性フィルムとすることが可能となるため、有機EL素子等の透明基板とすることも可能となるからである。本発明でいう「透明」とは、JIS S3107(2013)に準拠する方法で測定される可視光透過率が50%以上であることをいい、好ましくは65%以上、より好ましくは80%以上、さらに好ましくは90%以上である。 The resin base material according to the present invention is preferably transparent. Since the resin base material is transparent and the layer formed on the resin base material is also transparent, it becomes possible to make a transparent gas barrier film, so that it can be used as a transparent substrate such as an organic EL element. Because it becomes. “Transparent” in the present invention means that the visible light transmittance measured by a method in accordance with JIS S3107 (2013) is 50% or more, preferably 65% or more, more preferably 80% or more, More preferably, it is 90% or more.
 樹脂基材は、表面平滑性が高いものが好ましい。表面平滑性としては、平均表面粗さ(Ra)が2nm以下であるものが好ましい。下限は特にないが、実用上、0.01nm以上である。必要に応じて、樹脂基材の両面、少なくともガスバリアー層を設ける側を研摩し、平滑性を向上させておいてもよい。 The resin base material preferably has high surface smoothness. As the surface smoothness, those having an average surface roughness (Ra) of 2 nm or less are preferable. Although there is no particular lower limit, it is practically 0.01 nm or more. If necessary, both surfaces of the resin substrate, at least the side on which the gas barrier layer is provided, may be polished to improve smoothness.
 樹脂基材においては、本発明に係るガスバリアー層を設ける側に、密着性向上のための公知の種々の処理、例えば、コロナ放電処理、火炎処理、酸化処理、またはプラズマ処理や、後述する平滑層の積層等を行ってもよく、あるいは上記各処理を組み合わせて行うこともできる。 In the resin base material, on the side where the gas barrier layer according to the present invention is provided, various known treatments for improving adhesion, such as corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, Layers may be stacked or the above treatments may be combined.
 [ガスバリアー層]
 本発明のガスバリアー性フィルムは、樹脂基材上に少なくとも1層のケイ素原子を含む無機酸化物より構成されるガスバリアー層を有することを、特徴の一つとする。ここで、本発明に係るガスバリアー層は、樹脂基材表面に直接形成される態様の他に、樹脂基材とガスバリアー層の間に下地層(例えば、平滑層、プライマー層)、アンカーコート層(アンカー層)等の各種機能層が、必要に応じて設けられている態様であってもよい。
[Gas barrier layer]
One feature of the gas barrier film of the present invention is that it has a gas barrier layer composed of an inorganic oxide containing at least one silicon atom on a resin substrate. Here, the gas barrier layer according to the present invention has an undercoat layer (for example, a smooth layer, a primer layer), an anchor coat between the resin substrate and the gas barrier layer, in addition to an embodiment in which the gas barrier layer is directly formed on the resin substrate surface. Various functional layers such as layers (anchor layers) may be provided as necessary.
 ガスバリアー層は、少なくともケイ素原子を含む無機化合物により構成されている。すなわち、ケイ素原子を含む無機酸化物(組成:SiO)である。 The gas barrier layer is composed of an inorganic compound containing at least silicon atoms. That is, it is an inorganic oxide containing silicon atoms (composition: SiO x ).
 ガスバリアー層における化学組成は、XPS表面分析装置(例えば、アルバックファイ社製QUANTERASXM)を用いて、原子組成比を測定することで求めることができる。また、ガスバリアー層の側面を切り出し、露出させた切断面をXPS表面分析装置で原子組成比を測定することでも求めることができる。また、ガスバリアー層における化学組成は、ガスバリアー層を形成する際に用いる原料の種類や量、ならびに成膜時の形成条件や形成した後の改質処理条件等により、制御することができる。 The chemical composition in the gas barrier layer can be determined by measuring the atomic composition ratio using an XPS surface analyzer (for example, QUANTERASXM manufactured by ULVAC-PHI). It can also be determined by cutting the side surface of the gas barrier layer and measuring the exposed cut surface by measuring the atomic composition ratio with an XPS surface analyzer. In addition, the chemical composition in the gas barrier layer can be controlled by the type and amount of raw materials used when forming the gas barrier layer, the formation conditions during film formation, the modification treatment conditions after formation, and the like.
 ガスバリアー層を構成するケイ素原子を含む無機化合物の含有量は、特に限定されないが、ガスバリアー層全質量に対し、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、98質量%以上であることが特に好ましく、100質量%であること、すなわち、ガスバリアー層が無機化合物のみから構成されることが最も好ましい。 The content of the inorganic compound containing a silicon atom constituting the gas barrier layer is not particularly limited, but is preferably 50% by mass or more, more preferably 80% by mass or more based on the total mass of the gas barrier layer. The content is more preferably 95% by mass or more, particularly preferably 98% by mass or more, and most preferably 100% by mass, that is, the gas barrier layer is most preferably composed only of an inorganic compound.
 ガスバリアー層を、主成分としてケイ素原子を含む無機化合物より構成することにより、高い緻密性を有し、優れたガスバリアー性を発現させることができる。ここで、ガスバリアー層のガスバリアー性とは、前述のとおり、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(略称:WVTR、温度:38℃、相対湿度(RH):100%)が、1.0g/(m・24h)以下であることを意味し、0.1g/(m・24h)以下であることが好ましく、0.01g/(m・24h)以下であることがより好ましい。 By constituting the gas barrier layer from an inorganic compound containing a silicon atom as a main component, it has high density and can exhibit excellent gas barrier properties. Here, the gas barrier property of the gas barrier layer is, as described above, the water vapor permeability (abbreviation: WVTR, temperature: 38 ° C., relative humidity (RH)): 100 measured by a method according to JIS K 7129-1992. %) Is 1.0 g / (m 2 · 24 h) or less, preferably 0.1 g / (m 2 · 24 h) or less, and 0.01 g / (m 2 · 24 h) or less. It is more preferable that
 ガスバリアー層の形成方法は、特に制限されないが、例えば、ケイ素含有化合物を用い、物理気相成長法(PVD法)や化学気相成長法(CVD法)などの気相成膜法で形成する方法や、ケイ素化合物(例えば、ポリシラザン等)を含む塗布液を塗布してガスバリアー層形成用前駆体を含む塗膜を形成した後、真空紫外線等による改質処理を施してガスバリアー層を形成する方法(以下、塗布法とも称する)などが挙げられる。 The method for forming the gas barrier layer is not particularly limited. For example, the gas barrier layer is formed by a vapor deposition method such as physical vapor deposition (PVD) or chemical vapor deposition (CVD) using a silicon-containing compound. After forming a coating film containing a precursor for forming a gas barrier layer by applying a coating solution containing a silicon compound (for example, polysilazane, etc.), a gas barrier layer is formed by performing a modification treatment using vacuum ultraviolet rays or the like. And the like (hereinafter also referred to as a coating method).
 以下、代表的な気相成膜法及び塗布法と、当該塗布法で形成した塗膜に対する具体的な改質方法について説明する。 Hereinafter, a typical vapor deposition method and coating method, and a specific modification method for a coating film formed by the coating method will be described.
 〔ガスバリアー層の気相成膜法による形成〕
 本発明に適用可能な気相成膜法の代表例として、物理気相成長法(PVD法)及び化学気相成長法(CVD法)について、その詳細を説明する。
[Formation of gas barrier layer by vapor deposition]
As a representative example of the vapor deposition method applicable to the present invention, the physical vapor deposition method (PVD method) and the chemical vapor deposition method (CVD method) will be described in detail.
 物理気相成長法(Physical Vapor Deposition、PVD法)とは、気相中で基材等の表面に物理的手段により、目的とする物質、例えば、ケイ素原子含有膜等の薄膜を堆積する方法であり、物理的な成膜手段としては、例えば、スパッタ法(例えば、DCスパッタ法、RFスパッタ法、イオンビームスパッタ法、マグネトロンスパッタ法等)、真空蒸着法、イオンプレーティング法などが挙げられる。 The physical vapor deposition method (Physical Vapor Deposition, PVD method) is a method in which a target substance, for example, a thin film such as a silicon atom-containing film is deposited on the surface of a substrate in the gas phase by physical means. The physical film forming means includes, for example, a sputtering method (for example, a DC sputtering method, an RF sputtering method, an ion beam sputtering method, a magnetron sputtering method), a vacuum deposition method, an ion plating method, and the like.
 スパッタ法は、真空チャンバー内にターゲットを設置し、高電圧をかけてイオン化した希ガス元素(通常は、アルゴン)をターゲットに衝突させて、ターゲット表面よりケイ素原子をはじき出し、樹脂基材に付着・堆積させる方法である。このとき、チャンバー内に窒素ガスや酸素ガスを流すことにより、アルゴンガスによってターゲットからはじき出されたケイ素原子と、窒素や酸素とを反応させてケイ素原子を含む無機酸化物層を形成する、反応性スパッタ法を用いてもよい。 In the sputtering method, a target is placed in a vacuum chamber, a high-voltage ionized rare gas element (usually argon) is collided with the target, and silicon atoms are ejected from the target surface to adhere to the resin substrate. It is a method of depositing. At this time, by flowing nitrogen gas or oxygen gas into the chamber, the silicon atoms ejected from the target by argon gas react with nitrogen and oxygen to form an inorganic oxide layer containing silicon atoms. A sputtering method may be used.
 一方、化学気相成長法(Chemical Vapor Deposition、CVD法)とは、樹脂基材上に、目的とする薄膜成分であるケイ素原子を含む原料ガスを供給し、樹脂基材表面または気相での化学反応によりケイ素原子を含有する無機酸化物膜を堆積する方法である。また、化学反応を活性化する目的で、プラズマなどを発生させる方法などがあり、熱CVD法、触媒化学気相成長法、光CVD法、真空プラズマCVD法、大気圧プラズマCVD法など公知のCVD方式等が挙げられる。特に限定されるものではないが、製膜速度や処理面積の観点から、プラズマCVD法を適用することが好ましい。 On the other hand, the chemical vapor deposition method (Chemical Vapor Deposition, CVD method) is a method of supplying a raw material gas containing silicon atoms as a target thin film component onto a resin base material, on the surface of the resin base material or in the gas phase. In this method, an inorganic oxide film containing silicon atoms is deposited by a chemical reaction. In addition, for the purpose of activating the chemical reaction, there is a method of generating plasma or the like. Known CVD such as thermal CVD method, catalytic chemical vapor deposition method, photo CVD method, vacuum plasma CVD method, atmospheric pressure plasma CVD method, etc. The method etc. are mentioned. Although not particularly limited, it is preferable to apply the plasma CVD method from the viewpoint of film forming speed and processing area.
 真空プラズマCVD法や大気圧又は大気圧近傍の圧力下でのプラズマCVD法により得られるガスバリアー層は、原材料(原料ともいう)であるケイ素含有化合物、分解ガス、分解温度、投入電力などの条件を選ぶことで、目的とする組成からなるケイ素原子含有酸化物を製造できるため好ましい。プラズマCVD法によるバリア層の形成条件の詳細については、例えば、国際公開第2012/067186号の段落(0033)~(0051)に記載される条件を適宜採用することにより、ケイ素原子を含む無機酸化物を含むガスバリアー層を形成することができる。 The gas barrier layer obtained by the vacuum plasma CVD method or the plasma CVD method under atmospheric pressure or a pressure near atmospheric pressure is based on conditions such as the silicon-containing compound, decomposition gas, decomposition temperature, and input power that are raw materials (also referred to as raw materials) Is preferable because a silicon atom-containing oxide having a desired composition can be produced. For details of the conditions for forming the barrier layer by the plasma CVD method, for example, by appropriately adopting the conditions described in paragraphs (0033) to (0051) of International Publication No. 2012/067186, an inorganic oxide containing a silicon atom is used. A gas barrier layer containing an object can be formed.
 〔ガスバリアー層の塗布法による形成〕
 本発明に係るガスバリアー層は、例えば、ケイ素原子を含む無機化合物を含有するガスバリアー層形成用塗布液を、樹脂基材上に塗布して形成される塗膜を、後述する改質処理を施して形成する方法(塗布法)で形成してもよい。以下、本発明に係るケイ素元素を含む無機化合物(以下、ケイ素化合物という。)を例に挙げて説明する。
[Formation by gas barrier layer coating method]
The gas barrier layer according to the present invention is, for example, a coating film formed by applying a coating solution for forming a gas barrier layer containing an inorganic compound containing a silicon atom on a resin base material. You may form by the method (application | coating method) formed by giving. Hereinafter, an inorganic compound containing a silicon element according to the present invention (hereinafter referred to as a silicon compound) will be described as an example.
 (ケイ素化合物)
 本発明に係るケイ素化合物としては、ケイ素化合物を含有する塗布液の調製が可能であれば特に限定はされない。例えば、ポリシラザン化合物、シラザン化合物、アミノシラン化合物、シリルアセトアミド化合物、シリルイミダゾール化合物、およびその他の窒素を含有するケイ素化合物などが用いられる。
(Silicon compound)
The silicon compound according to the present invention is not particularly limited as long as a coating solution containing a silicon compound can be prepared. For example, polysilazane compounds, silazane compounds, aminosilane compounds, silylacetamide compounds, silylimidazole compounds, and other silicon compounds containing nitrogen are used.
 以下、本発明に係る塗布法に好適に用いられる各ケイ素化合物について、その詳細を説明する。 Hereinafter, the details of each silicon compound suitably used in the coating method according to the present invention will be described.
 〈ポリシラザン化合物〉
 本発明に好ましく用いられるポリシラザン化合物(以下、単にポリシラザンともいう。)とは、ケイ素-窒素結合を有するポリマーである。具体的に、その構造内にSi-N、Si-H、N-Hなどの結合を有し、SiO、Si、および両方の中間固溶体SiOなどのセラミック前駆体無機ポリマーである。
<Polysilazane compound>
The polysilazane compound (hereinafter also simply referred to as polysilazane) preferably used in the present invention is a polymer having a silicon-nitrogen bond. Specifically, ceramic precursor inorganic polymers having bonds such as Si—N, Si—H, and N—H in their structure, such as SiO 2 , Si 3 N 4 , and both intermediate solid solutions SiO x N y It is.
 本発明に用いられるポリシラザンの例としては、特に限定されず、公知のものが挙げられる。例えば、特開2013-022799号公報の段落(0043)~同(0058)や特開2013-226758号公報の段落(0038)~同(0056)などに具体的に記載されている化合物を適宜採用することができる。 Examples of polysilazane used in the present invention are not particularly limited and include known ones. For example, compounds specifically described in paragraphs (0043) to (0058) of JP2013-022799A and paragraphs (0038) to (0056) of JP2013-226758A are appropriately employed. can do.
 また、ポリシラザンは、有機溶媒に溶解した溶液状態でも市販されており、ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のNN120-10、NN120-20、NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL120-20、NL150A、NP110、NP140、SP140等が挙げられる。 Polysilazane is also commercially available in a solution in an organic solvent. Examples of commercially available polysilazane solutions include NN120-10, NN120-20, NAX120-20, NN110, NN310, manufactured by AZ Electronic Materials Co., Ltd. NN320, NL110A, NL120A, NL120-20, NL150A, NP110, NP140, SP140 and the like.
 本発明で使用できるポリシラザン化合物の他の例としては、例えば、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(例えば、特開平5-238827号公報参照。)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(例えば、特開平6-122852号公報参照。)、アルコールを反応させて得られるアルコール付加ポリシラザン(例えば、特開平6-240208号公報参照。)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(例えば、特開平6-299118号公報参照。)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(例えば、特開平6-306329号公報参照。)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(例えば、特開平7-196986号公報参照。)などの、低温でセラミック化するポリシラザン化合物が挙げられるが、これらに限定されるものではない。 Other examples of the polysilazane compound that can be used in the present invention include, for example, a silicon alkoxide-added polysilazane obtained by reacting the above polysilazane with a silicon alkoxide (see, for example, JP-A-5-238827), and glycidol. A glycidol-added polysilazane obtained (for example, see JP-A-6-122852), an alcohol-added polysilazane obtained by reacting an alcohol (for example, see JP-A-6-240208), and a metal carboxylate are reacted. Metal carboxylate-added polysilazane (for example, see JP-A-6-299118) obtained, and acetylacetonate complex-added polysilazane (for example, JP-A-6-306329) obtained by reacting a metal-containing acetylacetonate complex. See No. Gazette ), Polysilazane added with metal fine particles (for example, see JP-A-7-196986), and the like, but is not limited thereto. .
 〈シラザン化合物〉
 本発明に好ましく用いられる単量体であるシラザン化合物の例として、ジメチルジシラザン、トリメチルジシラザン、テトラメチルジシラザン、ペンタメチルジシラザン、ヘキサメチルジシラザン、および1,3-ジビニル-1,1,3,3-テトラメチルジシラザンなどが挙げられるが、これらに限定されない。
<Silazane compound>
Examples of silazane compounds that are monomers preferably used in the present invention include dimethyldisilazane, trimethyldisilazane, tetramethyldisilazane, pentamethyldisilazane, hexamethyldisilazane, and 1,3-divinyl-1,1. , 3,3-tetramethyldisilazane and the like, but not limited thereto.
 〈アミノシラン化合物〉
 本発明に好ましく用いられるアミノシラン化合物の例として、3-アミノプロピルトリメトキシシラン、3-アミノプロピルジメチルエトキシシラン、3-アリールアミノプロピルトリメトキシシラン、プロピルエチレンジアミンシラン、N-[3-(トリメトキシシリル)プロピル]エチレンジアミン、3-ブチルアミノプロピルトリメチルシラン、3-ジメチルアミノプロピルジエトキシメチルシラン、2-(2-アミノエチルチオエチル)トリエトキシシラン、およびビス(ブチルアミノ)ジメチルシランなどが挙げられるが、これらに限定されない。
<Aminosilane compound>
Examples of aminosilane compounds preferably used in the present invention include 3-aminopropyltrimethoxysilane, 3-aminopropyldimethylethoxysilane, 3-arylaminopropyltrimethoxysilane, propylethylenediaminesilane, N- [3- (trimethoxysilyl) ) Propyl] ethylenediamine, 3-butylaminopropyltrimethylsilane, 3-dimethylaminopropyldiethoxymethylsilane, 2- (2-aminoethylthioethyl) triethoxysilane, and bis (butylamino) dimethylsilane. However, it is not limited to these.
 〈シリルアセトアミド化合物〉
 本発明に好ましく用いられるシリルアセトアミド化合物の例として、N-メチル-N-トリメチルシリルアセトアミド、N,O-ビス(tert-ブチルジメチルシリル)アセトアミド、N,O-ビス(ジエチルヒドロゲンシリル)トリフルオロアセトアミド、N,O-ビス(トリメチルシリル)アセトアミド、N-トリメチルシリルアセトアミド等が挙げられるが、これらに限定されない。
<Silyl acetamide compound>
Examples of silylacetamide compounds preferably used in the present invention include N-methyl-N-trimethylsilylacetamide, N, O-bis (tert-butyldimethylsilyl) acetamide, N, O-bis (diethylhydrogensilyl) trifluoroacetamide , N, O-bis (trimethylsilyl) acetamide, N-trimethylsilylacetamide and the like, but are not limited thereto.
 〈シリルイミダゾール化合物〉
 本発明に好ましく用いられるシリルイミダゾール化合物の例として、1-(tert-ブチルジメチルシリル)イミダゾール、1-(ジメチルエチルシリル)イミダゾール、1-(ジメチルイソプロピルシリル)イミダゾール、およびN-トリメチルシリルイミダゾールなどが挙げられるが、これらに限定されない。
<Silylimidazole compound>
Examples of silylimidazole compounds preferably used in the present invention include 1- (tert-butyldimethylsilyl) imidazole, 1- (dimethylethylsilyl) imidazole, 1- (dimethylisopropylsilyl) imidazole, and N-trimethylsilylimidazole. However, it is not limited to these.
 〈その他の窒素を含有するケイ素化合物〉
 本発明において、上述の窒素を含有するケイ素化合物の他に、例えば、ビス(トリメチルシリル)カルボジイミド、トリメチルシリルアジド、N,O-ビス(トリメチルシリル)ヒドロキシルアミン、N,N´-ビス(トリメチルシリル)尿素、3-ブロモ-1-(トリイソプロピルシリル)インドール、3-ブロモ-1-(トリイソプロピルシリル)ピロール、N-メチル-N,O-ビス(トリメチルシリル)ヒドロキシルアミン、3-イソシアネートプロピルトリエトキシシラン、およびシリコンテトライソチオシアナートなどが用いられるがこれらに限定されない。
<Other nitrogen-containing silicon compounds>
In the present invention, in addition to the above silicon compound containing nitrogen, for example, bis (trimethylsilyl) carbodiimide, trimethylsilyl azide, N, O-bis (trimethylsilyl) hydroxylamine, N, N′-bis (trimethylsilyl) urea, 3 -Bromo-1- (triisopropylsilyl) indole, 3-bromo-1- (triisopropylsilyl) pyrrole, N-methyl-N, O-bis (trimethylsilyl) hydroxylamine, 3-isocyanatopropyltriethoxysilane, and silicon Although tetraisothiocyanate etc. are used, it is not limited to these.
 中でも、成膜性、クラック等の欠陥が少ないこと、残留有機物の少なさの点で、パーヒドロポリシラザン、オルガノポリシラザン等のポリシラザン;シルセスキオキサン等のポリシロキサン等が好ましく、ガスバリアー性能が高く、屈曲時および高温高湿条件下であってもガスバリアー性能が維持されることから、ポリシラザンがより好ましく、パーヒドロポリシラザン(PHPS)が特に好ましい。 Among them, polysilazane such as perhydropolysilazane and organopolysilazane; polysiloxane such as silsesquioxane and the like are preferable from the viewpoints of film formation, few defects such as cracks, and small amount of residual organic matter, and high gas barrier performance. Polysilazane is more preferred, and perhydropolysilazane (PHPS) is particularly preferred because gas barrier performance is maintained even when bent and under high temperature and high humidity conditions.
 ポリシラザンを用いる場合、改質処理前のガスバリアー層中におけるポリシラザンの含有率としては、ガスバリアー層の全質量を100質量%としたとき、100質量%、すなわち、全層をポリシラザンで形成することができる。また、ガスバリアー層がポリシラザン以外の構成材料を含む場合には、層中におけるポリシラザンの含有率は、10~99質量%の範囲内であることが好ましく、40~95質量%の範囲内であることがより好ましく、特に好ましくは70~95質量%の範囲内である。 When polysilazane is used, the content of polysilazane in the gas barrier layer before the modification treatment is 100% by mass when the total mass of the gas barrier layer is 100% by mass, that is, the entire layer is formed of polysilazane. Can do. When the gas barrier layer contains a constituent material other than polysilazane, the polysilazane content in the layer is preferably in the range of 10 to 99% by mass, and in the range of 40 to 95% by mass. More preferably, it is particularly preferably in the range of 70 to 95% by mass.
 上記のようなガスバリアー層の塗布法による形成方法は、特に制限されず、公知の方法が適用できるが、有機溶媒中にケイ素化合物および必要に応じて触媒を含むガスバリアー層形成用塗布液を公知の湿式塗布方法により塗布し、この溶媒を蒸発させて除去し、次いで、改質処理を行う方法が好ましい。 The formation method by the coating method of the gas barrier layer as described above is not particularly limited, and a known method can be applied. However, a coating solution for forming a gas barrier layer containing a silicon compound and, if necessary, a catalyst in an organic solvent is used. It is preferable to apply a known wet coating method, evaporate and remove the solvent, and then perform a modification treatment.
 (塗布法により形成されたガスバリアー層の改質処理)
 本発明における塗布法により形成されたガスバリアー層の改質処理とは、ケイ素化合物の酸化ケイ素または酸窒化ケイ素等への転化反応を指し、具体的にはガスバリアー性フィルムが全体としてガスバリアー性(水蒸気透過率が、好ましくは1×10-3g/m・day以下)を発現するに貢献できるレベルのケイ素元素を含む無機酸化物薄膜を形成する処理をいう。
(Modification treatment of gas barrier layer formed by coating method)
The modification treatment of the gas barrier layer formed by the coating method in the present invention refers to a conversion reaction of a silicon compound to silicon oxide, silicon oxynitride, or the like. Specifically, the gas barrier film as a whole has gas barrier properties. This refers to a process for forming an inorganic oxide thin film containing a silicon element at a level that can contribute to the development of (water vapor permeability is preferably 1 × 10 −3 g / m 2 · day or less).
 前駆体であるケイ素化合物の酸化ケイ素または酸窒化ケイ素等への転化反応は、公知の方法を適宜選択して適用することができる。改質処理としては、具体的には、プラズマ処理、紫外線照射処理(例えば、エキシマ照射処理)、加熱処理が挙げられる。ただし、加熱処理による改質の場合、ケイ素化合物の置換反応による酸化ケイ素層または酸窒化ケイ素層の形成には、450℃以上の高温が必要であるため、プラスチック等のフレキシブル基板においては、適応が難しい。このため、熱処理は、適用する上限温度に制限を設け、他の改質処理と組み合わせて行うことが好ましい。 The conversion reaction of the silicon compound as a precursor to silicon oxide or silicon oxynitride can be applied by appropriately selecting a known method. Specific examples of the modification treatment include plasma treatment, ultraviolet irradiation treatment (for example, excimer irradiation treatment), and heat treatment. However, in the case of modification by heat treatment, the formation of a silicon oxide layer or silicon oxynitride layer by a substitution reaction of a silicon compound requires a high temperature of 450 ° C. or higher, so that it can be applied to flexible substrates such as plastics. difficult. For this reason, it is preferable to perform heat treatment in combination with other reforming treatments by limiting the upper limit temperature to be applied.
 したがって、改質処理としては、プラスチック基板への適応という観点から、より低温で、転化反応が可能なプラズマ処理や紫外線照射処理による転化方法が好ましい。 Therefore, as the modification treatment, from the viewpoint of adapting to a plastic substrate, a conversion method using a plasma treatment or an ultraviolet irradiation treatment capable of a conversion reaction at a lower temperature is preferable.
 〈プラズマ処理〉
 本発明において、改質処理として用いることのできるプラズマ処理は、公知の方法を用いることができるが、好ましくは大気圧プラズマ処理等を挙げることができる。大気圧近傍でのプラズマCVD処理を行う大気圧プラズマCVD法は、真空下のプラズマCVD法に比べ、減圧環境にする必要がなく、大型の真空設備を必要としないため、生産性や経済性に優れているほか、プラズマ密度が高密度であるために成膜速度が速く、さらには通常のCVD法の条件に比較して、大気圧下という高圧力条件では、ガスの平均自由行程が非常に短いため、極めて均質の膜が得られる。
<Plasma treatment>
In the present invention, a known method can be used as the plasma treatment that can be used as the modification treatment, and an atmospheric pressure plasma treatment or the like can be preferably used. Compared with the plasma CVD method under vacuum, the atmospheric pressure plasma CVD method, which performs plasma CVD processing near atmospheric pressure, does not require a reduced pressure environment and does not require a large vacuum facility. In addition to the excellent plasma density, the deposition rate is high, and the average free path of gas is very high under high pressure conditions under atmospheric pressure compared to the conditions of normal CVD. Since it is short, a very homogeneous film can be obtained.
 大気圧プラズマ処理の場合は、放電ガスとしては窒素ガスまたは長周期型周期表の第18族原子を含むガス、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。 In the case of atmospheric pressure plasma treatment, as the discharge gas, nitrogen gas or a gas containing Group 18 atoms of the long-period periodic table, specifically helium, neon, argon, krypton, xenon, radon, or the like is used. Among these, nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.
 〈加熱処理〉
 ケイ素化合物を含有する塗膜を他の改質処理、好適には後述のエキシマ照射処理等と組み合わせて、加熱処理することで、改質処理を効率よく行うことができる。
<Heat treatment>
The modification treatment can be efficiently performed by heat-treating the coating film containing the silicon compound in combination with another modification treatment, preferably an excimer irradiation treatment described later.
 また、ゾル・ゲル法を用いてガスバリアー層を形成する場合には、加熱処理を用いることが好ましい。加熱温度としては、好ましくは50~300℃の温度範囲内であり、より好ましくは70~200℃の温度範囲内で、加熱時間は好ましくは0.005~60分間の範囲内であり、より好ましくは0.01~10分間の範囲内で、加熱・乾操することにより、縮合反応が進行し、ガスバリアー層を形成することができる。 Further, when the gas barrier layer is formed using a sol-gel method, it is preferable to use a heat treatment. The heating temperature is preferably in the temperature range of 50 to 300 ° C., more preferably in the temperature range of 70 to 200 ° C., and the heating time is preferably in the range of 0.005 to 60 minutes, more preferably. Can be formed within a range of 0.01 to 10 minutes by heating and drying, whereby the condensation reaction proceeds and a gas barrier layer can be formed.
 加熱処理方法としては、例えば、ヒートブロック等の発熱体に樹脂基材を接触させ熱伝導により塗膜を加熱する方法、抵抗線等による外部ヒーターにより雰囲気を加熱する方法、IRヒーターの様な赤外領域の光を用いた方法等が挙げられるが、特に限定はされない。また、ケイ素化合物を含有する塗膜の平滑性を維持できる方法を適宜選択してよい。 Heat treatment methods include, for example, a method in which a resin substrate is brought into contact with a heating element such as a heat block, the coating film is heated by heat conduction, a method in which the atmosphere is heated by an external heater such as a resistance wire, and a red color such as an IR heater. Although the method using the light of an outer area | region etc. is mentioned, It does not specifically limit. Moreover, you may select suitably the method which can maintain the smoothness of the coating film containing a silicon compound.
 〈紫外線照射処理〉
 改質処理の方法の1つとして、紫外線照射による処理が好ましい。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化ケイ素膜または酸窒化ケイ素膜を形成することが可能である。
<Ultraviolet irradiation treatment>
As one of the modification treatment methods, treatment by ultraviolet irradiation is preferable. Ozone and active oxygen atoms generated by ultraviolet rays (synonymous with ultraviolet light) have high oxidation ability, and can form silicon oxide films or silicon oxynitride films with high density and insulation at low temperatures It is.
 この紫外線照射により、樹脂基材が加熱され、セラミックス化(シリカ転化)に寄与するOとHOや、紫外線吸収剤、ポリシラザン自身が励起、活性化されるため、ポリシラザンが励起し、ポリシラザンのセラミックス化が促進され、また得られるガスバリアー層が一層緻密になる。紫外線照射は、塗膜形成後であればいずれの時点で実施しても有効である。 By this ultraviolet irradiation, the resin base material is heated, and O 2 and H 2 O contributing to ceramicization (silica conversion), an ultraviolet absorber, and polysilazane itself are excited and activated, so that polysilazane is excited and polysilazane is excited. The formation of ceramics is promoted, and the resulting gas barrier layer becomes denser. Irradiation with ultraviolet rays is effective at any time after the formation of the coating film.
 紫外線照射処理においては、常用されているいずれの紫外線発生装置を使用することも可能である。 In the ultraviolet irradiation treatment, any commonly used ultraviolet ray generator can be used.
 なお、本発明でいう紫外線とは、一般には、10~400nmの範囲内に波長を有する電磁波をいうが、後述する真空紫外線(10~200nm)処理以外の紫外線照射処理の場合は、好ましくは210~375nmの波長範囲内の紫外線を用いる。 The ultraviolet ray referred to in the present invention generally refers to an electromagnetic wave having a wavelength in the range of 10 to 400 nm, but in the case of an ultraviolet irradiation treatment other than the vacuum ultraviolet ray (10 to 200 nm) treatment described later, preferably 210. Ultraviolet light in the wavelength range of ˜375 nm is used.
 紫外線の照射は、照射されるガスバリアー層を担持している樹脂基材がダメージを受けない範囲で、照射強度や照射時間を設定することが好ましい。 In the ultraviolet irradiation, it is preferable to set the irradiation intensity and the irradiation time within a range in which the resin base material carrying the irradiated gas barrier layer is not damaged.
 樹脂基材としてプラスチックフィルムを用いた場合を例にとると、例えば、2kW(80W/cm×25cm)のランプを用い、樹脂基材表面の照射強度が20~300mW/cm、好ましくは50~200mW/cmになるように樹脂基材-紫外線照射ランプ間の距離を設定し、0.1秒~10分間の照射を行うことができる。 Taking the case of using a plastic film as the resin substrate, for example, a 2 kW (80 W / cm × 25 cm) lamp is used, and the irradiation intensity of the resin substrate surface is 20 to 300 mW / cm 2 , preferably 50 to The distance between the resin substrate and the ultraviolet irradiation lamp can be set to 200 mW / cm 2 and irradiation can be performed for 0.1 seconds to 10 minutes.
 一般に、紫外線照射処理時の樹脂基材温度が150℃以上になると、プラスチックフィルム等の場合には、樹脂基材が変形したり、その強度が劣化したりする等、樹脂基材の特性が損なわれる場合が多い。しかしながら、ポリイミド等の耐熱性の高いフィルムの場合には、より高温での改質処理が可能である。したがって、この紫外線照射時の樹脂基材温度としては、一般的な上限はなく、樹脂基材の種類によって当業者が適宜設定することができる。また、紫外線照射雰囲気に特に制限はなく、空気中で実施することができる。 In general, when the temperature of the resin base material during the ultraviolet irradiation treatment is 150 ° C. or higher, the properties of the resin base material are impaired, such as the plastic base material being deformed or its strength deteriorated in the case of a plastic film or the like. In many cases. However, in the case of a film having high heat resistance such as polyimide, a modification treatment at a higher temperature is possible. Therefore, there is no general upper limit as the temperature of the resin substrate at the time of ultraviolet irradiation, and it can be appropriately set by those skilled in the art depending on the type of resin substrate. Moreover, there is no restriction | limiting in particular in ultraviolet irradiation atmosphere, It can implement in air.
 このような紫外線の発生手段としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ(172nm、222nm、308nmの単一波長、例えば、ウシオ電機株式会社製、MDエキシマ社製など)、UV光レーザー、等が挙げられるが、特に限定されない。また、発生させた紫外線をガスバリアー層に照射する際には、効率向上と均一な照射を達成する観点から、発生源からの紫外線を反射板で反射させてからガスバリアー層に当てることが好ましい。 Examples of such ultraviolet ray generating means include metal halide lamps, high pressure mercury lamps, low pressure mercury lamps, xenon arc lamps, carbon arc lamps, and excimer lamps (single wavelengths of 172 nm, 222 nm, and 308 nm, for example, USHIO INC. Manufactured by MD Excimer Co., Ltd.), UV light laser, and the like. In addition, when irradiating the generated ultraviolet ray to the gas barrier layer, it is preferable to apply the ultraviolet ray from the generation source to the gas barrier layer after reflecting the ultraviolet ray from the generation source with a reflector from the viewpoint of achieving efficiency improvement and uniform irradiation. .
 紫外線照射は、バッチ処理でも連続処理でも可能であり、使用する樹脂基材の形状によって適宜選定することができる。例えば、バッチ処理の場合には、ガスバリアー層を表面に有する積層体を上記のような紫外線発生源を具備した紫外線焼成炉で処理することができる。紫外線焼成炉自体は一般に知られており、例えば、アイグラフィクス株式会社製の紫外線焼成炉を使用することができる。また、ガスバリアー層を表面に有する積層体が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することによりセラミックス化することができる。紫外線照射に要する時間は、使用する樹脂基材やガスバリアー層の組成、濃度にもよるが、一般に0.1秒~10分であり、好ましくは0.5秒~3分である。 UV irradiation can be performed either batchwise or continuously, and can be selected as appropriate depending on the shape of the resin substrate used. For example, in the case of batch processing, a laminate having a gas barrier layer on the surface can be processed in an ultraviolet baking furnace equipped with an ultraviolet source as described above. The ultraviolet baking furnace itself is generally known. For example, an ultraviolet baking furnace manufactured by I-Graphics Co., Ltd. can be used. When the laminate having the gas barrier layer on the surface is a long film, the ceramic is obtained by continuously irradiating ultraviolet rays in the drying zone having the ultraviolet ray generation source as described above while transporting the laminate. Can be The time required for ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the composition and concentration of the resin substrate and gas barrier layer used.
 〈真空紫外線照射処理:エキシマ照射処理〉
 本発明において、ガスバリアー層形成における最も好ましい改質処理方法は、真空紫外線照射による処理(エキシマ照射処理ともいう。)である。真空紫外線照射による処理は、ポリシラザン化合物内の原子間結合力より大きい100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で、酸化ケイ素膜の形成を行う方法である。なお、エキシマ照射処理を行う際は、上述したように熱処理を併用することが好ましく、その際の熱処理条件の詳細は上述したとおりである。
<Vacuum UV irradiation treatment: Excimer irradiation treatment>
In the present invention, the most preferable modification treatment method in forming the gas barrier layer is treatment by vacuum ultraviolet irradiation (also referred to as excimer irradiation treatment). The treatment by the vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy of a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and bonds atoms with only photons called photon processes. This is a method of forming a silicon oxide film at a relatively low temperature (about 200 ° C. or lower) by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by action. In addition, when performing an excimer irradiation process, it is preferable to use heat processing together as mentioned above, and the detail of the heat processing conditions in that case is as having mentioned above.
 本発明において、エキシマ照射処理における放射線源は、100~180nmの範囲内の波長の光を発生させるものであれば良いが、好適には約172nmに最大放射を有するエキシマラジエータ(例えば、Xeエキシマランプ)、約185nmに輝線を有する低圧水銀蒸気ランプ、並びに230nm以下の波長成分を有する中圧および高圧水銀蒸気ランプ、および約222nmに最大放射を有するエキシマランプである。 In the present invention, the radiation source in the excimer irradiation treatment may be any radiation source that generates light having a wavelength in the range of 100 to 180 nm, and preferably an excimer radiator having a maximum emission at about 172 nm (for example, an Xe excimer lamp). ), Low pressure mercury vapor lamps having an emission line at about 185 nm, and medium and high pressure mercury vapor lamps having a wavelength component of 230 nm or less, and excimer lamps having a maximum emission at about 222 nm.
 このうち、Xeエキシマランプは、波長の短い172nmの紫外線を単一波長として放射することができることから、発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。 Among these, the Xe excimer lamp is excellent in luminous efficiency because it can emit ultraviolet light having a short wavelength of 172 nm as a single wavelength. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.
 また、波長の短い172nmの光のエネルギーは、有機物の結合を解離させる能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン塗膜の改質を実現できる。 Also, it is known that the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. Due to the high energy possessed by the active oxygen, ozone and ultraviolet radiation, the polysilazane coating can be modified in a short time.
 エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域、すなわち短い波長でエネルギーを照射するため、解射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるポリエチレンテレフタレート(略称:PET)などのフレシキブルフィルム材料を樹脂基材として用いたガスバリアー性フィルムの作製に適している。 ¡Excimer lamps have high light generation efficiency and can be lit with low power. In addition, light having a long wavelength that causes a temperature rise due to light is not emitted, and energy is irradiated in the ultraviolet region, that is, a short wavelength, so that the rise in the surface temperature of the object to be fired is suppressed. For this reason, it is suitable for production of a gas barrier film using a flexible film material such as polyethylene terephthalate (abbreviation: PET) that is easily affected by heat as a resin base material.
 紫外線照射時の反応には、酸素が必要であるが、真空紫外線は、酸素による吸収があるため紫外線照射工程での効率が低下しやすいことから、真空紫外線の照射は、可能な限り酸素濃度および水蒸気濃度の低い状態で行うことが好ましい。すなわち、真空紫外線照射時の酸素濃度は、10~20000体積ppmの範囲内とすることが好ましく、より好ましくは50~10000体積ppmの範囲内である。また、転化プロセスの間の水蒸気濃度は、好ましくは1000~4000体積ppmの範囲内である。 Oxygen is required for the reaction at the time of ultraviolet irradiation, but since vacuum ultraviolet rays are absorbed by oxygen, the efficiency in the ultraviolet irradiation process tends to decrease. It is preferable to carry out in a state where the water vapor concentration is low. That is, the oxygen concentration at the time of irradiation with vacuum ultraviolet rays is preferably in the range of 10 to 20000 ppm by volume, and more preferably in the range of 50 to 10,000 ppm by volume. Also, the water vapor concentration during the conversion process is preferably in the range of 1000 to 4000 ppm by volume.
 真空紫外線照射時に用いられ、照射雰囲気を満たすガスとしては、乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスとすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を制御することで調整可能である。 A gas used for vacuum ultraviolet irradiation and satisfying the irradiation atmosphere is preferably a dry inert gas, and particularly preferably a dry nitrogen gas from the viewpoint of cost. The oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and controlling the flow rate ratio.
 真空紫外線照射工程において、ポリシラザン塗膜が受ける塗膜面での真空紫外線の照度は1mW/cm~10W/cmの範囲内であることが好ましく、30~200mW/cmの範囲内であることがより好ましく、50~160mW/cmの範囲内であることがさらに好ましい。真空紫外線の照度が1mW/cm以上であれば、十分な改質効率が得られ、10W/cm以下であれば、塗膜にアブレーションを生じにくく、樹脂基材にダメージを与えにくい。 In the vacuum ultraviolet irradiation step, the illuminance of the vacuum ultraviolet rays on the coating surface received by the polysilazane coating is preferably in the range of 1 mW / cm 2 to 10 W / cm 2 , and in the range of 30 to 200 mW / cm 2. More preferably, it is more preferably in the range of 50 to 160 mW / cm 2 . If the illuminance of the vacuum ultraviolet ray is 1 mW / cm 2 or more, sufficient reforming efficiency is obtained, and if it is 10 W / cm 2 or less, the coating film is less likely to be ablated and the resin substrate is less likely to be damaged.
 塗膜面における真空紫外線の照射エネルギー量(積算光量)は、10~10000mJ/cmの範囲内であることが好ましく、100~8000mJ/cmの範囲内であることがより好ましく、200~6000mJ/cmの範囲内であることがさらに好ましい。真空紫外線の照射エネルギー量が10mJ/cm以上であれば、改質が十分に進行させることができる。10000mJ/cm以下であれば、過剰改質によるクラック発生や、樹脂基材の熱変形の発生を抑制することができる。 The amount of irradiation energy (integrated light amount) of vacuum ultraviolet rays on the coating surface is preferably within the range of 10 to 10000 mJ / cm 2 , more preferably within the range of 100 to 8000 mJ / cm 2 , and 200 to 6000 mJ. More preferably within the range of / cm 2 . If the amount of irradiation energy of vacuum ultraviolet rays is 10 mJ / cm 2 or more, the modification can be sufficiently advanced. If it is 10,000 mJ / cm < 2 > or less, the generation | occurrence | production of the crack by excessive modification | reformation and generation | occurrence | production of the thermal deformation of a resin base material can be suppressed.
 また、改質に用いられる真空紫外光は、CO、CO及びCHの少なくとも一種を含むガスで形成されたプラズマにより発生させてもよい。さらに、CO、CO及びCHの少なくとも一種を含むガス(以下、炭素含有ガスとも称する)は、炭素含有ガスを単独で使用してもよいが、希ガスまたはHを主ガスとして、炭素含有ガスを少量添加することが好ましい。プラズマの生成方式としては容量結合プラズマなどが挙げられる。 Further, the vacuum ultraviolet light used for the modification may be generated by plasma formed of a gas containing at least one of CO, CO 2 and CH 4 . Further, as the gas containing at least one of CO, CO 2 and CH 4 (hereinafter also referred to as carbon-containing gas), a carbon-containing gas may be used alone, but a rare gas or H 2 is used as a main gas. It is preferable to add a small amount of the contained gas. Examples of plasma generation methods include capacitively coupled plasma.
 ガスバリアー層の膜組成は、XPS表面分析装置を用いて、原子組成比を測定することで求めることができる。また、ガスバリアー層を切断して切断面をXPS表面分析装置で原子組成比を測定することでも求めることができる。 The film composition of the gas barrier layer can be determined by measuring the atomic composition ratio using an XPS surface analyzer. It can also be determined by cutting the gas barrier layer and measuring the cut surface with an XPS surface analyzer to measure the atomic composition ratio.
 また、ガスバリアー層の膜密度は、目的に応じて適切に設定されうる。例えば、ガスバリアー層の膜密度は、1.5~2.6g/cmの範囲にあることが好ましい。この範囲であれば、膜の緻密度がより高くなり、ガスバリアー性の劣化や、湿度による膜の酸化劣化が起こりくい。 Further, the film density of the gas barrier layer can be appropriately set according to the purpose. For example, the film density of the gas barrier layer is preferably in the range of 1.5 to 2.6 g / cm 3 . If it is in this range, the density of the film will be higher, and it will be difficult for the gas barrier property to deteriorate and the film to be oxidized by humidity.
 該ガスバリアー層が2層以上の積層構造である場合、各ガスバリアー層は同じ組成であっても異なる組成であってもよい。また、ガスバリアー層が2層以上の積層構造である場合、ガスバリアー層は真空成膜法により形成される層のみからなってもよいし、塗布法により形成される層のみからなってもよいし、真空成膜法により形成される層と塗布法により形成される層との組み合わせであってもよい。 When the gas barrier layer has a laminated structure of two or more layers, the gas barrier layers may have the same composition or different compositions. In addition, when the gas barrier layer has a laminated structure of two or more layers, the gas barrier layer may consist only of a layer formed by a vacuum film-forming method or only a layer formed by a coating method. In addition, a combination of a layer formed by a vacuum film forming method and a layer formed by a coating method may be used.
 また、前記ガスバリアー層は、応力緩和性や、後述の金属原子含有層の形成で使用される紫外線を吸収させるなどの観点から、窒素元素または炭素元素を含むことも好ましい。これらの元素を含むことで、応力緩和や紫外線吸収などの性質を有するようになり、ガスバリアー層と金属原子含有層との密着性を向上させることでガスバリアー性が向上するなどの効果が得られ好ましい。 In addition, the gas barrier layer preferably contains a nitrogen element or a carbon element from the viewpoints of stress relaxation and absorption of ultraviolet rays used in forming a metal atom-containing layer described later. By including these elements, it has properties such as stress relaxation and ultraviolet absorption, and by improving the adhesion between the gas barrier layer and the metal atom-containing layer, effects such as improved gas barrier properties are obtained. It is preferable.
 ガスバリアー層における化学組成は、ガスバリアー層を形成する際にケイ素化合物等の種類および量、ならびにケイ素化合物を含む層を改質する際の条件等により、制御することができる。 The chemical composition of the gas barrier layer can be controlled by the type and amount of the silicon compound and the like when forming the gas barrier layer, and the conditions when modifying the layer containing the silicon compound.
 [接着層]
 本発明の光学フィルムを構成するガスバリアー性フィルムにおいては、樹脂基材上に、ガスバリアー層と接着層とを有し、接着層が、下記で規定する条件(1)を満たす接着層1又は条件(2)を満たす接着層2であることを特徴とする。
[Adhesive layer]
The gas barrier film constituting the optical film of the present invention has a gas barrier layer and an adhesive layer on the resin substrate, and the adhesive layer 1 satisfies the condition (1) defined below or The adhesive layer 2 satisfies the condition (2).
 条件(1):少なくともアクリロイル基を含む化合物と、ケイ素原子を含む化合物を含有し、かつ当該接着層の層厚が、100~1000nmの範囲内である接着層1。 Condition (1): Adhesive layer 1 containing a compound containing at least an acryloyl group and a compound containing a silicon atom, and the thickness of the adhesive layer is in the range of 100 to 1000 nm.
 条件(2):平均一次粒径が30~100nmの範囲内にある無機微粒子と、平均一次粒径が300~1000nmの範囲内にある有機微粒子及びバインダー成分を含有する接着層2。 Condition (2): Adhesive layer 2 containing inorganic fine particles having an average primary particle size in the range of 30 to 100 nm, organic fine particles having an average primary particle size in the range of 300 to 1000 nm, and a binder component.
 〔接着層1〕
 前述の図1に示すように、本発明のガスバリアー性フィルム(1)においては、樹脂基材(2)上にガスバリアー層(3)を有し、更にその上に、少なくとも未反応のアクリロイル基を含む化合物と、ケイ素原子を含む化合物を含有し、かつ層厚が、100~1000nmの範囲内である接着層1(4)を設けることを特徴とする。
[Adhesive layer 1]
As shown in FIG. 1 described above, the gas barrier film (1) of the present invention has a gas barrier layer (3) on the resin base material (2), and further has at least unreacted acryloyl thereon. An adhesive layer 1 (4) containing a compound containing a group and a compound containing a silicon atom and having a layer thickness in the range of 100 to 1000 nm is provided.
 更には、図2で例示するように、接着層1(4)の表面領域に、特定量の未反応のアクリロイル基(5、CH=CH-C(=O)-)が存在していることが好ましい。ここでいうアクリロイル基とは、アクリル酸由来のアシル基である。図2に示すように接着層1(4)の表面領域に、特定量のアクリロイル基(5)が存在している形態について特に制限はない。本発明に係る接着層1(4)は、100~1000nmの厚膜として形成することを特徴とし、接着層1の層厚はTEM等の観察手段によって確認することができる。 Furthermore, as illustrated in FIG. 2, a specific amount of unreacted acryloyl group (5, CH 2 ═CH—C (═O) —) is present in the surface region of the adhesive layer 1 (4). It is preferable. The acryloyl group here is an acyl group derived from acrylic acid. As shown in FIG. 2, there is no particular limitation on the form in which a specific amount of acryloyl group (5) is present in the surface region of adhesive layer 1 (4). The adhesive layer 1 (4) according to the present invention is formed as a thick film having a thickness of 100 to 1000 nm, and the layer thickness of the adhesive layer 1 can be confirmed by an observation means such as TEM.
 本発明に係る接着層1においては、アクリロイル基を含む化合物と、ケイ素原子を含む化合物とを、それぞれ個別に含有させても、あるいは、同一構造中にアクリロイル基とケイ素原子を含む化合物を用いてもよい。アクリロイル基を含む化合物としては、アクリレート化合物等のアクリロイル基含有化合物(含むアクリロイル基含有ポリマー)やアクリロイル基を含有するアクリルシランカップリング剤等を挙げることができる。また、ケイ素原子を含む化合物としては、シランカップリング剤、二酸化ケイ素粒子(シリカ粒子)等を挙げることができる。 In the adhesive layer 1 according to the present invention, a compound containing an acryloyl group and a compound containing a silicon atom may be individually contained, or a compound containing an acryloyl group and a silicon atom in the same structure may be used. Also good. Examples of the compound containing an acryloyl group include an acryloyl group-containing compound (including an acryloyl group-containing polymer) such as an acrylate compound, an acrylsilane coupling agent containing an acryloyl group, and the like. Moreover, as a compound containing a silicon atom, a silane coupling agent, a silicon dioxide particle (silica particle), etc. can be mentioned.
 (アクリロイル基を含む化合物)
 本発明において、アクリロイル基を含む化合物としては、特に制限はないが、アクリレート化合物等のアクリロイル基含有化合物(含むアクリロイル基含有ポリマー)やアクリロイル基を含有するアクリルシランカップリング剤等を好適に用いることができる。
(Compound containing acryloyl group)
In the present invention, the compound containing an acryloyl group is not particularly limited, but an acryloyl group-containing compound (including an acryloyl group-containing polymer) such as an acrylate compound or an acrylsilane coupling agent containing an acryloyl group is preferably used. Can do.
 〈アクリロイル基含有化合物〉
 アクリロイル基含有化合物(以下、アクリレート化合物ともいう。)としては、ポリマータイプ及びモノマータイプがあり、例えば、ポリオールポリアクリレート、エポキシアクリレート、ウレタンアクリレート、アクリルモノマー等が挙げられる。
<Acryloyl group-containing compound>
Examples of the acryloyl group-containing compound (hereinafter also referred to as acrylate compound) include a polymer type and a monomer type, and examples thereof include polyol polyacrylate, epoxy acrylate, urethane acrylate, and acrylic monomer.
 ポリオールポリアクリレートとは、ポリオールと、アクリル酸とのエステル化合物である。ここで選ばれるポリオールに特に制限はないが、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,10-デカンジオール、1,12-ドデカンジオール、ポリオレフィンポリオール、水添ポリオレフィンポリオール等の鎖状脂肪族ポリオールが挙げられ、さらには、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、トリシクロ[5.2.1.02,6]デカンジメタノール、2-メチルシクロヘキサン-1,1-ジメタノール等の脂環構造を有するポリオールが挙げられ、さらには、トリマートリオール、p-キシリレングリコール、ビスフェノールAエチレンオキサイド付加物、ビスフェノールFエチレンオキサイド付加物、ビフェノールエチレンオキサイド付加物等の芳香環を有するポリオールが挙げられ、さらには、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオールが挙げられ、さらには、ポリヘキサメチレンアジペート、ポリヘキサメチレンサクシネート、ポリカプロラクトン等のポリエステルポリオールが挙げられ、さらには、α,ω-ポリ(1,6-ヘキシレンカーボネート)ジオール、α,ω-ポリ(3-メチル-1,5-ペンチレンカーボネート)ジオール、α,ω-ポリ[(1,6-ヘキシレン:3-メチル-ペンタメチレン)カーボネート]ジオール、α,ω-ポリ[(1,9-ノニレン:2-メチル-1,8-オクチレン)カーボネート]ジオール等の(ポリ)カーボネートジオールが挙げられる。これらは単独でも、あるいは2種以上を適宜組み合わせて使用してもよい。 Polyol polyacrylate is an ester compound of polyol and acrylic acid. The polyol selected here is not particularly limited. For example, 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, neopentyl glycol, 3-methyl- 1,5-pentanediol, 1,6-hexanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 2-ethyl-2-butyl-1,3-propanediol, 2,4 -Chain aliphatic polyols such as diethyl-1,5-pentanediol, 1,10-decanediol, 1,12-dodecanediol, polyolefin polyol, hydrogenated polyolefin polyol and the like, and 1,4-cyclohexane dimethanol, 1,3-cyclohexane dimethanol, tricyclo [5.2.1.0 2, 6] Dekanji Examples include polyols having an alicyclic structure such as tanol and 2-methylcyclohexane-1,1-dimethanol, and further trimer triol, p-xylylene glycol, bisphenol A ethylene oxide adduct, bisphenol F ethylene oxide adduct And polyols having an aromatic ring such as biphenolethylene oxide adduct, and further polyether polyols such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol, and further, polyhexamethylene adipate and polyhexamethylene. And polyester polyols such as succinate and polycaprolactone, and α, ω-poly (1,6-hexylene carbonate) diol, α, ω-poly (3-methyl-1,5- Styrene carbonate) diol, α, ω-poly [(1,6-hexylene: 3-methyl-pentamethylene) carbonate] diol, α, ω-poly [(1,9-nonylene: 2-methyl-1,8 (Octylene) carbonate] (poly) carbonate diols such as diols. These may be used alone or in combination of two or more.
 エポキシアクリレートとは、エポキシ樹脂の末端エポキシ基にアクリル酸を付加させることで得られる化合物である。この際選ばれるエポキシ樹脂に、特に制限はない。具体的には、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、ビフェニル型エポキシ樹脂等が挙げられる。これらは単独でも、あるいは2種以上を適宜組み合わせて使用してもよい。 Epoxy acrylate is a compound obtained by adding acrylic acid to the terminal epoxy group of an epoxy resin. There is no restriction | limiting in particular in the epoxy resin selected in this case. Specifically, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, glycidyl ester type epoxy resin, biphenyl type epoxy resin and the like can be mentioned. These may be used alone or in combination of two or more.
 ウレタンアクリレートとは、ポリオールとポリイソシアネートと水酸基含有アクリレート、またはポリオールとイソシアナト基含有アクリレートとを反応させることで得られる化合物である。このとき、選ばれるポリオール、ポリイソシアネート、水酸基含有アクリレート、イソシアナト基含有アクリレートに特に制限はない。ポリオールは、ポリオールポリアクリレートにおいて使用されるポリオールと同様である。ポリイソシアネートとしては、例えば、1,4-シクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、リシントリイソシアネート、リシンジイソシアネート、ヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサンメチレンジイソシアネートおよびノルボルナンジイソシアネート等が挙げられる。これらは単独でも、あるいは2種以上を適宜組み合わせて使用してもよい。水酸基含有アクリレートとしては、例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、3-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、2-ヒドロキシ-3-(o-フェニルフェノキシ)プロピルアクリレート、2-ヒドロキシエチルアクリルアミド等が挙げられる。これらは単独でも、あるいは2種以上を適宜組み合わせて使用してもよい。イソシアナト基含有アクリレートとしては、2-イソシアナトエチルアクリレート等が挙げられる。これらは単独でも、あるいは2種以上を適宜組み合わせて使用してもよい。 Urethane acrylate is a compound obtained by reacting polyol, polyisocyanate, and hydroxyl group-containing acrylate, or polyol and isocyanato group-containing acrylate. At this time, there is no particular limitation on the polyol, polyisocyanate, hydroxyl group-containing acrylate, and isocyanate group-containing acrylate to be selected. The polyol is the same as the polyol used in the polyol polyacrylate. Examples of the polyisocyanate include 1,4-cyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, , 4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, lysine triisocyanate, lysine diisocyanate, hexamethylene diisocyanate 2,4,4-trimethylhexamethylene diisocyanate, 2,2,4-trimethylhexanemethylene diisocyanate, norbornane diisocyanate, etc. And the like. These may be used alone or in combination of two or more. Examples of the hydroxyl group-containing acrylate include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, 2- Hydroxy-3- (o-phenylphenoxy) propyl acrylate, 2-hydroxyethylacrylamide and the like can be mentioned. These may be used alone or in combination of two or more. Examples of the isocyanato group-containing acrylate include 2-isocyanatoethyl acrylate. These may be used alone or in combination of two or more.
 アクリルモノマーは、上述したアクリロイル基含有化合物から、前記ポリオールポリアクリレート、前記エポキシアクリレートおよび前記ウレタンアクリレートを除いた化合物である。 The acrylic monomer is a compound obtained by removing the polyol polyacrylate, the epoxy acrylate, and the urethane acrylate from the acryloyl group-containing compound.
 アクリルモノマーとしては、例えば、グリシジルアクリレート、テトラヒドロフルフリルアクリレート等の環状エーテル基を有するアクリロイル含有化合物、シクロヘキシルアクリレート、イソボルニルアクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンタニルエチルアクリレート、4-tert-ブチルシクロヘキシルアクリレート等の環状脂肪族基を有する単官能アクリロイル基含有化合物、ラウリルアクリレート、イソノニルアクリレート、2-エチルヘキシルアクリレート、イソブチルアクリレート、tert-ブチルアクリレート、イソオクチルアクリレート、イソアミルアクリレート等の鎖状脂肪族基を有する単官能アクリロイル基含有化合物、ベンジルアクリレート、フェノキシエチルアクリレート等の芳香環を有する単官能アクリロイル基含有化合物、ポリエチレングリコールジアクリレート、デカンジオールジアクリレート、ノナンジオールジアクリレート、ヘキサンジオールジアクリレート、トリシクロデカンジメタノールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート等の多官能アクリロイル基含有化合物を挙げることができる。 Examples of acrylic monomers include acryloyl-containing compounds having a cyclic ether group such as glycidyl acrylate and tetrahydrofurfuryl acrylate, cyclohexyl acrylate, isobornyl acrylate, dicyclopentenyl acrylate, dicyclopentenyloxyethyl acrylate, and dicyclopentanyl acrylate. A monofunctional acryloyl group-containing compound having a cyclic aliphatic group such as dicyclopentanylethyl acrylate, 4-tert-butylcyclohexyl acrylate, lauryl acrylate, isononyl acrylate, 2-ethylhexyl acrylate, isobutyl acrylate, tert-butyl acrylate, Monofunctional acryloyl having a chain aliphatic group such as isooctyl acrylate and isoamyl acrylate Group-containing compounds, monofunctional acryloyl group-containing compounds having aromatic rings such as benzyl acrylate, phenoxyethyl acrylate, polyethylene glycol diacrylate, decanediol diacrylate, nonanediol diacrylate, hexanediol diacrylate, tricyclodecane dimethanol diacrylate And polyfunctional acryloyl group-containing compounds such as trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, and dipentaerythritol hexaacrylate.
 又、アクリレート化合物モノマーやメタアクリレート化合物モノマーとしては、市販品としても入手することが可能であり、例えば、新中村化学社製より販売されている光硬化性モノマー(商標名:NKエステル)である、単官能アクリレート(例えば、A-LEN-10、AM-90G、AM-130G、AMP-20GY、A-SA、S-1800A等)、2官能アクリレート(例えば、701A、A-200、A-400、A-600、A-1000、A-B1206PE、ABE-300、A-BPE-10、A-BPEF、A-HD-N、APG-200、A-PTMG-65等)、多官能アクリレート(例えば、A-9300,A-GLY-9E、A-TMM-3、A-TMPT、AD-TMP、A-TMMT、A-DPH等)、また、メタアクリレート化合物モノマーとしては、単官能メタアクリレート(例えば、CB-1、M-90G、PHE-1G、S、SA等)、2官能メタアクリレート(例えば、1G~4G、BPE-80N、DCP、HD-N、HOD-N、NPG、9PG等)を挙げることができる。 Moreover, as an acrylate compound monomer or a methacrylate compound monomer, it is also possible to obtain as a commercial product, for example, a photocurable monomer (trade name: NK ester) sold by Shin-Nakamura Chemical Co., Ltd. Monofunctional acrylates (eg, A-LEN-10, AM-90G, AM-130G, AMP-20GY, A-SA, S-1800A, etc.), bifunctional acrylates (eg, 701A, A-200, A-400) A-600, A-1000, A-B1206PE, ABE-300, A-BPE-10, A-BPEF, A-HD-N, APG-200, A-PTMG-65, etc.), polyfunctional acrylates (for example, A-9300, A-GLY-9E, A-TMM-3, A-TMPT, AD-TMP, A-TMMT, A-DPH, etc. In addition, as the methacrylate compound monomer, monofunctional methacrylate (for example, CB-1, M-90G, PHE-1G, S, SA, etc.), bifunctional methacrylate (for example, 1G to 4G, BPE-80N, DCP, HD-N, HOD-N, NPG, 9PG, etc.).
 〈アクリロイル基を含有するアクリルシランカップリング剤〉
 本発明でいうアクリロイル基を含有するアクリルシランカップリング剤は、同一構造中に、アクリロイル基とケイ素原子を含む化合物であり、モノマータープであってもポリマータイプであってもよい。
<Acrylic silane coupling agent containing acryloyl group>
The acrylic silane coupling agent containing an acryloyl group in the present invention is a compound containing an acryloyl group and a silicon atom in the same structure, and may be a monomer tarp or a polymer type.
 アクリロイル基を含有するシランカップリング剤(アクリロイル基含有シランカップリング剤)としては、3-アクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルトリエトキシシラン、3-アクリロイルオキシプロピルメチルジメトキシシラン、3-アクリロイルオキシプロピルメチルジエトキシシランなどが挙げられる。 Examples of silane coupling agents containing acryloyl groups (acryloyl group-containing silane coupling agents) include 3-acryloyloxypropyltrimethoxysilane, 3-acryloyloxypropyltriethoxysilane, 3-acryloyloxypropylmethyldimethoxysilane, 3- Examples include acryloyloxypropylmethyldiethoxysilane.
 また、アクリロイル基含有シランカップリング剤の市販品としては、モノマータイプとしては、信越シリコーン社製のKBM-5103(3-アクリロキシプロピルトリメトキシシラン)、KMB-502(3-メタクリロキシプロピルメチルジメトキシシラン)、KBM-503(3-メタクリロキシプロピルトリメトキシシラン)、KBE-502(3-メタクリロキシプロピルメチルジエトキシシラン)、KBE-503(3-メタクリロキシプロピルトリエトキシシラン)、ダウコーニング社製のZ-6030(3-メタクリロキシプロピルトリメトキシシラン)、同Z-6033(3-メタクリロキシプロピルメチルジメトキシシラン)、東京化成工業社製のA1597(3-(トリメトキシシリル)プロピルアクリレート)、同D4679(3-〔ジメトキシ(メチル)シリル〕プロピルメタクリレート)、M0725(3-(トリメトキシシリル)プロピルメタクリレート)、M1324(3-〔トリス(トリメチルシリロキシ)シリル〕プロピルメタクリレート、M1530(3-〔ジメトキシ(メチル)シリル〕プロピルメタクリレート、M2525(3-メトキシジメチルシリル)プロピルアクリレート、T2676(3-(トリエトキシシリル)メタクリレート等を挙げることができ、また、ポリマータイプとしては、X-12-1048(信越シリコーン社製)等が挙げられる。これらのアクリロイル基含有シランカップリング剤は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。また、アクリロイル基含有シランカップリング剤以外の「アクリロイル基およびアルコキシシリル基を一分子中に含む化合物」としては、例えば、(メタ)アクリロイル基を導入したポリオルガノシルセスキオキサンや、不飽和二重結合を含有するポリシロキサン変性アクリル樹脂などの有機無機ハイブリッド材料などが挙げられる。これらの材料は従来公知の知見を参照しつつ独自に調液してもよいし、市販品を用いてもよい。 Commercially available acryloyl group-containing silane coupling agents include, as monomer types, KBM-5103 (3-acryloxypropyltrimethoxysilane) and KMB-502 (3-methacryloxypropylmethyldimethoxy) manufactured by Shin-Etsu Silicone. Silane), KBM-503 (3-methacryloxypropyltrimethoxysilane), KBE-502 (3-methacryloxypropylmethyldiethoxysilane), KBE-503 (3-methacryloxypropyltriethoxysilane), manufactured by Dow Corning Z-6030 (3-methacryloxypropyltrimethoxysilane), Z-6033 (3-methacryloxypropylmethyldimethoxysilane), A1597 (3- (trimethoxysilyl) propyl acrylate) manufactured by Tokyo Chemical Industry Co., Ltd. D4679 (3- [dimethoxy (methyl) silyl] propyl methacrylate), M0725 (3- (trimethoxysilyl) propyl methacrylate), M1324 (3- [tris (trimethylsilyloxy) silyl] propyl methacrylate, M1530 (3- [dimethoxy (Methyl) silyl] propyl methacrylate, M2525 (3-methoxydimethylsilyl) propyl acrylate, T2676 (3- (triethoxysilyl) methacrylate, etc. can be mentioned, and the polymer type is X-12-1048 (Shin-Etsu). These acryloyl group-containing silane coupling agents may be used alone or in combination of two or more, and acryloyl group-containing silane cups may also be used. ring Examples of “compounds containing an acryloyl group and an alkoxysilyl group in one molecule” include, for example, polyorganosilsesquioxane introduced with a (meth) acryloyl group and polysiloxane-modified acrylic containing an unsaturated double bond Examples thereof include organic-inorganic hybrid materials such as resins, etc. These materials may be independently prepared with reference to conventionally known knowledge, or commercially available products may be used.
 (ケイ素原子を含む化合物)
 〈シランカップリング剤〉
 本発明に適用可能なシランカップリング剤としては、特に限定されることはなく、以下に列挙するシランカップリング剤を挙げることができる。
(Compounds containing silicon atoms)
<Silane coupling agent>
The silane coupling agent applicable to the present invention is not particularly limited, and examples thereof include the silane coupling agents listed below.
 具体的には、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、n-プロピルトリメトキシシラン、エチルトリメトキシシラン、ジエチルジエトキシシラン、n-ブチルトリメトキシシラン、n-ヘキシルトリエトキシシラン、n-オクチルトリメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、ビス-(3-〔トリエトキシシリル〕プロピル)テトラスルフィド、γ-イソシアネートプロピルトリエトキシシラン等が挙げられる。さらには、エポキシ基(グリシドキシ基)、アミノ基、メルカプト基、(メタ)アクリロイル基等の官能基を有するシランカップリング剤と、これらの官能基と反応性を有する官能基を含有するシランカップリング剤、他のカップリング剤、ポリイソシアネートなどを、各官能基について任意の割合で反応させて得られる加水分解性シリル基を有する化合物も使用できる。 Specifically, for example, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, n-propyltrimethoxysilane, ethyltrimethoxysilane, diethyldiethoxysilane, n-butyltrimethoxysilane, n-hexyltriethoxysilane , N-octyltrimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, cyclohexylmethyldimethoxysilane, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, β- (3 4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropiyl Lutriethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-acryloxypropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltriethoxysilane , Γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptop Examples include propylmethyldimethoxysilane, bis- (3- [triethoxysilyl] propyl) tetrasulfide, and γ-isocyanatopropyltriethoxysilane. Further, a silane coupling agent having a functional group such as an epoxy group (glycidoxy group), an amino group, a mercapto group, or a (meth) acryloyl group, and a functional group having reactivity with these functional groups. A compound having a hydrolyzable silyl group obtained by reacting an agent, another coupling agent, polyisocyanate and the like with each functional group in an arbitrary ratio can also be used.
 また、シランカップリング剤は、市販品としても入手することができる。例えば、官能基としてビニル基を有するKBM-1003、KBE-1003、官能基としてエポキシ基を有するKBM-303、KBM-402、KMB-403、KBE-402、KBE-403、官能基としてスチリル基を有するKBM-1403、官能基としてアミノ基を有するKBM-602、KBM-603、KBM-903、KBE-903、KBE-9103、KBM-573、KBM-575、官能基としてイソシアヌレート基を有するKBM-9659、官能基としてウレイド基を有するKBE-585、官能基としてメルカプト基を有するKBM-802、KBM-803等(以上、信越シリコーン社製)を挙げることができる。 Also, the silane coupling agent can be obtained as a commercial product. For example, KBM-1003 and KBE-1003 having a vinyl group as a functional group, KBM-303, KBM-402, KMB-403, KBE-402 and KBE-403 having an epoxy group as a functional group, and a styryl group as a functional group. KBM-1403 having an amino group as a functional group, KBM-602, KBM-603, KBM-903, KBE-903, KBE-9103, KBM-573, KBM-575 as a functional group, KBM- having an isocyanurate group as a functional group 9659, KBE-585 having a ureido group as a functional group, KBM-802, KBM-803 having a mercapto group as a functional group, and the like (manufactured by Shin-Etsu Silicone).
 更に、ダウコーニング社より市販されている、官能基としてアミノ基を有するZ-6610、Z-6011、Z-6020、Z-6094、Z-6883、Z-6032、官能基としてエポキシ基を有するZ-6040、Z-6044、Z-6043、官能基としてビニル基を有するZ-6075、Z-6300、Z-6519等を挙げることができる。 Further, Z-6610, Z-6011, Z-6020, Z-6094, Z-6883, Z-6032 having an amino group as a functional group and Z having an epoxy group as a functional group are commercially available from Dow Corning. -6040, Z-6044, Z-6043, Z-6075, Z-6300, Z-6519, etc. having a vinyl group as a functional group.
 その他には、東京化成工業社製のホームページに「シランカップリング剤」として記載されている、オレフィニルシラン類、グリシジルオキシアルキルシラン類、アルキルシラン類、アリールシラン類、アリールアルキルシラン類、フルオロアルキルシラン類等を挙げることができる。 In addition, olefinyl silanes, glycidyloxyalkyl silanes, alkyl silanes, aryl silanes, aryl alkyl silanes, fluoroalkyl, which are described as “silane coupling agents” on the website of Tokyo Chemical Industry Co., Ltd. Silanes etc. can be mentioned.
 〈二酸化ケイ素粒子(シリカ粒子)〉
 本発明に係る接着層では、ケイ素原子を含む化合物として、二酸化ケイ素粒子(シリカ粒子)を用いることができる。
<Silicon dioxide particles (silica particles)>
In the adhesive layer according to the present invention, silicon dioxide particles (silica particles) can be used as the compound containing silicon atoms.
 二酸化ケイ素としては、気相法、溶融法、ゾル・ゲル法等により作製されたシリカ粒子が使用できる。また、シリカ粒子としては、公知のものを使用することができる。また、その形状は、球状でも不定形のものでもよく、通常のコロイダルシリカに限らず中空粒子、多孔質粒子、コア/シェル型粒子等であっても構わない。 As silicon dioxide, silica particles produced by a gas phase method, a melting method, a sol-gel method or the like can be used. Moreover, as a silica particle, a well-known thing can be used. Further, the shape may be spherical or indeterminate, and is not limited to ordinary colloidal silica, and may be hollow particles, porous particles, core / shell type particles, or the like.
 シリカ粒子としては、具体的には、例えば、日本アエロジル株式会社製のアエロジル-200、200V、300、R972、R972V、R974、R976、R976S、R202、R812,R805、OX50、TT600、RY50、RX50、NY50、NAX50、NA50H、NA50Y、NX90、RY200S、RY200、RX200、R8200、RA200H、RA200HS、NA200Y、R816、R104、RY300、RX300、R106等が挙げられる。 Specific examples of the silica particles include Aerosil 200, 200V, 300, R972, R972V, R974, R976, R976S, R202, R812, R805, OX50, TT600, RY50, RX50, manufactured by Nippon Aerosil Co., Ltd. NY50, NAX50, NA50H, NA50Y, NX90, RY200S, RY200, RX200, R8200, RA200H, RA200HS, NA200Y, R816, R104, RY300, RX300, R106, and the like.
 また、コロイダルシリカを挙げることができる。コロイダルシリカとは、珪酸ナトリウムの酸等による複分解やイオン交換樹脂層を通過させて得られるシリカゾルを加熱熟成して得られるものであり、例えば、特開昭57-14091号公報、特開昭60-219083号公報、特開昭60-219084号公報、特開昭61-20792号公報、特開昭61-188183号公報、特開昭63-17807号公報、特開平4-93284号公報、特開平5-278324号公報、特開平6-92011号公報、特開平6-183134号公報、特開平6-297830号公報、特開平7-81214号公報、特開平7-101142号公報、特開平7-179029号公報、特開平7-137431号公報、および国際公開第94/26530号などに記載されているものである。 Also, colloidal silica can be mentioned. Colloidal silica is obtained by heat-aging a silica sol obtained by metathesis of sodium silicate with an acid or the like or passing through an ion exchange resin layer. For example, JP-A 57-14091 and JP-A 60 No.-219083, JP-A-60-218904, JP-A-61-20792, JP-A-61-188183, JP-A-63-17807, JP-A-4-93284, JP-A-5-278324, JP-A-6-92011, JP-A-6-183134, JP-A-6-297830, JP-A-7-81214, JP-A-7-101142, JP-A-7 -179029, JP-A-7-137431, and International Publication No. 94/26530.
 更には、有機溶媒にナノレベルのコロイダルシリカを安定して分散することができるオルガノシリカゾルを用いることが好ましい。 Furthermore, it is preferable to use an organosilica sol that can stably disperse nano-level colloidal silica in an organic solvent.
 有機溶媒分散シリカゾルであるオルガノシリカゾルは、日産化学工業(株)より市販されており、一般グレードとしては、メタノールシリカゾル(分散媒:メタノール、平均粒子径:10~15nm)、MA-ST-M(分散媒:メタノール、平均粒子径:20~25nm)、MA-ST-L(分散媒:メタノール、平均粒子径:40~50nm)、IPA-ST(分散媒:イソプロピルアルコール、平均粒子径:10~15nm)、IPA-ST-L(分散媒:イソプロピルアルコール、平均粒子径:40~50nm)、EG-ST(分散媒:エチレングリコール、平均粒子径:10~15nm)、PMA-ST(分散媒:プロピレングリコールモノメチルエーテルアセテート、平均粒子径:10~15nm)、MEK-ST-40(分散媒:メチルエチルケトン、平均粒子径:10~15nm)等、また、表面改質グレードとしては、MEK-EC-2130Y(分散媒:メチルエチルケトン、平均粒子径:10~15nm、シリカ含有量:30質量%)、MEK-AC-2140Z(分散媒:メチルエチルケトン、平均粒子径:10~15nm、シリカ含有量:40質量%)、MEK-AC-4130Y(分散媒:メチルエチルケトン、平均粒子径:40~50nm、シリカ含有量:30質量%)、MEK-AC-5140Z(分散媒:メチルエチルケトン、平均粒子径:70~100nm、シリカ含有量:40質量%)、PGM-AC-2140Y(分散媒:プロピレングリコールモノメチルエーテル、平均粒子径:10~15nm、シリカ含有量:42質量%)、PGM-AC-4130Y(分散媒:プロピレングリコールモノメチルエーテル、平均粒子径:40~50nm、シリカ含有量:30質量%)、MIBK-AC-2140Z(分散媒:メチルイソブチルケトン、平均粒子径:10~15nm、シリカ含有量:40質量%)等を挙げることができる。 Organosilica sol, an organic solvent-dispersed silica sol, is commercially available from Nissan Chemical Industries, Ltd. The general grades are methanol silica sol (dispersion medium: methanol, average particle size: 10 to 15 nm), MA-ST-M ( Dispersion medium: methanol, average particle diameter: 20 to 25 nm), MA-ST-L (dispersion medium: methanol, average particle diameter: 40 to 50 nm), IPA-ST (dispersion medium: isopropyl alcohol, average particle diameter: 10 to 15 nm), IPA-ST-L (dispersion medium: isopropyl alcohol, average particle diameter: 40 to 50 nm), EG-ST (dispersion medium: ethylene glycol, average particle diameter: 10 to 15 nm), PMA-ST (dispersion medium: Propylene glycol monomethyl ether acetate, average particle size: 10-15 nm), MEK-ST-40 (min Medium: methyl ethyl ketone, average particle size: 10 to 15 nm) and the like, and as a surface modification grade, MEK-EC-2130Y (dispersion medium: methyl ethyl ketone, average particle size: 10 to 15 nm, silica content: 30% by mass) MEK-AC-2140Z (dispersion medium: methyl ethyl ketone, average particle diameter: 10 to 15 nm, silica content: 40% by mass), MEK-AC-4130Y (dispersion medium: methyl ethyl ketone, average particle diameter: 40 to 50 nm, containing silica) Amount: 30% by mass), MEK-AC-5140Z (dispersion medium: methyl ethyl ketone, average particle size: 70 to 100 nm, silica content: 40% by mass), PGM-AC-2140Y (dispersion medium: propylene glycol monomethyl ether, average) Particle diameter: 10 to 15 nm, silica content: 42% by mass), PG -AC-4130Y (dispersion medium: propylene glycol monomethyl ether, average particle size: 40 to 50 nm, silica content: 30% by mass), MIBK-AC-2140Z (dispersion medium: methyl isobutyl ketone, average particle size: 10 to 15 nm) And silica content: 40% by mass).
 本発明において、シリカ粒子の粒径は、特に制限はないが、その平均粒径が3~200nmであることが好ましい。一次粒子の状態で分散された二酸化ケイ素の一次粒子の平均粒径(塗布前の分散液状態での粒径)は、3~200nmであるのがより好ましく、3~100nmであるのがさらに好ましく、3~50nmであるのが特に好ましい。 In the present invention, the particle size of the silica particles is not particularly limited, but the average particle size is preferably 3 to 200 nm. The average particle size of primary particles of silicon dioxide dispersed in a primary particle state (particle size in a dispersion state before coating) is more preferably 3 to 200 nm, and further preferably 3 to 100 nm. Particularly preferred is 3 to 50 nm.
 (その他の添加剤)
 本発明においては、接着層が、平均粒径が300~1000nmの範囲内にある有機微粒子を含有することが、耐熱性をより向上させることができる観点から好ましい。
(Other additives)
In the present invention, it is preferable that the adhesive layer contains organic fine particles having an average particle diameter in the range of 300 to 1000 nm from the viewpoint of further improving the heat resistance.
 本発明に適用可能な有機微粒子として、下記に樹脂成分により構成される有機微粒子を挙げることができるが、本発明はこれらに限定されるものではない。 Examples of organic fine particles applicable to the present invention include organic fine particles composed of resin components below, but the present invention is not limited to these.
 1)アクリル樹脂:ポリメチルメタクリレート、ポリエチルメタクリレート、プロピルメタクリレート、ジメチルアミノエチルメタクリレート、メチルアクリレート、エチルアクリレート、メトキシエチルアクリレート
 2)共重合アクリル樹脂:1)で挙げた樹脂のモノマーと塩化ビニル、塩化ビニリデン、ビニルピリジン、スチレン、アクリロニトリル、アクリル酸、メタクリル酸との共重合樹脂
 3)塩化ビニル樹脂:ポリ塩化ビニル、塩化ビニルと酢酸ビニル、塩化ビニリデン、アクリル酸、メタクリル酸、マレイン酸、マレイン酸エステル、アクリロニトリルとの共重合樹脂
 4)ポリ酢酸ビニル及びその部分鹸化樹脂
 5)スチロール樹脂:ポリスチレン、スチレンとアクリロニトリルの共重合樹脂
 6)塩化ビニリデン樹脂:ポリ塩化ビニリデン、塩化ビニリデンとアクリロニトリル共重合樹脂
 7)アセタール樹脂:ポリビニルホルマール、ポリブチルブチラール
 8)繊維素樹:酢酸セルロース、プロピオン酸セルロース、酪酸セルロース、硝酸セルロース
 9)メラミン樹脂:メラミン-ホルムアルデヒド縮合樹脂、ベンゾグアナミン-メラミン-ホルムアルデヒド縮合樹脂
 これらの有機微粒子の分散物はポリマーを有機溶媒に溶解し、激しく撹拌しながら水又はゼラチン水溶液と混合し分散する方法、あるいは乳化重合、沈殿重合、又はパール重合によってモノマーを重合しつつ粒子状に析出する方法、あるいはマット剤の微粒子粉末を、攪拌機、ホモジナイザー、コロイドミル、フロージェットミキサー、超音波分散機等を用いて水やゼラチン水溶液に分散することで得られる。
1) Acrylic resin: Polymethyl methacrylate, polyethyl methacrylate, propyl methacrylate, dimethylaminoethyl methacrylate, methyl acrylate, ethyl acrylate, methoxyethyl acrylate 2) Copolymer acrylic resin: 1) Resin monomers and vinyl chloride, chloride Vinylidene, vinylpyridine, styrene, acrylonitrile, acrylic acid, methacrylic acid copolymer resin 3) Vinyl chloride resin: polyvinyl chloride, vinyl chloride and vinyl acetate, vinylidene chloride, acrylic acid, methacrylic acid, maleic acid, maleic acid ester Copolymer resin with acrylonitrile 4) Polyvinyl acetate and its partially saponified resin 5) Styrene resin: Copolymer resin of polystyrene, styrene and acrylonitrile 6) Vinylidene chloride resin: Poly salt Vinylidene, vinylidene chloride and acrylonitrile copolymer resin 7) Acetal resin: Polyvinyl formal, Polybutyl butyral 8) Fiber base: Cellulose acetate, cellulose propionate, cellulose butyrate, cellulose nitrate 9) Melamine resin: Melamine-formaldehyde condensation resin, benzoguanamine- Melamine-formaldehyde condensation resin These organic fine particle dispersions are prepared by dissolving the polymer in an organic solvent and mixing with water or an aqueous gelatin solution with vigorous stirring, or by polymerizing the monomer by emulsion polymerization, precipitation polymerization, or pearl polymerization. However, the method of precipitating into particles while dispersing the fine particles of the matting agent in water or an aqueous gelatin solution using a stirrer, homogenizer, colloid mill, flow jet mixer, ultrasonic disperser, etc. Obtained.
 有機微粒子の平均粒径は好ましくは300~1000nmであるが、より好ましくは400~900nmである。尚、有機微粒子の平均粒径は電子顕微鏡を用い、投影面積から円相当径を算出して求められる。 The average particle size of the organic fine particles is preferably 300 to 1000 nm, more preferably 400 to 900 nm. The average particle diameter of the organic fine particles is obtained by calculating the equivalent circle diameter from the projected area using an electron microscope.
 (接着層1の形成方法)
 本発明に係る接着層の形成方法としては、上記説明した接着層の各構成材料を適当な溶媒に溶解させた溶液(接着層形成用塗布液)をガスバリアー層の表面に塗布し、乾燥させる方法が例示される。
(Method for forming adhesive layer 1)
As a method for forming an adhesive layer according to the present invention, a solution (adhesive layer forming coating solution) in which each constituent material of the adhesive layer described above is dissolved in an appropriate solvent is applied to the surface of the gas barrier layer and dried. A method is illustrated.
 接着層の形成方法は特に制限されず、接着層形成材料を含む接着層形成用塗布液を、ディップ法、スプレー法、スライドコート法、バーコート法、ロールコーター法、ダイコーター法、グラビアコーター法、スクリーン印刷法等、公知の方法によりガスバリアー層上に塗布し、空気や窒素などの雰囲気下で乾燥処理により、有機溶媒を除去して形成することができる。 The method for forming the adhesive layer is not particularly limited, and a coating solution for forming the adhesive layer containing the adhesive layer forming material is prepared by dipping, spraying, slide coating, bar coating, roll coater, die coater, gravure coater. It can be formed by coating on the gas barrier layer by a known method such as screen printing and removing the organic solvent by a drying treatment in an atmosphere such as air or nitrogen.
 上記接着層形成用塗布液には適当な光重合開始剤を添加しておき、上記塗布液を塗布し、乾燥させて得られた塗膜に、光照射処理を施してアクリロイル基含有化合物の一部を重合させてもよい。ただし、完全に重合させてしまうと、接着層に含まれる未反応のアクリロイル基がなくなってしまうため、重合は完全には行うべきではない。 An appropriate photopolymerization initiator is added to the coating solution for forming the adhesive layer, the coating solution obtained by applying the coating solution and drying is subjected to a light irradiation treatment to obtain an acryloyl group-containing compound. Part may be polymerized. However, if it is completely polymerized, the unreacted acryloyl group contained in the adhesive layer disappears, so the polymerization should not be performed completely.
 溶媒としては、例えば、トルエン、キシレン、その他高沸点の芳香族系溶媒;酢酸ブチル、酢酸エチル、セロソルブアセテートなどのエステル系溶媒;メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒;メタノール、エタノール、イソプロピルアルコールなどのアルコール系溶媒;ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルジエチレングリコールモノメチルエーテル等のエーテル系溶媒などが挙げられる。 Solvents include, for example, toluene, xylene and other high boiling aromatic solvents; ester solvents such as butyl acetate, ethyl acetate and cellosolve acetate; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; methanol, ethanol, isopropyl alcohol And alcohol solvents such as diethyl ether, dibutyl ether, tetrahydrofuran, dioxane, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, and diethylene glycol monomethyl ether.
 また、光重合開始剤としては、近赤外線、可視光線、紫外線等の光照射により、ラジカル重合の開始に寄与するラジカルを発生する化合物であれば、特に制限はない。光重合開始剤としては、例えば、アセトフェノン、アセトフェノンベンジルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、キサントン、フルオレノン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、3-メチルアセトフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、4,4’-ジアミノベンゾフェノン、ベンゾインプロピルエーテル、ベンゾインエチルエーテル、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、チオキサントン、ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1,4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキシド、オリゴ(2-ヒドロキシ-2-メチル-1-(4-(1-メチルビニル)フェニル)プロパノン)等が挙げられる。また、光重合開始剤として、メタロセン化合物を使用することもできる。これらの光重合開始剤は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。 The photopolymerization initiator is not particularly limited as long as it is a compound that generates radicals that contribute to the initiation of radical polymerization upon irradiation with light such as near infrared rays, visible rays, and ultraviolet rays. Examples of the photopolymerization initiator include acetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, xanthone, fluorenone, benzaldehyde, fluorene, anthraquinone, tri Phenylamine, carbazole, 3-methylacetophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, 4,4'-diaminobenzophenone, benzoin propyl ether, benzoin ethyl ether, benzyldimethyl ketal, 1- (4-isopropylphenyl) ) -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, thioxanthone, diethylthioxanthone, -Isopropylthioxanthone, 2-chlorothioxanthone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholino Phenyl) -butanone-1,4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis- (2,6-dimethoxybenzoyl) ) -2,4,4-trimethylpentylphosphine oxide, oligo (2-hydroxy-2-methyl-1- (4- (1-methylvinyl) phenyl) propanone) and the like. Moreover, a metallocene compound can also be used as a photopolymerization initiator. These photopolymerization initiators can be used alone or in combination of two or more.
 〔接着層2〕
 図3に示すように、本発明に係る第2の構成のガスバリアー性フィルム(101)においては、樹脂基材(102)上にガスバリアー層(103)を有し、更にその上に、平均一次粒径が30~100nmの範囲内にある無機微粒子(106)と、平均一次粒径が300~1000nmの範囲内にある有機微粒子(107)及びバインダー成分(105)を含有する接着層2(104)を有することを特徴とする。
[Adhesive layer 2]
As shown in FIG. 3, the gas barrier film (101) of the second configuration according to the present invention has a gas barrier layer (103) on the resin base material (102), and further has an average on it. Adhesive layer 2 containing inorganic fine particles (106) having a primary particle size in the range of 30 to 100 nm, organic fine particles (107) having an average primary particle size in the range of 300 to 1000 nm, and a binder component (105). 104).
 本発明に係る接着層2においては、接着層2が含有する無機微粒子がシリカ粒子であることが好ましい態様である。 In the adhesive layer 2 according to the present invention, it is preferable that the inorganic fine particles contained in the adhesive layer 2 are silica particles.
 また、バインダー成分が、シランカップリング剤であること、更にはポリマータイプのシランカップリング剤であることが好ましい。 The binder component is preferably a silane coupling agent, and more preferably a polymer type silane coupling agent.
 また、バインダー成分が、アクリロイル基含有化合物であること、更にはアクリルポリマーであることが好ましい態様である。 In addition, it is a preferable aspect that the binder component is an acryloyl group-containing compound, and further an acrylic polymer.
 〔無機微粒子〕
 本発明に係る接着層では、平均一次粒径が30~100nmの範囲内にある無機微粒子を含有することを1つの特徴とする。
[Inorganic fine particles]
One feature of the adhesive layer according to the present invention is that it contains inorganic fine particles having an average primary particle size in the range of 30 to 100 nm.
 本発明に適用可能な無機微粒子としては、例えば、酸化チタン、酸化亜鉛、アルミナ(酸化アルミニウム)、シリカ(酸化ケイ素)、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、酸化マグネシウム、酸化鉛、酸化タンタル、酸化イットリウム、酸化コバルト、酸化銅、酸化マンガン、酸化セレン、酸化鉄、酸化ジルコニウム、酸化ゲルマニウム、酸化ニオブ、酸化モリブデン、酸化バナジウム等からなる微粒子が挙げることができるが、その中でも、酸化チタン粒子(TiO)又は、シリカ粒子(二酸化ケイ素、SiO)が好ましく、更には、シリカ粒子であることが好ましい。 Examples of inorganic fine particles applicable to the present invention include titanium oxide, zinc oxide, alumina (aluminum oxide), silica (silicon oxide), tin oxide, antimony oxide, indium oxide, bismuth oxide, magnesium oxide, lead oxide, and oxidation. Examples of the fine particles include tantalum, yttrium oxide, cobalt oxide, copper oxide, manganese oxide, selenium oxide, iron oxide, zirconium oxide, germanium oxide, niobium oxide, molybdenum oxide, and vanadium oxide. Particles (TiO 2 ) or silica particles (silicon dioxide, SiO 2 ) are preferable, and silica particles are more preferable.
 〈二酸化ケイ素粒子(シリカ粒子)〉
 本発明に係る接着層では、無機微粒子として、シリカ粒子(二酸化ケイ素粒子)を用いることが好ましい。なお、シリカ粒子の屈折率は,1.44~1.50の範囲である。
<Silicon dioxide particles (silica particles)>
In the adhesive layer according to the present invention, silica particles (silicon dioxide particles) are preferably used as the inorganic fine particles. The refractive index of silica particles is in the range of 1.44 to 1.50.
 二酸化ケイ素としては、前述の接着層1の形成に用いる二酸化ケイ素粒子(シリカ粒子)と同様のものを挙げることができる。 As silicon dioxide, the same thing as the silicon dioxide particle (silica particle) used for formation of the above-mentioned adhesion layer 1 can be mentioned.
 〈酸化チタン粒子〉
 酸化チタンは、アナターゼ型(正方晶)二酸化チタンやブルッカイト型(斜方晶)酸化チタンを含むことが好ましい。また、酸化チタンのBET比表面積が、10~300m/gであることが好ましく、さらに20~100m/gであることが好ましい。また、酸化チタンの粒度分布はシャープであることが好ましい。酸化チタンの屈折率は、2.50~2.72の範囲である。
<Titanium oxide particles>
The titanium oxide preferably contains anatase type (tetragonal) titanium dioxide or brookite type (orthorhombic) titanium oxide. Further, the BET specific surface area of titanium oxide is preferably 10 to 300 m 2 / g, and more preferably 20 to 100 m 2 / g. The particle size distribution of titanium oxide is preferably sharp. The refractive index of titanium oxide is in the range of 2.50 to 2.72.
 本発明においては、水系の酸化チタンゾルを用いることが好ましい。酸化チタンゾルとしては、固形分率40%以下であることが好ましく、より好ましくは30%以下である。 In the present invention, it is preferable to use an aqueous titanium oxide sol. The titanium oxide sol preferably has a solid content of 40% or less, more preferably 30% or less.
 水系の酸化チタンゾルとしては、市販品を使用しても、あるいは調製して使用してもよい。調製方法としては、従来公知のいずれの方法も用いることができ、例えば、特開昭63-17221号公報、特開平7-819号公報、特開平9-165218号公報、特開平11-43327号公報、特開昭63-17221号公報、特開平7-819号公報、特開平9-165218号公報、特開平11-43327号公報等に記載された事項を参照にすることができる。 As the aqueous titanium oxide sol, a commercially available product may be used, or it may be prepared and used. As the preparation method, any conventionally known method can be used. For example, JP-A-63-17221, JP-A-7-819, JP-A-9-165218, JP-A-11-43327. Reference can be made to the matters described in Japanese Patent Laid-Open Nos. 63-17221, 7-819, 9-165218, 11-43327, and the like.
 また、酸化チタン粒子は、市販品としても入手可能であり、例えば、日本アエロジル社製の市販品T-805、T-604、テイカ社製の市販品MT-100S、MT-100B、MT-500BS、MT-600、MT-600SS、JA-1、富士チタン社製の市販品TA-300SI、TA-500、TAF-130、TAF-510、TAF-510T、出光興産社製の市販品IT-S、IT-OA、IT-OB、IT-OC等の中から、平均一次粒径が30~100nmの範囲内にある酸化チタン粒子を選択して用いることができる。 Titanium oxide particles are also available as commercial products, for example, commercial products T-805 and T-604 manufactured by Nippon Aerosil Co., Ltd., commercial products MT-100S, MT-100B, and MT-500BS manufactured by Teica. , MT-600, MT-600SS, JA-1, commercial products TA-300SI, TA-500, TAF-130, TAF-510, TAF-510T manufactured by Fuji Titanium, commercial products IT-S manufactured by Idemitsu Kosan , IT-OA, IT-OB, IT-OC, etc., titanium oxide particles having an average primary particle size in the range of 30 to 100 nm can be selected and used.
 また、石原産業社製の市販品も適用することができ、超微粒子酸化チタンの焼成法で製造されているTOO-55シリーズである、TTO-55(A)(ルチル結晶、表面処理:Al(OH)、平均粒径:30~50nm)、TTO-55(B)(ルチル結晶、表面処理:Al(OH)、平均粒径:30~50nm)、TTO-55(C)(ルチル結晶、表面処理:Al(OH)/ステアリン酸、平均粒径:30~50nm)等を挙げることができる。 A commercial product manufactured by Ishihara Sangyo Co., Ltd. can also be applied, and is a TOO-55 series manufactured by a firing method of ultrafine titanium oxide, TTO-55 (A) (rutile crystal, surface treatment: Al ( OH) 3 , average particle size: 30-50 nm), TTO-55 (B) (rutile crystal, surface treatment: Al (OH) 3 , average particle size: 30-50 nm), TTO-55 (C) (rutile crystal) Surface treatment: Al (OH) 3 / stearic acid, average particle size: 30 to 50 nm).
 〈無機微粒子の粒径〉
 本発明において、シリカ粒子等の無機微粒子の粒径は、平均一次粒径が30~100nmの範囲内にあることを特徴とするが、好ましくは30~80nmの範囲内であり、さらに好ましくは、40~70nmの範囲内である。
<Inorganic fine particle size>
In the present invention, the particle size of the inorganic fine particles such as silica particles is characterized in that the average primary particle size is in the range of 30 to 100 nm, preferably in the range of 30 to 80 nm, and more preferably It is within the range of 40 to 70 nm.
 シリカ粒子を含めた本発明に係る無機微粒子の平均一次粒径は、透過型電子顕微鏡によって無機微粒子を10000倍に拡大して撮影し、ランダムに300個の粒子を一次粒子として観察し、画像解析によりフェレ径の数平均径として測定値を算出して得られた値である。 The average primary particle size of the inorganic fine particles according to the present invention including the silica particles was photographed by magnifying the inorganic fine particles 10,000 times with a transmission electron microscope, and 300 particles were randomly observed as the primary particles, and image analysis was performed. Is a value obtained by calculating the measured value as the number average diameter of the ferret diameter.
 また、光学フィルムを作製した後、その断面を切り出した後、その断面部を透過型電子顕微鏡で撮影し、存在している無機微粒子の直径をランダムに300個計測し、算術平均値として、平均一次粒径を求めることもできる。この時、無機微粒子が円形でない場合には、同一面積の円相当の直径を求め、これを無機微粒子の直径とした。 In addition, after producing the optical film, the cross section was cut out, the cross section was photographed with a transmission electron microscope, the diameter of 300 inorganic fine particles present was randomly measured, and the arithmetic average value was averaged. The primary particle size can also be determined. At this time, when the inorganic fine particles were not circular, a diameter corresponding to a circle having the same area was obtained and used as the diameter of the inorganic fine particles.
 〈無機微粒子の添加量〉
 本発明に係る無機微粒子の接着層中への添加量は、特に制限はなく、接着層の全固形分量に対し、0.5~50質量%の範囲内であり、好ましくは、1.0~40質量%の範囲内であり、さらに好ましくは、5.0~30質量%の範囲内である。
<Addition amount of inorganic fine particles>
The amount of the inorganic fine particles according to the present invention added to the adhesive layer is not particularly limited, and is in the range of 0.5 to 50% by mass with respect to the total solid content of the adhesive layer, preferably 1.0 to It is within the range of 40% by mass, and more preferably within the range of 5.0 to 30% by mass.
 〔有機微粒子〕
 本発明に係る接着層では、平均一次粒径が300~1000nmの範囲内にある有機微粒子を含有することを1つの特徴とする。
[Organic fine particles]
One feature of the adhesive layer according to the present invention is that it contains organic fine particles having an average primary particle size in the range of 300 to 1000 nm.
 本発明に適用可能な有機微粒子として、下記に示す樹脂成分により構成される平均一次粒径が300~1000nmの範囲内にある有機微粒子を挙げることができるが、本発明はこれらに限定されるものではない。 Examples of the organic fine particles applicable to the present invention include organic fine particles having an average primary particle size comprised of the following resin components in the range of 300 to 1000 nm, but the present invention is not limited to these. is not.
 1)アクリル樹脂:ポリメチルメタクリレート、ポリエチルメタクリレート、プロピルメタクリレート、ジメチルアミノエチルメタクリレート、メチルアクリレート、エチルアクリレート、メトキシエチルアクリレート等
 2)共重合アクリル樹脂:1)で挙げた樹脂のモノマーと塩化ビニル、塩化ビニリデン、ビニルピリジン、スチレン、アクリロニトリル、アクリル酸、メタクリル酸との共重合樹脂等
 3)塩化ビニル樹脂:ポリ塩化ビニル、塩化ビニルと酢酸ビニル、塩化ビニリデン、アクリル酸、メタクリル酸、マレイン酸、マレイン酸エステル、アクリロニトリルとの共重合樹脂等
 4)ポリ酢酸ビニル及びその部分鹸化樹脂
 5)スチロール樹脂:ポリスチレン、スチレンとアクリロニトリルの共重合樹脂等
 6)塩化ビニリデン樹脂:ポリ塩化ビニリデン、塩化ビニリデンとアクリロニトリル共重合樹脂等
 7)アセタール樹脂:ポリビニルホルマール、ポリブチルブチラール等
 8)繊維素樹:酢酸セルロース、プロピオン酸セルロース、酪酸セルロース、硝酸セルロース等
 9)メラミン樹脂:メラミン-ホルムアルデヒド縮合樹脂、ベンゾグアナミン-メラミン-ホルムアルデヒド縮合樹脂等
 これらの有機微粒子の分散物は、ポリマーを有機溶媒に溶解し、激しく撹拌しながら水又はゼラチン水溶液と混合し分散する方法、あるいは乳化重合、沈殿重合、又はパール重合によってモノマーを重合しつつ粒子状に析出する方法、あるいはマット剤の微粒子粉末を、攪拌機、ホモジナイザー、コロイドミル、フロージェットミキサー、超音波分散機等を用いて水やゼラチン水溶液に分散することで得られる。
1) Acrylic resin: polymethyl methacrylate, polyethyl methacrylate, propyl methacrylate, dimethylaminoethyl methacrylate, methyl acrylate, ethyl acrylate, methoxyethyl acrylate, etc. 2) Copolymer acrylic resin: 1) Resin monomer and vinyl chloride, Vinylidene chloride, vinyl pyridine, styrene, acrylonitrile, acrylic acid, methacrylic acid copolymer resin, etc. 3) Vinyl chloride resin: polyvinyl chloride, vinyl chloride and vinyl acetate, vinylidene chloride, acrylic acid, methacrylic acid, maleic acid, maleic Acidic ester, copolymer resin with acrylonitrile, etc. 4) Polyvinyl acetate and its partially saponified resin 5) Styrol resin: Copolymer resin of polystyrene, styrene and acrylonitrile, etc. 6) Vinylidene chloride resin Polyvinylidene chloride, vinylidene chloride and acrylonitrile copolymer resin, etc. 7) Acetal resin: Polyvinyl formal, polybutyl butyral, etc. 8) Fiber tree: Cellulose acetate, cellulose propionate, cellulose butyrate, cellulose nitrate, etc. 9) Melamine resin: Melamine-formaldehyde Condensation resin, benzoguanamine-melamine-formaldehyde condensation resin, etc. These organic fine particle dispersions are prepared by dissolving the polymer in an organic solvent and mixing and dispersing with water or an aqueous gelatin solution with vigorous stirring, or emulsion polymerization, precipitation polymerization, Alternatively, a method of depositing particles while polymerizing monomers by pearl polymerization, or a fine particle powder of a matting agent, using a stirrer, a homogenizer, a colloid mill, a flow jet mixer, an ultrasonic disperser, etc. Obtained by dispersing in a liquid.
 有機微粒子の平均一次粒径は、透過型電子顕微鏡によって有機微粒子を10000倍に拡大して撮影し、ランダムに300個の粒子を一次粒子として観察し、画像解析によりフェレ径の数平均径として測定値を算出して求めることができる。 The average primary particle size of the organic fine particles was measured by magnifying the organic fine particles at a magnification of 10000 times with a transmission electron microscope, randomly observing 300 particles as primary particles, and measuring the number average diameter of the ferret diameter by image analysis. The value can be calculated and obtained.
 また、光学フィルムを作製した後、その断面を切り出した後、その断面部を透過型電子顕微鏡で撮影し、存在している有機微粒子の直径をランダムに300個計測し、算術平均値として、平均一次粒径を求めることもできる。この時、有機微粒子が円形でない場合には、同一面積の円相当の直径を求め、これを有機微粒子の直径とした。 Moreover, after producing an optical film, after cutting out the cross section, the cross-sectional part was image | photographed with the transmission electron microscope, the diameter of 300 organic fine particles which existed was measured at random, and averaged as an arithmetic average value The primary particle size can also be determined. At this time, when the organic fine particles were not circular, a diameter corresponding to a circle having the same area was obtained and used as the diameter of the organic fine particles.
 有機微粒子の平均粒径は、300~1000nmであることが特徴であるが、好ましくは400~900nmである。 The average particle diameter of the organic fine particles is characterized by 300 to 1000 nm, but preferably 400 to 900 nm.
 本発明に係る有機微粒子の接着層中への添加量は、特に制限はなく、接着層の全固形分に対し、0.5~50質量%の範囲内であり、好ましくは、1.0~40質量%の範囲内であり、さらに好ましくは、5.0~30質量%の範囲内である。 The amount of the organic fine particles according to the present invention added to the adhesive layer is not particularly limited, and is within the range of 0.5 to 50% by mass, preferably 1.0 to It is within the range of 40% by mass, and more preferably within the range of 5.0 to 30% by mass.
 また、本発明に係る接着層における無機微粒子と有機微粒子の質量比としては、特に制限はなく、無機微粒子:有機微粒子として、1:99~99:1の範囲内で適宜選択することができ、好ましくは、10:90~90:10の範囲内であり、より好ましくは20:80~80:20の範囲内である。 In addition, the mass ratio of the inorganic fine particles to the organic fine particles in the adhesive layer according to the present invention is not particularly limited, and can be appropriately selected from the range of 1:99 to 99: 1 as inorganic fine particles: organic fine particles, Preferably, it is in the range of 10:90 to 90:10, more preferably in the range of 20:80 to 80:20.
 〔バインダー成分〕
 本発明に係る接着層は、上記説明した無機微粒子及び有機微粒子とともに、バインダー成分を含有している。
(Binder component)
The adhesive layer according to the present invention contains a binder component together with the inorganic fine particles and the organic fine particles described above.
 バインダー成分として、特に制限はないが、シランカップリング剤、ポリマータイプのシランカップリング剤、アクリロイル基含有化合物、アクリルポリマー等が好ましい態様であり、更に詳しくは、アクリロイル基含有化合物として、シランカップリング剤を構造中に含むアクリロイル基含有のアクリルシランカップリング剤やポリマータイプのアクリルシランカップリング剤等を挙げることができる。 Although there is no restriction | limiting in particular as a binder component, A silane coupling agent, a polymer type silane coupling agent, an acryloyl group containing compound, an acrylic polymer, etc. are preferable aspects, More specifically, as an acryloyl group containing compound, silane coupling Examples thereof include an acryloyl group-containing acrylic silane coupling agent and a polymer type acrylic silane coupling agent containing an agent in the structure.
 (シランカップリング剤)
 〈モノマータイプのシランカップリング剤〉
 本発明に適用可能なシランカップリング剤の具体例としては、前記接着層1の形成に適用可能なシランカップリング剤と同様の化合物を挙げることができる。
(Silane coupling agent)
<Monomer type silane coupling agent>
Specific examples of the silane coupling agent applicable to the present invention include the same compounds as the silane coupling agent applicable to the formation of the adhesive layer 1.
 〈アクリロイル基を含有するアクリルシランカップリング剤〉
 本発明でいうアクリロイル基を含有するアクリルシランカップリング剤は、同一構造中に、未反応のアクリロイル基とケイ素原子を含む化合物であり、モノマータイプであってもポリマータイプであってもよい。アクリロイル基を含有するアクリルシランカップリング剤の具体例としては、前述の接着層1の形成に適用可能なアクリロイル基を含有するアクリルシランカップリング剤と同様の化合物を挙げることができる。
<Acrylic silane coupling agent containing acryloyl group>
The acrylic silane coupling agent containing an acryloyl group in the present invention is a compound containing an unreacted acryloyl group and a silicon atom in the same structure, and may be a monomer type or a polymer type. Specific examples of the acrylsilane coupling agent containing an acryloyl group include the same compounds as the acrylsilane coupling agent containing an acryloyl group applicable to the formation of the adhesive layer 1 described above.
 (アクリロイル基含有化合物)
 アクリロイル基含有化合物(以下、アクリレート化合物ともいう。)としては、ポリマータープ及びモノマータイプがあり、例えば、ポリオールポリアクリレート、エポキシアクリレート、ウレタンアクリレート、アクリルモノマー等が挙げられる。アクリロイル基含有化合物の具体例としては、前述の接着層1の形成に適用可能なアクリロイル基含有化合物と同様の化合物を挙げることができる。
(Acryloyl group-containing compound)
Examples of acryloyl group-containing compounds (hereinafter also referred to as acrylate compounds) include polymer tarps and monomer types, and examples include polyol polyacrylates, epoxy acrylates, urethane acrylates, and acrylic monomers. Specific examples of the acryloyl group-containing compound include the same compounds as the acryloyl group-containing compound applicable to the formation of the adhesive layer 1 described above.
 (接着層2の層厚)
 本発明に係る接着層2の層厚は、無機微粒子の平均一次粒径以上で、かつ有機微粒子の平均一次粒径未満であることが好ましい態様であり、上記条件を満たすバインダー成分の層厚は、30nm以上、1000nm未満となるが、現実的な層厚としては、100nm以上、1000nm未満であり、更に好ましくは、100~800nmの範囲であり、特に好ましくは200~500nmの範囲内である。
(Layer thickness of adhesive layer 2)
The layer thickness of the adhesive layer 2 according to the present invention is preferably an aspect in which the average primary particle size of the inorganic fine particles is equal to or greater than and less than the average primary particle size of the organic fine particles. The actual layer thickness is 100 nm or more and less than 1000 nm, more preferably in the range of 100 to 800 nm, and particularly preferably in the range of 200 to 500 nm.
 (接着層2のその他の添加剤及び形成方法)
 本発明に係る接着層2の形成方法としては、上記説明した接着層2の各構成材料を適当な溶媒に溶解させた溶液(接着剤層形成用塗布液)をガスバリアー層の表面に塗布し、乾燥させる方法が例示される。
(Other additives and forming method of adhesive layer 2)
As a method for forming the adhesive layer 2 according to the present invention, a solution (adhesive solution for forming an adhesive layer) in which each constituent material of the adhesive layer 2 described above is dissolved in an appropriate solvent is applied to the surface of the gas barrier layer. The method of drying is illustrated.
 接着層2の形成方法は特に制限されず、接着層形成材料を含む接着剤層形成用塗布液を、ディップ法、スプレー法、スライドコート法、バーコート法、ロールコーター法、ダイコーター法、グラビアコーター法、スクリーン印刷法等、公知の方法によりガスバリアー層上に塗布し、空気や窒素などの雰囲気下で乾燥処理により、有機溶媒を除去して形成することができる。 The method for forming the adhesive layer 2 is not particularly limited, and a coating solution for forming an adhesive layer containing an adhesive layer forming material is prepared by dipping, spraying, slide coating, bar coating, roll coater, die coater, gravure. It can be formed by coating on the gas barrier layer by a known method such as a coater method or a screen printing method, and removing the organic solvent by a drying treatment in an atmosphere such as air or nitrogen.
 上記接着層形成用塗布液には適当な光重合開始剤を添加しておき、上記塗布液を塗布し、乾燥させて得られた塗膜に、光照射処理を施してアクリロイル基含有化合物の一部を重合させてもよい。 An appropriate photopolymerization initiator is added to the coating solution for forming the adhesive layer, the coating solution obtained by applying the coating solution and drying is subjected to a light irradiation treatment to obtain an acryloyl group-containing compound. Part may be polymerized.
 溶媒としては、例えば、トルエン、キシレン、その他高沸点の芳香族系溶媒;酢酸ブチル、酢酸エチル、セロソルブアセテートなどのエステル系溶媒;メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒;メタノール、エタノール、イソプロピルアルコールなどのアルコール系溶媒;ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルジエチレングリコールモノメチルエーテル等のエーテル系溶媒などが挙げられる。 Solvents include, for example, toluene, xylene and other high boiling aromatic solvents; ester solvents such as butyl acetate, ethyl acetate and cellosolve acetate; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; methanol, ethanol, isopropyl alcohol And alcohol solvents such as diethyl ether, dibutyl ether, tetrahydrofuran, dioxane, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, and diethylene glycol monomethyl ether.
 また、光重合開始剤としては、近赤外線、可視光線、紫外線等の光の照射により、ラジカル重合の開始に寄与するラジカルを発生する化合物であれば、特に制限はない。光重合開始剤としては、例えば、アセトフェノン、アセトフェノンベンジルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、キサントン、フルオレノン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、3-メチルアセトフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、4,4’-ジアミノベンゾフェノン、ベンゾインプロピルエーテル、ベンゾインエチルエーテル、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、チオキサントン、ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1,4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキシド、オリゴ(2-ヒドロキシ-2-メチル-1-(4-(1-メチルビニル)フェニル)プロパノン)等が挙げられる。また、光重合開始剤として、メタロセン化合物を使用することもできる。これらの光重合開始剤は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。 The photopolymerization initiator is not particularly limited as long as it is a compound that generates radicals that contribute to the initiation of radical polymerization upon irradiation with light such as near infrared rays, visible rays, and ultraviolet rays. Examples of the photopolymerization initiator include acetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, xanthone, fluorenone, benzaldehyde, fluorene, anthraquinone, tri Phenylamine, carbazole, 3-methylacetophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, 4,4'-diaminobenzophenone, benzoin propyl ether, benzoin ethyl ether, benzyldimethyl ketal, 1- (4-isopropylphenyl) ) -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, thioxanthone, diethylthioxanthone, -Isopropylthioxanthone, 2-chlorothioxanthone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholino Phenyl) -butanone-1,4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis- (2,6-dimethoxybenzoyl) ) -2,4,4-trimethylpentylphosphine oxide, oligo (2-hydroxy-2-methyl-1- (4- (1-methylvinyl) phenyl) propanone) and the like. Moreover, a metallocene compound can also be used as a photopolymerization initiator. These photopolymerization initiators can be used alone or in combination of two or more.
 〔ガスバリアー性フィルムの他の構成層〕
 本発明のガスバリアー性フィルムにおいては、樹脂基材上にガスバリアー層及び接着層1又は接着層2を形成することを特徴とするが、本発明の目的効果を損なわない範囲で、その他の機能性層を設けてもよい。
[Other constituent layers of gas barrier film]
In the gas barrier film of the present invention, the gas barrier layer and the adhesive layer 1 or the adhesive layer 2 are formed on the resin base material, but other functions are provided within the range not impairing the object effects of the present invention. An adhesive layer may be provided.
 具体的な他の機能性層としては、下地層(平滑層、プライマー層ともいう)、アンカーコート層(アンカー層ともいう。)、ブリードアウト防止層、ならびに保護層、吸湿層や帯電防止層の機能化層などが挙げられる。 Specific other functional layers include an underlayer (also referred to as a smooth layer or a primer layer), an anchor coat layer (also referred to as an anchor layer), a bleed-out prevention layer, a protective layer, a moisture absorption layer, or an antistatic layer. Examples include functionalized layers.
 (下地層:平滑層、プライマー層)
 本発明のガスバリアー性フィルムは、例えば、樹脂基材とガスバリアー層との間に下地層として平滑層やプライマー層を有していてもよい。下地層は突起等が存在する樹脂基材の粗面を平坦化するために、あるいは、樹脂基材に存在する突起により、ガスバリアー層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような下地層は、いずれの材料で形成されてもよいが、炭素含有ポリマーから構成されることが好ましい。
(Underlayer: smooth layer, primer layer)
The gas barrier film of the present invention may have, for example, a smooth layer or a primer layer as a base layer between the resin substrate and the gas barrier layer. The underlayer is for flattening the rough surface of the resin base material with protrusions or the like, or for flattening by filling the unevenness and pinholes generated in the gas barrier layer with the protrusions present on the resin base material. Provided. Such an underlayer may be formed of any material, but is preferably composed of a carbon-containing polymer.
 また、下地層は、炭素含有ポリマー、例えば、硬化性樹脂を含む構成であることが好ましい。硬化性樹脂としては特に制限されず、活性エネルギー線硬化性材料等に対して紫外線等の活性エネルギー線を照射し硬化させて得られる活性エネルギー線硬化性樹脂や、熱硬化性材料を加熱することにより硬化して得られる熱硬化性樹脂等が挙げられる。該硬化性樹脂は、単独でもまたは2種以上組み合わせて用いてもよい。 In addition, the underlayer is preferably configured to include a carbon-containing polymer, for example, a curable resin. The curable resin is not particularly limited, and the active energy ray curable resin or the thermosetting material obtained by irradiating the active energy ray curable material with an active energy ray such as ultraviolet ray to be cured is heated. The thermosetting resin etc. which are obtained by curing by the above method. These curable resins may be used alone or in combination of two or more.
 下地層の形成に用いられる活性エネルギー線硬化性材料として、具体的には、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)シリーズ(シリカ微粒子に重合性不飽和基を有する有機化合物を結合させてなる化合物)を用いることができる。また、熱硬化性材料として、具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、アデカ社製のナノハイブリッドシリコーン、DIC株式会社製のユニディック(登録商標)V-8000シリーズ、EPICLON(登録商標) EXA-4710(超高耐熱性エポキシ樹脂)、信越化学工業株式会社製のシリコーン樹脂 X-12-2400(商品名)、日東紡績株式会社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂、ポリアミドアミン-エピクロルヒドリン樹脂等が挙げられる。 As an active energy ray-curable material used for forming the underlayer, specifically, UV curable organic / inorganic hybrid hard coating material manufactured by JSR Corporation OPSTAR (registered trademark) series (polymerizable unsaturated group on silica fine particles) And a compound obtained by bonding an organic compound having a compound (a). Further, as thermosetting materials, specifically, TutProm series (Organic polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid silicone manufactured by Adeka, manufactured by DIC Corporation Unidic (registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistance epoxy resin), silicone resin X-12-2400 (trade name) manufactured by Shin-Etsu Chemical Co., Ltd., Nittobo Co., Ltd. Company-made inorganic / organic nanocomposite material SSG coat, thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, silicone resin, polyamidoamine-epichlorohi Phosphorus resins.
 下地層の平滑性は、JIS B 0601:2001年で規定される表面粗さで表現される値で、最大断面高さRt(p)が、10~30nmの範囲内であることが好ましい。 The smoothness of the underlayer is a value expressed by the surface roughness specified in JIS B 0601: 2001, and the maximum cross-sectional height Rt (p) is preferably in the range of 10 to 30 nm.
 表面粗さは、AFM(原子間力顕微鏡)で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が数十μmの区間内を多数回測定し、微細な凹凸の振幅に関する粗さである。 The surface roughness is calculated from an uneven cross-sectional curve continuously measured by an AFM (Atomic Force Microscope) with a detector having a stylus having a minimum tip radius, and the measurement direction is several tens by the stylus having a minimum tip radius. It is the roughness related to the amplitude of fine irregularities measured in a section of μm many times.
 下地層の厚さとしては、特に制限されないが、0.1~10μmの範囲内が好ましい。 The thickness of the underlayer is not particularly limited, but is preferably in the range of 0.1 to 10 μm.
 (アンカーコート層(アンカー層))
 本発明に係る樹脂基材の表面には、接着性(密着性)の向上を目的として、アンカーコート層(アンカー層)を易接着層として形成してもよい。このアンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコーン樹脂、およびアルキルチタネート等を、1種または2種以上併せて使用することができる。上記アンカーコート剤は、市販品を使用してもよい。具体的には、シロキサン系UV硬化型ポリマー溶液(信越化学工業株式会社製、「X-12-2400」の3%イソプロピルアルコール溶液)を用いることができる。
(Anchor coat layer (anchor layer))
On the surface of the resin substrate according to the present invention, an anchor coat layer (anchor layer) may be formed as an easy adhesion layer for the purpose of improving adhesiveness (adhesion). Examples of the anchor coat agent used in this anchor coat layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicone resin, and alkyl titanate. One type or two or more types can be used in combination. A commercially available product may be used as the anchor coating agent. Specifically, a siloxane-based UV curable polymer solution (manufactured by Shin-Etsu Chemical Co., Ltd., “X-12-2400” 3% isopropyl alcohol solution) can be used.
 また、アンカーコート層の厚さは、特に制限されないが、0.5~10.0μm程度が好ましい。 The thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10.0 μm.
 (ブリードアウト防止層)
 本発明のガスバリアー性フィルムは、ブリードアウト防止層をさらに有することができる。ブリードアウト防止層は、下地層を有するフィルムを加熱した際に、フィルム基材中から未反応のオリゴマー等が表面へ移行して、接触する面を汚染するブリードアウト現象を抑制する目的で、下地(平滑)層を有する樹脂基材の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的に下地(平滑)層と同じ構成をとっても構わない。
(Bleed-out prevention layer)
The gas barrier film of the present invention can further have a bleed-out preventing layer. The bleed-out prevention layer is used for the purpose of suppressing the bleed-out phenomenon in which unreacted oligomers are transferred from the film base material to the surface when the film having the base layer is heated to contaminate the contact surface. It is provided on the opposite surface of the resin substrate having a (smooth) layer. The bleed-out prevention layer may basically have the same configuration as the base (smooth) layer as long as it has this function.
 ブリードアウト防止層に含ませることが可能な化合物としては、分子中に2個以上の重合性不飽和基を有する多価不飽和有機化合物、あるいは分子中に1個の重合性不飽和基を有する単価不飽和有機化合物等のハードコート剤を挙げることができる。 Compounds that can be included in the bleed-out prevention layer include polyunsaturated organic compounds having two or more polymerizable unsaturated groups in the molecule, or one polymerizable unsaturated group in the molecule. Hard coat agents such as unitary unsaturated organic compounds can be mentioned.
 ブリードアウト防止層の厚さとしては、1~10μmの範囲内、好ましくは2~7μmの範囲内である。 The thickness of the bleed-out prevention layer is in the range of 1 to 10 μm, preferably in the range of 2 to 7 μm.
 [ガスバリアー性フィルムの用途]
 本発明のガスバリアー性フィルムは、種々の用途に用いられうるが、アクリロイル基を有する接着層の露出表面(未反応のアクリロイル基が露出している)に隣接するように、紫外線硬化樹脂層が設けられる用途に好適に用いられる。この紫外線硬化樹脂層としては、紫外線硬化型樹脂の硬化物からなる層であれば特に制限はないが、その機能としては、ガスバリアー層を保護するための保護層のほか、量子ドット(蛍光体粒子)を含む樹脂層としての機能が挙げられる。量子ドット(蛍光体粒子)は水蒸気や酸素との接触により劣化しやすいことから、上記紫外線硬化樹脂層が量子ドット層である場合には、前述した図3Aで示すような少なくとも1枚のガスバリアー性フィルムを用い、ガスバリアー性フィルムを構成する接着層と、蛍光体粒子含有層とが隣接して配置されている構成とすること、あるいは、図3Bで示すように、2枚のガスバリアー性フィルムを用い、蛍光体粒子含有層の両面に、それぞれのアクリロイル基を含む化合物を含有する接着層が隣接密着するように配置する光学フィルムを構成する。
[Use of gas barrier film]
The gas barrier film of the present invention can be used for various applications. The ultraviolet curable resin layer is disposed adjacent to the exposed surface of the adhesive layer having an acryloyl group (unreacted acryloyl group is exposed). It is suitably used for the intended use. The ultraviolet curable resin layer is not particularly limited as long as it is a layer made of a cured product of an ultraviolet curable resin, but as a function thereof, in addition to a protective layer for protecting the gas barrier layer, a quantum dot (phosphor) The function as a resin layer containing particle | grains) is mentioned. Since quantum dots (phosphor particles) are likely to be deteriorated by contact with water vapor or oxygen, when the ultraviolet curable resin layer is a quantum dot layer, at least one gas barrier as shown in FIG. 3A described above is used. The adhesive layer constituting the gas barrier film and the phosphor particle-containing layer are disposed adjacent to each other, or two gas barrier properties as shown in FIG. 3B The film is used to constitute an optical film that is arranged so that the adhesive layer containing the compound containing each acryloyl group is adjacently adhered to both surfaces of the phosphor particle-containing layer.
 〔光学フィルム〕
 以下、本発明のガスバリアー性フィルムを用い、ガスバリアー性フィルムの接着層と、蛍光体粒子含有層が隣接して配置されている光学フィルムの構成について説明する。
[Optical film]
Hereinafter, the structure of the optical film in which the gas barrier film of the present invention is used and the adhesive layer of the gas barrier film and the phosphor particle-containing layer are disposed adjacent to each other will be described.
 本発明に係る蛍光体粒子としては、様々な態様の発光デバイスにおいて従来用いられている種々の蛍光体粒子を用いることができるが、量子ドットとして機能する粒子を用いることが好ましい。特に、後述する半導体ナノ粒子を用いることが好ましい。 As the phosphor particles according to the present invention, various phosphor particles conventionally used in various modes of light-emitting devices can be used, but it is preferable to use particles that function as quantum dots. In particular, it is preferable to use semiconductor nanoparticles described later.
 以下、蛍光体粒子含有層の好ましい例として、その主要な構成要素である量子ドット及び樹脂等について、説明する。 Hereinafter, as a preferable example of the phosphor particle-containing layer, the main components such as quantum dots and resin will be described.
 (量子ドット)
 一般に、ナノメートルサイズの半導体物質で量子閉じ込め(quantum confinement)効果を示す蛍光体粒子は、「量子ドット」とも称されている。このような量子ドットは、半導体原子が数百個から数千個集まった10数nm程度以内の小さな塊であるが、励起源から光を吸収してエネルギー励起状態に達すると、量子ドットのエネルギーバンドギャップに相当するエネルギーを放出する。
(Quantum dot)
In general, phosphor particles that exhibit a quantum confinement effect with a semiconductor material of nanometer size are also referred to as “quantum dots”. Such a quantum dot is a small lump within about 10 and several nanometers in which several hundred to several thousand semiconductor atoms are gathered, but when absorbing energy from an excitation source and reaching an energy excited state, the energy of the quantum dot Releases energy corresponding to the band gap.
 したがって、量子ドットは、量子サイズ効果によりユニークな光学特性を有することが知られている。具体的には、(1)粒子のサイズを制御することにより、様々な波長、色を発光させることができる、(2)吸収帯が広く、単一波長の励起光で様々なサイズの微粒子を発光させることができる、(3)蛍光スペクトルが良好な対称形である、(4)有機色素に比べて耐久性、耐退色性に優れる、といった特徴を有する。 Therefore, it is known that quantum dots have unique optical characteristics due to the quantum size effect. Specifically, (1) By controlling the size of the particles, various wavelengths and colors can be emitted. (2) The absorption band is wide and fine particles of various sizes can be obtained with a single wavelength of excitation light. It has the characteristics that it can emit light, (3) it has a symmetrical fluorescence spectrum, and (4) it has excellent durability and fading resistance compared to organic dyes.
 本発明に係る量子ドット含有層が含有する量子ドットは公知のものであってもよく、当業者に既知の任意の方法を使用して生成することができる。例えば、好適な量子ドット及び好適な量子ドットを形成するための方法には、米国特許第6225198号明細書、米国特許出願公開第2002/0066401号明細書、米国特許第6207229号明細書、同第6322901号明細書、同第6949206号明細書、同第7572393号明細書、同第7267865号明細書、同第7374807号明細書、米国特許出願第2011/299299号明細書、米国特許第6861155号明細書、特開2012-133158号公報、2012-169460号公報、2014-078381号公報、2015-099636号公報、2015-103728号公報、2015-127362号公報等に記載されている内容を参照することができる。 The quantum dots contained in the quantum dot-containing layer according to the present invention may be known, and can be generated using any method known to those skilled in the art. For example, suitable quantum dots and methods for forming suitable quantum dots include US Pat. No. 6,225,198, US Patent Application Publication No. 2002/0066401, US Pat. No. 6,207,229, US Pat. No. 6,322,901, US Pat. No. 6,949,206, US Pat. No. 7,572,393, US Pat. No. 7,267,865, US Pat. No. 7,374,807, US Pat. No. 2011/299299, US Pat. No. 6,861,155 Refer to the contents described in Japanese Patent Application Laid-Open No. 2012-133158, 2012-169460, 2014-078381, 2015-099636, 2015-103728, 2015-127362, etc. Can do.
 本発明に係る量子ドットは、任意の材料、好適には無機材料、より好適には無機導体又は半導体材料から生成される。好適な半導体材料には、II-VI族、III-V族、IV-VI族及びIV族の半導体を含む、任意の種類の半導体が含まれる。 The quantum dots according to the present invention are generated from an arbitrary material, preferably an inorganic material, more preferably an inorganic conductor or a semiconductor material. Suitable semiconductor materials include any type of semiconductor, including II-VI, III-V, IV-VI and IV semiconductors.
 好適な半導体材料には、Si、Ge、Sn、Se、Te、B、C(ダイアモンドを含む。)、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si、Ge、Al、(Al、Ga、In)(S、Se、Te)、AlCO、及び二つ以上のこのような半導体の適切な組合せが含まれるが、これらに限定されない。 Suitable semiconductor materials include Si, Ge, Sn, Se, Te, B, C (including diamond), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb. , InN, InP, InAs, InSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe , BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si 3 N 4 , Ge 3 N 4 , Al 2 O 3 , (Al, Ga, In) 2 (S, Se, Te) 3, Al 2 O, and include but are more than one suitable combination of such semiconductor, and the like.
 本発明においては、次のようなコア/シェル型の量子ドット、例えば、CdSe/ZnS、InP/ZnS、PbSe/PbS、CdSe/CdS、CdTe/CdS、CdTe/ZnS等も好ましく使用できる。 In the present invention, the following core / shell type quantum dots, for example, CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, CdTe / ZnS, and the like can be preferably used.
 (樹脂)
 本発明に係る量子ドット含有層には、量子ドットを保持するバインダーとして樹脂を用いることができる。例えば、以下の樹脂を用いることができる。
(resin)
Resin can be used for the quantum dot content layer concerning the present invention as a binder holding a quantum dot. For example, the following resins can be used.
 ポリカーボネート系、ポリアリレート系、ポリスルホン(ポリエーテルスルホンも含む。)系、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系、ポリエチレン系、ポリプロピレン系、セロファン系、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート等のセルロースエステル系、ポリ塩化ビニリデン系、ポリビニルアルコール系、エチレンビニルアルコール系、シンジオタクティックポリスチレン系、ノルボルネン系、ポリメチルペンテン系、ポリエーテルケトン系、ポリエーテルケトンイミド系、ポリアミド樹脂、フッ素樹脂、ナイロン系、ポリメチルメタクリレート等のアクリル系樹脂等を挙げることができる。 Polycarbonate, polyarylate, polysulfone (including polyethersulfone), polyethylene terephthalate, polyester such as polyethylene naphthalate, polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate propionate , Cellulose esters such as cellulose acetate butyrate, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, syndiotactic polystyrene, norbornene, polymethylpentene, polyether ketone, polyether ketone imide, Examples thereof include polyamide resins, fluororesins, nylon resins, and acrylic resins such as polymethyl methacrylate.
 量子ドット含有層は、厚さが50~200μmの範囲内であることが好ましい。 The quantum dot-containing layer preferably has a thickness in the range of 50 to 200 μm.
 なお、量子ドット含有層における量子ドットの含有量は、使用する化合物によって最適量は異なるが、一般的には15~60体積%の範囲内であることが好ましい。 The optimum amount of quantum dots in the quantum dot-containing layer varies depending on the compound used, but is generally preferably in the range of 15 to 60% by volume.
 《電子デバイス》
 本発明のガスバリアー性フィルムは、空気中の化学成分(酸素、水、窒素酸化物、硫黄酸化物、オゾン等)によって性能が劣化するデバイスに好ましく適用できる。すなわち、本発明では、本発明のガスバリアー性フィルムと、電子デバイス本体と、を含む電子デバイスを提供することができる。
《Electronic device》
The gas barrier film of the present invention can be preferably applied to a device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air. That is, in this invention, the electronic device containing the gas barrier film of this invention and an electronic device main body can be provided.
 本発明のガスバリアー性フィルムを具備した電子デバイスに用いられる電子デバイス本体の例としては、例えば、有機エレクトロルミネッセンス素子(有機EL素子)、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)、蛍光体粒子である量子ドットを有するQDフィルム等を挙げることができる。本発明の効果がより効率的に得られるという観点から、該電子デバイス本体は有機EL素子または太陽電池が好ましく、有機EL素子がより好ましい。 Examples of the electronic device body used in the electronic device provided with the gas barrier film of the present invention include, for example, an organic electroluminescence element (organic EL element), a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, and the sun. Examples thereof include a battery (PV), a QD film having quantum dots which are phosphor particles, and the like. From the viewpoint that the effects of the present invention can be obtained more efficiently, the electronic device body is preferably an organic EL element or a solar cell, and more preferably an organic EL element.
 以下、実施例に基づいて本発明の効果をより具体的に実証するが、本発明は以下の実施例に限定されるものではない。実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。なお、特記しない限り、「%」及び「部」は、それぞれ、「質量%」及び「質量部」を意味する。また、下記実施例において、特記しない限り、操作は室温(25℃)、相対湿度40~50%の環境下で行った。また、構成材料の末尾で括弧内に記載した数値は、各図面に記載の各構成材料の符号を示す。 Hereinafter, the effects of the present invention will be more specifically demonstrated based on examples, but the present invention is not limited to the following examples. In the examples, “%” is used, but “mass%” is indicated unless otherwise specified. Unless otherwise specified, “%” and “part” mean “% by mass” and “part by mass”, respectively. In the following examples, unless otherwise specified, the operation was performed in an environment of room temperature (25 ° C.) and relative humidity of 40 to 50%. Moreover, the numerical value described in the parenthesis at the end of the constituent material indicates the sign of each constituent material described in each drawing.
 実施例1
 《ガスバリアー性フィルムの作製》
 〔ガスバリアー性フィルム1の作製〕
 下記の方法に従って、ガスバリアー性フィルム1を作製した。
Example 1
<< Production of gas barrier film >>
[Preparation of gas barrier film 1]
A gas barrier film 1 was produced according to the following method.
 (樹脂基材の準備)
 厚さ50μmの両面易接着層付きポリエチレンテレフタレート(PET)フィルム(帝人デュポンフィルム(株)製、KEL86W)を、樹脂基材(2)として用いた。
(Preparation of resin base material)
A polyethylene terephthalate (PET) film with a double-sided easy-adhesion layer having a thickness of 50 μm (manufactured by Teijin DuPont Films Ltd., KEL86W) was used as the resin substrate (2).
 (下地層の形成)
 JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR Z7501を酢酸ブチルで固形分濃度35%まで希釈した塗布液を、乾燥膜厚が2μmとなるように上記樹脂基材の一方の易接着面側にバーコーターで塗布した後、乾燥条件として80℃で2分間の乾燥を行った。次いで、空気雰囲気下で、照度が700mW/cm、照射エネルギー量が250mJ/cmの条件で高圧水銀ランプにより紫外線照射処理を施して、下地層を形成した。
(Formation of underlayer)
One of the above resin base materials is prepared by using a coating solution obtained by diluting OPSTA Z7501 with a solid content concentration of 35% with butyl acetate, a UV curable organic / inorganic hybrid hard coating material manufactured by JSR Corporation. After applying to the bonding surface side with a bar coater, drying was performed at 80 ° C. for 2 minutes as a drying condition. Next, under an air atmosphere, an ultraviolet irradiation treatment was performed with a high-pressure mercury lamp under the conditions of an illuminance of 700 mW / cm 2 and an irradiation energy amount of 250 mJ / cm 2 , thereby forming a base layer.
 (ガスバリアー層の形成:真空プラズマCVD法)
 特許第4268195号公報に記載されている、対向する一対の成膜ロール群より構成されている成膜部を有する装置を2台並列配置したタイプ(第1成膜部、第2成膜部を有する)のロール・トゥ・ロール型真空CVD成膜装置を用いて、ガスバリアー層を形成した。成膜条件は、搬送速度:7m/min、原料ガス(ヘキサメチルジシロキサン、略称:HMDSO)の供給量:150mL/min、酸素ガスの供給量:150mL/min、真空度:1.5Pa、印加電力:4.5kwとして、膜厚が150nmのガスバリアー層(3、組成SiOx)を形成した。
(Formation of gas barrier layer: vacuum plasma CVD method)
A type in which two apparatuses having a film forming unit composed of a pair of opposing film forming roll groups described in Japanese Patent No. 4268195 are arranged in parallel (the first film forming unit and the second film forming unit are Gas barrier layer was formed using a roll-to-roll type vacuum CVD film forming apparatus. The film forming conditions are: conveyance speed: 7 m / min, supply amount of source gas (hexamethyldisiloxane, abbreviation: HMDSO): 150 mL / min, supply amount of oxygen gas: 150 mL / min, degree of vacuum: 1.5 Pa, application A gas barrier layer (3, composition SiOx) having a film thickness of 150 nm was formed at an electric power of 4.5 kw.
 (ガスバリアー層の表面改質処理)
 上記形成したガスバリアー層(3)の露出表面に対して、以下の方法により表面改質処理としてコロナ処理を施した。
(Surface modification treatment of gas barrier layer)
The exposed surface of the formed gas barrier layer (3) was subjected to corona treatment as a surface modification treatment by the following method.
 〈コロナ処理〉
 コロナ処理装置(春日電機社製)を用い、出力:300W、電極長:240mm、ワーク電極間距離:3.0mm、搬送速度:4m/minの条件で、ガスバリアー層の露出表面の表面改質処理(コロナ処理)を行った。
<Corona treatment>
Using a corona treatment device (manufactured by Kasuga Denki Co., Ltd.), surface modification of the exposed surface of the gas barrier layer under the conditions of output: 300 W, electrode length: 240 mm, work electrode distance: 3.0 mm, transport speed: 4 m / min Treatment (corona treatment) was performed.
 (接着層1(4)の形成)
 アクリロイル基を含有する化合物として、多官能アクリレート化合物であるジペンタエリスリトールヘキサアクリレート(略称:DPEHA)を、酢酸ブチルを用いて固形分濃度5質量%まで希釈した溶液に、ケイ素原子含有化合物として、オルガノシリカゾルであるPGM-AC-2140Y(分散媒:プロピレングリコールモノメチルエーテル、平均粒子径:10~15nm、シリカ含有量:42質量%、日産化学工業社製)を、上記アクリロイル基を含有する化合物の固形分100質量%に対して50質量%相当分添加して、更に重合開始剤としてBASFジャパン社製のイルガキュア184を、上記アクリロイル基を含有する化合物固形分100質量%に対して、3質量%相当分添加して、接着層形成用塗布液1を調製した。
(Formation of adhesive layer 1 (4))
As a compound containing an acryloyl group, dipentaerythritol hexaacrylate (abbreviation: DPEHA), which is a polyfunctional acrylate compound, is diluted to a solid content concentration of 5% by mass with butyl acetate. Silica sol PGM-AC-2140Y (dispersion medium: propylene glycol monomethyl ether, average particle size: 10 to 15 nm, silica content: 42% by mass, manufactured by Nissan Chemical Industries, Ltd.) was used as a solid of the compound containing the acryloyl group. An equivalent amount of 50% by mass is added to 100% by mass, and Irgacure 184 manufactured by BASF Japan is used as a polymerization initiator, and 3% by mass is equivalent to 100% by mass of the compound solid content containing the acryloyl group. Then, the coating solution 1 for forming an adhesive layer was prepared.
 次いで、この接着層形成用塗布液1を用い、乾燥後の層厚が800nmとなるように上記ガスバリアー層上にバーコーターで塗布した後、乾燥条件として80℃で1分間の乾燥を行った。次いで、空気雰囲気下で、照度が500mW/cm、照射エネルギー量が200mJ/cmの条件で高圧水銀ランプにより紫外線照射処理を施して、第1の実施形態の接着層1(4)を形成して、ガスバリアー性フィルム1(1)を作製した。 Next, this adhesive layer forming coating solution 1 was applied onto the gas barrier layer with a bar coater so that the layer thickness after drying was 800 nm, and then dried at 80 ° C. for 1 minute as drying conditions. . Next, an ultraviolet irradiation treatment is performed with a high-pressure mercury lamp under an air atmosphere under the conditions of an illuminance of 500 mW / cm 2 and an irradiation energy amount of 200 mJ / cm 2 , thereby forming the adhesive layer 1 (4) of the first embodiment. Thus, a gas barrier film 1 (1) was produced.
 〔ガスバリアー性フィルム2の作製〕
 上記ガスバリアー性フィルム1の作製において、接着層1(4)の層厚を100nmに変更した以外は同様にして、ガスバリアー性フィルム2を作製した。
[Preparation of gas barrier film 2]
A gas barrier film 2 was produced in the same manner as in the production of the gas barrier film 1 except that the layer thickness of the adhesive layer 1 (4) was changed to 100 nm.
 〔ガスバリアー性フィルム3の作製〕
 上記ガスバリアー性フィルム1の作製において、接着層1(4)の層厚を500nmに変更した以外は同様にして、ガスバリアー性フィルム3を作製した。
[Preparation of gas barrier film 3]
A gas barrier film 3 was produced in the same manner as in the production of the gas barrier film 1 except that the layer thickness of the adhesive layer 1 (4) was changed to 500 nm.
 〔ガスバリアー性フィルム4の作製〕
 上記ガスバリアー性フィルム1の作製において、接着層4(4)を下記の方法に従って形成した以外は同様にして、ガスバリアー性フィルム4を作製した。接着層4(4)は、前記接着層1に対し、重合開始剤を除き、紫外線照射処理を行わない方法で形成した。
[Preparation of gas barrier film 4]
In the production of the gas barrier film 1, the gas barrier film 4 was produced in the same manner except that the adhesive layer 4 (4) was formed according to the following method. The adhesive layer 4 (4) was formed by a method in which the polymerization layer was removed from the adhesive layer 1 except for the polymerization initiator.
 (接着層4の形成)
 アクリロイル基を含有する化合物として、多官能アクリレート化合物であるジペンタエリスリトールヘキサアクリレートを、酢酸ブチルで固形分濃度5質量%まで希釈した溶液に、ケイ素原子含有化合物として、オルガノシリカゾルであるPGM-AC-2140Y(分散媒:プロピレングリコールモノメチルエーテル、平均粒子径:10~15nm、シリカ含有量:42質量%、日産化学工業社製)を、上記アクリロイル基を含有する化合物の固形分100質量%に対して50質量%相当添加して、接着層形成用塗布液4を調製した。
(Formation of adhesive layer 4)
As a compound containing acryloyl group, dipentaerythritol hexaacrylate, which is a polyfunctional acrylate compound, is diluted with butyl acetate to a solid content concentration of 5% by mass, and as a silicon atom-containing compound, PGM-AC-, which is an organosilica sol, is used. 2140Y (dispersion medium: propylene glycol monomethyl ether, average particle size: 10 to 15 nm, silica content: 42% by mass, manufactured by Nissan Chemical Industries, Ltd.) with respect to 100% by mass of the solid content of the compound containing the acryloyl group A coating solution 4 for forming an adhesive layer was prepared by adding 50% by mass.
 次いで、この接着層形成用塗布液4を用い、乾燥後の層厚が300nmとなるようにガスバリアー層上にバーコーターで塗布した後、乾燥条件として80℃で1分間の乾燥を行って、接着層4(4)を形成した。 Next, using this coating solution 4 for forming an adhesive layer, after coating with a bar coater on the gas barrier layer so that the layer thickness after drying is 300 nm, drying is performed at 80 ° C. for 1 minute as a drying condition. Adhesive layer 4 (4) was formed.
 〔ガスバリアー性フィルム5の作製〕
 上記ガスバリアー性フィルム1の作製において、下記の方法で調製した接着層形成用塗布液5を用いて接着層5(4)を形成した以外は同様にして、ガスバリアー性フィルム5を作製した。
[Preparation of gas barrier film 5]
In the production of the gas barrier film 1, the gas barrier film 5 was produced in the same manner except that the adhesive layer 5 (4) was formed using the adhesive layer forming coating solution 5 prepared by the following method.
 (接着層5の形成)
 アクリロイル基とケイ素原子を同時に含有する末端アクリルシランカップリング剤ポリマーとして、信越シリコーン社製のX-12-1048(略称:ASCP)を、酢酸ブチルで固形分濃度5質量%まで希釈した溶液に、ケイ素原子含有化合物として、オルガノシリカゾルであるPGM-AC-2140Y(分散媒:プロピレングリコールモノメチルエーテル、平均粒子径:10~15nm、シリカ含有量:42質量%、日産化学工業社製)を、上記アクリロイル基を含有する化合物の固形分100質量%に対して、50質量%相当添加して、更に重合開始剤としてBASFジャパン社製のイルガキュア184を、上記アクリロイル基を含有する化合物固形分100質量%に対して、3.0質量%相当分添加して、接着層形成用塗布液5を調製した。
(Formation of adhesive layer 5)
As a terminal acrylic silane coupling agent polymer containing an acryloyl group and a silicon atom at the same time, X-12-1048 (abbreviation: ASCP) manufactured by Shin-Etsu Silicone Co., Ltd. was diluted to a solid concentration of 5% by mass with butyl acetate. As a silicon atom-containing compound, PGM-AC-2140Y (dispersion medium: propylene glycol monomethyl ether, average particle size: 10 to 15 nm, silica content: 42% by mass, manufactured by Nissan Chemical Industries, Ltd.), which is an organosilica sol, is used as the above acryloyl. The equivalent of 50% by mass is added to 100% by mass of the solid content of the group-containing compound, and Irgacure 184 manufactured by BASF Japan Ltd. is further added as a polymerization initiator to 100% by mass of the compound solid content containing the acryloyl group. On the other hand, an amount corresponding to 3.0% by mass is added, and the adhesive layer forming coating solution 5 is added. It was manufactured.
 次いで、この接着層形成用塗布液5を用い、乾燥後の層厚が300nmとなるようにガスバリアー層上にバーコーターで塗布した後、乾燥条件として80℃で1分間の乾燥を行った。次いで、空気雰囲気下で、照度が500mW/cm、照射エネルギー量が200mJ/cmの条件で高圧水銀ランプにより紫外線照射処理を施して、接着層5(4)を形成した。 Next, this adhesive layer forming coating solution 5 was used to coat the gas barrier layer with a bar coater so that the layer thickness after drying was 300 nm, and then dried at 80 ° C. for 1 minute as a drying condition. Next, an ultraviolet irradiation treatment was performed with a high-pressure mercury lamp under an air atmosphere under the conditions of an illuminance of 500 mW / cm 2 and an irradiation energy amount of 200 mJ / cm 2 to form an adhesive layer 5 (4).
 〔ガスバリアー性フィルム6の作製〕
 上記ガスバリアー性フィルム1の作製において、下記の方法で調製した接着層形成用塗布液6を用いて接着層6(4)を形成した以外は同様にして、ガスバリアー性フィルム6を作製した。
[Preparation of gas barrier film 6]
In production of the gas barrier film 1, a gas barrier film 6 was produced in the same manner except that the adhesive layer 6 (4) was formed using the adhesive layer forming coating solution 6 prepared by the following method.
 (接着層6の形成)
 アクリロイル基とケイ素原子を同時に含有する末端アクリルシランカップリング剤ポリマーとして、信越シリコーン社製のX-12-1048(略称:ASCP)を、酢酸ブチルで固形分濃度5質量%まで希釈した溶液に、シランカップリング剤モノマー(略称:SCM)として、アクリロイル基含有シランカップリング剤 KBM-5103(3-アクリロキシプロピルトリメトキシシラン、信越シリコーン社製)を、アクリロイル基を含有する化合物の固形分100質量%に対して、50質量%相当分添加して、更に重合開始剤としてBASFジャパン社製のイルガキュア184を上記アクリロイル基を含有する化合物固形分100質量%に対して、3.0質量%相当分添加して、接着層形成用塗布液6を調製した。
(Formation of adhesive layer 6)
As a terminal acrylic silane coupling agent polymer containing an acryloyl group and a silicon atom at the same time, X-12-1048 (abbreviation: ASCP) manufactured by Shin-Etsu Silicone Co., Ltd. was diluted to a solid concentration of 5% by mass with butyl acetate. As a silane coupling agent monomer (abbreviation: SCM), an acryloyl group-containing silane coupling agent KBM-5103 (3-acryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Silicone Co., Ltd.) is used, and the solid content of the compound containing an acryloyl group is 100 mass. The equivalent of 50% by mass to 100% by mass of Irgacure 184 manufactured by BASF Japan Ltd. as a polymerization initiator is equivalent to 3.0% by mass with respect to 100% by mass of the compound solid content containing the acryloyl group. By addition, a coating solution 6 for forming an adhesive layer was prepared.
 次いで、この接着層形成用塗布液6を用い、乾燥後の層厚が300nmとなるようにガスバリアー層上にバーコーターで塗布した後、乾燥条件として80℃で1分間の乾燥を行った。次いで、空気雰囲気下で、照度が500mW/cm、照射エネルギー量が200mJ/cmの条件で高圧水銀ランプにより紫外線照射処理を施して、第1の実施形態の接着層6(4)を形成した。 Next, this adhesive layer forming coating solution 6 was used to apply a bar coater on the gas barrier layer so that the layer thickness after drying was 300 nm, followed by drying at 80 ° C. for 1 minute as drying conditions. Next, an ultraviolet irradiation process is performed with a high-pressure mercury lamp in an air atmosphere under the conditions of an illuminance of 500 mW / cm 2 and an irradiation energy amount of 200 mJ / cm 2 , thereby forming the adhesive layer 6 (4) of the first embodiment. did.
 〔ガスバリアー性フィルム7の作製〕
 上記ガスバリアー性フィルム6の作製で用いた接着層形成用塗布液6に、更に、ケイ素原子含有化合物として、オルガノシリカゾルであるPGM-AC-2140Y(分散媒:プロピレングリコールモノメチルエーテル、平均粒子径:10~15nm、シリカ含有量:42質量%、日産化学工業社製)を、アクリロイル基を含有する化合物の固形分100質量%に対して、30質量%相当分添加して、接着層形成用塗布液7を調製した。
[Preparation of gas barrier film 7]
The coating liquid 6 for forming the adhesive layer used in the production of the gas barrier film 6 is further mixed with PGM-AC-2140Y (dispersion medium: propylene glycol monomethyl ether, average particle diameter: organosilica sol) as a silicon atom-containing compound. 10 to 15 nm, silica content: 42% by mass, manufactured by Nissan Chemical Industries, Ltd.) is added in an amount corresponding to 30% by mass with respect to 100% by mass of the solid content of the acryloyl group-containing compound. Liquid 7 was prepared.
 上記ガスバリアー性フィルム6の作製において、接着層形成用塗布液6に代えて、上記調製した接着層形成用塗布液7を用いて接着層7(4)を形成した以外は同様にして、ガスバリアー性フィルム7を作製した。 In the production of the gas barrier film 6, a gas was formed in the same manner except that the adhesive layer 7 (4) was formed using the prepared adhesive layer forming coating solution 7 instead of the adhesive layer forming coating solution 6. A barrier film 7 was produced.
 〔ガスバリアー性フィルム8の作製〕
 上記ガスバリアー性フィルム7の作製において、接着層形成用塗布液7に、更に、アクリル基含有ポリマー(略称:AP)として、星光PMC社製のHIL-2070を、アクリロイル基を含有する化合物の固形分100質量%に対して、100質量%相当分添加して、接着層形成用塗布液8を調製し、それを用いて接着層8(4)を形成した以外は同様にして、ガスバリアー性フィルム8を作製した。
[Preparation of gas barrier film 8]
In the production of the gas barrier film 7, the coating liquid 7 for forming the adhesive layer was further mixed with HIL-2070 (manufactured by Seiko PMC) as an acrylic group-containing polymer (abbreviation: AP), and a solid compound containing an acryloyl group. The gas barrier property is the same except that the coating solution 8 for forming the adhesive layer is prepared by adding an amount corresponding to 100% by mass with respect to 100% by mass, and the adhesive layer 8 (4) is formed using the coating solution 8. Film 8 was produced.
 〔ガスバリアー性フィルム9の作製〕
 上記ガスバリアー性フィルム8の作製において、高圧水銀ランプにより紫外線照射処理を行わなかった以外は同様にして、ガスバリアー性フィルム9を作製した。
[Preparation of gas barrier film 9]
In the production of the gas barrier film 8, the gas barrier film 9 was produced in the same manner except that the ultraviolet irradiation treatment was not performed with a high-pressure mercury lamp.
 〔ガスバリアー性フィルム10の作製〕
 上記ガスバリアー性フィルム9の作製において、接着層形成用塗布液9に、更に、有機微粒子として、ポリメチルメタクリレート微粒子(平均粒径:800nm)を、アクリロイル基を含有する化合物の固形分100質量%に対して1.0質量%相当量添加して、接着層形成用塗布液10を調製し、それを用いて接着層10(4)を形成した以外は同様にして、ガスバリアー性フィルム10を作製した。
[Production of Gas Barrier Film 10]
In the production of the gas barrier film 9, polymethyl methacrylate fine particles (average particle size: 800 nm) are further added as organic fine particles to the coating solution 9 for forming an adhesive layer, and the solid content of the compound containing an acryloyl group is 100% by mass. The gas barrier film 10 was prepared in the same manner except that the coating solution 10 for forming an adhesive layer was prepared by adding an amount equivalent to 1.0% by mass to the adhesive layer 10 (4). Produced.
 〔ガスバリアー性フィルム11の作製〕
 上記ガスバリアー性フィルム6の作製において、接着層形成用塗布液6より、アクリロイル基とケイ素原子を同時に含有する末端アクリルシランカップリング剤ポリマーである信越シリコーン社製のX-12-1048(略称:ASCP)を除き、かつ接着層の層厚を10nmに変更した以外は同様にして、ガスバリアー性フィルム11を作製した。
[Preparation of gas barrier film 11]
In the production of the gas barrier film 6, X-12-1048 (abbreviated name: manufactured by Shin-Etsu Silicone Co., Ltd.) which is a terminal acrylic silane coupling agent polymer containing an acryloyl group and a silicon atom simultaneously from the coating liquid 6 for forming an adhesive layer. A gas barrier film 11 was prepared in the same manner except that ASCP) was changed and the thickness of the adhesive layer was changed to 10 nm.
 〔ガスバリアー性フィルム12の作製〕
 上記ガスバリアー性フィルム7の作製において、接着層(4)の層厚を80nmに変更した以外は同様にして、ガスバリアー性フィルム12を作製した。
[Production of gas barrier film 12]
A gas barrier film 12 was produced in the same manner as in the production of the gas barrier film 7 except that the layer thickness of the adhesive layer (4) was changed to 80 nm.
 〔ガスバリアー性フィルム13の作製〕
 上記ガスバリアー性フィルム7の作製において、接着層(4)の層厚を1200nmに変更した以外は同様にして、ガスバリアー性フィルム13を作製した。
[Production of gas barrier film 13]
A gas barrier film 13 was produced in the same manner as in the production of the gas barrier film 7, except that the layer thickness of the adhesive layer (4) was changed to 1200 nm.
 上記作製した各ガスバリアー性フィルムの構成を、表1に示す。 Table 1 shows the structure of each gas barrier film produced above.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、表1に略称で記載した各構成材料の詳細は、以下の通りである。 In addition, the details of each constituent material described with an abbreviation in Table 1 are as follows.
 〈未反応のアクリレート基含有化合物〉
 DPEHA:ジペンタエリスリトールヘキサアクリレート
 ASCP:ポリマータイプの末端アクリルシランカップリング剤(信越シリコーン社製、X-12-1048)
 〈シランカップリング剤〉
 SCM:モノマータイプのシランカップリング剤(KBM-5103(3-アクリロキシプロピルトリメトキシシラン、信越シリコーン社製)
 〈アクリロイル基含有ポリマー〉
 AP:アクリロイル基含有ポリマー(星光PMC社製、HIL-2070)。
<Unreacted acrylate group-containing compound>
DPEHA: Dipentaerythritol hexaacrylate ASCP: Polymer-type terminal acrylic silane coupling agent (Shin-Etsu Silicone, X-12-1048)
<Silane coupling agent>
SCM: Monomer type silane coupling agent (KBM-5103 (3-acryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Silicone)
<Acryloyl group-containing polymer>
AP: an acryloyl group-containing polymer (manufactured by Hoshiko PMC, HIL-2070).
 《光学フィルムの作製》
 〔光学フィルム101の作製〕
 下記の方法に従い、図4Bに記載の構成からなる光学フィルム101を作製した。
<< Production of optical film >>
[Production of Optical Film 101]
According to the following method, an optical film 101 having the configuration shown in FIG. 4B was produced.
 (1)ガスバリアー性フィルム(1A)の準備
 上記作製したガスバリアー性フィルム1を、図4Bに示すガスバリアー性フィルム1(1A)として準備した。
(1) Preparation of Gas Barrier Film (1A) The produced gas barrier film 1 was prepared as a gas barrier film 1 (1A) shown in FIG. 4B.
 (2)蛍光体粒子層の形成
 (蛍光体粒子の調製)
 Se粉末0.7896gを、トリオクチルホスフィン(TOP)7.4g中に添加し、その混合物を150℃まで窒素気流下で加熱して、TOP-Seストック溶液を調製した。別途、酸化カドミウム(CdO)の0.450g及びステアリン酸の8.0gをアルゴン雰囲気下、三口フラスコ中で150℃まで加熱した。
(2) Formation of phosphor particle layer (Preparation of phosphor particles)
0.7896 g of Se powder was added into 7.4 g of trioctylphosphine (TOP), and the mixture was heated to 150 ° C. under a nitrogen stream to prepare a TOP-Se stock solution. Separately, 0.450 g of cadmium oxide (CdO) and 8.0 g of stearic acid were heated to 150 ° C. in a three-necked flask under an argon atmosphere.
 CdOが溶解した後、このCdO溶液を室温まで冷却した。このCdO溶液に、トリオクチルホスフィンオキサイド(TOPO)を8.0g及び1-ヘプタデシル-オクタデシルアミン(HDA)を12.0g添加し、その混合物を再び150℃まで加熱した後、これにTOP-Seストック溶液を素早く添加した。 After CdO was dissolved, the CdO solution was cooled to room temperature. To this CdO solution, 8.0 g of trioctylphosphine oxide (TOPO) and 12.0 g of 1-heptadecyl-octadecylamine (HDA) were added, and the mixture was heated again to 150 ° C., and then TOP-Se stock was added thereto. The solution was added quickly.
 その後、チャンバーの温度を220℃まで加熱し、更に一定の速度で120分かけて250℃まで上昇させた(0.25℃/分)。その後、温度を100℃まで下げ、酢酸亜鉛二水和物を添加撹拌して溶解させた後、ヘキサメチルジシリルチアンのトリオクチルホスフィン溶液を滴下し、数時間撹拌を続けて反応を終了させ、CdSe/ZnSからなる蛍光体粒子(7)を得た。 Thereafter, the temperature of the chamber was heated to 220 ° C., and further increased to 250 ° C. over 120 minutes at a constant rate (0.25 ° C./min). Thereafter, the temperature was lowered to 100 ° C., zinc acetate dihydrate was added and dissolved by stirring, and then a trioctylphosphine solution of hexamethyldisilylthiane was dropped, and stirring was continued for several hours to complete the reaction. Phosphor particles (7) made of CdSe / ZnS were obtained.
 (蛍光体粒子含有層形成用塗布液1の調製)
 蛍光体粒子に内包される蛍光体粒子成分の粒径を赤色と緑色に発光するように調整し、更にその内包する蛍光体粒子の赤色、緑色成分が0.75mg、4.12mgになるようにトルエン溶媒に分散させ、更にエポキシアクリレート DIC(株)製UV硬化型樹脂ユニディックV-5500に、光重合開始剤イルガキュア184(BASFジャパン製)を、固形分比(質量%)の値として、樹脂/開始剤:95/5になるように調整したUV硬化樹脂を加え、蛍光体粒子の含有率が1.0質量%になる蛍光体粒子含有層形成用塗布液1を調製した。
(Preparation of phosphor particle-containing layer forming coating solution 1)
The particle size of the phosphor particle component contained in the phosphor particles is adjusted so as to emit light in red and green, and further, the red and green components of the phosphor particles contained therein are 0.75 mg and 4.12 mg. Disperse in a toluene solvent, and further add a photopolymerization initiator Irgacure 184 (manufactured by BASF Japan) to a UV curable resin Unidic V-5500 manufactured by Epoxy Acrylate DIC Corporation as a solid content ratio (mass%) value. / Initiator: A UV curable resin adjusted to 95/5 was added to prepare phosphor particle-containing layer forming coating solution 1 with a phosphor particle content of 1.0 mass%.
 (蛍光体粒子含有層形成用塗布液1の塗布)
 調製した蛍光体粒子含有層形成用塗布液1を、ガスバリアー性フィルム1(1A)を構成する接着層1(4A)上に乾燥層厚が100μmになるように塗布し、75℃で3分間加熱して、蛍光体粒子含有層(6)を形成した。ただし、紫外線照射による硬化処理は、この段階では行わない。なお、括弧内の数字は、図4Bに記載した符号である。
(Application of phosphor particle-containing layer forming coating solution 1)
The prepared phosphor particle-containing layer forming coating solution 1 is applied on the adhesive layer 1 (4A) constituting the gas barrier film 1 (1A) so that the dry layer thickness is 100 μm, and the coating solution is formed at 75 ° C. for 3 minutes. The phosphor particle-containing layer (6) was formed by heating. However, the curing process by ultraviolet irradiation is not performed at this stage. In addition, the number in a parenthesis is the code | symbol described in FIG. 4B.
 (3)ガスバリアー性フィルム(1B)の付与
 上記作製したガスバリアー性フィルム1を、図4Bに示すガスバリアー性フィルム1(1B)として準備した。
(3) Application of gas barrier film (1B) The produced gas barrier film 1 was prepared as a gas barrier film 1 (1B) shown in FIG. 4B.
 次いで、上記作製した蛍光体粒子層(6)面と、ガスバリアー性フィルム1(1B)の接着層(4B)面とを貼合した後、高圧水銀ランプを使用して、硬化条件;2.5J/cmで硬化を行って、光学フィルム101(10)を作製した。 Next, after bonding the prepared phosphor particle layer (6) surface and the adhesive layer (4B) surface of the gas barrier film 1 (1B), curing conditions using a high-pressure mercury lamp; Curing was performed at 5 J / cm 2 to produce an optical film 101 (10).
 〔光学フィルム102~113の作製〕
 上記光学フィルムフィルム101の作製において、ガスバリアー性フィルム1(1A)及びガスバリアー性フィルム1(1B)として用いたガスバリアー性フィルム1に代えて、上記作製したガスバリアー性フィルム2~13を用いた以外は同様にして、光学フィルム102~113を作製した。
[Production of optical films 102 to 113]
In the production of the optical film 101, the produced gas barrier films 2 to 13 are used in place of the gas barrier film 1 used as the gas barrier film 1 (1A) and the gas barrier film 1 (1B). Optical films 102 to 113 were produced in the same manner except that
 《ガスバリアー性フィルムの評価》
 〔耐熱性の評価〕
 上記作製したガスバリアー性フィルムについて、作製直後に、JIS K 7129-1992に準拠した方法で、水蒸気透過度測定装置(商品名:パーマトラン モコン社製)を用いて水蒸気透過度1(略称:WVTR、温度:38℃、相対湿度(RH):100%、g/m・24h)を測定した。
<Evaluation of gas barrier film>
[Evaluation of heat resistance]
For the gas barrier film produced above, immediately after production, a water vapor transmission rate of 1 (abbreviation: WVTR) was measured using a water vapor permeability measuring device (trade name: manufactured by Permatran Mocon Co., Ltd.) in accordance with JIS K 7129-1992. , Temperature: 38 ° C., relative humidity (RH): 100%, g / m 2 · 24 h).
 次いで、湿度制御はせずに、80℃の環境下で1000時間放置した後、同様に水蒸気透過度2を測定し、水蒸気透過度1に対する水蒸気透過度2の低下率(百分率)を測定し、下記の基準に従い、耐熱性の評価を行った。 Next, after leaving for 1000 hours in an environment of 80 ° C. without humidity control, the water vapor permeability 2 is measured in the same manner, and the rate of decrease (percentage) of the water vapor permeability 2 with respect to the water vapor permeability 1 is measured. The heat resistance was evaluated according to the following criteria.
 5:水蒸気透過度の低下率が、5.0%未満である
 4:水蒸気透過度の低下率が、5.0%以上、10%未満である
 3:水蒸気透過度の低下率が、10%以上、20%未満である
 2:水蒸気透過度の低下率が、20%以上、30%未満である
 1:水蒸気透過度の低下率が、30%以上である
 《光学フィルムの評価》
 〔耐久性:密着性の評価〕
 上記で作製した各光学フィルムを、高温高湿条件(60℃、90%RH)下で500時間静置した後、各光学フィルムにおける接着層と蛍光体粒子層間の密着性を評価した。
5: Reduction rate of water vapor transmission rate is less than 5.0% 4: Reduction rate of water vapor transmission rate is 5.0% or more and less than 10% 3: Reduction rate of water vapor transmission rate is 10% Above, less than 20% 2: Reduction rate of water vapor transmission rate is 20% or more and less than 30% 1: Reduction rate of water vapor transmission rate is 30% or more << Evaluation of Optical Film >>
[Durability: Evaluation of adhesion]
Each optical film produced above was allowed to stand for 500 hours under high temperature and high humidity conditions (60 ° C., 90% RH), and then the adhesion between the adhesive layer and the phosphor particle layer in each optical film was evaluated.
 各光学フィルムを、幅50mm、長さ200mmに断裁した後、JIS B 7721に規定する引張試験機を用いて、剥離力を測定した。各光学フィルムの端部について、接着層と蛍光体粒子層を剥離した後、それぞれを引張試験機に挟み込み、引っ張り速度300m/minで剥離した端部から180°方向に向かって引き剥がすのに要する力を測定し、下記基準に基づいて、密着性を5段階で評価した。 Each optical film was cut into a width of 50 mm and a length of 200 mm, and then the peel force was measured using a tensile tester specified in JIS B 7721. About the edge part of each optical film, after peeling the adhesive layer and the phosphor particle layer, each is sandwiched in a tensile tester, and it is required to peel off from the edge part peeled off at a pulling speed of 300 m / min in the 180 ° direction. The force was measured, and the adhesion was evaluated in five stages based on the following criteria.
 5:剥離強度が、5.0N以上
 4:剥離強度が、4.0N以上、5.0N未満
 3:剥離強度が、3.0N以上、4.0N未満
 2:剥離強度が、2.0N以上、3.0N未満
 1:剥離強度が、2.0N未満
 〔サイドリーク耐性の評価〕
 上記で作製した各光学フィルムを、高温高湿条件(60℃、90%RH)下で500時間静置した後に、下記の方法に従って、サイドリーク耐性を評価した。
5: Peel strength is 5.0 N or more 4: Peel strength is 4.0 N or more and less than 5.0 N 3: Peel strength is 3.0 N or more and less than 4.0 N 2: Peel strength is 2.0 N or more Less than 3.0N 1: Peel strength is less than 2.0N [Evaluation of side leak resistance]
Each optical film produced above was allowed to stand for 500 hours under high temperature and high humidity conditions (60 ° C., 90% RH), and then the side leak resistance was evaluated according to the following method.
 作製直後と、上記高温高湿条件(60℃、90%RH)で強制劣化処理を施した各光学フィルムを、それぞれ450nmに発光する青色LEDの上に置き、100倍の光学顕微鏡(株式会社モリテックス製 MS-804、レンズMP-ZE25-200)を用いて、光学フィルム端部領域において発光しない領域の巾をランダムに6点計測し、その平均値を算出した。次いで、作製直後のサンプルに対し、強制劣化処理によるサンプルの未発光領域の成長率を測定し、下記の基準に従ってサイドリーク耐性を評価した。 Immediately after fabrication, each optical film subjected to forced deterioration treatment under the above-described high-temperature and high-humidity conditions (60 ° C., 90% RH) is placed on a blue LED that emits light at 450 nm, respectively. Using MS-804 (manufactured by MS-804, lens MP-ZE25-200), the width of the region that does not emit light in the end region of the optical film was randomly measured at six points, and the average value was calculated. Next, the growth rate of the non-light-emitting region of the sample by forced degradation treatment was measured for the sample immediately after fabrication, and side leak resistance was evaluated according to the following criteria.
 5:端部の未発光領域の成長率が、0.1%未満である
 4:端部の未発光領域の成長率が、0.1%以上、1.0%未満である
 3:端部の未発光領域の成長率が、1.0%以上、2.5%未満である
 2:端部の未発光領域の成長率が、2.5%以上、5.0%未満である
 1:端部の未発光領域の成長率が、5.0%以上である
 以上により得られた各評価結果を、表2に示す。
5: Growth rate of the non-light-emitting region at the end is less than 0.1% 4: Growth rate of the non-light-emitting region at the end is 0.1% or more and less than 1.0% 3: End The growth rate of the non-light emitting region is 1.0% or more and less than 2.5% 2: The growth rate of the non-light emitting region at the end is 2.5% or more and less than 5.0% 1: The growth rate of the non-light emitting region at the end is 5.0% or more. Table 2 shows the evaluation results obtained as described above.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に記載の結果より明らかなように、アクリロイル基を含む化合物と、ケイ素原子を含む化合物を含有し、層厚が100~1000nmの範囲内にある接着層を有する本発明のガスバリアー性フィルムは、比較例に対し、ガスバリアー層の耐熱性に優れ、かつそれを用いた蛍光体粒子含有層を有する光学フィルムは、比較例に対し、高温高湿環境下で保存された後の密着性及びサイドリーク耐性に優れていることが分かる。 As is apparent from the results shown in Table 2, the gas barrier film of the present invention having an adhesive layer containing a compound containing an acryloyl group and a compound containing a silicon atom and having a layer thickness in the range of 100 to 1000 nm. Compared with the comparative example, the optical film having a gas barrier layer excellent in heat resistance and having a phosphor particle-containing layer using the same has an adhesive property after being stored in a high-temperature and high-humidity environment with respect to the comparative example. It can also be seen that it has excellent side leak resistance.
 実施例2
 《光学フィルムの作製》
 下記の方法に従って、光学フィルム201~216を作製した。なお、下記の説明において、各構成要素の後の括弧内に記載した数値は、それぞれ図5A及び図5Bに記載の符号番号である。
Example 2
<< Production of optical film >>
Optical films 201 to 216 were produced according to the following method. In the following description, the numerical values described in parentheses after each component are the reference numbers described in FIGS. 5A and 5B, respectively.
 [光学フィルム201の作製]
 下記の方法に従って、光学フィルム201を作製した
 〔ガスバリアー性フィルム51の作製〕
 (樹脂基材(102A)の準備)
 厚さ50μmの両面易接着層付きポリエチレンテレフタレート(PET)フィルム(帝人デュポンフィルム(株)製、KEL86W)を、樹脂基材(102A)として用いた。
[Production of Optical Film 201]
Optical film 201 was produced according to the following method [Production of gas barrier film 51]
(Preparation of resin base material (102A))
A polyethylene terephthalate (PET) film with a double-sided easy-adhesion layer having a thickness of 50 μm (manufactured by Teijin DuPont Films Ltd., KEL86W) was used as the resin substrate (102A).
 (下地層の形成)
 JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTARZ7501を酢酸ブチルで固形分濃度35%まで希釈した塗布液を、乾燥膜厚が2μmとなるように上記樹脂基材の一方の易接着面側にバーコーターで塗布した後、乾燥条件として80℃で2分間の乾燥を行った。次いで、空気雰囲気下で、照度が700mW/cm、照射エネルギー量が250mJ/cmの条件で高圧水銀ランプにより紫外線照射処理を施して、下地層を形成した。
(Formation of underlayer)
JSR Co., Ltd. UV curable organic / inorganic hybrid hard coating material OPSTARZ501 diluted with butyl acetate to a solid content concentration of 35%, one easy adhesion of the above resin base material so that the dry film thickness becomes 2 μm After coating on the surface side with a bar coater, drying was performed at 80 ° C. for 2 minutes as a drying condition. Next, under an air atmosphere, an ultraviolet irradiation treatment was performed with a high-pressure mercury lamp under the conditions of an illuminance of 700 mW / cm 2 and an irradiation energy amount of 250 mJ / cm 2 , thereby forming a base layer.
 (ガスバリアー層(103A)の形成:真空プラズマCVD法)
 特許第4268195号公報に記載されている、対向する一対の成膜ロール群より構成されている成膜部を有する装置を2台並列配置したタイプ(第1成膜部、第2成膜部を有する)のロール・トゥ・ロール型真空CVD成膜装置を用いて、ガスバリアー層(103A)を形成した。成膜条件は、搬送速度7m/min、原料ガス(ヘキサメチルジシロキサン、HMDSO)の供給量150mL/min、酸素ガスの供給量150mL/min、真空度1.5Pa、印加電力4.5kwとして、膜厚150nmのガスバリアー層(組成SiO)を形成した。
(Formation of gas barrier layer (103A): vacuum plasma CVD method)
A type in which two apparatuses having a film forming unit composed of a pair of opposing film forming roll groups described in Japanese Patent No. 4268195 are arranged in parallel (the first film forming unit and the second film forming unit are Gas barrier layer (103A) was formed using a roll-to-roll type vacuum CVD film forming apparatus. The film forming conditions are as follows: transfer speed 7 m / min, source gas (hexamethyldisiloxane, HMDSO) supply amount 150 mL / min, oxygen gas supply amount 150 mL / min, vacuum degree 1.5 Pa, applied power 4.5 kW, A gas barrier layer (composition SiO x ) having a thickness of 150 nm was formed.
 (ガスバリアー層の表面改質処理)
 上記形成したガスバリアー層(103A)の露出表面に対して、以下の方法により表面改質処理としてコロナ処理を施した。
(Surface modification treatment of gas barrier layer)
The exposed surface of the formed gas barrier layer (103A) was subjected to corona treatment as a surface modification treatment by the following method.
 〈コロナ処理〉
 コロナ処理装置(春日電機社製)を用い、出力300W、電極長240mm、ワーク電極間距離3.0mm、搬送速度4m/minの条件で、ガスバリアー層51の露出表面の表面改質処理(コロナ処理)を行った。
<Corona treatment>
Using a corona treatment device (manufactured by Kasuga Denki Co., Ltd.), surface modification treatment of the exposed surface of the gas barrier layer 51 (corona) under the conditions of an output of 300 W, an electrode length of 240 mm, a work electrode distance of 3.0 mm, and a conveying speed of 4 m / min. Treatment).
 (接着層51(104A)の形成)
 バインダー成分(105A)として、アクリロイル基含有化合物(多官能アクリレート化合物)であるジペンタエリスリトールヘキサアクリレート(略称:DPEHA)を、酢酸ブチルで固形分濃度5%まで希釈した溶液に、無機微粒子(106A)として、石原産業社製のTTO-55(A)(酸化チタン、焼結法、ルチル結晶、表面処理:Al(OH)、平均一次粒径:45nm)を上記アクリロイル基含有化合物の固形分100質量%に対して、80質量%相当量添加し、有機微粒子(107A)として、ポリメチルメタクリレート微粒子(略称:PMMA 平均一次粒径:800nm)をアクリロイル基含有化合物の固形分100質量%に対して、1.0質量%相当量添加して、更に重合開始剤としてBASFジャパン社製のイルガキュア184を、アクリロイル基含有化合物の固形分100質量%に対して、3.0質量%相当量添加して、接着層形成用塗布液51を調製した。
(Formation of adhesive layer 51 (104A))
As a binder component (105A), dipentaerythritol hexaacrylate (abbreviation: DPEHA), which is an acryloyl group-containing compound (polyfunctional acrylate compound), is diluted with butyl acetate to a solid content concentration of 5%, and inorganic fine particles (106A) TTO-55 (A) (titanium oxide, sintering method, rutile crystal, surface treatment: Al (OH) 3 , average primary particle size: 45 nm) manufactured by Ishihara Sangyo Co., Ltd. is used as the solid content of the acryloyl group-containing compound 100 An amount equivalent to 80% by mass is added to mass%, and polymethyl methacrylate fine particles (abbreviation: PMMA average primary particle size: 800 nm) are added as organic fine particles (107A) to 100% by mass of the solid content of the acryloyl group-containing compound. , 1.0% by mass equivalent, and BASF Japan Ltd. Cure 184, the solid content 100 wt% of an acryloyl group-containing compound, was added 3.0 wt% equivalent amount to prepare an adhesive layer coating solution 51.
 次いで、この接着層形成用塗布液51を用い、乾燥後の層厚が1000nmとなるように上記ガスバリアー層(103A)上にバーコーターで塗布した後、乾燥条件として80℃で1分間の乾燥を行った。次いで、空気雰囲気下で、照度が500mW/cm、照射エネルギー量が200mJ/cmの条件で高圧水銀ランプにより紫外線照射処理を施して、接着層51(104A)を形成して、ガスバリアー性フィルム51(101A)を作製した。 Next, using this coating solution 51 for forming an adhesive layer, after coating with a bar coater on the gas barrier layer (103A) so that the layer thickness after drying is 1000 nm, drying is performed at 80 ° C. for 1 minute as a drying condition. Went. Next, an ultraviolet irradiation treatment is performed with a high-pressure mercury lamp under an air atmosphere under the conditions of an illuminance of 500 mW / cm 2 and an irradiation energy amount of 200 mJ / cm 2 , thereby forming an adhesive layer 51 (104A) and gas barrier properties. Film 51 (101A) was produced.
 〔光学フィルムの形成〕
 下記の方法に従って、ガスバリアー性フィルム51(101A)上に、蛍光体粒子含有層(108)を形成し、更にその表面をガスバリアー性フィルム51(101B)で封止して、図5Bに記載の構成からなる光学フィルム201(F)を作製した。
[Formation of optical film]
According to the following method, the phosphor particle-containing layer (108) is formed on the gas barrier film 51 (101A), and the surface thereof is sealed with the gas barrier film 51 (101B), which is shown in FIG. 5B. An optical film 201 (F) having the following structure was produced.
 (蛍光体粒子含有層の形成)
 〈蛍光体粒子(109)の調製〉
 Se粉末0.7896gを、トリオクチルホスフィン(略称:TOP)7.4g中へ添加し、混合物を150℃まで窒素気流下で加熱して、TOP-Seストック溶液を調製した。別途、酸化カドミウム(CdO)の0.450g及びステアリン酸の8.0gをアルゴン雰囲気下、三口フラスコ中で150℃まで加熱した。
(Formation of phosphor particle-containing layer)
<Preparation of phosphor particles (109)>
0.7896 g of Se powder was added into 7.4 g of trioctylphosphine (abbreviation: TOP), and the mixture was heated to 150 ° C. under a nitrogen stream to prepare a TOP-Se stock solution. Separately, 0.450 g of cadmium oxide (CdO) and 8.0 g of stearic acid were heated to 150 ° C. in a three-necked flask under an argon atmosphere.
 CdOが溶解した後、このCdO溶液を室温まで冷却した。このCdO溶液に、トリオクチルホスフィンオキサイド(略称:TOPO)を8.0g及び1-ヘプタデシル-オクタデシルアミン(略称:HDA)を12g.0添加し、その混合物を再び150℃まで加熱した後、TOP-Seストック溶液を素早く添加した。 After CdO was dissolved, the CdO solution was cooled to room temperature. To this CdO solution, 8.0 g of trioctylphosphine oxide (abbreviation: TOPO) and 12 g of 1-heptadecyl-octadecylamine (abbreviation: HDA) were added. 0 was added and the mixture was heated again to 150 ° C., followed by the rapid addition of TOP-Se stock solution.
 その後、チャンバーの温度を220℃まで加熱し、更に一定の速度で120分かけて250℃まで上昇させた(0.25℃/分)。その後、温度を100℃まで下げ、酢酸亜鉛二水和物を添加撹拌して溶解させた後、ヘキサメチルジシリルチアンのトリオクチルホスフィン溶液を滴下し、数時間撹拌を続けて反応を終了させ、CdSe/ZnSからなる蛍光体粒子(109)を得た。 Thereafter, the temperature of the chamber was heated to 220 ° C., and further increased to 250 ° C. over 120 minutes at a constant rate (0.25 ° C./min). Thereafter, the temperature was lowered to 100 ° C., zinc acetate dihydrate was added and dissolved by stirring, and then a trioctylphosphine solution of hexamethyldisilylthiane was dropped, and stirring was continued for several hours to complete the reaction. Phosphor particles (109) made of CdSe / ZnS were obtained.
 〈蛍光体粒子層形成用塗布液51の調製〉
 蛍光体粒子に内包される蛍光体粒子成分の粒径を赤色と緑色に発光するように調整し、更にその内包する蛍光体粒子の赤色、緑色成分が0.75mg、4.12mgになるようにトルエン溶媒に分散させ、更に、樹脂成分(110)としてエポキシアクリレート DIC(株)製UV硬化型樹脂ユニディックV-5500に、光重合開始剤イルガキュア184(BASFジャパン製)を、固形分比(質量%)で樹脂/開始剤:95/5になるように調整したUV硬化樹脂を加え、蛍光体粒子の含有率が1.0質量%になる蛍光体粒子層形成用塗布液51を調製した。
<Preparation of phosphor particle layer forming coating solution 51>
The particle size of the phosphor particle component contained in the phosphor particles is adjusted so as to emit light in red and green, and further, the red and green components of the phosphor particles contained therein are 0.75 mg and 4.12 mg. Dispersed in a toluene solvent, and further, a photopolymerization initiator Irgacure 184 (manufactured by BASF Japan) was added as a resin component (110) to UV curable resin Unidic V-5500 manufactured by Epoxy Acrylate DIC Co., Ltd. %)) Was added to the resin / initiator: 95/5 to prepare a phosphor particle layer forming coating solution 51 having a phosphor particle content of 1.0 mass%.
 〈蛍光体粒子層形成用塗布液51の塗布〉
 調製した蛍光体粒子層形成用塗布液51を、ガスバリアー性フィルム51(図5Bに記載の101A)を構成する接着層51(104A)上に、乾燥層厚が1000μmになるように塗布し、75℃で3分間加熱して、蛍光体粒子層(108)を形成した。ただし、紫外線照射による硬化処理は、この段階では行わない。
<Coating of phosphor particle layer forming coating solution 51>
The prepared phosphor particle layer forming coating solution 51 is applied on the adhesive layer 51 (104A) constituting the gas barrier film 51 (101A described in FIG. 5B) so that the dry layer thickness is 1000 μm, The phosphor particle layer (108) was formed by heating at 75 ° C. for 3 minutes. However, the curing process by ultraviolet irradiation is not performed at this stage.
 (3)ガスバリアー性フィルム51(101B)の付与
 上記作製したガスバリアー性フィルム51を、ガスバリアー性フィルム(101B)として準備した。
(3) Application of gas barrier film 51 (101B) The produced gas barrier film 51 was prepared as a gas barrier film (101B).
 次いで、上記作製した蛍光体粒子層(108)面と、ガスバリアー性フィルム(101B)の接着層(104B)面とを貼合した後、高圧水銀ランプを使用して、硬化条件;2.5J/cmで硬化を行って、光学フィルム201(F)を作製した。 Subsequently, after bonding the produced phosphor particle layer (108) surface and the adhesive layer (104B) surface of the gas barrier film (101B), using a high-pressure mercury lamp, curing conditions; 2.5 J Curing was performed at / cm 2 to prepare an optical film 201 (F).
 [光学フィルム202の作製]
 上記光学フィルム201の作製において、ガスバリアー性フィルム51に代えて、下記の方法で作製したガスバリアー性フィルム52を用いた以外は同様にして、光学フィルム202を作製した。
[Production of Optical Film 202]
In the production of the optical film 201, an optical film 202 was produced in the same manner except that the gas barrier film 52 produced by the following method was used instead of the gas barrier film 51.
 〔ガスバリアー性フィルム52の作製〕
 上記ガスバリアー性フィルム51の作製において、接着層51に代えて、下記の構成からなる接着層52を用いた以外は同様にして、ガスバリアー性フィルム52を作製した。
[Production of gas barrier film 52]
In the production of the gas barrier film 51, a gas barrier film 52 was produced in the same manner except that the adhesive layer 52 having the following constitution was used instead of the adhesive layer 51.
 (接着層52(104A)の形成)
 バインダー成分(105A)として、アクリロイル基含有化合物(多官能アクリレート化合物)であるジペンタエリスリトールヘキサアクリレート(略称:DPEHA)を、酢酸ブチルで固形分濃度5%まで希釈した溶液に、無機微粒子(106A)として、PGM-AC-4130Y(シリカ粒子、分散媒:プロピレングリコールモノメチルエーテル、平均一次粒径:45nm、シリカ含有量:30質量%)を上記アクリロイル基含有化合物の固形分100%に対して80%添加して、有機微粒子(107A)として、ポリメチルメタクリレート微粒子(平均一次粒径:800nm)をアクリロイル基含有化合物の固形分100%に対して1%添加して、更に重合開始剤としてBASFジャパン社製のイルガキュア184をアクリロイル基含有化合物の固形分100%に対して3%添加して、接着層形成用塗布液52を調製した。
(Formation of adhesive layer 52 (104A))
As a binder component (105A), dipentaerythritol hexaacrylate (abbreviation: DPEHA), which is an acryloyl group-containing compound (polyfunctional acrylate compound), is diluted with butyl acetate to a solid content concentration of 5%, and inorganic fine particles (106A) PGM-AC-4130Y (silica particles, dispersion medium: propylene glycol monomethyl ether, average primary particle size: 45 nm, silica content: 30% by mass) is 80% based on 100% solid content of the acryloyl group-containing compound. In addition, 1% polymethyl methacrylate fine particles (average primary particle size: 800 nm) are added as organic fine particles (107A) to 100% of the solid content of the acryloyl group-containing compound, and BASF Japan Ltd. is further used as a polymerization initiator. Irgacure 184 made from acryloyl group 3% was added relative to 100% solids containing compound, to prepare a bonding layer-forming coating liquid 52.
 次いで、この接着層形成用塗布液52を用い、乾燥後の層厚が800nmとなるようにガスバリアー層上にバーコーターで塗布した後、乾燥条件として80℃で1分間の乾燥を行った。次いで、空気雰囲気下で、照度が500mW/cm、照射エネルギー量が200mJ/cmの条件で高圧水銀ランプにより紫外線照射処理を施して、接着層52(104A)を形成して、ガスバリアー性フィルム52(101A)を作製した。 Next, this adhesive layer forming coating solution 52 was applied onto the gas barrier layer with a bar coater so that the layer thickness after drying was 800 nm, and then dried at 80 ° C. for 1 minute as drying conditions. Next, an ultraviolet irradiation treatment is performed with a high-pressure mercury lamp under an air atmosphere under the conditions of an illuminance of 500 mW / cm 2 and an irradiation energy amount of 200 mJ / cm 2 , thereby forming an adhesive layer 52 (104A) and gas barrier properties. Film 52 (101A) was produced.
 [光学フィルム203の作製]
 上記光学フィルム202の作製において、ガスバリアー性フィルム52に代えて、下記の方法で作製したガスバリアー性フィルム53を用いた以外は同様にして、光学フィルム203を作製した。
[Production of Optical Film 203]
In the production of the optical film 202, an optical film 203 was produced in the same manner except that the gas barrier film 53 produced by the following method was used instead of the gas barrier film 52.
 〔ガスバリアー性フィルム53の作製〕
 上記ガスバリアー性フィルム52の作製において、接着層52の層厚を500nmに変更した以外は同様にして、ガスバリアー性フィルム53を作製した。
[Production of gas barrier film 53]
A gas barrier film 53 was produced in the same manner as in the production of the gas barrier film 52 except that the thickness of the adhesive layer 52 was changed to 500 nm.
 [光学フィルム204の作製]
 上記光学フィルム203の作製において、ガスバリアー性フィルム53に代えて、下記の方法で作製したガスバリアー性フィルム54を用いた以外は同様にして、光学フィルム204を作製した。
[Preparation of optical film 204]
In the production of the optical film 203, an optical film 204 was produced in the same manner except that the gas barrier film 54 produced by the following method was used instead of the gas barrier film 53.
 〔ガスバリアー性フィルム54の作製〕
 上記ガスバリアー性フィルム53の作製において、接着層53に代えて、下記の構成からなる接着層54を用いた以外は同様にして、ガスバリアー性フィルム54を作製した。
[Production of gas barrier film 54]
In the production of the gas barrier film 53, a gas barrier film 54 was produced in the same manner except that the adhesive layer 54 having the following constitution was used instead of the adhesive layer 53.
 (接着層54(104A)の形成)
 バインダー成分(105A)として、ポリマータイプのシランカップリング剤である信越シリコーン社製のX-12-1048(略称:ASCP)を、酢酸ブチルで固形分濃度5質量%まで希釈した溶液に、無機微粒子(106A)として、PGM-AC-4130Y(分散媒:プロピレングリコールモノメチルエーテル、平均一次粒径:45nm、シリカ含有量:30質量%)を上記ポリマータイプのシランカップリング剤(ASCP)の固形分100質量%に対して、80質量%相当量添加して、有機微粒子(107A)として、ポリメチルメタクリレート微粒子(平均一次粒径:800nm)を、ポリマータイプのシランカップリング剤(ASCP)の固形分100質量%に対して、1.0質量%相当量添加して、更に重合開始剤としてBASFジャパン社製のイルガキュア184をポリマータイプのシランカップリング剤(ASCP)の固形分100質量%に対して、3.0質量%相当量添加して、接着層形成用塗布液54を調製した。
(Formation of adhesive layer 54 (104A))
As a binder component (105A), inorganic fine particles were added to a solution obtained by diluting X-12-1048 (abbreviation: ASCP) manufactured by Shin-Etsu Silicone Co., Ltd., which is a polymer type silane coupling agent, with butyl acetate to a solid content concentration of 5% by mass. As (106A), PGM-AC-4130Y (dispersion medium: propylene glycol monomethyl ether, average primary particle size: 45 nm, silica content: 30 mass%) is used as a solid content of the above polymer type silane coupling agent (ASCP) 100 An amount equivalent to 80% by mass is added to mass%, and polymethyl methacrylate fine particles (average primary particle size: 800 nm) are added as organic fine particles (107A) to a solid content of a polymer type silane coupling agent (ASCP) 100. Add an equivalent amount of 1.0% by mass with respect to mass% to further serve as a polymerization initiator. Of Irgacure 184 manufactured by BASF Japan Ltd. the solid content 100 wt% of the polymer type of the silane coupling agent (ASCP), was added 3.0 wt% equivalent amount to prepare an adhesive layer coating solution 54.
 次いで、上記調製した接着層形成用塗布液54を用い、乾燥後の層厚が500nmとなるようにガスバリアー層(103A)上にバーコーターで塗布した後、乾燥条件として80℃で1分間の乾燥を行った。次いで、空気雰囲気下で、照度が500mW/cm、照射エネルギー量が200mJ/cmの条件で高圧水銀ランプによる紫外線照射処理を施して、接着層54(104A)を形成して、ガスバリアー性フィルム54(101A)を作製した。 Next, the adhesive layer forming coating solution 54 prepared above was applied on the gas barrier layer (103A) with a bar coater so that the layer thickness after drying was 500 nm, and then dried at 80 ° C. for 1 minute. Drying was performed. Next, an ultraviolet ray irradiation treatment is performed with a high-pressure mercury lamp under an air atmosphere under the conditions of an illuminance of 500 mW / cm 2 and an irradiation energy amount of 200 mJ / cm 2 , thereby forming an adhesive layer 54 (104A), and gas barrier properties Film 54 (101A) was produced.
 [光学フィルム205の作製]
 上記光学フィルム204の作製において、ガスバリアー性フィルム54に代えて、下記の方法で作製したガスバリアー性フィルム55(101A)を用いた以外は同様にして、光学フィルム205を作製した。
[Preparation of optical film 205]
In the production of the optical film 204, an optical film 205 was produced in the same manner except that the gas barrier film 55 (101A) produced by the following method was used in place of the gas barrier film 54.
 〔ガスバリアー性フィルム55の作製〕
 上記ガスバリアー性フィルム54の作製において、接着層54に代えて、下記の構成からなる接着層55を用いた以外は同様にして、ガスバリアー性フィルム55を作製した。
[Production of gas barrier film 55]
A gas barrier film 55 was produced in the same manner as in the production of the gas barrier film 54 except that an adhesive layer 55 having the following configuration was used instead of the adhesive layer 54.
 (接着層55(104A)の形成)
 バインダー成分(105A)として、ポリマータイプのシランカップリング剤である信越シリコーン社製のX-12-1048(略称:ASCP)を、酢酸ブチルで固形分濃度5.0質量%まで希釈した溶液に、更に第2のバインダー成分として、シランカップリング剤モノマー(略称:SCM)である、アクリロイル基含有シランカップリング剤 KBM-5103(3-アクリロキシプロピルトリメトキシシラン、信越シリコーン社製)をポリマータイプのシランカップリング剤(ASCP)の固形分100質量%に対して、10.0質量%相当量添加し、次いで、無機微粒子(106A)として、PGM-AC-4130Y(分散媒:プロピレングリコールモノメチルエーテル、平均一次粒径:45nm、シリカ含有量:30質量%)を上記ポリマータイプのシランカップリング剤(ASCP)の固形分100質量%に対して80質量%相当量添加して、有機微粒子(107A)として、ポリメチルメタクリレート微粒子(平均一次粒径:800nm)をポリマータイプのシランカップリング剤(ASCP)の固形分100質量%に対して1.0質量%相当量添加して、更に重合開始剤としてBASFジャパン社製のイルガキュア184をポリマータイプのシランカップリング剤(ASCP)の固形分100質量%に対して3.0質量%相当量添加して、接着層形成用塗布液55を調製した。
(Formation of adhesive layer 55 (104A))
As a binder component (105A), a polymer type silane coupling agent X-12-1048 (abbreviation: ASCP) manufactured by Shin-Etsu Silicone Co., Ltd. was diluted with butyl acetate to a solid content concentration of 5.0% by mass, Furthermore, as the second binder component, a silane coupling agent monomer (abbreviation: SCM), an acryloyl group-containing silane coupling agent KBM-5103 (3-acryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Silicone) is used as a polymer type. An amount equivalent to 10.0% by mass is added to 100% by mass of the solid content of the silane coupling agent (ASCP), and then PGM-AC-4130Y (dispersion medium: propylene glycol monomethyl ether, as inorganic fine particles (106A), Average primary particle size: 45 nm, silica content: 30% by mass) The polymer type silane coupling agent (ASCP) is added in an amount equivalent to 80% by mass with respect to 100% by mass of the solid content, and polymethyl methacrylate fine particles (average primary particle size: 800 nm) are polymerized as organic fine particles (107A). An equivalent amount of 1.0% by mass is added to 100% by mass of the solid content of the type silane coupling agent (ASCP), and Irgacure 184 manufactured by BASF Japan Ltd. is used as a polymerization initiator. A coating solution 55 for forming an adhesive layer was prepared by adding an amount equivalent to 3.0% by mass with respect to 100% by mass of ASCP).
 次いで、この接着層形成用塗布液55を用い、乾燥後の層厚が300nmとなるようにガスバリアー層(103A)上にバーコーターで塗布した後、乾燥条件として80℃で1分間の乾燥を行った。次いで、空気雰囲気下で、照度が500mW/cm、照射エネルギー量が200mJ/cmの条件で高圧水銀ランプにより紫外線照射処理を施して、接着層55(104A)を形成して、ガスバリアー性フィルム55を作製した。 Next, using this coating solution 55 for forming an adhesive layer, after coating with a bar coater on the gas barrier layer (103A) so that the layer thickness after drying is 300 nm, drying is performed at 80 ° C. for 1 minute as a drying condition. went. Next, an ultraviolet irradiation treatment is performed with a high-pressure mercury lamp under an air atmosphere under the conditions of an illuminance of 500 mW / cm 2 and an irradiation energy amount of 200 mJ / cm 2 , thereby forming an adhesive layer 55 (104A) and gas barrier properties. A film 55 was produced.
 [光学フィルム206の作製]
 上記光学フィルム205の作製において、ガスバリアー性フィルム55に代えて、下記の方法で作製したガスバリアー性フィルム56を用いた以外は同様にして、光学フィルム206を作製した。
[Preparation of optical film 206]
In the production of the optical film 205, an optical film 206 was produced in the same manner except that the gas barrier film 56 produced by the following method was used in place of the gas barrier film 55.
 〔ガスバリアー性フィルム56の作製〕
 上記ガスバリアー性フィルム55の作製において、接着層形成用塗布液55に対し、更に、アクリロイル基含有ポリマー(略称:AP)として、星光PMC社製のHIL-2070を、ポリマータイプのシランカップリング剤(ASCP)の固形分100質量%に対して10質量%相当量添加して、接着層形成用塗布液56を調製し、それを用いて接着層56を形成した以外は同様にして、ガスバリアー性フィルム56を作製した。
[Production of gas barrier film 56]
In the production of the gas barrier film 55, HIL-2070 manufactured by Seiko PMC Co., Ltd. was used as a polymer type silane coupling agent as an acryloyl group-containing polymer (abbreviation: AP) for the coating solution 55 for forming an adhesive layer. A gas barrier was prepared in the same manner except that an adhesive layer-forming coating solution 56 was prepared by adding an equivalent amount of 10% by mass to (ASCP) solid content of 100% by mass, and the adhesive layer 56 was formed using the same. Film 56 was produced.
 [光学フィルム207の作製]
 上記光学フィルム206の作製において、ガスバリアー性フィルム56に代えて、下記の方法で作製したガスバリアー性フィルム57を用いた以外は同様にして、光学フィルム107を作製した。
[Preparation of optical film 207]
In the production of the optical film 206, an optical film 107 was produced in the same manner except that the gas barrier film 57 produced by the following method was used instead of the gas barrier film 56.
 〔ガスバリアー性フィルム57の作製〕
 上記ガスバリアー性フィルム56の作製において、接着層形成用塗布液56の調製に用いた無機微粒子(SiO、平均一次粒径:45nm)を、平均一次粒径が30nmのシリカ粒子に変更した以外は同様にして調製した接着層形成用塗布液57を用いて接着層57を形成した以外は同様にして、ガスバリアー性フィルム57を作製した。
[Production of gas barrier film 57]
In the production of the gas barrier film 56, the inorganic fine particles (SiO 2 , average primary particle size: 45 nm) used for the preparation of the coating liquid 56 for forming the adhesive layer were changed to silica particles having an average primary particle size of 30 nm. A gas barrier film 57 was prepared in the same manner except that the adhesive layer 57 was formed using the adhesive layer forming coating solution 57 prepared in the same manner.
 [光学フィルム208の作製]
 上記光学フィルム206の作製において、ガスバリアー性フィルム56に代えて、下記の方法で作製したガスバリアー性フィルム58を用いた以外は同様にして、光学フィルム208を作製した。
[Production of Optical Film 208]
In the production of the optical film 206, an optical film 208 was produced in the same manner except that the gas barrier film 58 produced by the following method was used instead of the gas barrier film 56.
 〔ガスバリアー性フィルム58の作製〕
 上記ガスバリアー性フィルム56の作製において、接着層形成用塗布液56の調製に用いた無機微粒子(SiO、平均一次粒径:45nm)を、平均一次粒径が90nmのシリカ粒子に変更して調製した接着層形成用塗布液58を用いて接着層58を形成した以外は同様にして、ガスバリアー性フィルム58を作製した。
[Preparation of gas barrier film 58]
In the production of the gas barrier film 56, the inorganic fine particles (SiO 2 , average primary particle size: 45 nm) used for the preparation of the coating liquid 56 for forming the adhesive layer were changed to silica particles having an average primary particle size of 90 nm. A gas barrier film 58 was produced in the same manner except that the adhesive layer 58 was formed using the prepared adhesive layer forming coating solution 58.
 [光学フィルム209の作製]
 上記光学フィルム206の作製において、ガスバリアー性フィルム56に代えて、下記の方法で作製したガスバリアー性フィルム59を用いた以外は同様にして、光学フィルム209を作製した。
[Production of Optical Film 209]
In the production of the optical film 206, an optical film 209 was produced in the same manner except that the gas barrier film 59 produced by the following method was used instead of the gas barrier film 56.
 〔ガスバリアー性フィルム59の作製〕
 上記ガスバリアー性フィルム56の作製において、接着層形成用塗布液56の調製に用いた有機微粒子(PMMA、平均一次粒径:800nm)を、平均一次粒径が300nmのPMMA粒子に変更して調製した接着層形成用塗布液59を用い、更に層厚を200nmに変更して接着層59を形成した以外は同様にして、ガスバリアー性フィルム59を作製した。
[Preparation of gas barrier film 59]
In the production of the gas barrier film 56, the organic fine particles (PMMA, average primary particle size: 800 nm) used for the preparation of the coating liquid 56 for forming the adhesive layer are changed to PMMA particles having an average primary particle size of 300 nm. A gas barrier film 59 was produced in the same manner except that the adhesive layer forming coating solution 59 was used and the layer thickness was further changed to 200 nm to form the adhesive layer 59.
 [光学フィルム210の作製]
 上記光学フィルム206の作製において、ガスバリアー性フィルム56に代えて、下記の方法で作製したガスバリアー性フィルム60を用いた以外は同様にして、光学フィルム210を作製した。
[Production of Optical Film 210]
In the production of the optical film 206, an optical film 210 was produced in the same manner except that the gas barrier film 60 produced by the following method was used instead of the gas barrier film 56.
 〔ガスバリアー性フィルム60の作製〕
 上記ガスバリアー性フィルム56の作製において、接着層形成用塗布液56の調製に用いた有機微粒子(PMMA、平均一次粒径:800nm)を、平均一次粒径が1000nmのPMMA粒子に変更して調製した接着層形成用塗布液60を用い、更に層厚を600nmに変更して接着層60を形成した以外は同様にして、ガスバリアー性フィルム60を作製した。
[Preparation of gas barrier film 60]
In the production of the gas barrier film 56, the organic fine particles (PMMA, average primary particle size: 800 nm) used for the preparation of the coating liquid 56 for forming the adhesive layer are changed to PMMA particles having an average primary particle size of 1000 nm. The gas barrier film 60 was produced in the same manner except that the adhesive layer forming coating solution 60 was used and the adhesive layer 60 was formed by changing the layer thickness to 600 nm.
 [光学フィルム211の作製]
 上記光学フィルム206の作製において、ガスバリアー性フィルム56に代えて、下記の方法で作製したガスバリアー性フィルム61を用いた以外は同様にして、光学フィルム211を作製した。
[Production of Optical Film 211]
In the production of the optical film 206, an optical film 211 was produced in the same manner except that the gas barrier film 61 produced by the following method was used instead of the gas barrier film 56.
 〔ガスバリアー性フィルム61の作製〕
 上記ガスバリアー性フィルム56の作製において、接着層形成用塗布液56の調製に用いた有機微粒子(PMMA)を除いて調製した接着層形成用塗布液61を用いて接着層61を形成した以外は同様にして、ガスバリアー性フィルム61を作製した。
[Production of gas barrier film 61]
In the production of the gas barrier film 56, the adhesive layer 61 was formed using the adhesive layer forming coating solution 61 prepared by removing the organic fine particles (PMMA) used for the preparation of the adhesive layer forming coating solution 56. Similarly, a gas barrier film 61 was produced.
 [光学フィルム212の作製]
 上記光学フィルム206の作製において、ガスバリアー性フィルム56に代えて、下記の方法で作製したガスバリアー性フィルム62を用いた以外は同様にして、光学フィルム212を作製した。
[Production of Optical Film 212]
In the production of the optical film 206, an optical film 212 was produced in the same manner except that the gas barrier film 62 produced by the following method was used instead of the gas barrier film 56.
 〔ガスバリアー性フィルム62の作製〕
 上記ガスバリアー性フィルム56の作製において、接着層形成用塗布液56の調製に用いた無機微粒子(シリカ粒子)を除いて調製した接着層形成用塗布液62を用いて接着層62を形成した以外は同様にして、ガスバリアー性フィルム62を作製した。
[Preparation of gas barrier film 62]
In the production of the gas barrier film 56, the adhesive layer 62 was formed using the adhesive layer forming coating liquid 62 prepared by removing the inorganic fine particles (silica particles) used for the preparation of the adhesive layer forming coating liquid 56. In the same manner, a gas barrier film 62 was produced.
 [光学フィルム213の作製]
 上記光学フィルム211の作製において、ガスバリアー性フィルム61に代えて、下記の方法で作製したガスバリアー性フィルム63を用いた以外は同様にして、光学フィルム213を作製した。
[Production of Optical Film 213]
In the production of the optical film 211, an optical film 213 was produced in the same manner except that the gas barrier film 63 produced by the following method was used instead of the gas barrier film 61.
 〔ガスバリアー性フィルム63の作製〕
 上記ガスバリアー性フィルム61の作製において、接着層形成用塗布液61の調製に用いた無機微粒子(シリカ粒子)を更に除いて調製した接着層形成用塗布液63を用いて接着層63を形成した以外は同様にして、ガスバリアー性フィルム63を作製した。
[Preparation of gas barrier film 63]
In the production of the gas barrier film 61, the adhesive layer 63 was formed using the adhesive layer forming coating solution 63 prepared by further removing the inorganic fine particles (silica particles) used in the preparation of the adhesive layer forming coating solution 61. Except for this, a gas barrier film 63 was produced in the same manner.
 [光学フィルム214の作製]
 上記光学フィルム206の作製において、ガスバリアー性フィルム56に代えて、下記の方法で作製したガスバリアー性フィルム64を用いた以外は同様にして、光学フィルム214を作製した。
[Preparation of optical film 214]
In the production of the optical film 206, an optical film 214 was produced in the same manner except that the gas barrier film 64 produced by the following method was used instead of the gas barrier film 56.
 〔ガスバリアー性フィルム64の作製〕
 上記ガスバリアー性フィルム56の作製において、接着層形成用塗布液56の調製に用いた無機微粒子(平均一次粒径:45nm)を、平均一次粒径が15nmのシリカ粒子(オルガノシリカゾル、PGM-AC-2140Y(分散媒:プロピレングリコールモノメチルエーテル、平均粒子径:15nm、日産化学工業社製)に変更して調製した接着層形成用塗布液64を用いて接着層64を形成した以外は同様にして、ガスバリアー性フィルム64を作製した。
[Preparation of gas barrier film 64]
In the production of the gas barrier film 56, the inorganic fine particles (average primary particle size: 45 nm) used for the preparation of the coating solution 56 for forming the adhesive layer were converted to silica particles (organosilica sol, PGM-AC) having an average primary particle size of 15 nm. -2140Y (dispersion medium: propylene glycol monomethyl ether, average particle size: 15 nm, manufactured by Nissan Chemical Industries, Ltd.) A gas barrier film 64 was produced.
 [光学フィルム215の作製]
 上記光学フィルム214の作製において、ガスバリアー性フィルム64に代えて、下記の方法で作製したガスバリアー性フィルム65を用いた以外は同様にして、光学フィルム215を作製した。
[Production of Optical Film 215]
In the production of the optical film 214, an optical film 215 was produced in the same manner except that the gas barrier film 65 produced by the following method was used instead of the gas barrier film 64.
 〔ガスバリアー性フィルム65の作製〕
 上記ガスバリアー性フィルム64の作製において、接着層形成用塗布液64の調製に用いた有機微粒子(PMMA、平均一次粒径:800nm)を、平均一次粒径が200nmのPMMA粒子に変更して調製した接着層形成用塗布液65を用い、層厚が300nmの接着層65を形成した以外は同様にして、ガスバリアー性フィルム65を作製した。
[Production of gas barrier film 65]
In the production of the gas barrier film 64, the organic fine particles (PMMA, average primary particle size: 800 nm) used for the preparation of the coating liquid 64 for forming the adhesive layer are changed to PMMA particles having an average primary particle size of 200 nm. A gas barrier film 65 was produced in the same manner except that the adhesive layer forming coating liquid 65 was used and the adhesive layer 65 having a layer thickness of 300 nm was formed.
 [光学フィルム216の作製]
 上記光学フィルム206の作製において、ガスバリアー性フィルム56に代えて、下記の方法で作製したガスバリアー性フィルム66を用いた以外は同様にして、光学フィルム216を作製した。
[Production of Optical Film 216]
In the production of the optical film 206, an optical film 216 was produced in the same manner except that the gas barrier film 66 produced by the following method was used instead of the gas barrier film 56.
 〔ガスバリアー性フィルム66の作製〕
 上記ガスバリアー性フィルム56の作製において、接着層形成用塗布液56の調製に用いた有機微粒子(PMMA、平均一次粒径:800nm)を、平均一次粒径が100nmのPMMA粒子に変更して調製した接着層形成用塗布液66を用い、層厚が300nmの接着層66を形成した以外は同様にして、ガスバリアー性フィルム66を作製した。
[Production of gas barrier film 66]
In the production of the gas barrier film 56, the organic fine particles (PMMA, average primary particle size: 800 nm) used for the preparation of the coating liquid 56 for forming the adhesive layer are changed to PMMA particles having an average primary particle size of 100 nm. A gas barrier film 66 was produced in the same manner except that the adhesive layer forming coating solution 66 was used and the adhesive layer 66 having a layer thickness of 300 nm was formed.
 上記作製した各光学フィルムの構成を、表3に示す。 Table 3 shows the configuration of each optical film produced above.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお、表3に略称で記載した各構成材料の詳細は、以下の通りである。 In addition, the details of each constituent material described with an abbreviation in Table 3 are as follows.
 〈微粒子〉
 PMMA:ポリメチルメタクリレート
 〈シランカップリング剤〉
 ASCP:ポリマータイプの末端アクリルシランカップリング剤(信越シリコーン社製、X-12-1048)
 SCM:モノマータイプのシランカップリング剤(KBM-5103(3-アクリロキシプロピルトリメトキシシラン、信越シリコーン社製)
 〈アクリロイル基含有化合物〉
 DPEHA:ジペンタエリスリトールヘキサアクリレート(アクリロイル基官有化合物)
 AP:アクリロイル基含有ポリマー(星光PMC社製、HIL-2070)
 《光学フィルムの評価》
 〔耐久性:密着性の評価〕
 上記で作製した各光学フィルムについて、高温高湿条件(60℃90%RH)下に500時間静置した後に、各光学フィルムにおける接着層と蛍光体粒子層との間の密着性を、実施例1に記載の方法と同様にして、密着性を評価した。
<Fine particles>
PMMA: Polymethyl methacrylate <Silane coupling agent>
ASCP: Polymer type terminal acrylic silane coupling agent (Shin-Etsu Silicone, X-12-1048)
SCM: Monomer type silane coupling agent (KBM-5103 (3-acryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Silicone)
<Acryloyl group-containing compound>
DPEHA: Dipentaerythritol hexaacrylate (acryloyl basic compound)
AP: an acryloyl group-containing polymer (manufactured by Starlight PMC, HIL-2070)
<< Evaluation of optical film >>
[Durability: Evaluation of adhesion]
About each optical film produced above, after leaving still for 500 hours under high-temperature, high-humidity conditions (60 ° C. and 90% RH), the adhesion between the adhesive layer and the phosphor particle layer in each optical film is shown in Example. The adhesion was evaluated in the same manner as described in 1.
 〔発光効率の評価〕
 上記作製した各光学フィルムを、450nmに発光する青色LED上に置き、コニカミノルタ社製の分光放射輝度計「CS-2000」を用いて発光効率を測定した。
[Evaluation of luminous efficiency]
Each of the produced optical films was placed on a blue LED emitting at 450 nm, and the luminous efficiency was measured using a spectral radiance meter “CS-2000” manufactured by Konica Minolta.
 次いで、光学フィルム201の発光効率を100とした時の各光学フィルムの相対発光効率を求め、下記の基準に従って、(相対)発光効率の評価を行った。 Next, the relative luminous efficiency of each optical film when the luminous efficiency of the optical film 201 was set to 100 was determined, and (relative) luminous efficiency was evaluated according to the following criteria.
 5:相対発光効率が、115以上である
 4:相対発光効率が、105以上、115未満である
 3:相対発光効率が、95以上、105未満である
 2:相対発光効率が、85以上、95未満である
 1:相対発光効率が、85未満である
 以上により得られた各評価結果を、表4に示す。
5: Relative luminous efficiency is 115 or more 4: Relative luminous efficiency is 105 or more and less than 115 3: Relative luminous efficiency is 95 or more and less than 105 2: Relative luminous efficiency is 85 or more, 95 Less than 1: The relative luminous efficiency is less than 85 Table 4 shows the evaluation results obtained as described above.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4に記載の結果より明らかなように、本発明で規定する構成よりなるガスバリアー性フィルムを具備した光学フィルムは、比較例に対し、高温高湿環境下で保存された後の密着性及び発光効率に優れていることが分かる。 As is clear from the results shown in Table 4, the optical film provided with the gas barrier film having the structure defined in the present invention has an adhesive property after being stored in a high-temperature and high-humidity environment with respect to the comparative example, and It turns out that it is excellent in luminous efficiency.
 本発明によれば、高いガスバリアー性及び耐熱性を有するガスバリアー性フィルムと、当該ガスバリアー性フィルムを用い、蛍光体粒子含有層との高温高湿環境下での密着性と、サイドリーク耐性に優れるとともに、発光効率に優れた蛍光体粒子含有の光学フィルムを提供することができ、本発明のガスバリアー性フィルムを具備した光学フィルムは、有機エレクトロルミネッセンス素子(有機EL素子)、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)、蛍光体粒子である量子ドットを有するQDフィルム等に適用することができる。 According to the present invention, a gas barrier film having high gas barrier properties and heat resistance, and the gas barrier film, adhesion with a phosphor particle-containing layer in a high temperature and high humidity environment, and side leak resistance The phosphor film-containing optical film having excellent luminous efficiency and light emission efficiency can be provided, and the optical film provided with the gas barrier film of the present invention includes an organic electroluminescence element (organic EL element) and a liquid crystal display element. (LCD), thin film transistor, touch panel, electronic paper, solar cell (PV), QD film having quantum dots that are phosphor particles, and the like.
 1、101 ガスバリアー性フィルム
 1A、1B、101A、101B ガスバリアー性フィルム
 2、2A、2B、102、102A、102B 樹脂基材
 3、3A、3B、103、103A、103B ガスバリアー層
 4、4A、4B、104、104A、104B 接着層
 5 アクリロイル基
 6 蛍光体粒子含有層
 7 蛍光体粒子
 8 樹脂バインダー
 9 封止部材
 10、F 光学フィルム
 105、105A、105B バインダー成分
 106、106A、106B 無機微粒子
 107、107A、107B 有機微粒子
 108 蛍光体粒子含有層
 109 蛍光体粒子
 110 樹脂バインダー
 111 封止部材
DESCRIPTION OF SYMBOLS 1,101 Gas barrier film 1A, 1B, 101A, 101B Gas barrier film 2, 2A, 2B, 102, 102A, 102B Resin base material 3, 3A, 3B, 103, 103A, 103B Gas barrier layer 4, 4A, 4B, 104, 104A, 104B Adhesive layer 5 Acrylyl group 6 Phosphor particle-containing layer 7 Phosphor particle 8 Resin binder 9 Sealing member 10, F Optical film 105, 105A, 105B Binder component 106, 106A, 106B Inorganic fine particle 107, 107A, 107B Organic fine particles 108 Phosphor particle-containing layer 109 Phosphor particles 110 Resin binder 111 Sealing member

Claims (17)

  1.  樹脂基材上に、ガスバリアー層と接着層をこの順で有するガスバリアー性フィルムであって、
     前記ガスバリアー層が、少なくともケイ素原子を含む無機酸化物を含有し、
     前記接着層が、少なくとも未反応のアクリロイル基を含む化合物と、ケイ素原子を含む化合物を含有し、かつ当該接着層の層厚が、100~1000nmの範囲内であることを特徴とするガスバリアー性フィルム。
    A gas barrier film having a gas barrier layer and an adhesive layer in this order on a resin substrate,
    The gas barrier layer contains an inorganic oxide containing at least silicon atoms,
    The gas barrier property, wherein the adhesive layer contains at least a compound containing an unreacted acryloyl group and a compound containing a silicon atom, and the thickness of the adhesive layer is in the range of 100 to 1000 nm. the film.
  2.  前記接着層の層厚が、100~500nmの範囲内であることを特徴とする請求項1に記載のガスバリアー性フィルム。 The gas barrier film according to claim 1, wherein the thickness of the adhesive layer is in the range of 100 to 500 nm.
  3.  前記接着層が含有する前記未反応のアクリロイル基を含む化合物が、アクリロイル基含有シランカップリングポリマーであることを特徴とする請求項1又は請求項2に記載のガスバリアー性フィルム。 The gas barrier film according to claim 1 or 2, wherein the compound containing the unreacted acryloyl group contained in the adhesive layer is an acryloyl group-containing silane coupling polymer.
  4.  前記接着層が、平均粒径が300~1000nmの範囲内にある有機微粒子を含有することを特徴とする請求項1から請求項3までのいずれか一項に記載のガスバリアー性フィルム。 The gas barrier film according to any one of claims 1 to 3, wherein the adhesive layer contains organic fine particles having an average particle diameter in the range of 300 to 1000 nm.
  5.  請求項1から請求項4までのいずれか一項に記載のガスバリアー性フィルムを製造するガスバリアー性フィルムの製造方法であって、
     樹脂基材上に、少なくともケイ素原子を含む無機酸化物より構成されるガスバリアー層を形成した後、当該ガスバリアー層上に、少なくとも未反応のアクリロイル基を含む化合物と、ケイ素原子を含む化合物を含有する接着層を、層厚が100~1000nmの範囲内で形成することを特徴とするガスバリアー性フィルムの製造方法。
    A method for producing a gas barrier film for producing a gas barrier film according to any one of claims 1 to 4,
    After forming a gas barrier layer composed of an inorganic oxide containing at least a silicon atom on a resin substrate, a compound containing at least an unreacted acryloyl group and a compound containing a silicon atom are formed on the gas barrier layer. A method for producing a gas barrier film, characterized in that the adhesive layer is formed within a thickness of 100 to 1000 nm.
  6.  前記接着層を形成した後、当該接着層に活性光線照射処理を行わないことを特徴とする請求項5に記載のガスバリアー性フィルムの製造方法。 6. The method for producing a gas barrier film according to claim 5, wherein after the adhesive layer is formed, the adhesive layer is not subjected to actinic ray irradiation treatment.
  7.  樹脂基材上に、ガスバリアー層と接着層をこの順で有するガスバリアー性フィルムを備えた光学フィルムであって、
     前記ガスバリアー層が、少なくともケイ素原子を含む無機酸化物を含有し、
     前記接着層が、下記で規定する条件(1)を満たす接着層1又は条件(2)を満たす接着層2であり、
     条件(1):前記接着層1が、少なくともアクリロイル基を含む化合物と、ケイ素原子を含む化合物を含有し、かつ当該接着層の層厚が、100~1000nmの範囲内である。
     条件(2):前記接着層2が、平均一次粒径が30~100nmの範囲内にある無機微粒子と、平均一次粒径が300~1000nmの範囲内にある有機微粒子及びバインダー成分を含有する。
     かつ、当該接着層に隣接して蛍光体粒子含有層が配置されていることを特徴とする光学フィルム。
    An optical film including a gas barrier film having a gas barrier layer and an adhesive layer in this order on a resin substrate,
    The gas barrier layer contains an inorganic oxide containing at least silicon atoms,
    The adhesive layer is an adhesive layer 1 that satisfies the condition (1) defined below or an adhesive layer 2 that satisfies the condition (2),
    Condition (1): The adhesive layer 1 contains at least a compound containing an acryloyl group and a compound containing a silicon atom, and the thickness of the adhesive layer is in the range of 100 to 1000 nm.
    Condition (2): The adhesive layer 2 contains inorganic fine particles having an average primary particle size in the range of 30 to 100 nm, organic fine particles having an average primary particle size in the range of 300 to 1000 nm, and a binder component.
    And the fluorescent substance particle content layer is arrange | positioned adjacent to the said contact bonding layer, The optical film characterized by the above-mentioned.
  8.  前記蛍光体粒子含有層が、蛍光体粒子として量子ドットを含有する量子ドット含有層であることを特徴とする請求項7に記載の光学フィルム。 The optical film according to claim 7, wherein the phosphor particle-containing layer is a quantum dot-containing layer containing quantum dots as phosphor particles.
  9.  前記接着層1の層厚が、100~500nmの範囲内であることを特徴とする請求項7又は請求項8に記載の光学フィルム。 The optical film according to claim 7 or 8, wherein the thickness of the adhesive layer 1 is in the range of 100 to 500 nm.
  10.  前記接着層1が含有する前記アクリロイル基を含む化合物が、アクリロイル基含有シランカップリングポリマーであることを特徴とする請求項7から請求項9までのいずれか一項に記載の光学フィルム。 The optical film according to any one of claims 7 to 9, wherein the compound containing the acryloyl group contained in the adhesive layer 1 is an acryloyl group-containing silane coupling polymer.
  11.  前記接着層1が、平均粒径が300~1000nmの範囲内にある有機微粒子を含有することを特徴とする請求項7から請求項10までのいずれか一項に記載の光学フィルム。 The optical film according to any one of claims 7 to 10, wherein the adhesive layer 1 contains organic fine particles having an average particle diameter in the range of 300 to 1000 nm.
  12.  前記接着層2が含有する前記無機微粒子が、シリカ粒子であることを特徴とする請求項7又は請求項8に記載の光学フィルム。 The optical film according to claim 7 or 8, wherein the inorganic fine particles contained in the adhesive layer 2 are silica particles.
  13.  前記接着層2の層厚が、前記無機微粒子の平均一次粒径以上で、かつ前記有機微粒子の平均一次粒径未満であることを特徴とする請求項7、請求項8又は請求項12に記載の光学フィルム。 The layer thickness of the said adhesion layer 2 is more than the average primary particle size of the said inorganic fine particle, and is less than the average primary particle size of the said organic fine particle, The Claim 7, 8, or 12 characterized by the above-mentioned. Optical film.
  14.  前記接着層2が、バインダー成分としてシランカップリング剤を含有することを特徴とする請求項7、請求項8、請求項12又は請求項13に記載の光学フィルム。 The optical film according to claim 7, claim 8, claim 12, or claim 13, wherein the adhesive layer 2 contains a silane coupling agent as a binder component.
  15.  前記シランカップリング剤が、ポリマータイプのシランカップリング剤であることを特徴とする請求項16に記載の光学フィルム。 The optical film according to claim 16, wherein the silane coupling agent is a polymer type silane coupling agent.
  16.  前記接着層2が、バインダー成分としてアクリロイル基含有化合物を含有することを特徴とする請求項7、請求項8、請求項12、請求項13、請求項14又は請求項15に記載の光学フィルム。 The optical film according to claim 7, 8, 12, 13, 14, or 15, wherein the adhesive layer 2 contains an acryloyl group-containing compound as a binder component.
  17.  前記アクリロイル基含有化合物が、アクリルポリマーであることを特徴とする請求項16に記載の光学フィルム。 The optical film according to claim 16, wherein the acryloyl group-containing compound is an acrylic polymer.
PCT/JP2016/072272 2015-08-21 2016-07-29 Gas barrier film, method for producing same and optical film WO2017033665A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017536707A JPWO2017033665A1 (en) 2015-08-21 2016-07-29 Gas barrier film, method for producing the same, and optical film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015163293 2015-08-21
JP2015-163294 2015-08-21
JP2015-163293 2015-08-21
JP2015163294 2015-08-21

Publications (1)

Publication Number Publication Date
WO2017033665A1 true WO2017033665A1 (en) 2017-03-02

Family

ID=58100034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072272 WO2017033665A1 (en) 2015-08-21 2016-07-29 Gas barrier film, method for producing same and optical film

Country Status (2)

Country Link
JP (1) JPWO2017033665A1 (en)
WO (1) WO2017033665A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018013724A (en) * 2016-07-22 2018-01-25 大日本印刷株式会社 Wavelength conversion sheet and barrier film used therein
CN108594356A (en) * 2018-05-08 2018-09-28 厦门佰亨源量子光电科技有限公司 A kind of aqueous quantum dot crystallite light guide plate and preparation method thereof
JP2020071481A (en) * 2018-10-29 2020-05-07 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Optical member and display device including the same
CN111423611A (en) * 2019-01-08 2020-07-17 颖华科技股份有限公司 Polymer plastic front panel and manufacturing method thereof
JP2021165852A (en) * 2020-06-29 2021-10-14 大日本印刷株式会社 Wavelength conversion sheet and barrier film used therein

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015008266A (en) * 2013-05-31 2015-01-15 三菱樹脂株式会社 Method for producing phosphor-containing silicone sheet
WO2015037733A1 (en) * 2013-09-13 2015-03-19 凸版印刷株式会社 Wavelength conversion sheet and backlight unit
WO2016125479A1 (en) * 2015-02-02 2016-08-11 富士フイルム株式会社 Wavelength conversion member, backlight unit comprising same, liquid crystal display device, and wavelength conversion member manufacturing method
WO2016125397A1 (en) * 2015-02-02 2016-08-11 三菱樹脂株式会社 Sealing film for electronic members
WO2016125524A1 (en) * 2015-02-02 2016-08-11 富士フイルム株式会社 Functional composite film and quantum dot film
WO2016140340A1 (en) * 2015-03-04 2016-09-09 コニカミノルタ株式会社 Optical film, and optical device in which same is used

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6302387B2 (en) * 2014-09-30 2018-03-28 富士フイルム株式会社 Method for manufacturing wavelength conversion member, wavelength conversion member, backlight unit, and liquid crystal display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015008266A (en) * 2013-05-31 2015-01-15 三菱樹脂株式会社 Method for producing phosphor-containing silicone sheet
WO2015037733A1 (en) * 2013-09-13 2015-03-19 凸版印刷株式会社 Wavelength conversion sheet and backlight unit
WO2016125479A1 (en) * 2015-02-02 2016-08-11 富士フイルム株式会社 Wavelength conversion member, backlight unit comprising same, liquid crystal display device, and wavelength conversion member manufacturing method
WO2016125397A1 (en) * 2015-02-02 2016-08-11 三菱樹脂株式会社 Sealing film for electronic members
WO2016125524A1 (en) * 2015-02-02 2016-08-11 富士フイルム株式会社 Functional composite film and quantum dot film
WO2016140340A1 (en) * 2015-03-04 2016-09-09 コニカミノルタ株式会社 Optical film, and optical device in which same is used

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018013724A (en) * 2016-07-22 2018-01-25 大日本印刷株式会社 Wavelength conversion sheet and barrier film used therein
CN108594356A (en) * 2018-05-08 2018-09-28 厦门佰亨源量子光电科技有限公司 A kind of aqueous quantum dot crystallite light guide plate and preparation method thereof
JP2020071481A (en) * 2018-10-29 2020-05-07 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Optical member and display device including the same
JP7423252B2 (en) 2018-10-29 2024-01-29 三星ディスプレイ株式會社 Optical member and display device including the same
CN111423611A (en) * 2019-01-08 2020-07-17 颖华科技股份有限公司 Polymer plastic front panel and manufacturing method thereof
JP2020113237A (en) * 2019-01-08 2020-07-27 穎華科技股▲ふん▼有限公司 Polymer plastic front panel and method for manufacturing the same
JP2021165852A (en) * 2020-06-29 2021-10-14 大日本印刷株式会社 Wavelength conversion sheet and barrier film used therein
JP7070767B2 (en) 2020-06-29 2022-05-18 大日本印刷株式会社 Wavelength conversion sheet and barrier film used for it

Also Published As

Publication number Publication date
JPWO2017033665A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
WO2017033665A1 (en) Gas barrier film, method for producing same and optical film
JP6825825B2 (en) Laminated thin film and manufacturing method of laminated thin film
JP6387625B2 (en) Method for producing gas barrier film
JP6207679B2 (en) Manufacturing method of laminated thin film and laminated thin film
WO2016043141A1 (en) Gas barrier film
JP7031325B2 (en) Barrier film and wavelength conversion sheet using barrier film
JP6485455B2 (en) Gas barrier film and method for producing gas barrier film
JP2011143550A (en) Gas-barrier film
JP7323266B2 (en) Barrier film for wavelength conversion sheet, wavelength conversion sheet and display device used therefor
JP4118711B2 (en) POLYMER RESIN LAMINATE, MANUFACTURING METHOD THEREOF, AND VEHICLE WINDOW MATERIAL
CN112442206B (en) Laminated film
WO2016140340A1 (en) Optical film, and optical device in which same is used
WO2017014083A1 (en) Functional film and electronic device provided with same
JP2016128927A (en) Laminated thin film and manufacturing method therefor
JP7070767B2 (en) Wavelength conversion sheet and barrier film used for it
TW201841773A (en) Functional film and device
JP7137282B2 (en) Substrate for gas barrier film, gas barrier film, electronic device member, and electronic device
WO2016140338A1 (en) Gas barrier film
WO2016140339A1 (en) Method for producing gas barrier film
WO2024075804A1 (en) Antireflection film and method for producing antireflection film
JP6911981B2 (en) Wavelength conversion sheet and barrier film used for it
JP2022063333A (en) Barrier film and wavelength conversion sheet using barrier film
JP2024055035A (en) Anti-reflection film and method for producing the same
JP2015030245A (en) Gas barrier film and method for producing the same and electronic device using the same
JP2019181949A (en) Laminate and resin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839012

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536707

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839012

Country of ref document: EP

Kind code of ref document: A1