WO2016125397A1 - Sealing film for electronic members - Google Patents

Sealing film for electronic members Download PDF

Info

Publication number
WO2016125397A1
WO2016125397A1 PCT/JP2015/084941 JP2015084941W WO2016125397A1 WO 2016125397 A1 WO2016125397 A1 WO 2016125397A1 JP 2015084941 W JP2015084941 W JP 2015084941W WO 2016125397 A1 WO2016125397 A1 WO 2016125397A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin
coating
polyester
sealing film
Prior art date
Application number
PCT/JP2015/084941
Other languages
French (fr)
Japanese (ja)
Inventor
勝也 尼子
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Publication of WO2016125397A1 publication Critical patent/WO2016125397A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings

Definitions

  • the present invention relates to a sealing film for an electronic member such as a quantum dot-containing resin sheet, electronic paper, and organic EL, which is excellent in transparency, barrier property and adhesion to an electronic member, and requires high water vapor barrier properties. is there.
  • polyester films are widely used mainly for various display applications because of their excellent optical properties.
  • a water vapor permeability of 0.02 g is provided by providing a cured resin layer made of a polymer and a gas barrier layer made of silicon nitride oxide on at least one side of a plastic film.
  • a gas barrier film of / m 2 / day has been proposed (see Patent Document 1).
  • gas barrier film described in Patent Document 1 has an effect of improving gas barrier properties, it does not consider the adhesion to the adhesive layer.
  • a gas barrier film using silicon nitride oxide as a gas barrier layer has a high refractive index of the gas barrier layer, a refractive index difference with the protective layer is increased, and the transmittance may be reduced.
  • Patent Document 2 a gas barrier film having a water vapor barrier property of 10 ⁇ 6 g / m 2 / day level by laminating a planarizing layer, a gas barrier layer, and a protective layer on a base film by an atmospheric pressure plasma CVD method has been proposed ( Patent Document 2).
  • the protective layer made of an inorganic polymer made of TEOS as a raw material by the atmospheric pressure CVD method does not necessarily have adhesion to the adhesive layer. Not enough.
  • Patent Document 3 a gas barrier laminate film in which a composite film of polyvinyl alcohol and an inorganic layered compound is laminated as a protective layer of the gas barrier film has been proposed, but when used for a display body such as a display, the appearance is whitish, There is a tendency to be inferior in transparency.
  • Patent Document 4 a gas barrier laminate film having a configuration in which a sol-gel layer is provided as a protective layer has been proposed, the surface hardness is good, but the flexibility and adhesion to the adhesive layer may be inferior. is there.
  • Patent Document 5 a measure for improving the gas barrier property by alternately laminating an organic layer / inorganic layer is taken, but the gas barrier property is improved, but the interlayer adhesion at the organic layer / inorganic layer interface is not good. It is enough.
  • the solution subject is transparency, barrier property, and adhesion
  • the gist of the present invention is that the roughness (Rt) of one surface of the polyester film is 100 nm or more, and at least one selected from polyester resin, urethane resin, and acrylic resin on the other surface.
  • a barrier layer on the coating layer of the coating film having a coating layer formed from a coating solution containing at least one kind of resin and a crosslinking agent comprising a melamine resin or an oxazoline resin, and having a film haze of 2.0% or less
  • the film has a structure in which a protective layer is sequentially laminated, and the water vapor permeability of the film (measured in accordance with JIS-K7129 B method at a temperature of 40 ° C. and a humidity of 90% RH) is 0. It exists in the sealing film for electronic members characterized by being below 0.01g / m ⁇ 2 > / day.
  • the sealing film for electronic members of the present invention is excellent in transparency, barrier properties, and adhesiveness with electronic members, and is used for electronic members such as quantum dot-containing resin sheets, electronic paper, and organic EL that require high barrier properties. It is suitable as a sealing film, and its industrial value is high.
  • the sealing film for electronic members of the present invention has a configuration in which a barrier layer and a protective layer are sequentially laminated on a coating layer of a coating film having a polyester film as a base material.
  • the polyester film may have a single layer structure or a laminated structure.
  • the polyester film may have a multilayer structure of four layers or more as long as it does not exceed the gist of the present invention other than the two-layer or three-layer structure. There is no particular limitation.
  • the polyester may be a homopolyester or a copolyester.
  • a homopolyester those obtained by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol are preferred.
  • the aromatic dicarboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid
  • examples of the aliphatic glycol include ethylene glycol, diethylene glycol, and 1,4-cyclohexanedimethanol.
  • Representative polyester includes polyethylene terephthalate (PET) and the like.
  • examples of the dicarboxylic acid component of the copolyester include isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, and oxycarboxylic acid (eg, P-oxybenzoic acid).
  • examples of the glycol component include one or more types such as ethylene glycol, diethylene glycol, propylene glycol, butanediol, 1,4-cyclohexanedimethanol, neopentyl glycol and the like.
  • the polyester referred to in the present invention refers to a polyester that is usually 60 mol% or more, preferably 80 mol% or more of polyethylene terephthalate or the like which is an ethylene terephthalate unit.
  • the polyester film it is preferable to mix particles for the main purpose of imparting easy slipperiness.
  • the kind of the particle to be blended is not particularly limited as long as it is a particle capable of imparting slipperiness.
  • Specific examples thereof include silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, and phosphoric acid.
  • the particles include magnesium, kaolin, aluminum oxide, and titanium oxide.
  • the heat-resistant organic particles described in JP-B-59-5216, JP-A-59-217755 and the like may be used.
  • examples of other heat-resistant organic particles include thermosetting urea resins, thermosetting phenol resins, thermosetting epoxy resins, benzoguanamine resins, and the like.
  • precipitated particles obtained by precipitating and finely dispersing a part of a metal compound such as a catalyst during the polyester production process can also be used.
  • the shape of the particles to be used is not particularly limited, and any of a spherical shape, a block shape, a rod shape, a flat shape, and the like may be used. Moreover, there is no restriction
  • the average particle size of the particles used is usually in the range of 0.01 to 4 ⁇ m, preferably 1.0 to 3.5 ⁇ m.
  • the average particle size is less than 1.0 ⁇ m, the slipperiness is insufficient, so the processing characteristics may be insufficient.
  • it exceeds 3.5 ⁇ m the transparency of the film is insufficient. There is a case.
  • the particle content is usually in the range of 0.001 to 5% by weight, preferably 0.015 to 0.080% by weight.
  • the slipperiness of the film may be insufficient.
  • the content exceeds 0.080% by weight, the transparency of the film is insufficient. There are cases.
  • the method for adding particles is not particularly limited, and a conventionally known method can be adopted.
  • it can be added at any stage for producing the polyester, but the polycondensation reaction may proceed preferably after the esterification stage or after the transesterification reaction.
  • a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material, or a blending of dried particles and a polyester raw material using a kneading extruder is done by methods.
  • the thickness of the polyester film is not particularly limited as long as it can be formed as a film. In consideration of the mechanical strength, flexibility, transparency and the like of the film substrate, it is preferably 12 to 125 ⁇ m, more preferably 25 to 100 ⁇ m.
  • the surface roughness (Rt) of one surface of the polyester film is usually 100 nm or more, preferably 300 nm or more. When Rt is less than 100 nm, when processing into a sealing film used for a quantum dot-containing resin sheet, electronic paper, organic EL, or the like, processing characteristics such as reduction in winding workability may be impaired.
  • one surface of the polyester film in which the surface roughness (Rt) is defined means a surface opposite to a surface on which a coating layer, a barrier layer, and a protective layer are sequentially laminated.
  • the haze of the coated film is usually 2.0% or less, preferably 1.5% or less.
  • the haze is 2.1% or more, when used as a sealing film for a quantum dot-containing resin sheet, electronic paper, organic EL, or the like, the transparency of the device is lowered and the visibility may be inferior.
  • polyester film Next, a production example of the polyester film will be specifically described, but is not limited to the following production example.
  • the polyester raw material described above is used and the molten sheet extruded from the die is cooled and solidified with a cooling roll to obtain an unstretched sheet is preferable.
  • a method in which the polyester raw material described above is used and the molten sheet extruded from the die is cooled and solidified with a cooling roll to obtain an unstretched sheet is preferable.
  • an electrostatic application adhesion method and / or a liquid application adhesion method are preferably employed.
  • the obtained unstretched sheet is stretched in the biaxial direction. In that case, first, the unstretched sheet is stretched in one direction by a roll or a tenter type stretching machine.
  • the stretching temperature is usually 70 to 120 ° C., preferably 80 to 110 ° C., and the stretching ratio is usually 2.5 to 7 times, preferably 3.0 to 6 times.
  • the stretching temperature orthogonal to the first-stage stretching direction is usually 70 to 170 ° C., and the draw ratio is usually 3.0 to 7 times, preferably 3.5 to 6 times.
  • heat treatment is performed at a temperature of 180 to 270 ° C. under tension or relaxation within 30% to obtain a biaxially oriented film.
  • a method in which stretching in one direction is performed in two or more stages can be employed. In that case, it is preferable to carry out so that the draw ratios in the two directions finally fall within the above ranges.
  • the simultaneous biaxial stretching method can be adopted for the production of the polyester film.
  • the simultaneous biaxial stretching method is a method in which the unstretched sheet is usually stretched and oriented simultaneously in the machine direction and the width direction in a state where the temperature is controlled at 70 to 120 ° C, preferably 80 to 110 ° C.
  • the area magnification is usually 4 to 50 times, preferably 7 to 35 times, and more preferably 10 to 25 times.
  • heat treatment is performed at a temperature of 170 to 250 ° C. under tension or under relaxation within 30% to obtain a stretched oriented film.
  • a conventionally known stretching method such as a screw method, a pantograph method, or a linear driving method can be employed.
  • a so-called coating stretching method for treating the film surface during the above-described polyester film stretching step can be performed.
  • coating stretching method in-line coating
  • coating can be performed simultaneously with stretching and the thickness of the coating layer can be reduced according to the stretching ratio, producing a film suitable as a polyester film. it can.
  • the coated film in the present invention is a crosslinking agent comprising at least one resin selected from polyester resins, urethane resins, and acrylic resins, and a melamine resin or an oxazoline resin for improving adhesion to the barrier layer.
  • the polyester resin is defined as a linear polyester having a dicarboxylic acid component and a glycol component as constituent components.
  • Dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, adipic acid, sebacic acid, phenylindanedicarboxylic acid, A dimer acid etc. can be illustrated. Two or more of these components can be used.
  • a small proportion of unsaturated polybasic acids such as maleic acid, fumaric acid, itaconic acid and the like, and hydroxycarboxylic acids such as p-hydroxybenzoic acid and p- ( ⁇ -hydroxyethoxy) benzoic acid, etc.
  • the proportion of the unsaturated polybasic acid component or the hydroxycarboxylic acid component is at most 10 mol%, preferably 5 mol% or less.
  • glycol component examples include ethylene glycol, 1,4-butanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, xylylene glycol, dimethylolpropionic acid.
  • ethylene glycol and bisphenol A ethylene oxide adducts and propylene oxide adducts and 1,4-butanediol are preferred, and ethylene glycol and bisphenol A ethylene oxide adducts and propylene oxide adducts are more preferred.
  • polyester resin having a sulfonic acid (salt) group in order to facilitate water dispersion or water solubility.
  • polyester resin having a sulfonic acid (salt) group examples include 5-sodium sulfoisophthalic acid, 5-ammonium sulfoisophthalic acid, 4-sodium sulfoisophthalic acid, 4-methylammonium sulfoisophthalic acid, 2-sodium sulfoisophthalic acid, Preferable examples include sulfonic acid alkali metal salt compounds or sulfonic acid amine salt compounds such as 5-potassium sulfoisophthalic acid, 4-potassium sulfoisophthalic acid, 2-potassium sulfoisophthalic acid, and sodium sulfosuccinic acid.
  • the glass transition temperature (hereinafter sometimes abbreviated as Tg) is preferably 40 ° C. or higher, more preferably 60 ° C. or higher.
  • Tg is less than 40 ° C., for the purpose of improving adhesiveness, when the coating thickness of the coating layer is increased, problems such as easy blocking may occur.
  • An acrylic resin is a polymer composed of a polymerizable monomer having a carbon-carbon double bond, as typified by acrylic and methacrylic monomers. These may be either a homopolymer or a copolymer. Moreover, the copolymer of these polymers and other polymers (for example, polyester, polyurethane, etc.) is also included. For example, a block copolymer or a graft copolymer. Furthermore, a polymer (possibly a mixture of polymers) obtained by polymerizing a polymerizable monomer having a carbon-carbon double bond in a polyester solution or a polyester dispersion is also included.
  • a polymer (in some cases, a mixture of polymers) obtained by polymerizing a polymerizable monomer having a carbon-carbon double bond in a polyurethane solution or polyurethane dispersion is also included.
  • a polymer (in some cases, a polymer mixture) obtained by polymerizing a polymerizable monomer having a carbon-carbon double bond in another polymer solution or dispersion is also included.
  • the polymerizable monomer having a carbon-carbon double bond is not particularly limited, but representative compounds such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, fumaric acid, maleic acid, and citraconic acid.
  • Various carboxyl group-containing monomers and their salts 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, monobutylhydroxyl fumarate, monobutylhydroxy
  • Various hydroxyl-containing monomers such as itaconate; various (meth) acrylic such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate Acid esters; (meth) a Riruamido, various nitrogen-containing vinyl monomers such as diacetone acrylamide, N- methylol acryl
  • polymerizable monomers as shown below can be copolymerized. That is, various styrene derivatives such as styrene, ⁇ -methylstyrene, divinylbenzene and vinyltoluene, various vinyl esters such as vinyl acetate and vinyl propionate; ⁇ -methacryloxypropyltrimethoxysilane, vinyltrimethoxysilane, Various silicon-containing polymerizable monomers such as methacryloyl silicon macromer; phosphorus-containing vinyl monomers; vinyl chloride, biliden chloride, vinyl fluoride, vinylidene fluoride, trifluorochloroethylene, tetrafluoroethylene, chlorotrifluoroethylene And various vinyl halides such as hexafluoropropylene; and various conjugated dienes such as butadiene.
  • styrene derivatives such as styrene, ⁇ -methylstyrene, divinylbenzene and vinyl
  • the glass transition temperature is preferably 40 ° C. or higher, more preferably 60 ° C. or higher.
  • Tg is less than 40 ° C., for the purpose of improving adhesiveness, when the coating thickness of the coating layer is increased, problems such as easy blocking may occur.
  • Urethane resin is used to improve the adhesion to the barrier layer. From this viewpoint, urethane resin having a polycarbonate structure is preferable.
  • the urethane resin having a polycarbonate structure refers to a urethane resin in which one of the polyols, which are main components of the urethane resin, is a polycarbonate polyol.
  • Polycarbonate polyols are obtained from a polyhydric alcohol and a carbonate compound by a dealcoholization reaction.
  • the polyhydric alcohols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, trimethylolpropane, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, , 5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, , 10-decanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, and the like.
  • Examples of the carbonate compound include dimethyl carbonate, diethyl carbonate, diphenyl carbonate, and ethylene carbonate.
  • Examples of the polycarbonate-based polyols obtained from these reactions include poly (1,6-hexylene) carbonate, poly (3- And methyl-1,5-pentylene) carbonate.
  • polyisocyanates constituting the urethane resin having a polycarbonate structure include aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, and tolidine diisocyanate, ⁇ , ⁇ , ⁇ ′, Aliphatic diisocyanates having an aromatic ring such as ⁇ '-tetramethylxylylene diisocyanate, methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate and other aliphatic diisocyanates, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate , Mechi Nbisu (4-cyclohexyl isocyan
  • aliphatic isocyanates or alicyclic isocyanates are more preferable than aromatic isocyanates from the viewpoint of improving adhesion to the active energy ray-curable coating material and preventing yellowing due to ultraviolet rays.
  • a chain extender may be used when synthesizing the urethane resin, and the chain extender is not particularly limited as long as it has two or more active groups that react with an isocyanate group. Alternatively, a chain extender having two amino groups can be mainly used.
  • chain extender having two hydroxyl groups examples include aliphatic glycols such as ethylene glycol, propylene glycol, butanediol and pentanediol, aromatic glycols such as xylylene glycol and bishydroxyethoxybenzene, neopentyl glycol and neopentyl.
  • aliphatic glycols such as ethylene glycol, propylene glycol, butanediol and pentanediol
  • aromatic glycols such as xylylene glycol and bishydroxyethoxybenzene
  • neopentyl glycol and neopentyl examples include glycols such as ester glycols such as glycol hydroxypivalate.
  • chain extender having two amino groups examples include aromatic diamines such as tolylenediamine, xylylenediamine, diphenylmethanediamine, ethylenediamine, propylenediamine, hexanediamine, 2,2-dimethyl-1,3- Propanediamine, 2-methyl-1,5-pentanediamine, trimethylhexanediamine, 2-butyl-2-ethyl-1,5-pentanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10- Aliphatic diamines such as decane diamine, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, dicyclohexylmethanediamine, isopropylidine cyclohexyl-4,4′-diamine, 1,4-diaminocyclohexane, 1 , 3-Bisaminomethylcyclohexane Alicyclic diamines such as isophorone diamine,
  • Urethane resin may use a solvent as a medium, but preferably uses water as a medium.
  • a forced emulsification type using an emulsifier there are a forced emulsification type using an emulsifier, a self-emulsification type in which a hydrophilic group is introduced into the urethane resin, and a water-soluble type.
  • a self-emulsification type in which an ionic group is introduced into the skeleton of a urethane resin to form an ionomer is preferable because of excellent storage stability of the liquid and water resistance, transparency, and adhesion of the resulting coating layer.
  • examples of the ionic group to be introduced include various groups such as a carboxyl group, a sulfonic acid, a phosphoric acid, a phosphonic acid, a quaternary ammonium salt, and the carboxyl group is preferable.
  • a method for introducing a carboxyl group into a urethane resin various methods can be taken in each stage of the polymerization reaction. For example, there are a method of using a carboxyl group-containing resin as a copolymer component during prepolymer synthesis, and a method of using a component having a carboxyl group as one component such as polyol, polyisocyanate, and chain extender. In particular, a method in which a desired amount of carboxyl groups is introduced using a carboxyl group-containing diol depending on the amount of this component charged is preferred.
  • dimethylolpropionic acid, dimethylolbutanoic acid, bis- (2-hydroxyethyl) propionic acid, bis- (2-hydroxyethyl) butanoic acid, and the like are copolymerized with a diol used for polymerization of a urethane resin.
  • the carboxyl group is preferably in the form of a salt neutralized with ammonia, amine, alkali metal, inorganic alkali or the like. Particularly preferred are ammonia, trimethylamine and triethylamine.
  • the glass transition point of the urethane resin having the polycarbonate structure is usually 0 ° C. or lower, preferably ⁇ 15 ° C. or lower, more preferably ⁇ 30 ° C. or lower.
  • Tg refers to the temperature which created the dry film
  • the melamine resin is not particularly limited, but melamine, a methylolated melamine derivative obtained by condensing melamine and formaldehyde, a compound partially or completely etherified by reacting a methylolated melamine with a lower alcohol, and These mixtures can be used.
  • the melamine resin may be either a monomer or a condensate composed of a dimer or higher multimer, or a mixture thereof.
  • the lower alcohol used for the etherification methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol and the like can be preferably used.
  • the functional group has an imino group, a methylol group, or an alkoxymethyl group such as a methoxymethyl group or a butoxymethyl group in one molecule, and an imino group type methylated melamine, a methylol group type melamine, or a methylol group type methylated group.
  • Melamine fully alkyl methylated melamine and the like can be used. Of these, methylolated melamine is most preferred. Furthermore, an acidic catalyst such as p-toluenesulfonic acid can be used in combination for the purpose of promoting the thermosetting of the melamine resin.
  • the oxazoline compound is a compound having an oxazoline group in the molecule, and is particularly preferably a polymer containing an oxazoline group, and can be prepared by polymerization of an addition polymerizable oxazoline group-containing monomer alone or with another monomer.
  • Addition-polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, Examples thereof include 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like, and one or a mixture of two or more thereof can be used. Of these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially.
  • the other monomer is not particularly limited as long as it is a monomer copolymerizable with an addition polymerizable oxazoline group-containing monomer.
  • alkyl (meth) acrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, (Meth) acrylic acid esters such as n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene
  • Unsaturated carboxylic acids such as sulfonic acid and its salts (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); Unsaturated nitriles such as acrylonitrile, methacrylonitrile; (meth) acrylamide, N-alky
  • the content of the oxazoline group contained in the oxazoline compound is usually 0.5 to 10 mmol / g, preferably 1 to 9 mmol / g, more preferably 3 to 8 mmol / g, particularly preferably 4 to 6 mmol in terms of the amount of the oxazoline group. / G. Use in the above range is preferable for improving the coating strength.
  • the ratio of the resin in the coating solution is usually 10 to 80% by weight, preferably 10 to 60% by weight as the ratio to the total nonvolatile components, and the ratio of the crosslinking agent in the coating solution is the ratio to the total nonvolatile components, Usually 6 to 80% by weight, preferably 10 to 60% by weight.
  • the coating amount (after drying) of the coating solution is usually 0.005 to 1 g / m 2 , preferably 0.005 to 0.5 g / m 2 , more preferably 0.01 to 0.
  • the range is 2 g / m 2 .
  • the coating amount (after drying) is less than 0.005 g / m 2 , the coating property may be less stable and it may be difficult to obtain a uniform coating film.
  • the coating is thicker than 1 g / m 2 , the coating film adhesion and curability of the coating layer itself may be lowered.
  • coating method conventionally known coating methods such as reverse gravure coating, direct gravure coating, roll coating, die coating, bar coating, and curtain coating can be used.
  • coating method there is an example described in “Coating Method” Tsuji Shoten published by Yuji Harasaki in 1979.
  • a coating layer such as an antistatic layer or an oligomer precipitation preventing layer may be provided on the film surface not provided with a coating layer as long as the gist of the present invention is not impaired.
  • the polyester film may be subjected to surface treatment such as corona treatment or plasma treatment in advance.
  • the barrier layer which comprises the sealing film of this invention is laminated
  • the barrier property is at a desired level.
  • the water vapor permeability measured according to the JIS-K7129B method is 0.01 g / m under measurement conditions of a temperature of 40 ° C. and a humidity of 90% RH. There is no particular limitation as long as it can be 2 / day or less. Preferably it is 0.005 g / m 2 / day or less.
  • Examples of the material for the barrier layer include silicon compounds such as polysilazane compounds, polycarbosilane compounds, polysilane compounds, polyorganosiloxane compounds, and tetraorganosilane compounds, silicon oxide, silicon oxynitride, aluminum oxide, aluminum oxynitride, and magnesium oxide.
  • silicon compounds such as polysilazane compounds, polycarbosilane compounds, polysilane compounds, polyorganosiloxane compounds, and tetraorganosilane compounds, silicon oxide, silicon oxynitride, aluminum oxide, aluminum oxynitride, and magnesium oxide.
  • Inorganic oxides such as zinc oxide, indium oxide and tin oxide, inorganic nitrides such as silicon nitride and aluminum nitride, inorganic oxynitrides such as silicon oxynitride, metals such as aluminum, magnesium, zinc and tin Can be mentioned. These can be used individually by 1 type or in combination of
  • the thickness of the barrier layer is usually 1 nm to 10 ⁇ m, preferably 10 to 1000 nm, more preferably 20 to 500 nm, particularly preferably 50 to 200 nm. If the thickness of the barrier layer is less than 1 nm, the barrier effect may be insufficient. On the other hand, when it exceeds 10 ⁇ m, it is in a saturated state in terms of performance, and it is difficult to expect a barrier effect any more.
  • the barrier layer may have a single layer structure or a plurality of layers composed of two or more layers.
  • a conventionally known method can be used depending on the material constituting the barrier layer, and can be appropriately selected according to the purpose. For example, a method in which the barrier layer material is formed on a polyester film by vapor deposition, sputtering, ion plating, thermal CVD, plasma CVD, or the like, or a solution in which the barrier layer material is dissolved in an organic solvent Is applied to a polyester film, and plasma ion implantation is performed on the obtained coating film.
  • Examples of ions implanted by plasma ion implantation include rare gases such as argon, helium, neon, krypton, and xenon, ions such as fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, and sulfur; gold, Examples include ions of metals such as silver, copper, platinum, nickel, palladium, chromium, titanium, molybdenum, niobium, tantalum, tungsten, and aluminum.
  • the coating liquid for forming the protective layer penetrates evenly into the minute defects existing in the barrier layer, and the defective portion of the barrier layer can be repaired by thermosetting.
  • the barrier layer is protected from being rubbed or scraped by contact with the conveying guide roll during the processing process, and from the organic solvent used in the manufacturing process, and has barrier properties. Can also be maintained.
  • the protective layer contains an active energy ray-curable resin that can be cured by irradiation with active energy rays in order to improve adhesion when directly bonding with the quantum dot-containing resin sheet.
  • the active energy ray-curable resin is preferably a compound having an acrylate structure.
  • a compound having an acrylate structure has a weight average molecular weight (Mw) of 5000 by gel permeation chromatography (GPC) measurement in accordance with a polymer compound safety evaluation flow scheme (November 1985, sponsored by the Chemical Substances Council). As described above, it is preferably defined as a polymer compound of 10,000 or more and having a film-forming property.
  • the compound having an acrylate structure examples include methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, epoxy acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylol propane triacrylate, dimethylol tricyclodecane diacrylate, tetra Methylene glycol tetraacrylate, 2-hydroxy-1,3-diacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxyethoxy) phenyl] Examples include propane, dicyclopentenyl acrylate, tricyclodecanyl acrylate, tris (acryloxyethyl) isocyanurate, and urethane acrylate.
  • photopolymerization initiators used for curing a compound having an acrylate structure include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 2- Hydroxy-2-methyl-1-phenyl-1-propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy -1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl ⁇ -2-methyl-propan-1-one, 2-methyl-1- (4-methylthiophenyl) -2 -Morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2- (dimethylamino ) -2 - [(4-methylphenyl) methyl] -1- [4-morpholinyl)
  • acylphosphine oxide photopolymerization initiator examples include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and the like.
  • titanocene photopolymerization initiators include bis ( ⁇ 5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium Is mentioned.
  • Examples of the oxime ester polymerization initiator include 1.2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2 -Methylbenzoyl) -9H-carbazol-3-yl]-, 1- (0-acetyloxime), oxyphenylacetic acid, 2- [2-oxo-2-phenylacetoxyethoxy] ethyl ester, 2- (2-hydroxy And ethoxy) ethyl ester.
  • These photoinitiators may be used individually by 1 type, and may use 2 or more types together.
  • the amount of the active energy ray curable resin and the photopolymerization initiator in the protective layer it is preferable to mix 1 to 6 parts by weight of the photopolymerization initiator with respect to 100 parts by weight of the active energy ray curable resin.
  • the photopolymerization initiator is out of the range, it may be difficult to obtain a protective layer having desired performance.
  • organic compound having an aluminum element examples include aluminum tris (acetylacetonate), aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum-di-n-butoxide-monoethylacetoacetate, aluminum di- Examples include iso-propoxide monomethyl acetoacetate and the like.
  • organic compound having titanium element examples include titanium orthoesters such as tetranormal butyl titanate, tetraisopropyl titanate, butyl titanate dimer, tetra (2-ethylhexyl) titanate, tetramethyl titanate; titanium acetylacetonate, Examples thereof include titanium chelates such as titanium tetraacetylacetonate, polytitanium acetylacetonate, titanium octylene glycolate, titanium lactate, titanium triethanolamate, and titanium ethylacetoacetate.
  • titanium orthoesters such as tetranormal butyl titanate, tetraisopropyl titanate, butyl titanate dimer, tetra (2-ethylhexyl) titanate, tetramethyl titanate
  • titanium acetylacetonate examples thereof include titanium chelates such as titanium tetraacetylacetonate, polytitanium acetylace
  • organic compound having a zirconium element examples include, for example, zirconium acetate, zirconium normal propylate, zirconium normal butyrate, zirconium tetraacetylacetonate, zirconium monoacetylacetonate, zirconium bisacetylacetonate and the like.
  • an organic compound having a chelate structure is preferable with respect to an organic compound containing a metal element selected from aluminum and zirconium from the viewpoint of particularly good adhesion performance. It is also described in detail in the “Crosslinking agent handbook” (Yamashita Shinzo, Kaneko Tosuke Editor Taiseisha Co., Ltd., 1990 edition).
  • the organosilicon compound represented by the following general formula (1) is used to improve the adhesion. It is preferable to use together.
  • X is an organic group having at least one selected from an epoxy group, a mercapto group, a (meth) acryloyl group, an alkenyl group, a haloalkyl group and an amino group
  • R 1 is a monovalent hydrocarbon group, and 1 to 10 carbon atoms
  • Y is a hydrolyzable group
  • d is an integer of 1 or 2
  • e is an integer of 2 or 3
  • f is an integer of 0 or 1
  • d + e + f 4
  • the organosilicon compound represented by the general formula (1) has two hydrolyzable groups Y (D unit source) or three (T unit) capable of forming a siloxane bond by hydrolysis / condensation reaction. Source) can be used.
  • the monovalent hydrocarbon group R 1 has 1 to 10 carbon atoms, and is particularly preferably a methyl group, an ethyl group, or a propyl group.
  • hydrolyzable group Y conventionally known ones can be used, and the following can be exemplified.
  • These hydrolyzable groups may be used alone or in combination.
  • the application of a methoxy group or an ethoxy group is particularly preferable because it can impart good storage stability to the coating material and has suitable hydrolyzability.
  • organosilicon compound conventionally known compounds can be used. Specifically, vinyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -(3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -acryloxypropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, 5 Examples include -hexenyltrimethoxysilane, p-styryltrimethoxysilane, trifluoropropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldiisopropenoxysilane, and the like
  • a catalyst may be used in combination with the protective layer for the purpose of promoting hydrolysis and condensation reactions.
  • organic acids such as acetic acid, butyric acid, maleic acid and citric acid
  • inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid and sulfuric acid
  • basic compounds such as triethylamine, tetrabutyl titanate, dibutyltin dilaurate and dibutyltin.
  • Organometallic salts such as diacetate, dibutyltin dioctate, dibutyltin diolate, diphenyltin diacetate, dibutyltin oxide, dibutyltin dimethoxide, dibutylbis (triethoxysiloxy) tin, dibutyltin benzylmalate, etc., KF, NH 4 F, etc. And fluorine element-containing compounds.
  • the above catalysts may be used alone or in combination of two or more.
  • organometallic salts are particularly preferable from the viewpoint of good coating film durability, and more preferably a tin catalyst is used from the viewpoint of long-lasting catalytic activity.
  • the protective layer may contain inorganic particles for the purpose of improving its adhesion and slipperiness within the range not impairing the gist of the present invention.
  • inorganic particles include silica, alumina, kaolin, calcium carbonate, oxidation.
  • examples include titanium and barium salts.
  • an antifoaming agent a coating property improver, a thickener, an organic lubricant, organic polymer particles, an antioxidant, a UV absorber foaming agent, a dye, and the like may be contained as necessary.
  • only one type of organic solvent may be used for the purpose of improving dispersibility, improving film forming property, etc., and two or more types may be used as appropriate.
  • the coating amount (after drying) when the protective layer is applied is usually 0.005 to 5 g / m 2 , preferably 0.005 to 1 g / m 2 .
  • the coating amount (after drying) is less than 0.005 g / m 2 , the uniformity of the coating thickness may be insufficient, and the protective function as a protective layer may be insufficient.
  • it coats exceeding 5 g / m ⁇ 2 > malfunctions, such as a slipperiness fall, may arise.
  • the protective layer composed of the above composition has good durability and excellent adhesion to the adhesive layer.
  • the water vapor transmission rate of the sealing film is 0.01 g / m 2 / day or less.
  • 0.005 g / m 2 / day or less is preferable.
  • 0.005 g / m 2 / day or less is desired, and when the range is exceeded, moisture gradually enters the device during long-term use of the device, and the device deteriorates. It tends to happen easily.
  • the resin sheet layer containing quantum dots may contain a plurality of quantum dots and a resin.
  • a quantum dot refers to a semiconductor particle of a predetermined size having a quantum confinement effect. It is preferable to use a quantum dot having a diameter generally in the range of 1 to 10 nm.
  • the quantum dot When the quantum dot absorbs light from the excitation source and reaches an energy excited state, it emits energy corresponding to the energy band gap of the quantum dot. Therefore, by adjusting the size of the quantum dots or the composition of the substance, the energy band gap can be adjusted, and energy in various levels of wavelength bands can be obtained.
  • a red color is emitted when the quantum dot size is 55 to 65 mm
  • a green color is emitted when the quantum dot size is 40 to 50 mm
  • a blue color is emitted when the quantum dot size is 20 to 35 mm.
  • the yellow color has an intermediate size between the quantum dots emitting red and the quantum dots emitting green. It can be seen that the size of the quantum dot gradually changes from about 65 mm to about 20 mm by changing the spectrum depending on the wavelength of light from red to blue, and there may be a slight difference in this value.
  • various colors including red, green, and blue can be easily obtained from the quantum dots by a quantum size effect. Accordingly, it is possible to create colors that emit light at respective wavelengths, and it is also possible to generate and realize white or various colors by mixing red, green, and blue.
  • the quantum dot layer may include red quantum dots and green quantum dots.
  • the red quantum dots convert part of blue light into red light having a wavelength range of 620 to 750 nm
  • the green quantum dots convert part of blue light into green light having a wavelength range of 495 to 570 nm.
  • the quantum dots may be synthesized by a chemical wet method.
  • the chemical wet method is a method of growing particles by putting a precursor substance in an organic solvent.
  • Examples of the quantum dots include II-VI group compounds such as CdSe, CdTe, CdS, ZnSe, ZnTe, ZnS, HgTe, or HgS.
  • the quantum dots may have a core / shell structure.
  • the core includes any one material selected from the group consisting of CdSe, CdTe, CdS, ZnSe, ZnTe, ZnS, HgTe, and HgS
  • the shell also includes CdSe, CdTe, CdS, ZnSe, Any one substance selected from the group consisting of ZnTe, ZnS, HgTe, and HgS is included.
  • a III-V group compound such as InP may be used.
  • the organic ligand substituted on the surface of the quantum dot includes pyridine, mercapto alcohol, thiol, phosphine, phosphine oxide, and the like, and plays a role in stabilizing unstable quantum dots after synthesis.
  • Examples of commercially available quantum dots include various quantum dots manufactured by SIGMA-ALDRICH.
  • the resin containing quantum dots it is preferable to use a substance that does not absorb the wavelength of light emitted mainly from the light source.
  • a substance that does not absorb the wavelength of light emitted mainly from the light source Specifically, epoxy, silicone, acrylic polymer, glass, carbonate polymer, or a mixture thereof may be used.
  • the resin has elasticity, it can also contribute to improving the durability of the liquid crystal display device against external impact.
  • an active energy ray curable resin is preferable similarly to the protective layer of the sealing film, and more preferably, the active energy ray curable resin is a compound having an acrylate structure.
  • the method for forming the quantum dot layer is as follows.
  • Quantum dot-containing resin sheets may be formed by adding a plurality of quantum dots to the resin and applying the resin on top of the color filter layer using a spin coating method or a printing method.
  • the quantum dot resin sheet may be formed by molding and curing a resin to which quantum dots are added.
  • a quantum dot layer may be formed by injecting an organic solution, dispersing a plurality of quantum dots therein, and curing the organic solution.
  • the organic solution may include at least one of toluene, chloroform, and ethanol.
  • the organic solution does not absorb blue wavelengths. In this case, since the reaction between the quantum dot ligand and the organic solution does not occur, there is an advantage that the lifetime and efficiency of the quantum dot layer are increased.
  • the laminated body structure which bonded the quantum dot containing resin sheet and the sealing film through the adhesion layer or the laminated body structure which bonded the quantum dot containing resin sheet and the sealing film directly. I can do it.
  • the above adhesive layer will be described below.
  • the pressure-sensitive adhesive layer means a layer composed of a material having adhesiveness, and a conventionally known material such as an acrylic pressure-sensitive adhesive or a silicone pressure-sensitive adhesive can be used as long as the gist of the present invention is not impaired. Moreover, in the pasting, a conventionally known pasting method can be adopted.
  • the method of directly laminating the quantum dot-containing resin sheet and the protective layer of the encapsulating film eliminates the need for an adhesive layer in terms of product configuration and improves productivity by simplifying the manufacturing process. Is preferable in that it can be achieved.
  • a method in which the quantum dot-containing resin composition is applied onto the protective layer of the sealing film at a predetermined coating amount and dried, and then the protective layer surface of the sealing film and the surface of the quantum dot-containing resin sheet are bonded together is employed.
  • a quantum dot containing resin composition it can be hardened by irradiating an active energy ray after apply
  • an active energy ray can also be irradiated by the film laminated body structure which bonded the sealing film on both surfaces of the quantum dot containing resin sheet.
  • a laminate structure can also be obtained by combining the above methods.
  • pre-curing after pre-applying and drying on the protective layer of the sealing film and then irradiating active energy rays, it is activated again as main curing in the state of the laminate structure as the final structure.
  • Energy rays can also be irradiated.
  • a preferred range of accumulated light quantity at the time of the active energy rays is in the range of 400mJ / cm 2 ⁇ 1800mJ / cm 2.
  • the integrated light quantity is less than 400 mJ / cm 2 , a coating film having desired performance may not be obtained.
  • it exceeds 1800 mJ / cm 2 the integrated light quantity is already in a saturated state, and for example, a remarkable characteristic improvement effect such as adhesiveness cannot be expected.
  • Tg Glass transition temperature
  • Rt was measured according to JIS B0601-1994 using a surface roughness measuring machine (SE3500 type) manufactured by Kosaka Laboratory. The measurement length was 2.5 mm.
  • SE3500 type surface roughness measuring machine manufactured by Kosaka Laboratory. The measurement length was 2.5 mm.
  • C Rt 100 nm or less (practically problematic level)
  • Barrier layer thickness A film sample piece on which the barrier layer was laminated was cut into a size of 1 mm ⁇ 10 mm and embedded in an epoxy resin for an electron microscope. This was fixed to a sample holder of an ultramicrotome, and a cross-sectional thin section parallel to the short side of the embedded sample piece was produced. Next, in a portion where the thin film of this section is not significantly damaged, a transmission electron microscope (manufactured by JEOL, JEM-2010) is used to photograph at an acceleration voltage of 200 kV and a bright field at an observation magnification of 10,000 times. The film thickness was determined from the photograph taken.
  • a high-speed spectrometer M-2000 manufactured by JA Woollam was used to change the polarization state of the reflected light of the barrier layer at an incident angle of 60 degrees, Measurements were made at 65 degrees and 70 degrees, and the refractive index at a wavelength of 550 nm was calculated by analysis software WVASE32.
  • Water vapor transmission rate (barrier property substitution evaluation): JISK7129 using a water vapor transmission rate measuring device (model name, “Permatran” (registered trademark) W3 / 31) manufactured by MOCON, USA, under the conditions of a temperature of 40 ° C. and a humidity of 90% RH. It was measured based on the B method (infrared sensor method) described in (2000 version). Two test pieces were cut out from one sample, each test piece was measured once, and the average value of the two measured values was taken as the value of the water vapor transmission rate of the sample. Thereafter, the determination was made according to the following criteria. (Criteria) A: 0.005 g / m 2 / day or less.
  • Adhesiveness between sealing film and quantum dot-containing resin sheet Using each of the laminates obtained in Examples and Comparative Examples, the feeling of peeling when peeling one sealing film from the laminate was determined according to the following criteria.
  • polyester used in the examples and comparative examples was prepared as follows. ⁇ Manufacture of polyester>
  • polyester A1 100 parts of dimethyl terephthalate, 60 parts of ethylene glycol and 0.09 part of magnesium acetate tetrahydrate are placed in a reactor, the temperature is raised by heating, methanol is distilled off, transesterification is performed, and 4 hours are required from the start of the reaction. The temperature was raised to 230 ° C. to substantially complete the transesterification reaction. Next, after adding 0.04 part of ethylene glycol slurry ethyl acid phosphate and 0.03 part of antimony trioxide, the temperature reached 280 ° C. and the pressure reached 15 mmHg in 100 minutes. It was 0.3 mmHg. After 4 hours, the system was returned to normal pressure to obtain polyester A1 having an intrinsic viscosity of 0.61 (dl / g).
  • polyester A2 In the production method of polyester (A1), polyester (A1) was added except that ethyl acid phosphate was added and silica particles having an average particle size of 2.7 ⁇ m were added so that the content with respect to the polyester was 0.3% by weight. ) was used to obtain polyester A2 having an intrinsic viscosity of 0.62 (dl / g).
  • polyester (A3) In the method for producing polyester (A1), polyester (A1) was used except that after adding ethyl acid phosphate, silica particles having an average particle size of 3.6 ⁇ m were added so that the content with respect to polyester was 0.6% by weight. ) To obtain polyester A3 having an intrinsic viscosity of 0.62 (dl / g).
  • polyester A4 In the production method of polyester (A1), after adding ethyl acid phosphate, synthetic calcium carbonate particles having an average particle diameter of 1.0 ⁇ m were added so that the content with respect to the polyester was 1.0% by weight. A polyester A4 having an intrinsic viscosity of 0.63 (dl / g) was obtained using a method similar to the production method of (A1).
  • polyester A5 In the method for producing polyester (A1), after adding ethyl acid phosphate, an ethylene glycol slurry of divinylbenzene / methyl methacrylate copolymer crosslinked particles having an average particle size of 4.4 ⁇ m is contained in the polyester in a content of 0.5.
  • a polyester A5 having an intrinsic viscosity of 0.63 (dl / g) was obtained by using the same method as the method for producing the polyester (A1) except that it was added in an amount of% by weight.
  • grains is as follows.
  • a homogeneous solution of 100 parts of methyl methacrylate, 25 parts of divinylbenzene, 22 parts of ethylvinylbenzene, 1 part of benzoyl peroxide and 100 parts of toluene is dispersed in 700 parts of water, and then stirred at 80 ° C. for 6 hours in a nitrogen atmosphere. Polymerization was carried out while heating. The average particle diameter of the obtained crosslinked polymer granules having ester groups was about 0.1 mm. The produced polymer was washed with demineralized water and extracted twice with 500 parts of toluene to remove a small amount of unreacted monomer linear polymer.
  • the crosslinked polymer particles were pulverized with an attritor and a sand grinder to obtain divinylbenzene / methyl methacrylate copolymer crosslinked particles having an average particle diameter of 4.4 ⁇ m and different particle diameters.
  • Example 1 Polyester A1 and A2 were blended in proportions of 88% and 12%, respectively, as a surface layer raw material, and polyester A1 as a raw material for an intermediate layer, and fed to two vented extruders at 290 ° C. After melt-extrusion, an amorphous film having a thickness of about 1500 ⁇ m was obtained by cooling and solidifying on a cooling roll having a surface temperature set to 40 ° C. using an electrostatic application adhesion method. This film was stretched 3.5 times in the machine direction at 85 ° C.
  • a polyester polyol comprising 664 parts by weight of terephthalic acid, 631 parts by weight of isophthalic acid, 472 parts by weight of 1,4-butanediol, and 447 parts by weight of neopentyl glycol was obtained.
  • 321 parts by weight of adipic acid and 268 parts by weight of dimethylolpropionic acid were added to the obtained polyester polyol to obtain a pendant carboxyl group-containing polyester polyol A.
  • 160 parts by weight of hexamethylene diisocyanate was added to 1880 parts by weight of the polyester polyol A to obtain an aqueous polyurethane resin aqueous coating material.
  • Coating layer 1 composition I: Melamine resin 40% by weight (Alkyrol melamine / urea copolymer crosslinkable resin DIC's becamine "J101") II: 25% by weight of aqueous polyester resin III: 30% by weight of aqueous urethane resin IV: Oxazoline group-containing polymer (Nippon Shokubai "Epocross WS-500” oxazoline group amount 4.5 mmol / g) 0% by weight V: Water-based acrylic resin 0% by weight VI: Colloidal silica (average particle size 70 nm) 5% by weight The coating solution was diluted with ion exchange water to prepare a coating solution having a solid content concentration of 2% by weight.
  • barrier layer 1 a barrier layer 1 coating solution having the following composition is coated on the coating layer so that the coating amount (after drying) is 5 g / m 2 , heat-treated at 150 ° C. for 1 minute, The barrier layer 1 was formed by irradiating with ultraviolet rays at 450 mJ / cm 2 (one 80 w / cm high-pressure mercury lamp ⁇ 18 cmH ⁇ 5 m / min ⁇ 2 Pass).
  • the center roll temperature was set to 0 ° C., and the oxygen flow rate was controlled using a Speedflo manufactured by Gencoa so that the discharge voltage during sputtering was constant. At this time, the discharge voltage was set to 50% when the discharge voltage when only Ar gas was supplied was 100%, and when the discharge voltage was 50% when Ar gas and O2 gas were supplied at 50 sccm. . As described above, the barrier layer 2 having a thickness of 40 nm and a refractive index of 1.52 was deposited.
  • Example 1 a protective layer composition comprising the following protective layer was applied so that the coating amount (after drying) was 5 g / m 2 , heat-treated at 150 ° C. for 1 minute, and then with an integrated light amount of 450 mJ / cm 2 (80 w).
  • the protective layer 1 was formed by irradiating with ultraviolet rays so as to be 1 / cm high-pressure mercury lamp ⁇ 18 cmH ⁇ 5 m / min ⁇ 2 Pass.
  • a coating solution for forming a quantum dot resin sheet composed of the following composition is applied to the surface of the protective layer so that the coating amount (after drying) is 50 g / m 2 and heat-treated at 150 ° C. for 3 minutes. After that, it is sealed as a cover film after being irradiated with ultraviolet rays using an ultraviolet irradiator so that the integrated light quantity becomes 1700 mJ / cm 2 (one 80 w / cm high-pressure mercury lamp ⁇ 13 cmH ⁇ 1.5 m / min ⁇ 4 Pass). Affix the stop film.
  • the integrated light amount becomes 900 mJ / cm 2 (one 80 w / cm high-pressure mercury lamp ⁇ 18 cmH ⁇ 5 m / min ⁇ 4 Pass).
  • the film laminated body which has the structure of sealing film / quantum dot containing resin sheet / sealing film was obtained by irradiating with ultraviolet rays.
  • composition 80% by weight of the composition, 5% by weight of photopolymerization initiator (Irgacure 184: manufactured by Ciba Specialty Chemicals), “CdSe / ZnS480” (manufactured by SIGMA-ALDRICH: Blue 480 nm), “CdSe / ZnS 530” as quantum dots (Manufactured by SIGMA-ALDRICH: Green 530 nm) and “CdSe / ZnS 560” (manufactured by SIGMA-ALDRICH: Yellow 560 nm) were mixed at a ratio of 5% by weight.
  • photopolymerization initiator Irgacure 184: manufactured by Ciba Specialty Chemicals
  • CdSe / ZnS480 manufactured by Ciba Specialty Chemicals
  • CdSe / ZnS 530 quantum dots
  • SIGMA-ALDRICH Green 530 nm
  • Example 2 to Example 5 In Example 1, it manufactured like Example 1 except having changed polyester as shown in following Table 1, and obtained the sealing film. Then, it carried out similarly to Example 1, and bonded the sealing film and the quantum dot containing resin sheet directly, and obtained the film laminated body.
  • Example 6 In Example 1, it manufactured similarly to Example 1 except having changed the structure of the barrier layer 2 into the following barrier layer 3, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were directly bonded together, and the film laminated body was obtained.
  • barrier layer 3 A gas barrier layer made of aluminum oxide was formed. At this time, it was carried out after confirming that the water pressure in the vacuum chamber before sputtering was 1 ⁇ 10 ⁇ 4 Pa. As sputtering conditions, Al (manufactured by Technofine) was used as a target, and DC power of 3 W / cm 2 was applied. Moreover, Ar gas was flowed, it was made into the atmosphere of 0.4 Pa, and it formed into a film using DC magnetron sputtering method. At this time, the magnetic field strength was 600 gauss.
  • the center roll temperature was set to 0 ° C., and the oxygen flow rate was controlled using a Speedflo manufactured by Gencoa so that the discharge voltage during sputtering was constant. At this time, the discharge voltage was set to 50% when the discharge voltage when only Ar gas was supplied was 100%, and when the discharge voltage was 50% when Ar gas and O2 gas were supplied at 50 sccm. . As described above, the barrier layer 3 having a film thickness of 32 nm and a refractive index of 1.61 was formed on the coating layer.
  • Example 7 In Example 1, after changing the protective layer composition to the following protective layer 2 composition to obtain a sealing film, the quantum dot-containing resin sheet composition was changed, and the sealing film and the quantum dot-containing resin were interposed via the adhesive layer. The sheets were pasted together.
  • the coating agent was diluted with a toluene / MEK mixed solvent (mixing ratio was 1: 1) to obtain 4% by weight.
  • a protective layer comprising the above coating composition is applied on the barrier layer by a reverse gravure coating method so that the coating amount (after drying) is 0.1 g / m 2 , heat-treated at 120 ° C. for 30 seconds, and sealed. A stop film was obtained. Thereafter, the sealing film and the quantum dot-containing resin sheet are bonded together via the adhesive layer, and the film laminate has a configuration of sealing film / adhesive layer / quantum dot-containing resin sheet / adhesive layer / sealing film.
  • ⁇ Quantum dot resin sheet formation> Using a slit die coater, a sheet-forming resin solution is applied on a polyester film (Diafoil T100 type manufactured by Mitsubishi Plastics, Inc .: 100 ⁇ m), heated at 130 ° C. for 5 minutes and dried, and the film thickness (after drying) is 50 ⁇ m. The quantum dot resin sheet was obtained. The obtained quantum dot resin sheet was uniformly applied on the base film, pinholes were not seen, and the film thickness uniformity was good.
  • Example 8 In Example 1, it manufactured like Example 1 except not providing barrier layer 1, and a film layered product was obtained.
  • Example 9 In Example 1, it manufactured like Example 1 except having changed an application layer composition into composition of application layer 2, and obtained a film layered product.
  • Example 10 In Example 1, it manufactured like Example 1 except having changed an application layer composition into composition of application layer 3, and obtained a film layered product.
  • Comparative Examples 1 to 4 In Example 1, it manufactured like Example 1 except having changed polyester as shown in following Table 1, and obtained the sealing film. Thereafter, similarly, the sealing film and the quantum dot-containing resin sheet were directly bonded to obtain a film laminate.
  • Example 1 In Example 1, it manufactured similarly to Example 1 except not providing an application layer, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were directly bonded together, and the film laminated body was obtained.
  • Example 6 In Example 1, it manufactured similarly to Example 1 except not providing a protective layer, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were directly bonded together, and the film laminated body was obtained.
  • Example 7 In Example 1, it manufactured like Example 1 except changing an application layer composition into composition of application layer 4, and a film layered product was obtained.
  • Tables 1 to 4 show the properties of the sealing films obtained in the above examples and comparative examples.
  • Table 4 shows the characteristics of the sealing films obtained in the above examples and comparative examples.
  • the sealing film for electronic members of the present invention is particularly excellent in transparency, adhesiveness and water vapor barrier properties, and is used for sealing electronic members such as quantum dot-containing resin sheets, electronic paper, and organic EL, which require high water vapor barrier properties. It can be suitably used as a film.

Abstract

Provided, as a sealing film for electronic members such as a quantum dot-containing resin sheet, an electronic paper and an organic EL, is a sealing film which has good transparency, barrier properties and processing characteristics. A sealing film for electronic members, which has a configuration wherein a barrier layer and a protective layer are sequentially laminated on a coating layer of a coated film wherein one surface of a polyester film has a roughness (Rt) of 100 nm or more and the other surface is provided with a coating layer that is formed from a coating liquid containing a crosslinking agent composed of a melamine resin or an oxazoline resin and at least one resin selected from among polyester resins, urethane resins and acrylic resins, said coated film having a film haze of 2.0% or less. This sealing film for electronic members has a water vapor transmission rate (as measured at a temperature of 40°C and at a humidity of 90%RH in accordance with JIS-K7129 B) of 0.01 g/m2/day or less.

Description

電子部材用封止フィルムSealing film for electronic parts
 本発明は、透明性、バリア性および電子部材との接着性に優れ、高度な水蒸気バリア性の求められる、量子ドット含有樹脂シート、電子ペーパー、有機ELなどの電子部材用封止フィルムに関するものである。 The present invention relates to a sealing film for an electronic member such as a quantum dot-containing resin sheet, electronic paper, and organic EL, which is excellent in transparency, barrier property and adhesion to an electronic member, and requires high water vapor barrier properties. is there.
 光学用途において、ポリエステルフィルムは、光学特性に優れるため、各種ディスプレイ用途を中心に広く使用されている。 In optical applications, polyester films are widely used mainly for various display applications because of their excellent optical properties.
 一方、電子ペーパーや有機ELなどの表示ディスプレイが近年、急速に普及してきた結果、軽量化、フレキシブルという観点からガラス基材代替として、透明プラスチックフィルムへの代替検討が鋭意進められている。 On the other hand, as a result of the rapid spread of display displays such as electronic paper and organic EL in recent years, an alternative study to a transparent plastic film as an alternative to a glass base material has been earnestly promoted from the viewpoint of weight reduction and flexibility.
 しかしながら、ガラス基材を透明プラスチックフィルムに置き換えた場合、水分が透明プラスチックフィルムを透過するため、デバイスが劣化する。そのため、ガスバリア層を有する透明プラスチックフィルムが必要となるが、従来の食品包装用途に用いられるガスバリア性フィルムでは、水分の遮断性が不十分であり、電子デバイスの劣化を抑制することが困難である。 However, when the glass substrate is replaced with a transparent plastic film, the device deteriorates because moisture passes through the transparent plastic film. Therefore, a transparent plastic film having a gas barrier layer is required. However, gas barrier films used for conventional food packaging applications have insufficient moisture barrier properties and it is difficult to suppress deterioration of electronic devices. .
 このような電子ペーパーや有機ELなどの表示ディスプレイに使用することを目的として、プラスチックフィルムの少なくとも片面にポリマーからなる硬化樹脂層と窒化酸化珪素からなるガスバリア層を設けた水蒸気透過度が0.02g/m/dayのガスバリア性フィルムが提案されている(特許文献1参照)。 For use in display displays such as electronic paper and organic EL, a water vapor permeability of 0.02 g is provided by providing a cured resin layer made of a polymer and a gas barrier layer made of silicon nitride oxide on at least one side of a plastic film. A gas barrier film of / m 2 / day has been proposed (see Patent Document 1).
 しかしながら、特許文献1記載のガスバリアフィルムは、ガスバリア性向上効果はある反面、粘着層との密着性については考慮されていない。また、窒化酸化珪素をガスバリア層として用いたガスバリアフィルムは、ガスバリア層の屈折率が高く、保護層との屈折率差が大きくなり、透過率が低下する場合がある。 However, while the gas barrier film described in Patent Document 1 has an effect of improving gas barrier properties, it does not consider the adhesion to the adhesive layer. In addition, a gas barrier film using silicon nitride oxide as a gas barrier layer has a high refractive index of the gas barrier layer, a refractive index difference with the protective layer is increased, and the transmittance may be reduced.
 また、基材フィルム上に大気圧プラズマCVD法により平坦化層、ガスバリア層、保護層を積層し、10-6g/m/dayレベルの水蒸気バリア性を有するガスバリアフィルムが提案されている(特許文献2参照)。 Further, a gas barrier film having a water vapor barrier property of 10 −6 g / m 2 / day level by laminating a planarizing layer, a gas barrier layer, and a protective layer on a base film by an atmospheric pressure plasma CVD method has been proposed ( Patent Document 2).
 しかしながら、特許文献2の実施例1記載のガスバリアフィルムは、ガスバリア性は良好である反面、TEOSを原料として大気圧CVD法で作製した無機ポリマーからなる保護層は、粘着層との密着性は必ずしも十分ではない。 However, while the gas barrier film described in Example 1 of Patent Document 2 has good gas barrier properties, the protective layer made of an inorganic polymer made of TEOS as a raw material by the atmospheric pressure CVD method does not necessarily have adhesion to the adhesive layer. Not enough.
 また、ガスバリアフィルムの保護層としてポリビニルアルコールと無機層状化合物のコンポジット膜を積層したガスバリア性積層フィルム(特許文献3)が提案されているが、ディスプレイなどの表示体に用いた場合、外観が白っぽく、透明性に劣る傾向がある。 Further, a gas barrier laminate film (Patent Document 3) in which a composite film of polyvinyl alcohol and an inorganic layered compound is laminated as a protective layer of the gas barrier film has been proposed, but when used for a display body such as a display, the appearance is whitish, There is a tendency to be inferior in transparency.
 封止フィルムの透明性を改良するために、フィルム中に含有する滑剤粒子を減らす対策が講じられるが、滑剤粒子を減らしすぎると、例えばバリア層を積層する加工時の巻き作業性の低下等、加工特性を損なう問題がある。 In order to improve the transparency of the sealing film, measures to reduce the lubricant particles contained in the film are taken, but if the lubricant particles are reduced too much, for example, a decrease in winding workability during processing of laminating the barrier layer, etc. There is a problem of impairing processing characteristics.
 さらに、保護層としてゾルーゲル層を設けた構成を有するガスバリア性積層フィルム(特許文献4)が提案されているが、表面硬度は良好である反面、フレキシブル性や粘着層との密着性が劣る場合がある。 Furthermore, although a gas barrier laminate film (Patent Document 4) having a configuration in which a sol-gel layer is provided as a protective layer has been proposed, the surface hardness is good, but the flexibility and adhesion to the adhesive layer may be inferior. is there.
 また、特許文献5には、有機層/無機層の交互積層によるガスバリア性の向上の対策が講じられているが、ガスバリア性は向上する反面、有機層/無機層界面での層間密着性が不十分である。 In Patent Document 5, a measure for improving the gas barrier property by alternately laminating an organic layer / inorganic layer is taken, but the gas barrier property is improved, but the interlayer adhesion at the organic layer / inorganic layer interface is not good. It is enough.
 各種電子部材用として、透明性、バリア性および電子部材に対する接着性に優れた封止フィルムが必要とされる状況にあるが、有用なものはまだ見いだされていない状況であった。 Although it is in a situation where a sealing film excellent in transparency, barrier properties, and adhesion to the electronic member is required for various electronic members, a useful one has not yet been found.
特開2009-190186号公報JP 2009-190186 A 特開2007-83644号公報JP 2007-83644 A 特開2003-231789号公報JP 2003-231789 A 特開2003-326634号公報JP 2003-326634 A 特許4254350号公報Japanese Patent No. 4254350
 本発明は、上記実情に鑑みなされたものであり、その解決課題は、量子ドット含有樹脂シート、電子ペーパー、有機ELなどの電子部材用封止フィルムとして、透明性、バリア性および電子部材に対する接着性良好な封止フィルムを提供することにある。 This invention is made | formed in view of the said situation, The solution subject is transparency, barrier property, and adhesion | attachment with respect to an electronic member as sealing films for electronic members, such as a quantum dot containing resin sheet, electronic paper, and organic EL. It is in providing a sealing film with favorable property.
 本発明者は、上記実状に鑑み、鋭意検討した結果、特定の構成からなる封止フィルムによれば、上記課題を容易に解決できることを知見し、本発明を完成させるに至った。 As a result of intensive studies in view of the above situation, the present inventor has found that the above problem can be easily solved by a sealing film having a specific configuration, and has completed the present invention.
 すなわち、本発明の要旨は、ポリエステルフィルムの一方の面の粗さ(Rt)が100nm以上であり、もう一方の面に、ポリエステル樹脂、ウレタン樹脂、およびアクリル系樹脂の中から選択される少なくとも1種類以上の樹脂と、メラミン樹脂またはオキサゾリン樹脂から成る架橋剤とを含有する塗布液から形成された塗布層を有し、フィルムヘイズが2.0%以下の塗布フィルムの塗布層上に、バリア層および保護層が順次積層された構成を有するフィルムであり、当該フィルムの水蒸気透過度(JIS-K7129 B法に準じ、温度40℃、湿度90%RHの測定条件下で測定されたもの)が0.01g/m/day以下であることを特徴とする電子部材用封止フィルムに存する。 That is, the gist of the present invention is that the roughness (Rt) of one surface of the polyester film is 100 nm or more, and at least one selected from polyester resin, urethane resin, and acrylic resin on the other surface. A barrier layer on the coating layer of the coating film having a coating layer formed from a coating solution containing at least one kind of resin and a crosslinking agent comprising a melamine resin or an oxazoline resin, and having a film haze of 2.0% or less The film has a structure in which a protective layer is sequentially laminated, and the water vapor permeability of the film (measured in accordance with JIS-K7129 B method at a temperature of 40 ° C. and a humidity of 90% RH) is 0. It exists in the sealing film for electronic members characterized by being below 0.01g / m < 2 > / day.
 本発明の電子部材用封止フィルムは、透明性、バリア性および電子部材との接着性に優れ、高度なバリア性が要求される量子ドット含有樹脂シート、電子ペーパー、有機ELなどの電子部材用封止フィルムとして好適であり、その工業的価値は高い。 The sealing film for electronic members of the present invention is excellent in transparency, barrier properties, and adhesiveness with electronic members, and is used for electronic members such as quantum dot-containing resin sheets, electronic paper, and organic EL that require high barrier properties. It is suitable as a sealing film, and its industrial value is high.
本発明の電子部材用封止フィルムの模式的な断面図Typical sectional drawing of the sealing film for electronic members of this invention
 本発明の電子部材用封止フィルムは、ポリエステルフィルムを基材とする塗布フィルムの塗布層上にバリア層および保護層が順次積層された構成を有する。 The sealing film for electronic members of the present invention has a configuration in which a barrier layer and a protective layer are sequentially laminated on a coating layer of a coating film having a polyester film as a base material.
 ポリエステルフィルムは単層構成であっても積層構成であってもよく、例えば、2層、3層構成以外にも本発明の要旨を超えない限り、4層またはそれ以上の多層であってもよく、特に限定されるものではない。 The polyester film may have a single layer structure or a laminated structure. For example, the polyester film may have a multilayer structure of four layers or more as long as it does not exceed the gist of the present invention other than the two-layer or three-layer structure. There is no particular limitation.
 ポリエステルは、ホモポリエステルであっても共重合ポリエステルであってもよい。ホモポリエステルからなる場合、芳香族ジカルボン酸と脂肪族グリコールとを重縮合させて得られるものが好ましい。芳香族ジカルボン酸としては、テレフタル酸、2,6-ナフタレンジカルボン酸などが挙げられ、脂肪族グリコールとしては、エチレングリコール、ジエチレングリコール、1,4-シクロヘキサンジメタノール等が挙げられる。代表的なポリエステルとしては、ポリエチレンテレフタレート(PET)等が例示される。一方、共重合ポリエステルのジカルボン酸成分としては、イソフタル酸、フタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸、アジピン酸、セバシン酸、オキシカルボン酸(例えば、P-オキシ安息香酸など)等の一種または二種以上が挙げられ、グリコール成分として、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール等の一種または二種以上が挙げられる。何れにしても本発明でいうポリエステルとは、通常60モル%以上、好ましくは80モル%以上がエチレンテレフタレート単位であるポリエチレンテレフタレート等であるポリエステルを指す。 The polyester may be a homopolyester or a copolyester. In the case of a homopolyester, those obtained by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol are preferred. Examples of the aromatic dicarboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid, and examples of the aliphatic glycol include ethylene glycol, diethylene glycol, and 1,4-cyclohexanedimethanol. Representative polyester includes polyethylene terephthalate (PET) and the like. On the other hand, examples of the dicarboxylic acid component of the copolyester include isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, and oxycarboxylic acid (eg, P-oxybenzoic acid). One or two or more types can be mentioned, and examples of the glycol component include one or more types such as ethylene glycol, diethylene glycol, propylene glycol, butanediol, 1,4-cyclohexanedimethanol, neopentyl glycol and the like. In any case, the polyester referred to in the present invention refers to a polyester that is usually 60 mol% or more, preferably 80 mol% or more of polyethylene terephthalate or the like which is an ethylene terephthalate unit.
 ポリエステルフィルム中には、易滑性付与を主たる目的として粒子を配合することが好ましい。配合する粒子の種類は、易滑性付与可能な粒子であれば特に限定されるものではなく、具体例としては、例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸マグネシウム、カオリン、酸化アルミニウム、酸化チタン等の粒子が挙げられる。また、特公昭59-5216号公報、特開昭59-217755号公報等に記載されている耐熱性有機粒子を用いてもよい。この他の耐熱性有機粒子の例として、熱硬化性尿素樹脂、熱硬化性フェノール樹脂、熱硬化性エポキシ樹脂、ベンゾグアナミン樹脂等が挙げられる。さらに、ポリエステル製造工程中、触媒等の金属化合物の一部を沈殿、微分散させた析出粒子を用いることもできる。 In the polyester film, it is preferable to mix particles for the main purpose of imparting easy slipperiness. The kind of the particle to be blended is not particularly limited as long as it is a particle capable of imparting slipperiness. Specific examples thereof include silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, and phosphoric acid. Examples of the particles include magnesium, kaolin, aluminum oxide, and titanium oxide. Further, the heat-resistant organic particles described in JP-B-59-5216, JP-A-59-217755 and the like may be used. Examples of other heat-resistant organic particles include thermosetting urea resins, thermosetting phenol resins, thermosetting epoxy resins, benzoguanamine resins, and the like. Furthermore, precipitated particles obtained by precipitating and finely dispersing a part of a metal compound such as a catalyst during the polyester production process can also be used.
 一方、使用する粒子の形状に関しても特に限定されるわけではなく、球状、塊状、棒状、扁平状等のいずれを用いてもよい。また、その硬度、比重、色等についても特に制限はない。これら一連の粒子は、必要に応じて2種類以上を併用してもよい。 On the other hand, the shape of the particles to be used is not particularly limited, and any of a spherical shape, a block shape, a rod shape, a flat shape, and the like may be used. Moreover, there is no restriction | limiting in particular about the hardness, specific gravity, a color, etc. These series of particles may be used in combination of two or more as required.
 また、用いる粒子の平均粒径は、通常0.01~4μm、好ましくは1.0~3.5μmの範囲である。平均粒径が1.0μm未満の場合には、滑り性が不十分のため、加工特性が不十分な場合があり、一方、3.5μmを超える場合には、フィルムの透明性が不十分な場合がある。 The average particle size of the particles used is usually in the range of 0.01 to 4 μm, preferably 1.0 to 3.5 μm. When the average particle size is less than 1.0 μm, the slipperiness is insufficient, so the processing characteristics may be insufficient. On the other hand, when it exceeds 3.5 μm, the transparency of the film is insufficient. There is a case.
 粒子の含有量は、通常0.001~5重量%、好ましくは0.015~0.080重量%の範囲である。粒子含有量が0.015重量%未満の場合には、フィルムの易滑性が不十分な場合があり、一方、0.080重量%を超えて添加する場合にはフィルムの透明性が不十分な場合がある。 The particle content is usually in the range of 0.001 to 5% by weight, preferably 0.015 to 0.080% by weight. When the particle content is less than 0.015% by weight, the slipperiness of the film may be insufficient. On the other hand, when the content exceeds 0.080% by weight, the transparency of the film is insufficient. There are cases.
 粒子を添加する方法としては、特に限定されるものではなく、従来公知の方法を採用しうる。例えば、ポリエステルを製造する任意の段階において添加することができるが、好ましくはエステル化の段階、もしくはエステル交換反応終了後、重縮合反応を進めてもよい。 The method for adding particles is not particularly limited, and a conventionally known method can be adopted. For example, it can be added at any stage for producing the polyester, but the polycondensation reaction may proceed preferably after the esterification stage or after the transesterification reaction.
 また、ベント付き混練押出機を用い、エチレングリコールまたは水などに分散させた粒子のスラリーとポリエステル原料とをブレンドする方法、または、混練押出機を用い、乾燥させた粒子とポリエステル原料とをブレンドする方法などによって行われる。 Also, a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material, or a blending of dried particles and a polyester raw material using a kneading extruder. It is done by methods.
 なお、ポリエステルフィルム中には上述の粒子以外に必要に応じて従来公知の、蛍光増白剤、酸化防止剤、帯電防止剤、熱安定剤、潤滑剤、染料、顔料等を添加することができる。 In addition to the above-mentioned particles, conventionally known fluorescent whitening agents, antioxidants, antistatic agents, thermal stabilizers, lubricants, dyes, pigments and the like can be added to the polyester film as necessary. .
 ポリエステルフィルムの厚みは、フィルムとして製膜可能な範囲であれば特に限定されるものではない。フィルム基材の機械強度、可撓性、透明性等を考慮して、12~125μmが好ましく、更に好ましくは25~100μmがよい。 The thickness of the polyester film is not particularly limited as long as it can be formed as a film. In consideration of the mechanical strength, flexibility, transparency and the like of the film substrate, it is preferably 12 to 125 μm, more preferably 25 to 100 μm.
 ポリエステルフィルムの一方の面の表面粗さ(Rt)は、通常100nm以上、好ましくは300nm以上である。Rtが100nm未満の場合、量子ドット含有樹脂シート、電子ペーパー、有機ELなどに使用される封止フィルムに加工する際、巻き作業性の低下等、加工特性を損なう場合がある。
 なお、表面粗さ(Rt)が規定されたポリエステルフィルムの一方の面とは、後述する、塗布層、バリア層、および保護層が順次積層される面の反対面を意味する。
The surface roughness (Rt) of one surface of the polyester film is usually 100 nm or more, preferably 300 nm or more. When Rt is less than 100 nm, when processing into a sealing film used for a quantum dot-containing resin sheet, electronic paper, organic EL, or the like, processing characteristics such as reduction in winding workability may be impaired.
In addition, one surface of the polyester film in which the surface roughness (Rt) is defined means a surface opposite to a surface on which a coating layer, a barrier layer, and a protective layer are sequentially laminated.
 塗布フィルムのヘイズは、通常2.0%以下、好ましくは1.5%以下である。ヘイズが2.1%以上の場合、量子ドット含有樹脂シート、電子ペーパー、有機ELなどの封止フィルムとして用いた場合、デバイスの透明性が低くなり、視認性に劣る場合がある。 The haze of the coated film is usually 2.0% or less, preferably 1.5% or less. When the haze is 2.1% or more, when used as a sealing film for a quantum dot-containing resin sheet, electronic paper, organic EL, or the like, the transparency of the device is lowered and the visibility may be inferior.
 次にポリエステルフィルムの製造例について具体的に説明するが、以下の製造例に何ら限定されるものではない。 Next, a production example of the polyester film will be specifically described, but is not limited to the following production example.
 まず、先に述べたポリエステル原料を使用し、ダイから押し出された溶融シートを冷却ロールで冷却固化して未延伸シートを得る方法が好ましい。この場合、シートの平面性を向上させるためシートと回転冷却ドラムとの密着性を高める必要があり、静電印加密着法および/または液体塗布密着法が好ましく採用される。次に得られた未延伸シートは二軸方向に延伸される。その場合、まず、前記の未延伸シートを一方向にロールまたはテンター方式の延伸機により延伸する。延伸温度は、通常70~120℃、好ましくは80~110℃であり、延伸倍率は、通常2.5~7倍、好ましくは3.0~6倍である。次いで、一段目の延伸方向と直交する延伸温度は通常70~170℃であり、延伸倍率は、通常3.0~7倍、好ましくは3.5~6倍である。そして、引き続き180~270℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、二軸配向フィルムを得る。上記の延伸においては、一方向の延伸を2段階以上で行う方法を採用することもできる。その場合、最終的に二方向の延伸倍率がそれぞれ上記範囲となるように行うのが好ましい。 First, a method in which the polyester raw material described above is used and the molten sheet extruded from the die is cooled and solidified with a cooling roll to obtain an unstretched sheet is preferable. In this case, in order to improve the flatness of the sheet, it is necessary to improve the adhesion between the sheet and the rotary cooling drum, and an electrostatic application adhesion method and / or a liquid application adhesion method are preferably employed. Next, the obtained unstretched sheet is stretched in the biaxial direction. In that case, first, the unstretched sheet is stretched in one direction by a roll or a tenter type stretching machine. The stretching temperature is usually 70 to 120 ° C., preferably 80 to 110 ° C., and the stretching ratio is usually 2.5 to 7 times, preferably 3.0 to 6 times. Next, the stretching temperature orthogonal to the first-stage stretching direction is usually 70 to 170 ° C., and the draw ratio is usually 3.0 to 7 times, preferably 3.5 to 6 times. Subsequently, heat treatment is performed at a temperature of 180 to 270 ° C. under tension or relaxation within 30% to obtain a biaxially oriented film. In the above-described stretching, a method in which stretching in one direction is performed in two or more stages can be employed. In that case, it is preferable to carry out so that the draw ratios in the two directions finally fall within the above ranges.
 また、ポリエステルフィルム製造に関しては同時二軸延伸法を採用することもできる。同時二軸延伸法は前記の未延伸シートを通常70~120℃、好ましくは80~110℃で温度コントロールされた状態で機械方向および幅方向に同時に延伸し配向させる方法で、延伸倍率としては、面積倍率で通常4~50倍、好ましくは7~35倍、更に好ましくは10~25倍である。そして、引き続き、170~250℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、延伸配向フィルムを得る。上述の延伸方式を採用する同時二軸延伸装置に関しては、スクリュー方式、パンタグラフ方式、リニアー駆動方式等、従来公知の延伸方式を採用することができる。 Also, the simultaneous biaxial stretching method can be adopted for the production of the polyester film. The simultaneous biaxial stretching method is a method in which the unstretched sheet is usually stretched and oriented simultaneously in the machine direction and the width direction in a state where the temperature is controlled at 70 to 120 ° C, preferably 80 to 110 ° C. The area magnification is usually 4 to 50 times, preferably 7 to 35 times, and more preferably 10 to 25 times. Subsequently, heat treatment is performed at a temperature of 170 to 250 ° C. under tension or under relaxation within 30% to obtain a stretched oriented film. With respect to the simultaneous biaxial stretching apparatus that employs the above-described stretching method, a conventionally known stretching method such as a screw method, a pantograph method, or a linear driving method can be employed.
 さらに上述のポリエステルフィルムの延伸工程中にフィルム表面を処理する、いわゆる塗布延伸法(インラインコーティング)を施すことができる。塗布延伸法によりポリエステルフィルム上に塗布層が設けられる場合には、延伸と同時に塗布が可能になると共に塗布層の厚みを延伸倍率に応じて薄くすることができ、ポリエステルフィルムとして好適なフィルムを製造できる。 Furthermore, a so-called coating stretching method (in-line coating) for treating the film surface during the above-described polyester film stretching step can be performed. When a coating layer is provided on a polyester film by a coating stretching method, coating can be performed simultaneously with stretching and the thickness of the coating layer can be reduced according to the stretching ratio, producing a film suitable as a polyester film. it can.
 本発明における塗布フィルムは、バリア層との密着性向上のため、ポリエステル樹脂、ウレタン樹脂、およびアクリル系樹脂の中から選択される少なくとも1種類以上の樹脂と、メラミン樹脂またはオキサゾリン樹脂から成る架橋剤とを含有する塗布液から形成された塗布層を有する。 The coated film in the present invention is a crosslinking agent comprising at least one resin selected from polyester resins, urethane resins, and acrylic resins, and a melamine resin or an oxazoline resin for improving adhesion to the barrier layer. The coating layer formed from the coating liquid containing these.
 ポリエステル樹脂とは、ジカルボン酸成分とグリコール成分とを構成成分とする線状ポリエステルと定義する。ジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6ーナフタレンジカルボン酸、4,4-ジフェニルジカルボン酸、1,4ーシクロヘキサンジカルボン酸、アジピン酸、セバシン酸、フェニルインダンジカルボン酸、ダイマー酸等を例示することができる。これらの成分は二種以上を用いることができる。さらに、これらの成分とともにマレイン酸、フマル酸、イタコン酸等のような不飽和多塩基酸やp-ヒドロキシ安息香酸、p-(β-ヒドロキシエトキシ)安息香酸等のようなヒドロキシカルボン酸を少割合用いることができる。不飽和多塩基酸成分やヒドロキシカルボン酸成分の割合は高々10モル%、好ましくは5モル%以下である。 The polyester resin is defined as a linear polyester having a dicarboxylic acid component and a glycol component as constituent components. Dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, adipic acid, sebacic acid, phenylindanedicarboxylic acid, A dimer acid etc. can be illustrated. Two or more of these components can be used. In addition to these components, a small proportion of unsaturated polybasic acids such as maleic acid, fumaric acid, itaconic acid and the like, and hydroxycarboxylic acids such as p-hydroxybenzoic acid and p- (β-hydroxyethoxy) benzoic acid, etc. Can be used. The proportion of the unsaturated polybasic acid component or the hydroxycarboxylic acid component is at most 10 mol%, preferably 5 mol% or less.
 また、グリコール成分としては、エチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、キシリレングリコール、ジメチロールプロピオン酸、グリセリン、トリメチロールプロパン、ポリ(エチレンオキシ)グリコール、ポリ(テトラメチレンオキシ)グリコール、ビスフェノールAのアルキレンオキサイド付加物、水添ビスフェノールAのアルキレンオキサイド付加物等を例示することができる。これらは2種以上を用いることができる。 Examples of the glycol component include ethylene glycol, 1,4-butanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, xylylene glycol, dimethylolpropionic acid. Glycerin, trimethylolpropane, poly (ethyleneoxy) glycol, poly (tetramethyleneoxy) glycol, an alkylene oxide adduct of bisphenol A, an alkylene oxide adduct of hydrogenated bisphenol A, and the like. Two or more of these can be used.
 かかるポリオール成分の中でもエチレングリコール、ビスフェノールAのエチレンオキサイド付加物やプロピレンオキサイド付加物、1,4-ブタンジオールが好ましく、さらにエチレングリコール、ビスフェノールAのエチレンオキサイド付加物やプロピレンオキサイド付加物が好ましい。 Among such polyol components, ethylene glycol and bisphenol A ethylene oxide adducts and propylene oxide adducts and 1,4-butanediol are preferred, and ethylene glycol and bisphenol A ethylene oxide adducts and propylene oxide adducts are more preferred.
 また、水分散化あるいは水溶性化を容易にするためにスルホン酸(塩)基を有するポリエステル樹脂を少なくとも1種類以上を含有することが好ましい。 Also, it is preferable to contain at least one polyester resin having a sulfonic acid (salt) group in order to facilitate water dispersion or water solubility.
 スルホン酸(塩)基を有するポリエステル樹脂としては、例えば5-ナトリウムスルホイソフタル酸、5-アンモニウムスルホイソフタル酸、4-ナトリウムスルホイソフタル酸、4-メチルアンモニウムスルホイソフタル酸、2-ナトリウムスルホイソフタル酸、5-カリウムスルホイソフタル酸、4-カリウムスルホイソフタル酸、2-カリウムスルホイソフタル酸、ナトリウムスルホコハク酸等のスルホン酸アルカリ金属塩系またはスルホン酸アミン塩系化合物等が好ましく挙げられる。 Examples of the polyester resin having a sulfonic acid (salt) group include 5-sodium sulfoisophthalic acid, 5-ammonium sulfoisophthalic acid, 4-sodium sulfoisophthalic acid, 4-methylammonium sulfoisophthalic acid, 2-sodium sulfoisophthalic acid, Preferable examples include sulfonic acid alkali metal salt compounds or sulfonic acid amine salt compounds such as 5-potassium sulfoisophthalic acid, 4-potassium sulfoisophthalic acid, 2-potassium sulfoisophthalic acid, and sodium sulfosuccinic acid.
 前記ポリエステル樹脂において、ガラス転移温度(以下、Tgと略記する場合がある)は40℃以上であるのが好ましく、更に好ましくは60℃以上がよい。Tgが40℃未満の場合、接着性向上を目的として、塗布層の塗布厚みを厚くした場合、ブロッキングし易くなる等の不具合を生じる場合がある。 In the polyester resin, the glass transition temperature (hereinafter sometimes abbreviated as Tg) is preferably 40 ° C. or higher, more preferably 60 ° C. or higher. When Tg is less than 40 ° C., for the purpose of improving adhesiveness, when the coating thickness of the coating layer is increased, problems such as easy blocking may occur.
 アクリル樹脂とは、アクリル系、メタアクリル系のモノマーに代表されるような、炭素-炭素二重結合を持つ重合性モノマーからなる重合体である。これらは、単独重合体あるいは共重合体いずれでも差し支えない。また、それら重合体と他のポリマー(例えばポリエステル、ポリウレタン等)との共重合体も含まれる。例えば、ブロック共重合体、グラフト共重合体である。さらにポリエステル溶液、またはポリエステル分散液中で炭素-炭素二重結合を持つ重合性モノマーを重合して得られたポリマー(場合によりポリマーの混合物)も含まれる。同様にポリウレタン溶液、ポリウレタン分散液中で炭素-炭素二重結合を持つ重合性モノマーを重合して得られたポリマー(場合によってはポリマーの混合物)も含まれる。同様にして他のポリマー溶液、または分散液中で炭素-炭素二重結合を持つ重合性モノマーを重合して得られたポリマー(場合によってはポリマー混合物)も含まれる。 An acrylic resin is a polymer composed of a polymerizable monomer having a carbon-carbon double bond, as typified by acrylic and methacrylic monomers. These may be either a homopolymer or a copolymer. Moreover, the copolymer of these polymers and other polymers (for example, polyester, polyurethane, etc.) is also included. For example, a block copolymer or a graft copolymer. Furthermore, a polymer (possibly a mixture of polymers) obtained by polymerizing a polymerizable monomer having a carbon-carbon double bond in a polyester solution or a polyester dispersion is also included. Similarly, a polymer (in some cases, a mixture of polymers) obtained by polymerizing a polymerizable monomer having a carbon-carbon double bond in a polyurethane solution or polyurethane dispersion is also included. Similarly, a polymer (in some cases, a polymer mixture) obtained by polymerizing a polymerizable monomer having a carbon-carbon double bond in another polymer solution or dispersion is also included.
 上記炭素-炭素二重結合を持つ重合性モノマーとしては、特に限定はしないが、代表的な化合物としては、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、フマル酸、マレイン酸、シトラコン酸のような各種カルボキシル基含有モノマー類、およびそれらの塩;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、モノブチルヒドロキルフマレート、モノブチルヒドロキシイタコネートのような各種の水酸基含有モノマー類;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ラウリル(メタ)アクリレートのような各種の(メタ)アクリル酸エステル類;(メタ)アクリルアミド、ジアセトンアクリルアミド、N-メチロールアクリルアミドまたは(メタ)アクリロニトリル等のような種々の窒素含有ビニル系モノマー類。また、これらと併用して以下に示すような重合性モノマーを共重合することができる。すなわち、スチレン、α-メチルスチレン、ジビニルベンゼン、ビニルトルエンのような各種スチレン誘導体、酢酸ビニル、プロピオン酸ビニルのような各種のビニルエステル類;γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、メタクリロイルシリコンマクロマー等のような種々の珪素含有重合性モノマー類;燐含有ビニル系モノマー類;塩化ビニル、塩化ビリデン、フッ化ビニル、フッ化ビニリデン、トリフルオロクロルエチレン、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレンのような各種のハロゲン化ビニル類;ブタジエンのような各種共役ジエン類等が例示される。 The polymerizable monomer having a carbon-carbon double bond is not particularly limited, but representative compounds such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, fumaric acid, maleic acid, and citraconic acid. Various carboxyl group-containing monomers and their salts; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, monobutylhydroxyl fumarate, monobutylhydroxy Various hydroxyl-containing monomers such as itaconate; various (meth) acrylic such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate Acid esters; (meth) a Riruamido, various nitrogen-containing vinyl monomers such as diacetone acrylamide, N- methylol acrylamide or (meth) acrylonitrile. Further, in combination with these, polymerizable monomers as shown below can be copolymerized. That is, various styrene derivatives such as styrene, α-methylstyrene, divinylbenzene and vinyltoluene, various vinyl esters such as vinyl acetate and vinyl propionate; γ-methacryloxypropyltrimethoxysilane, vinyltrimethoxysilane, Various silicon-containing polymerizable monomers such as methacryloyl silicon macromer; phosphorus-containing vinyl monomers; vinyl chloride, biliden chloride, vinyl fluoride, vinylidene fluoride, trifluorochloroethylene, tetrafluoroethylene, chlorotrifluoroethylene And various vinyl halides such as hexafluoropropylene; and various conjugated dienes such as butadiene.
 前記アクリル樹脂において、ガラス転移温度は40℃以上であるのが好ましく、更に好ましくは60℃以上がよい。Tgが40℃未満の場合、接着性向上を目的として、塗布層の塗布厚みを厚くした場合、ブロッキングし易くなる等の不具合を生じる場合がある。 In the acrylic resin, the glass transition temperature is preferably 40 ° C. or higher, more preferably 60 ° C. or higher. When Tg is less than 40 ° C., for the purpose of improving adhesiveness, when the coating thickness of the coating layer is increased, problems such as easy blocking may occur.
 ウレタン樹脂は、バリア層に対する接着性を良好とするために使用されるが、斯かる観点から、ポリカーボネート構造を有するウレタン樹脂が好ましい。 Urethane resin is used to improve the adhesion to the barrier layer. From this viewpoint, urethane resin having a polycarbonate structure is preferable.
 ポリカーボネート構造を有するウレタン樹脂とは、ウレタン樹脂の主要な構成成分であるポリオールの一つがポリカーボネートポリオール類であるウレタン樹脂を指す。 The urethane resin having a polycarbonate structure refers to a urethane resin in which one of the polyols, which are main components of the urethane resin, is a polycarbonate polyol.
 ポリカーボネートポリオール類は、多価アルコール類とカーボネート化合物とから、脱アルコール反応によって得られる。多価アルコール類としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、トリメチロールプロパン、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、3,3-ジメチロールヘプタン等が挙げられる。カーボネート化合物としては、ジメチルカーボネート、ジエチルカーボネート、ジフェニルカーボネート、エチレンカーボネート等が挙げられ、これらの反応から得られるポリカーボネート系ポリオール類としては、例えば、ポリ(1,6-ヘキシレン)カーボネート、ポリ(3-メチル-1,5-ペンチレン)カーボネート等が挙げられる。 Polycarbonate polyols are obtained from a polyhydric alcohol and a carbonate compound by a dealcoholization reaction. The polyhydric alcohols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, trimethylolpropane, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, , 5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, , 10-decanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, and the like. Examples of the carbonate compound include dimethyl carbonate, diethyl carbonate, diphenyl carbonate, and ethylene carbonate. Examples of the polycarbonate-based polyols obtained from these reactions include poly (1,6-hexylene) carbonate, poly (3- And methyl-1,5-pentylene) carbonate.
 ポリカーボネート構造を有するウレタン樹脂を構成するポリイソシアネート類としては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、トリジンジイソシアネート等の芳香族ジイソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族ジイソシアネート、メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、ジシクロヘキシルメタンジイソシアネート、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環族ジイソシアネート等が例示される。これらは単独で用いても、複数種併用してもよい。また、上記イソシアネートの中でも、活性エネルギー線硬化性塗料との密着性の向上、および紫外線による黄変防止の点から、芳香族イソシアネートよりも脂肪族イソシアネートまたは脂環族イソシアネートがより好ましい。 Examples of the polyisocyanates constituting the urethane resin having a polycarbonate structure include aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, and tolidine diisocyanate, α, α, α ′, Aliphatic diisocyanates having an aromatic ring such as α'-tetramethylxylylene diisocyanate, methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate and other aliphatic diisocyanates, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate , Mechi Nbisu (4-cyclohexyl isocyanate), dicyclohexylmethane diisocyanate, alicyclic diisocyanates such as isopropylidene dicyclohexyl diisocyanates. These may be used alone or in combination. Among the above isocyanates, aliphatic isocyanates or alicyclic isocyanates are more preferable than aromatic isocyanates from the viewpoint of improving adhesion to the active energy ray-curable coating material and preventing yellowing due to ultraviolet rays.
 ウレタン樹脂を合成する際に鎖延長剤を使用しても良く、鎖延長剤としては、イソシアネート基と反応する活性基を2個以上有するものであれば特に制限はなく、一般的には、水酸基またはアミノ基を2個有する鎖延長剤を主に用いることができる。 A chain extender may be used when synthesizing the urethane resin, and the chain extender is not particularly limited as long as it has two or more active groups that react with an isocyanate group. Alternatively, a chain extender having two amino groups can be mainly used.
 水酸基を2個有する鎖延長剤としては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール等の脂肪族グリコール、キシリレングリコール、ビスヒドロキシエトキシベンゼン等の芳香族グリコール、ネオペンチルグリコール、ネオペンチルグリコールヒドロキシピバレート等のエステルグリコールといったグリコール類を挙げることができる。また、アミノ基を2個有する鎖延長剤としては、例えば、トリレンジアミン、キシリレンジアミン、ジフェニルメタンジアミン等の芳香族ジアミン、エチレンジアミン、プロピレンジアミン、ヘキサンジアミン、2,2-ジメチル-1,3-プロパンジアミン、2-メチル-1,5-ペンタンジアミン、トリメチルヘキサンジアミン、2-ブチル-2-エチル-1,5-ペンタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン等の脂肪族ジアミン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、ジシクロヘキシルメタンジアミン、イソプロビリチンシクロヘキシル-4,4’-ジアミン、1,4-ジアミノシクロヘキサン、1,3-ビスアミノメチルシクロヘキサン、イソホロンジアミン等の脂環族ジアミン等が挙げられる。 Examples of the chain extender having two hydroxyl groups include aliphatic glycols such as ethylene glycol, propylene glycol, butanediol and pentanediol, aromatic glycols such as xylylene glycol and bishydroxyethoxybenzene, neopentyl glycol and neopentyl. Examples include glycols such as ester glycols such as glycol hydroxypivalate. Examples of the chain extender having two amino groups include aromatic diamines such as tolylenediamine, xylylenediamine, diphenylmethanediamine, ethylenediamine, propylenediamine, hexanediamine, 2,2-dimethyl-1,3- Propanediamine, 2-methyl-1,5-pentanediamine, trimethylhexanediamine, 2-butyl-2-ethyl-1,5-pentanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10- Aliphatic diamines such as decane diamine, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, dicyclohexylmethanediamine, isopropylidine cyclohexyl-4,4′-diamine, 1,4-diaminocyclohexane, 1 , 3-Bisaminomethylcyclohexane Alicyclic diamines such as isophorone diamine.
 ウレタン樹脂は、溶剤を媒体とするものであってもよいが、好ましくは水を媒体とするものである。ウレタン樹脂を水に分散または溶解させるには、乳化剤を用いる強制乳化型、ウレタン樹脂中に親水性基を導入する自己乳化型あるいは水溶型等がある。特に、ウレタン樹脂の骨格中にイオン基を導入しアイオノマー化した自己乳化タイプが、液の貯蔵安定性や得られる塗布層の耐水性、透明性、密着性に優れており好ましい。 Urethane resin may use a solvent as a medium, but preferably uses water as a medium. In order to disperse or dissolve the urethane resin in water, there are a forced emulsification type using an emulsifier, a self-emulsification type in which a hydrophilic group is introduced into the urethane resin, and a water-soluble type. In particular, a self-emulsification type in which an ionic group is introduced into the skeleton of a urethane resin to form an ionomer is preferable because of excellent storage stability of the liquid and water resistance, transparency, and adhesion of the resulting coating layer.
 また、導入するイオン基としては、カルボキシル基、スルホン酸、リン酸、ホスホン酸、第4級アンモニウム塩等、種々のものが挙げられるが、カルボキシル基が好ましい。ウレタン樹脂にカルボキシル基を導入する方法としては、重合反応の各段階の中で種々の方法が取り得る。例えば、プレポリマー合成時に、カルボキシル基を持つ樹脂を共重合成分として用いる方法や、ポリオールやポリイソシアネート、鎖延長剤などの一成分としてカルボキシル基を持つ成分を用いる方法がある。特に、カルボキシル基含有ジオールを用いて、この成分の仕込み量によって所望の量のカルボキシル基を導入する方法が好ましい。 In addition, examples of the ionic group to be introduced include various groups such as a carboxyl group, a sulfonic acid, a phosphoric acid, a phosphonic acid, a quaternary ammonium salt, and the carboxyl group is preferable. As a method for introducing a carboxyl group into a urethane resin, various methods can be taken in each stage of the polymerization reaction. For example, there are a method of using a carboxyl group-containing resin as a copolymer component during prepolymer synthesis, and a method of using a component having a carboxyl group as one component such as polyol, polyisocyanate, and chain extender. In particular, a method in which a desired amount of carboxyl groups is introduced using a carboxyl group-containing diol depending on the amount of this component charged is preferred.
 例えば、ウレタン樹脂の重合に用いるジオールに対して、ジメチロールプロピオン酸、ジメチロールブタン酸、ビス-(2-ヒドロキシエチル)プロピオン酸、ビス-(2-ヒドロキシエチル)ブタン酸等を共重合させることができる。またこのカルボキシル基はアンモニア、アミン、アルカリ金属類、無機アルカリ類等で中和した塩の形にするのが好ましい。特に好ましいものは、アンモニア、トリメチルアミン、トリエチルアミンである。 For example, dimethylolpropionic acid, dimethylolbutanoic acid, bis- (2-hydroxyethyl) propionic acid, bis- (2-hydroxyethyl) butanoic acid, and the like are copolymerized with a diol used for polymerization of a urethane resin. Can do. The carboxyl group is preferably in the form of a salt neutralized with ammonia, amine, alkali metal, inorganic alkali or the like. Particularly preferred are ammonia, trimethylamine and triethylamine.
 前記のポリカーボネート構造を有するウレタン樹脂のガラス転移点は、通常0℃以下、好ましくは-15℃以下、更に好ましくは-30℃以下である。Tgが0℃より高いものは、易接着性が不十分となることがある。ここで言うTgは、ウレタン樹脂の乾燥皮膜を作成し、示差走査熱量計(DSC)を用いて測定した温度を指す。 The glass transition point of the urethane resin having the polycarbonate structure is usually 0 ° C. or lower, preferably −15 ° C. or lower, more preferably −30 ° C. or lower. When Tg is higher than 0 ° C., easy adhesion may be insufficient. Tg said here refers to the temperature which created the dry film | membrane of the urethane resin and measured using the differential scanning calorimeter (DSC).
 メラミン樹脂としては、特に限定されるものではないが、メラミン、メラミンとホルムアルデヒドを縮合して得られるメチロール化メラミン誘導体、メチロール化メラミンに低級アルコールを反応させて部分的あるいは完全エーテル化した化合物、およびこれらの混合物などを用いることができる。 The melamine resin is not particularly limited, but melamine, a methylolated melamine derivative obtained by condensing melamine and formaldehyde, a compound partially or completely etherified by reacting a methylolated melamine with a lower alcohol, and These mixtures can be used.
 また、メラミン樹脂は、単量体、あるいは2量体以上の多量体からなる縮合物のいずれであってもよく、あるいはこれらの混合物を用いてもよい。上記エーテル化に用いる低級アルコールとしては、メチルアルコール、エチルアルコール、イソプロピルアルコール、n-ブタノール、イソブタノールなどを好ましく使用することができる。官能基としては、イミノ基、メチロール基、あるいはメトキシメチル基やブトキシメチル基等のアルコキシメチル基を1分子中に有するもので、イミノ基型メチル化メラミン、メチロール基型メラミン、メチロール基型メチル化メラミン、完全アルキル型メチル化メラミンなどを用いることができる。その中でもメチロール化メラミンが最も好ましい。さらに、メラミン樹脂の熱硬化促進を目的として、例えば、p-トルエンスルホン酸などの酸性触媒を併用することもできる。 Further, the melamine resin may be either a monomer or a condensate composed of a dimer or higher multimer, or a mixture thereof. As the lower alcohol used for the etherification, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol and the like can be preferably used. The functional group has an imino group, a methylol group, or an alkoxymethyl group such as a methoxymethyl group or a butoxymethyl group in one molecule, and an imino group type methylated melamine, a methylol group type melamine, or a methylol group type methylated group. Melamine, fully alkyl methylated melamine and the like can be used. Of these, methylolated melamine is most preferred. Furthermore, an acidic catalyst such as p-toluenesulfonic acid can be used in combination for the purpose of promoting the thermosetting of the melamine resin.
 オキサゾリン化合物とは、分子内にオキサゾリン基を有する化合物であり、特にオキサゾリン基を含有する重合体が好ましく、付加重合性オキサゾリン基含有モノマー単独もしくは他のモノマーとの重合によって作成できる。付加重合性オキサゾリン基含有モノマーは、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン等を挙げることができ、これらの1種または2種以上の混合物を使用することができる。これらの中でも2-イソプロペニル-2-オキサゾリンが工業的にも入手しやすく好適である。他のモノマーは、付加重合性オキサゾリン基含有モノマーと共重合可能なモノマーであれば制限なく、例えばアルキル(メタ)アクリレート(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基)等の(メタ)アクリル酸エステル類;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸、スチレンスルホン酸およびその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等の不飽和カルボン酸類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド、(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基等)等の不飽和アミド類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα-オレフィン類;塩化ビニル、塩化ビニリデン等の含ハロゲンα,β-不飽和モノマー類;スチレン、α-メチルスチレン、等のα,β-不飽和芳香族モノマー等を挙げることができ、これらの1種または2種以上のモノマーを使用することができる。 The oxazoline compound is a compound having an oxazoline group in the molecule, and is particularly preferably a polymer containing an oxazoline group, and can be prepared by polymerization of an addition polymerizable oxazoline group-containing monomer alone or with another monomer. Addition-polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, Examples thereof include 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like, and one or a mixture of two or more thereof can be used. Of these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially. The other monomer is not particularly limited as long as it is a monomer copolymerizable with an addition polymerizable oxazoline group-containing monomer. For example, alkyl (meth) acrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, (Meth) acrylic acid esters such as n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene Unsaturated carboxylic acids such as sulfonic acid and its salts (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); Unsaturated nitriles such as acrylonitrile, methacrylonitrile; (meth) acrylamide, N-alkyl ( (Meth) acrylamide, N, N-dialkyl (meth) acrylamide, Examples of the alkyl group include unsaturated amides such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, 2-ethylhexyl, cyclohexyl, etc .; vinyl acetate Vinyl esters such as vinyl propionate; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; α-olefins such as ethylene and propylene; halogen-containing α, β-unsaturated monomers such as vinyl chloride and vinylidene chloride; styrene, An α, β-unsaturated aromatic monomer such as α-methylstyrene can be used, and one or more of these monomers can be used.
 オキサゾリン化合物に含有されるオキサゾリン基の含有量は、オキサゾリン基量で、通常0.5~10mmol/g、好ましくは1~9mmol/g、更に好ましくは3~8mmol/g、特に好ましくは4~6mmol/gの範囲である。上記範囲での使用が、塗膜強度の向上のために好ましい。 The content of the oxazoline group contained in the oxazoline compound is usually 0.5 to 10 mmol / g, preferably 1 to 9 mmol / g, more preferably 3 to 8 mmol / g, particularly preferably 4 to 6 mmol in terms of the amount of the oxazoline group. / G. Use in the above range is preferable for improving the coating strength.
 塗布液中の樹脂の割合歯、全不揮発成分に対する割合として、通常10~80重量%、好ましくは10~60重量%であり、塗布液中の架橋剤の割合は、全不揮発成分に対する割合として、通常6~80重量%、好ましくは10~60重量%である。 The ratio of the resin in the coating solution is usually 10 to 80% by weight, preferably 10 to 60% by weight as the ratio to the total nonvolatile components, and the ratio of the crosslinking agent in the coating solution is the ratio to the total nonvolatile components, Usually 6 to 80% by weight, preferably 10 to 60% by weight.
 塗布液の塗工量(乾燥後)は塗工性の面から、通常0.005~1g/m、好ましくは0.005~0.5g/m、更に好ましくは0.01~0.2g/m範囲である。塗工量(乾燥後)が0.005g/m未満の場合、塗工性の面より安定性に欠け、均一な塗膜を得るのが困難になる場合がある。一方、1g/mを超えて厚塗りにする場合には塗布層自体の塗膜密着性、硬化性等が低下する場合がある。 The coating amount (after drying) of the coating solution is usually 0.005 to 1 g / m 2 , preferably 0.005 to 0.5 g / m 2 , more preferably 0.01 to 0. The range is 2 g / m 2 . When the coating amount (after drying) is less than 0.005 g / m 2 , the coating property may be less stable and it may be difficult to obtain a uniform coating film. On the other hand, when the coating is thicker than 1 g / m 2 , the coating film adhesion and curability of the coating layer itself may be lowered.
 塗布方法としては、リバースグラビアコート、ダイレクトグラビアコート、ロールコート、ダイコート、バーコート、カーテンコート等、従来公知の塗工方式を用いることができる。塗工方式に関しては「コーティング方式」槇書店 原崎勇次著1979年発行に記載例がある。 As a coating method, conventionally known coating methods such as reverse gravure coating, direct gravure coating, roll coating, die coating, bar coating, and curtain coating can be used. As for the coating method, there is an example described in “Coating Method” Tsuji Shoten published by Yuji Harasaki in 1979.
 塗布層が設けられていないフィルム面には、本発明の主旨を損なわない範囲において、帯電防止層、オリゴマー析出防止層等の塗布層を設けてもよい。また、ポリエステルフィルムには、予め、コロナ処理、プラズマ処理等の表面処理を施してもよい。 A coating layer such as an antistatic layer or an oligomer precipitation preventing layer may be provided on the film surface not provided with a coating layer as long as the gist of the present invention is not impaired. The polyester film may be subjected to surface treatment such as corona treatment or plasma treatment in advance.
 本発明の封止フィルムを構成するバリア層は、ポリエステルフィルムにバリア性を付与することを目的として積層される。バリア層の材料としては、バリア性を所望のレベル、本発明においては、JIS-K7129B法に準じた測定による水蒸気透過度が温度40℃、湿度90%RHの測定条件下で0.01g/m/day以下にすることができるものであれば、特に限定されることはない。好ましくは0.005g/m/day以下がよい。 The barrier layer which comprises the sealing film of this invention is laminated | stacked for the purpose of providing barrier property to a polyester film. As a material for the barrier layer, the barrier property is at a desired level. In the present invention, the water vapor permeability measured according to the JIS-K7129B method is 0.01 g / m under measurement conditions of a temperature of 40 ° C. and a humidity of 90% RH. There is no particular limitation as long as it can be 2 / day or less. Preferably it is 0.005 g / m 2 / day or less.
 バリア層の材料としては、例えば、ポリシラザン化合物、ポリカルボシラン化合物、ポリシラン化合物、ポリオルガノシロキサン化合物、テトラオルガノシラン化合物等のケイ素化合物、酸化ケイ素、酸窒化ケイ素、酸化アルミニウム、酸窒化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ等の無機酸化物、窒化ケイ素、窒化アルミニウム等の無機窒ち化物、酸化窒化ケイ素等の無機酸化窒化物等、アルミニウム、マグ
ネシウム、亜鉛、スズ等の金属などが挙げられる。これらは、1種を単独で、または2種以上を組み合わせて使用することができる。
Examples of the material for the barrier layer include silicon compounds such as polysilazane compounds, polycarbosilane compounds, polysilane compounds, polyorganosiloxane compounds, and tetraorganosilane compounds, silicon oxide, silicon oxynitride, aluminum oxide, aluminum oxynitride, and magnesium oxide. Inorganic oxides such as zinc oxide, indium oxide and tin oxide, inorganic nitrides such as silicon nitride and aluminum nitride, inorganic oxynitrides such as silicon oxynitride, metals such as aluminum, magnesium, zinc and tin Can be mentioned. These can be used individually by 1 type or in combination of 2 or more types.
 バリア層の厚さは、通常1nm~10μm、好ましくは10~1000nm、更に好ましくは20~500nm、特に好ましく、50~200nmである。バリア層の厚みが1nm未満ではバリア効果が不十分となる場合がある。一方、10μmを超える場合、性能面では飽和状態にあり、それ以上バリア効果が期待し難い傾向にある。 The thickness of the barrier layer is usually 1 nm to 10 μm, preferably 10 to 1000 nm, more preferably 20 to 500 nm, particularly preferably 50 to 200 nm. If the thickness of the barrier layer is less than 1 nm, the barrier effect may be insufficient. On the other hand, when it exceeds 10 μm, it is in a saturated state in terms of performance, and it is difficult to expect a barrier effect any more.
 バリア層は、単層構成であってもよく、2層以上から構成される複数層であってもよい。 The barrier layer may have a single layer structure or a plurality of layers composed of two or more layers.
 バリア層を形成する方法に関して、バリア層を構成する材料に応じて、従来公知の方法を用いることが可能であり、目的に応じて適宜選択することができる。
 例えば、上記バリア層の材料を、蒸着法、スパッタリング法、イオンプレーティング法、熱CVD法、プラズマCVD法等によりポリエステルフィルム上に形成する方法、あるいは上記バリア層の材料を有機溶剤に溶解した溶液を、ポリエステルフィルムに塗布し、得られた塗膜に対してプラズマイオン注入する方法などが挙げられる。プラズマイオン注入にて注入されるイオンとしては、例えば、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガス、フルオロカーボン、水素、窒素、酸素、二酸化炭素、塩素、フッ素、硫黄等のイオン;金、銀、銅、白金、ニッケル、パラジウム、クロム、チタン、モリブデン、ニオブ、タンタル、タングステン、アルミニウム等の金属のイオンなどが挙げられる。
Regarding the method for forming the barrier layer, a conventionally known method can be used depending on the material constituting the barrier layer, and can be appropriately selected according to the purpose.
For example, a method in which the barrier layer material is formed on a polyester film by vapor deposition, sputtering, ion plating, thermal CVD, plasma CVD, or the like, or a solution in which the barrier layer material is dissolved in an organic solvent Is applied to a polyester film, and plasma ion implantation is performed on the obtained coating film. Examples of ions implanted by plasma ion implantation include rare gases such as argon, helium, neon, krypton, and xenon, ions such as fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, and sulfur; gold, Examples include ions of metals such as silver, copper, platinum, nickel, palladium, chromium, titanium, molybdenum, niobium, tantalum, tungsten, and aluminum.
 本発明においてはバリア層上に保護層を設けることを必須の要件とする。保護層をバリア層上に塗設することにより、バリア層中に存在する微小な欠損部分に保護層形成用塗工液が均一に浸透し、熱硬化により、バリア層欠陥部分の修復が可能となる。また、バリア層を保護層が被覆することで、加工工程中における、搬送用ガイドロールとの接触による、擦れあるいは削れ、また、製造工程で使用される有機溶剤からバリア層を保護し、バリア性を維持することも可能となる。 In the present invention, it is an essential requirement to provide a protective layer on the barrier layer. By coating the protective layer on the barrier layer, the coating liquid for forming the protective layer penetrates evenly into the minute defects existing in the barrier layer, and the defective portion of the barrier layer can be repaired by thermosetting. Become. In addition, by covering the barrier layer with a protective layer, the barrier layer is protected from being rubbed or scraped by contact with the conveying guide roll during the processing process, and from the organic solvent used in the manufacturing process, and has barrier properties. Can also be maintained.
 保護層は、バリア層保護に加えて、量子ドット含有樹脂シートと直接貼り合わせる際に、接着性を良好とするために、活性エネルギー線照射により、硬化可能な、活性エネルギー線硬化樹脂を含有するのが好ましい。さらに好ましくは、当該活性エネルギー線硬化樹脂がアクリレート構造を有する化合物であることが好ましい。 In addition to protecting the barrier layer, the protective layer contains an active energy ray-curable resin that can be cured by irradiation with active energy rays in order to improve adhesion when directly bonding with the quantum dot-containing resin sheet. Is preferred. More preferably, the active energy ray-curable resin is preferably a compound having an acrylate structure.
 アクリレート構造を有する化合物とは、高分子化合物安全性評価フロースキーム(昭和60年11月 化学物質審議会主催)に準じて、ゲルパーミエーションクロマトグラフィー(GPC)測定による重量平均分子量(Mw)が5000以上、好ましくは10000以上の高分子化合物で、かつ造膜性を有するものと定義する。 A compound having an acrylate structure has a weight average molecular weight (Mw) of 5000 by gel permeation chromatography (GPC) measurement in accordance with a polymer compound safety evaluation flow scheme (November 1985, sponsored by the Chemical Substances Council). As described above, it is preferably defined as a polymer compound of 10,000 or more and having a film-forming property.
 アクリレート構造を有する化合物の具体例としては、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エポキシアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタンアクリレート等が例示される。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。さらに、前記アクリレートをメタクリレートにしたものを併用してもよく、1種単独で使用してもよいし、2種以上を併用してもよい。
 また、技術情報協会2010年12月21日発行「機能性アクリレートの選び方・使い方事例集」にも具体例に関する記載がある。
Specific examples of the compound having an acrylate structure include methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, epoxy acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylol propane triacrylate, dimethylol tricyclodecane diacrylate, tetra Methylene glycol tetraacrylate, 2-hydroxy-1,3-diacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxyethoxy) phenyl] Examples include propane, dicyclopentenyl acrylate, tricyclodecanyl acrylate, tris (acryloxyethyl) isocyanurate, and urethane acrylate. The These may be used individually by 1 type and may use 2 or more types together. Furthermore, what used the said acrylate as the methacrylate may be used together, may be used individually by 1 type, and may use 2 or more types together.
In addition, “Technical Information Association” issued on December 21, 2010, “How to select and use functional acrylates” has a description about specific examples.
 アクリレート構造を有する化合物を硬化するために使用する光重合開始剤の具体例として、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノンなどが挙げられる。アシルフォスフィンオキサイド系光重合開始剤として、例えば2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドなどが挙げられる。チタノセン系光重合開始剤として、例えば、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウムなどが挙げられる。オキシムエステル系重合開始剤として、例えば、1.2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)、オキシフェニル酢酸、2-[2-オキソ-2-フェニルアセトキシエトキシ]エチルエステル、2-(2-ヒドロキシエトキシ)エチルエステルなどが挙げられる。これらの光重合開始剤は、1種を単独で用いてもよく、また2種以上を併用してもよい。 Specific examples of photopolymerization initiators used for curing a compound having an acrylate structure include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 2- Hydroxy-2-methyl-1-phenyl-1-propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy -1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one, 2-methyl-1- (4-methylthiophenyl) -2 -Morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2- (dimethylamino ) -2 - [(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone and the like. Examples of the acylphosphine oxide photopolymerization initiator include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and the like. Examples of titanocene photopolymerization initiators include bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium Is mentioned. Examples of the oxime ester polymerization initiator include 1.2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2 -Methylbenzoyl) -9H-carbazol-3-yl]-, 1- (0-acetyloxime), oxyphenylacetic acid, 2- [2-oxo-2-phenylacetoxyethoxy] ethyl ester, 2- (2-hydroxy And ethoxy) ethyl ester. These photoinitiators may be used individually by 1 type, and may use 2 or more types together.
 保護層中における、活性エネルギー線硬化樹脂と光重合開始剤との量に関しては、活性エネルギー線硬化樹脂100重量部に対して、光重合開始剤を1~6重量部配合するのが好ましい。光重合開始剤が当該範囲を外れる場合には、所望する性能を有する保護層を得るのが困難になる場合がある。 Regarding the amount of the active energy ray curable resin and the photopolymerization initiator in the protective layer, it is preferable to mix 1 to 6 parts by weight of the photopolymerization initiator with respect to 100 parts by weight of the active energy ray curable resin. When the photopolymerization initiator is out of the range, it may be difficult to obtain a protective layer having desired performance.
 以下に、アルミニウム、チタン、ジルコニウムから選ばれる、少なくとも1種以上の金属元素を含む有機化合物を保護層中に含有する別の実施態様を例示する。 Hereinafter, another embodiment in which an organic compound containing at least one metal element selected from aluminum, titanium, and zirconium is contained in the protective layer will be exemplified.
 アルミニウム元素を有する有機化合物の具体例としてはアルミニウムトリス(アセチルアセトネ-ト)、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウム-ジ-n-ブトキシド-モノエチルアセトアセテート、アルミニウム-ジ-イソ-プロポキシド-モノメチルアセトアセテート等が例示される。 Specific examples of the organic compound having an aluminum element include aluminum tris (acetylacetonate), aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum-di-n-butoxide-monoethylacetoacetate, aluminum di- Examples include iso-propoxide monomethyl acetoacetate and the like.
 チタン元素を有する有機化合物の具体例としては、例えば、テトラノルマルブチルチタネート、テトライソプロピルチタネート、ブチルチタネートダイマー、テトラ(2-エチルヘキシル)チタネート、テトラメチルチタネート等のチタンオルソエステル類;チタンアセチルアセトナート、チタンテトラアセチルアセトナート、ポリチタンアセチルアセトナート、チタンオクチレングリコレート、チタンラクテート、チタントリエタノールアミネート、チタンエチルアセトアセテート等のチタンキレート類等が挙げられる。 Specific examples of the organic compound having titanium element include titanium orthoesters such as tetranormal butyl titanate, tetraisopropyl titanate, butyl titanate dimer, tetra (2-ethylhexyl) titanate, tetramethyl titanate; titanium acetylacetonate, Examples thereof include titanium chelates such as titanium tetraacetylacetonate, polytitanium acetylacetonate, titanium octylene glycolate, titanium lactate, titanium triethanolamate, and titanium ethylacetoacetate.
 ジルコニウム元素を有する有機化合物の具体例としては、例えば、ジルコニウムアセテート、ジルコニウムノルマルプロピレート、ジルコニウムノルマルブチレート、ジルコニウムテトラアセチルアセトナート、ジルコニウムモノアセチルアセトナート、ジルコニウムビスアセチルアセトナート等が挙げられる。 Specific examples of the organic compound having a zirconium element include, for example, zirconium acetate, zirconium normal propylate, zirconium normal butyrate, zirconium tetraacetylacetonate, zirconium monoacetylacetonate, zirconium bisacetylacetonate and the like.
 それらの中でも、特に接着性能が良好となる点でアルミニウム、ジルコニウムから選ばれる金属元素を含む有機化合物に関して、好ましくはキレート構造を有する有機化合物が好ましい。なお、「架橋剤ハンドブック」(山下晋三、金子東助編者(株)大成社 平成2年版)にも具体的に記載されている。 Among them, an organic compound having a chelate structure is preferable with respect to an organic compound containing a metal element selected from aluminum and zirconium from the viewpoint of particularly good adhesion performance. It is also described in detail in the “Crosslinking agent handbook” (Yamashita Shinzo, Kaneko Tosuke Editor Taiseisha Co., Ltd., 1990 edition).
 また、保護層には、バリア層の保護とともに粘着層を介して、量子ドット含有樹脂シートと貼り合わせる際に、接着性を良好とするために下記一般式(1)で表される有機珪素化合物を併用するのが好ましい。 In addition, when the protective layer is bonded to the quantum dot-containing resin sheet through the adhesive layer as well as protecting the barrier layer, the organosilicon compound represented by the following general formula (1) is used to improve the adhesion. It is preferable to use together.
 Si(X)d(Y)e(R1)f …(1)
[上記式中、Xはエポキシ基、メルカプト基、(メタ)アクリロイル基、アルケニル基、ハロアルキル基およびアミノ基から選ばれる少なくとも1種を有する有機基、Rは一価炭化水素基であり、かつ炭素数1~10のものであり、Yは加水分解性基であり、dは1または2の整数、eは2または3の整数、fは0または1の整数であり、d+e+f=4である]
Si (X) d (Y) e (R1) f (1)
[In the above formula, X is an organic group having at least one selected from an epoxy group, a mercapto group, a (meth) acryloyl group, an alkenyl group, a haloalkyl group and an amino group, R 1 is a monovalent hydrocarbon group, and 1 to 10 carbon atoms, Y is a hydrolyzable group, d is an integer of 1 or 2, e is an integer of 2 or 3, f is an integer of 0 or 1, and d + e + f = 4 ]
 上記一般式(1)で表される有機珪素化合物は、加水分解・縮合反応によりシロキサン結合を形成しうる加水分解性基Yを2個有するもの(D単位源)あるいは3個有するもの(T単位源)を使用することができる。 The organosilicon compound represented by the general formula (1) has two hydrolyzable groups Y (D unit source) or three (T unit) capable of forming a siloxane bond by hydrolysis / condensation reaction. Source) can be used.
 一般式(1)において、一価炭化水素基R1は、炭素数が1~10のもので、特にメチル基、エチル基、プロピル基が好ましい。 In the general formula (1), the monovalent hydrocarbon group R 1 has 1 to 10 carbon atoms, and is particularly preferably a methyl group, an ethyl group, or a propyl group.
 一般式(1)において、加水分解性基Yとしては、従来公知のものが使用可能で、以下のものを例示できる。メトキシ基、エトキシ基、ブトキシ基、イソプロペノキシ基、アセトキシ基、ブタノキシム基およびアミノ基等。これらの加水分解性基は、単独あるいは複数種を使用してもよい。メトキシ基あるいはエトキシ基を適用すると、コーティング材に良好な保存安定性を付与でき、また適当な加水分解性があるため、特に好ましい。 In the general formula (1), as the hydrolyzable group Y, conventionally known ones can be used, and the following can be exemplified. Methoxy group, ethoxy group, butoxy group, isopropenoxy group, acetoxy group, butanoxime group, amino group and the like. These hydrolyzable groups may be used alone or in combination. The application of a methoxy group or an ethoxy group is particularly preferable because it can impart good storage stability to the coating material and has suitable hydrolyzability.
 上記の有機珪素化合物としては、従来公知のものを使用することができ、具体的にはビニルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メタアクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、5-ヘキセニルトリメトキシシラン、p-スチリルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジイソプロペノキシシラン等を例示することができる。 As the above organosilicon compound, conventionally known compounds can be used. Specifically, vinyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β -(3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-acryloxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, 5 Examples include -hexenyltrimethoxysilane, p-styryltrimethoxysilane, trifluoropropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldiisopropenoxysilane, and the like.
 保護層には加水分解・縮合反応促進を目的として、触媒を併用してもよい。具体例としては、酢酸、酪酸、マレイン酸、クエン酸などの有機酸類、塩酸、硝酸、リン酸、硫酸などの無機酸類、トリエチルアミンなどの塩基性化合物類、テトラブチルチタネート、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジオクテート、ジブチル錫ジオレート、ジフェニル錫ジアセテート、ジブチル錫オキサイド、ジブチル錫ジメトキサイド、ジブチルビス(トリエトキシシロキシ)錫、ジブチル錫ベンジルマレート等などの有機金属塩類、KF、NH4Fなどのフッ素元素含有化合物などを挙げることができる。上記触媒は単独で使用しても良くあるいは2種類以上を併用しても良い。その中でも、特に塗膜耐久性が良好となる点で有機金属塩類が好ましく、さらに好ましくは触媒活性が長時間持続可能な点で錫触媒を用いるのが好ましい。 A catalyst may be used in combination with the protective layer for the purpose of promoting hydrolysis and condensation reactions. Specific examples include organic acids such as acetic acid, butyric acid, maleic acid and citric acid, inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid and sulfuric acid, basic compounds such as triethylamine, tetrabutyl titanate, dibutyltin dilaurate and dibutyltin. Organometallic salts such as diacetate, dibutyltin dioctate, dibutyltin diolate, diphenyltin diacetate, dibutyltin oxide, dibutyltin dimethoxide, dibutylbis (triethoxysiloxy) tin, dibutyltin benzylmalate, etc., KF, NH 4 F, etc. And fluorine element-containing compounds. The above catalysts may be used alone or in combination of two or more. Among these, organometallic salts are particularly preferable from the viewpoint of good coating film durability, and more preferably a tin catalyst is used from the viewpoint of long-lasting catalytic activity.
 さらに保護層は、その固着性、滑り性改良を目的として、本発明の主旨を損なわない範囲において、無機系粒子を含有してもよく、具体例としてはシリカ、アルミナ、カオリン、炭酸カルシウム、酸化チタン、バリウム塩等が挙げられる。 Further, the protective layer may contain inorganic particles for the purpose of improving its adhesion and slipperiness within the range not impairing the gist of the present invention. Specific examples include silica, alumina, kaolin, calcium carbonate, oxidation. Examples include titanium and barium salts.
 また、必要に応じて消泡剤、塗布性改良剤、増粘剤、有機系潤滑剤、有機系高分子粒子、酸化防止剤、紫外線吸収剤発泡剤、染料等が含有されてもよい。 In addition, an antifoaming agent, a coating property improver, a thickener, an organic lubricant, organic polymer particles, an antioxidant, a UV absorber foaming agent, a dye, and the like may be contained as necessary.
 本発明の要旨を越えない範囲において、分散性改良、造膜性改良等を目的として、使用する有機溶剤は一種類のみでもよく、適宜、二種類以上を使用してもよい。 In the range not exceeding the gist of the present invention, only one type of organic solvent may be used for the purpose of improving dispersibility, improving film forming property, etc., and two or more types may be used as appropriate.
 保護層を塗設する際の塗布量(乾燥後)は、通常0.005~5g/m、好ましくは0.005~1g/mの範囲である。塗布量(乾燥後)が、0.005g/m未満の場合には、塗布厚みの均一性が不十分な場合があり、保護層としての保護機能が不十分となる場合がある。一方、5g/mを超えて塗布する場合には、滑り性低下等の不具合を生じる場合がある。 The coating amount (after drying) when the protective layer is applied is usually 0.005 to 5 g / m 2 , preferably 0.005 to 1 g / m 2 . When the coating amount (after drying) is less than 0.005 g / m 2 , the uniformity of the coating thickness may be insufficient, and the protective function as a protective layer may be insufficient. On the other hand, when it coats exceeding 5 g / m < 2 >, malfunctions, such as a slipperiness fall, may arise.
 上記組成から構成される保護層により、耐久性良好であるとともに、粘着層との接着性にも優れる。 The protective layer composed of the above composition has good durability and excellent adhesion to the adhesive layer.
 本発明においては、封止フィルムの水蒸気透過率が0.01g/m/day以下であることを必須の要件とするものである。好ましくは、0.005g/m/day以下がよい。特に電子部材用封止フィルムとして、0.005g/m/day以下が望まれ、当該範囲を超えた場合には、デバイスを長期使用中にデバイス中に徐々に水分が入り込み、デバイスの劣化が起こりやすくなる傾向にある。 In the present invention, it is an essential requirement that the water vapor transmission rate of the sealing film is 0.01 g / m 2 / day or less. Preferably, 0.005 g / m 2 / day or less is preferable. In particular, as a sealing film for an electronic member, 0.005 g / m 2 / day or less is desired, and when the range is exceeded, moisture gradually enters the device during long-term use of the device, and the device deteriorates. It tends to happen easily.
 次に、本発明の封止フィルムを貼り合わせる相手材としての量子ドット含有樹脂シートについて説明する。 Next, the quantum dot-containing resin sheet as a counterpart material to which the sealing film of the present invention is bonded is described.
 量子ドットを含有する樹脂シート層(量子ドット層と略記する場合がある)には複数の量子ドットおよび樹脂を含んでもよい。本発明において、量子ドットとは、量子閉じ込め効果(quantum confinement effect)を有する所定のサイズの半導体粒子をいう。量子ドットの直径は、一般的に1~10nmの範囲にあるものを用いるのが好ましい。 The resin sheet layer containing quantum dots (sometimes abbreviated as quantum dot layer) may contain a plurality of quantum dots and a resin. In the present invention, a quantum dot refers to a semiconductor particle of a predetermined size having a quantum confinement effect. It is preferable to use a quantum dot having a diameter generally in the range of 1 to 10 nm.
 量子ドットは、励起源から光を吸収してエネルギー励起状態に達すると、量子ドットのエネルギーバンドギャップに該当するエネルギーを放出する。よって、量子ドットのサイズまたは物質の組成を調節すると、エネルギーバンドギャップを調節することができ、様々なレベルの波長帯のエネルギーを得ることができる。 When the quantum dot absorbs light from the excitation source and reaches an energy excited state, it emits energy corresponding to the energy band gap of the quantum dot. Therefore, by adjusting the size of the quantum dots or the composition of the substance, the energy band gap can be adjusted, and energy in various levels of wavelength bands can be obtained.
 例えば、量子ドットのサイズが55~65Åの場合は赤色系の色を発し、量子ドットのサイズが40~50Åの場合は緑色系の色を発し、量子ドットのサイズが20~35Åの場合は青色系の色を発し、黄色は赤色を発する量子ドットと緑色を発する量子ドットの中間サイズを有する。光の波長によるスペクトルが赤色から青色に変化することによって量子ドットのサイズは約65Åから約20Åに次第に変化することを把握することができ、この数値には若干の差異があり得る。 For example, a red color is emitted when the quantum dot size is 55 to 65 mm, a green color is emitted when the quantum dot size is 40 to 50 mm, and a blue color is emitted when the quantum dot size is 20 to 35 mm. The yellow color has an intermediate size between the quantum dots emitting red and the quantum dots emitting green. It can be seen that the size of the quantum dot gradually changes from about 65 mm to about 20 mm by changing the spectrum depending on the wavelength of light from red to blue, and there may be a slight difference in this value.
 よって、前記量子ドットから、量子サイズ効果(quantum size effect)による赤色、緑色、青色を含む様々な色を容易に得ることができる。従って、それぞれの波長で発光する色を作ることもでき、赤色、緑色、青色を混合して白色または様々な色を生成・実現することもできる。 Therefore, various colors including red, green, and blue can be easily obtained from the quantum dots by a quantum size effect. Accordingly, it is possible to create colors that emit light at respective wavelengths, and it is also possible to generate and realize white or various colors by mixing red, green, and blue.
 例えば、光源から出射した光が青色光の場合、量子ドット層は、赤色量子ドットおよび緑色量子ドットを含んでもよい。前記赤色量子ドットは、青色光の一部を620~750nmの波長領域を有する赤色光に変換し、前記緑色量子ドットは、青色光の一部を495~570nmの波長領域を有する緑色光に変換する。そして、赤色光と緑色光に変換されない青色光はそのまま量子ドット層を透過する。従って、量子ドット層では青色光、赤色光、緑色光が上面に出射し、これらの光は混合されて白色光が生成される。 For example, when the light emitted from the light source is blue light, the quantum dot layer may include red quantum dots and green quantum dots. The red quantum dots convert part of blue light into red light having a wavelength range of 620 to 750 nm, and the green quantum dots convert part of blue light into green light having a wavelength range of 495 to 570 nm. To do. And the blue light which is not converted into red light and green light permeate | transmits a quantum dot layer as it is. Therefore, in the quantum dot layer, blue light, red light, and green light are emitted to the upper surface, and these lights are mixed to generate white light.
 前記量子ドットは、化学的湿式方法により合成してもよい。前記化学的湿式方法は、有機溶媒に前駆体物質を入れて粒子を成長させる方法である。前記量子ドットとしては、CdSe、CdTe、CdS、ZnSe、ZnTe、ZnS、HgTe、またはHgSなどのII-VI族化合物が挙げられる。 The quantum dots may be synthesized by a chemical wet method. The chemical wet method is a method of growing particles by putting a precursor substance in an organic solvent. Examples of the quantum dots include II-VI group compounds such as CdSe, CdTe, CdS, ZnSe, ZnTe, ZnS, HgTe, or HgS.
 また、前記量子ドットは、コア・シェル構造を有するようにしてもよい。ここで、前記コアは、CdSe、CdTe、CdS、ZnSe、ZnTe、ZnS、HgTe、およびHgSからなる群から選択されるいずれか1つの物質を含み、前記シェルも、CdSe、CdTe、CdS、ZnSe、ZnTe、ZnS、HgTe、およびHgSからなる群から選択されるいずれか1つの物質を含む。さらに、InPなどのIII-V族化合物でもよい。 The quantum dots may have a core / shell structure. Here, the core includes any one material selected from the group consisting of CdSe, CdTe, CdS, ZnSe, ZnTe, ZnS, HgTe, and HgS, and the shell also includes CdSe, CdTe, CdS, ZnSe, Any one substance selected from the group consisting of ZnTe, ZnS, HgTe, and HgS is included. Furthermore, a III-V group compound such as InP may be used.
 前記量子ドットの表面に置換されている有機リガンドは、ピリジン、メルカプトアルコール、チオール、ホスフィン、およびホスフィン酸化物などを含み、合成後に不安定な量子ドットを安定化させる役割を果たす。なお、市販品として、入手可能な量子ドットとして、例えば、SIGMA-ALDRICH社製の各種量子ドット等が例示される。 The organic ligand substituted on the surface of the quantum dot includes pyridine, mercapto alcohol, thiol, phosphine, phosphine oxide, and the like, and plays a role in stabilizing unstable quantum dots after synthesis. Examples of commercially available quantum dots include various quantum dots manufactured by SIGMA-ALDRICH.
 また、量子ドット含有する樹脂に関しては、主に光源から出射した光の波長を吸収しない物質を使用するのが好ましい。具体的には、エポキシ、シリコーン、アクリル系高分子、ガラス、カーボネート系高分子、またはそれらの混合物などを使用してもよい。当該樹脂が弾性を有する場合、外部衝撃に対する液晶表示装置の耐久性向上にも寄与することができる。好ましくは、封止フィルムの保護層と同様に活性エネルギー線硬化樹脂が好ましく、さらに好ましくは当該活性エネルギー線硬化樹脂がアクリレート構造を有する化合物であるのがよい。 Also, for the resin containing quantum dots, it is preferable to use a substance that does not absorb the wavelength of light emitted mainly from the light source. Specifically, epoxy, silicone, acrylic polymer, glass, carbonate polymer, or a mixture thereof may be used. When the resin has elasticity, it can also contribute to improving the durability of the liquid crystal display device against external impact. Preferably, an active energy ray curable resin is preferable similarly to the protective layer of the sealing film, and more preferably, the active energy ray curable resin is a compound having an acrylate structure.
 量子ドット層を形成する方法は次のとおりである。 The method for forming the quantum dot layer is as follows.
 前記樹脂に複数の量子ドットを添加し、スピンコーティング方法またはプリント方法を用いて前記樹脂をカラーフィルタ層の上部に塗布することにより、量子ドット含有樹脂シートを形成してもよい。 Quantum dot-containing resin sheets may be formed by adding a plurality of quantum dots to the resin and applying the resin on top of the color filter layer using a spin coating method or a printing method.
 また、量子ドットが添加された樹脂を成形加工して硬化することにより、量子ドット樹脂シートを形成してもよい。 Further, the quantum dot resin sheet may be formed by molding and curing a resin to which quantum dots are added.
 さらに、有機溶液を注入してその中に複数の量子ドットを分散させて前記有機溶液を硬化することにより、量子ドット層を形成してもよい。有機溶液は、トルエン、クロロホルム、およびエタノールの少なくとも1つを含んでもよい。ここで、前記有機溶液は青色波長を吸収しない。この場合、量子ドットのリガンドと有機溶液との反応が起こらないので、量子ドット層の寿命と効率が増加するという利点がある。 Furthermore, a quantum dot layer may be formed by injecting an organic solution, dispersing a plurality of quantum dots therein, and curing the organic solution. The organic solution may include at least one of toluene, chloroform, and ethanol. Here, the organic solution does not absorb blue wavelengths. In this case, since the reaction between the quantum dot ligand and the organic solution does not occur, there is an advantage that the lifetime and efficiency of the quantum dot layer are increased.
 本発明においては、粘着層を介して量子ドット含有樹脂シートと封止フィルムとを貼りあわせた積層体構成、あるいは量子ドット含有樹脂シートと封止フィルムとを直接貼り合わせた積層体構成とすることが出来る。 In this invention, it is set as the laminated body structure which bonded the quantum dot containing resin sheet and the sealing film through the adhesion layer, or the laminated body structure which bonded the quantum dot containing resin sheet and the sealing film directly. I can do it.
 上記の粘着層について以下に説明する。粘着層とは粘着性を有する材料から構成される層を意味し、本発明における主旨を損なわない範囲において、アクリル系粘着剤、シリコーン系粘着剤等、従来公知の材料を用いることができる。また、貼りあわせにおいては従来公知の貼合わせ方式を採用することができる。 The above adhesive layer will be described below. The pressure-sensitive adhesive layer means a layer composed of a material having adhesiveness, and a conventionally known material such as an acrylic pressure-sensitive adhesive or a silicone pressure-sensitive adhesive can be used as long as the gist of the present invention is not impaired. Moreover, in the pasting, a conventionally known pasting method can be adopted.
 封止フィルム貼り合わせ方法に関しては、直接、量子ドット含有樹脂シートと封止フィルムの保護層とを貼り合わせる方法が、製品構成上、粘着層が不要となり、製造工程の簡略化により、生産性向上が図れる点で好ましい。 Regarding the sealing film laminating method, the method of directly laminating the quantum dot-containing resin sheet and the protective layer of the encapsulating film eliminates the need for an adhesive layer in terms of product configuration and improves productivity by simplifying the manufacturing process. Is preferable in that it can be achieved.
 量子ドット含有樹脂組成物を所定の塗布量により、封止フィルムの保護層上に塗布、乾燥した後に、封止フィルムの保護層表面と量子ドット含有樹脂シート表面とを貼り合わせる方式を採用する。また、量子ドット含有樹脂組成物の硬化に関しては、予め、封止フィルムの保護層上に塗布、乾燥した後に活性エネルギー線を照射することで硬化させることが可能である。さらに、量子ドット含有樹脂シートの両面に封止フィルムを貼り合わせたフィルム積層体構成にて、活性エネルギー線を照射することもできる。上記手法を組み合わせて、積層体構成を得ることもできる。具体的には、予備硬化として、予め、封止フィルムの保護層上に塗布、乾燥した後に活性エネルギー線を照射した後、最終構成である積層体構成の状態で、本硬化として、再度、活性エネルギー線を照射することもできる。好ましくは、前記の通り、少なくとも2回以上、活性エネルギー線を照射することで、より接着性が強固なフィルム積層体を得ることが可能となる。 A method in which the quantum dot-containing resin composition is applied onto the protective layer of the sealing film at a predetermined coating amount and dried, and then the protective layer surface of the sealing film and the surface of the quantum dot-containing resin sheet are bonded together is employed. Moreover, about hardening of a quantum dot containing resin composition, it can be hardened by irradiating an active energy ray after apply | coating and drying on the protective layer of a sealing film previously. Furthermore, an active energy ray can also be irradiated by the film laminated body structure which bonded the sealing film on both surfaces of the quantum dot containing resin sheet. A laminate structure can also be obtained by combining the above methods. Specifically, as pre-curing, after pre-applying and drying on the protective layer of the sealing film and then irradiating active energy rays, it is activated again as main curing in the state of the laminate structure as the final structure. Energy rays can also be irradiated. Preferably, as described above, by irradiating the active energy ray at least twice or more, it becomes possible to obtain a film laminate having stronger adhesion.
 活性エネルギー線時の積算光量の好ましい範囲は、フィルム積層体の製造工程中における活性エネルギー線を照射する際の合計量として、400mJ/cm~1800mJ/cmの範囲である。当該積算光量が400mJ/cm未満の場合、所望する性能を有する塗布膜が得られない場合がある。一方、1800mJ/cmを超える場合には、すでに積算光量が飽和状態にあり、例えば、接着性等、顕著な特性改善効果が期待できない。 A preferred range of accumulated light quantity at the time of the active energy rays, the total amount of time of an active energy ray in the process of manufacturing film laminate is in the range of 400mJ / cm 2 ~ 1800mJ / cm 2. When the integrated light quantity is less than 400 mJ / cm 2 , a coating film having desired performance may not be obtained. On the other hand, when it exceeds 1800 mJ / cm 2 , the integrated light quantity is already in a saturated state, and for example, a remarkable characteristic improvement effect such as adhesiveness cannot be expected.
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。また、本発明で用いた測定法は次のとおり
である。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded. The measuring method used in the present invention is as follows.
(1)ポリエステルの固有粘度(dl/g)の測定:
 ポリエステルに非相溶な他のポリマー成分および顔料を除去したポリエステル1gを精秤し、フェノール/テトラクロロエタン=50/50(重量比)の混合溶媒100mlを加えて溶解させ、30℃で測定した。
(1) Measurement of intrinsic viscosity (dl / g) of polyester:
1 g of polyester from which other polymer components and pigments incompatible with polyester were removed was precisely weighed, 100 ml of a mixed solvent of phenol / tetrachloroethane = 50/50 (weight ratio) was added and dissolved, and measurement was performed at 30 ° C.
(2)平均粒径(d50:μm)の測定:
 遠心沈降式粒度分布測定装置(株式会社島津製作所社製SA-CP3型)を使用して測定した等価球形分布における積算(重量基準)50%の値を平均粒径とした。
(2) Measurement of average particle diameter (d50: μm):
The value of 50% of integration (weight basis) in the equivalent spherical distribution measured using a centrifugal sedimentation type particle size distribution measuring apparatus (SA-CP3 type manufactured by Shimadzu Corporation) was defined as the average particle diameter.
(3)ポリエステル樹脂のガラス転移温度(Tg)測定:
 パーキンエルマー社製DSC-II型測定装置を用い、サンプル重量10mg、窒素気流下で、昇温速度10℃/minで昇温し、ベースラインの偏起開始温度をTgとした。
(3) Glass transition temperature (Tg) measurement of polyester resin:
Using a DSC-II type measuring device manufactured by PerkinElmer, Inc., the sample was heated at a rate of temperature increase of 10 ° C./min under a nitrogen stream, and the baseline start temperature of the baseline was defined as Tg.
(4)ポリエステルフィルム表面の粗さ(Rt)の測定:
 Rtは、小坂研究所社製表面粗さ測定機(SE3500型)を用いて、JIS B0601-1994に準じて測定した。なお測定長は2.5mmとした。
(加工特性判定基準)
 A:Rt300nm以上(良好。特に問題ないレベル)
 B:Rt101nm以上、300nm未満(問題ないレベル)
 C:Rt100nm以下(実用上、問題あるレベル)
(4) Measurement of the roughness (Rt) of the polyester film surface:
Rt was measured according to JIS B0601-1994 using a surface roughness measuring machine (SE3500 type) manufactured by Kosaka Laboratory. The measurement length was 2.5 mm.
(Machining characteristics criteria)
A: Rt 300 nm or more (good, level with no particular problem)
B: Rt 101 nm or more and less than 300 nm (no problem level)
C: Rt 100 nm or less (practically problematic level)
(5)ポリエステルフィルムに塗布層が積層されたフィルムのヘイズ測定(透明性代用評価):
 試料フィルムをJIS-K-7136に準じ、株式会社村上色彩技術研究所製ヘーズメーター「HM-150」により、試料フィルムのヘイズを測定した。
(透明性判定基準)
 A:ヘイズ1.5%以下(良好。特に問題ないレベル)
 B:ヘイズ1.6以上、2.0%以下
(問題ないレベルではあるが、ハイエンド機種の表示装置向けには適用困難な場合がある)
 C:ヘイズ2.1%以上(実用上、問題あるレベル)
(5) Haze measurement of a film in which a coating layer is laminated on a polyester film (transparency substitution evaluation):
The haze of the sample film was measured with a haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd. according to JIS-K-7136.
(Transparency criteria)
A: Haze 1.5% or less (good, level with no particular problem)
B: Haze 1.6 or more and 2.0% or less (although it is a problem-free level, it may be difficult to apply for high-end display devices)
C: Haze 2.1% or more (practical problem level)
(6)バリア層の膜厚:
 バリア層を積層したフィルム試料片を1mm×10mmの大きさに切り出し、電子顕微鏡用エポキシ樹脂に包埋した。これをウルトラミクロトームの試料ホルダに固定し、包埋した試料片の短辺に平行な断面薄切片を作製した。次いで、この切片の薄膜の著しい損傷がない部位において、透過型電子顕微鏡(JEOL社製、JEM-2010)を用い、加速電圧200kV、明視野で観察倍率1万倍にて写真撮影を行って得られた写真から膜厚を求めた。
(6) Barrier layer thickness:
A film sample piece on which the barrier layer was laminated was cut into a size of 1 mm × 10 mm and embedded in an epoxy resin for an electron microscope. This was fixed to a sample holder of an ultramicrotome, and a cross-sectional thin section parallel to the short side of the embedded sample piece was produced. Next, in a portion where the thin film of this section is not significantly damaged, a transmission electron microscope (manufactured by JEOL, JEM-2010) is used to photograph at an acceleration voltage of 200 kV and a bright field at an observation magnification of 10,000 times. The film thickness was determined from the photograph taken.
(7)バリア層の屈折率測定:
 シリコンウエハーまたは石英ガラス上にコーターにて形成されたバリア層について、高速分光メーターM-2000(J.A.Woollam社製)を用い、バリア層の反射光の偏光状態変化を入射角度60度、65度、70度で測定し、解析ソフトWVASE32にて、波長550nmにおける屈折率を算出した。
(7) Measuring the refractive index of the barrier layer:
For a barrier layer formed on a silicon wafer or quartz glass with a coater, a high-speed spectrometer M-2000 (manufactured by JA Woollam) was used to change the polarization state of the reflected light of the barrier layer at an incident angle of 60 degrees, Measurements were made at 65 degrees and 70 degrees, and the refractive index at a wavelength of 550 nm was calculated by analysis software WVASE32.
(8)水蒸気透過率(バリア性代用評価):
 温度40℃、湿度90%RHの条件で、米国、モコン(MOCON)社製の水蒸気透過率透過率測定装置(機種名、“パ-マトラン”(登録商標)W3/31)を使用してJISK7129(2000年版)に記載のB法(赤外センサー法)に基づいて測定した。
 1つのサンプルから2枚の試験片を切り出し、各々の試験片について測定を1回ずつ行い、2つの測定値の平均値をそのサンプルの水蒸気透過率の値とした。その後、下記判定基準により、判定を行った。
(判定基準)
A:0.005g/m/day以下。(実用上、問題ないレベル)
B:0.005g/m/dayを越えて、0.01g/m/day以下。(実用上、問題になる場合があるレベル)
C:0.01g/m/dayを越える。(実用上、問題になるレベル)
(8) Water vapor transmission rate (barrier property substitution evaluation):
JISK7129 using a water vapor transmission rate measuring device (model name, “Permatran” (registered trademark) W3 / 31) manufactured by MOCON, USA, under the conditions of a temperature of 40 ° C. and a humidity of 90% RH. It was measured based on the B method (infrared sensor method) described in (2000 version).
Two test pieces were cut out from one sample, each test piece was measured once, and the average value of the two measured values was taken as the value of the water vapor transmission rate of the sample. Thereafter, the determination was made according to the following criteria.
(Criteria)
A: 0.005 g / m 2 / day or less. (Practical, no problem level)
B: Beyond 0.005g / m 2 / day, 0.01g / m 2 / day or less. (Practical level that may cause problems)
C: Exceeds 0.01 g / m 2 / day. (Practical problem level)
(9)封止フィルムと量子ドット含有樹脂シートとの接着性:
 実施例および比較例で得られた各積層体を用いて、積層体から一方の封止フィルムを剥離させる際の剥離感を下記判定基準により判定を行った。
(判定基準)
A:封止フィルムと量子ドット含有樹脂シートとが、強固に接着していて、剥離困難。(実用上、問題ないレベル)
B:封止フィルムと量子ドット含有樹脂シートとが、剥離可能。(実用上、問題あるレベル)
(9) Adhesiveness between sealing film and quantum dot-containing resin sheet:
Using each of the laminates obtained in Examples and Comparative Examples, the feeling of peeling when peeling one sealing film from the laminate was determined according to the following criteria.
(Criteria)
A: The sealing film and the quantum dot-containing resin sheet are firmly bonded and difficult to peel off. (Practical, no problem level)
B: The sealing film and the quantum dot-containing resin sheet can be peeled off. (Practical problem level)
(10)総合評価:
 実施例および比較例において各々製造した封止フィルムを用いて、透明性、接着性、バリア性の各評価項目につき、下記判定基準により総合評価を行った。
《判定基準》
 A:透明性、接着性、バリア性の全てがA判定(実用上、問題ないレベル)
 B:透明性、接着性、バリア性の内、接着性はA判定、残りの項目の中で、少なくとも一つがB判定を含む。(実用上、問題になる場合があるレベル)
 C:透明性、接着性、バリア性の内、接着性がB判定、または、残りの項目の中で、少なくとも一つがC判定を含む。(実用上、問題あるレベル)
(10) Overall evaluation:
Using the sealing films produced in Examples and Comparative Examples, overall evaluation was performed according to the following criteria for each evaluation item of transparency, adhesiveness, and barrier property.
<Criteria>
A: Transparency, adhesion, and barrier properties are all judged as A (a level that causes no problem in practical use)
B: Among transparency, adhesiveness, and barrier properties, adhesiveness is A determination, and at least one of the remaining items includes B determination. (Practical level that may cause problems)
C: Among transparency, adhesiveness, and barrier properties, the adhesiveness is B determination, or at least one of the remaining items includes C determination. (Practical problem level)
 実施例および比較例において使用したポリエステルは、以下のようにして準備したものである。
〈ポリエステルの製造〉
The polyester used in the examples and comparative examples was prepared as follows.
<Manufacture of polyester>
 製造例1(ポリエステルA1)
 ジメチルテレフタレート100部、エチレングリコール60部および酢酸マグネシウム・4水塩0.09部を反応器にとり、加熱昇温すると共にメタノールを留去し、エステル交換反応を行い、反応開始から4時間を要して230℃に昇温し、実質的にエステル交換反応を終了した。次いで、エチレングリコールスラリーエチルアシッドフォスフェート0.04部、三酸化アンチモン0.03部を添加した後、100分で温度を280℃、圧力を15mmHgに達せしめ、以後も徐々に圧力を減じ、最終的に0.3mmHgとした。4時間後、系内を常圧に戻し、固有粘度0.61(dl/g)のポリエステルA1を得た。
Production Example 1 (Polyester A1)
100 parts of dimethyl terephthalate, 60 parts of ethylene glycol and 0.09 part of magnesium acetate tetrahydrate are placed in a reactor, the temperature is raised by heating, methanol is distilled off, transesterification is performed, and 4 hours are required from the start of the reaction. The temperature was raised to 230 ° C. to substantially complete the transesterification reaction. Next, after adding 0.04 part of ethylene glycol slurry ethyl acid phosphate and 0.03 part of antimony trioxide, the temperature reached 280 ° C. and the pressure reached 15 mmHg in 100 minutes. It was 0.3 mmHg. After 4 hours, the system was returned to normal pressure to obtain polyester A1 having an intrinsic viscosity of 0.61 (dl / g).
 製造例2(ポリエステルA2)
 ポリエステル(A1)の製造方法において、エチルアシッドフォスフェートを添加後、平均粒径が2.7μmのシリカ粒子をポリエステルに対する含有量が0.3重量%となるように添加した以外は、ポリエステル(A1)の製造方法と同様の方法を用いて固有粘度は0.62(dl/g)のポリエステルA2を得た。
Production Example 2 (Polyester A2)
In the production method of polyester (A1), polyester (A1) was added except that ethyl acid phosphate was added and silica particles having an average particle size of 2.7 μm were added so that the content with respect to the polyester was 0.3% by weight. ) Was used to obtain polyester A2 having an intrinsic viscosity of 0.62 (dl / g).
 製造例3(ポリエステルA3)
 ポリエステル(A1)の製造方法において、エチルアシッドフォスフェートを添加後、平均粒径が3.6μmのシリカ粒子をポリエステルに対する含有量が0.6重量%となるように添加した以外は、ポリエステル(A1)の製造方法と同様の方法を用いて固有粘度は0.62(dl/g)のポリエステルA3を得た。
Production Example 3 (Polyester A3)
In the method for producing polyester (A1), polyester (A1) was used except that after adding ethyl acid phosphate, silica particles having an average particle size of 3.6 μm were added so that the content with respect to polyester was 0.6% by weight. ) To obtain polyester A3 having an intrinsic viscosity of 0.62 (dl / g).
 製造例4(ポリエステルA4)
 ポリエステル(A1)の製造方法において、エチルアシッドフォスフェートを添加後、平均粒径が1.0μmの合成炭酸カルシウム粒子をポリエステルに対する含有量が1.0重量%となるように添加した以外は、ポリエステル(A1)の製造方法と同様の方法を用いて固有粘度は0.63(dl/g)のポリエステルA4を得た。
Production Example 4 (Polyester A4)
In the production method of polyester (A1), after adding ethyl acid phosphate, synthetic calcium carbonate particles having an average particle diameter of 1.0 μm were added so that the content with respect to the polyester was 1.0% by weight. A polyester A4 having an intrinsic viscosity of 0.63 (dl / g) was obtained using a method similar to the production method of (A1).
 製造例5(ポリエステルA5)
 ポリエステル(A1)の製造方法において、エチルアシッドフォスフェートを添加後、平均粒径が4.4μmのジビニルベンゼン/メタクリル酸メチル共重合架橋粒子のエチレングリコールスラリーを粒子のポリエステルに対する含有量が0.5重量%となるように添加した以外は、ポリエステル(A1)の製造方法と同様の方法を用いて固有粘度は0.63(dl/g)のポリエステルA5を得た。なお、ジビニルベンゼン/メタクリル酸メチル共重合架橋粒子の製法は以下の通りである。メタクリル酸メチル100部、ジビニルベンゼン25部、エチルビニルベンゼン22部、過酸化ベンゾイル1部、トルエン100部の均一溶液を水700部に分散させ、次に窒素雰囲気下80℃で6時間攪拌しながら加熱しながら重合を行った。得られたエステル基を有する架橋高分子粒状体の平均粒径は約0.1mmであった。生成ポリマーを脱塩水で水洗し500部のトルエンで2回抽出し、少量の未反応モノマー線状ポリマーを除去した。次に、この架橋高分子粒状体をアトライターおよびサンドグラインダーで粉砕することで粒径の異なる平均粒子径4.4μmのジビニルベンゼン/メタクリル酸メチル共重合架橋粒子を得た。
Production Example 5 (Polyester A5)
In the method for producing polyester (A1), after adding ethyl acid phosphate, an ethylene glycol slurry of divinylbenzene / methyl methacrylate copolymer crosslinked particles having an average particle size of 4.4 μm is contained in the polyester in a content of 0.5. A polyester A5 having an intrinsic viscosity of 0.63 (dl / g) was obtained by using the same method as the method for producing the polyester (A1) except that it was added in an amount of% by weight. In addition, the manufacturing method of divinylbenzene / methyl methacrylate copolymer crosslinked particle | grains is as follows. A homogeneous solution of 100 parts of methyl methacrylate, 25 parts of divinylbenzene, 22 parts of ethylvinylbenzene, 1 part of benzoyl peroxide and 100 parts of toluene is dispersed in 700 parts of water, and then stirred at 80 ° C. for 6 hours in a nitrogen atmosphere. Polymerization was carried out while heating. The average particle diameter of the obtained crosslinked polymer granules having ester groups was about 0.1 mm. The produced polymer was washed with demineralized water and extracted twice with 500 parts of toluene to remove a small amount of unreacted monomer linear polymer. Next, the crosslinked polymer particles were pulverized with an attritor and a sand grinder to obtain divinylbenzene / methyl methacrylate copolymer crosslinked particles having an average particle diameter of 4.4 μm and different particle diameters.
実施例1:
 ポリエステルA1、A2をそれぞれ88%、12%の割合でブレンドした原料を表層原料とし、ポリエステルA1を100%の原料を中間層の原料として、2台のベント付き押出機に供給し、290℃で溶融押出した後、静電印加密着法を用いて表面温度を40℃に設定した冷却ロール上で冷却固化して厚さ約1500μmの無定形フィルムを得た。このフィルムを85℃で縦方向に3.5倍延伸した。その後、下記塗布層組成からなる塗布液を塗布厚み(乾燥後)が0.05g/mになるように片面に塗布した後、フィルムをテンターに導き、100℃で横方向に3.8倍延伸し、210℃で熱処理して、厚さ100μm(厚み構成比=2.5μm/95μm/2.5μm)の塗布層が設けられたポリエステルフィルムF1を得た。
Example 1:
Polyester A1 and A2 were blended in proportions of 88% and 12%, respectively, as a surface layer raw material, and polyester A1 as a raw material for an intermediate layer, and fed to two vented extruders at 290 ° C. After melt-extrusion, an amorphous film having a thickness of about 1500 μm was obtained by cooling and solidifying on a cooling roll having a surface temperature set to 40 ° C. using an electrostatic application adhesion method. This film was stretched 3.5 times in the machine direction at 85 ° C. Thereafter, a coating solution having the following coating layer composition was coated on one side so that the coating thickness (after drying) was 0.05 g / m 2 , the film was guided to a tenter, and 3.8 times in the lateral direction at 100 ° C. It was stretched and heat treated at 210 ° C. to obtain a polyester film F1 provided with a coating layer having a thickness of 100 μm (thickness ratio = 2.5 μm / 95 μm / 2.5 μm).
 また、塗布液に含有する組成物としては以下を用いた。 Moreover, the following was used as a composition contained in the coating solution.
<水性ポリエステル樹脂>
 Tg=63℃
 酸成分:テレフタル酸50モル%、イソフタル酸48モル%、5-Naスルホイソフタル酸 2モル%
 ジオール成分:エチレングリコール50モル%、ネオペンチルグリコール50モル%
<Water-based polyester resin>
Tg = 63 ° C
Acid component: terephthalic acid 50 mol%, isophthalic acid 48 mol%, 5-Na sulfoisophthalic acid 2 mol%
Diol component: ethylene glycol 50 mol%, neopentyl glycol 50 mol%
<(水性ポリウレタン樹脂)の製造条件>
 まず、テレフタル酸664重量部、イソフタル酸631重量部、1,4-ブタンジオール472重量部、ネオペンチルグリコール447重量部から成るポリエステルポリオールを得た。次いで、得られたポリエステルポリオールに、アジピン酸321重量部、ジメチロールプロピオン酸268重量部を加え、ペンダントカルボキシル基含有ポリエステルポリオールAを得た。さらに、該ポリエステルポリオールA1880重量部にヘキサメチレンジイソシアネート160重量部を加えて水性ポリウレタン系樹脂水性塗料を得た。
<Production conditions for (aqueous polyurethane resin)>
First, a polyester polyol comprising 664 parts by weight of terephthalic acid, 631 parts by weight of isophthalic acid, 472 parts by weight of 1,4-butanediol, and 447 parts by weight of neopentyl glycol was obtained. Next, 321 parts by weight of adipic acid and 268 parts by weight of dimethylolpropionic acid were added to the obtained polyester polyol to obtain a pendant carboxyl group-containing polyester polyol A. Furthermore, 160 parts by weight of hexamethylene diisocyanate was added to 1880 parts by weight of the polyester polyol A to obtain an aqueous polyurethane resin aqueous coating material.
<(水性アクリル樹脂)の製造条件>
 アクリル酸エチル40重量部、メタクリル酸メチル30重量部、メタクリル酸20重量部、グリシジルメタクリレート10重量部の混合物をエチルアルコール中で溶液重合し、重合後水を加えつつ加熱しエチルアルコールを除去した。アンモニア水でpH7.5に調節し、水性アクリル系樹脂水性塗料を得た。
<Production conditions for (aqueous acrylic resin)>
A mixture of 40 parts by weight of ethyl acrylate, 30 parts by weight of methyl methacrylate, 20 parts by weight of methacrylic acid and 10 parts by weight of glycidyl methacrylate was solution-polymerized in ethyl alcohol, and heated while adding water after polymerization to remove ethyl alcohol. The pH was adjusted to 7.5 with aqueous ammonia to obtain an aqueous acrylic resin aqueous paint.
(塗布層1組成)
 I:メラミン樹脂                40重量%
(アルキロールメラミン/尿素共重合の架橋性樹脂DIC社製ベッカミン「J101」)
 II:水性ポリエステル樹脂            25重量%
 III:水性ウレタン樹脂              30重量%
 IV:オキサゾリン基含有ポリマー
(日本触媒社製「エポクロスWS-500」オキサゾリン基量4.5mmol/g)
                          0重量%
 V:水性アクリル樹脂               0重量%
 VI:コロイダルシリカ(平均粒径70nm)     5重量%
 上記塗布液をイオン交換水で希釈し、固型分濃度2重量%の塗布液を作製した。
(Coating layer 1 composition)
I: Melamine resin 40% by weight
(Alkyrol melamine / urea copolymer crosslinkable resin DIC's becamine "J101")
II: 25% by weight of aqueous polyester resin
III: 30% by weight of aqueous urethane resin
IV: Oxazoline group-containing polymer (Nippon Shokubai "Epocross WS-500" oxazoline group amount 4.5 mmol / g)
0% by weight
V: Water-based acrylic resin 0% by weight
VI: Colloidal silica (average particle size 70 nm) 5% by weight
The coating solution was diluted with ion exchange water to prepare a coating solution having a solid content concentration of 2% by weight.
<バリア層1の形成>
 次に、前記塗布層上に、下記組成から構成されるバリア層1塗布液を塗布量(乾燥後)が5g/mになるように塗布、150℃で1分間熱処理した後、積算光量で450mJ/cm(80w/cm高圧水銀ランプ1灯×18cmH×5m/min×2Pass)になるように紫外線照射して、バリア層1を形成した。
<バリア層1塗布液組成>
 活性エネルギー線硬化樹脂
(ペンタエリスリトールトリアクリレート/2-ヒドロキシエチルアクリレート=95/5(混合比率)) 95重量%
 光重合開始剤(イルガキュア184:チバスペシャリティーケミカルズ社製) 5重量%
 上記組成物をメチルエチルケトン溶媒で10重量%に希釈した。
<Formation of barrier layer 1>
Next, a barrier layer 1 coating solution having the following composition is coated on the coating layer so that the coating amount (after drying) is 5 g / m 2 , heat-treated at 150 ° C. for 1 minute, The barrier layer 1 was formed by irradiating with ultraviolet rays at 450 mJ / cm 2 (one 80 w / cm high-pressure mercury lamp × 18 cmH × 5 m / min × 2 Pass).
<Barrier layer 1 coating solution composition>
Active energy ray curable resin (pentaerythritol triacrylate / 2-hydroxyethyl acrylate = 95/5 (mixing ratio)) 95% by weight
Photopolymerization initiator (Irgacure 184: Ciba Specialty Chemicals) 5% by weight
The composition was diluted to 10% by weight with methyl ethyl ketone solvent.
<バリア層2の形成>
 前記塗布層上に、下記バリア層2積層した。具体的には、スパッタリング前の真空チャンバーの水圧力が1×10-4Paであることを確認後、実施した。スパッタリングの条件は、ターゲットにAl-Si(組成比Al:Si=5:5、高純度化学製)を用い、3W/cmのDC電力を印加した。また、Arガスを流し、0.4Paの雰囲気下とし、DCマグネトロンスパッタリング法を用いて成膜した。この際、磁場強度は600ガウスであった。また、センターロール温度は0℃として、Gencoa社製のSpeedfloを用いてスパッタリング時の放電電圧が一定になるように酸素流量を制御しながら行った。この際、Arガスのみを流した場合の放電電圧を100%、ArガスとO2ガスを50sccm流した場合の放電電圧を0%とした時、50%の値の放電電圧になるように設定した。以上のようにして、膜厚40nm、屈折率1.52のバリア層2を堆積させた。
<Formation of barrier layer 2>
The following barrier layer 2 was laminated on the coating layer. Specifically, it was carried out after confirming that the water pressure in the vacuum chamber before sputtering was 1 × 10 −4 Pa. As sputtering conditions, Al—Si (composition ratio Al: Si = 5: 5, manufactured by High Purity Chemical) was used as a target, and DC power of 3 W / cm 2 was applied. Moreover, Ar gas was flowed, it was made into the atmosphere of 0.4 Pa, and it formed into a film using DC magnetron sputtering method. At this time, the magnetic field strength was 600 gauss. The center roll temperature was set to 0 ° C., and the oxygen flow rate was controlled using a Speedflo manufactured by Gencoa so that the discharge voltage during sputtering was constant. At this time, the discharge voltage was set to 50% when the discharge voltage when only Ar gas was supplied was 100%, and when the discharge voltage was 50% when Ar gas and O2 gas were supplied at 50 sccm. . As described above, the barrier layer 2 having a thickness of 40 nm and a refractive index of 1.52 was deposited.
<保護層1の形成>
 実施例1において、下記保護層からなる保護層組成物を塗布量(乾燥後)が5g/mになるように塗布、150℃で1分間熱処理した後、積算光量で450mJ/cm(80w/cm高圧水銀ランプ1灯×18cmH×5m/min×2Pass)になるように紫外線照射して、保護層1を形成した。
<保護層1塗布液組成>
 活性エネルギー線硬化樹脂
(ペンタエリスリトールトリアクリレート/2-ヒドロキシエチルアクリレート=80/20(混合比率)) 95重量%
 光重合開始剤(イルガキュア184:チバスペシャリティーケミカルズ社製) 5重量%
 上記組成物をメチルエチルケトン溶媒で10重量%に希釈した。
<Formation of protective layer 1>
In Example 1, a protective layer composition comprising the following protective layer was applied so that the coating amount (after drying) was 5 g / m 2 , heat-treated at 150 ° C. for 1 minute, and then with an integrated light amount of 450 mJ / cm 2 (80 w The protective layer 1 was formed by irradiating with ultraviolet rays so as to be 1 / cm high-pressure mercury lamp × 18 cmH × 5 m / min × 2 Pass.
<Protective layer 1 coating composition>
Active energy ray curable resin (pentaerythritol triacrylate / 2-hydroxyethyl acrylate = 80/20 (mixing ratio)) 95% by weight
Photopolymerization initiator (Irgacure 184: Ciba Specialty Chemicals) 5% by weight
The composition was diluted to 10% by weight with methyl ethyl ketone solvent.
《量子ドット樹脂シート形成と封止フィルムとの貼り合わせ》
 封止フィルムを支持体として、保護層表面に下記組成から構成される量子ドット樹脂シート形成用塗布液を塗布量(乾燥後)が50g/mになるように塗布、150℃で3分間熱処理した後、積算光量で1700mJ/cm(80w/cm高圧水銀ランプ1灯×13cmH×1.5m/min×4Pass)になるように紫外線照射機を用いて、紫外線照射した後にカバーフィルムとして、封止フィルムを貼り合わせる。
 次に後から貼り合わせた封止フィルムの保護層が設けられていないフィルム面側から、積算光量で900mJ/cm(80w/cm高圧水銀ランプ1灯×18cmH×5m/min×4Pass)になるように紫外線照射して、封止フィルム/量子ドット含有樹脂シート/封止フィルムの構成を有するフィルム積層体を得た。
《Lamination of quantum dot resin sheet and sealing film》
Using a sealing film as a support, a coating solution for forming a quantum dot resin sheet composed of the following composition is applied to the surface of the protective layer so that the coating amount (after drying) is 50 g / m 2 and heat-treated at 150 ° C. for 3 minutes. After that, it is sealed as a cover film after being irradiated with ultraviolet rays using an ultraviolet irradiator so that the integrated light quantity becomes 1700 mJ / cm 2 (one 80 w / cm high-pressure mercury lamp × 13 cmH × 1.5 m / min × 4 Pass). Affix the stop film.
Next, from the film surface side where the protective layer of the sealing film bonded later is not provided, the integrated light amount becomes 900 mJ / cm 2 (one 80 w / cm high-pressure mercury lamp × 18 cmH × 5 m / min × 4 Pass). Thus, the film laminated body which has the structure of sealing film / quantum dot containing resin sheet / sealing film was obtained by irradiating with ultraviolet rays.
<量子ドット樹脂シート形成用塗布液作製>
 容積300mlのポリエチレン製容器を用いて、活性エネルギー線硬化樹脂としてペンタエリスリトールトリアクリレート/2-ヒドロキシエチルアクリレート/イソデシルアクリレート=75/20/5(混合比率)をメチルエチルケトン溶媒で10重量%に希釈した組成物を80重量%、光重合開始剤(イルガキュア184:チバスペシャリティーケミカルズ社製)5重量%、量子ドットとして“CdSe/ZnS480”(SIGMA-ALDRICH社製:Blue480nm)、“CdSe/ZnS 530”(SIGMA-ALDRICH社製:Green530nm)、“CdSe/ZnS 560”(SIGMA-ALDRICH社製:Yellow560nm)を各5重量%ずつの比率で混合した。その後、遊星式撹拌・脱泡装置“マゼルスター(登録商標)”KK-400(クラボウ製)を用い、1000rpmで20分間撹拌・脱泡して量子ドット含有樹脂シート作製液を得た。
<Preparation of coating liquid for forming quantum dot resin sheet>
Using a polyethylene container having a volume of 300 ml, pentaerythritol triacrylate / 2-hydroxyethyl acrylate / isodecyl acrylate = 75/20/5 (mixing ratio) as an active energy ray-curable resin was diluted to 10% by weight with a methyl ethyl ketone solvent. 80% by weight of the composition, 5% by weight of photopolymerization initiator (Irgacure 184: manufactured by Ciba Specialty Chemicals), “CdSe / ZnS480” (manufactured by SIGMA-ALDRICH: Blue 480 nm), “CdSe / ZnS 530” as quantum dots (Manufactured by SIGMA-ALDRICH: Green 530 nm) and “CdSe / ZnS 560” (manufactured by SIGMA-ALDRICH: Yellow 560 nm) were mixed at a ratio of 5% by weight. Thereafter, using a planetary stirring and defoaming apparatus “Mazerustar (registered trademark)” KK-400 (manufactured by Kurabo Industries), stirring and defoaming were carried out at 1000 rpm for 20 minutes to obtain a quantum dot-containing resin sheet preparation solution.
実施例2~実施例5:
 実施例1において、ポリエステルを下記表1に示す通り変更する以外は実施例1と同様にして製造し、封止フィルムを得た。その後、実施例1と同様にして、封止フィルムと量子ドット含有樹脂シートとを直接貼り合わせて、フィルム積層体を得た。
Example 2 to Example 5:
In Example 1, it manufactured like Example 1 except having changed polyester as shown in following Table 1, and obtained the sealing film. Then, it carried out similarly to Example 1, and bonded the sealing film and the quantum dot containing resin sheet directly, and obtained the film laminated body.
実施例6:
 実施例1において、バリア層2の構成を下記バリア層3に変更する以外は実施例1と同様にして製造し、封止フィルムを得た。その後、封止フィルムと量子ドット含有樹脂シートを直接貼り合わせて、フィルム積層体を得た。
Example 6:
In Example 1, it manufactured similarly to Example 1 except having changed the structure of the barrier layer 2 into the following barrier layer 3, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were directly bonded together, and the film laminated body was obtained.
<バリア層3の形成>
 酸化アルミニウムからなるガスバリア層を成膜した。このときスパッタリング前の真空チャンバーの水圧力が1×10-4Paであることを確認後、実施した。スパッタリングの条件は、ターゲットにAl(テクノファイン社製)を用い、3W/cmのDC電力を印加した。また、Arガスを流し、0.4Paの雰囲気下とし、DCマグネトロンスパッタリング法を用いて成膜した。この際、磁場強度は600ガウスであった。また、センターロール温度は0℃として、Gencoa社製のSpeedfloを用いてスパッタリング時の放電電圧が一定になるように酸素流量を制御しながら行った。この際、Arガスのみを流した場合の放電電圧を100%、ArガスとO2ガスを50sccm流した場合の放電電圧を0%とした時、50%の値の放電電圧になるように設定した。以上のようにして、膜厚32nm、屈折率1.61のバリア層3を塗布層上に形成した。
<Formation of barrier layer 3>
A gas barrier layer made of aluminum oxide was formed. At this time, it was carried out after confirming that the water pressure in the vacuum chamber before sputtering was 1 × 10 −4 Pa. As sputtering conditions, Al (manufactured by Technofine) was used as a target, and DC power of 3 W / cm 2 was applied. Moreover, Ar gas was flowed, it was made into the atmosphere of 0.4 Pa, and it formed into a film using DC magnetron sputtering method. At this time, the magnetic field strength was 600 gauss. The center roll temperature was set to 0 ° C., and the oxygen flow rate was controlled using a Speedflo manufactured by Gencoa so that the discharge voltage during sputtering was constant. At this time, the discharge voltage was set to 50% when the discharge voltage when only Ar gas was supplied was 100%, and when the discharge voltage was 50% when Ar gas and O2 gas were supplied at 50 sccm. . As described above, the barrier layer 3 having a film thickness of 32 nm and a refractive index of 1.61 was formed on the coating layer.
実施例7:
 実施例1において、保護層組成を下記保護層2組成に変更して封止フィルムを得た後、量子ドット含有樹脂シート組成を変更し、粘着層を介して、封止フィルムと量子ドット含有樹脂シートを貼り合わせた。
Example 7:
In Example 1, after changing the protective layer composition to the following protective layer 2 composition to obtain a sealing film, the quantum dot-containing resin sheet composition was changed, and the sealing film and the quantum dot-containing resin were interposed via the adhesive layer. The sheets were pasted together.
<保護層2組成>
 アルミニウム元素を有する有機化合物(A1):19.5重量%
 アルミニウムトリス(アセチルアセトネ-ト)
 有機珪素化合物(B1):80重量%
 γ-グリシドキシプロピルトリメトキシシラン
 触媒(C1):0.5重量%
 ジブチル錫ジラウレート
 上記塗布剤をトルエン/MEK混合溶媒(混合比率は1:1)にて希釈し、4重量%とした。
<Protective layer 2 composition>
Organic compound having aluminum element (A1): 19.5% by weight
Aluminum tris (acetylacetonate)
Organosilicon compound (B1): 80% by weight
γ-Glycidoxypropyltrimethoxysilane catalyst (C1): 0.5% by weight
Dibutyltin dilaurate The coating agent was diluted with a toluene / MEK mixed solvent (mixing ratio was 1: 1) to obtain 4% by weight.
 その後、バリア層上に上記塗布剤組成からなる保護層を塗布量(乾燥後)が0.1g/mになるようにリバースグラビアコート方式により塗設し、120℃、30秒間熱処理した後に封止フィルムを得た。その後、粘着層を介して、封止フィルムと量子ドット含有樹脂シートとを貼り合わせて、封止フィルム/粘着層/量子ドット含有樹脂シート/粘着層/封止フィルムの構成を有する、フィルム積層体を得た。 Thereafter, a protective layer comprising the above coating composition is applied on the barrier layer by a reverse gravure coating method so that the coating amount (after drying) is 0.1 g / m 2 , heat-treated at 120 ° C. for 30 seconds, and sealed. A stop film was obtained. Thereafter, the sealing film and the quantum dot-containing resin sheet are bonded together via the adhesive layer, and the film laminate has a configuration of sealing film / adhesive layer / quantum dot-containing resin sheet / adhesive layer / sealing film. Got.
<量子ドット樹脂シート形成用塗布液作製>
 容積300mlのポリエチレン製容器を用いて、シリコーン樹脂として“OE-6630A/B”(東レ・ダウコーニング社製、屈折率1.53)を40重量%、量子ドットとして“CdSe/ZnS480”(SIGMA-ALDRICH社製:Blue480nm)、“CdSe/ZnS 530”(SIGMA-ALDRICH社製:Green530nm)、“CdSe/ZnS 560”(SIGMA-ALDRICH社製:Yellow560nm)を各20重量%ずつの比率で混合した。その後、遊星式撹拌・脱泡装置“マゼルスター(登録商標)”KK-400(クラボウ製)を用い、1000rpmで20分間撹拌・脱泡して量子ドット含有樹脂シート作製液を得た。
<Preparation of coating liquid for forming quantum dot resin sheet>
Using a polyethylene container with a capacity of 300 ml, 40% by weight of “OE-6630A / B” (manufactured by Toray Dow Corning Co., Ltd., refractive index 1.53) as a silicone resin, and “CdSe / ZnS480” (SIGMA- ALDRICH: Blue 480 nm), “CdSe / ZnS 530” (SIGMA-ALDRICH: Green 530 nm), “CdSe / ZnS 560” (SIGMA-ALDRICH: Yellow 560 nm) were mixed at a ratio of 20% by weight. Thereafter, using a planetary stirring and defoaming apparatus “Mazerustar (registered trademark)” KK-400 (manufactured by Kurabo Industries), stirring and defoaming were carried out at 1000 rpm for 20 minutes to obtain a quantum dot-containing resin sheet preparation solution.
<量子ドット樹脂シート形成>
 スリットダイコーターを用いてシート作製用樹脂液をポリエステルフィルム上(三菱樹脂社製ダイアホイルT100タイプ:100μm)に塗布し、130℃で5分加熱、乾燥して、膜厚み(乾燥後)が50μmの量子ドット樹脂シートを得た。得られた量子ドット樹脂シートが基材フィルム上に均一に塗布され、ピンホールは見られず、膜厚均一性も良好であった。
<Quantum dot resin sheet formation>
Using a slit die coater, a sheet-forming resin solution is applied on a polyester film (Diafoil T100 type manufactured by Mitsubishi Plastics, Inc .: 100 μm), heated at 130 ° C. for 5 minutes and dried, and the film thickness (after drying) is 50 μm. The quantum dot resin sheet was obtained. The obtained quantum dot resin sheet was uniformly applied on the base film, pinholes were not seen, and the film thickness uniformity was good.
<フィルム積層体の形成>
 量子ドット樹脂シートの両面に、“SD4580”(東レダウ・コーニング社製シリコーン粘着剤)を塗布し、100℃で5分加熱乾燥して、厚み25μmの粘着層を得た。さらに粘着層上に、カバーフィルムとして、前記封止フィルムを保護層表面が粘着層表面と貼り合わされるように、100℃で3分、加熱ラミネートした。
<Formation of film laminate>
“SD4580” (silicone adhesive manufactured by Toray Dow Corning) was applied to both surfaces of the quantum dot resin sheet and dried by heating at 100 ° C. for 5 minutes to obtain an adhesive layer having a thickness of 25 μm. Furthermore, on the adhesive layer, as the cover film, the sealing film was heat-laminated at 100 ° C. for 3 minutes so that the protective layer surface was bonded to the adhesive layer surface.
実施例8:
 実施例1において、バリア層1を設けない以外は実施例1と同様にして製造し、フィルム積層体を得た。
Example 8:
In Example 1, it manufactured like Example 1 except not providing barrier layer 1, and a film layered product was obtained.
実施例9:
 実施例1において、塗布層構成を塗布層2組成に変更する以外は実施例1と同様にして製造し、フィルム積層体を得た。
Example 9:
In Example 1, it manufactured like Example 1 except having changed an application layer composition into composition of application layer 2, and obtained a film layered product.
実施例10:
 実施例1において、塗布層構成を塗布層3組成に変更する以外は実施例1と同様にして製造し、フィルム積層体を得た。
Example 10:
In Example 1, it manufactured like Example 1 except having changed an application layer composition into composition of application layer 3, and obtained a film layered product.
比較例1~比較例4:
 実施例1において、ポリエステルを下記表1に示す通り変更する以外は実施例1と同様にして製造し、封止フィルムを得た。その後、同様に、封止フィルムと量子ドット含有樹脂シートとを直接貼り合わせて、フィルム積層体を得た。
Comparative Examples 1 to 4:
In Example 1, it manufactured like Example 1 except having changed polyester as shown in following Table 1, and obtained the sealing film. Thereafter, similarly, the sealing film and the quantum dot-containing resin sheet were directly bonded to obtain a film laminate.
比較例5:
 実施例1において、塗布層を設けない以外は実施例1と同様にして製造し、封止フィルムを得た。その後、封止フィルムと量子ドット含有樹脂シートとを直接貼り合わせて、フィルム積層体を得た。
Comparative Example 5:
In Example 1, it manufactured similarly to Example 1 except not providing an application layer, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were directly bonded together, and the film laminated body was obtained.
比較例6:
 実施例1において、保護層を設けない以外は実施例1と同様にして製造し、封止フィルムを得た。その後、封止フィルムと量子ドット含有樹脂シートとを直接貼り合わせて、フィルム積層体を得た。
Comparative Example 6:
In Example 1, it manufactured similarly to Example 1 except not providing a protective layer, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were directly bonded together, and the film laminated body was obtained.
比較例7:
 実施例1において、塗布層構成を塗布層4組成に変更する以外は実施例1と同様にして製造し、フィルム積層体を得た。
Comparative Example 7:
In Example 1, it manufactured like Example 1 except changing an application layer composition into composition of application layer 4, and a film layered product was obtained.
 上記実施例および比較例で得られた各封止フィルムの特性を表1~表4に示す。 Tables 1 to 4 show the properties of the sealing films obtained in the above examples and comparative examples.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 上記実施例および比較例で得られた各封止フィルムの特性を表4に示す。 Table 4 shows the characteristics of the sealing films obtained in the above examples and comparative examples.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 本発明の電子部材用封止フィルムは、特に透明性、接着性および水蒸気バリア性に優れ、高度な水蒸気バリア性の求められる量子ドット含有樹脂シート、電子ペーパー、有機ELなどの電子部材用封止フィルムとして好適にしようすることができる。 The sealing film for electronic members of the present invention is particularly excellent in transparency, adhesiveness and water vapor barrier properties, and is used for sealing electronic members such as quantum dot-containing resin sheets, electronic paper, and organic EL, which require high water vapor barrier properties. It can be suitably used as a film.
 10 積層体
 11 量子ドット含有樹脂シート
 12 第1ポリエステルフィルム
 13 第1塗布層
 14 第1バリア層
 15 第2バリア層
 22 第2ポリエステルフィルム
 23 第2塗布層
 24 第1バリア層
 25 第2バリア層
 31 第1封止フィルム
 32 第2封止フィルム
 41 第1保護層
 42 第2保護層
DESCRIPTION OF SYMBOLS 10 Laminated body 11 Quantum dot containing resin sheet 12 1st polyester film 13 1st application layer 14 1st barrier layer 15 2nd barrier layer 22 2nd polyester film 23 2nd application layer 24 1st barrier layer 25 2nd barrier layer 31 First sealing film 32 Second sealing film 41 First protective layer 42 Second protective layer

Claims (7)

  1.  ポリエステルフィルムの一方の面の粗さ(Rt)が100nm以上であり、もう一方の面に、ポリエステル樹脂、ウレタン樹脂、およびアクリル系樹脂の中から選択される少なくとも1種類以上の樹脂と、メラミン樹脂またはオキサゾリン樹脂から成る架橋剤とを含有する塗布液から形成された塗布層を有し、フィルムヘイズが2.0%以下の塗布フィルムの塗布層上に、バリア層および保護層が順次積層された構成を有するフィルムであり、当該フィルムの水蒸気透過度(JIS-K7129 B法に準じ、温度40℃、湿度90%RHの測定条件下で測定されたもの)が0.01g/m/day以下であることを特徴とする電子部材用封止フィルム。 The roughness (Rt) of one surface of the polyester film is 100 nm or more, and at least one resin selected from polyester resin, urethane resin, and acrylic resin on the other surface, and a melamine resin Alternatively, a barrier layer and a protective layer are sequentially laminated on a coating layer of a coating film having a coating layer formed of a coating solution containing a crosslinking agent composed of an oxazoline resin and having a film haze of 2.0% or less. A water vapor permeability of the film (measured in accordance with JIS-K7129 B method under measurement conditions of a temperature of 40 ° C. and a humidity of 90% RH) of 0.01 g / m 2 / day or less The sealing film for electronic members characterized by the above-mentioned.
  2.  塗布液中の樹脂の割合が全不揮発成分に対する割合として10~80重量%であり、塗布液中の架橋剤の割合が全不揮発成分に対する割合として6~80重量%である請求項1に記載の電子部材用封止フィルム。 The ratio of the resin in the coating liquid is 10 to 80% by weight as a ratio to the total nonvolatile components, and the ratio of the crosslinking agent in the coating liquid is 6 to 80% by weight as a ratio to the total nonvolatile components. Sealing film for electronic members.
  3.  保護層が活性エネルギー線硬化樹脂を含有する請求項1又は2に記載の電子部材用封止フィルム。 The sealing film for electronic members according to claim 1 or 2, wherein the protective layer contains an active energy ray-curable resin.
  4.  活性エネルギー線硬化樹脂がアクリレート構造を有する化合物である請求項3に記載の電子部材用封止フィルム。 The encapsulating film for an electronic member according to claim 3, wherein the active energy ray curable resin is a compound having an acrylate structure.
  5.  電子部材が量子ドット含有樹脂シートである請求項1~4の何れかに記載の電子部材用封止フィルム。 The electronic member sealing film according to any one of claims 1 to 4, wherein the electronic member is a quantum dot-containing resin sheet.
  6.  量子ドット含有樹脂シート表面に請求項1~5の何れかに記載の電子部材用封止フィルムが直接貼り合わされていることを特徴とするフィルム積層体。 6. A film laminate, wherein the electronic member sealing film according to claim 1 is directly bonded to the surface of the quantum dot-containing resin sheet.
  7.  量子ドット含有樹脂シートが活性エネルギー線硬化樹脂を含有する請求項6に記載のフィルム積層体。 The film laminate according to claim 6, wherein the quantum dot-containing resin sheet contains an active energy ray-curable resin.
PCT/JP2015/084941 2015-02-02 2015-12-14 Sealing film for electronic members WO2016125397A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015018062A JP6550771B2 (en) 2015-02-02 2015-02-02 Sealing film for electronic components
JP2015-018062 2015-02-02

Publications (1)

Publication Number Publication Date
WO2016125397A1 true WO2016125397A1 (en) 2016-08-11

Family

ID=56563754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084941 WO2016125397A1 (en) 2015-02-02 2015-12-14 Sealing film for electronic members

Country Status (2)

Country Link
JP (1) JP6550771B2 (en)
WO (1) WO2016125397A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033665A1 (en) * 2015-08-21 2017-03-02 コニカミノルタ株式会社 Gas barrier film, method for producing same and optical film
WO2022097656A1 (en) * 2020-11-04 2022-05-12 株式会社クラレ Multilayer structure, method for producing same, protective sheet using same, and electronic device
CN114616284A (en) * 2019-10-29 2022-06-10 东洋纺株式会社 Laminated polyester film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106257697A (en) * 2016-08-31 2016-12-28 张家港康得新光电材料有限公司 A kind of quantum dot film and preparation method thereof
CN106626574A (en) * 2016-12-05 2017-05-10 纳晶科技股份有限公司 Organic barrier film, quantum dot film, backlight module and light emitting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154596A (en) * 2001-11-22 2003-05-27 Nitto Denko Corp Transparent gas-barrier film, transparent conductive electrode base material, display element, solar cell, or face-shaped emitter using the film
JP2008532814A (en) * 2005-03-17 2008-08-21 デュポン テイジン フィルムズ ユー.エス.リミテッド パートナーシップ Composite films suitable for use in optoelectronics and electronic devices
JP2013544018A (en) * 2010-11-10 2013-12-09 ナノシス・インク. Quantum dot film, illumination device, and illumination method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154596A (en) * 2001-11-22 2003-05-27 Nitto Denko Corp Transparent gas-barrier film, transparent conductive electrode base material, display element, solar cell, or face-shaped emitter using the film
JP2008532814A (en) * 2005-03-17 2008-08-21 デュポン テイジン フィルムズ ユー.エス.リミテッド パートナーシップ Composite films suitable for use in optoelectronics and electronic devices
JP2013544018A (en) * 2010-11-10 2013-12-09 ナノシス・インク. Quantum dot film, illumination device, and illumination method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033665A1 (en) * 2015-08-21 2017-03-02 コニカミノルタ株式会社 Gas barrier film, method for producing same and optical film
JPWO2017033665A1 (en) * 2015-08-21 2018-06-07 コニカミノルタ株式会社 Gas barrier film, method for producing the same, and optical film
CN114616284A (en) * 2019-10-29 2022-06-10 东洋纺株式会社 Laminated polyester film
CN114616284B (en) * 2019-10-29 2024-03-19 东洋纺株式会社 Laminated polyester film
US11932742B2 (en) 2019-10-29 2024-03-19 Toyobo Co., Ltd. Laminated polyester film
WO2022097656A1 (en) * 2020-11-04 2022-05-12 株式会社クラレ Multilayer structure, method for producing same, protective sheet using same, and electronic device

Also Published As

Publication number Publication date
JP6550771B2 (en) 2019-07-31
JP2016141024A (en) 2016-08-08

Similar Documents

Publication Publication Date Title
WO2016098504A1 (en) Sealing film for electronic members
WO2016125397A1 (en) Sealing film for electronic members
KR101855881B1 (en) Biaxially stretched laminated polyester film
JP5739783B2 (en) Laminated polyester film
EP2727726B1 (en) Coating film
JP2017182041A (en) Laminated polyester film and method for producing the same
WO2013125288A1 (en) Coated film
JP6459612B2 (en) Sealing film for electronic parts
JP6634675B2 (en) Sealing film for electronic components
JP6274243B2 (en) Laminated film
WO2015015900A1 (en) Coating film
JP2016119301A (en) Encapsulation film for electronic member
JP5679946B2 (en) Laminated polyester film
JP5743846B2 (en) Laminated polyester film
JP6464723B2 (en) Sealing film for electronic parts
JP6760411B2 (en) Laminate
JP6870254B2 (en) Encapsulating film for electronic components
JP6500447B2 (en) Sealing film for electronic components
JP5557870B2 (en) Laminated polyester film
JP6464724B2 (en) Sealing film for electronic parts
WO2014097715A1 (en) Coated film
JP7421867B2 (en) Method for manufacturing conductive laminate
JP5342631B2 (en) Laminated polyester film
JP5342632B2 (en) Laminated polyester film
JP2016128245A (en) Sealing film for electronic member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881214

Country of ref document: EP

Kind code of ref document: A1