JP2016128927A - Laminated thin film and manufacturing method therefor - Google Patents

Laminated thin film and manufacturing method therefor Download PDF

Info

Publication number
JP2016128927A
JP2016128927A JP2016025857A JP2016025857A JP2016128927A JP 2016128927 A JP2016128927 A JP 2016128927A JP 2016025857 A JP2016025857 A JP 2016025857A JP 2016025857 A JP2016025857 A JP 2016025857A JP 2016128927 A JP2016128927 A JP 2016128927A
Authority
JP
Japan
Prior art keywords
metal oxide
oxide particles
hard coat
layer
coat layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016025857A
Other languages
Japanese (ja)
Other versions
JP6787673B2 (en
JP2016128927A5 (en
Inventor
行弘 小野
Yukihiro Ono
行弘 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2016025857A priority Critical patent/JP6787673B2/en
Publication of JP2016128927A publication Critical patent/JP2016128927A/en
Publication of JP2016128927A5 publication Critical patent/JP2016128927A5/en
Application granted granted Critical
Publication of JP6787673B2 publication Critical patent/JP6787673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a laminated film that offers superior adhesion between an organic layer and inorganic layer, and a manufacturing method therefor.SOLUTION: A laminated thin film includes a hard coat layer 10 having metal oxide particles 11 exposed on a surface thereof, and an adhesive layer 12 formed on the hard coat layer 10 to cover the surface with the exposed metal oxide particles and made of an oxygen-deficient metal oxide or metal of the same type as the metal oxide particles 11. This allows the adhesive layer 12 to be strongly adhered to resin of the hard coat layer 10, and to the exposed metal oxide particles 11 even more strongly, realizing superior adhesion thereby.SELECTED DRAWING: Figure 2

Description

本発明は、有機層と無機層との密着性に優れる積層薄膜、及び積層薄膜の製造方法に関する。   The present invention relates to a laminated thin film having excellent adhesion between an organic layer and an inorganic layer, and a method for producing the laminated thin film.

積層薄膜の一例として、表面硬度が比較的高いハードコート層上にドライプロセスによるAR(Anti-Reflective)層を形成した反射防止フィルムが挙げられる(例えば、特許文献1参照。)。   An example of a laminated thin film is an antireflection film in which an AR (Anti-Reflective) layer is formed on a hard coat layer having a relatively high surface hardness by a dry process (see, for example, Patent Document 1).

しかしながら、ハードコート層は有機層であり、AR層は無機層であるため、優れた密着性を得るのが困難であった。   However, since the hard coat layer is an organic layer and the AR layer is an inorganic layer, it is difficult to obtain excellent adhesion.

特開平11−218603号公報Japanese Patent Laid-Open No. 11-218603

本発明は、このような従来の実情に鑑みて提案されたものであり、有機層と無機層との間の密着性が優れる積層薄膜、及び積層薄膜の製造方法を提供する。   This invention is proposed in view of such a conventional situation, and provides the manufacturing method of the laminated thin film which is excellent in the adhesiveness between an organic layer and an inorganic layer, and a laminated thin film.

本発明者は、鋭意検討を行った結果、金属酸化物粒子を含有するハードコート層の表面に金属酸化物粒子を露出させ、その表面に金属酸化物粒子と同種の酸素欠損状態の金属酸化物もしくは金属からなる密着層を成膜することにより、有機層と無機層との間の密着性が著しく向上することを見出した。   As a result of intensive studies, the inventor has exposed metal oxide particles on the surface of the hard coat layer containing the metal oxide particles, and the surface of the metal oxide is in the same oxygen deficiency state as the metal oxide particles. Or it discovered that the adhesiveness between an organic layer and an inorganic layer improved remarkably by forming into a film the adhesion layer which consists of metals.

すなわち、本発明に係る積層薄膜は、表面に金属酸化物粒子が露出されてなるハードコート層と、前記ハードコート層の金属酸化物粒子露出面に成膜され、前記金属酸化物粒子と同種の酸素欠損状態の金属酸化物もしくは金属からなる密着層とを備えることを特徴とする。   That is, the laminated thin film according to the present invention is formed on the hard coat layer with the metal oxide particles exposed on the surface, and the metal oxide particle exposed surface of the hard coat layer, and is the same kind as the metal oxide particles. And an adhesion layer made of an oxygen-deficient metal oxide or metal.

また、本発明に係る積層薄膜の製造方法は、金属酸化物粒子を含有するハードコート層の表面に、金属酸化物粒子を露出させる露出工程と、前記ハードコート層の金属酸化物粒子露出面に、前記金属酸化物粒子と同種の酸素欠損状態の金属酸化物もしくは金属からなる密着層を成膜する成膜工程とを有することを特徴とする。   Further, the method for producing a laminated thin film according to the present invention includes an exposing step of exposing the metal oxide particles on the surface of the hard coat layer containing the metal oxide particles, and an exposed surface of the metal oxide particles of the hard coat layer. And a film forming step of forming an adhesion layer made of a metal oxide or metal of the same oxygen deficiency state as the metal oxide particles.

本発明によれば、密着層がハードコート層の樹脂に強く付着するとともに、露出した金属酸化物粒子にさらに強固に付着するため、優れた密着性を得ることができる。   According to the present invention, since the adhesion layer adheres strongly to the resin of the hard coat layer and adheres more strongly to the exposed metal oxide particles, excellent adhesion can be obtained.

図1は、本実施の形態に係る金属酸化物粒子が露出したハードコート層を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a hard coat layer with exposed metal oxide particles according to the present embodiment. 図2は、本実施の形態に係る積層薄膜を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the laminated thin film according to the present embodiment. 図3は、本発明を適用させた反射防止フィルムを模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing an antireflection film to which the present invention is applied. 図4は、クロスハッチ試験の評価例を示す写真であり、図4(A)は剥離が生じなかった場合、図4(B)は一部に剥離が生じた場合、図4(C)は全部に剥離が生じた場合を示す。FIG. 4 is a photograph showing an evaluation example of a cross-hatch test. FIG. 4A shows a case where no peeling occurs, FIG. 4B shows a case where some peeling occurs, and FIG. The case where peeling occurred in all cases is shown. 図5(A)は、実施例3のTEM断面の写真であり、図5(B)は、比較例1のTEM断面の写真である。5A is a photograph of the TEM cross section of Example 3, and FIG. 5B is a photograph of the TEM cross section of Comparative Example 1. FIG.

以下、本発明の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.積層薄膜
2.反射防止フィルム
3.積層薄膜の製造方法
4.実施例
Hereinafter, embodiments of the present invention will be described in detail in the following order with reference to the drawings.
1. Laminated thin film 2. Antireflection film 3. Manufacturing method of laminated thin film Example

<1.積層薄膜>
図1は、本実施の形態に係る金属酸化物粒子が露出したハードコート層を模式的に示す断面図であり、図2は、本実施の形態に係る積層薄膜を模式的に示す断面図である。本実施の形態に係る積層薄膜は、表面に金属酸化物粒子11が露出されてなるハードコート層10と、ハードコート層10の金属酸化物粒子露出面に成膜され、金属酸化物粒子11と同種の酸素欠損状態の金属酸化物もしくは金属からなる密着層12とを備える。また、密着層12上に成膜され、無機層からなる機能層20をさらに備える。このような構成によれば、密着層12がハードコート層10の樹脂に強く付着するとともに、露出した金属酸化物粒子11にさらに強固に付着するため、ハードコート層10と密着層12との密着性が向上し、積層薄膜の耐擦傷性を向上させることができる。
<1. Multilayer thin film>
FIG. 1 is a cross-sectional view schematically showing a hard coat layer from which metal oxide particles according to the present embodiment are exposed, and FIG. 2 is a cross-sectional view schematically showing a laminated thin film according to the present embodiment. is there. The laminated thin film according to the present embodiment is formed on the hard coat layer 10 with the metal oxide particles 11 exposed on the surface, and on the metal oxide particle exposed surface of the hard coat layer 10. And an adhesion layer 12 made of the same kind of oxygen-deficient metal oxide or metal. In addition, a functional layer 20 formed of an inorganic layer is further provided on the adhesion layer 12. According to such a configuration, the adhesion layer 12 strongly adheres to the resin of the hard coat layer 10 and more firmly adheres to the exposed metal oxide particles 11, so that the adhesion between the hard coat layer 10 and the adhesion layer 12 is achieved. And the scratch resistance of the laminated thin film can be improved.

[ハードコート層]
ハードコート層10は、樹脂材料中に金属酸化物粒子11が分散され、表面に金属酸化物粒子11が露出されている。ハードコート層10の樹脂材料としては、例えば、紫外線硬化型樹脂、電子線硬化型樹脂、熱硬化型樹脂、熱可塑型樹脂、二液混合型樹脂などが挙げられる。これらの中でも、紫外線照射により効率良くハードコート層10を形成することができる紫外線硬化型樹脂を用いることが好ましい。
[Hard coat layer]
In the hard coat layer 10, metal oxide particles 11 are dispersed in a resin material, and the metal oxide particles 11 are exposed on the surface. Examples of the resin material of the hard coat layer 10 include an ultraviolet curable resin, an electron beam curable resin, a thermosetting resin, a thermoplastic resin, and a two-component mixed resin. Among these, it is preferable to use an ultraviolet curable resin capable of efficiently forming the hard coat layer 10 by ultraviolet irradiation.

紫外線硬化型樹脂としては、例えば、アクリル系、ウレタン系、エポキシ系、ポリエステル系、アミド系、シリコーン系などが挙げられる。これらの中でも、例えば積層薄膜を光学用途としたときに、高い透明性が得られるアクリル系を用いることが好ましい。   Examples of the ultraviolet curable resin include acrylic, urethane, epoxy, polyester, amide, and silicone. Among these, for example, when a laminated thin film is used as an optical application, it is preferable to use an acrylic system that provides high transparency.

アクリル系の紫外線硬化型樹脂は、特に限定されることはなく、2官能、3官能以上の多官能のアクリル系のモノマー、オリゴマー、ポリマー成分などから、硬度、密着性、加工性等を鑑みて適宣選択して配合することができる。また、紫外線硬化型樹脂には、光重合開始剤を配合する。   The acrylic ultraviolet curable resin is not particularly limited, and is in view of hardness, adhesion, workability, etc. from a bifunctional, trifunctional or higher polyfunctional acrylic monomer, oligomer, polymer component, etc. It can be properly selected and blended. Moreover, a photoinitiator is mix | blended with ultraviolet curable resin.

2官能アクリレート成分の具体例としては、ポリエチレングリコール(600)ジアクリレート、ジメチロール−トリシクロデカンジアクリレート、ビスフェノールAEO変性ジアクリレート、1,9−ノナンジオールジアクリレート、1,10−デカンジオールジアクリレート、プロポキシ化ビスフェノールAジアクリレート、トリシクロデカンジメタノールジアクリレート、ジエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、1,4−ブタンジオールジアクリレート、ポリエチレングリコール(200)ジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコール(400)ジアクリレート、シクロヘキサンジメタノールジアクリレートなどが挙げられる。市場で入手可能な具体例としては、例えばサートマー(株)の商品名「SR610」などを挙げることができる。   Specific examples of the bifunctional acrylate component include polyethylene glycol (600) diacrylate, dimethylol-tricyclodecane diacrylate, bisphenol AEO-modified diacrylate, 1,9-nonanediol diacrylate, 1,10-decanediol diacrylate, Propoxylated bisphenol A diacrylate, tricyclodecane dimethanol diacrylate, diethylene glycol diacrylate, neopentyl glycol diacrylate, 1,4-butanediol diacrylate, polyethylene glycol (200) diacrylate, tetraethylene glycol diacrylate, polyethylene glycol (400) Diacrylate, cyclohexane dimethanol diacrylate, etc. are mentioned. Specific examples that can be obtained on the market include the trade name “SR610” of Sartomer Co., Ltd.

3官能以上アクリレート成分の具体例としては、ペンタエリストリールトリアクリレート(PETA)、2−ヒドロキシ−3−アクリロイロキシプロピルメタクリレート、イソシアヌル酸EO変換トリアクリレート、ε−カプロラクトン変性トリス−(2−アクリロキシエチル)イソシアヌレート、トリメチロールプロパントリアクリレート(TMPTA)、ε−カプロラクトン変性トリス(アクロキシエチル)アクリレートなどが挙げられる。市場で入手可能な具体例としては、例えばサートマーの商品名「CN968」、サートマーの商品名「SR444」などを挙げることができる。   Specific examples of the tri- or higher functional acrylate component include pentaerythritol triacrylate (PETA), 2-hydroxy-3-acryloyloxypropyl methacrylate, isocyanuric acid EO-converted triacrylate, ε-caprolactone-modified tris- (2-acrylic). Roxyethyl) isocyanurate, trimethylolpropane triacrylate (TMPTA), ε-caprolactone-modified tris (acryloxyethyl) acrylate and the like. Specific examples that can be obtained in the market include Sartomer's trade name “CN968”, Sartomer's trade name “SR444”, and the like.

光重合開始剤の具体例としては、例えば、アルキルフェノン系光重合開始剤、アシルフォスフィンオキサイド系光重合開始剤、チタノセン系光重合開始剤などが挙げられる。市場で入手可能な具体例としては、1−ヒドロキシシクロヘキシルフェニルケトン(IRGACURE184、BASFジャパン(株))などを挙げることができる。   Specific examples of the photopolymerization initiator include alkylphenone photopolymerization initiators, acylphosphine oxide photopolymerization initiators, titanocene photopolymerization initiators, and the like. Specific examples that can be obtained on the market include 1-hydroxycyclohexyl phenyl ketone (IRGACURE184, BASF Japan Ltd.).

また、アクリル系の紫外線硬化型樹脂は、平滑性を向上させるためにレベリング剤を含有することが好ましい。レベリング剤の具体例としては、例えば、シリコーン系レベリング剤、フッ素系レベリング剤、アクリル系レベリング剤などが挙げられ、これらの1種又は2種以上を用いることができる。これらの中でも、塗膜性の観点からシリコーン系レベリング剤を用いることが好ましい。市場で入手可能な具体例としては、例えばビックケミー・ジャパン(株)の商品名「BYK337」(ポリエーテル変性ポリジメチルシロキサン)などを挙げることができる。   The acrylic ultraviolet curable resin preferably contains a leveling agent in order to improve smoothness. Specific examples of the leveling agent include a silicone leveling agent, a fluorine leveling agent, and an acrylic leveling agent, and one or more of these can be used. Among these, it is preferable to use a silicone leveling agent from the viewpoint of coating properties. Specific examples that can be obtained on the market include, for example, the trade name “BYK337” (polyether-modified polydimethylsiloxane) of Big Chemie Japan Co., Ltd.

また、アクリル系の紫外線硬化型樹脂に使用される溶剤は、樹脂組成物の塗布性を満足すれば特には限定されるものではないが、安全性を考慮して選ばれることが好ましい。溶剤の具体例としては、プロピレングリコールモノメチルエーテルアセテート、酢酸ブチル、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、3−メトキシプロピオン酸メチル、2−ヘプタノン、シクロヘキサノン、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールメチルエーテルなどが挙げられ、これらの1種又は2種以上を用いることができる。これらの中でも、塗布性の観点からプロピレングリコールモノメチルエーテルアセテート、酢酸ブチルを用いることが好ましい。また、アクリル系の紫外線硬化型樹脂は、前記の他に、色相調整剤、着色剤、紫外線吸収剤、帯電防止剤、各種熱可塑性樹脂材料、屈折率調整樹脂、屈折率調整粒子、密着性付与樹脂等の機能性付与剤を含有することができる。   The solvent used in the acrylic ultraviolet curable resin is not particularly limited as long as the application property of the resin composition is satisfied, but is preferably selected in consideration of safety. Specific examples of the solvent include propylene glycol monomethyl ether acetate, butyl acetate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, methyl 3-methoxypropionate, 2-heptanone, cyclohexanone, Examples thereof include ethyl carbitol acetate, butyl carbitol acetate, and propylene glycol methyl ether, and one or more of these can be used. Among these, it is preferable to use propylene glycol monomethyl ether acetate and butyl acetate from the viewpoint of coatability. In addition to the above, acrylic UV curable resins include hue adjusters, colorants, UV absorbers, antistatic agents, various thermoplastic resin materials, refractive index adjusting resins, refractive index adjusting particles, and adhesion imparting. Functionality imparting agents such as resins can be contained.

金属酸化物粒子11は、金属酸化物が粒子状になったものであり、その平均粒径は、800nm以下であることが好ましく、より好ましくは20nm以上100nm以下であることが好ましい。金属酸化物粒子11の平均粒径が大きすぎると積層薄膜を光学用途にすることが困難となり、平均粒径が小さすぎるとハードコート層10と密着層12との密着性が低下してしまう。なお、本明細書において、平均粒径とは、BET法により測定した値をいう。   The metal oxide particles 11 are formed by forming metal oxide particles, and the average particle diameter is preferably 800 nm or less, more preferably 20 nm or more and 100 nm or less. If the average particle diameter of the metal oxide particles 11 is too large, it will be difficult to make the laminated thin film into an optical application. If the average particle diameter is too small, the adhesion between the hard coat layer 10 and the adhesion layer 12 will be reduced. In addition, in this specification, an average particle diameter means the value measured by BET method.

また、金属酸化物粒子11の含有量は、ハードコート層10の樹脂組成物の固形分全体に対し、20質量%以上50質量%以下であることが好ましい。金属酸化物粒子11の含有量が少なすぎるとハードコート層10と密着層12との密着性が低下してしまい、多すぎるとハードコート層10の屈曲性などが低下してしまう。なお、樹脂組成物の固形分とは、溶剤以外の全成分であり、液状のモノマー成分も固形分に含まれる。   Moreover, it is preferable that content of the metal oxide particle 11 is 20 mass% or more and 50 mass% or less with respect to the whole solid content of the resin composition of the hard-coat layer 10. FIG. If the content of the metal oxide particles 11 is too small, the adhesion between the hard coat layer 10 and the adhesion layer 12 is lowered, and if too much, the flexibility of the hard coat layer 10 is lowered. In addition, solid content of a resin composition is all components other than a solvent, and a liquid monomer component is also contained in solid content.

金属酸化物粒子11の具体例としては、SiO(シリカ)、Al(アルミナ)、TiO(チタニア)、ZrO(ジルコニア)、CeO(セリア)、MgO(マグネシア)、ZnO、Ta、Sb、SnO、MnOなどが挙げられる。これらの中でも、例えば積層薄膜を光学用途としたときに、高い透明性が得られるシリカを用いることが好ましい。市場で入手可能な具体例としては、例えば日産化学(株)の商品名「IPA−ST−L」(シリカゾル)などを挙げることができる。また、金属酸化物粒子の表面に、樹脂との密着性や親和性を高める目的で、アクリル基、エポキシ基等の官能基を導入してもよい。 Specific examples of the metal oxide particles 11 include SiO 2 (silica), Al 2 O 3 (alumina), TiO 2 (titania), ZrO 2 (zirconia), CeO 2 (ceria), MgO (magnesia), ZnO, Examples include Ta 2 O 5 , Sb 2 O 3 , SnO 2 , and MnO 2 . Among these, for example, when a laminated thin film is used for optical purposes, it is preferable to use silica that can provide high transparency. As a specific example which can be obtained on the market, for example, trade name “IPA-ST-L” (silica sol) of Nissan Chemical Co., Ltd. can be cited. Moreover, you may introduce | transduce functional groups, such as an acryl group and an epoxy group, on the surface of a metal oxide particle in order to improve adhesiveness and affinity with resin.

図1に示すように、ハードコート層10の表面には、金属酸化物粒子11が露出され、突出している。金属酸化物粒子11の露出方法としては、後述するようにハードコート層10の樹脂を選択的にエッチング可能であれば、特に限定されず、例えば、グロー放電処理、プラズマ処理、イオンエッチング、アルカリ処理などを用いることができる。   As shown in FIG. 1, metal oxide particles 11 are exposed and protruded from the surface of the hard coat layer 10. The method for exposing the metal oxide particles 11 is not particularly limited as long as the resin of the hard coat layer 10 can be selectively etched as will be described later. For example, glow discharge treatment, plasma treatment, ion etching, alkali treatment is performed. Etc. can be used.

ハードコート層10表面に露出された金属酸化物粒子11の平均粒径に対する突出割合の平均値は、60%以下であることが好ましく、より好ましくは10%以上30%以下である。金属酸化物粒子11の突出割合が大きすぎると金属酸化物粒子11が樹脂から剥がれ易くなり、ハードコート層10と密着層12との密着性が低下してしまい、突出割合が小さすぎると密着性向上の効果が得られない。   The average value of the protrusion ratio with respect to the average particle diameter of the metal oxide particles 11 exposed on the surface of the hard coat layer 10 is preferably 60% or less, more preferably 10% or more and 30% or less. If the protruding ratio of the metal oxide particles 11 is too large, the metal oxide particles 11 are easily peeled off from the resin, and the adhesion between the hard coat layer 10 and the adhesion layer 12 is lowered. If the protruding ratio is too small, the adhesion is decreased. Improvement effect cannot be obtained.

また、ハードコート層10は、ウレタン(メタ)アクリレートオリゴマーと、3官能以上の(メタ)アクリレートモノマーと、2官能の(メタ)アクリレートモノマーと、光重合開始剤とを含有する紫外線硬化型樹脂を光重合させてなることが好ましい。このような光硬化性樹脂組成物を用いることにより、優れた硬度を有するハードコート層10を得ることができる。   The hard coat layer 10 is made of an ultraviolet curable resin containing a urethane (meth) acrylate oligomer, a tri- or higher-functional (meth) acrylate monomer, a bifunctional (meth) acrylate monomer, and a photopolymerization initiator. Photopolymerization is preferred. By using such a photocurable resin composition, the hard coat layer 10 having excellent hardness can be obtained.

[密着層]
密着層12は、ハードコート層10の金属酸化物粒子露出面に成膜され、金属酸化物粒子11と同種の酸素欠損状態の金属酸化物もしくは金属からなる。酸素欠損状態の金属酸化物としては、SiO、AlO、TiO、ZrO、CeO、MgO、ZnO、TaO、SbO、SnO、MnOなどが挙げられる。ここで、酸素欠損状態の金属酸化物とは、化学量論組成よりも酸素数が不足した状態の金属酸化物をいう。また、金属としては、Si、Al、Ti、Zr、Ce、Mg、Zn、Ta、Sb、Sn、Mnなどが挙げられる。例えば、金属酸化物粒子11がSiOの場合、密着層12のSiOにおけるxは、0以上2.0未満である。
[Adhesion layer]
The adhesion layer 12 is formed on the exposed surface of the metal oxide particles of the hard coat layer 10 and is made of the same type of oxygen-deficient metal oxide or metal as the metal oxide particles 11. Examples of the oxygen-deficient metal oxide include SiO x , AlO x , TiO x , ZrO x , CeO x , MgO x , ZnO x , TaO x , SbO x , SnO x , and MnO x . Here, the metal oxide in an oxygen deficient state refers to a metal oxide in which the number of oxygens is insufficient compared to the stoichiometric composition. Examples of the metal include Si, Al, Ti, Zr, Ce, Mg, Zn, Ta, Sb, Sn, and Mn. For example, when the metal oxide particles 11 are SiO 2 , x in SiO x of the adhesion layer 12 is 0 or more and less than 2.0.

密着層12の酸化度及び膜厚は、密着層12上に成膜される機能層20に応じて適宜設計することができる。例えば、機能層20が反射防止層(AR(Anti-Reflective)層)であり、金属酸化物粒子11としてSiOを用いた場合、密着層12のSiOにおけるxは、0以上1.9以下であることが好ましい。 The degree of oxidation and the film thickness of the adhesion layer 12 can be appropriately designed according to the functional layer 20 formed on the adhesion layer 12. For example, when the functional layer 20 is an antireflection layer (AR (Anti-Reflective) layer) and SiO 2 is used as the metal oxide particles 11, x in SiO x of the adhesion layer 12 is 0 or more and 1.9 or less. It is preferable that

[機能層]
機能層20は、密着層12上に成膜された無機層である。機能層20としては、例えば、反射防止層、位相差層、偏光層などの光学層が挙げられる。このような光学層は、例えばスパッタリングにより成膜された無機層であるため、有機層に比べ熱的な寸法安定性を向上させることができる。
[Functional layer]
The functional layer 20 is an inorganic layer formed on the adhesion layer 12. Examples of the functional layer 20 include optical layers such as an antireflection layer, a retardation layer, and a polarizing layer. Since such an optical layer is an inorganic layer formed by sputtering, for example, thermal dimensional stability can be improved as compared with an organic layer.

このような構成からなる積層薄膜は、金属酸化物粒子11によりハードコート層10と密着層12とが強固に付着するため、優れた密着性を得ることができる。特に、ハードコート層10表面に露出された金属酸化物粒子の平均粒径に対する突出割合の平均値が、60%以下、より好ましくは10%以上30%以下であることにより、キセノンランプでの耐光性試験においても、優れた密着性を得ることができる。   In the laminated thin film having such a configuration, the hard coat layer 10 and the adhesion layer 12 are firmly attached by the metal oxide particles 11, so that excellent adhesion can be obtained. In particular, when the average value of the protrusion ratio with respect to the average particle diameter of the metal oxide particles exposed on the surface of the hard coat layer 10 is 60% or less, more preferably 10% or more and 30% or less, the light resistance in the xenon lamp is reduced. Even in the property test, excellent adhesion can be obtained.

<2.反射防止フィルム>
次に、前述した積層薄膜の一例として、反射防止フィルムについて説明する。図3は、本発明を適用させた反射防止フィルムを模式的に示す断面図である。図3に示すように、反射防止フィルムは、基材30と、表面に金属酸化物粒子11が露出されてなるハードコート層10と、ハードコート層10の金属酸化物粒子露出面に成膜され、金属酸化物粒子11と同種の酸素欠損状態の金属酸化物もしくは金属からなる密着層12と、反射防止層40と、防汚層50とを備える。
<2. Antireflection film>
Next, an antireflection film will be described as an example of the laminated thin film described above. FIG. 3 is a cross-sectional view schematically showing an antireflection film to which the present invention is applied. As shown in FIG. 3, the antireflection film is formed on the base material 30, the hard coat layer 10 with the metal oxide particles 11 exposed on the surface, and the metal oxide particle exposed surface of the hard coat layer 10. And an adhesion layer 12 made of a metal oxide or metal in the same oxygen deficiency state as the metal oxide particles 11, an antireflection layer 40, and an antifouling layer 50.

基材30は、特に限定されないが、具体例としては、PET(Polyethylene terephthalate)、シクロオレフィンをモノマーとする主鎖に脂環構造をもつ樹脂(COP)、環状オレフィン(例えば、ノルボルネン類)とα−オレフィン(例えばエチレン)との付加重合により得られる樹脂(COC)、TAC(トリアセチルセルロース)などが挙げられる。基材30の厚みは、それが適用される光学装置の種類や性能により異なるが、通常、25〜200μm、好ましくは40〜150μmである。   The substrate 30 is not particularly limited, and specific examples thereof include PET (Polyethylene terephthalate), a resin (COP) having a cycloolefin as a main chain and an alicyclic structure in the main chain, a cyclic olefin (for example, norbornenes) and α. -Resin (COC) obtained by addition polymerization with olefin (for example, ethylene), TAC (triacetyl cellulose), etc. are mentioned. The thickness of the substrate 30 varies depending on the type and performance of the optical device to which it is applied, but is usually 25 to 200 μm, preferably 40 to 150 μm.

ハードコート層10及び密着層12は、前述した積層薄膜と同様である。本発明を適用させた反射防止フィルムでは、ハードコート層10の金属酸化物粒子11がSiOであり、密着層12がSiO(xは、0.5以上1.9以下)であることが好ましい。また、ハードコート層10の厚みは、通常、0.5〜20μm、好ましくは1〜15μmであり、密着層の12の膜厚は10nm以下であることが好ましい。 The hard coat layer 10 and the adhesion layer 12 are the same as the laminated thin film described above. In the antireflection film to which the present invention is applied, the metal oxide particles 11 of the hard coat layer 10 are SiO 2 , and the adhesion layer 12 is SiO x (x is 0.5 or more and 1.9 or less). preferable. Further, the thickness of the hard coat layer 10 is usually 0.5 to 20 μm, preferably 1 to 15 μm, and the film thickness of the adhesion layer 12 is preferably 10 nm or less.

反射防止層40は、スパッタリングにより誘電体からなる高屈折率層と高屈折率層よりも屈折率が低い低屈折率層とが交互に成膜されている。高屈折率の誘電体としてはNb又はTiO、低屈折率の誘電体としてはSiOが好ましく用いられる。 The antireflection layer 40 is formed by alternately forming a high refractive index layer made of a dielectric and a low refractive index layer having a lower refractive index than the high refractive index layer by sputtering. The dielectric of high refractive index Nb 2 O 5 or TiO 2, SiO 2 is preferably used as the dielectric of low refractive index.

防汚層50は、例えば、パーフルオロポリエーテル基を有するアルコキシシラン化合物の被覆層である。パーフルオロポリエーテル基を有するアルコキシシラン化合物を被覆することにより、水接触角が110度以上の撥水性を示し、防汚性を向上させることができる。   The antifouling layer 50 is, for example, a coating layer of an alkoxysilane compound having a perfluoropolyether group. By coating with an alkoxysilane compound having a perfluoropolyether group, the water contact angle is 110 ° or more and water repellency can be exhibited, and the antifouling property can be improved.

このような構成からなる反射防止フィルムは、耐擦傷性に優れるため、例えばタッチパネル用積層フィルムとして好ましく利用することができる。さらに、このようなタッチパネル用積層フィルムを、液晶表示素子や有機EL表示素子などの画像表示素子に積層することにより、スマートフォンやパーソナルコンピュータの画像表示・入力装置として好ましく適用することができる。   Since the antireflection film which consists of such a structure is excellent in abrasion resistance, it can be preferably utilized, for example as a laminated film for touch panels. Furthermore, by laminating such a laminated film for a touch panel on an image display element such as a liquid crystal display element or an organic EL display element, it can be preferably applied as an image display / input device for a smartphone or a personal computer.

<3.積層薄膜の製造方法>
本実施の形態に係る積層薄膜の製造方法は、金属酸化物粒子を含有するハードコート層の表面に、金属酸化物粒子を露出させる露出工程と、前記ハードコート層の金属酸化物粒子露出面に、前記金属酸化物粒子と同種の酸素欠損状態の金属酸化物もしくは金属からなる密着層を成膜する成膜工程とを有する。以下、露出工程、及び成膜工程について説明する。
<3. Manufacturing method of laminated thin film>
The method for producing a laminated thin film according to the present embodiment includes an exposure step of exposing metal oxide particles on the surface of a hard coat layer containing metal oxide particles, and a metal oxide particle exposed surface of the hard coat layer. And a film forming step of forming an adhesion layer made of a metal oxide or metal of the same oxygen deficiency state as the metal oxide particles. Hereinafter, the exposure process and the film forming process will be described.

[露出工程]
先ず、例えば、金属酸化物粒子11と、ウレタン(メタ)アクリレートオリゴマーと、3官能以上の(メタ)アクリレートモノマーと、2官能の(メタ)アクリレートモノマーと、光重合開始剤とを含有する紫外線硬化型樹脂組成物をディスパーなどの攪拌機を用いて常法に従って均一に混合して調整する。
[Exposure process]
First, for example, ultraviolet curing containing metal oxide particles 11, a urethane (meth) acrylate oligomer, a tri- or higher-functional (meth) acrylate monomer, a bifunctional (meth) acrylate monomer, and a photopolymerization initiator. The mold resin composition is uniformly mixed and adjusted according to a conventional method using a stirrer such as a disper.

次に、紫外線硬化型樹脂組成物を基材上に塗布する。塗布方法は、特に限定されるものではなく、公知の方法を用いることができる。公知の塗布方法としては、例えば、マイクログラビアコート法、ワイヤーバーコート法、ダイレクトグラビアコート法、ダイコート法、ディップ法、スプレーコート法、リバースロールコート法、カーテンコート法、コンマコート法、ナイフコート法、スピンコート法などが挙げられる。   Next, an ultraviolet curable resin composition is applied onto the substrate. The coating method is not particularly limited, and a known method can be used. Known coating methods include, for example, micro gravure coating method, wire bar coating method, direct gravure coating method, die coating method, dip method, spray coating method, reverse roll coating method, curtain coating method, comma coating method, knife coating method. And spin coating method.

次に、基材上の紫外線硬化型樹脂組成物を乾燥、光硬化させることによりハードコート層10を形成する。乾燥条件は特に限定されるものではなく、自然乾燥であっても、乾燥湿度や乾燥時間などを調整する人工乾燥であってもよい。但し、乾燥時に塗料表面に風を当てる場合、塗膜表面に風紋が生じないようにすることが好ましい。風紋が生じると塗布外観の悪化、表面性の厚みムラが生じるからである。なお、紫外線硬化型樹脂組成物を硬化させる光としては紫外線の他、ガンマー線、アルファー線、電子線等のエネルギー線を適用することができる。   Next, the hard coat layer 10 is formed by drying and photocuring the ultraviolet curable resin composition on the substrate. The drying conditions are not particularly limited, and may be natural drying or artificial drying that adjusts drying humidity, drying time, and the like. However, when wind is applied to the surface of the paint at the time of drying, it is preferable not to generate a wind pattern on the surface of the coating film. This is because, when a wind pattern is generated, the coating appearance is deteriorated and the surface thickness is uneven. In addition to ultraviolet rays, energy rays such as gamma rays, alpha rays, and electron beams can be applied as the light for curing the ultraviolet curable resin composition.

次に、ハードコート層10表面をエッチングし、図1に示すように、金属酸化物粒子11を露出させる。金属酸化物粒子11の露出方法としては、ハードコート層10の樹脂を選択的にエッチング可能であれば、特に限定されず、例えば、グロー放電処理、プラズマ処理、イオンエッチング、アルカリ処理などを用いることができる。これらの中でも、大面積処理が可能なグロー放電処理を用いることが好ましい。   Next, the surface of the hard coat layer 10 is etched to expose the metal oxide particles 11 as shown in FIG. The method for exposing the metal oxide particles 11 is not particularly limited as long as the resin of the hard coat layer 10 can be selectively etched. For example, glow discharge treatment, plasma treatment, ion etching, alkali treatment, or the like is used. Can do. Among these, it is preferable to use a glow discharge treatment capable of a large area treatment.

グロー放電処理は、真空に排気できる槽内に対向する2つの平板電極を配置し、該電極間を平行にフィルムが走行する処理装置にて行う。なお、本処理装置は成膜装置内に設置されていてもよい。   The glow discharge treatment is performed in a treatment apparatus in which two flat plate electrodes facing each other are placed in a tank that can be evacuated to vacuum, and a film runs in parallel between the electrodes. In addition, this processing apparatus may be installed in the film-forming apparatus.

処理室内を例えば0.01Pa以下の真空に排気後、雰囲気ガスを導入する。この時の処理室内の圧力は、グロー放電が維持できれば特に制限されないが、通常、0.1〜100Paの範囲である。雰囲気ガスとしては、主に不活性ガスが用いられるが、水素、酸素、窒素、フッ素、塩素ガスなどでもよい。また、これらの混合されたガスでもよい。不活性ガスとしてはヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドンなどが挙げられる。これらの中でも、入手の容易さからヘリウムガス、アルゴンガスが好ましく、特に価格の面においてアルゴンガスが好ましい。   After the processing chamber is evacuated to a vacuum of, for example, 0.01 Pa or less, an atmospheric gas is introduced. The pressure in the processing chamber at this time is not particularly limited as long as glow discharge can be maintained, but is usually in the range of 0.1 to 100 Pa. As the atmospheric gas, an inert gas is mainly used, but hydrogen, oxygen, nitrogen, fluorine, chlorine gas, or the like may be used. Moreover, these mixed gas may be sufficient. Examples of the inert gas include helium, neon, argon, krypton, xenon, and radon. Among these, helium gas and argon gas are preferable from the viewpoint of availability, and argon gas is particularly preferable in terms of cost.

雰囲気ガス導入後、対向する電極間に数100Vの電圧を印加することによりグロー放電が生じる。グロー放電が生じている領域をフィルムが連続的に通過することによりフィルム表面がイオン化された雰囲気ガスにより改質が行われる。   After introducing the atmospheric gas, a glow discharge is generated by applying a voltage of several hundred volts between the opposing electrodes. The film is continuously passed through the region where the glow discharge is generated, whereby the film surface is reformed by the atmosphere gas ionized.

グロー処理は放電の際のエネルギー密度(W/m)、及び処理時間(min)によりその強弱を示すことができる。また、連続巻き取り式装置の場合、処理時間は、処理領域の長さ(m)(電極のフィルムに沿った方向の長さ)を巻取り速度(m/min)にて除した値となる。処理強度は、グロー放電時の電力密度(W/m)に処理時間を乗じたものであり、下記式で示される。
処理強度(W・min/m)=電力密度(W/m)×処理領域長さ(m)÷送り速度(m/min)
The intensity of the glow treatment can be shown by the energy density (W / m 2 ) at the time of discharge and the treatment time (min). In the case of a continuous winding type apparatus, the processing time is a value obtained by dividing the length of the processing region (m) (the length of the electrode in the direction along the film) by the winding speed (m / min). . The treatment intensity is obtained by multiplying the power density (W / m 2 ) at the time of glow discharge by the treatment time, and is represented by the following formula.
Processing intensity (W · min / m 2 ) = Power density (W / m 2 ) × Processing area length (m) ÷ Feed rate (m / min)

すなわち、投入電力・送り速度を変えることにより、処理強度の異なるフィルムを作成することができる。   That is, films with different processing strengths can be created by changing the input power / feed rate.

グロー放電処理の処理強度(電力×処理時間/処理面積、単位:W・min/m)は、200〜4150W・min/mであることが好ましく、420〜2100W・min/mであることがより好ましい。処理強度が大きいほど、ハードコート層表面でプラズマが多く生成し、金属酸化物粒子11の突出割合が大きくなる。 Processing the intensity of the glow discharge treatment (electric power × treatment time / process area, unit: W · min / m 2) is preferably 200~4150W · min / m 2, is 420~2100W · min / m 2 It is more preferable. As the treatment strength increases, more plasma is generated on the surface of the hard coat layer, and the protrusion ratio of the metal oxide particles 11 increases.

金属酸化物粒子11の平均粒径に対する突出割合の平均値は、60%以下であることが好ましく、より好ましくは10%以上30%以下である。金属酸化物粒子11の突出割合が大きすぎると金属酸化物粒子11が樹脂から剥がれ易くなり、有機層と無機層との密着性が低下してしまい、突出割合が小さすぎると密着性向上の効果が得られない。   The average value of the protrusion ratio with respect to the average particle diameter of the metal oxide particles 11 is preferably 60% or less, more preferably 10% or more and 30% or less. When the protruding ratio of the metal oxide particles 11 is too large, the metal oxide particles 11 are easily peeled off from the resin, the adhesion between the organic layer and the inorganic layer is lowered, and when the protruding ratio is too small, the effect of improving the adhesion is achieved. Cannot be obtained.

また、エッチング後のハードコート層表面の算術平均粗さRaは、2nm以上12nm以下であることが好ましく、4nm以上8nm以下であることがより好ましい。ハードコート層表面の算術平均粗さRaが小さすぎると金属酸化物粒子11の突出割合が十分ではなく、算術平均粗さRaが大きすぎるとハードコート層10から金属酸化物粒子11が剥がれ易くなる傾向にある。   Further, the arithmetic average roughness Ra of the hard coat layer surface after etching is preferably 2 nm or more and 12 nm or less, and more preferably 4 nm or more and 8 nm or less. When the arithmetic average roughness Ra of the hard coat layer surface is too small, the protruding ratio of the metal oxide particles 11 is not sufficient, and when the arithmetic average roughness Ra is too large, the metal oxide particles 11 are easily peeled off from the hard coat layer 10. There is a tendency.

[成膜工程]
成膜工程では、ハードコート層10の金属酸化物粒子露出面に、金属酸化物粒子11と同種の酸素欠損状態の金属酸化物もしくは金属からなる密着層12を成膜する。密着層12の成膜方法としては、ターゲットを用いたスパッタリングを用いることが好ましい。例えば、SiOx膜を成膜する場合、シリコンターゲットを用い、酸素ガスとアルゴンガスの混合ガス雰囲気による反応性スパッタリングを用いることが好ましい。また、密着層12上に成膜される反射防止層、位相差層、偏光層などの機能層20も、スパッタリングにより成膜することができるため、生産性の向上を図ることができる。
[Film formation process]
In the film forming step, an adhesion layer 12 made of a metal oxide or metal of the same oxygen deficiency state as the metal oxide particles 11 is formed on the metal oxide particle exposed surface of the hard coat layer 10. As a method for forming the adhesion layer 12, it is preferable to use sputtering using a target. For example, when forming a SiOx film, it is preferable to use a silicon target and reactive sputtering in a mixed gas atmosphere of oxygen gas and argon gas. In addition, since the functional layer 20 such as an antireflection layer, a retardation layer, or a polarizing layer formed on the adhesion layer 12 can also be formed by sputtering, productivity can be improved.

このように金属酸化物粒子を露出させたハードコート層10上に密着層12を成膜することにより、密着層12とハードコート層10の樹脂との大きい付着力に加え、密着層12と金属酸化物粒子11とのさらに大きい付着力が得られるため、優れた密着性を得ることができる。   By forming the adhesion layer 12 on the hard coat layer 10 from which the metal oxide particles are exposed in this way, in addition to the large adhesion between the adhesion layer 12 and the resin of the hard coat layer 10, the adhesion layer 12 and the metal Since even greater adhesion with the oxide particles 11 is obtained, excellent adhesion can be obtained.

<4.実施例>
本実施例では、反射防止フィルムを作製し、クロスハッチ試験によりハードコート層とAR層との密着性を評価した。なお、本発明はこれらの実施例に限定されるものではない。
<4. Example>
In this example, an antireflection film was produced, and the adhesion between the hard coat layer and the AR layer was evaluated by a cross hatch test. The present invention is not limited to these examples.

<4.1 第1の実施例>
第1の実施例では、ハードコート層表面のフィラーの突出割合の密着性への影響について検証した。ハードコート層表面のフィラーの突出高さ及び突出割合の算出、ハードコート層の表面粗さRaの測定、及び、反射防止フィルムのクロスハッチ試験の評価は、次のように行った。
<4.1 First Example>
In the first example, the influence of the protrusion ratio of the filler on the surface of the hard coat layer on the adhesion was verified. Calculation of the protrusion height and protrusion ratio of the filler on the surface of the hard coat layer, measurement of the surface roughness Ra of the hard coat layer, and evaluation of the cross-hatch test of the antireflection film were performed as follows.

[ハードコート層表面のフィラーの突出高さ及び突出割合の算出]
透過型電子顕微鏡(Transmission Electron Microscope:TEM)を用いて、反射防止フィルムの断面を観察して、ハードコート層表面のフィラーの突出高さの最低値及び最高値を測定した。そして、フィラーの突出高さの最低値及び最高値のそれぞれに対してフィラーの平均粒径を除し、フィラーの平均粒径に対する突出割合の最低値(%)及び最高値(%)を算出した。また、フィラーの平均粒径に対する突出割合の最低値(%)及び最高値(%)からフィラーの平均粒径に対する突出割合の平均値(%)を算出した。
[Calculation of protrusion height and protrusion ratio of filler on hard coat layer surface]
Using a transmission electron microscope (TEM), the cross section of the antireflection film was observed to measure the minimum and maximum protrusion heights of the filler on the hard coat layer surface. Then, the average particle size of the filler was divided with respect to the minimum value and the maximum value of the protrusion height of the filler, and the minimum value (%) and the maximum value (%) of the protrusion ratio with respect to the average particle size of the filler were calculated. . Moreover, the average value (%) of the protrusion ratio with respect to the average particle diameter of the filler was calculated from the minimum value (%) and the maximum value (%) of the protrusion ratio with respect to the average particle diameter of the filler.

[ハードコート層の表面粗さRaの測定]
原子間力顕微鏡(Atomic Force Microscopy:AFM)を用いて、ハードコート層表面の算術平均粗さRaを測定した。
[Measurement of surface roughness Ra of hard coat layer]
The arithmetic average roughness Ra of the hard coat layer surface was measured using an atomic force microscope (AFM).

[クロスハッチ試験の評価]
反射防止フィルムの表面に1mm×1mmのクロスハッチ(升目)を100個形成した。そして、初期におけるクロスハッチ面の表面状態を観察して評価した。また、アルコールワイプ摺動試験を行った後、クロスハッチ面の表面状態を観察して評価した。また、温度90℃−Dry(低湿度)−時間500hの環境投入後にアルコールワイプ摺動試験を行った後、クロスハッチ面の表面状態を観察して評価した。また、温度60℃−湿度95%−時間500hの環境投入後にアルコールワイプ摺動試験を行った後、クロスハッチ面の表面状態を観察して評価した。また、キセノン照射(キセノンアークランプ、7.5kW)−時間60hの環境投入後にアルコールワイプ摺動試験を行った後、クロスハッチ面の表面状態を観察した。なお、アルコールワイプ摺動試験は、クロスハッチ面に対し、エチルアルコールを塗布したワイプを荷重250g/cmにて反射防止フィルムに押し付けて、10cmの距離を往復500回摺動させて行った。
[Evaluation of cross-hatch test]
100 cross hatches of 1 mm × 1 mm were formed on the surface of the antireflection film. And the surface state of the cross hatch surface in the initial stage was observed and evaluated. Moreover, after performing the alcohol wipe sliding test, the surface state of the cross hatch surface was observed and evaluated. Further, after an alcohol wipe sliding test was performed after the environment was introduced at a temperature of 90 ° C.-Dry (low humidity) -time of 500 h, the surface state of the cross hatch surface was observed and evaluated. Further, after an alcohol wipe sliding test was performed after the environment was introduced at a temperature of 60 ° C., a humidity of 95%, and a time of 500 hours, the surface state of the cross hatch surface was observed and evaluated. Further, after an alcohol wipe sliding test was performed after the xenon irradiation (xenon arc lamp, 7.5 kW) -time 60 h was applied, the surface state of the cross hatch surface was observed. The alcohol wipe sliding test was performed by pressing a wipe coated with ethyl alcohol against the anti-reflection film with a load of 250 g / cm 2 against the cross hatch surface, and sliding it back and forth 500 times a distance of 10 cm.

クロスハッチ試験の評価は、クロスハッチ面の表面状態を観察した結果、図4(A)のようにクロスハッチに剥離が生じなかった場合を○、図4(B)のようにクロスハッチの一部に剥離が生じた場合を△、図4(C)のようにクロスハッチの全部に剥離が生じた場合を×とした。   As a result of observing the surface state of the cross-hatch surface, the cross-hatch test was evaluated when the cross-hatch surface did not peel as shown in FIG. 4 (A), and the cross-hatch test as shown in FIG. 4 (B). The case where peeling occurred in the part was Δ, and the case where peeling occurred in the entire cross hatch as shown in FIG.

[実施例1]
平均粒径50nmのシリカ粒子の含有量が、樹脂組成物の固形分全体に対し、28質量%である光硬化性の樹脂組成物を準備した。樹脂組成物は、表1に示すように、シリカ粒子、アクリレート、レベリング剤、及び光重合開始剤を溶剤に溶解させて調製した。
[Example 1]
A photocurable resin composition in which the content of silica particles having an average particle diameter of 50 nm was 28% by mass with respect to the entire solid content of the resin composition was prepared. As shown in Table 1, the resin composition was prepared by dissolving silica particles, acrylate, leveling agent, and photopolymerization initiator in a solvent.

基材としてPETフィルムを用い、PETフィルム上に上記光硬化性の樹脂組成物をバーコーターにて塗布した後、樹脂組成物を光重合させ、厚み5μmのハードコート層を形成した。   A PET film was used as a substrate, and the photocurable resin composition was applied onto the PET film with a bar coater, and then the resin composition was photopolymerized to form a hard coat layer having a thickness of 5 μm.

次に、グロー放電処理の処理強度を8300W・min/mにしてハードコート層の表面処理を行った。表2に、実施例1におけるハードコート層表面のフィラーの突出高さ、フィラーの突出割合、及び表面粗さRaを示す。 Next, the surface treatment of the hard coat layer was performed at a glow discharge treatment strength of 8300 W · min / m 2 . Table 2 shows the protrusion height of the filler on the surface of the hard coat layer in Example 1, the protrusion ratio of the filler, and the surface roughness Ra.

グロー放電処理後、スパッタリングにより厚み10nmのSiOからなる密着層を成膜し、密着層上にNb膜、SiO膜、Nb膜、及びSiO膜とからなるAR層を成膜した。さらに、AR層上にパーフルオロポリエーテル基を有するアルコキシシラン化合物からなる厚み10nmの防汚層を形成し、実施例1の反射防止フィルムを作製した。この反射防止フィルムの反射率は0.5%以下であり、水接触角は110度以上であった。表2に、実施例1における反射防止フィルムのクロスハッチ試験の評価を示す。 After the glow discharge treatment, an adhesion layer made of SiO x having a thickness of 10 nm is formed by sputtering, and an AR layer made of an Nb 2 O 5 film, an SiO 2 film, an Nb 2 O 5 film, and an SiO 2 film on the adhesion layer Was deposited. Further, an antifouling layer having a thickness of 10 nm made of an alkoxysilane compound having a perfluoropolyether group was formed on the AR layer, and the antireflection film of Example 1 was produced. The reflectance of this antireflection film was 0.5% or less, and the water contact angle was 110 degrees or more. Table 2 shows the evaluation of the cross-hatch test of the antireflection film in Example 1.

[実施例2]
グロー放電処理の処理強度を4200W・min/mにしてハードコート層の表面処理を行ったこと以外は、実施例1と同様にして反射防止フィルムを作製した。表2に、実施例2におけるハードコート層表面のフィラーの突出高さ、フィラーの突出割合、表面粗さRa、及び反射防止フィルムのクロスハッチ試験の評価を示す。
[Example 2]
An antireflection film was produced in the same manner as in Example 1 except that the surface treatment of the hard coat layer was performed with the glow discharge treatment intensity set to 4200 W · min / m 2 . Table 2 shows the protrusion height of the filler on the surface of the hard coat layer in Example 2, the protrusion ratio of the filler, the surface roughness Ra, and the evaluation of the cross-hatch test of the antireflection film.

[実施例3]
グロー放電処理の処理強度を2100W・min/mにしてハードコート層の表面処理を行ったこと以外は、実施例1と同様にして反射防止フィルムを作製した。表2に、実施例3におけるハードコート層表面のフィラーの突出高さ、フィラーの突出割合、表面粗さRa、及び反射防止フィルムのクロスハッチ試験の評価を示す。
[Example 3]
An antireflection film was produced in the same manner as in Example 1 except that the surface treatment of the hard coat layer was performed with the glow discharge treatment intensity set to 2100 W · min / m 2 . Table 2 shows the protrusion height of the filler on the hard coat layer surface in Example 3, the protrusion ratio of the filler, the surface roughness Ra, and the evaluation of the cross-hatch test of the antireflection film.

[実施例4]
グロー放電処理の処理強度を830W・min/mにしてハードコート層の表面処理を行ったこと以外は、実施例1と同様にして反射防止フィルムを作製した。表2に、実施例4におけるハードコート層表面のフィラーの突出高さ、フィラーの突出割合、表面粗さRa、及び反射防止フィルムのクロスハッチ試験の評価を示す。
[Example 4]
An antireflection film was produced in the same manner as in Example 1 except that the surface treatment of the hard coat layer was performed with the glow discharge treatment intensity of 830 W · min / m 2 . Table 2 shows the protrusion height of the filler on the surface of the hard coat layer in Example 4, the protrusion ratio of the filler, the surface roughness Ra, and the evaluation of the cross-hatch test of the antireflection film.

[実施例5]
グロー放電処理の処理強度を420W・min/mにしてハードコート層の表面処理を行ったこと以外は、実施例1と同様にして反射防止フィルムを作製した。表2に、実施例5におけるハードコート層表面のフィラーの突出高さ、フィラーの突出割合、表面粗さRa、及び反射防止フィルムのクロスハッチ試験の評価を示す。
[Example 5]
An antireflection film was produced in the same manner as in Example 1 except that the surface treatment of the hard coat layer was performed with a glow discharge treatment intensity of 420 W · min / m 2 . Table 2 shows the protrusion height of the filler on the hard coat layer surface in Example 5, the protrusion ratio of the filler, the surface roughness Ra, and the evaluation of the cross-hatch test of the antireflection film.

[実施例6]
グロー放電処理の処理強度を200W・min/mにしてハードコート層の表面処理を行ったこと以外は、実施例1と同様にして反射防止フィルムを作製した。表2に、実施例6におけるハードコート層表面のフィラーの突出高さ、フィラーの突出割合、表面粗さRa、及び反射防止フィルムのクロスハッチ試験の評価を示す。
[Example 6]
An antireflection film was produced in the same manner as in Example 1 except that the surface treatment of the hard coat layer was performed with the glow discharge treatment intensity of 200 W · min / m 2 . Table 2 shows the protrusion height of the filler on the surface of the hard coat layer in Example 6, the protrusion ratio of the filler, the surface roughness Ra, and the evaluation of the cross-hatch test of the antireflection film.

[実施例7]
グロー放電処理の処理強度を420W・min/mにしてハードコート層の表面処理を行ったこと、及びグロー放電処理後、スパッタリングにより厚み10nmのSiからなる密着層を成膜したこと以外は、実施例1と同様にして反射防止フィルムを作製した。表2に、実施例7におけるハードコート層表面のフィラーの突出高さ、フィラーの突出割合、表面粗さRa、及び反射防止フィルムのクロスハッチ試験の評価を示す。
[Example 7]
Except that the surface treatment of the hard coat layer was performed with the treatment intensity of the glow discharge treatment being 420 W · min / m 2 and that the adhesion layer made of Si having a thickness of 10 nm was formed by sputtering after the glow discharge treatment. An antireflection film was produced in the same manner as in Example 1. Table 2 shows the protrusion height of the filler on the hard coat layer surface in Example 7, the protrusion ratio of the filler, the surface roughness Ra, and the evaluation of the cross-hatch test of the antireflection film.

[比較例1]
グロー放電処理を行わなかったこと以外は、実施例1と同様にして反射防止フィルムを作製した。表2に、比較例1におけるハードコート層表面のフィラーの突出高さ、フィラーの突出割合、表面粗さRa、及び反射防止フィルムのクロスハッチ試験の評価を示す。
[Comparative Example 1]
An antireflection film was produced in the same manner as in Example 1 except that the glow discharge treatment was not performed. Table 2 shows the protrusion height of the filler on the surface of the hard coat layer in Comparative Example 1, the protrusion ratio of the filler, the surface roughness Ra, and the evaluation of the cross-hatch test of the antireflection film.

[比較例2]
樹脂組成物にシリカ粒子を配合しなかったこと、及びグロー放電処理の処理強度を830W・min/mにしてハードコート層の表面処理を行ったこと以外は、実施例1と同様にして反射防止フィルムを作製した。表2に、比較例2における表面粗さRa、及び反射防止フィルムのクロスハッチ試験の評価を示す。
[Comparative Example 2]
Reflection was carried out in the same manner as in Example 1 except that no silica particles were blended in the resin composition and that the surface treatment of the hard coat layer was performed with the glow discharge treatment intensity set to 830 W · min / m 2. A prevention film was prepared. Table 2 shows the surface roughness Ra in Comparative Example 2 and the evaluation of the cross-hatch test of the antireflection film.

[比較例3]
グロー放電処理の処理強度を830W・min/mにしてハードコート層の表面処理を行ったこと、及び密着層としてSiOを成膜した以外は、実施例1と同様にして反射防止フィルムを作製した。表2に、比較例3におけるハードコート層表面のフィラーの突出高さ、フィラーの突出割合、表面粗さRa、及び反射防止フィルムのクロスハッチ試験の評価を示す。
[Comparative Example 3]
An antireflection film was prepared in the same manner as in Example 1 except that the surface treatment of the hard coat layer was performed with a glow discharge treatment intensity of 830 W · min / m 2 and SiO 2 was formed as an adhesion layer. Produced. Table 2 shows the protrusion height of the filler on the hard coat layer surface in Comparative Example 3, the protrusion ratio of the filler, the surface roughness Ra, and the evaluation of the cross-hatch test of the antireflection film.



比較例1のようにシリカ粒子を露出させなかった場合、アルコールワイプによる摺動試験において、クロスハッチの全部に剥離が生じた。また、比較例2のようにシリカ粒子を配合せずに表面処理を行った場合、比較例1と同様に、アルコールワイプによる摺動試験において、クロスハッチの全部に剥離が生じた。また、比較例3のように密着層としてSiOを成膜した場合、比較例1と同様に、アルコールワイプによる摺動試験において、クロスハッチの全部に剥離が生じた。 When the silica particles were not exposed as in Comparative Example 1, peeling occurred on the entire cross hatch in the sliding test using an alcohol wipe. Further, when the surface treatment was performed without blending silica particles as in Comparative Example 2, all the cross hatches were peeled off in the sliding test with alcohol wipes as in Comparative Example 1. Further, when SiO 2 was formed as an adhesion layer as in Comparative Example 3, as in Comparative Example 1, peeling occurred in the entire cross hatch in the sliding test using alcohol wipe.

一方、実施例1〜7のようにシリカ粒子を露出させることにより、アルコールワイプによる摺動試験において、密着性の向上が見られた。また、図5(A)に示す実施例3のTEM断面の写真と、図5(B)に示す比較例1のTEM断面の写真とを比較すると、実施例3ではハードコート層と密着層との界面がシリカ粒子の露出よる円弧形状であるのに対し、比較例1では直線状であることからも、シリカ粒子の露出が密着性の向上に寄与することがわかる。   On the other hand, when silica particles were exposed as in Examples 1 to 7, adhesion was improved in a sliding test using an alcohol wipe. Moreover, when the photograph of the TEM cross section of Example 3 shown to FIG. 5 (A) and the photograph of the TEM cross section of the comparative example 1 shown to FIG. 5 (B) are compared, in Example 3, a hard-coat layer, an adhesion layer, and It can be seen that the exposure of the silica particles contributes to the improvement of the adhesion, since the interface of this is a circular arc shape due to the exposure of the silica particles, but is a linear shape in Comparative Example 1.

また、金属酸化物粒子の平均粒径に対する突出割合の平均値が60%以下、特に10%以上30%以下であることにより、アルコールワイプによる摺動試験において、優れた評価結果を得ることができた。   Moreover, when the average value of the protrusion ratio with respect to the average particle diameter of the metal oxide particles is 60% or less, particularly 10% or more and 30% or less, an excellent evaluation result can be obtained in a sliding test using an alcohol wipe. It was.

<4.2 第2の実施例>
第2の実施例では、ハードコート層のフィラーの平均粒径、添加量の密着性への影響について検証した。また、ハードコート層のフィラーと密着層の種類の密着性への影響について検証した。また、グロー放電処理以外の表面処理方法について検討した。なお、反射防止フィルムのクロスハッチ試験の評価は、第1の実施例と同様に行った。
<4.2 Second Embodiment>
In the second example, the influence of the average particle diameter of the filler of the hard coat layer and the addition amount on the adhesion was verified. Moreover, it verified about the influence on the adhesiveness of the filler of a hard-coat layer, and the kind of contact | adherence layer. In addition, surface treatment methods other than glow discharge treatment were studied. The evaluation of the anti-reflection film cross-hatch test was performed in the same manner as in the first example.

[実施例8]
表3に示すように、平均粒径100nmのシリカ粒子(商品名:MEK−ST−Z、日産化学工業株式会社)の含有量が、樹脂組成物の固形分全体に対し、33質量%である光硬化性の樹脂組成物を準備した以外は、実施例4と同様にして反射防止フィルムを作製した。表3に、実施例8における反射防止フィルムのクロスハッチ試験の評価を示す。
[Example 8]
As shown in Table 3, the content of silica particles having an average particle diameter of 100 nm (trade name: MEK-ST-Z, Nissan Chemical Industries, Ltd.) is 33% by mass with respect to the entire solid content of the resin composition. An antireflection film was produced in the same manner as in Example 4 except that a photocurable resin composition was prepared. Table 3 shows the evaluation of the cross-hatch test of the antireflection film in Example 8.

[実施例9]
表3に示すように、平均粒径20nmのシリカ粒子(商品名:MEK−ST−40、日産化学工業株式会社)の含有量が、樹脂組成物の固形分全体に対し、33質量%である光硬化性の樹脂組成物を準備した以外は、実施例4と同様にして反射防止フィルムを作製した。表3に、実施例9における反射防止フィルムのクロスハッチ試験の評価を示す。
[Example 9]
As shown in Table 3, the content of silica particles having an average particle diameter of 20 nm (trade name: MEK-ST-40, Nissan Chemical Industries, Ltd.) is 33% by mass with respect to the entire solid content of the resin composition. An antireflection film was produced in the same manner as in Example 4 except that a photocurable resin composition was prepared. Table 3 shows the evaluation of the cross-hatch test of the antireflection film in Example 9.

[実施例10]
表3に示すように、平均粒径50nmのシリカ粒子(IPA−ST−L、日産化学(株))の含有量が、樹脂組成物の固形分全体に対し、20質量%である光硬化性の樹脂組成物を準備した以外は、実施例4と同様にして反射防止フィルムを作製した。表3に、実施例10における反射防止フィルムのクロスハッチ試験の評価を示す。
[Example 10]
As shown in Table 3, the content of silica particles having an average particle diameter of 50 nm (IPA-ST-L, Nissan Chemical Co., Ltd.) is 20% by mass with respect to the entire solid content of the resin composition. An antireflection film was produced in the same manner as in Example 4 except that the resin composition was prepared. Table 3 shows the evaluation of the cross-hatch test of the antireflection film in Example 10.

[実施例11]
表3に示すように、平均粒径50nmのシリカ粒子(IPA−ST−L、日産化学(株))の含有量が、樹脂組成物の固形分全体に対し、50質量%である光硬化性の樹脂組成物を準備した以外は、実施例4と同様にして反射防止フィルムを作製した。表3に、実施例11における反射防止フィルムのクロスハッチ試験の評価を示す。
[Example 11]
As shown in Table 3, the content of silica particles having an average particle diameter of 50 nm (IPA-ST-L, Nissan Chemical Co., Ltd.) is 50% by mass with respect to the entire solid content of the resin composition. An antireflection film was produced in the same manner as in Example 4 except that the resin composition was prepared. Table 3 shows the evaluation of the cross-hatch test of the antireflection film in Example 11.

[比較例4]
表3に示すように、平均粒径50nmのシリカ粒子(IPA−ST−L、日産化学(株))の含有量が、樹脂組成物の固形分全体に対し、10質量%である光硬化性の樹脂組成物を準備した以外は、実施例4と同様にして反射防止フィルムを作製した。表3に、比較例4における反射防止フィルムのクロスハッチ試験の評価を示す。
[Comparative Example 4]
As shown in Table 3, the content of silica particles having an average particle diameter of 50 nm (IPA-ST-L, Nissan Chemical Co., Ltd.) is 10% by mass with respect to the entire solid content of the resin composition. An antireflection film was produced in the same manner as in Example 4 except that the resin composition was prepared. Table 3 shows the evaluation of the cross-hatch test of the antireflection film in Comparative Example 4.

[比較例5]
表3に示すように、平均粒径1μmのアクリル粒子(商品名:SSX−101、積水化成工業(株))の含有量が、樹脂組成物の固形分全体に対し、3質量%である光硬化性の樹脂組成物を準備した以外は、実施例4と同様にして反射防止フィルムを作製した。表3に、比較例5における反射防止フィルムのクロスハッチ試験の評価を示す。
[Comparative Example 5]
As shown in Table 3, light having an average particle size of 1 μm acrylic particles (trade name: SSX-101, Sekisui Chemical Co., Ltd.) is 3% by mass with respect to the total solid content of the resin composition. An antireflection film was produced in the same manner as in Example 4 except that a curable resin composition was prepared. Table 3 shows the evaluation of the cross-hatch test of the antireflection film in Comparative Example 5.

[比較例6]
表3に示すように、グロー放電処理に代えてコロナ処理を行った以外は、実施例4と同様にして反射防止フィルムを作製した。表3に、比較例6における反射防止フィルムのクロスハッチ試験の評価を示す。
[Comparative Example 6]
As shown in Table 3, an antireflection film was produced in the same manner as in Example 4 except that the corona treatment was performed instead of the glow discharge treatment. Table 3 shows the evaluation of the cross-hatch test of the antireflection film in Comparative Example 6.

[比較例7]
表3に示すように、グロー放電処理に代えて、5%NaOH、25℃、30秒間のアルカリ処理を行った以外は、実施例4と同様にして反射防止フィルムを作製した。表3に、比較例7における反射防止フィルムのクロスハッチ試験の評価を示す。
[Comparative Example 7]
As shown in Table 3, an antireflection film was produced in the same manner as in Example 4 except that 5% NaOH, 25 ° C., and 30 seconds of alkali treatment were performed instead of the glow discharge treatment. Table 3 shows the evaluation of the cross-hatch test of the antireflection film in Comparative Example 7.

[実施例12]
表3に示すように、グロー放電処理に代えて、5%NaOH、45℃、2分間のアルカリ処理を行った以外は、実施例4と同様にして反射防止フィルムを作製した。表3に、実施例12における反射防止フィルムのクロスハッチ試験の評価を示す。
[Example 12]
As shown in Table 3, an antireflection film was produced in the same manner as in Example 4 except that 5% NaOH, 45 ° C., and 2 minutes of alkali treatment were performed instead of the glow discharge treatment. Table 3 shows the evaluation of the cross-hatch test of the antireflection film in Example 12.

[実施例13]
表3に示すように、グロー放電処理に代えて、5%NaOH、45℃、5分間のアルカリ処理を行った以外は、実施例4と同様にして反射防止フィルムを作製した。表3に、実施例13における反射防止フィルムのクロスハッチ試験の評価を示す。
[Example 13]
As shown in Table 3, an antireflection film was produced in the same manner as in Example 4 except that 5% NaOH, 45 ° C., and 5 minutes of alkali treatment were performed instead of the glow discharge treatment. Table 3 shows the evaluation of the cross-hatch test of the antireflection film in Example 13.


比較例4のようにシリカ粒子の添加量が少ない場合、アルコールワイプによる摺動試験において、クロスハッチの全部に剥離が生じた。また、比較例5のようにシリカ粒子の代わりにアクリル粒子を用いた場合、比較例4と同様に、アルコールワイプによる摺動試験において、クロスハッチの全部に剥離が生じた。   When the addition amount of silica particles was small as in Comparative Example 4, peeling occurred in the entire cross hatch in the sliding test using alcohol wipe. Further, when acrylic particles were used instead of silica particles as in Comparative Example 5, as in Comparative Example 4, in the sliding test with alcohol wipe, peeling occurred on the entire cross hatch.

一方、実施例8〜11のように平均粒径が20nm以上100nm以下のシリカ粒子を
樹脂組成物の固形分全体に対し、20質量%以上50質量%以下の範囲で含有させた場合、アルコールワイプによる摺動試験において、密着性の向上が見られた。
On the other hand, when silica particles having an average particle diameter of 20 nm or more and 100 nm or less are contained in the range of 20% by mass or more and 50% by mass or less with respect to the entire solid content of the resin composition as in Examples 8 to 11, alcohol wipes In the sliding test, the improvement in adhesion was observed.

また、比較例6のように表面処理としてコロナ処理を行った場合、アルコールワイプによる摺動試験において、クロスハッチの全部に剥離が生じた。また、比較例7のように表面処理として5%NaOH、25℃、30秒間のアルカリ処理を行った場合も、アルコールワイプによる摺動試験において、クロスハッチの全部に剥離が生じた。   Further, when the corona treatment was performed as the surface treatment as in Comparative Example 6, peeling occurred on the entire cross hatch in the sliding test using the alcohol wipe. In addition, as in Comparative Example 7, when the surface treatment was performed with an alkali treatment of 5% NaOH, 25 ° C., and 30 seconds, peeling occurred on the entire cross hatch in the sliding test using an alcohol wipe.

一方、実施例12、13のように、アルカリ処理を加温して行った場合、アルコールワイプによる摺動試験において、密着性の向上が見られた。また、アルカリ処理を加温して行った場合、グロー放電処理を行った場合に比べて、アルコールワイプによる摺動試験の評価が悪かった。これはアルカリ処理が湿式処理であるため、ハードコート層と密着層との界面のシリカ粒子の露出よる形状が直線状になってしまったためと考えられる。   On the other hand, when the alkali treatment was carried out as in Examples 12 and 13, an improvement in adhesion was observed in a sliding test using an alcohol wipe. In addition, when the alkali treatment was performed with warming, the evaluation of the sliding test with an alcohol wipe was worse than when the glow discharge treatment was performed. This is probably because the alkali treatment is a wet treatment, and the shape of the exposed silica particles at the interface between the hard coat layer and the adhesion layer is linear.

10 ハードコート層、11 金属酸化物粒子、12 密着層、20 機能層、30 基材、40 反射防止層、50 防汚層
DESCRIPTION OF SYMBOLS 10 Hard coat layer, 11 Metal oxide particle, 12 Adhesion layer, 20 Functional layer, 30 Base material, 40 Antireflection layer, 50 Antifouling layer

Claims (10)

表面に金属酸化物粒子が露出されてなるハードコート層と、
前記ハードコート層の金属酸化物粒子露出面に成膜され、前記金属酸化物粒子と同種の酸素欠損状態の金属酸化物もしくは金属からなる密着層と
を備える積層薄膜。
A hard coat layer in which metal oxide particles are exposed on the surface;
A laminated thin film comprising: a metal oxide particle exposed surface of the hard coat layer, and an adhesion layer made of a metal oxide or metal of the same oxygen deficiency state as the metal oxide particles.
前記ハードコート層表面に露出された金属酸化物粒子の平均粒径に対する突出割合の平均値が、60%以下である請求項1記載の積層薄膜。   2. The laminated thin film according to claim 1, wherein the average value of the protrusion ratio with respect to the average particle diameter of the metal oxide particles exposed on the surface of the hard coat layer is 60% or less. 前記ハードコート層表面に露出された金属酸化物粒子の平均粒径に対する突出割合の平均値が、10%以上30%以下である請求項1記載の積層薄膜。   2. The laminated thin film according to claim 1, wherein the average value of the protrusion ratio with respect to the average particle diameter of the metal oxide particles exposed on the surface of the hard coat layer is 10% or more and 30% or less. 前記金属酸化物粒子の平均粒径が、20nm以上100nm以下である請求項1乃至3のいずれか1項に記載の積層薄膜。   The laminated thin film according to any one of claims 1 to 3, wherein an average particle diameter of the metal oxide particles is 20 nm or more and 100 nm or less. 前記金属酸化物粒子の含有量が、前記ハードコート層の樹脂組成物の固形分全体に対し、20質量%以上50質量%以下である請求項1乃至4のいずれか1項に記載の積層薄膜。   5. The laminated thin film according to claim 1, wherein the content of the metal oxide particles is 20% by mass or more and 50% by mass or less based on the entire solid content of the resin composition of the hard coat layer. . 前記金属酸化物粒子が、SiOからなり、
前記密着層が、SiO(0≦x<2)からなる請求項1乃至5のいずれか1項に記載の積層薄膜。
The metal oxide particles are made of SiO 2 ;
The laminated thin film according to claim 1, wherein the adhesion layer is made of SiO x (0 ≦ x <2).
前記密着層上に高屈折率層と前記高屈折率層よりも屈折率が低い低屈折率層とが交互に積層された反射防止層をさらに備える請求項1乃至6のいずれか1項に記載の積層薄膜。   The antireflection layer according to any one of claims 1 to 6, further comprising an antireflection layer in which a high refractive index layer and a low refractive index layer having a lower refractive index than the high refractive index layer are alternately stacked on the adhesion layer. Laminated thin film. 前記ハードコート層が、ウレタン(メタ)アクリレートオリゴマーと、3官能以上の(メタ)アクリレートモノマーと、2官能の(メタ)アクリレートモノマーと、光重合開始剤とを含有する紫外線硬化型樹脂を光重合させてなる請求項1乃至7のいずれか1項に記載の積層薄膜。   The hard coat layer photopolymerizes an ultraviolet curable resin containing a urethane (meth) acrylate oligomer, a tri- or higher-functional (meth) acrylate monomer, a bifunctional (meth) acrylate monomer, and a photopolymerization initiator. The laminated thin film according to claim 1, wherein the laminated thin film is formed. 金属酸化物粒子を含有するハードコート層の表面に、金属酸化物粒子を露出させる露出工程と、
前記ハードコート層の金属酸化物粒子露出面に、前記金属酸化物粒子と同種の酸素欠損状態の金属酸化物もしくは金属からなる密着層を成膜する成膜工程と
を有する積層薄膜の製造方法。
An exposure step of exposing the metal oxide particles on the surface of the hard coat layer containing the metal oxide particles;
A film forming step of forming an adhesion layer made of a metal oxide or metal of the same kind as that of the metal oxide particles on the exposed surface of the metal oxide particles of the hard coat layer.
前記露出工程では、グロー放電処理により金属酸化物粒子を露出させる請求項9記載の積層薄膜の製造方法。
The method for producing a laminated thin film according to claim 9, wherein in the exposing step, the metal oxide particles are exposed by glow discharge treatment.
JP2016025857A 2016-02-15 2016-02-15 Anti-reflective film and method of manufacturing anti-reflective film Active JP6787673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016025857A JP6787673B2 (en) 2016-02-15 2016-02-15 Anti-reflective film and method of manufacturing anti-reflective film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016025857A JP6787673B2 (en) 2016-02-15 2016-02-15 Anti-reflective film and method of manufacturing anti-reflective film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015107978 Division 2015-05-27 2015-05-27

Publications (3)

Publication Number Publication Date
JP2016128927A true JP2016128927A (en) 2016-07-14
JP2016128927A5 JP2016128927A5 (en) 2018-07-19
JP6787673B2 JP6787673B2 (en) 2020-11-18

Family

ID=56384277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016025857A Active JP6787673B2 (en) 2016-02-15 2016-02-15 Anti-reflective film and method of manufacturing anti-reflective film

Country Status (1)

Country Link
JP (1) JP6787673B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200064098A (en) 2017-09-29 2020-06-05 다이니폰 인사츠 가부시키가이샤 Optical film and image display device
US11968855B2 (en) 2017-09-29 2024-04-23 Dai Nippon Printing Co., Ltd. Optical film and image display device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230171478A (en) 2017-10-27 2023-12-20 어플라이드 머티어리얼스, 인코포레이티드 Flexible cover lens films
JP2021523413A (en) 2018-05-10 2021-09-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Interchangeable cover lens for flexible display
WO2020263632A1 (en) 2019-06-26 2020-12-30 Applied Materials, Inc. Flexible multi-layered cover lens stacks for foldable displays

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104103A (en) * 1993-10-05 1995-04-21 Nitto Denko Corp Production of reflection preventive member and polarizing plate
JPH11218603A (en) * 1997-11-27 1999-08-10 Sony Corp Antireflection film and its production
US6478932B1 (en) * 2001-06-21 2002-11-12 Applied Vacuum Coating Technologies Co., Ltd. Combination process of vacuum sputtering and wet coating for high conductivity and light attenuation anti-reflection coating on CRT surface
JP2004021550A (en) * 2002-06-14 2004-01-22 Sony Corp Touch panel, indicator, reflection preventing film, and method for manufacturing the same
JP2004119188A (en) * 2002-09-26 2004-04-15 Teijin Ltd Laminated film in which curls are reduced
WO2006019184A1 (en) * 2004-08-20 2006-02-23 Teijin Limited Transparent conductive multilayer body and transparent touch panel
WO2008123139A1 (en) * 2007-03-26 2008-10-16 Murata Manufacturing Co., Ltd. Resistance memory element
WO2008153139A1 (en) * 2007-06-15 2008-12-18 Bridgestone Corporation Optical filter for display, and display and plasma display panel provided with same
JP2009109850A (en) * 2007-10-31 2009-05-21 Toppan Printing Co Ltd Reflection preventive film, manufacturing method therefor, polarizing plate using reflection preventive film, and manufacturing method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104103A (en) * 1993-10-05 1995-04-21 Nitto Denko Corp Production of reflection preventive member and polarizing plate
JPH11218603A (en) * 1997-11-27 1999-08-10 Sony Corp Antireflection film and its production
US6478932B1 (en) * 2001-06-21 2002-11-12 Applied Vacuum Coating Technologies Co., Ltd. Combination process of vacuum sputtering and wet coating for high conductivity and light attenuation anti-reflection coating on CRT surface
JP2004021550A (en) * 2002-06-14 2004-01-22 Sony Corp Touch panel, indicator, reflection preventing film, and method for manufacturing the same
JP2004119188A (en) * 2002-09-26 2004-04-15 Teijin Ltd Laminated film in which curls are reduced
WO2006019184A1 (en) * 2004-08-20 2006-02-23 Teijin Limited Transparent conductive multilayer body and transparent touch panel
WO2008123139A1 (en) * 2007-03-26 2008-10-16 Murata Manufacturing Co., Ltd. Resistance memory element
WO2008153139A1 (en) * 2007-06-15 2008-12-18 Bridgestone Corporation Optical filter for display, and display and plasma display panel provided with same
JP2009109850A (en) * 2007-10-31 2009-05-21 Toppan Printing Co Ltd Reflection preventive film, manufacturing method therefor, polarizing plate using reflection preventive film, and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200064098A (en) 2017-09-29 2020-06-05 다이니폰 인사츠 가부시키가이샤 Optical film and image display device
US11367856B2 (en) 2017-09-29 2022-06-21 Dai Nippon Printing Co., Ltd. Optical film and image display device
KR20230049772A (en) 2017-09-29 2023-04-13 다이니폰 인사츠 가부시키가이샤 Optical film and image display device
US11968855B2 (en) 2017-09-29 2024-04-23 Dai Nippon Printing Co., Ltd. Optical film and image display device

Also Published As

Publication number Publication date
JP6787673B2 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
JP6825825B2 (en) Laminated thin film and manufacturing method of laminated thin film
JP6207679B2 (en) Manufacturing method of laminated thin film and laminated thin film
WO2016190415A1 (en) Laminated thin film and method for producing laminated thin film
TWI409306B (en) Hard coating
JP4135232B2 (en) Hard coat film or sheet
JP6787673B2 (en) Anti-reflective film and method of manufacturing anti-reflective film
JP6584188B2 (en) Laminated body and method for producing the same
JP6584187B2 (en) Laminated body and method for producing the same
JP2001147777A (en) Antireflection film for touch panel, method for manufacturing the same and the touch panel
JP7137282B2 (en) Substrate for gas barrier film, gas barrier film, electronic device member, and electronic device
KR20200035350A (en) Active energy ray-curable resin composition, cured product and laminate
JP7230131B2 (en) Conductive laminate, optical device using same, method for manufacturing conductive laminate
KR20230041765A (en) Conductive multilayer body, optical device using the same, and manufacturing method of the conductive multilayer body
JP2001074906A (en) Antireflection film for plasma display panel or field emission display, and its manufacture
JP2001074907A (en) Antireflection film for display, and its manufacture
JP2001074909A (en) Antireflection film for liquid crystal display, and its manufacture
JP2001076647A (en) Antireflection film for crt and its manufacture
JP2015130283A (en) Production method of transparent conductive film, and base film used for transparent conductive film
JP2001074910A (en) Antireflection preventing film for reflective liquid crystal display device, and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200901

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201029

R150 Certificate of patent or registration of utility model

Ref document number: 6787673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250