WO2016098504A1 - Sealing film for electronic members - Google Patents

Sealing film for electronic members Download PDF

Info

Publication number
WO2016098504A1
WO2016098504A1 PCT/JP2015/082144 JP2015082144W WO2016098504A1 WO 2016098504 A1 WO2016098504 A1 WO 2016098504A1 JP 2015082144 W JP2015082144 W JP 2015082144W WO 2016098504 A1 WO2016098504 A1 WO 2016098504A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sealing film
film
weight
resin
Prior art date
Application number
PCT/JP2015/082144
Other languages
French (fr)
Japanese (ja)
Inventor
公裕 井崎
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014258134A external-priority patent/JP6634675B2/en
Priority claimed from JP2015003727A external-priority patent/JP2016128245A/en
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority to KR1020197020521A priority Critical patent/KR102138756B1/en
Priority to CN201580068125.0A priority patent/CN107107575B/en
Priority to KR1020177014545A priority patent/KR20170085058A/en
Publication of WO2016098504A1 publication Critical patent/WO2016098504A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier

Definitions

  • the present invention relates to a sealing film for an electronic member such as a quantum dot-containing resin sheet, electronic paper, and organic EL, which is excellent in transparency, barrier properties, and adhesiveness with an adhesive layer, and requires high water vapor barrier properties. .
  • polyester films are widely used mainly for various display applications because of their excellent optical properties.
  • a water vapor permeability of 0.02 g is provided by providing a cured resin layer made of a polymer and a gas barrier layer made of silicon nitride oxide on at least one side of a plastic film.
  • a gas barrier film of / m 2 / day has been proposed (Patent Document 1).
  • gas barrier film described in Patent Document 1 has an effect of improving gas barrier properties, it does not consider the adhesion to the adhesive layer.
  • a gas barrier film using silicon nitride oxide as a gas barrier layer has a high refractive index of the gas barrier layer, a refractive index difference with the protective layer is increased, and the transmittance may be reduced.
  • Patent Document 2 a gas barrier film having a water vapor barrier property of 10 ⁇ 6 g / m 2 / day level by laminating a planarizing layer, a gas barrier layer, and a protective layer on a base film by an atmospheric pressure plasma CVD method has been proposed ( Patent Document 2).
  • the protective layer made of an inorganic polymer made of TEOS as a raw material by the atmospheric pressure CVD method does not necessarily have adhesion to the adhesive layer. Not enough.
  • Patent Document 3 a gas barrier laminate film (Patent Document 3) in which a composite film of polyvinyl alcohol and an inorganic layered compound is laminated as a protective layer of the gas barrier film has been proposed, but when used for a display body such as a display, the appearance is whitish, There was a tendency to be inferior in transparency. Furthermore, although a gas barrier laminate film (Patent Document 4) having a configuration in which a sol-gel layer is provided as a protective layer has been proposed, the surface hardness is good, but the flexibility and adhesion to the adhesive layer may be inferior. is there.
  • Patent Document 5 measures for improving the gas barrier layer are taken by alternately laminating organic layers / inorganic layers, but the gas barrier property is improved, but the interlayer adhesion at the organic layer / inorganic layer interface is insufficient. there were.
  • This invention is made
  • the gist of the present invention is a sealing film in which a coating layer, a barrier layer, and a protective layer are sequentially laminated on one side of a polyester film, and the coating layer is selected from a polyester resin, an acrylic resin, and a urethane resin. Containing at least one binder resin and at least one cross-linking agent selected from oxazoline compounds, melamine resins, and isocyanate compounds, according to JIS-K7129B method, temperature 40 ° C., humidity 90 It exists in the sealing film for electronic members characterized by the water vapor permeability
  • the sealing film for electronic members of the present invention is excellent in transparency, barrier properties, and adhesiveness with an adhesive layer, and is used for electronic members such as quantum dot-containing resin sheets, electronic paper, and organic EL that require high barrier properties. It is suitable as a sealing film, and its industrial value is high.
  • FIG. 1 is a schematic cross-sectional view showing a laminate according to an embodiment of the present invention.
  • the polyester film may have a single layer structure or a laminated structure.
  • the polyester film may have a multilayer structure of four layers or more as long as it does not exceed the gist of the present invention other than the two-layer or three-layer structure. There is no particular limitation.
  • the polyester may be a homopolyester or a copolyester.
  • a homopolyester those obtained by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol are preferred.
  • the aromatic dicarboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid
  • examples of the aliphatic glycol include ethylene glycol, diethylene glycol, and 1,4-cyclohexanedimethanol.
  • Representative polyester includes polyethylene terephthalate (PET) and the like.
  • examples of the dicarboxylic acid component of the copolyester include isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, and oxycarboxylic acid (eg, P-oxybenzoic acid).
  • examples of the glycol component include one or more types such as ethylene glycol, diethylene glycol, propylene glycol, butanediol, 1,4-cyclohexanedimethanol, neopentyl glycol and the like.
  • the polyester referred to in the present invention refers to a polyester that is usually 60 mol% or more, preferably 80 mol% or more of polyethylene terephthalate or the like which is an ethylene terephthalate unit.
  • the polyester film it is preferable to mix particles for the main purpose of imparting easy slipperiness.
  • the kind of the particle to be blended is not particularly limited as long as it is a particle capable of imparting slipperiness.
  • Specific examples thereof include silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, and phosphoric acid.
  • the particles include magnesium, kaolin, aluminum oxide, and titanium oxide.
  • the heat-resistant organic particles described in JP-B-59-5216, JP-A-59-217755 and the like may be used.
  • examples of other heat-resistant organic particles include thermosetting urea resins, thermosetting phenol resins, thermosetting epoxy resins, benzoguanamine resins, and the like.
  • precipitated particles obtained by precipitating and finely dispersing a part of a metal compound such as a catalyst during the polyester production process can also be used.
  • the shape of the particles is not particularly limited, and any of a spherical shape, a block shape, a rod shape, a flat shape, and the like may be used. Moreover, there is no restriction
  • the average particle diameter of the particles is usually in the range of 0.01 to 3 ⁇ m, preferably 0.01 to 1 ⁇ m.
  • the average particle diameter is less than 0.01 ⁇ m, the particles are likely to aggregate and dispersibility may be insufficient.
  • the average particle diameter exceeds 3 ⁇ m, the surface roughness of the film becomes too rough and There may be a problem when a release layer is applied in the process.
  • the content of the particles is usually in the range of 0.001 to 5% by weight, preferably 0.005 to 3% by weight.
  • the particle content is less than 0.001% by weight, the slipperiness of the film may be insufficient.
  • the content exceeds 5% by weight, the transparency of the film is insufficient. There is.
  • the method for adding particles to the polyester film is not particularly limited, and a conventionally known method can be adopted.
  • it can be added at any stage of producing the polyester constituting each layer, but preferably a polycondensation reaction may be carried out after the esterification stage or after the transesterification reaction.
  • a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material, or a blending of dried particles and a polyester raw material using a kneading extruder is done by methods.
  • the thickness of the polyester film is not particularly limited as long as it can be formed as a film. In consideration of the mechanical strength, flexibility, transparency, etc. of the film substrate, the thickness is preferably 12 to 125 ⁇ m, more preferably 25 to 100 ⁇ m.
  • polyester film The production example of the polyester film will be specifically described, but is not limited to the following production example.
  • the polyester raw material described above is used and the molten sheet extruded from the die is cooled and solidified with a cooling roll to obtain an unstretched sheet is preferable.
  • a method in which the polyester raw material described above is used and the molten sheet extruded from the die is cooled and solidified with a cooling roll to obtain an unstretched sheet is preferable.
  • an electrostatic application adhesion method and / or a liquid application adhesion method are preferably employed.
  • the obtained unstretched sheet is stretched in the biaxial direction. In that case, first, the unstretched sheet is stretched in one direction by a roll or a tenter type stretching machine.
  • the stretching temperature is usually 70 to 120 ° C., preferably 80 to 110 ° C., and the stretching ratio is usually 2.5 to 7 times, preferably 3.0 to 6 times.
  • the stretching temperature orthogonal to the first-stage stretching direction is usually 70 to 170 ° C., and the draw ratio is usually 3.0 to 7 times, preferably 3.5 to 6 times.
  • heat treatment is performed at a temperature of 180 to 270 ° C. under tension or under relaxation within 30% to obtain a biaxially oriented film.
  • a method in which stretching in one direction is performed in two or more stages can be employed. In that case, it is preferable to carry out so that the draw ratios in the two directions finally fall within the above ranges.
  • the simultaneous biaxial stretching method can be adopted for the production of the polyester film.
  • the simultaneous biaxial stretching method is a method in which the unstretched sheet is usually stretched and oriented simultaneously in the machine direction and the width direction in a state where the temperature is controlled at 70 to 120 ° C, preferably 80 to 110 ° C.
  • the area magnification is 4 to 50 times, preferably 7 to 35 times, and more preferably 10 to 25 times.
  • heat treatment is performed at a temperature of 170 to 250 ° C. under tension or under relaxation within 30% to obtain a stretched oriented film.
  • conventionally known stretching methods such as a screw method, a pantograph method, and a linear drive method can be employed.
  • a so-called coating stretching method for treating the film surface during the above-described polyester film stretching step can be performed.
  • coating stretching method in-line coating
  • coating can be performed simultaneously with stretching and the thickness of the coating layer can be reduced according to the stretching ratio, producing a film suitable as a polyester film. it can.
  • the polyester film has at least one binder resin selected from polyester resin, acrylic resin, and urethane resin, melamine resin, oxazoline group-containing resin, and isocyanate compound to improve adhesion to the barrier layer.
  • a coating layer containing at least one kind of crosslinking agent selected from the inside is formed.
  • the polyester resin is defined as a linear polyester having a dicarboxylic acid component and a glycol component as constituent components.
  • Dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, adipic acid, sebacic acid, phenylindanedicarboxylic acid, A dimer acid etc. can be illustrated. Two or more of these components can be used.
  • a small proportion of unsaturated polybasic acids such as maleic acid, fumaric acid, itaconic acid and the like, and hydroxycarboxylic acids such as p-hydroxybenzoic acid and p- ( ⁇ -hydroxyethoxy) benzoic acid, etc.
  • the proportion of the unsaturated polybasic acid component or the hydroxycarboxylic acid component is at most 10 mol%, preferably 5 mol% or less.
  • glycol component examples include ethylene glycol, 1,4-butanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, xylylene glycol, dimethylolpropionic acid.
  • ethylene glycol and bisphenol A ethylene oxide adducts and propylene oxide adducts and 1,4-butanediol are preferred, and ethylene glycol and bisphenol A ethylene oxide adducts and propylene oxide adducts are more preferred.
  • the coating layer which comprises the sealing film in this invention in order to make water dispersion or water-solubilization easy, it may contain at least 1 or more types of polyester resin which has a sulfonic acid (salt) group. preferable.
  • polyester resin having a sulfonic acid (salt) group examples include 5-sodium sulfoisophthalic acid, 5-ammonium sulfoisophthalic acid, 4-sodium sulfoisophthalic acid, 4-methylammonium sulfoisophthalic acid, 2-sodium sulfoisophthalic acid, Preferable examples include sulfonic acid alkali metal salt compounds or sulfonic acid amine salt compounds such as 5-potassium sulfoisophthalic acid, 4-potassium sulfoisophthalic acid, 2-potassium sulfoisophthalic acid, and sodium sulfosuccinic acid.
  • the glass transition temperature (hereinafter sometimes abbreviated as Tg) is preferably 40 ° C. or higher, more preferably 60 ° C. or higher.
  • Tg is less than 40 ° C., for the purpose of improving adhesiveness, when the coating thickness of the coating layer is increased, problems such as easy blocking may occur.
  • An acrylic resin is a polymer composed of a polymerizable monomer having a carbon-carbon double bond, as typified by acrylic and methacrylic monomers. These may be either a homopolymer or a copolymer. Moreover, the copolymer of these polymers and other polymers (for example, polyester, polyurethane, etc.) is also included. For example, a block copolymer or a graft copolymer. Furthermore, a polymer (in some cases, a mixture of polymers) obtained by polymerizing a polymerizable monomer having a carbon-carbon double bond in a polyester solution or a polyester dispersion is also included.
  • a polymer (in some cases, a mixture of polymers) obtained by polymerizing a polymerizable monomer having a carbon-carbon double bond in a polyurethane solution or polyurethane dispersion is also included.
  • a polymer (in some cases, a polymer mixture) obtained by polymerizing a polymerizable monomer having a carbon-carbon double bond in another polymer solution or dispersion is also included.
  • the polymerizable monomer having a carbon-carbon double bond is not particularly limited, but representative compounds such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, fumaric acid, maleic acid, and citraconic acid.
  • Various carboxyl group-containing monomers and their salts 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, monobutylhydroxyl fumarate, monobutylhydroxy
  • Various hydroxyl-containing monomers such as itaconate; various (meth) acrylic such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate Acid esters; (meth) a Riruamido, various nitrogen-containing vinyl monomers such as diacetone acrylamide, N- methylol acryl
  • polymerizable monomers as shown below can be copolymerized. That is, various styrene derivatives such as styrene, ⁇ -methylstyrene, divinylbenzene and vinyltoluene, various vinyl esters such as vinyl acetate and vinyl propionate; ⁇ -methacryloxypropyltrimethoxysilane, vinyltrimethoxysilane, Various silicon-containing polymerizable monomers such as methacryloyl silicon macromer; phosphorus-containing vinyl monomers; vinyl chloride, biliden chloride, vinyl fluoride, vinylidene fluoride, trifluorochloroethylene, tetrafluoroethylene, chlorotrifluoroethylene And various vinyl halides such as hexafluoropropylene; and various conjugated dienes such as butadiene.
  • styrene derivatives such as styrene, ⁇ -methylstyrene, divinylbenzene and vinyl
  • the glass transition temperature (hereinafter sometimes abbreviated as Tg) is preferably 40 ° C. or higher, more preferably 60 ° C. or higher.
  • Tg is less than 40 ° C., for the purpose of improving adhesiveness, when the coating thickness of the coating layer is increased, problems such as easy blocking may occur.
  • the urethane resin is preferably a urethane resin having a polycarbonate structure.
  • the urethane resin having a polycarbonate structure refers to a urethane resin in which one of the polyols, which are main components of the urethane resin, is a polycarbonate polyol.
  • Polycarbonate polyols are obtained from a polyhydric alcohol and a carbonate compound by a dealcoholization reaction.
  • the polyhydric alcohols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, trimethylolpropane, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, , 5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, , 10-decanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, and the like.
  • Examples of the carbonate compound include dimethyl carbonate, diethyl carbonate, diphenyl carbonate, and ethylene carbonate.
  • Examples of the polycarbonate-based polyols obtained from these reactions include poly (1,6-hexylene) carbonate, poly (3- And methyl-1,5-pentylene) carbonate.
  • polyisocyanates constituting the urethane resin having a polycarbonate structure include aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, and tolidine diisocyanate, ⁇ , ⁇ , ⁇ ′, Aliphatic diisocyanates having an aromatic ring such as ⁇ '-tetramethylxylylene diisocyanate, methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate and other aliphatic diisocyanates, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate , Mechi Nbisu (4-cyclohexyl isocyan
  • aliphatic isocyanates or alicyclic isocyanates are more preferable than aromatic isocyanates from the viewpoint of improving adhesion to the active energy ray-curable coating material and preventing yellowing due to ultraviolet rays.
  • a chain extender may be used when synthesizing the urethane resin, and the chain extender is not particularly limited as long as it has two or more active groups that react with an isocyanate group. Alternatively, a chain extender having two amino groups can be mainly used.
  • chain extender having two hydroxyl groups examples include aliphatic glycols such as ethylene glycol, propylene glycol, butanediol and pentanediol, aromatic glycols such as xylylene glycol and bishydroxyethoxybenzene, neopentyl glycol and neopentyl.
  • aliphatic glycols such as ethylene glycol, propylene glycol, butanediol and pentanediol
  • aromatic glycols such as xylylene glycol and bishydroxyethoxybenzene
  • neopentyl glycol and neopentyl examples include glycols such as ester glycols such as glycol hydroxypivalate.
  • chain extender having two amino groups examples include aromatic diamines such as tolylenediamine, xylylenediamine, diphenylmethanediamine, ethylenediamine, propylenediamine, hexanediamine, 2,2-dimethyl-1,3- Propanediamine, 2-methyl-1,5-pentanediamine, trimethylhexanediamine, 2-butyl-2-ethyl-1,5-pentanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10- Aliphatic diamines such as decane diamine, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, dicyclohexylmethanediamine, isopropylidine cyclohexyl-4,4′-diamine, 1,4-diaminocyclohexane, 1 , 3-Bisaminomethylcyclohexane Alicyclic diamines such as isophorone diamine,
  • Urethane resin may use a solvent as a medium, but preferably uses water as a medium.
  • a forced emulsification type using an emulsifier there are a forced emulsification type using an emulsifier, a self-emulsification type in which a hydrophilic group is introduced into the urethane resin, and a water-soluble type.
  • a self-emulsification type in which an ionic group is introduced into the skeleton of a urethane resin to form an ionomer is preferable because of excellent storage stability of the liquid and water resistance, transparency, and adhesion of the resulting coating layer.
  • examples of the ionic group to be introduced include various groups such as a carboxyl group, a sulfonic acid, a phosphoric acid, a phosphonic acid, a quaternary ammonium salt, and the carboxyl group is preferable.
  • a method for introducing a carboxyl group into a urethane resin various methods can be taken in each stage of the polymerization reaction. For example, there are a method of using a carboxyl group-containing resin as a copolymer component during prepolymer synthesis, and a method of using a component having a carboxyl group as one component such as polyol, polyisocyanate, and chain extender.
  • a method in which a desired amount of carboxyl groups is introduced using a carboxyl group-containing diol depending on the amount of this component charged is preferred.
  • dimethylolpropionic acid, dimethylolbutanoic acid, bis- (2-hydroxyethyl) propionic acid, bis- (2-hydroxyethyl) butanoic acid, and the like are copolymerized with a diol used for polymerization of a urethane resin.
  • the carboxyl group is preferably in the form of a salt neutralized with ammonia, amine, alkali metal, inorganic alkali or the like. Particularly preferred are ammonia, trimethylamine and triethylamine.
  • the urethane resin having a polycarbonate structure has a glass transition point (hereinafter sometimes referred to as Tg) of preferably 0 ° C. or lower, more preferably ⁇ 15 ° C. or lower, and further preferably ⁇ 30 ° C. or lower.
  • Tg glass transition point
  • easy adhesion may be insufficient.
  • Tg said here refers to the temperature which created the dry film
  • the oxazoline compound is a compound having an oxazoline group in the molecule, and is particularly preferably a polymer containing an oxazoline group, and can be prepared by polymerization of an addition polymerizable oxazoline group-containing monomer alone or with another monomer.
  • Addition-polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, Examples thereof include 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like, and one or a mixture of two or more thereof can be used. Of these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially.
  • the other monomer is not particularly limited as long as it is a monomer copolymerizable with an addition polymerizable oxazoline group-containing monomer.
  • alkyl (meth) acrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, (Meth) acrylic acid esters such as n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene
  • Unsaturated carboxylic acids such as sulfonic acid and its salts (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); Unsaturated nitriles such as acrylonitrile, methacrylonitrile; (meth) acrylamide, N-alky
  • the content of the oxazoline group contained in the oxazoline compound is usually 0.5 to 10 mmol / g, preferably 1 to 9 mmol / g, more preferably 3 to 8 mmol / g, still more preferably 4 to 6 mmol in terms of the amount of the oxazoline group. / G. Use in the above range is preferable for improving the coating strength.
  • the melamine resin is not particularly limited, but melamine, a methylolated melamine derivative obtained by condensing melamine and formaldehyde, a compound partially or completely etherified by reacting a methylolated melamine with a lower alcohol, and These mixtures can be used.
  • the melamine resin may be either a monomer or a condensate composed of a dimer or higher multimer, or a mixture thereof.
  • the lower alcohol used for the etherification methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol and the like can be preferably used.
  • the functional group has an imino group, a methylol group, or an alkoxymethyl group such as a methoxymethyl group or a butoxymethyl group in one molecule, and an imino group type methylated melamine, a methylol group type melamine, or a methylol group type methylated group.
  • Melamine fully alkyl methylated melamine and the like can be used. Of these, methylolated melamine is most preferred. Furthermore, an acidic catalyst such as p-toluenesulfonic acid can be used in combination for the purpose of promoting the thermosetting of the melamine resin.
  • the isocyanate compound is a compound having an isocyanate derivative structure typified by isocyanate or blocked isocyanate.
  • isocyanates include aromatic isocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate, and aromatic rings such as ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylxylylene diisocyanate.
  • Aliphatic isocyanates such as aliphatic isocyanate, methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), isopropylidene dicyclohexyl diisocyanate
  • Alicyclic isocyanates such as bets are exemplified. Reaction products of these isocyanates with various polymers and compounds may be used.
  • polymers and derivatives such as burettes, isocyanurates, uretdiones, and carbodiimide modified products of these isocyanates are also included. These may be used alone or in combination.
  • isocyanates aliphatic isocyanates or alicyclic isocyanates are more preferable than aromatic isocyanates in order to avoid yellowing due to ultraviolet rays.
  • the blocking agent When used in the state of blocked isocyanate, the blocking agent includes, for example, bisulfites, phenolic compounds such as phenol, cresol, and ethylphenol, and alcohols such as propylene glycol monomethyl ether, ethylene glycol, benzyl alcohol, methanol, and ethanol.
  • active methylene compounds such as dimethyl malonate, diethyl malonate, methyl acetoacetate, ethyl acetoacetate and acetylacetone, mercaptan compounds such as butyl mercaptan and dodecyl mercaptan, lactam compounds such as ⁇ -caprolactam and ⁇ -valerolactam , Amine compounds such as diphenylaniline, aniline, ethyleneimine, acetanilide, acid amide compounds of acetic acid amide, formaldehyde, acetal Examples include oxime compounds such as dooxime, acetone oxime, methyl ethyl ketone oxime, and cyclohexanone oxime, and these may be used alone or in combination of two or more.
  • the isocyanate compound in the present invention may be used alone or as a mixture or combination with various polymers.
  • a mixture or a combined product with a polyester resin or a polyurethane resin may be used.
  • the ratio of each component in the coating layer is as follows.
  • the proportion of the polyester resin is usually 10 to 80% by weight, preferably 20 to 60% by weight
  • the proportion of the acrylic resin is usually 10 to 60% by weight, preferably 20 to 50% by weight
  • the proportion of the urethane resin is usually 10%.
  • the proportion of oxazoline compound is usually 20-80 wt%, preferably 40-80 wt%
  • the proportion of melamine resin is usually 6-80 wt%, preferably 10
  • the proportion of the isocyanate compound is generally 6 to 80% by weight, preferably 10 to 60% by weight.
  • the coating layer is formed by applying a coating solution and drying, and the coating amount (after drying) is usually 0.005 to 1 g / m 2 , preferably 0.005 from the viewpoint of coating properties.
  • the range is from -0.5 g / m 2 , more preferably from 0.01 to 0.2 g / m 2 .
  • the coating amount (after drying) is less than 0.005 g / m 2 , the coating property may be less stable and it may be difficult to obtain a uniform coating film.
  • the coating is thicker than 1 g / m 2 , the coating film adhesion and curability of the coating layer itself may be lowered.
  • a coating layer such as an antistatic layer or an oligomer precipitation preventing layer may be provided on the film surface not provided with a coating layer as long as the gist of the present invention is not impaired.
  • polyester film may be subjected to surface treatment such as corona treatment or plasma treatment in advance.
  • the barrier layer is laminated for the purpose of imparting barrier properties to the polyester film.
  • the barrier property is at a desired level.
  • the water vapor permeability measured according to the JIS-K7129B method is 0.01 g / m under measurement conditions of a temperature of 40 ° C. and a humidity of 90% RH. There is no particular limitation as long as it can be 2 / day or less.
  • Examples of the material for the barrier layer include silicon compounds such as polysilazane compounds, polycarbosilane compounds, polysilane compounds, polyorganosiloxane compounds, and tetraorganosilane compounds, silicon oxide, silicon oxynitride, aluminum oxide, aluminum oxynitride, and magnesium oxide.
  • silicon compounds such as polysilazane compounds, polycarbosilane compounds, polysilane compounds, polyorganosiloxane compounds, and tetraorganosilane compounds, silicon oxide, silicon oxynitride, aluminum oxide, aluminum oxynitride, and magnesium oxide.
  • Inorganic oxides such as zinc oxide, indium oxide, and tin oxide
  • inorganic nitrides such as silicon nitride and aluminum nitride
  • inorganic oxynitrides such as silicon oxynitride
  • metals such as aluminum, magnesium, zinc, and tin It is done. These can be used individually by 1
  • the thickness of the barrier layer is usually 1 nm to 10 ⁇ m, preferably 10 nm to 5 ⁇ m, more preferably 20 to 500 nm, and particularly preferably 50 to 200 nm. If the thickness of the barrier layer is less than 1 nm, the barrier effect may be insufficient. On the other hand, when it exceeds 10 ⁇ m, it is in a saturated state in terms of performance, and it is difficult to expect a barrier effect any more.
  • the barrier layer may have a single layer structure or a plurality of layers composed of two or more layers.
  • the method for forming the barrier layer can be a conventionally known method depending on the material constituting the barrier layer, and can be appropriately selected depending on the purpose. For example, a method in which the barrier layer material is formed on a polyester film by vapor deposition, sputtering, ion plating, thermal CVD, plasma CVD, or the like, or a solution in which the barrier layer material is dissolved in an organic solvent Is applied to a polyester film, and plasma ion implantation is performed on the obtained coating film.
  • Examples of ions implanted by plasma ion implantation include rare gases such as argon, helium, neon, krypton, and xenon, ions such as fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, and sulfur; gold, Examples include ions of metals such as silver, copper, platinum, nickel, palladium, chromium, titanium, molybdenum, niobium, tantalum, tungsten, and aluminum.
  • the protective layer By coating the protective layer on the barrier layer, the coating liquid for forming the protective layer penetrates evenly into the minute defects existing in the barrier layer, and the defective portion of the barrier layer can be repaired by thermosetting. Become.
  • the barrier layer by covering the barrier layer with a protective layer, it is rubbed or scraped due to contact with the guide roller for conveyance during the processing step, and also protects the barrier layer from the organic solvent used in the manufacturing step, It is also possible to maintain barrier properties.
  • organic compound having an aluminum element examples include aluminum tris (acetylacetonate), aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum-di-n-butoxide-monoethylacetoacetate, aluminum-di -Iso-propoxide-monomethyl acetoacetate and the like are exemplified.
  • organic compound having titanium element examples include titanium orthoesters such as tetranormal butyl titanate, tetraisopropyl titanate, butyl titanate dimer, tetra (2-ethylhexyl) titanate, tetramethyl titanate; titanium acetylacetonate, Examples thereof include titanium chelates such as titanium tetraacetylacetonate, polytitanium acetylacetonate, titanium octylene glycolate, titanium lactate, titanium triethanolamate, and titanium ethylacetoacetate.
  • titanium orthoesters such as tetranormal butyl titanate, tetraisopropyl titanate, butyl titanate dimer, tetra (2-ethylhexyl) titanate, tetramethyl titanate
  • titanium acetylacetonate examples thereof include titanium chelates such as titanium tetraacetylacetonate, polytitanium acetylace
  • organic compound having a zirconium element examples include, for example, zirconium acetate, zirconium normal propylate, zirconium normal butyrate, zirconium tetraacetylacetonate, zirconium monoacetylacetonate, zirconium bisacetylacetonate and the like.
  • an organic compound having a chelate structure is preferable with respect to an organic compound containing a metal element selected from aluminum and zirconium, particularly in terms of good adhesion performance.
  • a metal element selected from aluminum and zirconium particularly in terms of good adhesion performance.
  • it is specifically described in “Crosslinking agent handbook” (Yamashita Shinzo, Kaneko Tosuke ed., Taiseisha Co., Ltd., 1990 edition).
  • the protective layer is preferably used in combination with an organosilicon compound represented by the following general formula (1) in order to protect the barrier layer and improve the adhesion to the adhesive layer.
  • the organosilicon compound represented by the general formula (1) has two hydrolyzable groups Y (D unit source) or three (T units) capable of forming a siloxane bond by hydrolysis / condensation reaction. Source) can be used.
  • the monovalent hydrocarbon group R 1 has 1 to 10 carbon atoms, and is particularly preferably a methyl group, an ethyl group, or a propyl group.
  • hydrolyzable group Y conventionally known ones can be used, and the following can be exemplified.
  • These hydrolyzable groups may be used alone or in combination.
  • the use of a methoxy group or an ethoxy group is particularly preferable because it can impart good storage stability to the coating material and has suitable hydrolyzability.
  • organosilicon compound examples include vinyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -acryloxypropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, 5-hexenyltrimethoxysilane, p-styryltrimethoxysilane, tri Examples include fluoropropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldiisopropenoxysilane, and the like.
  • a catalyst may be used in combination for the purpose of promoting hydrolysis / condensation reaction.
  • organic acids such as acetic acid, butyric acid, maleic acid and citric acid
  • inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid and sulfuric acid
  • basic compounds such as triethylamine, tetrabutyl titanate, dibutyltin dilaurate and dibutyltin.
  • Organic metal salts such as diacetate, dibutyltin dioctate, dibutyltin diolate, diphenyltin diacetate, dibutyltin oxide, dibutyltin dimethoxide, dibutylbis (triethoxysiloxy) tin, dibutyltin benzylmalate, etc., fluorine such as KF and NH4F Examples thereof include element-containing compounds.
  • the above catalysts may be used alone or in combination of two or more. Among them, organometallic salts are particularly preferable from the viewpoint that the coating film durability is good, and it is more preferable to use a tin catalyst because the catalytic activity is sustainable for a long time.
  • the urethane resin is a resin obtained by reacting an isocyanate compound with a diol or a polyol compound.
  • the isocyanate compound include aromatic polyisocyanate, aliphatic polyisocyanate, alicyclic polyisocyanate, and aliphatic polyisocyanate, and a diisocyanate compound is usually used.
  • aromatic diisocyanate examples include tolylene diisocyanate (2,4- or 2,6-tolylene diisocyanate or a mixture thereof) (TDI), phenylene diisocyanate (m-, p-phenylene diisocyanate or a mixture thereof), 4,4 '-Diphenyl diisocyanate, 1,5-naphthalene diisocyanate (NDI), diphenylmethane diisocyanate (4,4'-, 2,4'-, or 2,2'-diphenylmethane diisocyanate or mixtures thereof) (MDI) 4,4′-toluidine diisocyanate (TODI), 4,4′-diphenyl ether diisocyanate, and the like.
  • TDI tolylene diisocyanate (2,4- or 2,6-tolylene diisocyanate or a mixture thereof)
  • TDI phenylene diisocyanate
  • Examples of the araliphatic diisocyanate include xylylene diisocyanate (1,3- or 1,4-xylylene diisocyanate or a mixture thereof) (XDI), tetramethylxylylene diisocyanate (1,3- or 1,4- Tetramethylxylylene diisocyanate or a mixture thereof (TMXDI), ⁇ , ⁇ ′-diisocyanate-1,4-diethylbenzene, and the like.
  • XDI xylylene diisocyanate (1,3- or 1,4-xylylene diisocyanate or a mixture thereof)
  • TXDI tetramethylxylylene diisocyanate
  • ⁇ , ⁇ ′-diisocyanate-1,4-diethylbenzene and the like.
  • alicyclic diisocyanate examples include 1,3-cyclopentene diisocyanate, cyclohexane diisocyanate (1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate), 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (iso Holo isocyanate, IPDI), methylene bis (cyclohexyl isocyanate) (4,4′-, 2,4′- or 2,2′-methylene bis (cyclohexyl isocyanate)) (hydrogenated MDI), methylcyclohexane diisocyanate (methyl-2, 4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate), bis (isocyanate methyl) cyclohexane (1,3- or 1,4-bis (isocyanate) Tomechiru) cyclohexane or mixtures
  • aliphatic diisocyanate examples include trimethylene diisocyanate, 1,2-propylene diisocyanate, butylene diisocyanate (tetramethylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate), Examples include hexamethylene diisocyanate, pentamethylene diisocyanate, 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, and 2,6-diisocyanate methyl caffeate.
  • alkylene glycol can be suitably used from the viewpoint of gas barrier properties.
  • alkylene glycol include carbon numbers such as ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, pentanediol, hexanediol, neopentylglycol, heptanediol, and octanediol.
  • a low molecular weight glycol such as an alkylene glycol having a linear or branched chain of 2 to 10 and a (poly) oxyalkylene glycol having 2 to 4 carbon atoms can be used. These diol components can be used alone or in combination of two or more.
  • aromatic diols such as bisphenol A, bisbidoxetyl terephthalate, catechol, resorcin, hydroquinone, 1,3- or 1,4-xylylenediol, hydrogenated biswaenol A, hydrogenated xylylenediol
  • a low molecular weight diol component such as cycloaliphatic diol such as cyclohexanediol or cyclohexane may be used in combination.
  • a tri- or higher functional polyol component for example, a polyol component such as glycerin, trimethylolethane, or trimethylolpropane can be used in combination.
  • the polyol component preferably contains a polyol component having 2 to 8 carbon atoms.
  • the protective layer may contain inorganic particles for the purpose of improving adhesion and slipperiness, as long as the gist of the present invention is not impaired.
  • specific examples include silica, alumina, kaolin, calcium carbonate, oxidation Examples include titanium and barium salts.
  • an antifoaming agent a coating property improver, a thickener, an organic lubricant, organic polymer particles, an antioxidant, a UV absorber foaming agent, a dye, and the like may be contained as necessary.
  • only one type of organic solvent may be used for the purpose of improving dispersibility, improving film forming property, etc., and two or more types may be used as appropriate.
  • the coating amount of the protective layer (after drying) is usually in the range of 0.005 to 1 g / m 2 , preferably 0.005 to 0.5 g / m 2 .
  • the coating amount (after drying) is less than 0.005 g / m 2 , the uniformity of the coating thickness may be insufficient, and the protective function as a protective layer may be insufficient.
  • problems such as a decrease in slipperiness may occur.
  • the protective layer composed of the above composition has good durability and excellent adhesion to the adhesive layer. Depending on the product configuration, it may be possible to directly bond with the quantum dot-containing resin sheet without an adhesive layer.
  • the total light transmittance is preferably 86% or more, more preferably 89% or more.
  • the total light transmittance is less than 86%, when used as a sealing film for a quantum dot-containing resin sheet, electronic paper, organic EL, etc., the transparency of the device is lowered and the visibility may be inferior.
  • the water vapor permeability of the sealing film of the present invention is 0.01 g / m 2 / day or less.
  • 0.005 g / m 2 / day or less is preferable.
  • 0.005 g / m 2 / day or less is desired, and when the range is exceeded, moisture gradually enters the device during long-term use of the device, and the device deteriorates. It tends to happen easily.
  • the resin sheet layer containing quantum dots may contain a plurality of quantum dots and resins.
  • a quantum dot means a semiconductor particle of a predetermined size having a quantum confinement effect. It is preferable to use a quantum dot having a diameter generally in the range of 1 to 10 nm.
  • the quantum dot When the quantum dot absorbs light from the excitation source and reaches an energy excited state, it emits energy corresponding to the energy band gap of the quantum dot. Therefore, by adjusting the size of the quantum dots or the composition of the substance, the energy band gap can be adjusted, and energy of various levels of wavelength bands can be obtained.
  • a red color is emitted when the quantum dot size is 55 to 65 mm
  • a green color is emitted when the quantum dot size is 40 to 50 mm
  • a blue color is emitted when the quantum dot size is 20 to 35 mm.
  • the yellow color has an intermediate size between the quantum dots emitting red and the quantum dots emitting green. It can be seen that the size of the quantum dot gradually changes from about 65 mm to about 20 mm by changing the spectrum depending on the wavelength of light from red to blue, and there may be a slight difference in this value.
  • the quantum dot layer may include red quantum dots and green quantum dots.
  • the red quantum dots convert part of blue light into red light having a wavelength range of 620 to 750 nm
  • the green quantum dots convert part of blue light into green light having a wavelength range of 495 to 570 nm.
  • the quantum dots may be synthesized by a chemical wet method.
  • the chemical wet method is a method of growing particles by putting a precursor substance in an organic solvent.
  • Examples of the quantum dots include II-VI group compounds such as CdSe, CdTe, CdS, ZnSe, ZnTe, ZnS, HgTe, and HgS.
  • the quantum dots may have a core / shell structure.
  • the core includes any one material selected from the group consisting of CdSe, CdTe, CdS, ZnSe, ZnTe, ZnS, HgTe, and HgS
  • the shell also includes CdSe, CdTe, CdS, ZnSe, Any one substance selected from the group consisting of ZnTe, ZnS, HgTe, and HgS is included.
  • a III-V group compound such as InP may be used.
  • the organic ligand substituted on the surface of the quantum dot includes pyridine, mercaptoalcohol, thiol, phosphine, phosphine oxide, and the like, and plays a role of stabilizing the unstable quantum dot after synthesis.
  • Examples of commercially available quantum dots include various quantum dots manufactured by SIGMA-ALDRICH.
  • the resin containing quantum dots it is preferable to use a substance that does not absorb the wavelength of light emitted mainly from the light source. Specifically, epoxy, silicone, acrylic polymer, glass, carbonate polymer, or a mixture thereof may be used. When the resin has elasticity, it can also contribute to improving the durability of the liquid crystal display device against external impact.
  • the method of forming the quantum dot layer is as follows.
  • Quantum dot-containing resin sheets may be formed by adding a plurality of quantum dots to the resin and applying the resin to the top of the color filter layer using a spin coating method or a printing method.
  • the quantum dot resin sheet may be formed by molding and curing a resin to which quantum dots are added.
  • a quantum dot layer may be formed by injecting an organic solution, dispersing a plurality of quantum dots therein, and curing the organic solution.
  • the organic solution may include at least one of toluene, chloroform, and ethanol.
  • the organic solution does not absorb blue wavelengths. In this case, since the reaction between the quantum dot ligand and the organic solution does not occur, there is an advantage that the lifetime and efficiency of the quantum dot layer are increased.
  • Quantum dot-containing resin sheet has a laminate structure in which a sealing film is bonded through an adhesive layer.
  • the adhesive layer means a layer composed of an adhesive material, and conventionally known materials such as an acrylic adhesive and a silicone adhesive can be used. In pasting, a conventionally known pasting method can be adopted.
  • the measuring method used in the present invention is as follows.
  • Tg Glass transition temperature
  • a sample film piece was cut into a size of 1 mm ⁇ 10 mm and embedded in an epoxy resin for an electron microscope. This was fixed to a sample holder of an ultramicrotome, and a cross-sectional thin section parallel to the short side of the embedded sample piece was produced. Next, in a portion where the thin film of this section is not significantly damaged, a transmission electron microscope (manufactured by JEOL, JEM-2010) is used to photograph at an acceleration voltage of 200 kV and a bright field at an observation magnification of 10,000 times. The film thickness was determined from the photograph taken.
  • Refractive index measurement of protective layer and polyester film According to JIS K 7142-1996 5.1 (Method A), the refractive index was measured with an Abbe refractometer using sodium D line as a light source.
  • Refractive index measurement of coating layer and barrier layer For the coating layer or barrier layer formed on a silicon wafer or quartz glass with a coater, using a high-speed spectrometer M-2000 (manufactured by JA Woollam), the polarization state change of the reflected light of the coating layer or barrier layer Were measured at an incident angle of 60 degrees, 65 degrees, and 70 degrees, and the refractive index at a wavelength of 550 nm was calculated by analysis software WVASE32.
  • Water vapor transmission rate JISK7129 using a water vapor transmission rate measuring device (model name, “Permatran” (registered trademark) W3 / 31) manufactured by MOCON, USA, under the conditions of a temperature of 40 ° C. and a humidity of 90% RH. It was measured based on the B method (infrared sensor method) described in (2000 version). Two test pieces were cut out from one sample, each test piece was measured once, and the average value of the two measured values was taken as the value of the water vapor transmission rate of the sample.
  • polyester used in the examples and comparative examples was prepared as follows. ⁇ Manufacture of polyester>
  • polyester A1 100 parts of dimethyl terephthalate, 60 parts of ethylene glycol and 0.09 part of magnesium acetate tetrahydrate are placed in a reactor, the temperature is raised by heating, methanol is distilled off, transesterification is performed, and 4 hours are required from the start of the reaction. The temperature was raised to 230 ° C. to substantially complete the transesterification reaction. Next, after adding 0.04 part of ethylene glycol slurry ethyl acid phosphate and 0.03 part of antimony trioxide, the temperature reached 280 ° C. and the pressure reached 15 mmHg in 100 minutes. It was 0.3 mmHg. After 4 hours, the system was returned to normal pressure to obtain polyester A1 having an intrinsic viscosity of 0.61 (dl / g).
  • polyester A2 In the method for producing polyester (A1), polyester (A1) was used except that after adding ethyl acid phosphate, silica particles having an average particle diameter of 2.3 ⁇ m were added so that the content with respect to polyester was 0.2% by weight. ) was used to obtain polyester A2 having an intrinsic viscosity of 0.62 (dl / g).
  • Example 1 Manufacture of sealing film F1
  • the raw materials blended at a ratio of 85% and 15% respectively for polyesters A1 and A2 were used as surface layer materials, and 100% of the raw materials were used as intermediate layer materials and supplied to two extruders with vents at 290 ° C.
  • an amorphous film having a thickness of about 1500 ⁇ m was obtained by cooling and solidifying on a cooling roll having a surface temperature set to 40 ° C. using an electrostatic application adhesion method. This film was stretched 3.5 times in the machine direction at 85 ° C.
  • a polyester polyol comprising 664 parts by weight of terephthalic acid, 631 parts by weight of isophthalic acid, 472 parts by weight of 1,4-butanediol, and 447 parts by weight of neopentyl glycol was obtained.
  • 321 parts by weight of adipic acid and 268 parts by weight of dimethylolpropionic acid were added to the obtained polyester polyol to obtain a pendant carboxyl group-containing polyester polyol A.
  • 160 parts by weight of hexamethylene diisocyanate was added to 1880 parts by weight of the polyester polyol A to obtain an aqueous polyurethane resin aqueous coating material.
  • Block polyisocyanate obtained by adding 58.9 parts by weight of n-butanol, maintaining the reaction solution temperature at 80 ° C. for 2 hours, and then adding 0.86 parts by weight of 2-ethylhexyl acid phosphate.
  • the coating solution was diluted with ion exchange water to prepare a coating solution having a solid content concentration of 2% by weight.
  • barrier layer 1 An active energy ray curable resin composed of the following active energy ray curable resin composition is applied to the coating layer surface of the obtained coated film with a # 16 wire bar, dried at 80 ° C. for 1 minute to remove the solvent, and then irradiated with ultraviolet rays.
  • the barrier layer 1 having a thickness (after drying) of 5 ⁇ m was provided by irradiating ultraviolet rays from the machine with a metal halide lamp 120 w / cm so that the integrated light amount was 180 mJ / cm 2 .
  • ⁇ Active energy ray curable resin composition A mixed coating solution of 72 parts by weight of dipentaerythritol acrylate, 18 parts by weight of 2-hydroxy-3-phenoxypropyl acrylate, 1 part by weight of a photopolymerization initiator (Irgacure 651, manufactured by Ciba Specialty Chemicals), and 200 parts by weight of methyl ethyl ketone.
  • a photopolymerization initiator Irgacure 651, manufactured by Ciba Specialty Chemicals
  • the center roll temperature was set to 0 ° C., and the oxygen flow rate was controlled using a Speedflow manufactured by Gencoa so that the discharge voltage during sputtering was constant. At this time, the discharge voltage is set to 50% when the discharge voltage when only Ar gas is supplied is 100%, and when the discharge voltage is 50% when Ar gas and O 2 gas are supplied at 50 sccm. did. As described above, the barrier layer 2 having a thickness of 40 nm and a refractive index of 1.52 was deposited.
  • the protective layer 1 composed of the above coating composition is applied on the barrier layer 2 by a reverse gravure coating method so that the coating amount (after drying) is 0.1 g / m 2, and heat treatment is performed at 120 ° C. for 30 seconds. After that, a sealing film was obtained.
  • the obtained sealing film was bonded to both surfaces of the quantum dot-containing resin sheet by the following procedure to obtain a laminate.
  • ⁇ Quantum dot resin sheet formation> Using a slit die coater, a sheet-forming resin solution is applied on a polyester film (Diafoil T100 type manufactured by Mitsubishi Plastics Co., Ltd .: 100 ⁇ m), heated at 130 ° C. for 5 minutes, and dried to obtain a film thickness (after drying). A quantum dot resin sheet having a thickness of 50 ⁇ m was obtained. The obtained quantum dot resin sheet was uniformly applied on the base film, pinholes were not seen, and the film thickness uniformity was good.
  • a polyester film Diafoil T100 type manufactured by Mitsubishi Plastics Co., Ltd .: 100 ⁇ m
  • a quantum dot resin sheet having a thickness of 50 ⁇ m was obtained.
  • the obtained quantum dot resin sheet was uniformly applied on the base film, pinholes were not seen, and the film thickness uniformity was good.
  • Example 2 to Example 12 In Example 1, it manufactured like Example 1 except having changed application layer composition and polyester film base material thickness as shown in the following Table 1 and Table 2, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
  • Example 1 it manufactured similarly to Example 1 except having changed the structure of the barrier layer into the following barrier layer 2, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
  • ⁇ Formation of barrier layer 3> A gas barrier layer made of aluminum oxide was formed. At this time, it was carried out after confirming that the water pressure in the vacuum chamber before sputtering was 1 ⁇ 10 ⁇ 4 Pa. As sputtering conditions, Al (manufactured by Technofine) was used as a target, and DC power of 3 W / cm 2 was applied.
  • Examples 16-18 A sealing film was obtained in the same manner as in Example 1 except that the protective layer composition was changed to protective layer 2 in Example 1 and the adhesive layer was changed to an acrylic adhesive layer. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
  • ⁇ Protection layer 2 formation> Main agent: WPB-341 (Mitsui Chemicals) Curing agent: WD-725 (Mitsui Chemicals)
  • (Acrylic adhesive layer composition) A solution of an acrylic copolymer having a weight average molecular weight of 600,000 (polystyrene equivalent) by copolymerizing butyl acrylate (100 parts by weight, acrylic acid 6 parts by weight) in ethyl acetate by a conventional method (solid content 30% by weight) ) To 100 parts by weight (solid content) of the acrylic copolymer, 6 parts by weight of tetrad C (manufactured by Mitsubishi Gas Chemical) as an epoxy crosslinking agent was added to obtain an acrylic adhesive layer composition.
  • tetrad C manufactured by Mitsubishi Gas Chemical
  • Example 19 A sealing film was obtained in the same manner as in Example 1 except that the substrate thickness was changed to 50 ⁇ m in Example 1. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
  • Example 20 In Example 1, it manufactured similarly to Example 1 except having changed the barrier layer structure into 1 layer structure only of the barrier layer 1, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
  • Example 21 In Example 1, it manufactured like Example 1 except changing a barrier layer composition into one layer composition only of barrier layer 2, and obtained a sealing film. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
  • Example 22 A sealing film was obtained in the same manner as in Example 1 except that the raw material composition of the polyester film was changed in Example 1. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
  • Example 23 In Example 1, it manufactured similarly to Example 1 except not providing an application layer in the surface opposite to the surface which provides a barrier layer, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
  • Example 24 In Example 1, except that the type of the adhesive layer is changed to the acrylic adhesive layer described in Example 16, it is heated and dried at 100 ° C. for 5 minutes in the same manner as in Example 1 to obtain an acrylic adhesive layer having a thickness of 25 ⁇ m. Then, the sealing film and the quantum dot containing resin sheet were bonded together, and the laminated body was obtained.
  • Example 1 it manufactured similarly to Example 1 except having changed the structure of the application layer into the application layer 5, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
  • Example 2 it manufactured similarly to Example 1 except having changed the structure of the application layer into the application layer 10, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
  • Example 1 it manufactured similarly to Example 1 except having changed the structure of the application layer into the application layer 15, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
  • Example 1 it manufactured similarly to Example 1 except not providing an application layer, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
  • Example 1 it manufactured similarly to Example 1 except not providing a barrier layer, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
  • Example 1 it manufactured similarly to Example 1 except not providing a protective layer, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
  • Tables 1 to 5 show the properties of the sealing films obtained in the above examples and comparative examples.
  • the sealing film for electronic members of the present invention is particularly excellent in transparency, water vapor barrier properties and adhesiveness with an adhesive layer, and is an electron such as a quantum dot-containing resin sheet, electronic paper, and organic EL, which requires high water vapor barrier properties. It is suitable as a sealing film for members, and its industrial value is high.

Landscapes

  • Laminated Bodies (AREA)

Abstract

Provided is a sealing film for electronic members such as a quantum dot-containing resin sheet, electronic paper and organic EL device, which has good transparency, barrier properties and adhesion to an adhesive layer. A sealing film for electronic members, wherein a coating layer, a barrier layer and a protective layer are sequentially laminated on one surface of a polyester film, and wherein the coating layer contains at least one binder resin selected from among polyester resins, urethane resins and acrylic resins. This sealing film for electronic members has a water vapor transmission rate of 0.01 g/m2/day or less as measured at a temperature of 40°C at a humidity of 90% RH in accordance with JIS-K7129B.

Description

電子部材用封止フィルムSealing film for electronic parts
  本発明は、透明性、バリア性および粘着層との接着性に優れ、高度な水蒸気バリア性の求められる量子ドット含有樹脂シート、電子ペーパー、有機ELなどの電子部材用封止フィルムに関するものである。 The present invention relates to a sealing film for an electronic member such as a quantum dot-containing resin sheet, electronic paper, and organic EL, which is excellent in transparency, barrier properties, and adhesiveness with an adhesive layer, and requires high water vapor barrier properties. .
 光学用途において、ポリエステルフィルムは、光学特性に優れるため、各種ディスプレイ用途を中心に広く使用されている。 In optical applications, polyester films are widely used mainly for various display applications because of their excellent optical properties.
 一方、電子ペーパーや有機ELなどの表示ディスプレイが近年、急速に普及してきた結果、軽量化、フレキシブルという観点からガラス基材代替として、透明プラスチックフィルムへの代替検討が鋭意進められる状況にる。 On the other hand, as a result of the rapid spread of display displays such as electronic paper and organic EL in recent years, alternative studies on transparent plastic films as a substitute for glass substrates from the viewpoints of weight reduction and flexibility are in earnest.
 しかしながら、ガラス基材を透明プラスチックフィルムに置き換えた場合、水分が透明プラスチックフィルムを透過するため、デバイスが劣化する状況にあった。そのため、ガスバリア層を有する透明プラスチックフィルムが必要となるが、従来の食品包装用途に用いられるガスバリア性フィルムでは、水分の遮断性が不十分であり、電子デバイスの劣化を抑制することが困難である。 However, when the glass substrate is replaced with a transparent plastic film, the device is in a state of deterioration because moisture passes through the transparent plastic film. Therefore, a transparent plastic film having a gas barrier layer is required. However, gas barrier films used for conventional food packaging applications have insufficient moisture barrier properties and it is difficult to suppress deterioration of electronic devices. .
 このような電子ペーパーや有機ELなどの表示ディスプレイに使用することを目的として、プラスチックフィルムの少なくとも片面にポリマーからなる硬化樹脂層と窒化酸化珪素からなるガスバリア層を設けた水蒸気透過度が0.02g/m/dayのガスバリア性フィルムが提案されている(特許文献1)。 For use in display displays such as electronic paper and organic EL, a water vapor permeability of 0.02 g is provided by providing a cured resin layer made of a polymer and a gas barrier layer made of silicon nitride oxide on at least one side of a plastic film. A gas barrier film of / m 2 / day has been proposed (Patent Document 1).
 しかしながら、特許文献1記載のガスバリアフィルムは、ガスバリア性向上効果はある反面、粘着層との密着性については考慮されていない。また、窒化酸化珪素をガスバリア層として用いたガスバリアフィルムは、ガスバリア層の屈折率が高く、保護層との屈折率差が大きくなり、透過率が低下する場合がある。 However, while the gas barrier film described in Patent Document 1 has an effect of improving gas barrier properties, it does not consider the adhesion to the adhesive layer. In addition, a gas barrier film using silicon nitride oxide as a gas barrier layer has a high refractive index of the gas barrier layer, a refractive index difference with the protective layer is increased, and the transmittance may be reduced.
 また、基材フィルム上に大気圧プラズマCVD法により平坦化層、ガスバリア層、保護層を積層し、10-6g/m/dayレベルの水蒸気バリア性を有するガスバリアフィルムが提案されている(特許文献2)。 Further, a gas barrier film having a water vapor barrier property of 10 −6 g / m 2 / day level by laminating a planarizing layer, a gas barrier layer, and a protective layer on a base film by an atmospheric pressure plasma CVD method has been proposed ( Patent Document 2).
 しかしながら、特許文献2の実施例1記載のガスバリアフィルムは、ガスバリア性は良好である反面、TEOSを原料として大気圧CVD法で作製した無機ポリマーからなる保護層は、粘着層との密着性は必ずしも十分ではない。 However, while the gas barrier film described in Example 1 of Patent Document 2 has good gas barrier properties, the protective layer made of an inorganic polymer made of TEOS as a raw material by the atmospheric pressure CVD method does not necessarily have adhesion to the adhesive layer. Not enough.
 また、ガスバリアフィルムの保護層としてポリビニルアルコールと無機層状化合物のコンポジット膜を積層したガスバリア性積層フィルム(特許文献3)が提案されているが、ディスプレイなどの表示体に用いた場合、外観が白っぽく、透明性に劣る傾向にあった。さらに、保護層としてゾルーゲル層を設けた構成を有するガスバリア性積層フィルム(特許文献4)が提案されているが、表面硬度は良好である反面、フレキシブル性や粘着層との密着性が劣る場合がある。 Further, a gas barrier laminate film (Patent Document 3) in which a composite film of polyvinyl alcohol and an inorganic layered compound is laminated as a protective layer of the gas barrier film has been proposed, but when used for a display body such as a display, the appearance is whitish, There was a tendency to be inferior in transparency. Furthermore, although a gas barrier laminate film (Patent Document 4) having a configuration in which a sol-gel layer is provided as a protective layer has been proposed, the surface hardness is good, but the flexibility and adhesion to the adhesive layer may be inferior. is there.
 また、特許文献5においては、有機層/無機層の交互積層によるガスバリア層向上対策が講じられているが、ガスバリア性は向上する反面、有機層/無機層界面での層間密着性が不十分であった。 Further, in Patent Document 5, measures for improving the gas barrier layer are taken by alternately laminating organic layers / inorganic layers, but the gas barrier property is improved, but the interlayer adhesion at the organic layer / inorganic layer interface is insufficient. there were.
特開2009-190186号公報JP 2009-190186 A 特開2007-83644号公報JP 2007-83644 A 特開2003-231789号公報JP 2003-231789 A 特開2003-326634号公報JP 2003-326634 A 特許4254350号公報Japanese Patent No. 4254350
 本発明は上記実情に鑑みなされたものであって、その解決課題は、量子ドット含有樹脂シート、電子ペーパー、有機ELなどの電子部材用封止フィルムとして、透明性、バリア性および粘着層に対する接着性良好な封止フィルムを提供することにある。 This invention is made | formed in view of the said situation, Comprising: As a sealing film for electronic members, such as a quantum dot containing resin sheet, electronic paper, and organic EL, transparency, barrier property, and adhesion | attachment to an adhesion layer It is in providing a sealing film with favorable property.
 本発明者は、鋭意検討した結果、特定の構成からなる封止フィルムによれば、上記課題を容易に解決できることを知見し、本発明を完成させるに至った。 As a result of intensive studies, the present inventor has found that the above problems can be easily solved by a sealing film having a specific configuration, and has completed the present invention.
 すなわち、本発明の要旨は、ポリエステルフィルムの片面に、塗布層、バリア層、保護層が順次積層された封止フィルムであり、塗布層が、ポリエステル樹脂、アクリル系樹脂、ウレタン樹脂の中から選択されるバインダー樹脂を少なくとも1種類以上と、オキサゾリン化合物、メラミン樹脂、イソシアネート系化合物中から選択される架橋剤を少なくとも1種類以上とを含有し、JIS-K7129B法に準じ、温度40℃、湿度90%RHの測定条件下で測定した封止フィルムの水蒸気透過度が0.01g/m/day以下であることを特徴とする電子部材用封止フィルムに存する。 That is, the gist of the present invention is a sealing film in which a coating layer, a barrier layer, and a protective layer are sequentially laminated on one side of a polyester film, and the coating layer is selected from a polyester resin, an acrylic resin, and a urethane resin. Containing at least one binder resin and at least one cross-linking agent selected from oxazoline compounds, melamine resins, and isocyanate compounds, according to JIS-K7129B method, temperature 40 ° C., humidity 90 It exists in the sealing film for electronic members characterized by the water vapor permeability | transmittance of the sealing film measured on the measurement conditions of% RH being 0.01 g / m < 2 > / day or less.
 本発明の電子部材用封止フィルムは、透明性、バリア性および粘着層との接着性に優れ、高度なバリア性が要求される量子ドット含有樹脂シート、電子ペーパー、有機ELなどの電子部材用封止フィルムとして好適であり、その工業的価値は高い。 The sealing film for electronic members of the present invention is excellent in transparency, barrier properties, and adhesiveness with an adhesive layer, and is used for electronic members such as quantum dot-containing resin sheets, electronic paper, and organic EL that require high barrier properties. It is suitable as a sealing film, and its industrial value is high.
図1は本発明の実施形態に係る積層体を示す模式的な断面図である。FIG. 1 is a schematic cross-sectional view showing a laminate according to an embodiment of the present invention.
 以下、本発明を詳細に説明する。
 先ず、ポリエステルフィルムについて説明する。
 ポリエステルフィルムは単層構成であっても積層構成であってもよく、例えば、2層、3層構成以外にも本発明の要旨を超えない限り、4層またはそれ以上の多層であってもよく、特に限定されるものではない。
Hereinafter, the present invention will be described in detail.
First, the polyester film will be described.
The polyester film may have a single layer structure or a laminated structure. For example, the polyester film may have a multilayer structure of four layers or more as long as it does not exceed the gist of the present invention other than the two-layer or three-layer structure. There is no particular limitation.
 ポリエステルは、ホモポリエステルであっても共重合ポリエステルであってもよい。ホモポリエステルからなる場合、芳香族ジカルボン酸と脂肪族グリコールとを重縮合させて得られるものが好ましい。芳香族ジカルボン酸としては、テレフタル酸、2,6-ナフタレンジカルボン酸などが挙げられ、脂肪族グリコールとしては、エチレングリコール、ジエチレングリコール、1,4-シクロヘキサンジメタノール等が挙げられる。代表的なポリエステルとしては、ポリエチレンテレフタレート(PET)等が例示される。一方、共重合ポリエステルのジカルボン酸成分としては、イソフタル酸、フタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸、アジピン酸、セバシン酸、オキシカルボン酸(例えば、P-オキシ安息香酸など)等の一種または二種以上が挙げられ、グリコール成分として、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール等の一種または二種以上が挙げられる。何れにしても本発明でいうポリエステルとは、通常60モル%以上、好ましくは80モル%以上がエチレンテレフタレート単位であるポリエチレンテレフタレート等であるポリエステルを指す。 The polyester may be a homopolyester or a copolyester. In the case of a homopolyester, those obtained by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol are preferred. Examples of the aromatic dicarboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid, and examples of the aliphatic glycol include ethylene glycol, diethylene glycol, and 1,4-cyclohexanedimethanol. Representative polyester includes polyethylene terephthalate (PET) and the like. On the other hand, examples of the dicarboxylic acid component of the copolyester include isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, and oxycarboxylic acid (eg, P-oxybenzoic acid). One or two or more types can be mentioned, and examples of the glycol component include one or more types such as ethylene glycol, diethylene glycol, propylene glycol, butanediol, 1,4-cyclohexanedimethanol, neopentyl glycol and the like. In any case, the polyester referred to in the present invention refers to a polyester that is usually 60 mol% or more, preferably 80 mol% or more of polyethylene terephthalate or the like which is an ethylene terephthalate unit.
 ポリエステルフィルム中には、易滑性付与を主たる目的として粒子を配合することが好ましい。配合する粒子の種類は、易滑性付与可能な粒子であれば特に限定されるものではなく、具体例としては、例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸マグネシウム、カオリン、酸化アルミニウム、酸化チタン等の粒子が挙げられる。また、特公昭59-5216号公報、特開昭59-217755号公報等に記載されている耐熱性有機粒子を用いてもよい。この他の耐熱性有機粒子の例として、熱硬化性尿素樹脂、熱硬化性フェノール樹脂、熱硬化性エポキシ樹脂、ベンゾグアナミン樹脂等が挙げられる。さらに、ポリエステル製造工程中、触媒等の金属化合物の一部を沈殿、微分散させた析出粒子を用いることもできる。 In the polyester film, it is preferable to mix particles for the main purpose of imparting easy slipperiness. The kind of the particle to be blended is not particularly limited as long as it is a particle capable of imparting slipperiness. Specific examples thereof include silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, and phosphoric acid. Examples of the particles include magnesium, kaolin, aluminum oxide, and titanium oxide. Further, the heat-resistant organic particles described in JP-B-59-5216, JP-A-59-217755 and the like may be used. Examples of other heat-resistant organic particles include thermosetting urea resins, thermosetting phenol resins, thermosetting epoxy resins, benzoguanamine resins, and the like. Furthermore, precipitated particles obtained by precipitating and finely dispersing a part of a metal compound such as a catalyst during the polyester production process can also be used.
 一方、粒子の形状は、特に限定されるわけではなく、球状、塊状、棒状、扁平状等のいずれを用いてもよい。また、その硬度、比重、色等についても特に制限はない。これら一連の粒子は、必要に応じて2種類以上を併用してもよい。 On the other hand, the shape of the particles is not particularly limited, and any of a spherical shape, a block shape, a rod shape, a flat shape, and the like may be used. Moreover, there is no restriction | limiting in particular about the hardness, specific gravity, a color, etc. These series of particles may be used in combination of two or more as required.
 また、粒子の平均粒径は、通常、0.01~3μm、好ましくは0.01~1μmの範囲である。平均粒径が0.01μm未満の場合には、粒子が凝集しやすく、分散性が不十分な場合があり、一方、3μmを超える場合には、フィルムの表面粗度が粗くなりすぎて、後工程において離型層を塗設させる場合等に不具合が生じる場合がある。 The average particle diameter of the particles is usually in the range of 0.01 to 3 μm, preferably 0.01 to 1 μm. When the average particle diameter is less than 0.01 μm, the particles are likely to aggregate and dispersibility may be insufficient. On the other hand, when the average particle diameter exceeds 3 μm, the surface roughness of the film becomes too rough and There may be a problem when a release layer is applied in the process.
 さらに、粒子の含有量は、通常、0.001~5重量%、好ましくは0.005~3重量%の範囲である。粒子含有量が0.001重量%未満の場合には、フィルムの易滑性が不十分な場合があり、一方、5重量%を超えて添加する場合にはフィルムの透明性が不十分な場合がある。 Furthermore, the content of the particles is usually in the range of 0.001 to 5% by weight, preferably 0.005 to 3% by weight. When the particle content is less than 0.001% by weight, the slipperiness of the film may be insufficient. On the other hand, when the content exceeds 5% by weight, the transparency of the film is insufficient. There is.
 ポリエステルフィルム中に粒子を添加する方法としては、特に限定されるものではなく、従来公知の方法を採用しうる。例えば、各層を構成するポリエステルを製造する任意の段階において添加することができるが、好ましくはエステル化の段階、もしくはエステル交換反応終了後、重縮合反応を進めてもよい。 The method for adding particles to the polyester film is not particularly limited, and a conventionally known method can be adopted. For example, it can be added at any stage of producing the polyester constituting each layer, but preferably a polycondensation reaction may be carried out after the esterification stage or after the transesterification reaction.
 また、ベント付き混練押出機を用い、エチレングリコールまたは水などに分散させた粒子のスラリーとポリエステル原料とをブレンドする方法、または、混練押出機を用い、乾燥させた粒子とポリエステル原料とをブレンドする方法などによって行われる。 Also, a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material, or a blending of dried particles and a polyester raw material using a kneading extruder. It is done by methods.
 なお、ポリエステルフィルム中には上述の粒子以外に必要に応じて従来公知の、蛍光増白剤、酸化防止剤、帯電防止剤、熱安定剤、潤滑剤、染料、顔料等を添加することができる。 In addition to the above-mentioned particles, conventionally known fluorescent whitening agents, antioxidants, antistatic agents, thermal stabilizers, lubricants, dyes, pigments and the like can be added to the polyester film as necessary. .
 ポリエステルフィルムの厚みは、フィルムとして製膜可能な範囲であれば特に限定されるものではない。フィルム基材の機械強度、可撓性、透明性等を考慮して、12~125μmが好ましく、さらに好ましくは25~100μmがよい。 The thickness of the polyester film is not particularly limited as long as it can be formed as a film. In consideration of the mechanical strength, flexibility, transparency, etc. of the film substrate, the thickness is preferably 12 to 125 μm, more preferably 25 to 100 μm.
 ポリエステルフィルムの製造例について具体的に説明するが、以下の製造例に何ら限定されるものではない。 The production example of the polyester film will be specifically described, but is not limited to the following production example.
 まず、先に述べたポリエステル原料を使用し、ダイから押し出された溶融シートを冷却ロールで冷却固化して未延伸シートを得る方法が好ましい。この場合、シートの平面性を向上させるためシートと回転冷却ドラムとの密着性を高める必要があり、静電印加密着法および/または液体塗布密着法が好ましく採用される。次に得られた未延伸シートは二軸方向に延伸される。その場合、まず、前記の未延伸シートを一方向にロールまたはテンター方式の延伸機により延伸する。延伸温度は、通常70~120℃、好ましくは80~ 110℃であり、延伸倍率は通常2.5~7倍、好ましくは3.0~6倍である。次いで、一段目の延伸方向と直交する延伸温度は通常70~170℃であり、延伸倍率は通常 3.0~7倍、好ましくは3.5~6倍である。そして、引き続き180~270℃の 温度で緊張下または30%以内の弛緩下で熱処理を行い、二軸配向フィルムを得る。上記の延伸においては、一方向の延伸を2段階以上で行う方法を採用することもできる。その場合、最終的に二方向の延伸倍率がそれぞれ上記範囲となるように行うのが好ましい。 First, a method in which the polyester raw material described above is used and the molten sheet extruded from the die is cooled and solidified with a cooling roll to obtain an unstretched sheet is preferable. In this case, in order to improve the flatness of the sheet, it is necessary to improve the adhesion between the sheet and the rotary cooling drum, and an electrostatic application adhesion method and / or a liquid application adhesion method are preferably employed. Next, the obtained unstretched sheet is stretched in the biaxial direction. In that case, first, the unstretched sheet is stretched in one direction by a roll or a tenter type stretching machine. The stretching temperature is usually 70 to 120 ° C., preferably 80 to 110 ° C., and the stretching ratio is usually 2.5 to 7 times, preferably 3.0 to 6 times. Next, the stretching temperature orthogonal to the first-stage stretching direction is usually 70 to 170 ° C., and the draw ratio is usually 3.0 to 7 times, preferably 3.5 to 6 times. Subsequently, heat treatment is performed at a temperature of 180 to 270 ° C. under tension or under relaxation within 30% to obtain a biaxially oriented film. In the above-described stretching, a method in which stretching in one direction is performed in two or more stages can be employed. In that case, it is preferable to carry out so that the draw ratios in the two directions finally fall within the above ranges.
 また、ポリエステルフィルム製造に関しては同時二軸延伸法を採用することもできる。同時二軸延伸法は前記の未延伸シートを通常70~120℃、好ましくは80~110℃で温度コントロールされた状態で機械方向および幅方向に同時に延伸し配向させる方法で、延伸倍率としては、面積倍率で4~50倍、好ましくは7~35倍、さらに好ましくは10~25倍である。そして、引き続き、170~250℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、延伸配向フィルムを得る。上述の延伸方式を採用する同時二軸延伸装置に関しては、スクリュー方式、パンタグラフ方式、リニアー駆動方式等、従来から公知の延伸方式を採用することができる。 Also, the simultaneous biaxial stretching method can be adopted for the production of the polyester film. The simultaneous biaxial stretching method is a method in which the unstretched sheet is usually stretched and oriented simultaneously in the machine direction and the width direction in a state where the temperature is controlled at 70 to 120 ° C, preferably 80 to 110 ° C. The area magnification is 4 to 50 times, preferably 7 to 35 times, and more preferably 10 to 25 times. Subsequently, heat treatment is performed at a temperature of 170 to 250 ° C. under tension or under relaxation within 30% to obtain a stretched oriented film. With respect to the simultaneous biaxial stretching apparatus that employs the above-described stretching method, conventionally known stretching methods such as a screw method, a pantograph method, and a linear drive method can be employed.
 さらに上述のポリエステルフィルムの延伸工程中にフィルム表面を処理する、いわゆる塗布延伸法(インラインコーティング)を施すことができる。塗布延伸法によりポリエステルフィルム上に塗布層が設けられる場合には、延伸と同時に塗布が可能になると共に塗布層の厚みを延伸倍率に応じて薄くすることができ、ポリエステルフィルムとして好適なフィルムを製造できる。 Furthermore, a so-called coating stretching method (in-line coating) for treating the film surface during the above-described polyester film stretching step can be performed. When a coating layer is provided on a polyester film by a coating stretching method, coating can be performed simultaneously with stretching and the thickness of the coating layer can be reduced according to the stretching ratio, producing a film suitable as a polyester film. it can.
 次に、塗布層について説明する。
 ポリエステルフィルムには、バリア層との密着性向上のため、ポリエステル樹脂、アクリル系樹脂、ウレタン樹脂の中から選択されるバインダー樹脂を少なくとも1種類以上と、メラミン樹脂、オキサゾリン基含有樹脂、イソシアネート系化合物中から選択される架橋剤を少なくとも1種類以上とを含有する塗布層が形成される。
Next, the coating layer will be described.
The polyester film has at least one binder resin selected from polyester resin, acrylic resin, and urethane resin, melamine resin, oxazoline group-containing resin, and isocyanate compound to improve adhesion to the barrier layer. A coating layer containing at least one kind of crosslinking agent selected from the inside is formed.
 ポリエステル樹脂とは、ジカルボン酸成分とグリコール成分とを構成成分とする線状ポリエステルと定義する。ジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6ーナフタレンジカルボン酸、4,4-ジフェニルジカルボン酸、1,4ーシクロヘキサンジカルボン酸、アジピン酸、セバシン酸、フェニルインダンジカルボン酸、ダイマー酸等を例示することができる。これらの成分は二種以上を用いることができる。さらに、これらの成分とともにマレイン酸、フマル酸、イタコン酸等のような不飽和多塩基酸やp-ヒドロキシ安息香酸、p-(β-ヒドロキシエトキシ)安息香酸等のようなヒドロキシカルボン酸を少割合用いることができる。不飽和多塩基酸成分やヒドロキシカルボン酸成分の割合は高々10モル%、好ましくは5モル%以下である。 The polyester resin is defined as a linear polyester having a dicarboxylic acid component and a glycol component as constituent components. Dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, adipic acid, sebacic acid, phenylindanedicarboxylic acid, A dimer acid etc. can be illustrated. Two or more of these components can be used. In addition to these components, a small proportion of unsaturated polybasic acids such as maleic acid, fumaric acid, itaconic acid and the like, and hydroxycarboxylic acids such as p-hydroxybenzoic acid and p- (β-hydroxyethoxy) benzoic acid, etc. Can be used. The proportion of the unsaturated polybasic acid component or the hydroxycarboxylic acid component is at most 10 mol%, preferably 5 mol% or less.
 また、グリコール成分としては、エチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、キシリレングリコール、ジメチロー
ルプロピオン酸、グリセリン、トリメチロールプロパン、ポリ(エチレンオキシ)グリコール、ポリ(テトラメチレンオキシ)グリコール、ビスフェノールAのアルキレンオキサイド付加物、水添ビスフェノールAのアルキレンオキサイド付加物等を例示することができる。これらは2種以上を用いることができる。
Examples of the glycol component include ethylene glycol, 1,4-butanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, xylylene glycol, dimethylolpropionic acid. Glycerin, trimethylolpropane, poly (ethyleneoxy) glycol, poly (tetramethyleneoxy) glycol, an alkylene oxide adduct of bisphenol A, an alkylene oxide adduct of hydrogenated bisphenol A, and the like. Two or more of these can be used.
 かかるポリオール成分の中でもエチレングリコール、ビスフェノールAのエチレンオキサイド付加物やプロピレンオキサイド付加物、1,4-ブタンジオールが好ましく、さらにエチレングリコール、ビスフェノールAのエチレンオキサイド付加物やプロピレンオキサイド付加物が好ましい。 Among such polyol components, ethylene glycol and bisphenol A ethylene oxide adducts and propylene oxide adducts and 1,4-butanediol are preferred, and ethylene glycol and bisphenol A ethylene oxide adducts and propylene oxide adducts are more preferred.
 また、本発明における封止フィルムを構成する塗布層中には、水分散化或いは水溶性化を容易にするためにスルホン酸(塩)基を有するポリエステル樹脂を少なくとも1種類以上を含有することが好ましい。 Moreover, in the coating layer which comprises the sealing film in this invention, in order to make water dispersion or water-solubilization easy, it may contain at least 1 or more types of polyester resin which has a sulfonic acid (salt) group. preferable.
 スルホン酸(塩)基を有するポリエステル樹脂としては、例えば5-ナトリウムスルホイソフタル酸、5-アンモニウムスルホイソフタル酸、4-ナトリウムスルホイソフタル酸、4-メチルアンモニウムスルホイソフタル酸、2-ナトリウムスルホイソフタル酸、5-カリウムスルホイソフタル酸、4-カリウムスルホイソフタル酸、2-カリウムスルホイソフタル酸、ナトリウムスルホコハク酸等のスルホン酸アルカリ金属塩系またはスルホン酸アミン塩系化合物等が好ましく挙げられる。 Examples of the polyester resin having a sulfonic acid (salt) group include 5-sodium sulfoisophthalic acid, 5-ammonium sulfoisophthalic acid, 4-sodium sulfoisophthalic acid, 4-methylammonium sulfoisophthalic acid, 2-sodium sulfoisophthalic acid, Preferable examples include sulfonic acid alkali metal salt compounds or sulfonic acid amine salt compounds such as 5-potassium sulfoisophthalic acid, 4-potassium sulfoisophthalic acid, 2-potassium sulfoisophthalic acid, and sodium sulfosuccinic acid.
 前記ポリエステル樹脂において、ガラス転移温度(以下、Tgと略記する場合がある。)は40℃以上であるのが好ましく、さらに好ましくは60℃以上がよい。Tgが40℃未満の場合、接着性向上を目的として、塗布層の塗布厚みを厚くした場合、ブロッキングし易くなる等の不具合を生じる場合がある。 In the polyester resin, the glass transition temperature (hereinafter sometimes abbreviated as Tg) is preferably 40 ° C. or higher, more preferably 60 ° C. or higher. When Tg is less than 40 ° C., for the purpose of improving adhesiveness, when the coating thickness of the coating layer is increased, problems such as easy blocking may occur.
 アクリル樹脂とは、アクリル系、メタアクリル系のモノマーに代表されるような、炭素-炭素二重結合を持つ重合性モノマーからなる重合体である。これらは、単独重合体あるいは共重合体いずれでも差し支えない。また、それら重合体と他のポリマー(例えばポリエステル、ポリウレタン等)との共重合体も含まれる。例えば、ブロック共重合体、グラフト共重合体である。さらにポリエステル溶液、またはポリエステル分散液中で炭素-炭素二重結合を持つ重合性モノマーを重合して得られたポリマー(場合によってはポリマーの混合物)も含まれる。同様にポリウレタン溶液、ポリウレタン分散液中で炭素-炭素二重結合を持つ重合性モノマーを重合して得られたポリマー(場合によってはポリマーの混合物)も含まれる。同様にして他のポリマー溶液、または分散液中で炭素-炭素二重結合を持つ重合性モノマーを重合して得られたポリマー(場合によってはポリマー混合物)も含まれる。 An acrylic resin is a polymer composed of a polymerizable monomer having a carbon-carbon double bond, as typified by acrylic and methacrylic monomers. These may be either a homopolymer or a copolymer. Moreover, the copolymer of these polymers and other polymers (for example, polyester, polyurethane, etc.) is also included. For example, a block copolymer or a graft copolymer. Furthermore, a polymer (in some cases, a mixture of polymers) obtained by polymerizing a polymerizable monomer having a carbon-carbon double bond in a polyester solution or a polyester dispersion is also included. Similarly, a polymer (in some cases, a mixture of polymers) obtained by polymerizing a polymerizable monomer having a carbon-carbon double bond in a polyurethane solution or polyurethane dispersion is also included. Similarly, a polymer (in some cases, a polymer mixture) obtained by polymerizing a polymerizable monomer having a carbon-carbon double bond in another polymer solution or dispersion is also included.
 上記炭素-炭素二重結合を持つ重合性モノマーとしては、特に限定はしないが、代表的な化合物としては、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、フマル酸、マレイン酸、シトラコン酸のような各種カルボキシル基含有モノマー類、およびそれらの塩;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、モノブチルヒドロキルフマレート、モノブチルヒドロキシイタコネートのような各種の水酸基含有モノマー類;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ラウリル(メタ)アクリレートのような各種の(メタ)アクリル酸エステル類;(メタ)アクリルアミド、ジアセトンアクリルアミド、N-メチロールアクリルアミドまたは(メタ)アクリロニトリル等のような種々の窒素含有ビニル系モノマー類。また、これらと併用して以下に示すような重合性モノマーを共重合することができる。すなわち、スチレン、α-メチルスチレン、ジビニルベンゼン、ビニルトルエンのような各種スチレン誘導体、酢酸ビニル、プロピオン酸ビニルのような各種のビニルエステル類;γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、メタクリロイルシリコンマクロマー等のような種々の珪素含有重合性モノマー類;燐含有ビニル系モノマー類;塩化ビニル、塩化ビリデン、フッ化ビニル、フッ化ビニリデン、トリフルオロクロルエチレン、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレンのような各種のハロゲン化ビニル類;ブタジエンのような各種共役ジエン類等が例示される。 The polymerizable monomer having a carbon-carbon double bond is not particularly limited, but representative compounds such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, fumaric acid, maleic acid, and citraconic acid. Various carboxyl group-containing monomers and their salts; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, monobutylhydroxyl fumarate, monobutylhydroxy Various hydroxyl-containing monomers such as itaconate; various (meth) acrylic such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate Acid esters; (meth) a Riruamido, various nitrogen-containing vinyl monomers such as diacetone acrylamide, N- methylol acrylamide or (meth) acrylonitrile. Further, in combination with these, polymerizable monomers as shown below can be copolymerized. That is, various styrene derivatives such as styrene, α-methylstyrene, divinylbenzene and vinyltoluene, various vinyl esters such as vinyl acetate and vinyl propionate; γ-methacryloxypropyltrimethoxysilane, vinyltrimethoxysilane, Various silicon-containing polymerizable monomers such as methacryloyl silicon macromer; phosphorus-containing vinyl monomers; vinyl chloride, biliden chloride, vinyl fluoride, vinylidene fluoride, trifluorochloroethylene, tetrafluoroethylene, chlorotrifluoroethylene And various vinyl halides such as hexafluoropropylene; and various conjugated dienes such as butadiene.
 前記アクリル樹脂において、ガラス転移温度(以下、Tgと略記する場合がある。)は40℃以上であるのが好ましく、さらに好ましくは60℃以上がよい。Tgが40℃未満の場合、接着性向上を目的として、塗布層の塗布厚みを厚くした場合、ブロッキングし易くなる等の不具合を生じる場合がある。 In the acrylic resin, the glass transition temperature (hereinafter sometimes abbreviated as Tg) is preferably 40 ° C. or higher, more preferably 60 ° C. or higher. When Tg is less than 40 ° C., for the purpose of improving adhesiveness, when the coating thickness of the coating layer is increased, problems such as easy blocking may occur.
 ウレタン樹脂としてはポリカーボネート構造を有するウレタン樹脂が好ましい。ポリカーボネート構造を有するウレタン樹脂とは、ウレタン樹脂の主要な構成成分であるポリオールの一つがポリカーボネートポリオール類であるウレタン樹脂を指す。 The urethane resin is preferably a urethane resin having a polycarbonate structure. The urethane resin having a polycarbonate structure refers to a urethane resin in which one of the polyols, which are main components of the urethane resin, is a polycarbonate polyol.
 ポリカーボネートポリオール類は、多価アルコール類とカーボネート化合物とから、脱アルコール反応によって得られる。多価アルコール類としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、トリメチロールプロパン、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、3,3-ジメチロールヘプタン等が挙げられる。カーボネート化合物としては、ジメチルカーボネート、ジエチルカーボネート、ジフェニルカーボネート、エチレンカーボネート等が挙げられ、これらの反応から得られるポリカーボネート系ポリオール類としては、例えば、ポリ(1,6-ヘキシレン)カーボネート、ポリ(3-メチル-1,5-ペンチレン)カーボネート等が挙げられる。 Polycarbonate polyols are obtained from a polyhydric alcohol and a carbonate compound by a dealcoholization reaction. The polyhydric alcohols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, trimethylolpropane, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, , 5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, , 10-decanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 3,3-dimethylolheptane, and the like. Examples of the carbonate compound include dimethyl carbonate, diethyl carbonate, diphenyl carbonate, and ethylene carbonate. Examples of the polycarbonate-based polyols obtained from these reactions include poly (1,6-hexylene) carbonate, poly (3- And methyl-1,5-pentylene) carbonate.
 ポリカーボネート構造を有するウレタン樹脂を構成するポリイソシアネート類としては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、トリジンジイソシアネート等の芳香族ジイソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族ジイソシアネート、メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、ジシクロヘキシルメタンジイソシアネート、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環族ジイソシアネート等が例示される。これらは単独で用いても、複数種併用してもよい。また、上記イソシアネートの中でも、活性エネルギー線硬化性塗料との密着性の向上、および紫外線による黄変防止の点から、芳香族イソシアネートよりも脂肪族イソシアネートまたは脂環族イソシアネートがより好ましい。 Examples of the polyisocyanates constituting the urethane resin having a polycarbonate structure include aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, and tolidine diisocyanate, α, α, α ′, Aliphatic diisocyanates having an aromatic ring such as α'-tetramethylxylylene diisocyanate, methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate and other aliphatic diisocyanates, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate , Mechi Nbisu (4-cyclohexyl isocyanate), dicyclohexylmethane diisocyanate, alicyclic diisocyanates such as isopropylidene dicyclohexyl diisocyanates. These may be used alone or in combination. Among the above isocyanates, aliphatic isocyanates or alicyclic isocyanates are more preferable than aromatic isocyanates from the viewpoint of improving adhesion to the active energy ray-curable coating material and preventing yellowing due to ultraviolet rays.
 ウレタン樹脂を合成する際に鎖延長剤を使用しても良く、鎖延長剤としては、イソシアネート基と反応する活性基を2個以上有するものであれば特に制限はなく、一般的には、水酸基またはアミノ基を2個有する鎖延長剤を主に用いることができる。 A chain extender may be used when synthesizing the urethane resin, and the chain extender is not particularly limited as long as it has two or more active groups that react with an isocyanate group. Alternatively, a chain extender having two amino groups can be mainly used.
 水酸基を2個有する鎖延長剤としては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール等の脂肪族グリコール、キシリレングリコール、ビスヒドロキシエトキシベンゼン等の芳香族グリコール、ネオペンチルグリコール、ネオペンチルグリコールヒドロキシピバレート等のエステルグリコールといったグリコール類を挙げることができる。また、アミノ基を2個有する鎖延長剤としては、例えば、トリレンジアミン、キシリレンジアミン、ジフェニルメタンジアミン等の芳香族ジアミン、エチレンジアミン、プロピレンジアミン、ヘキサンジアミン、2,2-ジメチル-1,3-プロパンジアミン、2-メチル-1,5-ペンタンジアミン、トリメチルヘキサンジアミン、2-ブチル-2-エチル-1,5-ペンタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン等の脂肪族ジアミン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、ジシクロヘキシルメタンジアミン、イソプロビリチンシクロヘキシル-4,4’-ジアミン、1,4-ジアミノシクロヘキサン、1,3-ビスアミノメチルシクロヘキサン、イソホロンジアミン等の脂環族ジアミン等が挙げられる。 Examples of the chain extender having two hydroxyl groups include aliphatic glycols such as ethylene glycol, propylene glycol, butanediol and pentanediol, aromatic glycols such as xylylene glycol and bishydroxyethoxybenzene, neopentyl glycol and neopentyl. Examples include glycols such as ester glycols such as glycol hydroxypivalate. Examples of the chain extender having two amino groups include aromatic diamines such as tolylenediamine, xylylenediamine, diphenylmethanediamine, ethylenediamine, propylenediamine, hexanediamine, 2,2-dimethyl-1,3- Propanediamine, 2-methyl-1,5-pentanediamine, trimethylhexanediamine, 2-butyl-2-ethyl-1,5-pentanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10- Aliphatic diamines such as decane diamine, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, dicyclohexylmethanediamine, isopropylidine cyclohexyl-4,4′-diamine, 1,4-diaminocyclohexane, 1 , 3-Bisaminomethylcyclohexane Alicyclic diamines such as isophorone diamine.
 ウレタン樹脂は、溶剤を媒体とするものであってもよいが、好ましくは水を媒体とするものである。ウレタン樹脂を水に分散または溶解させるには、乳化剤を用いる強制乳化型、ウレタン樹脂中に親水性基を導入する自己乳化型あるいは水溶型等がある。特に、ウレタン樹脂の骨格中にイオン基を導入しアイオノマー化した自己乳化タイプが、液の貯蔵安定性や得られる塗布層の耐水性、透明性、密着性に優れており好ましい。 Urethane resin may use a solvent as a medium, but preferably uses water as a medium. In order to disperse or dissolve the urethane resin in water, there are a forced emulsification type using an emulsifier, a self-emulsification type in which a hydrophilic group is introduced into the urethane resin, and a water-soluble type. In particular, a self-emulsification type in which an ionic group is introduced into the skeleton of a urethane resin to form an ionomer is preferable because of excellent storage stability of the liquid and water resistance, transparency, and adhesion of the resulting coating layer.
 また、導入するイオン基としては、カルボキシル基、スルホン酸、リン酸、ホスホン酸、第4級アンモニウム塩等、種々のものが挙げられるが、カルボキシル基が好ましい。ウレタン樹脂にカルボキシル基を導入する方法としては、重合反応の各段階の中で種々の方法が取り得る。例えば、プレポリマー合成時に、カルボキシル基を持つ樹脂を共重合成分として用いる方法や、ポリオールやポリイソシアネート、鎖延長剤などの一成分としてカルボキシル基を持つ成分を用いる方法がある。特に、カルボキシル基含有ジオールを用いて、この成分の仕込み量によって所望の量のカルボキシル基を導入する方法が好ましい。例えば、ウレタン樹脂の重合に用いるジオールに対して、ジメチロールプロピオン酸、ジメチロールブタン酸、ビス-(2-ヒドロキシエチル)プロピオン酸、ビス-(2-ヒドロキシエチル)ブタン酸等を共重合させることができる。またこのカルボキシル基はアンモニア、アミン、アルカリ金属類、無機アルカリ類等で中和した塩の形にするのが好ましい。特に好ましいものは、アンモニア、トリメチルアミン、トリエチルアミンである。 In addition, examples of the ionic group to be introduced include various groups such as a carboxyl group, a sulfonic acid, a phosphoric acid, a phosphonic acid, a quaternary ammonium salt, and the carboxyl group is preferable. As a method for introducing a carboxyl group into a urethane resin, various methods can be taken in each stage of the polymerization reaction. For example, there are a method of using a carboxyl group-containing resin as a copolymer component during prepolymer synthesis, and a method of using a component having a carboxyl group as one component such as polyol, polyisocyanate, and chain extender. In particular, a method in which a desired amount of carboxyl groups is introduced using a carboxyl group-containing diol depending on the amount of this component charged is preferred. For example, dimethylolpropionic acid, dimethylolbutanoic acid, bis- (2-hydroxyethyl) propionic acid, bis- (2-hydroxyethyl) butanoic acid, and the like are copolymerized with a diol used for polymerization of a urethane resin. Can do. The carboxyl group is preferably in the form of a salt neutralized with ammonia, amine, alkali metal, inorganic alkali or the like. Particularly preferred are ammonia, trimethylamine and triethylamine.
 ポリカーボネート構造を有するウレタン樹脂は、ガラス転移点(以下、Tgと記載することがある)が好ましくは0℃以下、より好ましくは-15℃以下、さらに好ましくは-30℃以下である。Tgが0℃より高いものは、易接着性が不十分となることがある。ここで言うTgは、ウレタン樹脂の乾燥皮膜を作成し、示差走査熱量計(DSC)を用いて測定した温度を指す。 The urethane resin having a polycarbonate structure has a glass transition point (hereinafter sometimes referred to as Tg) of preferably 0 ° C. or lower, more preferably −15 ° C. or lower, and further preferably −30 ° C. or lower. When Tg is higher than 0 ° C., easy adhesion may be insufficient. Tg said here refers to the temperature which created the dry film | membrane of the urethane resin and measured using the differential scanning calorimeter (DSC).
 オキサゾリン化合物とは、分子内にオキサゾリン基を有する化合物であり、特にオキサゾリン基を含有する重合体が好ましく、付加重合性オキサゾリン基含有モノマー単独もしくは他のモノマーとの重合によって作成できる。付加重合性オキサゾリン基含有モノマーは、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン等を挙げることができ、これらの1種または2種以上の混合物を使用することができる。これらの中でも2-イソプロペニル-2-オキサゾリンが工業的にも入手しやすく好適である。他のモノマーは、付加重合性オキサゾリン基含有モノマーと共重合可能なモノマーであれば制限なく、例えばアルキル(メタ)アクリレート(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基)等の(メタ)アクリル酸エステル類;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸、スチレンスルホン酸およびその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等の不飽和カルボン酸類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド、(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基等)等の不飽和アミド類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα-オレフィン類;塩化ビニル、塩化ビニリデン等の含ハロゲンα,β-不飽和モノマー類;スチレン、α-メチルスチレン、等のα,β-不飽和芳香族モノマー等を挙げることができ、これらの1種または2種以上のモノマーを使用することができる。 The oxazoline compound is a compound having an oxazoline group in the molecule, and is particularly preferably a polymer containing an oxazoline group, and can be prepared by polymerization of an addition polymerizable oxazoline group-containing monomer alone or with another monomer. Addition-polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, Examples thereof include 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like, and one or a mixture of two or more thereof can be used. Of these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially. The other monomer is not particularly limited as long as it is a monomer copolymerizable with an addition polymerizable oxazoline group-containing monomer. For example, alkyl (meth) acrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, (Meth) acrylic acid esters such as n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene Unsaturated carboxylic acids such as sulfonic acid and its salts (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); Unsaturated nitriles such as acrylonitrile, methacrylonitrile; (meth) acrylamide, N-alkyl ( (Meth) acrylamide, N, N-dialkyl (meth) acrylamide, Examples of the alkyl group include unsaturated amides such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, 2-ethylhexyl, cyclohexyl, etc .; vinyl acetate Vinyl esters such as vinyl propionate; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; α-olefins such as ethylene and propylene; halogen-containing α, β-unsaturated monomers such as vinyl chloride and vinylidene chloride; styrene, An α, β-unsaturated aromatic monomer such as α-methylstyrene can be used, and one or more of these monomers can be used.
 オキサゾリン化合物に含有されるオキサゾリン基の含有量は、オキサゾリン基量で、通常0.5~10mmol/g、好ましくは1~9mmol/g、より好ましくは3~8mmol/g、さらに好ましくは4~6mmol/gの範囲である。上記範囲での使用が、塗膜強度の向上のために好ましい。 The content of the oxazoline group contained in the oxazoline compound is usually 0.5 to 10 mmol / g, preferably 1 to 9 mmol / g, more preferably 3 to 8 mmol / g, still more preferably 4 to 6 mmol in terms of the amount of the oxazoline group. / G. Use in the above range is preferable for improving the coating strength.
 メラミン樹脂としては、特に限定されるものではないが、メラミン、メラミンとホルムアルデヒドを縮合して得られるメチロール化メラミン誘導体、メチロール化メラミンに低級アルコールを反応させて部分的あるいは完全エーテル化した化合物、およびこれらの混合物などを用いることができる。 The melamine resin is not particularly limited, but melamine, a methylolated melamine derivative obtained by condensing melamine and formaldehyde, a compound partially or completely etherified by reacting a methylolated melamine with a lower alcohol, and These mixtures can be used.
 また、メラミン樹脂は、単量体、あるいは2量体以上の多量体からなる縮合物のいずれであってもよく、あるいはこれらの混合物を用いてもよい。上記エーテル化に用いる低級アルコールとしては、メチルアルコール、エチルアルコール、イソプロピルアルコール、n-ブタノール、イソブタノールなどを好ましく使用することができる。官能基としては、イミノ基、メチロール基、あるいはメトキシメチル基やブトキシメチル基等のアルコキシメチル基を1分子中に有するもので、イミノ基型メチル化メラミン、メチロール基型メラミン、メチロール基型メチル化メラミン、完全アルキル型メチル化メラミンなどを用いることができる。その中でもメチロール化メラミンが最も好ましい。さらに、メラミン樹脂の熱硬化促進を目的として、例えば、p-トルエンスルホン酸などの酸性触媒を併用することもできる。 Further, the melamine resin may be either a monomer or a condensate composed of a dimer or higher multimer, or a mixture thereof. As the lower alcohol used for the etherification, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol and the like can be preferably used. The functional group has an imino group, a methylol group, or an alkoxymethyl group such as a methoxymethyl group or a butoxymethyl group in one molecule, and an imino group type methylated melamine, a methylol group type melamine, or a methylol group type methylated group. Melamine, fully alkyl methylated melamine and the like can be used. Of these, methylolated melamine is most preferred. Furthermore, an acidic catalyst such as p-toluenesulfonic acid can be used in combination for the purpose of promoting the thermosetting of the melamine resin.
 イソシアネート系化合物とは、イソシアネート、あるいはブロックイソシアネートに代表されるイソシアネート誘導体構造を有する化合物のことである。イソシアネートとしては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート等の芳香族イソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族イソシアネート、メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族イソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環族イソシアネート等が例示される。これらのイソシアネートと、各種ポリマーや化合物との反応物でも良い。また、これらイソシアネートのビュレット化物、イソシアヌレート化物、ウレトジオン化物、カルボジイミド変性体等の重合体や誘導体も挙げられる。これらは単独で用いても、複数種併用してもよい。上記イソシアネートの中でも、紫外線による黄変を避けるために、芳香族イソシアネートよりも脂肪族イソシアネートまたは脂環族イソシアネートがより好ましい。 The isocyanate compound is a compound having an isocyanate derivative structure typified by isocyanate or blocked isocyanate. Examples of isocyanates include aromatic isocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate, and aromatic rings such as α, α, α ′, α′-tetramethylxylylene diisocyanate. Aliphatic isocyanates such as aliphatic isocyanate, methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), isopropylidene dicyclohexyl diisocyanate Ne Alicyclic isocyanates such as bets are exemplified. Reaction products of these isocyanates with various polymers and compounds may be used. Further, polymers and derivatives such as burettes, isocyanurates, uretdiones, and carbodiimide modified products of these isocyanates are also included. These may be used alone or in combination. Among the above isocyanates, aliphatic isocyanates or alicyclic isocyanates are more preferable than aromatic isocyanates in order to avoid yellowing due to ultraviolet rays.
 ブロックイソシアネートの状態で使用する場合、そのブロック剤としては、例えば重亜硫酸塩類、フェノール、クレゾール、エチルフェノールなどのフェノール系化合物、プロピレングリコールモノメチルエーテル、エチレングリコール、ベンジルアルコール、メタノール、エタノールなどのアルコール系化合物、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトンなどの活性メチレン系化合物、ブチルメルカプタン、ドデシルメルカプタンなどのメルカプタン系化合物、ε‐カプロラクタム、δ‐バレロラクタムなどのラクタム系化合物、ジフェニルアニリン、アニリン、エチレンイミンなどのアミン系化合物、アセトアニリド、酢酸アミドの酸アミド化合物、ホルムアルデヒド、アセトアルドオキシム、アセトンオキシム、メチルエチルケトンオキシム、シクロヘキサノンオキシムなどのオキシム系化合物が挙げられ、これらは単独でも2種以上の併用であってもよい。 When used in the state of blocked isocyanate, the blocking agent includes, for example, bisulfites, phenolic compounds such as phenol, cresol, and ethylphenol, and alcohols such as propylene glycol monomethyl ether, ethylene glycol, benzyl alcohol, methanol, and ethanol. Compounds, active methylene compounds such as dimethyl malonate, diethyl malonate, methyl acetoacetate, ethyl acetoacetate and acetylacetone, mercaptan compounds such as butyl mercaptan and dodecyl mercaptan, lactam compounds such as ε-caprolactam and δ-valerolactam , Amine compounds such as diphenylaniline, aniline, ethyleneimine, acetanilide, acid amide compounds of acetic acid amide, formaldehyde, acetal Examples include oxime compounds such as dooxime, acetone oxime, methyl ethyl ketone oxime, and cyclohexanone oxime, and these may be used alone or in combination of two or more.
 また、本発明におけるイソシアネート系化合物は単体で用いてもよいし、各種ポリマーとの混合物や結合物として用いてもよい。イソシアネート系化合物の分散性や架橋性を向上させるという意味において、ポリエステル樹脂やポリウレタン樹脂との混合物や結合物を使用してもよい。 In addition, the isocyanate compound in the present invention may be used alone or as a mixture or combination with various polymers. In the sense of improving the dispersibility and crosslinkability of the isocyanate-based compound, a mixture or a combined product with a polyester resin or a polyurethane resin may be used.
 塗布層中における前記各成分の割合は次のとおりである。
 ポリエステル樹脂の割合は、通常10~80重量%、好ましくは20~60重量%、アクリル樹脂の割合は、通常10~60重量%、好ましくは20~50重量%、ウレタン樹脂の割合は、通常10~80重量%、好ましくは20~60重量%、オキサゾリン化合物の割合は、通常20~80重量%、好ましくは40~80重量%、メラミン樹脂の割合は、通常6~80重量%、好ましくは10~60重量%、イソシアネート系化合物の割合は、通常6~80重量%、好ましくは10~60重量%である。
The ratio of each component in the coating layer is as follows.
The proportion of the polyester resin is usually 10 to 80% by weight, preferably 20 to 60% by weight, the proportion of the acrylic resin is usually 10 to 60% by weight, preferably 20 to 50% by weight, and the proportion of the urethane resin is usually 10%. -80 wt%, preferably 20-60 wt%, the proportion of oxazoline compound is usually 20-80 wt%, preferably 40-80 wt%, and the proportion of melamine resin is usually 6-80 wt%, preferably 10 The proportion of the isocyanate compound is generally 6 to 80% by weight, preferably 10 to 60% by weight.
 塗布層は塗布液を塗布して乾燥して形成されるが、その塗工量(乾燥後)は、塗工性の面から、通常、0.005~1g/m、好ましくは0.005~0.5g/m、さらに好ましくは0.01~0.2g/m範囲である。塗工量(乾燥後)が0.005g/m未満の場合、塗工性の面より安定性に欠け、均一な塗膜を得るのが困難になる場合がある。一方、1g/mを超えて厚塗りにする場合には塗布層自体の塗膜密着性、硬化性等が低下する場合がある。 The coating layer is formed by applying a coating solution and drying, and the coating amount (after drying) is usually 0.005 to 1 g / m 2 , preferably 0.005 from the viewpoint of coating properties. The range is from -0.5 g / m 2 , more preferably from 0.01 to 0.2 g / m 2 . When the coating amount (after drying) is less than 0.005 g / m 2 , the coating property may be less stable and it may be difficult to obtain a uniform coating film. On the other hand, when the coating is thicker than 1 g / m 2 , the coating film adhesion and curability of the coating layer itself may be lowered.
 ポリエステルフィルムに塗布液を塗布する方法として、リバースグラビアコート、ダイレクトグラビアコート、ロールコート、ダイコート、バーコート、カーテンコート等、従来公知の塗工方式を用いることができる。塗工方式に関しては「コーティング方式」槇書店 原崎勇次著1979年発行に記載例がある。 Conventionally known coating methods such as reverse gravure coating, direct gravure coating, roll coating, die coating, bar coating, curtain coating and the like can be used as a method for applying the coating solution to the polyester film. As for the coating method, there is an example described in “Coating Method” Tsuji Shoten published by Yuji Harasaki in 1979.
 塗布層が設けられていないフィルム面には本発明の主旨を損なわない範囲において、帯電防止層、オリゴマー析出防止層等の塗布層を設けてもよい。 A coating layer such as an antistatic layer or an oligomer precipitation preventing layer may be provided on the film surface not provided with a coating layer as long as the gist of the present invention is not impaired.
 また、ポリエステルフィルムには予め、コロナ処理、プラズマ処理等の表面処理を施してもよい。 Further, the polyester film may be subjected to surface treatment such as corona treatment or plasma treatment in advance.
 次に、バリア層について説明する。
 バリア層は、ポリエステルフィルムにバリア性を付与することを目的として積層される。バリア層の材料としては、バリア性を所望のレベル、本発明においては、JIS-K7129B法に準じた測定による水蒸気透過度が温度40℃、湿度90%RHの測定条件下で0.01g/m/day以下にすることができるものであれば、特に限定されることはない。
Next, the barrier layer will be described.
The barrier layer is laminated for the purpose of imparting barrier properties to the polyester film. As a material for the barrier layer, the barrier property is at a desired level. In the present invention, the water vapor permeability measured according to the JIS-K7129B method is 0.01 g / m under measurement conditions of a temperature of 40 ° C. and a humidity of 90% RH. There is no particular limitation as long as it can be 2 / day or less.
 バリア層の材料としては、例えば、ポリシラザン化合物、ポリカルボシラン化合物、ポリシラン化合物、ポリオルガノシロキサン化合物、テトラオルガノシラン化合物等のケイ素化合物、酸化ケイ素、酸窒化ケイ素、酸化アルミニウム、酸窒化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ等の無機酸化物、窒化ケイ素、窒化アルミニウム等の無機窒化物、酸化窒化ケイ素等の無機酸化窒化物等、アルミニウム、マグネシウム、亜鉛、スズ等の金属などが挙げられる。これらは、1種を単独で、または2種以上を組み合わせて使用することができる。 Examples of the material for the barrier layer include silicon compounds such as polysilazane compounds, polycarbosilane compounds, polysilane compounds, polyorganosiloxane compounds, and tetraorganosilane compounds, silicon oxide, silicon oxynitride, aluminum oxide, aluminum oxynitride, and magnesium oxide. Inorganic oxides such as zinc oxide, indium oxide, and tin oxide, inorganic nitrides such as silicon nitride and aluminum nitride, inorganic oxynitrides such as silicon oxynitride, and metals such as aluminum, magnesium, zinc, and tin It is done. These can be used individually by 1 type or in combination of 2 or more types.
 バリア層の厚さは、通常1nm~10μm、好ましくは10nm~5μm、更に好ましくは20~500nm、特に好ましくは50~200nmである。バリア層の厚みが1nm未満ではバリア効果が不十分となる場合がある。一方、10μmを超える場合、性能面では飽和状態にあり、それ以上バリア効果が期待し難い傾向にある。 The thickness of the barrier layer is usually 1 nm to 10 μm, preferably 10 nm to 5 μm, more preferably 20 to 500 nm, and particularly preferably 50 to 200 nm. If the thickness of the barrier layer is less than 1 nm, the barrier effect may be insufficient. On the other hand, when it exceeds 10 μm, it is in a saturated state in terms of performance, and it is difficult to expect a barrier effect any more.
 バリア層は、単層構成であってもよく、2層以上から構成される複数層であってもよい。 The barrier layer may have a single layer structure or a plurality of layers composed of two or more layers.
 バリア層の形成方法は、バリア層を構成する材料に応じて、従来から公知の方法を用いることが可能であり、目的に応じて適宜選択することができる。例えば、上記バリア層の材料を、蒸着法、スパッタリング法、イオンプレーティング法、熱CVD法、プラズマCVD法等によりポリエステルフィルム上に形成する方法、あるいは上記バリア層の材料を有機溶剤に溶解した溶液を、ポリエステルフィルムに塗布し、得られた塗膜に対してプラズマイオン注入する方法などが挙げられる。プラズマイオン注入にて注入されるイオンとしては、例えば、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガス、フルオロカーボン、水素、窒素、酸素、二酸化炭素、塩素、フッ素、硫黄等のイオン;金、銀、銅、白金、ニッケル、パラジウム、クロム、チタン、モリブデン、ニオブ、タンタル、タングステン、アルミニウム等の金属のイオンなどが挙げられる。 The method for forming the barrier layer can be a conventionally known method depending on the material constituting the barrier layer, and can be appropriately selected depending on the purpose. For example, a method in which the barrier layer material is formed on a polyester film by vapor deposition, sputtering, ion plating, thermal CVD, plasma CVD, or the like, or a solution in which the barrier layer material is dissolved in an organic solvent Is applied to a polyester film, and plasma ion implantation is performed on the obtained coating film. Examples of ions implanted by plasma ion implantation include rare gases such as argon, helium, neon, krypton, and xenon, ions such as fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, and sulfur; gold, Examples include ions of metals such as silver, copper, platinum, nickel, palladium, chromium, titanium, molybdenum, niobium, tantalum, tungsten, and aluminum.
 次に、保護層について説明する。
 保護層をバリア層上に塗設することにより、バリア層中に存在する微小な欠損部分に保護層形成用塗工液が均一に浸透し、熱硬化により、バリア層欠陥部分の修復が可能となる。また、バリア層を保護層が被覆することで、加工工程中における、搬送用ガイドロールとの接触による、擦れあるいは削れ、また、製造工程で使用される有機溶剤からバリア層を保護し、良好なバリア性を維持することも可能となる。
Next, the protective layer will be described.
By coating the protective layer on the barrier layer, the coating liquid for forming the protective layer penetrates evenly into the minute defects existing in the barrier layer, and the defective portion of the barrier layer can be repaired by thermosetting. Become. In addition, by covering the barrier layer with a protective layer, it is rubbed or scraped due to contact with the guide roller for conveyance during the processing step, and also protects the barrier layer from the organic solvent used in the manufacturing step, It is also possible to maintain barrier properties.
 以下に、アルミニウム、チタン、ジルコニウムから選ばれる、少なくとも1種以上の金属元素を含む有機化合物を保護層中に含有する実施態様を例示する。 Hereinafter, embodiments in which an organic compound containing at least one metal element selected from aluminum, titanium, and zirconium is contained in the protective layer will be exemplified.
 アルミニウム元素を有する有機化合物の具体例としては、アルミニウムトリス(アセチルアセトネ-ト)、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウム-ジ-n-ブトキシド-モノエチルアセトアセテート、アルミニウム-ジ-イソ-プロポキシド-モノメチルアセトアセテート等が例示される。 Specific examples of the organic compound having an aluminum element include aluminum tris (acetylacetonate), aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum-di-n-butoxide-monoethylacetoacetate, aluminum-di -Iso-propoxide-monomethyl acetoacetate and the like are exemplified.
 チタン元素を有する有機化合物の具体例としては、例えば、テトラノルマルブチルチタネート、テトライソプロピルチタネート、ブチルチタネートダイマー、テトラ(2-エチルヘキシル)チタネート、テトラメチルチタネート等のチタンオルソエステル類;チタンアセチルアセトナート、チタンテトラアセチルアセトナート、ポリチタンアセチルアセトナート、チタンオクチレングリコレート、チタンラクテート、チタントリエタノールアミネート、チタンエチルアセトアセテート等のチタンキレート類等が挙げられる。 Specific examples of the organic compound having titanium element include titanium orthoesters such as tetranormal butyl titanate, tetraisopropyl titanate, butyl titanate dimer, tetra (2-ethylhexyl) titanate, tetramethyl titanate; titanium acetylacetonate, Examples thereof include titanium chelates such as titanium tetraacetylacetonate, polytitanium acetylacetonate, titanium octylene glycolate, titanium lactate, titanium triethanolamate, and titanium ethylacetoacetate.
 ジルコニウム元素を有する有機化合物の具体例としては、例えば、ジルコニウムアセテート、ジルコニウムノルマルプロピレート、ジルコニウムノルマルブチレート、ジルコニウムテトラアセチルアセトナート、ジルコニウムモノアセチルアセトナート、ジルコニウムビスアセチルアセトナート等が挙げられる。 Specific examples of the organic compound having a zirconium element include, for example, zirconium acetate, zirconium normal propylate, zirconium normal butyrate, zirconium tetraacetylacetonate, zirconium monoacetylacetonate, zirconium bisacetylacetonate and the like.
 その中でも、特に接着性能が良好となる点で、アルミニウム、ジルコニウムから選ばれる金属元素を含む有機化合物に関して、好ましくはキレート構造を有する有機化合物が好ましい。尚、「架橋剤ハンドブック」(山下晋三、金子東助編者(株)大成社 平成2年版)にも具体的に記載されている。 Among them, an organic compound having a chelate structure is preferable with respect to an organic compound containing a metal element selected from aluminum and zirconium, particularly in terms of good adhesion performance. In addition, it is specifically described in “Crosslinking agent handbook” (Yamashita Shinzo, Kaneko Tosuke ed., Taiseisha Co., Ltd., 1990 edition).
 保護層はバリア層の保護とともに粘着層に対する接着性を良好とするために以下の一般式(1)で表される有機珪素化合物を併用するのが好ましい。 The protective layer is preferably used in combination with an organosilicon compound represented by the following general formula (1) in order to protect the barrier layer and improve the adhesion to the adhesive layer.
 本発明における保護層を構成する有機珪素化合物は一般式(1):Si(X)(Y)(R[式中、Xはエポキシ基、メルカプト基、(メタ)アクリロイル基、アルケニル基、ハロアルキル基及びアミノ基から選ばれる少なくとも1種を有する有機基、Rは一価炭化水素基であり、且つ炭素数1~10のものであり、Yは加水分解性基であり、dは1又は2の整数、eは2又は3の整数、fは0又は1の整数であり、d+e+f=4である。]で表されるタイプを用いるのが好ましい。 The organosilicon compound constituting the protective layer in the present invention is represented by the general formula (1): Si (X) d (Y) e (R 1 ) f [wherein X is an epoxy group, a mercapto group, a (meth) acryloyl group, An organic group having at least one selected from an alkenyl group, a haloalkyl group and an amino group, R 1 is a monovalent hydrocarbon group and has 1 to 10 carbon atoms, Y is a hydrolyzable group, d is an integer of 1 or 2, e is an integer of 2 or 3, f is an integer of 0 or 1, and d + e + f = 4. It is preferable to use a type represented by
 前記一般式(1)で表される有機珪素化合物は、加水分解・縮合反応によりシロキサン結合を形成しうる加水分解性基Yを2個有するもの(D単位源)或いは3個有するもの(T単位源)を使用することが出来る。 The organosilicon compound represented by the general formula (1) has two hydrolyzable groups Y (D unit source) or three (T units) capable of forming a siloxane bond by hydrolysis / condensation reaction. Source) can be used.
 一般式(1)において、一価炭化水素基Rは、炭素数が1~10のもので、特にメチル基、エチル基、プロピル基が好ましい。 In the general formula (1), the monovalent hydrocarbon group R 1 has 1 to 10 carbon atoms, and is particularly preferably a methyl group, an ethyl group, or a propyl group.
 一般式(1)において、加水分解性基Yとしては、従来公知のものが使用可能で、以下のものを例示出来る。メトキシ基、エトキシ基、ブトキシ基、イソプロペノキシ基、アセトキシ基、ブタノキシム基及びアミノ基等。これらの加水分解性基は、単独或いは複数種を使用してもよい。メトキシ基或いはエトキシ基を適用すると、コーティング材に良好な保存安定性を付与出来、また適当な加水分解性があるため、特に好ましい。 In the general formula (1), as the hydrolyzable group Y, conventionally known ones can be used, and the following can be exemplified. Methoxy group, ethoxy group, butoxy group, isopropenoxy group, acetoxy group, butanoxime group, amino group and the like. These hydrolyzable groups may be used alone or in combination. The use of a methoxy group or an ethoxy group is particularly preferable because it can impart good storage stability to the coating material and has suitable hydrolyzability.
 有機珪素化合物の具体例としては、ビニルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メタアクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、5-ヘキセニルトリメトキシシラン、p-スチリルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジイソプロペノキシシラン等を例示することができる。 Specific examples of the organosilicon compound include vinyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-acryloxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, 5-hexenyltrimethoxysilane, p-styryltrimethoxysilane, tri Examples include fluoropropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldiisopropenoxysilane, and the like.
 保護層には加水分解・縮合反応促進を目的として、触媒を併用してもよい。具体例としては、酢酸、酪酸、マレイン酸、クエン酸などの有機酸類、塩酸、硝酸、リン酸、硫酸などの無機酸類、トリエチルアミンなどの塩基性化合物類、テトラブチルチタネート、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジオクテート、ジブチル錫ジオレート、ジフェニル錫ジアセテート、ジブチル錫オキサイド、ジブチル錫ジメトキサイド、ジブチルビス(トリエトキシシロキシ)錫、ジブチル錫ベンジルマレート等などの有機金属塩類、KF、NH4Fなどのフッ素元素含有化合物などを挙げることが出来る。上記触媒は単独で使用しても良く或いは2種類以上を併用しても良い。その中でも、特に塗膜耐久性が良好となる点で有機金属塩類が好ましく、更に好ましくは触媒活性が長時間持続可能な点で錫触媒を用いるのが好ましい In the protective layer, a catalyst may be used in combination for the purpose of promoting hydrolysis / condensation reaction. Specific examples include organic acids such as acetic acid, butyric acid, maleic acid and citric acid, inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid and sulfuric acid, basic compounds such as triethylamine, tetrabutyl titanate, dibutyltin dilaurate and dibutyltin. Organic metal salts such as diacetate, dibutyltin dioctate, dibutyltin diolate, diphenyltin diacetate, dibutyltin oxide, dibutyltin dimethoxide, dibutylbis (triethoxysiloxy) tin, dibutyltin benzylmalate, etc., fluorine such as KF and NH4F Examples thereof include element-containing compounds. The above catalysts may be used alone or in combination of two or more. Among them, organometallic salts are particularly preferable from the viewpoint that the coating film durability is good, and it is more preferable to use a tin catalyst because the catalytic activity is sustainable for a long time.
 保護層の別の実施態様として、ウレタン樹脂を保護層中に含有する場合を例示する。
 ウレタン樹脂は、イソシアネート化合物とジオールまたはポリオール化合物とを反応させて得られる樹脂である。イソシアネート化合物としては、芳香族ポリイソシアネート、脂肪族ポリイソシアネート、脂環族ポリイソシアネート、脂肪族ポリイソシアネートなどが挙げられ、通常、ジイソシアネート化合物が使用される。芳香族ジイソシアネートとしては、例えば、トリレンジイソシアネート(2,4-または2,6-トリレンジイソシアネートもしくはその混合物)(TDI)、フェニレンジイソシアネート(m-、p-フェニレンジイソシアネートもしくはその混合物)、4,4'-ジフェニルシイソシアネート、1,5-ナフタレンジイソシアネート(NDI)、ジフェニルメタンジイソシネート(4,4'-、2,4'-、または2,2'-ジフェニルメタンジイソシネートもしくはその混合物)(MDI)、4,4'-トルイジンジイソシアネート(TODI)、4,4'-ジフェニルエーテルシイソシアネート等が挙げられる。また、芳香脂肪族ジイソシアネートとしては、例えば、キシリレンジイソシアネート(1,3-または1,4-キシリレンジイソシアネートもしくはその混合物)(XDI)、テトラメチルキシリレンジイソシアネート(1,3-または1,4-テトラメチルキシリレンジイソシアネートもしくはその混合物)(TMXDI)、ω,ω'-ジイソシアネート-1,4-ジエチルベンゼン等が挙げられる。脂環族ジイソシアネートとしては、例えば、1,3-シクロペンテンジイソシアネート、シクロヘキサンジイソシアネート(1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート)、3-イソシアネートメチルー3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロシイソシアネート、IPDI)、メチレンビス(シクロヘキシルイソシアネート)(4,4'-、2,4'-又は2,2’-メチレンビス(シクロヘキシルイソシアネート))(水添MDI)、メチルシクロヘキサンジイソシアネート(メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート)、ビス(イソシアネートメチル)シクロヘキサン(1,3-または1,4-ビス(イソシアネートメチル)シクロヘキサンもしくはその混合物)(水添XDI)などを挙げることができる。また、脂肪族ジイソシアネートとしては、例えば、トリメチレンジイソシアネート、1,2-プロピレンジイソシアネート、ブチレンジイソシアネート(テトラメチレンジイソシアネート、1,2-ブチレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート)、ヘキサメチレンジイソシアネート、ペンダメチレンジイソシアネート、2,4,4-又は2,2,4-トリメチルヘキサメチレンジイソシアネート、2,6-ジイソシアネートメチルカフェートなどを挙げられる。
As another embodiment of the protective layer, a case where a urethane resin is contained in the protective layer is exemplified.
The urethane resin is a resin obtained by reacting an isocyanate compound with a diol or a polyol compound. Examples of the isocyanate compound include aromatic polyisocyanate, aliphatic polyisocyanate, alicyclic polyisocyanate, and aliphatic polyisocyanate, and a diisocyanate compound is usually used. Examples of the aromatic diisocyanate include tolylene diisocyanate (2,4- or 2,6-tolylene diisocyanate or a mixture thereof) (TDI), phenylene diisocyanate (m-, p-phenylene diisocyanate or a mixture thereof), 4,4 '-Diphenyl diisocyanate, 1,5-naphthalene diisocyanate (NDI), diphenylmethane diisocyanate (4,4'-, 2,4'-, or 2,2'-diphenylmethane diisocyanate or mixtures thereof) (MDI) 4,4′-toluidine diisocyanate (TODI), 4,4′-diphenyl ether diisocyanate, and the like. Examples of the araliphatic diisocyanate include xylylene diisocyanate (1,3- or 1,4-xylylene diisocyanate or a mixture thereof) (XDI), tetramethylxylylene diisocyanate (1,3- or 1,4- Tetramethylxylylene diisocyanate or a mixture thereof (TMXDI), ω, ω′-diisocyanate-1,4-diethylbenzene, and the like. Examples of the alicyclic diisocyanate include 1,3-cyclopentene diisocyanate, cyclohexane diisocyanate (1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate), 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (iso Holo isocyanate, IPDI), methylene bis (cyclohexyl isocyanate) (4,4′-, 2,4′- or 2,2′-methylene bis (cyclohexyl isocyanate)) (hydrogenated MDI), methylcyclohexane diisocyanate (methyl-2, 4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate), bis (isocyanate methyl) cyclohexane (1,3- or 1,4-bis (isocyanate) Tomechiru) cyclohexane or mixtures thereof) (hydrogenated XDI) and the like. Examples of the aliphatic diisocyanate include trimethylene diisocyanate, 1,2-propylene diisocyanate, butylene diisocyanate (tetramethylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate), Examples include hexamethylene diisocyanate, pentamethylene diisocyanate, 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, and 2,6-diisocyanate methyl caffeate.
 ウレタン樹脂を構成するジオールまたはポリオール成分としては、ガスバリア性の観点からアルキレングリコールを好適に使用できる。アルキレングリコールとしては、例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、ヘプタンジオール、オクタンジオールなどの炭素数が2~10の直鎖状または分岐鎖を有するアルキレングリコール、炭素数2~4の(ポリ)オキシアルキレングリコールなどの低分子量グリコールを使用できる。これらのジオール成分は単独または2種以上組み合わせて使用できる。さらに必要に応じて、ビスフェノールA、ビスビドロキシェチルテレフタレート、カテコール、レゾルシン、ハイドロキノン、1,3-又は1,4-キシリレンジオール等の芳香族ジオール、水添ビスワエノールA、水添キシリレンジオール、シクロヘキサンジオール、シクロヘキサン等の脂環族ジオールなどの低分子量ジオール成分を併用してもよい。さらに、必要により、3官能以上のポリオール成分、例えば、グリセリン、トリメチロールエタン、トリメチロールプロパンなどのポリオール成分を併用することもできる。ポリオール成分は、炭素数2~8のポリオール成分を含むのが好ましい。 As the diol or polyol component constituting the urethane resin, alkylene glycol can be suitably used from the viewpoint of gas barrier properties. Examples of the alkylene glycol include carbon numbers such as ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, pentanediol, hexanediol, neopentylglycol, heptanediol, and octanediol. A low molecular weight glycol such as an alkylene glycol having a linear or branched chain of 2 to 10 and a (poly) oxyalkylene glycol having 2 to 4 carbon atoms can be used. These diol components can be used alone or in combination of two or more. Further, if necessary, aromatic diols such as bisphenol A, bisbidoxetyl terephthalate, catechol, resorcin, hydroquinone, 1,3- or 1,4-xylylenediol, hydrogenated biswaenol A, hydrogenated xylylenediol A low molecular weight diol component such as cycloaliphatic diol such as cyclohexanediol or cyclohexane may be used in combination. Furthermore, if necessary, a tri- or higher functional polyol component, for example, a polyol component such as glycerin, trimethylolethane, or trimethylolpropane can be used in combination. The polyol component preferably contains a polyol component having 2 to 8 carbon atoms.
 さらに保護層は、固着性、滑り性改良を目的として、本発明の主旨を損なわない範囲において、無機系粒子を含有してもよく、具体例としては、シリカ、アルミナ、カオリン、炭酸カルシウム、酸化チタン、バリウム塩等が挙げられる。 Furthermore, the protective layer may contain inorganic particles for the purpose of improving adhesion and slipperiness, as long as the gist of the present invention is not impaired. Specific examples include silica, alumina, kaolin, calcium carbonate, oxidation Examples include titanium and barium salts.
 また、必要に応じて消泡剤、塗布性改良剤、増粘剤、有機系潤滑剤、有機系高分子粒子、酸化防止剤、紫外線吸収剤発泡剤、染料等が含有されてもよい。 In addition, an antifoaming agent, a coating property improver, a thickener, an organic lubricant, organic polymer particles, an antioxidant, a UV absorber foaming agent, a dye, and the like may be contained as necessary.
 本発明の要旨を越えない範囲において、分散性改良、造膜性改良等を目的として、使用する有機溶剤は一種類のみでもよく、適宜、二種類以上を使用してもよい。 In the range not exceeding the gist of the present invention, only one type of organic solvent may be used for the purpose of improving dispersibility, improving film forming property, etc., and two or more types may be used as appropriate.
 保護層の塗布量(乾燥後)は通常、0.005~1g/m、好ましくは0.005~0.5g/mの範囲である。塗布量(乾燥後)が、0.005g/m未満の場合には、塗布厚みの均一性が不十分な場合があり、保護層としての保護機能が不十分となる場合がある。一方、1g/mを超えて塗布する場合には、滑り性低下等の不具合を生じる場合がある。 The coating amount of the protective layer (after drying) is usually in the range of 0.005 to 1 g / m 2 , preferably 0.005 to 0.5 g / m 2 . When the coating amount (after drying) is less than 0.005 g / m 2 , the uniformity of the coating thickness may be insufficient, and the protective function as a protective layer may be insufficient. On the other hand, when the coating is applied in excess of 1 g / m 2 , problems such as a decrease in slipperiness may occur.
 上記組成から構成される保護層により、耐久性良好であるとともに、粘着層との接着性にも優れる。製品構成によっては、粘着層が介在せずに、直接、量子ドット含有樹脂シートとの貼り合わせも可能な場合がある。 The protective layer composed of the above composition has good durability and excellent adhesion to the adhesive layer. Depending on the product configuration, it may be possible to directly bond with the quantum dot-containing resin sheet without an adhesive layer.
 かくして得られた封止フィルムにおいては、全光線透過率は86%以上が好ましく、さらに好ましくは89%以上である。全光線透過率が86%未満の場合、量子ドット含有樹脂シート、電子ペーパー、有機ELなどの封止フィルムとして用いた場合、デバイスの透明性が低くなり、視認性に劣る場合がある。 In the sealing film thus obtained, the total light transmittance is preferably 86% or more, more preferably 89% or more. When the total light transmittance is less than 86%, when used as a sealing film for a quantum dot-containing resin sheet, electronic paper, organic EL, etc., the transparency of the device is lowered and the visibility may be inferior.
 本発明の封止フィルムの水蒸気透過率は0.01g/m/day以下であることを必須の要件とするものである。好ましくは、0.005g/m/day以下がよい。特に電子部材用封止フィルムとして、0.005g/m/day以下が望まれ、当該範囲を超えた場合には、デバイスを長期使用中にデバイス中に徐々に水分が入り込み、デバイスの劣化が起こりやすくなる傾向にある。 It is an essential requirement that the water vapor permeability of the sealing film of the present invention is 0.01 g / m 2 / day or less. Preferably, 0.005 g / m 2 / day or less is preferable. In particular, as a sealing film for an electronic member, 0.005 g / m 2 / day or less is desired, and when the range is exceeded, moisture gradually enters the device during long-term use of the device, and the device deteriorates. It tends to happen easily.
 次に、本発明における封止フィルムを貼りあわせる相手方として、量子ドット含有樹脂シートについて説明する。 Next, a quantum dot-containing resin sheet will be described as a counterpart to which the sealing film in the present invention is bonded.
 量子ドットを含有する樹脂シート層(量子ドット層と略記する場合がある)には複数の量子ドット及び樹脂を含んでもよい。量子ドットとは、量子閉じ込め効果(quantum confinement effect)を有する所定のサイズの半導体粒子をいう。量子ドットの直径は、一般的に1~10nmの範囲にあるものを用いるのが好ましい。 The resin sheet layer containing quantum dots (sometimes abbreviated as quantum dot layer) may contain a plurality of quantum dots and resins. A quantum dot means a semiconductor particle of a predetermined size having a quantum confinement effect. It is preferable to use a quantum dot having a diameter generally in the range of 1 to 10 nm.
 量子ドットは、励起源から光を吸収してエネルギー励起状態に達すると、量子ドットのエネルギーバンドギャップに該当するエネルギーを放出する。よって、量子ドットのサイズ又は物質の組成を調節すると、エネルギーバンドギャップを調節することができ、様々なレベルの波長帯のエネルギーを得ることができる。 When the quantum dot absorbs light from the excitation source and reaches an energy excited state, it emits energy corresponding to the energy band gap of the quantum dot. Therefore, by adjusting the size of the quantum dots or the composition of the substance, the energy band gap can be adjusted, and energy of various levels of wavelength bands can be obtained.
 例えば、量子ドットのサイズが55~65Åの場合は赤色系の色を発し、量子ドットのサイズが40~50Åの場合は緑色系の色を発し、量子ドットのサイズが20~35Åの場合は青色系の色を発し、黄色は赤色を発する量子ドットと緑色を発する量子ドットの中間サイズを有する。光の波長によるスペクトルが赤色から青色に変化することによって量子ドットのサイズは約65Åから約20Åに次第に変化することを把握することができ、この数値には若干の差異があり得る。 For example, a red color is emitted when the quantum dot size is 55 to 65 mm, a green color is emitted when the quantum dot size is 40 to 50 mm, and a blue color is emitted when the quantum dot size is 20 to 35 mm. The yellow color has an intermediate size between the quantum dots emitting red and the quantum dots emitting green. It can be seen that the size of the quantum dot gradually changes from about 65 mm to about 20 mm by changing the spectrum depending on the wavelength of light from red to blue, and there may be a slight difference in this value.
 よって、前記量子ドットから、量子サイズ効果(quantum size effect)による赤色、緑色、青色を含む様々な色を容易に得ることができる。従って、それぞれの波長で発光する色を作ることもでき、赤色、緑色、青色を混合して白色又は様々な色を生成・実現することもできる。 Therefore, various colors including red, green, and blue can be easily obtained from the quantum dots by a quantum size effect. Therefore, it is also possible to create colors that emit light at respective wavelengths, and it is also possible to generate and realize white or various colors by mixing red, green, and blue.
 例えば、光源から出射した光が青色光の場合、量子ドット層は、赤色量子ドット及び緑色量子ドットを含んでもよい。前記赤色量子ドットは、青色光の一部を620~750nmの波長領域を有する赤色光に変換し、前記緑色量子ドットは、青色光の一部を495~570nmの波長領域を有する緑色光に変換する。そして、赤色光と緑色光に変換されない青色光はそのまま量子ドット層を透過する。従って、量子ドット層では青色光、赤色光、緑色光が上面に出射し、これらの光は混合されて白色光が生成される。 For example, when the light emitted from the light source is blue light, the quantum dot layer may include red quantum dots and green quantum dots. The red quantum dots convert part of blue light into red light having a wavelength range of 620 to 750 nm, and the green quantum dots convert part of blue light into green light having a wavelength range of 495 to 570 nm. To do. And the blue light which is not converted into red light and green light permeate | transmits a quantum dot layer as it is. Therefore, in the quantum dot layer, blue light, red light, and green light are emitted to the upper surface, and these lights are mixed to generate white light.
 前記量子ドットは、化学的湿式方法により合成してもよい。前記化学的湿式方法は、有機溶媒に前駆体物質を入れて粒子を成長させる方法である。前記量子ドットとしては、CdSe、CdTe、CdS、ZnSe、ZnTe、ZnS、HgTe、又はHgSなどのII-VI族化合物が挙げられる。 The quantum dots may be synthesized by a chemical wet method. The chemical wet method is a method of growing particles by putting a precursor substance in an organic solvent. Examples of the quantum dots include II-VI group compounds such as CdSe, CdTe, CdS, ZnSe, ZnTe, ZnS, HgTe, and HgS.
 また、前記量子ドットは、コア・シェル構造を有するようにしてもよい。ここで、前記コアは、CdSe、CdTe、CdS、ZnSe、ZnTe、ZnS、HgTe、及びHgSからなる群から選択されるいずれか1つの物質を含み、前記シェルも、CdSe、CdTe、CdS、ZnSe、ZnTe、ZnS、HgTe、及びHgSからなる群から選択されるいずれか1つの物質を含む。さらに、InPなどのIII-V族化合物でもよい。 The quantum dots may have a core / shell structure. Here, the core includes any one material selected from the group consisting of CdSe, CdTe, CdS, ZnSe, ZnTe, ZnS, HgTe, and HgS, and the shell also includes CdSe, CdTe, CdS, ZnSe, Any one substance selected from the group consisting of ZnTe, ZnS, HgTe, and HgS is included. Furthermore, a III-V group compound such as InP may be used.
 前記量子ドットの表面に置換されている有機リガンドは、ピリジン、メルカプトアルコール、チオール、ホスフィン、及びホスフィン酸化物などを含み、合成後に不安定な量子ドットを安定化させる役割を果たす。なお、市販品として、入手可能な量子ドットとして、例えば、SIGMA-ALDRICH社製の各種量子ドット等が例示される。 The organic ligand substituted on the surface of the quantum dot includes pyridine, mercaptoalcohol, thiol, phosphine, phosphine oxide, and the like, and plays a role of stabilizing the unstable quantum dot after synthesis. Examples of commercially available quantum dots include various quantum dots manufactured by SIGMA-ALDRICH.
 また、量子ドット含有する樹脂に関しては、主に光源から出射した光の波長を吸収しない物質を使用するのが好ましい。具体的には、エポキシ、シリコーン、アクリル系高分子、ガラス、カーボネート系高分子、又はそれらの混合物などを使用してもよい。当該樹脂が弾性を有する場合、外部衝撃に対する液晶表示装置の耐久性向上にも寄与することができる。 Also, for the resin containing quantum dots, it is preferable to use a substance that does not absorb the wavelength of light emitted mainly from the light source. Specifically, epoxy, silicone, acrylic polymer, glass, carbonate polymer, or a mixture thereof may be used. When the resin has elasticity, it can also contribute to improving the durability of the liquid crystal display device against external impact.
 一方、量子ドット層を形成する方法は次の通りである。 On the other hand, the method of forming the quantum dot layer is as follows.
 前記樹脂に複数の量子ドットを添加し、スピンコーティング方法又はプリント方法を用いて前記樹脂をカラーフィルタ層の上部に塗布することにより、量子ドット含有樹脂シートを形成してもよい。 Quantum dot-containing resin sheets may be formed by adding a plurality of quantum dots to the resin and applying the resin to the top of the color filter layer using a spin coating method or a printing method.
 また、量子ドットが添加された樹脂を成形加工して硬化することにより、量子ドット樹脂シートを形成してもよい。 Further, the quantum dot resin sheet may be formed by molding and curing a resin to which quantum dots are added.
 さらに、有機溶液を注入してその中に複数の量子ドットを分散させて前記有機溶液を硬化することにより、量子ドット層を形成してもよい。有機溶液は、トルエン、クロロホルム、及びエタノールの少なくとも1つを含んでもよい。ここで、前記有機溶液は青色波長を吸収しない。この場合、量子ドットのリガンドと有機溶液との反応が起こらないので、量子ドット層の寿命と効率が増加するという利点がある。 Furthermore, a quantum dot layer may be formed by injecting an organic solution, dispersing a plurality of quantum dots therein, and curing the organic solution. The organic solution may include at least one of toluene, chloroform, and ethanol. Here, the organic solution does not absorb blue wavelengths. In this case, since the reaction between the quantum dot ligand and the organic solution does not occur, there is an advantage that the lifetime and efficiency of the quantum dot layer are increased.
 量子ドット含有樹脂シートは粘着層を介して封止フィルムを貼りあわせた積層体構成とする。 Quantum dot-containing resin sheet has a laminate structure in which a sealing film is bonded through an adhesive layer.
 上記の粘着層について、以下に説明する。
 粘着層とは粘着性を有する材料から構成される層を意味し、アクリル系粘着剤、シリコーン系粘着剤等、従来から公知の材料を用いることができる。また、貼りあわせにおいては従来から公知の貼合わせ方式を採用することができる。
The above adhesive layer will be described below.
The adhesive layer means a layer composed of an adhesive material, and conventionally known materials such as an acrylic adhesive and a silicone adhesive can be used. In pasting, a conventionally known pasting method can be adopted.
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。また、本発明で用いた測定法は次のとおりである。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist. The measuring method used in the present invention is as follows.
(1)ポリエステルの固有粘度(dl/g)の測定:
 ポリエステルに非相溶な他のポリマー成分および顔料を除去したポリエステル1gを精秤し、フェノール/テトラクロロエタン=50/50(重量比)の混合溶媒100mlを加えて溶解させ、30℃で測定した。
(1) Measurement of intrinsic viscosity (dl / g) of polyester:
1 g of polyester from which other polymer components and pigments incompatible with polyester were removed was precisely weighed, 100 ml of a mixed solvent of phenol / tetrachloroethane = 50/50 (weight ratio) was added and dissolved, and measurement was performed at 30 ° C.
(2)平均粒径(d50:μm)の測定:
 遠心沈降式粒度分布測定装置(株式会社島津製作所社製SA-CP3型)を使用して測定した等価球形分布における積算(重量基準)50%の値を平均粒径とした。
(2) Measurement of average particle diameter (d50: μm):
The value of 50% of integration (weight basis) in the equivalent spherical distribution measured using a centrifugal sedimentation type particle size distribution measuring apparatus (SA-CP3 type manufactured by Shimadzu Corporation) was defined as the average particle diameter.
(3)ポリエステル樹脂のガラス転移温度(Tg)測定:
パーキンエルマー社製DSC-II型測定装置を用い、サンプル重量10mg、窒素気流下で、昇温速度10℃/minで昇温し、ベースラインの偏起開始温度をTgとした。
(3) Glass transition temperature (Tg) measurement of polyester resin:
Using a DSC-II type measuring device manufactured by PerkinElmer, Inc., the sample was heated at a rate of temperature increase of 10 ° C./min under a nitrogen stream, and the baseline start temperature of the baseline was defined as Tg.
(4)バリア層の膜厚:
 試料フィルム片を1mm×10mmの大きさに切り出し、電子顕微鏡用エポキシ樹脂に包埋した。これをウルトラミクロトームの試料ホルダに固定し、包埋した試料片の短辺に平行な断面薄切片を作製した。次いで、この切片の薄膜の著しい損傷がない部位において、透過型電子顕微鏡(JEOL社製、JEM-2010)を用い、加速電圧200kV、明視野で観察倍率1万倍にて写真撮影を行って得られた写真から膜厚を求めた。
(4) Barrier layer thickness:
A sample film piece was cut into a size of 1 mm × 10 mm and embedded in an epoxy resin for an electron microscope. This was fixed to a sample holder of an ultramicrotome, and a cross-sectional thin section parallel to the short side of the embedded sample piece was produced. Next, in a portion where the thin film of this section is not significantly damaged, a transmission electron microscope (manufactured by JEOL, JEM-2010) is used to photograph at an acceleration voltage of 200 kV and a bright field at an observation magnification of 10,000 times. The film thickness was determined from the photograph taken.
(5)保護層およびポリエステルフィルムの屈折率測定:
 JIS K 7142-1996 5.1(A法)により、ナトリウムD線を光源とし
てアッベ屈折計により屈折率を測定した。
(5) Refractive index measurement of protective layer and polyester film:
According to JIS K 7142-1996 5.1 (Method A), the refractive index was measured with an Abbe refractometer using sodium D line as a light source.
(6)塗布層およびバリア層の屈折率測定:
 シリコンウエハーまたは石英ガラス上にコーターにて形成された塗布層またはバリア層について、高速分光メーターM-2000(J.A.Woollam社製)を用い、塗布層またはバリア層の反射光の偏光状態変化を入射角度60度、65度、70度で測定し、解析ソフトWVASE32にて、波長550nmにおける屈折率を算出した。
(6) Refractive index measurement of coating layer and barrier layer:
For the coating layer or barrier layer formed on a silicon wafer or quartz glass with a coater, using a high-speed spectrometer M-2000 (manufactured by JA Woollam), the polarization state change of the reflected light of the coating layer or barrier layer Were measured at an incident angle of 60 degrees, 65 degrees, and 70 degrees, and the refractive index at a wavelength of 550 nm was calculated by analysis software WVASE32.
(7)封止フィルムの透明性評価:
 測定用封止フィルムをJIS-K-7136に準じ、株式会社村上色彩技術研究所製ヘーズメーター「HM-150」により、フィルムの全光線透過率を測定した。
(判定基準)
 A:全光線透過率89%以上(良好。特に問題ないレベル)
 B:全光線透過率86%以上89%未満
(問題ないレベルではあるが、ハイエンド機種の表示装置向けには適用困難な場合がある)
(7) Evaluation of transparency of sealing film:
In accordance with JIS-K-7136, the total light transmittance of the measurement sealing film was measured with a haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd.
(Criteria)
A: Total light transmittance 89% or more (good, no problem)
B: Total light transmittance of 86% or more and less than 89% (although there is no problem, it may be difficult to apply to high-end display devices)
(8)水蒸気透過率:
 温度40℃、湿度90%RHの条件で、米国、モコン(MOCON)社製の水蒸気透過率透過率測定装置(機種名、“パ-マトラン”(登録商標)W3/31)を使用してJISK7129(2000年版)に記載のB法(赤外センサー法)に基づいて測定した。1つのサンプルから2枚の試験片を切り出し、各々の試験片について測定を1回ずつ行い、2つの測定値の平均値をそのサンプルの水蒸気透過率の値とした。
(8) Water vapor transmission rate:
JISK7129 using a water vapor transmission rate measuring device (model name, “Permatran” (registered trademark) W3 / 31) manufactured by MOCON, USA, under the conditions of a temperature of 40 ° C. and a humidity of 90% RH. It was measured based on the B method (infrared sensor method) described in (2000 version). Two test pieces were cut out from one sample, each test piece was measured once, and the average value of the two measured values was taken as the value of the water vapor transmission rate of the sample.
(9)粘着層に対する接着性:
 実施例および比較例で得られた各積層体を用いて、積層体から一方の封止フィルムを剥離させる際の剥離感を下記判定基準により判定を行った。
(判定基準)
A:封止フィルムと量子ドット含有樹脂シートとが、強固に接着していて、剥離困難。(実用上、問題ないレベル)
B:封止フィルムと量子ドット含有樹脂シートとが、剥離可能。(実用上、問題あるレベル)
(9) Adhesiveness to the adhesive layer:
Using each of the laminates obtained in Examples and Comparative Examples, the feeling of peeling when peeling one sealing film from the laminate was determined according to the following criteria.
(Criteria)
A: The sealing film and the quantum dot-containing resin sheet are firmly bonded and difficult to peel off. (Practical, no problem level)
B: The sealing film and the quantum dot-containing resin sheet can be peeled off. (Practical problem level)
(10)積層体の輝度ムラ評価(実用特性代用評価):
 TFT液晶モジュール(シャープ(株)製 192GC00タイプ)の光拡散フィルム上に、(9)項で得られた、実施例及び比較例によって得られた各封止フィルムと量子ドット含有樹脂シートとを貼りあわせた積層体を挟み込み、9.75V印加でLED光源を発光させ、輝度ムラに関して、下記判定基準を用いて判定を行った。
(判定基準)
A:輝度ムラが認められない状態。
B:若干の輝度ムラはあるが、実用上問題がない状態。
C:輝度ムラが明瞭にあり、実用上問題である状態。
(10) Evaluation of luminance unevenness of laminated body (practical property substitution evaluation):
On the light diffusion film of the TFT liquid crystal module (Sharp Co., Ltd. 192GC00 type), each sealing film obtained in Example (9) and Comparative Example and a quantum dot-containing resin sheet were pasted. The combined laminate was sandwiched, the LED light source was made to emit light by applying 9.75 V, and brightness unevenness was determined using the following criteria.
(Criteria)
A: State in which luminance unevenness is not recognized.
B: Although there is some luminance unevenness, there is no practical problem.
C: A state in which luminance unevenness is clearly present and is a problem in practical use.
(11)総合評価:
 実施例および比較例において各々製造した封止フィルムを用いて、透明性、バリア性、粘着層に対する接着性、輝度ムラの各評価項目につき、下記判定基準により総合評価を行った。
《判定基準》
A:透明性、バリア性、粘着層に対する接着性、輝度ムラの全てがA判定。(実用上、問題ないレベル)
B:透明性、バリア性、粘着層に対する接着性、輝度ムラの内、少なくとも
一つがB判定を含む。(実用上、問題になる場合があるレベル)
C:透明性、バリア性、粘着層に対する接着性、輝度ムラの少なくとも一つ
がC判定を含む。(実用上、問題あるレベル)
(11) Overall evaluation:
Using the sealing films produced in Examples and Comparative Examples, overall evaluation was performed according to the following criteria for each evaluation item of transparency, barrier properties, adhesion to the adhesive layer, and luminance unevenness.
<Criteria>
A: Transparency, barrier properties, adhesion to the adhesive layer, and luminance unevenness are all judged as A. (Practical, no problem level)
B: At least one of transparency, barrier properties, adhesion to the pressure-sensitive adhesive layer, and luminance unevenness includes B determination. (Practical level that may cause problems)
C: At least one of transparency, barrier property, adhesion to the adhesive layer, and luminance unevenness includes C determination. (Practical problem level)
 実施例および比較例において使用したポリエステルは、以下のようにして準備したものである。
〈ポリエステルの製造〉
The polyester used in the examples and comparative examples was prepared as follows.
<Manufacture of polyester>
 製造例1(ポリエステルA1)
 ジメチルテレフタレート100部、エチレングリコール60部および酢酸マグネシウム・4水塩0.09部を反応器にとり、加熱昇温すると共にメタノールを留去し、エステル交換反応を行い、反応開始から4時間を要して230℃に昇温し、実質的にエステル交換反応を終了した。次いで、エチレングリコールスラリーエチルアシッドフォスフェート0.04部、三酸化アンチモン0.03部を添加した後、100分で温度を280℃、圧力を15mmHgに達せしめ、以後も徐々に圧力を減じ、最終的に0.3mmHgとした。4時間後、系内を常圧に戻し、固有粘度0.61(dl/g)のポリエステルA1を得た。
Production Example 1 (Polyester A1)
100 parts of dimethyl terephthalate, 60 parts of ethylene glycol and 0.09 part of magnesium acetate tetrahydrate are placed in a reactor, the temperature is raised by heating, methanol is distilled off, transesterification is performed, and 4 hours are required from the start of the reaction. The temperature was raised to 230 ° C. to substantially complete the transesterification reaction. Next, after adding 0.04 part of ethylene glycol slurry ethyl acid phosphate and 0.03 part of antimony trioxide, the temperature reached 280 ° C. and the pressure reached 15 mmHg in 100 minutes. It was 0.3 mmHg. After 4 hours, the system was returned to normal pressure to obtain polyester A1 having an intrinsic viscosity of 0.61 (dl / g).
 製造例2(ポリエステルA2)
 ポリエステル(A1)の製造方法において、エチルアシッドフォスフェートを添加後、平均粒径が2.3μmのシリカ粒子をポリエステルに対する含有量が0.2重量%となるように添加した以外は、ポリエステル(A)の製造方法と同様の方法を用いて固有粘度は0.62(dl/g)のポリエステルA2を得た。
Production Example 2 (Polyester A2)
In the method for producing polyester (A1), polyester (A1) was used except that after adding ethyl acid phosphate, silica particles having an average particle diameter of 2.3 μm were added so that the content with respect to polyester was 0.2% by weight. ) Was used to obtain polyester A2 having an intrinsic viscosity of 0.62 (dl / g).
 実施例1(封止フィルムF1の製造)
 ポリエステルA1、A2をそれぞれ85%、15%の割合でブレンドした原料を表層原料とし、ポリエステルA1を100%の原料を中間層の原料として、2台のベント付き押出機に供給し、290℃で溶融押出した後、静電印加密着法を用いて表面温度を40℃に設定した冷却ロール上で冷却固化して厚さ約1500μmの無定形フィルムを得た。このフィルムを85℃で縦方向に3.5倍延伸した。その後、下記塗布層組成からなる塗布液を塗布厚み(乾燥後)が0.05g/mになるように両面に塗布した後、フィルムをテンターに導き、100℃で横方向に3.8倍延伸し、210℃で熱処理して、厚さ100μm(厚み構成比=2.5μm/95μm/2.5μm)の塗布層が設けられたポリエステルフィルムF1を得た。
Example 1 (Manufacture of sealing film F1)
The raw materials blended at a ratio of 85% and 15% respectively for polyesters A1 and A2 were used as surface layer materials, and 100% of the raw materials were used as intermediate layer materials and supplied to two extruders with vents at 290 ° C. After melt-extrusion, an amorphous film having a thickness of about 1500 μm was obtained by cooling and solidifying on a cooling roll having a surface temperature set to 40 ° C. using an electrostatic application adhesion method. This film was stretched 3.5 times in the machine direction at 85 ° C. Thereafter, a coating solution having the following coating layer composition was applied on both sides so that the coating thickness (after drying) was 0.05 g / m 2 , the film was guided to a tenter, and 3.8 times in the lateral direction at 100 ° C. It was stretched and heat treated at 210 ° C. to obtain a polyester film F1 provided with a coating layer having a thickness of 100 μm (thickness ratio = 2.5 μm / 95 μm / 2.5 μm).
 また、塗布液に含有する組成物としては以下を用いた。 Moreover, the following was used as a composition contained in the coating solution.
<(水性アクリル樹脂)の製造条件>
 アクリル酸エチル40重量部、メタクリル酸メチル30重量部、メタクリル酸20重量部、グリシジルメタクリレート10重量部の混合物をエチルアルコール中で溶液重合し、重合後水を加えつつ加熱しエチルアルコールを除去した。アンモニア水でpH7.5に調節し、水性アクリル系樹脂水性塗料を得た。
<Production conditions for (aqueous acrylic resin)>
A mixture of 40 parts by weight of ethyl acrylate, 30 parts by weight of methyl methacrylate, 20 parts by weight of methacrylic acid and 10 parts by weight of glycidyl methacrylate was solution-polymerized in ethyl alcohol, and heated while adding water after polymerization to remove ethyl alcohol. The pH was adjusted to 7.5 with aqueous ammonia to obtain an aqueous acrylic resin aqueous paint.
<(水性ポリウレタン樹脂)の製造条件>
 先ず、テレフタル酸664重量部、イソフタル酸631重量部、1,4-ブタンジオール472重量部、ネオペンチルグリコール447重量部から成るポリエステルポリオールを得た。次いで、得られたポリエステルポリオールに、アジピン酸321重量部、ジメチロールプロピオン酸268重量部を加え、ペンダントカルボキシル基含有ポリエステルポリオールAを得た。更に、該ポリエステルポリオールA1880重量部にヘキサメチレンジイソシアネート160重量部を加えて水性ポリウレタン系樹脂水性塗料を得た。
<Production conditions for (aqueous polyurethane resin)>
First, a polyester polyol comprising 664 parts by weight of terephthalic acid, 631 parts by weight of isophthalic acid, 472 parts by weight of 1,4-butanediol, and 447 parts by weight of neopentyl glycol was obtained. Next, 321 parts by weight of adipic acid and 268 parts by weight of dimethylolpropionic acid were added to the obtained polyester polyol to obtain a pendant carboxyl group-containing polyester polyol A. Further, 160 parts by weight of hexamethylene diisocyanate was added to 1880 parts by weight of the polyester polyol A to obtain an aqueous polyurethane resin aqueous coating material.
<水性ポリエステル樹脂>
  Tg=63℃
酸成分:テレフタル酸         50モル%
    イソフタル酸         48モル%
5-Naスルホイソフタル酸      2モル%
ジオール成分:エチレングリコール   50モル%
       ネオペンチルグリコール 50モル%
<Water-based polyester resin>
Tg = 63 ° C
Acid component: terephthalic acid 50 mol%
Isophthalic acid 48mol%
2-Na sulfoisophthalic acid 2 mol%
Diol component: Ethylene glycol 50 mol%
Neopentyl glycol 50 mol%
<イソシアネート系化合物>
 以下の方法で合成した活性メチレンブロックポリイソシアネート:
 ヘキサメチレンジイソシアネート1000重量部を60℃で攪拌し、触媒としてテトラメチルアンモニウム・カプリエート0.1重量部を加えた。4時間後、リン酸0.2重量部を添加して反応を停止させ、イソシアヌレート型ポリイソシアネート組成物を得た。得られたイソシアヌレート型ポリイソシアネート組成物100重量部、数平均分子量400のメトキシポリエチレングリコール42.3重量部、プロピレングリコールモノメチルエーテルアセテート29.5重量部を仕込み、80℃で7時間保持した。その後反応液温度を60℃に保持し、イソブタノイル酢酸メチル35.8重量部、マロン酸ジエチル32.2重量部、ナトリウムメトキシドの28%メタノール溶液0.88重量部を添加し、4時間保持した。n-ブタノール58.9重量部を添加し、反応液温度80℃で2時間保持し、その後、2-エチルヘキシルアシッドホスフェート0.86重量部を添加して得られたブロックポリイソシアネート。
<Isocyanate compounds>
Active methylene block polyisocyanate synthesized by the following method:
1000 parts by weight of hexamethylene diisocyanate was stirred at 60 ° C., and 0.1 part by weight of tetramethylammonium capryate was added as a catalyst. Four hours later, 0.2 parts by weight of phosphoric acid was added to stop the reaction, and an isocyanurate type polyisocyanate composition was obtained. 100 parts by weight of the obtained isocyanurate-type polyisocyanate composition, 42.3 parts by weight of methoxypolyethylene glycol having a number average molecular weight of 400, and 29.5 parts by weight of propylene glycol monomethyl ether acetate were charged and maintained at 80 ° C. for 7 hours. Thereafter, the temperature of the reaction solution was maintained at 60 ° C., 35.8 parts by weight of methyl isobutanoyl acetate, 32.2 parts by weight of diethyl malonate, and 0.88 parts by weight of 28% methanol solution of sodium methoxide were added and maintained for 4 hours. . Block polyisocyanate obtained by adding 58.9 parts by weight of n-butanol, maintaining the reaction solution temperature at 80 ° C. for 2 hours, and then adding 0.86 parts by weight of 2-ethylhexyl acid phosphate.
(塗布層組成)
・:オキサゾリン基含有ポリマー
(日本触媒社製「エポクロスWS-500」
オキサゾリン基量4.5mmol/g)0重量%、
・:水性アクリル樹脂 0重量%、
・:水性ウレタン樹脂 45重量%
・:メラミン樹脂   30重量%
(アルキロールメラミン/尿素共重合の架橋性樹脂
DIC社製ベッカミン「J101」」)
・:水性ポリエステル樹脂 20重量%、
・:イソシアネート系化合物 0重量%
・:コロイダルシリカ(平均粒径70nm)5重量%
 上記塗布液をイオン交換水で希釈し、固型分濃度2重量%の塗布液を作製した。
(Coating layer composition)
*: Oxazoline group-containing polymer ("Epocross WS-500" manufactured by Nippon Shokubai Co., Ltd.)
Oxazoline group amount 4.5 mmol / g) 0% by weight,
・: Aqueous acrylic resin 0% by weight,
・: 45% by weight of water-based urethane resin
・: Melamine resin 30% by weight
(Beccamine “J101” manufactured by DIC, a crosslinkable resin of alkylol melamine / urea copolymer)
*: 20% by weight of aqueous polyester resin,
*: Isocyanate-based compound 0% by weight
*: 5% by weight of colloidal silica (average particle size 70 nm)
The coating solution was diluted with ion exchange water to prepare a coating solution having a solid content concentration of 2% by weight.
<バリア層1の形成>
 得られた塗布フィルムの塗布層表面に下記活性エネルギー線硬化樹脂組成から構成される活性エネルギー線硬化樹脂を#16ワイヤーバーにより塗布し、80℃で1分間乾燥し溶剤を除去した後、紫外線照射機から紫外線をメタルハライドランプ120w/cmで、積算光量が180mJ/cmになるように照射し、厚み(乾燥後)が5μmのバリア層1を設けた。
《活性エネルギー線硬化樹脂組成》
 ジペンタエリスリトールアクリレート72重量部、2-ヒドロキシ-3-フェノキシプロピルアクリレート18重量部、光重合開始剤(Irgacure651、チバスペシャルティケミカルズ株式会社製)1重量部、メチルエチルケトン200重量部の混合塗液。
<Formation of barrier layer 1>
An active energy ray curable resin composed of the following active energy ray curable resin composition is applied to the coating layer surface of the obtained coated film with a # 16 wire bar, dried at 80 ° C. for 1 minute to remove the solvent, and then irradiated with ultraviolet rays. The barrier layer 1 having a thickness (after drying) of 5 μm was provided by irradiating ultraviolet rays from the machine with a metal halide lamp 120 w / cm so that the integrated light amount was 180 mJ / cm 2 .
<Active energy ray curable resin composition>
A mixed coating solution of 72 parts by weight of dipentaerythritol acrylate, 18 parts by weight of 2-hydroxy-3-phenoxypropyl acrylate, 1 part by weight of a photopolymerization initiator (Irgacure 651, manufactured by Ciba Specialty Chemicals), and 200 parts by weight of methyl ethyl ketone.
<バリア層2の形成>
 前記、バリア層1上に、下記バリア層2を積層した。具体的には、スパッタリング前の真空チャンバーの水圧力が1×10-4Paであることを確認後、実施した。スパッタリングの条件は、ターゲットにAl-Si(組成比Al:Si=5:5、高純度化学製)を用い、3W/cmのDC電力を印加した。また、Arガスを流し、0.4Paの雰囲気下とし、DCマグネトロンスパッタリング法を用いて成膜した。この際、磁場強度は600ガウスであった。また、センターロール温度は0℃として、Gencoa社製のSpeedflowを用いてスパッタリング時の放電電圧が一定になるように酸素流量を制御しながら行った。この際、Arガスのみを流した場合の放電電圧を100%、ArガスとOガスを50sccm流した場合の放電電圧を0%とした時、50%の値の放電電圧になるように設定した。以上のようにして、膜厚40nm、屈折率1.52のバリア層2を堆積させた。
<Formation of barrier layer 2>
The following barrier layer 2 was laminated on the barrier layer 1. Specifically, it was carried out after confirming that the water pressure in the vacuum chamber before sputtering was 1 × 10 −4 Pa. As sputtering conditions, Al—Si (composition ratio Al: Si = 5: 5, manufactured by High Purity Chemical) was used as a target, and DC power of 3 W / cm 2 was applied. Moreover, Ar gas was flowed, it was made into the atmosphere of 0.4 Pa, and it formed into a film using DC magnetron sputtering method. At this time, the magnetic field strength was 600 gauss. The center roll temperature was set to 0 ° C., and the oxygen flow rate was controlled using a Speedflow manufactured by Gencoa so that the discharge voltage during sputtering was constant. At this time, the discharge voltage is set to 50% when the discharge voltage when only Ar gas is supplied is 100%, and when the discharge voltage is 50% when Ar gas and O 2 gas are supplied at 50 sccm. did. As described above, the barrier layer 2 having a thickness of 40 nm and a refractive index of 1.52 was deposited.
<保護層1形成>
 アルミニウム元素を有する有機化合物(A1):19.5重量%
 アルミニウムトリス(アセチルアセトネ-ト)
 有機珪素化合物(B1):80重量%
 γ-グリシドキシプロピルトリメトキシシラン
 触媒(C1):0.5重量% 
 ジブチル錫ジラウレート
 
 上記の塗布剤をトルエン/MEK混合溶媒(混合比率は1:1)にて希釈し、4重量%とした。
<Protective layer 1 formation>
Organic compound having aluminum element (A1): 19.5% by weight
Aluminum tris (acetylacetonate)
Organosilicon compound (B1): 80% by weight
γ-Glycidoxypropyltrimethoxysilane catalyst (C1): 0.5% by weight
Dibutyltin dilaurate
The coating agent was diluted with a toluene / MEK mixed solvent (mixing ratio was 1: 1) to obtain 4% by weight.
 その後、バリア層2の上に上記塗布剤組成からなる保護層1を塗布量(乾燥後)が0.1g/mになるようにリバースグラビアコート方式により塗設し、120℃、30秒間熱処理した後に封止フィルムを得た。 Thereafter, the protective layer 1 composed of the above coating composition is applied on the barrier layer 2 by a reverse gravure coating method so that the coating amount (after drying) is 0.1 g / m 2, and heat treatment is performed at 120 ° C. for 30 seconds. After that, a sealing film was obtained.
 次に得られた封止フィルムを下記手順により、量子ドット含有樹脂シートの両面に貼りあわせ、積層体を得た。 Next, the obtained sealing film was bonded to both surfaces of the quantum dot-containing resin sheet by the following procedure to obtain a laminate.
<量子ドット樹脂シート形成用塗布液作製>
 容積300mlのポリエチレン製容器を用いて、シリコーン樹脂として“OE-6630A/B”(東レ・ダウコーニング社製、屈折率1.53)を40重量%、量子ドットとして“CdSe/ZnS480”(SIGMA-ALDRICH社製:Blue480nm)、“CdSe/ZnS 530”(SIGMA-ALDRICH社製:Green530nm)、“CdSe/ZnS 560”(SIGMA-ALDRICH社製:Yellow560nm)を各20重量%ずつの比率で混合した。その後、遊星式撹拌・脱泡装置“マゼルスター(登録商標)”KK-400(クラボウ製)を用い、1000rpmで20分間撹拌・脱泡して量子ドット含有樹脂シート作製液を得た。
<Preparation of coating liquid for forming quantum dot resin sheet>
Using a polyethylene container with a capacity of 300 ml, 40% by weight of “OE-6630A / B” (manufactured by Toray Dow Corning Co., Ltd., refractive index 1.53) as a silicone resin, and “CdSe / ZnS480” (SIGMA- ALDRICH: Blue 480 nm), “CdSe / ZnS 530” (SIGMA-ALDRICH: Green 530 nm), “CdSe / ZnS 560” (SIGMA-ALDRICH: Yellow 560 nm) were mixed at a ratio of 20% by weight. Thereafter, using a planetary stirring and defoaming apparatus “Mazerustar (registered trademark)” KK-400 (manufactured by Kurabo Industries), stirring and defoaming were carried out at 1000 rpm for 20 minutes to obtain a quantum dot-containing resin sheet preparation solution.
<量子ドット樹脂シート形成>
 スリットダイコーターを用いてシート作製用樹脂液をポリエステルフィルム上(三菱樹脂(株)製ダイアホイルT100タイプ:100μm)に塗布し、130℃で5分加熱、乾燥して、膜厚み(乾燥後)が50μmの量子ドット樹脂シートを得た。得られた量子ドット樹脂シートが基材フィルム上に均一に塗布され、ピンホールは見られず、膜厚均一性も良好であった。
<Quantum dot resin sheet formation>
Using a slit die coater, a sheet-forming resin solution is applied on a polyester film (Diafoil T100 type manufactured by Mitsubishi Plastics Co., Ltd .: 100 μm), heated at 130 ° C. for 5 minutes, and dried to obtain a film thickness (after drying). A quantum dot resin sheet having a thickness of 50 μm was obtained. The obtained quantum dot resin sheet was uniformly applied on the base film, pinholes were not seen, and the film thickness uniformity was good.
<積層体の形成>
 量子ドット樹脂シートの両面に、“SD4580”(東レダウ・コーニング社製シリコーン粘着剤)を塗布し、100℃で5分加熱乾燥して、厚み25μmの粘着層を得た。さらに粘着層上に、カバーフィルムとして、前記封止フィルムを保護層表面が粘着層表面と貼り合わされるように、100℃で3分、加熱ラミネートした。 
<Formation of laminate>
“SD4580” (silicone adhesive manufactured by Toray Dow Corning) was applied to both surfaces of the quantum dot resin sheet and dried by heating at 100 ° C. for 5 minutes to obtain an adhesive layer having a thickness of 25 μm. Furthermore, on the adhesive layer, as the cover film, the sealing film was heat-laminated at 100 ° C. for 3 minutes so that the protective layer surface was bonded to the adhesive layer surface.
 実施例2~実施例12
 実施例1において、塗布層組成、ポリエステルフィルム基材厚みを下記表1、表2に示す通り変更する以外は実施例1と同様にして製造し、封止フィルムを得た。
 その後、粘着層を介して、封止フィルムと量子ドット含有樹脂シートとを貼り合わせて、積層体を得た。
Example 2 to Example 12
In Example 1, it manufactured like Example 1 except having changed application layer composition and polyester film base material thickness as shown in the following Table 1 and Table 2, and obtained the sealing film.
Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
 実施例13~15
 実施例1において、バリア層の構成を下記バリア層2に変更する以外は実施例1と同様にして製造し、封止フィルムを得た。その後、粘着層を介して、封止フィルムと量子ドット含有樹脂シートとを貼り合わせて、積層体を得た。
<バリア層3の形成>
 酸化アルミニウムからなるガスバリア層を成膜した。このときスパッタリング前の真空チャンバーの水圧力が1×10-4Paであることを確認後、実施した。スパッタリングの条件は、ターゲットにAl(テクノファイン社製)を用い、3W/cmのDC電力を印加した。また、Arガスを流し、0.4Paの雰囲気下とし、DCマグネトロンスパッタリング法を用いて成膜した。この際、磁場強度は600ガウスであった。また、センターロール温度は0℃として、Gencoa社製のSpeedfloを用いてスパッタリング時の放電電圧が一定になるように酸素流量を制御しながら行った。この際、Arガスのみを流した場合の放電電圧を100%、ArガスとO2ガスを50sccm流した場合の放電電圧を0%とした時、50%の値の放電電圧になるように設定した。以上のようにして、膜厚32nm、屈折率1.61のバリア層2を塗布層上に形成した。
 得られた封止フィルムにおいてはバリア層2(屈折率1.61)と保護層(屈折率:1.43)との屈折率差が大きいため、透明性が若干劣る結果であった。
Examples 13-15
In Example 1, it manufactured similarly to Example 1 except having changed the structure of the barrier layer into the following barrier layer 2, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
<Formation of barrier layer 3>
A gas barrier layer made of aluminum oxide was formed. At this time, it was carried out after confirming that the water pressure in the vacuum chamber before sputtering was 1 × 10 −4 Pa. As sputtering conditions, Al (manufactured by Technofine) was used as a target, and DC power of 3 W / cm 2 was applied. Moreover, Ar gas was flowed, it was made into the atmosphere of 0.4 Pa, and it formed into a film using DC magnetron sputtering method. At this time, the magnetic field strength was 600 gauss. The center roll temperature was set to 0 ° C., and the oxygen flow rate was controlled using a Speedflo manufactured by Gencoa so that the discharge voltage during sputtering was constant. At this time, the discharge voltage was set to 50% when the discharge voltage when only Ar gas was supplied was 100%, and when the discharge voltage was 50% when Ar gas and O2 gas were supplied at 50 sccm. . As described above, the barrier layer 2 having a film thickness of 32 nm and a refractive index of 1.61 was formed on the coating layer.
In the obtained sealing film, since the difference in refractive index between the barrier layer 2 (refractive index 1.61) and the protective layer (refractive index: 1.43) was large, the result was slightly inferior in transparency.
 実施例16~18
 実施例1において保護層組成を保護層2に変更し、粘着層をアクリル系粘着層に変更する以外は実施例1と同様にして製造し、封止フィルムを得た。その後、粘着層を介して、封止フィルムと量子ドット含有樹脂シートとを貼り合わせて、積層体を得た。
<保護層2形成>
  主剤:WPB-341(三井化学株式会社製)
 硬化剤:WD-725 (三井化学株式会社製)
 
 主剤/硬化剤=100/3.75(重量比率)の混合比率、酢酸エチル:トルエン混合溶媒(混合比率は1:1)で、固型分濃度10重量%の保護層用塗布液を作製した。
 
(アクリル系粘着層組成物)
 常法により、酢酸エチル中でブチルアクリレート(100重量部)、アクリル酸6重量部)を共重合して重量平均分子量60万(ポリスチレン換算)のアクリル系共重合体の溶液(固形分30重量%)を得た。アクリル系共重合体100重量部(固形分)に対し、エポキシ系架橋剤であるテトラッドC(三菱瓦斯化学製)6重量部を添加し、アクリル系粘着層組成物を得た。
Examples 16-18
A sealing film was obtained in the same manner as in Example 1 except that the protective layer composition was changed to protective layer 2 in Example 1 and the adhesive layer was changed to an acrylic adhesive layer. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
<Protection layer 2 formation>
Main agent: WPB-341 (Mitsui Chemicals)
Curing agent: WD-725 (Mitsui Chemicals)

A coating solution for a protective layer having a solid content concentration of 10% by weight was prepared using a mixing ratio of main agent / curing agent = 100 / 3.75 (weight ratio), ethyl acetate: toluene mixed solvent (mixing ratio is 1: 1). .

(Acrylic adhesive layer composition)
A solution of an acrylic copolymer having a weight average molecular weight of 600,000 (polystyrene equivalent) by copolymerizing butyl acrylate (100 parts by weight, acrylic acid 6 parts by weight) in ethyl acetate by a conventional method (solid content 30% by weight) ) To 100 parts by weight (solid content) of the acrylic copolymer, 6 parts by weight of tetrad C (manufactured by Mitsubishi Gas Chemical) as an epoxy crosslinking agent was added to obtain an acrylic adhesive layer composition.
 実施例19
 実施例1において基材厚みを50μmに変更する以外は実施例1と同様にして製造し、封止フィルムを得た。その後、粘着層を介して、封止フィルムと量子ドット含有樹脂シートとを貼り合わせて、積層体を得た。
Example 19
A sealing film was obtained in the same manner as in Example 1 except that the substrate thickness was changed to 50 μm in Example 1. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
 実施例20
 実施例1において、バリア層構成をバリア層1のみの1層構成に変更する以外は実施例1と同様にして製造し、封止フィルムを得た。その後、粘着層を介して、封止フィルムと量子ドット含有樹脂シートとを貼り合わせて、積層体を得た。
Example 20
In Example 1, it manufactured similarly to Example 1 except having changed the barrier layer structure into 1 layer structure only of the barrier layer 1, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
 実施例21
 実施例1において、バリア層構成をバリア層2のみの1層構成に変更する以外は実施例1と同様にして製造し、封止フィルムを得た。その後、粘着層を介して、封止フィルムと量子ドット含有樹脂シートとを貼り合わせて、積層体を得た。
Example 21
In Example 1, it manufactured like Example 1 except changing a barrier layer composition into one layer composition only of barrier layer 2, and obtained a sealing film. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
 実施例22
 実施例1においてポリエステルフィルムの原料配合を変更する以外は実施例1と同様にして製造し、封止フィルムを得た。その後、粘着層を介して、封止フィルムと量子ドット含有樹脂シートとを貼り合わせて、積層体を得た。
Example 22
A sealing film was obtained in the same manner as in Example 1 except that the raw material composition of the polyester film was changed in Example 1. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
 実施例23
 実施例1において、バリア層を設ける面とは反対面に塗布層を設けない以外は実施例1と同様にして製造し、封止フィルムを得た。その後、粘着層を介して、封止フィルムと量子ドット含有樹脂シートとを貼り合わせて、積層体を得た。
Example 23
In Example 1, it manufactured similarly to Example 1 except not providing an application layer in the surface opposite to the surface which provides a barrier layer, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
 実施例24
 実施例1において、粘着層の種類を実施例16記載のアクリル系粘着層に変更する以外は実施例1と同様にして、100℃で5分加熱乾燥して、厚み25μmのアクリル系粘着層を介して、封止フィルムと量子ドット含有樹脂シートとを貼り合わせて、積層体を得た。
Example 24
In Example 1, except that the type of the adhesive layer is changed to the acrylic adhesive layer described in Example 16, it is heated and dried at 100 ° C. for 5 minutes in the same manner as in Example 1 to obtain an acrylic adhesive layer having a thickness of 25 μm. Then, the sealing film and the quantum dot containing resin sheet were bonded together, and the laminated body was obtained.
 比較例1
 実施例1において、塗布層の構成を塗布層5に変更する以外は実施例1と同様にして製造し、封止フィルムを得た。その後、粘着層を介して、封止フィルムと量子ドット含有樹脂シートとを貼り合わせて、積層体を得た。
Comparative Example 1
In Example 1, it manufactured similarly to Example 1 except having changed the structure of the application layer into the application layer 5, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
 比較例2
 実施例1において、塗布層の構成を塗布層10に変更する以外は実施例1と同様にして製造し、封止フィルムを得た。その後、粘着層を介して、封止フィルムと量子ドット含有樹脂シートとを貼り合わせて、積層体を得た。
Comparative Example 2
In Example 1, it manufactured similarly to Example 1 except having changed the structure of the application layer into the application layer 10, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
 比較例3
 実施例1において、塗布層の構成を塗布層15に変更する以外は実施例1と同様にして製造し、封止フィルムを得た。その後、粘着層を介して、封止フィルムと量子ドット含有樹脂シートとを貼り合わせて、積層体を得た。
Comparative Example 3
In Example 1, it manufactured similarly to Example 1 except having changed the structure of the application layer into the application layer 15, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
 比較例4
 実施例1において、塗布層を設けない以外は実施例1と同様にして製造し、封止フィルムを得た。その後、粘着層を介して、封止フィルムと量子ドット含有樹脂シートとを貼り合わせて、積層体を得た。
Comparative Example 4
In Example 1, it manufactured similarly to Example 1 except not providing an application layer, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
 比較例5
 実施例1において、バリア層を設けない以外は実施例1と同様にして製造し、封止フィルムを得た。その後、粘着層を介して、封止フィルムと量子ドット含有樹脂シートとを貼り合わせて、積層体を得た。
Comparative Example 5
In Example 1, it manufactured similarly to Example 1 except not providing a barrier layer, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
 比較例6
 実施例1において、保護層を設けない以外は実施例1と同様にして製造し、封止フィルムを得た。その後、粘着層を介して、封止フィルムと量子ドット含有樹脂シートとを貼り合わせて、積層体を得た。
Comparative Example 6
In Example 1, it manufactured similarly to Example 1 except not providing a protective layer, and obtained the sealing film. Then, the sealing film and the quantum dot containing resin sheet were bonded together through the adhesion layer, and the laminated body was obtained.
 上記実施例および比較例で得られた各封止フィルムの特性を表1~表5に示す。 Tables 1 to 5 show the properties of the sealing films obtained in the above examples and comparative examples.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
 本発明の電子部材用封止フィルムは、特に透明性、水蒸気バリア性および粘着層との接着性に優れ、高度な水蒸気バリア性の求められる量子ドット含有樹脂シート、電子ペーパー、有機ELなどの電子部材用封止フィルムとして好適であり、その工業的価値は高い。 The sealing film for electronic members of the present invention is particularly excellent in transparency, water vapor barrier properties and adhesiveness with an adhesive layer, and is an electron such as a quantum dot-containing resin sheet, electronic paper, and organic EL, which requires high water vapor barrier properties. It is suitable as a sealing film for members, and its industrial value is high.
 10:積層体
 11:量子ドット含有樹脂シート
 12:第1ポリエステルフィルム
 13:第1塗布層
 14:第1バリア層
 15:第1保護層
 22:第2ポリエステルフィルム
 23:第2塗布層
 24:第2バリア層
 25:第2保護層
 31:第1封止フィルム
 32:第2封止フィルム
 41:第1粘着層
 42:第2粘着層
DESCRIPTION OF SYMBOLS 10: Laminated body 11: Quantum dot containing resin sheet 12: 1st polyester film 13: 1st application layer 14: 1st barrier layer 15: 1st protective layer 22: 2nd polyester film 23: 2nd application layer 24: 1st 2 barrier layer 25: 2nd protective layer 31: 1st sealing film 32: 2nd sealing film 41: 1st adhesion layer 42: 2nd adhesion layer

Claims (7)

  1.  ポリエステルフィルムの片面に、塗布層、バリア層、保護層が順次積層された封止フィルムであり、塗布層が、ポリエステル樹脂、アクリル系樹脂、ウレタン樹脂の中から選択されるバインダー樹脂を少なくとも1種類以上と、オキサゾリン化合物、メラミン樹脂、イソシアネート系化合物中から選択される架橋剤を少なくとも1種類以上とを含有し、JIS-K7129B法に準じ、温度40℃、湿度90%RHの測定条件下で測定した封止フィルムの水蒸気透過度が0.01g/m/day以下であることを特徴とする電子部材用封止フィルム。 A sealing film in which a coating layer, a barrier layer, and a protective layer are sequentially laminated on one side of a polyester film, and the coating layer includes at least one binder resin selected from a polyester resin, an acrylic resin, and a urethane resin. And at least one crosslinking agent selected from oxazoline compounds, melamine resins, and isocyanate compounds, and measured under measurement conditions of a temperature of 40 ° C. and a humidity of 90% RH according to JIS-K7129B method. The sealing film for electronic members, wherein the sealing film has a water vapor permeability of 0.01 g / m 2 / day or less.
  2.  塗布層中、ポリエステル樹脂の割合が10~80重量%、アクリル樹脂の割合が10~60重量%、ウレタン樹脂の割合が10~80重量%、オキサゾリン化合物の割合が20~80重量%、メラミン樹脂の割合が6~80重量%、イソシアネート系化合物の割合が6~80重量%である請求項1に記載の電子部材用封止フィルム。 In the coating layer, the proportion of polyester resin is 10 to 80% by weight, the proportion of acrylic resin is 10 to 60% by weight, the proportion of urethane resin is 10 to 80% by weight, the proportion of oxazoline compound is 20 to 80% by weight, melamine resin The sealing film for an electronic member according to claim 1, wherein the proportion of is 8 to 80% by weight and the proportion of the isocyanate compound is 6 to 80% by weight.
  3.  バリア層が少なくとも2層から構成される請求項1又は2に記載の電子部材用封止フィルム。 The sealing film for electronic members according to claim 1 or 2, wherein the barrier layer comprises at least two layers.
  4.  保護層がウレタン樹脂を含有する請求項1~3の何れかに記載の電子部材用封止フィルム。 The sealing film for electronic members according to any one of claims 1 to 3, wherein the protective layer contains a urethane resin.
  5.  電子部材が量子ドット含有樹脂シートである請求項1~4の何れかに記載の電子部材用封止フィルム。 The electronic member sealing film according to any one of claims 1 to 4, wherein the electronic member is a quantum dot-containing resin sheet.
  6.  量子ドット含有樹脂シートの両面に粘着層を介して、請求項1~5の何れかに記載の電子部材用封止フィルムが貼り合わされたことを特徴とする、フィルム積層体。 6. A film laminate, wherein the electronic member sealing film according to claim 1 is bonded to both surfaces of the quantum dot-containing resin sheet via an adhesive layer.
  7.  粘着層がアクリル系またはシリコーン系である請求項6に記載のフィルム積層体。 The film laminate according to claim 6, wherein the adhesive layer is acrylic or silicone.
PCT/JP2015/082144 2014-12-20 2015-11-16 Sealing film for electronic members WO2016098504A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197020521A KR102138756B1 (en) 2014-12-20 2015-11-16 Sealing film for electronic members
CN201580068125.0A CN107107575B (en) 2014-12-20 2015-11-16 Sealing film for electronic component
KR1020177014545A KR20170085058A (en) 2014-12-20 2015-11-16 Sealing film for electronic members

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014258134A JP6634675B2 (en) 2014-12-20 2014-12-20 Sealing film for electronic components
JP2014-258134 2014-12-20
JP2014-258133 2014-12-20
JP2014258133 2014-12-20
JP2015003727A JP2016128245A (en) 2015-01-10 2015-01-10 Sealing film for electronic member
JP2015-003727 2015-02-24

Publications (1)

Publication Number Publication Date
WO2016098504A1 true WO2016098504A1 (en) 2016-06-23

Family

ID=56126403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082144 WO2016098504A1 (en) 2014-12-20 2015-11-16 Sealing film for electronic members

Country Status (3)

Country Link
KR (2) KR102138756B1 (en)
CN (1) CN107107575B (en)
WO (1) WO2016098504A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016128246A (en) * 2015-01-10 2016-07-14 三菱樹脂株式会社 Sealing film for electronic member
CN106374028A (en) * 2016-08-31 2017-02-01 张家港康得新光电材料有限公司 Quantum dot film and preparation method therefor
KR20180132667A (en) * 2016-03-31 2018-12-12 도판 인사츠 가부시키가이샤 Barrier film and its manufacturing method, wavelength conversion sheet and manufacturing method thereof, optical laminate and manufacturing method thereof
US20200006603A1 (en) * 2014-12-26 2020-01-02 Ns Materials Inc. Wavelength converting member and method of producing the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102138756B1 (en) * 2014-12-20 2020-07-28 미쯔비시 케미컬 주식회사 Sealing film for electronic members
TWI798343B (en) 2018-03-12 2023-04-11 美商陶氏有機矽公司 Curable silicone composition and cured product thereof
JP7179581B2 (en) * 2018-10-26 2022-11-29 住友化学株式会社 Compositions, films, laminated structures, light-emitting devices and displays
CN110499118A (en) * 2019-07-30 2019-11-26 云谷(固安)科技有限公司 Screen protecting film and its manufacturing method, electronic equipment
CN112768614A (en) * 2020-12-28 2021-05-07 华灿光电(浙江)有限公司 Quantum dot light-emitting diode and preparation method thereof
KR102705960B1 (en) * 2022-10-12 2024-09-12 숙명여자대학교산학협력단 Method Of Producing Carbon Dots Or Carbon Quantum Dot In Which Oxygen-Induced Release Is Thermally Controlled

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152932A (en) * 2005-07-04 2007-06-21 Teijin Dupont Films Japan Ltd Polyester film for gas barrier working, and gas barrier laminated polyester film consisting of the same
JP2011240668A (en) * 2010-05-20 2011-12-01 Daicel Corp Antiglare gas barrier film and method for producing the same
JP2012096551A (en) * 2006-11-16 2012-05-24 Mitsubishi Plastics Inc Gas barrier film laminate
JP2013028018A (en) * 2011-07-27 2013-02-07 Daicel Corp Gas barrier film and device
JP2013163296A (en) * 2012-02-10 2013-08-22 Toppan Printing Co Ltd Gas barrier laminated film
JP2013544018A (en) * 2010-11-10 2013-12-09 ナノシス・インク. Quantum dot film, illumination device, and illumination method
JP2014162176A (en) * 2013-02-27 2014-09-08 Toppan Printing Co Ltd Gas barrier laminated film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245809A (en) * 2010-05-29 2011-12-08 Mitsubishi Plastics Inc Laminated polyester film
WO2012102107A1 (en) * 2011-01-28 2012-08-02 昭和電工株式会社 Composition containing quantum dot fluorescent body, molded body of quantum dot fluorescent body dispersion resin, structure containing quantum dot fluorescent body, light-emitting device, electronic apparatus, mechanical device, and method for producing molded body of quantum dot fluorescent body dispersion resin
JP5364838B1 (en) * 2012-11-30 2013-12-11 Jx日鉱日石金属株式会社 Copper foil with carrier
KR102138756B1 (en) * 2014-12-20 2020-07-28 미쯔비시 케미컬 주식회사 Sealing film for electronic members

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152932A (en) * 2005-07-04 2007-06-21 Teijin Dupont Films Japan Ltd Polyester film for gas barrier working, and gas barrier laminated polyester film consisting of the same
JP2012096551A (en) * 2006-11-16 2012-05-24 Mitsubishi Plastics Inc Gas barrier film laminate
JP2011240668A (en) * 2010-05-20 2011-12-01 Daicel Corp Antiglare gas barrier film and method for producing the same
JP2013544018A (en) * 2010-11-10 2013-12-09 ナノシス・インク. Quantum dot film, illumination device, and illumination method
JP2013028018A (en) * 2011-07-27 2013-02-07 Daicel Corp Gas barrier film and device
JP2013163296A (en) * 2012-02-10 2013-08-22 Toppan Printing Co Ltd Gas barrier laminated film
JP2014162176A (en) * 2013-02-27 2014-09-08 Toppan Printing Co Ltd Gas barrier laminated film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200006603A1 (en) * 2014-12-26 2020-01-02 Ns Materials Inc. Wavelength converting member and method of producing the same
JP2016128246A (en) * 2015-01-10 2016-07-14 三菱樹脂株式会社 Sealing film for electronic member
KR20180132667A (en) * 2016-03-31 2018-12-12 도판 인사츠 가부시키가이샤 Barrier film and its manufacturing method, wavelength conversion sheet and manufacturing method thereof, optical laminate and manufacturing method thereof
KR102451846B1 (en) * 2016-03-31 2022-10-07 도판 인사츠 가부시키가이샤 A barrier film and its manufacturing method, a wavelength conversion sheet|seat, its manufacturing method, and an optical laminated body and its manufacturing method
US12107198B2 (en) 2016-03-31 2024-10-01 Toppan Printing Co., Ltd. Barrier film and method for manufacturing the same, wavelength conversion sheet and method for manufacturing the same, and optical laminate and method for manufacturing the same
CN106374028A (en) * 2016-08-31 2017-02-01 张家港康得新光电材料有限公司 Quantum dot film and preparation method therefor

Also Published As

Publication number Publication date
KR20170085058A (en) 2017-07-21
CN107107575B (en) 2020-07-28
KR20190086594A (en) 2019-07-22
CN107107575A (en) 2017-08-29
KR102138756B1 (en) 2020-07-28

Similar Documents

Publication Publication Date Title
WO2016098504A1 (en) Sealing film for electronic members
EP2679620B1 (en) Method of making a laminated polyester film
WO2016125397A1 (en) Sealing film for electronic members
EP2727954B1 (en) Coating film
EP2727726B1 (en) Coating film
JP6634675B2 (en) Sealing film for electronic components
EP2818498A1 (en) Coated film
JP2017182041A (en) Laminated polyester film and method for producing the same
JP6459612B2 (en) Sealing film for electronic parts
WO2014103470A1 (en) Coated film
JP2016119301A (en) Encapsulation film for electronic member
JP5679946B2 (en) Laminated polyester film
JP5743846B2 (en) Laminated polyester film
JP6464723B2 (en) Sealing film for electronic parts
JP6720600B2 (en) Release film
JP6500447B2 (en) Sealing film for electronic components
EP2905134B1 (en) Coated film
JP5726925B2 (en) Laminated polyester film
JP5557870B2 (en) Laminated polyester film
JP2013086494A (en) Laminated polyester film
JP6464724B2 (en) Sealing film for electronic parts
JP6870254B2 (en) Encapsulating film for electronic components
JP2016128245A (en) Sealing film for electronic member
JP2013086493A (en) Laminated polyester film
JP2015231625A (en) Manufacturing method of laminated polyester film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869712

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177014545

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869712

Country of ref document: EP

Kind code of ref document: A1