WO2016140309A1 - 光電変換素子およびその製造方法 - Google Patents

光電変換素子およびその製造方法 Download PDF

Info

Publication number
WO2016140309A1
WO2016140309A1 PCT/JP2016/056593 JP2016056593W WO2016140309A1 WO 2016140309 A1 WO2016140309 A1 WO 2016140309A1 JP 2016056593 W JP2016056593 W JP 2016056593W WO 2016140309 A1 WO2016140309 A1 WO 2016140309A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor film
amorphous semiconductor
type amorphous
type
impurity concentration
Prior art date
Application number
PCT/JP2016/056593
Other languages
English (en)
French (fr)
Inventor
伊坂 隆行
親扶 岡本
田所 宏之
真人 石井
利人 菅沼
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016140309A1 publication Critical patent/WO2016140309A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photoelectric conversion element and a manufacturing method thereof.
  • the most manufactured and sold solar cells have a structure in which electrodes are formed on a light receiving surface that is a surface on which sunlight is incident and a back surface that is opposite to the light receiving surface.
  • a solar cell having a back contact structure a solar cell having a structure (heterojunction back contact structure) in which amorphous silicon heterojunction with a silicon crystal is interposed between a silicon crystal and an electrode. Development is underway.
  • JP 2010-80887A describes a solar cell in which an n-type amorphous silicon layer and a p-type amorphous silicon layer are electrically separated by a substantially intrinsic i-type amorphous silicon layer.
  • heterojunction back contact type solar cell in order to suppress carrier recombination at the heterojunction interface and realize a high open circuit voltage (Voc), the interface is high. It is required to form a heterojunction using a film having inactivation performance (passivation property). It is known that an intrinsic i-type amorphous silicon layer as described in Patent Document 1 has high passivation properties when bonded to a silicon crystal.
  • the solar cell described in Patent Document 1 includes an in-junction in which an intrinsic i-type amorphous silicon layer and an n-type amorphous silicon layer are stacked on the back surface of a silicon substrate, and other intrinsic i-type amorphous silicon.
  • An ip junction formed by laminating a layer and a p-type amorphous silicon layer is simultaneously formed.
  • the n-side electrode and the p-side electrode are formed on the in-junction and the ip-junction, respectively. Therefore, in the solar cell described in Patent Document 1, since the i-type amorphous silicon layer can be a series resistance component inside the solar cell, the fill factor (F. F.) is increased as the series resistance increases. May decrease.
  • a main object of the embodiment disclosed herein is to provide a photoelectric conversion element capable of obtaining a high fill factor and a high open circuit voltage (Voc) and a method for manufacturing the photoelectric conversion element.
  • a photoelectric conversion element includes a semiconductor substrate having a first surface, an i-type amorphous semiconductor film on the first surface, and a first conductive on the i-type amorphous semiconductor film.
  • a body-type amorphous semiconductor film, a second conductor-type amorphous semiconductor film on a first surface, a first electrode on the first conductor-type amorphous semiconductor film, and a second conductor-type amorphous semiconductor film And the second electrode on the top.
  • the second conductivity type impurity concentration of the first portion in contact with the first surface is higher than the second conductivity type impurity concentration of the second portion in contact with the second electrode. Low and higher than the impurity concentration of the second conductivity type of the i-type amorphous semiconductor film.
  • a photoelectric conversion element capable of obtaining a high fill factor and a high open circuit voltage (Voc) and a method for manufacturing the photoelectric conversion element.
  • FIG. 6 is a schematic cross-sectional view of a heterojunction back contact solar cell according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view for explaining the method of manufacturing the heterojunction back contact solar cell according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view for explaining the method of manufacturing the heterojunction back contact solar cell according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view for explaining the method of manufacturing the heterojunction back contact solar cell according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view for explaining the method of manufacturing the heterojunction back contact solar cell according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view for explaining the method of manufacturing the heterojunction back contact solar cell according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view for explaining the method of manufacturing the heterojunction back contact solar cell according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view for explaining the method of manufacturing the heterojunction back contact solar cell according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view for explaining the method of manufacturing the heterojunction back contact solar cell according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view for explaining the method of manufacturing the heterojunction back contact solar cell according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view for explaining the method of manufacturing the heterojunction back contact solar cell according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view for explaining the method of manufacturing the heterojunction back contact solar cell according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view for explaining the method of manufacturing the heterojunction back contact solar cell according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view for explaining the method of manufacturing the heterojunction back contact solar cell according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view of a heterojunction back contact solar cell according to Embodiment 2.
  • FIG. 6 is a schematic cross-sectional view for explaining the method of manufacturing the heterojunction back contact solar cell according to Embodiment 2.
  • FIG. 6 is a schematic cross-sectional view for explaining the method of manufacturing the heterojunction back contact solar cell according to Embodiment 2.
  • FIG. 6 is a schematic cross-sectional view for explaining the method of manufacturing the heterojunction back contact solar cell according to Embodiment 2.
  • i-type means not only a completely intrinsic state but also a sufficiently low concentration (the n-type impurity concentration is less than 1 ⁇ 10 15 / cm 3 and the p-type impurity concentration is 1 ⁇ (Less than 10 15 / cm 3 ) means to include those in which n-type or p-type impurities are mixed.
  • n-type means a state where the n-type impurity concentration is 1 ⁇ 10 15 atoms / cm 3 or more
  • p-type means that the p-type impurity concentration is 1 ⁇ 10 15 atoms / cm 3 or more. Means the state.
  • the n-type impurity concentration and the p-type impurity concentration can be measured by, for example, secondary ion mass spectrometry.
  • FIG. 1 is a schematic cross-sectional view of a heterojunction back contact (HBC) type solar cell 10 (hereinafter simply referred to as an HBC type solar cell 10) as a photoelectric conversion element according to Embodiment 1.
  • the HBC type solar cell 10 includes a semiconductor substrate 1, an i-type amorphous semiconductor film 2, a p-type (first conductivity type) amorphous semiconductor film 3, and an n-type ( (Second conductivity type)
  • An amorphous semiconductor film 4, a first electrode 7, and a second electrode 8 are provided.
  • the semiconductor substrate 1 is, for example, an n-type single crystal silicon substrate.
  • the semiconductor substrate 1 may be a p-type single crystal silicon substrate.
  • the semiconductor substrate 1 has a first surface 1a and a second surface 1b located on the opposite side of the first surface 1a.
  • the first surface 1a is divided into two regions: a first region A1 in contact with the i-type amorphous semiconductor film 2 and a second region A2 in contact with the n-type amorphous semiconductor film 4. Yes.
  • the entire surface of the first surface 1a constitutes a heterojunction interface between the semiconductor substrate 1 and the amorphous semiconductor film (2, 4).
  • the second surface 1b is provided with irregularities (texture structure) and constitutes a light receiving surface.
  • the n-type amorphous semiconductor film 4 passes from the second region A2 of the first surface 1a of the semiconductor substrate 1 through the end surfaces of the i-type amorphous semiconductor film 2 and the p-type amorphous semiconductor film 3.
  • the p-type amorphous semiconductor film 3 adjacent to the end surface is formed to extend to the third surface 3a.
  • the n-type amorphous semiconductor film 4 includes a first portion 4A that is in contact (heterojunction) with the first surface 1a of the semiconductor substrate 1 on the second region A2, and an i-type amorphous semiconductor film.
  • n-type amorphous semiconductor film 4 is located on the opposite side of the first portion 4A in the direction perpendicular to the first surface 1a, and the first portion 4A, the third portion 4C, and the fourth portion. It has the 2nd part 4B formed spaced apart from each of 4D.
  • a second electrode 8 is formed on the second portion 4B.
  • the n-type impurity concentration of the first portion 4A is lower than the n-type impurity concentration of the second portion 4B.
  • the n-type impurity concentration of the n-type amorphous semiconductor film 4 increases continuously as it approaches the second electrode 8 from the first surface 1a (as it approaches the second portion 4B from the first portion 4A). Yes. Further, the n-type impurity concentration of the third portion 4C and the fourth portion 4D located on the semiconductor substrate 1 side with respect to the second portion 4B is lower than the n-type impurity concentration of the second portion 4B.
  • the n-type impurity concentration of the n-type amorphous semiconductor film 4 continuously increases from the third portion 4C to the second portion 4B, and from the fourth portion 4D to the second portion 4B. It gets higher continuously as it gets closer.
  • the n-type impurity concentrations of the first portion 4A, the third portion 4C, and the fourth portion 4D are approximately the same.
  • the n-type impurity concentration of the first portion 4A, the third portion 4C, and the fourth portion 4D is, for example, 1 ⁇ 10 15 pieces / cm 3 or more and 1 ⁇ 10 17 pieces / cm 3 or less, preferably 1 ⁇ 10 15 pieces / cm 3 or more and 1 ⁇ 10 16 pieces / cm 3 or less.
  • the n-type impurity concentration of the second portion 4B is, for example, higher than 1 ⁇ 10 17 pieces / cm 3 and 1 ⁇ 10 20 pieces / cm 3 or less, preferably 1 ⁇ 10 19 pieces / cm 3 or more and 1 ⁇ 10 6. 20 / cm 3 or less. That is, the n-type impurity concentration of the n-type amorphous semiconductor film 4 continuously changes in the range of 1 ⁇ 10 15 pieces / cm 3 or more and 1 ⁇ 10 20 pieces / cm 3 or less.
  • the film thickness of the n-type amorphous semiconductor film 4 is, for example, not less than 3 nm and not more than 30 nm, preferably not less than 5 nm and not more than 25 nm.
  • the first electrode 7 is formed on the p-type amorphous semiconductor film 3.
  • the second electrode 8 is formed on the second portion 4B of the n-type amorphous semiconductor film 4 as described above.
  • each of the amorphous semiconductor films (2, 3, 4) is, for example, an amorphous silicon film.
  • amorphous silicon includes not only amorphous silicon in which dangling bonds of silicon atoms are not terminated with hydrogen, but also silicon atoms such as hydrogenated amorphous silicon. Also included are those in which dangling bonds are terminated with hydrogen or the like.
  • FIGS. 2 to 13 are schematic cross-sectional views for explaining the method for manufacturing the solar cell according to the first embodiment.
  • a semiconductor substrate 1 is prepared.
  • the semiconductor substrate 1 is first cut out from an n-type silicon single crystal ingot (see FIG. 2).
  • a protective film 21 is formed on the first surface 1a of the semiconductor substrate 1 (see FIG. 3).
  • the main surface on the other side of the semiconductor substrate 1 on which the protective film 21 is not formed is texture-etched (see FIG. 4).
  • the protective film 21 is removed (see FIG. 5). In this way, as shown in FIG. 5, the semiconductor substrate 1 having the first surface 1 a and the second surface 1 b in which the texture structure is formed on the semiconductor substrate 1 is prepared.
  • an i-type amorphous semiconductor film 2 is formed on the first surface 1 a of the semiconductor substrate 1.
  • the method for forming i-type amorphous semiconductor film 2 is not particularly limited, but for example, a plasma CVD (Chemical Vapor Deposition) method can be used.
  • a plasma CVD Chemical Vapor Deposition
  • an i-type amorphous silicon film can be suitably used.
  • a p-type amorphous semiconductor film 3 is formed on the i-type amorphous semiconductor film 2.
  • the method for forming the p-type amorphous semiconductor film 3 is not particularly limited, but for example, a plasma CVD method can be used.
  • a p-type amorphous semiconductor film 3 a p-type amorphous silicon film can be suitably used.
  • boron (B) can be used as the p-type impurity contained in the p-type amorphous semiconductor film 3.
  • an etching mask 31 is formed on the p-type amorphous semiconductor film 3.
  • the etching mask 31 has an opening formed at a position where the stacked body of the i-type amorphous semiconductor film 2 and the p-type amorphous semiconductor film 3 is etched in the thickness direction (direction perpendicular to the first surface 1a).
  • the etching mask 31 covers a region that overlaps with a region that should become the first region A1, and a region that should become the second region A2.
  • An opening is provided in the overlapping region.
  • the etching mask 31 is made of, for example, a photoresist.
  • the stacked body of the i-type amorphous semiconductor film 2 and the p-type amorphous semiconductor film 3 is etched in the thickness direction using the etching mask 31 as a mask.
  • the etching mask 31 is removed.
  • an n-type amorphous semiconductor film 4 is formed. Specifically, the n-type amorphous semiconductor film 4 is formed so as to cover the semiconductor substrate 1 and the stacked body of the i-type amorphous semiconductor film 2 and the p-type amorphous semiconductor film 3.
  • the method for forming n-type amorphous semiconductor film 4 is not particularly limited, but for example, a plasma CVD method can be used.
  • an n-type amorphous semiconductor film an n-type amorphous silicon film can be suitably used.
  • phosphorus (P) can be used as the n-type impurity contained in the n-type amorphous semiconductor film 4.
  • the flow rate ratio of the dopant gas to the source gas is changed so as to increase continuously after the film formation is started.
  • the n-type impurity concentration is higher in the portion (4B) formed later than the portion (4A) formed first in the n-type amorphous semiconductor film 4.
  • the n-type impurity concentration of the first portion 4A is lower than the n-type impurity concentration of the second portion 4B and higher than the n-type impurity concentration of the i-type amorphous semiconductor film 2.
  • a crystalline semiconductor film 4 is formed.
  • well-known gas can be used for source gas and dopant gas, respectively.
  • an etching mask 32 is formed only on a portion where the n-type amorphous semiconductor film 4 is left on the first surface 1 a of the semiconductor substrate 1.
  • the etching mask 32 is formed on the n-type amorphous semiconductor film 4 formed on the second region A2 and on a partial region of the first region A1 adjacent to the second region A2.
  • the opening of the etching mask 32 is formed so as to expose the n-type amorphous semiconductor film 4 formed on the other region other than the partial region in the first region A1.
  • the n-type amorphous semiconductor film 4 is etched in the thickness direction using the etching mask 32 as a mask. Thereby, as shown in FIG. 13, a part of the p-type amorphous semiconductor film 3 is exposed on the first surface 1 a of the semiconductor substrate 1. Thereafter, the etching mask 32 is removed.
  • the first electrode 7 is formed so as to be in contact with the p-type amorphous semiconductor film 3 exposed on the first region A1. Further, the second electrode 8 is formed so as to be in contact with the n-type amorphous semiconductor film 4 exposed on the first region A1.
  • the HBC type solar cell 10 as the photoelectric conversion element according to Embodiment 1 can be manufactured.
  • the n-type impurity concentration of the first portion 4 ⁇ / b> A in contact with the first surface 1 a is the n-type impurity concentration of the second portion 4 ⁇ / b> B in contact with the second electrode 8.
  • the impurity concentration is lower.
  • the n-type impurity concentration of the first portion 4 A of the n-type amorphous semiconductor film 4 is higher than the n-type impurity concentration of the i-type amorphous semiconductor film 2.
  • the contact resistance between the n-type amorphous semiconductor film 4 and the second electrode 8 can be lowered. Furthermore, since the first portion 4A having an n-type impurity concentration that is higher than that of the i-type amorphous semiconductor film 2 and lower than that of the second portion 4B is in contact with the semiconductor substrate 1, an n-type amorphous film is formed. The contact resistance between the quality semiconductor film 4 and the semiconductor substrate 1 can be lowered.
  • the HBC solar cell 10 is compared with the conventional HBC solar cell in which the semiconductor substrate and the second electrode are connected via the i-type amorphous semiconductor film and the n-type amorphous semiconductor film.
  • the n-type impurity concentration of the first portion 4A of the n-type amorphous semiconductor film 4 is the n-type impurity concentration of the i-type amorphous semiconductor film 2. Is higher than the n-type impurity concentration of the second portion 4B.
  • both the i-type amorphous semiconductor film 2 and the n-type amorphous semiconductor film 4 have high passivation properties required for the heterojunction interface with the semiconductor substrate 1. ing.
  • the HBC type solar battery cell 10 can exhibit a high fill factor by reducing the series resistance of the semiconductor substrate 1 and the second electrode 8, and at the same time, the amorphous semiconductor film (2, 4) is formed with the semiconductor substrate 1. Therefore, a high open circuit voltage (Voc) can be obtained. As a result, the HBC type solar cell 10 has higher photoelectric conversion efficiency than the conventional HBC solar cell.
  • the n-type amorphous semiconductor film 4 is in contact with each of the i-type amorphous semiconductor film 2 and the p-type amorphous semiconductor film 3.
  • the n-type impurity concentration of the third portion 4C in contact with the i-type amorphous semiconductor film 2 and the fourth portion 4D in contact with the p-type amorphous semiconductor film 3 is Is lower than the n-type impurity concentration of the second portion 4B in contact with the second electrode 8 and higher than the n-type impurity concentration of the i-type amorphous semiconductor film 2.
  • Such an HBC type solar battery cell 10 has a sufficient contact resistance with the first electrode 7 even if the p-type amorphous semiconductor film 3 and the n-type amorphous semiconductor film 4 are provided adjacent to each other.
  • the p-type amorphous semiconductor film 3 having a p-type impurity concentration that can be made small and the n-type non-concentration having an n-type impurity concentration that can make the contact resistance between the second electrode 8 sufficiently small.
  • a portion in contact with the crystalline semiconductor film 4 does not occur or is sufficiently small.
  • the n-type impurity concentration of the n-type amorphous semiconductor film 4 continuously increases from the first surface 1 a toward the second electrode 8. Yes.
  • Such an HBC type solar cell 10 can be easily manufactured by continuously increasing the flow rate ratio of the dopant gas to the source gas.
  • the n-type impurity concentration of the first portion 4A is 1 ⁇ 10 15 / cm 3 or more and 1 ⁇ 10 17 / cm 3 or less.
  • the n-type impurity concentration of the first portion 4A is less than 1 ⁇ 10 15 / cm 3 , a conventional solar cell in which an i-type amorphous semiconductor film is formed on the entire surface of the semiconductor substrate; Similarly, the contact resistance with the semiconductor substrate is increased.
  • the n-type impurity concentration of the first portion 4A exceeds 1 ⁇ 10 17 / cm 3 , the passivation property due to the n-type amorphous semiconductor film 4 is lowered and the open circuit voltage (Voc) is low.
  • the HBC solar cell 10 can express a high fill factor and at the same time obtain a high open circuit voltage (Voc). Can do.
  • the HBC solar cell 10 includes an n-type (second conductivity type) semiconductor substrate 1 and an n-type amorphous semiconductor, wherein the first conductivity type is p-type and the second conductivity type is n-type.
  • the film 4 is provided, the p-type (first conductivity type) semiconductor substrate 1 and the n-type amorphous semiconductor film 4 may be provided.
  • the HBC type solar cell 20 according to the second embodiment basically has the same configuration as the HBC type solar cell 10 according to the first embodiment, but is an n-type (second conductor type) amorphous semiconductor.
  • the n-type impurity concentration of the film 4 is different in that it gradually increases from the first surface 1 a toward the second electrode 8.
  • the n-type amorphous semiconductor film 4 includes a first n-type amorphous semiconductor film 5 having a first portion 4A, a third portion 4C, and a fourth portion 4D. And the second n-type amorphous semiconductor film 6 having the second portion 4B, and these are laminated.
  • the n-type impurity concentration of the first n-type amorphous semiconductor film 5 is equal to the n-type impurity concentration of the first portion 4A in the first embodiment, for example, 1 ⁇ 10 15 pieces / cm 3 or more 1 ⁇ 10 17 pieces / cm 3 or less, preferably 1 ⁇ 10 15 pieces / cm 3 or more and 1 ⁇ 10 16 pieces / cm 3 or less.
  • the impurity concentration of second n-type amorphous semiconductor film 6 is equivalent to the n-type impurity concentration of second portion 4B in the first embodiment, and is higher than 1 ⁇ 10 17 / cm 3 , for example, 1 ⁇ . 10 20 pieces / cm 3 or less, preferably 1 ⁇ 10 19 pieces / cm 3 or more and 1 ⁇ 10 20 pieces / cm 3 or less. That is, the n-type impurity concentration of the n-type amorphous semiconductor film 4 changes stepwise (two steps) in the range of 1 ⁇ 10 15 pieces / cm 3 to 1 ⁇ 10 20 pieces / cm 3 .
  • the HBC type solar cell 20 according to the second embodiment basically has the same configuration as the method for manufacturing the HBC type solar cell 10 according to the first embodiment, but the n-type amorphous semiconductor film 4 is provided.
  • the step of forming is different in that it includes a step of forming the n-type amorphous semiconductor film 4 so that the flow rate ratio of the dopant gas to the source gas increases stepwise.
  • the i-type amorphous semiconductor film 2 and the p-type amorphous semiconductor film 3 as shown in FIG. 10 are partially formed as in the method of manufacturing the HBC solar cell 10 according to the first embodiment.
  • the semiconductor substrate 1 that has been removed is prepared.
  • a first n-type amorphous semiconductor film 5 is formed as shown in FIG. 15, and a second n-type amorphous semiconductor film 6 is continuously formed as shown in FIG. At this time, the film is formed by changing the flow rate ratio of the dopant gas to the source gas so as to increase stepwise.
  • the second n-type amorphous semiconductor film 6 formed after the first n-type amorphous semiconductor film 5 formed first is relatively n-type impurity. The concentration becomes high.
  • the first n-type amorphous semiconductor film 5 is an n-type amorphous semiconductor film.
  • 4 includes a first portion 4A in contact with the first surface 1a, a third portion 4C in contact with the i-type amorphous semiconductor film 2, and a fourth portion 4D in contact with the p-type amorphous semiconductor film 4. Yes.
  • the second n-type amorphous semiconductor film 6 has a second portion 4B in the n-type amorphous semiconductor film 4.
  • the HBC type solar cell 20 as the photoelectric conversion element according to the second embodiment as shown in FIG. 14 is performed by performing the same process as the manufacturing method of the HBC type solar cell 10 according to the first embodiment. Can be manufactured.
  • the n-type impurity concentration of the n-type amorphous semiconductor film 4 increases stepwise from the first surface 1 a toward the second electrode 8. That is, the n-type amorphous semiconductor film 4 includes the first n-type amorphous semiconductor film 5 having an n-type impurity concentration higher than that of the i-type amorphous semiconductor film 2 and the n-type impurity concentration of the first n-type amorphous semiconductor film 5.
  • the second n-type amorphous semiconductor film 6 is higher than the n-type amorphous semiconductor film 5 and the first n-type amorphous semiconductor film 5 is in contact with the first surface 1a. ing. Since it has basically the same configuration as the HBC type solar battery cell 10 according to Embodiment 1, the same effects as the HBC type solar battery cell 10 can be achieved.
  • the HBC type solar battery cell 20 can exhibit a high fill factor and at the same time has a high passivation required for the heterojunction interface between the semiconductor substrate 1 and the amorphous semiconductor film (2, 4). Therefore, a high open circuit voltage (Voc) can be obtained. As a result, the HBC solar cell 20 has a higher photoelectric conversion efficiency than the conventional HBC solar cell.
  • the n-type amorphous semiconductor film 4 has a structure in which two layers having different n-type impurity concentrations are stacked.
  • the present invention is not limited to this, and the n-type impurity concentration is different.
  • the n-type amorphous semiconductor film 4 has a third n-type amorphous semiconductor layer as an intermediate layer between the first n-type amorphous semiconductor film 5 and the second n-type amorphous semiconductor film 6.
  • the n-type impurity concentration of the third n-type amorphous semiconductor film is higher than that of the first n-type amorphous semiconductor film 5 and lower than that of the second n-type amorphous semiconductor film 6. Is preferred.
  • the HBC type solar cell according to the third embodiment basically has the same configuration as the HBC type solar cell 10 according to the first embodiment, but the first conductivity type is n-type and the second conductivity type is the same.
  • the p-type is different in that a p-type (second conductivity type) semiconductor substrate and a p-type amorphous semiconductor film 4 as a second conductivity type amorphous film are provided.
  • the HBC type solar cell according to Embodiment 3 includes an n type semiconductor substrate 1, a p type amorphous semiconductor film 3, and an n type amorphous semiconductor in the HBC type solar cell 10 shown in FIG. Instead of the film 4, a p-type semiconductor substrate 1, an n-type amorphous semiconductor film 3, and a p-type amorphous semiconductor film 4 are provided.
  • the HBC solar cell according to Embodiment 3 includes a semiconductor substrate 1 having a first surface 1a, an i-type amorphous semiconductor film 2 on the first surface 1a, and an i-type amorphous semiconductor film 2.
  • the p-type impurity concentration of the first portion 4A in contact with the first surface 1a is lower than the p-type impurity concentration of the second portion 4B in contact with the second electrode 8.
  • the p-type impurity concentration of the p-type amorphous semiconductor film 4 is continuously increased from the first surface 1 a toward the second electrode 8.
  • the p-type amorphous semiconductor film 4 can be easily formed by continuously increasing the flow rate ratio of the dopant gas to the source gas.
  • the HBC type solar cell according to the third embodiment is different from the HBC type solar cell 10 according to the first embodiment only in that the carriers are holes instead of electrons. The same effect as the solar cell 10 can be obtained.
  • the HBC type solar cell according to the fourth embodiment basically has the same configuration as the HBC type solar cell 20 according to the second embodiment, but the first conductivity type is n-type and the second conductivity type is the same.
  • the p-type is different in that a p-type (second conductivity type) semiconductor substrate and a p-type amorphous semiconductor film 4 as a second conductivity type amorphous film are provided.
  • the HBC type solar cell according to Embodiment 4 includes the n-type semiconductor substrate 1, the p-type amorphous semiconductor film 3, and the first n-type amorphous semiconductor in the HBC type solar cell 20 shown in FIG.
  • the p-type semiconductor substrate 1, the n-type amorphous semiconductor film 3, and A p-type amorphous semiconductor film 4 formed by laminating a first p-type amorphous semiconductor film 5 and a second p-type amorphous semiconductor film 6 is provided.
  • the HBC solar cell according to Embodiment 4 includes a semiconductor substrate 1 having a first surface 1a, an i-type amorphous semiconductor film 2 on the first surface 1a, and an i-type amorphous semiconductor film 2.
  • the p-type impurity concentration of the first portion 4A in contact with the first surface 1a is lower than the p-type impurity concentration of the second portion 4B in contact with the second electrode 8.
  • the p-type impurity concentration of the p-type amorphous semiconductor film 4 increases stepwise from the first surface 1 a toward the second electrode 8.
  • the p-type amorphous semiconductor film 4 can be easily formed by gradually increasing the flow rate ratio of the dopant gas to the source gas.
  • the HBC type solar cell according to the fourth embodiment is different from the HBC type solar cell 20 according to the second embodiment only in that the carriers are holes instead of electrons. The same effect as the solar cell 20 can be obtained.
  • a photoelectric conversion element has a first surface, a semiconductor substrate of a first conductivity type or a second conductivity type, and an i-type amorphous semiconductor on the first surface.
  • a first conductive type amorphous semiconductor film on the i-type amorphous semiconductor film; a second conductive type amorphous semiconductor film on the first surface; and a first conductive type amorphous semiconductor film A first electrode and a second electrode on the second conductive type amorphous semiconductor film.
  • the second conductivity type impurity concentration of the first portion in contact with the first surface is higher than the second conductivity type impurity concentration of the second portion in contact with the second electrode. Low and higher than the impurity concentration of the second conductivity type of the i-type amorphous semiconductor film.
  • FF fill factor
  • the impurity concentration of the second conductivity type of the second conductivity type amorphous semiconductor film becomes higher as it approaches the second electrode from the first surface. Is preferred.
  • the series resistance between the semiconductor substrate and the second electrode can be lowered, and both of the i-type amorphous semiconductor film and the n-type amorphous semiconductor film are in contact with the semiconductor substrate. It can have high passivation required for the heterojunction interface. According to such a photoelectric conversion element, a high fill factor can be expressed, and at the same time, a high open circuit voltage (Voc) can be obtained.
  • the second conductivity type impurity concentration of the second conductivity type amorphous semiconductor film is continuously increased from the first surface toward the second electrode. Preferably it is.
  • the series resistance between the semiconductor substrate and the second electrode can be lowered, and both of the i-type amorphous semiconductor film and the n-type amorphous semiconductor film are in contact with the semiconductor substrate. It can have high passivation required for the heterojunction interface. According to such a photoelectric conversion element, a high fill factor can be expressed, and at the same time, a high open circuit voltage (Voc) can be obtained.
  • the second conductivity type impurity concentration of the second conductivity type amorphous semiconductor film is increased stepwise from the first surface toward the second electrode. Preferably it is.
  • the series resistance between the semiconductor substrate and the second electrode can be lowered, and both of the i-type amorphous semiconductor film and the n-type amorphous semiconductor film are in contact with the semiconductor substrate. It can have high passivation required for the heterojunction interface. According to such a photoelectric conversion element, a high fill factor can be expressed, and at the same time, a high open circuit voltage (Voc) can be obtained.
  • the second conductive type amorphous semiconductor film is in contact with each of the i type amorphous semiconductor film and the first conductive type amorphous semiconductor film.
  • the impurity concentration of the second conductivity type of the third portion in contact with the i-type amorphous semiconductor film and the fourth portion in contact with the first conductivity type amorphous semiconductor film is In any case, it is preferable that the impurity concentration is lower than the second conductivity type impurity concentration of the second portion and higher than the second conductivity type impurity concentration of the i-type amorphous semiconductor film.
  • the impurity concentration of the second conductivity type of the first portion is 1 ⁇ 10 15 pieces / cm 3 or more and 1 ⁇ 10 17 pieces / cm 3 or less. More preferably, it is 1 ⁇ 10 15 pieces / cm 3 or more and 1 ⁇ 10 16 pieces / cm 3 or less.
  • Such a photoelectric conversion element has a high open-circuit voltage (Voc) because carrier recombination at the heterojunction interface between the semiconductor substrate and the second conductive type amorphous semiconductor film is suppressed.
  • Such a photoelectric conversion element can reduce the series resistance between the semiconductor substrate and the second electrode connected to the semiconductor substrate via the second conductive amorphous semiconductor film. High expression factor can be expressed.
  • the first conductivity type may be n-type.
  • the second conductivity type amorphous semiconductor film is configured as a p-type amorphous semiconductor film. Even if it does in this way, it can be set as a photoelectric conversion element with a high fill factor and a high open circuit voltage (Voc).
  • the first conductivity type may be a p-type.
  • the second conductivity type amorphous semiconductor film is configured as an n-type amorphous semiconductor film. Even if it does in this way, it can be set as a photoelectric conversion element with a high fill factor and a high open circuit voltage (Voc).
  • a method of manufacturing a photoelectric conversion element includes a step of forming an i-type amorphous semiconductor film on a first surface of a semiconductor substrate of a first conductivity type or a second conductivity type. Forming a first conductive amorphous semiconductor film on the i-type amorphous semiconductor film; partially removing the i-type amorphous semiconductor film and the first conductive amorphous semiconductor film; A step of forming a second conductive type amorphous semiconductor film on the first surface side after the step of partially removing the i-type amorphous semiconductor film and the first conductive type amorphous semiconductor film; A step of partially removing the second conductive type amorphous semiconductor film formed on the first conductive type amorphous semiconductor film, and a step of forming the first electrode on the first conductive type amorphous semiconductor film And a step of forming a second electrode on the second conductivity type amorphous semiconductor film.
  • the step of forming the second conductive type amorphous semiconductor film is performed by using a source gas and a dopant gas by chemical vapor deposition so that the flow rate ratio of the dopant gas to the source gas increases continuously or stepwise. Forming a two-conductivity-type amorphous semiconductor film.
  • the n-type impurity concentration of the first portion 4A is lower than the n-type impurity concentration of the second portion 4B and higher than the n-type impurity concentration of the i-type amorphous semiconductor film 2.
  • the amorphous semiconductor film 4 can be easily formed. As a result, the photoelectric conversion element of the above embodiment can be easily manufactured.
  • the individually disclosed embodiments can be used for a heterojunction back contact cell and a method for manufacturing a heterojunction back contact cell, and particularly suitable for a solar cell such as a heterojunction back contact cell and a method for manufacturing the same. Can be used.
  • SYMBOLS 1 Semiconductor substrate, 1a 1st surface, 1b 2nd surface, 2 i-type amorphous semiconductor film, 3rd 1st conductivity type amorphous semiconductor film, 4th 2nd conductivity type amorphous semiconductor film, 5th 1st Second conductive type amorphous semiconductor film, 6 second second conductive type amorphous semiconductor film, 3a third surface, 4A first part, 4B second part, 4C third part, 4D 4th part, 7 1st electrode, 8 2nd electrode, 10, 20 HBC type solar cell (photoelectric conversion element), 21 protective film, 31, 32 etching mask.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 高い曲線因子および高い開放電圧(Voc)を得ることができる光電変換素子およびその製造方法を提供する。第1の面(1a)を有する半導体基板(1)と、第1の面(1a)上のi型非晶質半導体膜(2)と、i型非晶質半導体膜(2)上の第1導電体型非晶質半導体膜(3)と、第1の面(1a)上の第2導電体型非晶質半導体膜(4)と、第1導電体型非晶質半導体膜(3)上の第1電極(7)と、第2導電体型非晶質半導体膜(4)上の第2電極(8)とを備える。第2導電体型非晶質半導体膜(4)において、第1の面(1a)と接する第1の部分(4A)の第2導電型の不純物濃度は、第2電極(8)と接する第2の部分(4B)の第2導電型の不純物濃度よりも低く、かつ、i型非晶質半導体膜(2)の第2導電型の不純物濃度よりも高い。

Description

光電変換素子およびその製造方法
 本発明は、光電変換素子およびその製造方法に関する。
 太陽光エネルギを電気エネルギに直接変換する太陽電池は、近年、特に、地球環境問題の観点から、次世代のエネルギ源としての期待が急激に高まっている。現在、最も多く製造および販売されている太陽電池は、太陽光が入射する側の面である受光面と受光面の反対側である裏面とにそれぞれ電極が形成された構造のものである。
 一方、裏面のみに電極が形成された構造(バックコンタクト構造)の太陽電池の開発も進められている。
 さらに、バックコンタクト構造の太陽電池においては、シリコン結晶と電極との間にシリコン結晶とヘテロ接合された非晶質(アモルファス)シリコンを介在させた構造(ヘテロ接合バックコンタクト構造)を有する太陽電池の開発が進められている。
 特開2010-80887号公報には、n型アモルファスシリコン層とp型アモルファスシリコン層とを実質的に真性なi型アモルファスシリコン層で電気的に分離した太陽電池が記載されている。
特開2010-80887号公報
 ヘテロ接合バックコンタクト構造を有する太陽電池(ヘテロ接合バックコンタクト型太陽電池)において、ヘテロ接合界面でのキャリア再結合を抑制して高い開放電圧(Voc)を実現するためには、当該界面に対し高い不活性化性能(パッシベーション性)を有する膜を用いてヘテロ接合を形成することが求められている。特許文献1に記載されているような真性なi型アモルファスシリコン層は、シリコン結晶と接合されたときに高いパッシベーション性を有していることが知られている。
 しかしながら、特許文献1に記載の太陽電池は、シリコン基板の裏面上に、真性なi型アモルファスシリコン層とn型アモルファスシリコン層とが積層されてなるin接合と、真性な他のi型アモルファスシリコン層とp型アモルファスシリコン層とが積層されてなるip接合とが同時に形成されている。n側電極およびp側電極はin接合およびip接合上にそれぞれ形成されている。そのため、特許文献1に記載の太陽電池は、i型アモルファスシリコン層が太陽電池内部の直列抵抗成分になり得るため、該直列抵抗の増大に伴って曲線因子(フィルファクター,F.F.)が低下するおそれがある。
 ここで開示された実施形態は、上記のような課題を解決するためになされたものである。ここで開示された実施形態の主たる目的は、高い曲線因子および高い開放電圧(Voc)を得ることができる光電変換素子およびその製造方法を提供することにある。
 一実施の形態によれば、光電変換素子は、第1の面を有する半導体基板と、第1の面上のi型非晶質半導体膜と、i型非晶質半導体膜上の第1導電体型非晶質半導体膜と、第1の面上の第2導電体型非晶質半導体膜と、第1導電体型非晶質半導体膜上の第1電極と、第2導電体型非晶質半導体膜上の第2電極とを備える。第2導電体型非晶質半導体膜において、第1の面と接する第1の部分の第2導電型の不純物濃度は、第2電極と接する第2の部分の第2導電型の不純物濃度よりも低く、かつ、i型非晶質半導体膜の第2導電型の不純物濃度よりも高い。
 上記一実施の形態によれば、高い曲線因子および高い開放電圧(Voc)を得ることができる光電変換素子およびその製造方法を提供することができる。
実施の形態1に係るヘテロ接合バックコンタクト型太陽電池セルの断面模式図である。 実施の形態1に係るヘテロ接合バックコンタクト型太陽電池セルの製造方法を説明するための断面模式図である。 実施の形態1に係るヘテロ接合バックコンタクト型太陽電池セルの製造方法を説明するための断面模式図である。 実施の形態1に係るヘテロ接合バックコンタクト型太陽電池セルの製造方法を説明するための断面模式図である。 実施の形態1に係るヘテロ接合バックコンタクト型太陽電池セルの製造方法を説明するための断面模式図である。 実施の形態1に係るヘテロ接合バックコンタクト型太陽電池セルの製造方法を説明するための断面模式図である。 実施の形態1に係るヘテロ接合バックコンタクト型太陽電池セルの製造方法を説明するための断面模式図である。 実施の形態1に係るヘテロ接合バックコンタクト型太陽電池セルの製造方法を説明するための断面模式図である。 実施の形態1に係るヘテロ接合バックコンタクト型太陽電池セルの製造方法を説明するための断面模式図である。 実施の形態1に係るヘテロ接合バックコンタクト型太陽電池セルの製造方法を説明するための断面模式図である。 実施の形態1に係るヘテロ接合バックコンタクト型太陽電池セルの製造方法を説明するための断面模式図である。 実施の形態1に係るヘテロ接合バックコンタクト型太陽電池セルの製造方法を説明するための断面模式図である。 実施の形態1に係るヘテロ接合バックコンタクト型太陽電池セルの製造方法を説明するための断面模式図である。 実施の形態2に係るヘテロ接合バックコンタクト型太陽電池セルの断面模式図である。 実施の形態2に係るヘテロ接合バックコンタクト型太陽電池セルの製造方法を説明するための断面模式図である。 実施の形態2に係るヘテロ接合バックコンタクト型太陽電池セルの製造方法を説明するための断面模式図である。
 以下、図面を参照して、本発明の実施の形態について説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。
 なお、本明細書において「i型」とは、完全な真性の状態だけでなく、十分に低濃度(n型不純物濃度が1×1015個/cm未満、かつp型不純物濃度が1×1015個/cm未満)であればn型またはp型の不純物が混入された状態のものも含む意味である。また、本明細書において「n型」はn型不純物濃度が1×1015個/cm以上の状態を意味し、「p型」はp型不純物濃度が1×1015個/cm以上の状態を意味する。n型不純物濃度およびp型不純物濃度は、たとえば二次イオン質量分析法によって測定することができる。
 (実施の形態1)
 図1に、実施の形態1に係る光電変換素子としてのヘテロ接合バックコンタクト(Heterojunction Back Contact:HBC)型太陽電池セル10(以下、単にHBC型太陽電池セル10とする)の断面模式図を示す。図1に示されるように、HBC型太陽電池セル10は、半導体基板1と、i型非晶質半導体膜2と、p型(第1導電型)非晶質半導体膜3と、n型(第2導電型)非晶質半導体膜4と、第1電極7と、第2電極8とを備えている。
 半導体基板1は、たとえばn型単結晶シリコン基板である。なお、半導体基板1は、p型単結晶シリコン基板であってもよい。半導体基板1は、第1の面1aと、第1の面1aと反対側に位置する第2の面1bとを有している。第1の面1aは、i型非晶質半導体膜2と接している第1領域A1と、n型非晶質半導体膜4と接している第2領域A2との2つの領域に分けられている。言い換えると、HBC型太陽電池セル10において、第1の面1aの全面が半導体基板1と非晶質半導体膜(2,4)とのヘテロ接合の界面を構成している。第2の面1bは、凹凸(テクスチャ構造)が形成されており、受光面を構成している。
 n型非晶質半導体膜4は、半導体基板1の第1の面1aの第2領域A2上から、i型非晶質半導体膜2およびp型非晶質半導体膜3の上記端面上を経て、当該端面に隣接するp型非晶質半導体膜3の第3の面3a上まで延在するように形成されている。n型非晶質半導体膜4は、第2領域A2上において半導体基板1の第1の面1aと接している(ヘテロ接合している)第1の部分4Aと、i型非晶質半導体膜2の上記端面と接している第3の部分4Cと、p型非晶質半導体膜3の上記端面および第3の面3aと接している第4の部分4Dとを有している。さらにn型非晶質半導体膜4は、第1の面1aに垂直な方向において第1の部分4Aの反対側に位置し、かつ第1の部分4A、第3の部分4Cおよび第4の部分4Dのそれぞれから間隔を空けて形成されている第2の部分4Bを有している。第2の部分4B上には第2電極8が形成されている。
 n型非晶質半導体膜4において、第1の部分4Aのn型不純物濃度は、第2の部分4Bのn型不純物濃度よりも低い。n型非晶質半導体膜4のn型不純物濃度は、第1の面1aから第2電極8に近づくにつれて(第1の部分4Aから第2の部分4Bに近づくにつれて)連続的に高くなっている。また、第2の部分4Bよりも半導体基板1側に位置する第3の部分4Cおよび第4の部分4Dのn型不純物濃度は、第2の部分4Bのn型不純物濃度よりも低い。n型非晶質半導体膜4のn型不純物濃度は、第3の部分4Cから第2の部分4Bに近づくにつれて連続的に高くなっており、かつ第4の部分4Dから第2の部分4Bに近づくにつれて連続的に高くなっている。第1の部分4A、第3の部分4Cおよび第4の部分4Dのn型不純物濃度は、それぞれ同程度である。
 第1の部分4A,第3の部分4Cおよび第4の部分4Dのn型不純物濃度は、たとえば1×1015個/cm以上1×1017個/cm以下であり、好ましくは1×1015個/cm以上1×1016個/cm以下である。第2の部分4Bのn型不純物濃度は、たとえば1×1017個/cmよりも高く1×1020個/cm以下であり、好ましくは1×1019個/cm以上1×1020個/cm以下である。つまり、n型非晶質半導体膜4のn型不純物濃度は、1×1015個/cm以上1×1020個/cm以下の範囲で連続的に変化している。
 n型非晶質半導体膜4の膜厚は、たとえば3nm以上30nm以下であり、好ましくは5nm以上25nm以下である。
 第1電極7はp型非晶質半導体膜3上に形成されている。第2電極8は上述のようにn型非晶質半導体膜4の第2の部分4B上に形成されている。
 なお、非晶質半導体膜(2,3,4)は、たとえばそれぞれ非晶質シリコン膜である。本明細書において「非晶質シリコン」には、シリコン原子の未結合手(ダングリングボンド)が水素で終端されていない非晶質シリコンだけでなく、水素化非晶質シリコンなどのシリコン原子の未結合手が水素等で終端されたものも含まれるものとする。
 次に、実施の形態1に係る太陽電池の製造方法について説明する。図2~図13に、実施の形態1に係る太陽電池の製造方法を説明するための断面模式図を示す。
 まず、図2~図5に示されるように、半導体基板1が準備される。半導体基板1はまずn型シリコン単結晶インゴットから切り出される(図2参照)。次に、半導体基板1の第1の面1a上に保護膜21が形成される(図3参照)。次に、保護膜21が形成されていない半導体基板1の他方の側の主面がテクスチャエッチングされる(図4参照)。次に、保護膜21が除去される(図5参照)。このようにして、図5に示されるように、第1の面1aと、半導体基板1にテクスチャ構造が形成された第2の面1bとを有する半導体基板1が準備される。
 次に、図6に示されるように、半導体基板1の第1の面1a上にi型非晶質半導体膜2が形成される。i型非晶質半導体膜2の形成方法は特に限定されないが、たとえばプラズマCVD(Chemical Vapor Deposition)法を用いることができる。i型非晶質半導体膜2としては、i型非晶質シリコン膜を好適に用いることができる。
 次に、図7に示されるように、i型非晶質半導体膜2上にp型非晶質半導体膜3を形成する。p型非晶質半導体膜3の形成方法は特に限定されないが、たとえばプラズマCVD法を用いることができる。p型非晶質半導体膜3としては、p型非晶質シリコン膜を好適に用いることができる。なお、p型非晶質半導体膜3に含まれるp型不純物としては、たとえばボロン(B)を用いることができる。
 次に、i型非晶質半導体膜2およびp型非晶質半導体膜3を部分的に除去する。具体的には、まず図8に示されるように、p型非晶質半導体膜3上にエッチングマスク31を形成する。エッチングマスク31は、i型非晶質半導体膜2とp型非晶質半導体膜3との積層体を厚さ方向(第1の面1aに垂直な方向)にエッチングする箇所に開口部が形成されている。言い換えると、エッチングマスク31は、p型非晶質半導体膜3を平面視したときに、第1領域A1となるべき領域と重なる領域を覆っており、かつ、第2領域A2となるべき領域と重なる領域に開口部を有している。エッチングマスク31は、たとえばフォトレジスト等からなる。
 次に、エッチングマスク31をマスクとして、i型非晶質半導体膜2とp型非晶質半導体膜3との積層体を厚さ方向にエッチングする。これにより、図9に示されるように、半導体基板1の第1の面1aにおいて第2領域A2となるべき一部を露出させる。その後、図10に示されるように、エッチングマスク31が除去される。
 次に、図11に示されるように、n型非晶質半導体膜4を形成する。具体的には、半導体基板1およびi型非晶質半導体膜2とp型非晶質半導体膜3との積層体を覆うようにしてn型非晶質半導体膜4を形成する。n型非晶質半導体膜4の形成方法は特に限定されないが、たとえばプラズマCVD法を用いることができる。n型非晶質半導体膜4としては、n型非晶質シリコン膜を好適に用いることができる。なお、n型非晶質半導体膜4に含まれるn型不純物としては、たとえばリン(P)を用いることができる。
 n型非晶質半導体膜4をプラズマCVD法により形成する場合には、原料ガスに対するドーパントガスの流量比率を成膜開始後連続的に大きくなるように変化させる。これにより、n型非晶質半導体膜4においてはじめに成膜される部分(4A)よりもその後に成膜される部分(4B)はn型不純物濃度が高くなる。このようにして、第1の部分4Aのn型不純物濃度が第2の部分4Bのn型不純物濃度よりも低く、かつi型非晶質半導体膜2のn型不純物濃度よりも高いn型非晶質半導体膜4が形成される。なお、原料ガスおよびドーパントガスは、それぞれ公知のガスを用いることができる。
 次に、n型非晶質半導体膜4を部分的に除去する。具体的には、まず図12に示されるように、半導体基板1の第1の面1a上において、n型非晶質半導体膜4を残す部分にのみエッチングマスク32を形成する。エッチングマスク32は、第2領域A2上および第2領域A2に隣接する第1領域A1の一部領域上に形成されているn型非晶質半導体膜4上に形成されている。エッチングマスク32の開口部は、第1領域A1において上記一部領域以外の他の領域上に形成されているn型非晶質半導体膜4を露出するように形成されている。
 次に、エッチングマスク32をマスクとして、n型非晶質半導体膜4を上記厚さ方向にエッチングする。これにより、図13に示されるように、半導体基板1の第1の面1aにおいてp型非晶質半導体膜3の一部を露出させる。その後、エッチングマスク32が除去される。
 次に、第1領域A1上において露出しているp型非晶質半導体膜3と接するように第1電極7を形成する。さらに、第1領域A1上において露出しているn型非晶質半導体膜4と接するように第2電極8を形成する。
 このようにして、図1に示されるように、実施の形態1に係る光電変換素子としてのHBC型太陽電池セル10を製造することができる。
 次に、実施の形態1に係るHBC型太陽電池セル10の作用効果について説明する。HBC型太陽電池セル10のn型非晶質半導体膜4において、第1の面1aと接する第1の部分4Aのn型の不純物濃度は第2電極8と接する第2の部分4Bのn型の不純物濃度よりも低い。さらに、n型非晶質半導体膜4の第1の部分4Aのn型不純物濃度は、i型非晶質半導体膜2のn型不純物濃度よりも高い。
 そのため、n型不純物濃度の高い第2の部分4Bが第2電極8と接触していることにより、n型非晶質半導体膜4と第2電極8との接触抵抗を低くすることができる。さらに、i型非晶質半導体膜2と比べて高く第2の部分4Bと比べて低いn型不純物濃度を有する第1の部分4Aが半導体基板1と接触していることにより、n型非晶質半導体膜4と半導体基板1との接触抵抗を低くすることができる。その結果、半導体基板と第2電極とがi型非晶質半導体膜およびn型非晶質半導体膜を介して接続されている従来のHBC型太陽電池セルと比べて、HBC型太陽電池セル10は半導体基板1と第2電極8との間の直列抵抗が低く、光電変換時に高い曲線因子(F.F.)を発現させることができる。
 また、実施の形態1に係るHBC型太陽電池セル10において、n型非晶質半導体膜4の第1の部分4Aのn型不純物濃度は、i型非晶質半導体膜2のn型不純物濃度よりも高いが、第2の部分4Bのn型不純物濃度よりも低い。このようなHBC型太陽電池セル10では、i型非晶質半導体膜2およびn型非晶質半導体膜4がいずれも、半導体基板1とのヘテロ接合界面に要求される高いパッシベーション性を有している。そのため、半導体基板1とi型非晶質半導体膜2とのヘテロ接合界面でのキャリア再結合だけでなく、半導体基板1とn型非晶質半導体膜4とのヘテロ接合界面でのキャリア再結合も十分に抑制されている。
 つまり、HBC型太陽電池セル10は、半導体基板1と第2電極8の直列抵抗の低減により高い曲線因子を発現可能であると同時に、非晶質半導体膜(2,4)が半導体基板1とのヘテロ接合界面に要求される高いパッシベーション性を有していることから高い開放電圧(Voc)を得ることができる。その結果、HBC型太陽電池セル10は従来のHBC太陽電池セルと比べて光電変換効率が高い。
 また、実施の形態1に係るHBC型太陽電池セル10において、n型非晶質半導体膜4はi型非晶質半導体膜2およびp型非晶質半導体膜3のそれぞれと接している。n型非晶質半導体膜4において、i型非晶質半導体膜2と接する第3の部分4Cおよびp型非晶質半導体膜3と接する第4の部分4Dのn型の不純物濃度は、いずれも第2電極8と接する第2の部分4Bのn型不純物濃度よりも低く、かつ、i型非晶質半導体膜2のn型不純物濃度よりも高い。
 このようなHBC型太陽電池セル10は、p型非晶質半導体膜3とn型非晶質半導体膜4とが隣接して設けられていても、第1電極7とのコンタクト抵抗を十分に小さくすることができる程度のp型不純物濃度を有するp型非晶質半導体膜3と、第2電極8とのコンタクト抵抗を十分に小さくすることができる程度のn型不純物濃度を有するn型非晶質半導体膜4とが接触する部分が生じていない、あるいは十分に小さい。つまり、p型非晶質半導体膜3においてn型非晶質半導体膜4と接している領域の大部分は、上述のようにn型不純物濃度が低い第4の部分4Dとpn接合しているため、当該pn接合を介して流れるリーク電流を抑制することができる。
 また、実施の形態1に係るHBC型太陽電池セル10において、n型非晶質半導体膜4のn型不純物濃度は、第1の面1aから第2電極8に近づくにつれて連続的に高くなっている。
 このようなHBC型太陽電池セル10は、原料ガスに対するドーパントガスの流量比率を連続的に増加させることにより、容易に製造され得る。
 また、第1の部分4Aのn型不純物濃度は、1×1015個/cm以上1×1017個/cm以下である。
 第1の部分4Aのn型不純物濃度が1×1015個/cm未満である場合には、半導体基板の全面上にi型非晶質半導体膜が形成されている従来の太陽電池セルと同様に、半導体基板とのコンタクト抵抗が高くなる。一方、第1の部分4Aのn型不純物濃度が1×1017個/cm超えである場合には、n型非晶質半導体膜4によるパッシベーション性が低下し、開放電圧(Voc)が低くなる。つまり、第1の部分4Aのn型不純物濃度を上記数値範囲内とすることにより、HBC型太陽電池セル10は、高い曲線因子を発現可能であると同時に、高い開放電圧(Voc)を得ることができる。
 実施の形態1に係るHBC型太陽電池セル10は、第1導電型をp型、第2導電型をn型として、n型(第2導電型)の半導体基板1とn型非晶質半導体膜4とを備えているが、p型(第1導電型)の半導体基板1とn型非晶質半導体膜4とを備えていてもよい。
 (実施の形態2)
 次に、図14を参照して、実施の形態2に係るHBC型太陽電池セル20について説明する。実施の形態2に係るHBC型太陽電池セル20は、基本的には実施の形態1に係るHBC型太陽電池セル10と同様の構成を備えるが、n型(第2導電体型)非晶質半導体膜4のn型不純物濃度は、第1の面1aから第2電極8に近づくにつれて段階的に高くなっている点で異なる。
 図14に示されるように、n型非晶質半導体膜4は、第1の部分4A、第3の部分4C、および第4の部分4Dを有する第1のn型非晶質半導体膜5と、第2の部分4Bを有する第2のn型非晶質半導体膜6とを含み、これらが積層された構成を有している。
 第1のn型非晶質半導体膜5のn型不純物濃度は、実施の形態1における第1の部分4Aのn型不純物濃度と同等であり、たとえば1×1015個/cm以上1×1017個/cm以下であり、好ましくは1×1015個/cm以上1×1016個/cm以下である。
 第2のn型非晶質半導体膜6の不純物濃度は、実施の形態1における第2の部分4Bのn型不純物濃度と同等であり、たとえば1×1017個/cmよりも高く1×1020個/cm以下であり、好ましくは1×1019個/cm以上1×1020個/cm以下である。つまり、n型非晶質半導体膜4のn型不純物濃度は、1×1015個/cm以上1×1020個/cm以下の範囲で段階的(2段階)に変化している。
 次に、実施の形態2に係るHBC型太陽電池セル20の製造方法について説明する。実施の形態2に係るHBC型太陽電池セル20は、基本的には実施の形態1に係るHBC型太陽電池セル10の製造方法と同様の構成を備えるが、n型非晶質半導体膜4を形成する工程が、原料ガスに対するドーパントガスの流量比が段階的に大きくなるようにn型非晶質半導体膜4を形成する工程を含む点で異なる。
 具体的には、実施の形態1に係るHBC型太陽電池セル10の製造方法と同様に、図10に示されるようなi型非晶質半導体膜2およびp型非晶質半導体膜3が部分的に除去された半導体基板1が準備される。
 次に、図15に示されるように第1のn型非晶質半導体膜5を形成し、連続して図16に示されるように第2のn型非晶質半導体膜6を形成する。このとき、原料ガスに対するドーパントガスの流量比率を段階的に大きくなるように変化させて成膜する。n型非晶質半導体膜4においてはじめに成膜される第1のn型非晶質半導体膜5よりも後に成膜される第2のn型非晶質半導体膜6は相対的にn型不純物濃度が高くなる。
 第1のn型非晶質半導体膜5は成膜開始当初に表出している部分を覆うように形成されるため、第1のn型非晶質半導体膜5はn型非晶質半導体膜4において第1の面1aと接する第1の部分4A、i型非晶質半導体膜2と接する第3の部分4C、p型非晶質半導体膜4と接する第4の部分4Dを有している。第2のn型非晶質半導体膜6はn型非晶質半導体膜4において第2の部分4Bを有している。
 その後、実施の形態1に係るHBC型太陽電池セル10の製造方法と同様の処理を行うことにより、図14に示されるような実施の形態2に係る光電変換素子としてのHBC型太陽電池セル20を製造することができる。
 次に、実施の形態2に係るHBC型太陽電池セル20の作用効果について説明する。HBC型太陽電池セル20は、n型非晶質半導体膜4のn型不純物濃度は、第1の面1aから第2電極8に近づくにつれて段階的に高くなっている。つまり、n型非晶質半導体膜4は、n型不純物濃度がi型非晶質半導体膜2よりも高い第1のn型非晶質半導体膜5と、n型不純物濃度が第1のn型非晶質半導体膜5よりも高い第2のn型非晶質半導体膜6との積層体として構成されており、第1のn型非晶質半導体膜5が第1の面1aと接している。実施の形態1に係るHBC型太陽電池セル10と基本的に同様の構成を備えるため、HBC型太陽電池セル10と同様の作用効果を奏することができる。
 そのため、HBC型太陽電池セル20は、高い曲線因子を発現可能であると同時に、半導体基板1と非晶質半導体膜(2,4)とのヘテロ接合界面に要求される高いパッシベーション性を有しており、高い開放電圧(Voc)を得ることができる。その結果、HBC型太陽電池セル20は従来のHBC太陽電池セルと比べて光電変換効率が高い。
 実施の形態2における上記以外の説明は、実施の形態1と同様であるため、その説明については繰り返さない。
 なお、実施の形態2において、n型非晶質半導体膜4はn型不純物濃度が異なる2層が積層した構成を有しているが、これに限られるものでは無く、n型不純物濃度が異なる2以上の多層が積層した構成を有していてもよい。たとえば、n型非晶質半導体膜4が、第1のn型非晶質半導体膜5と第2のn型非晶質半導体膜6との間に中間層として第3のn型非晶質半導体膜を含む積層体として構成されていてもよい。このとき、第3のn型非晶質半導体膜のn型不純物濃度は、第1のn型非晶質半導体膜5よりも高く、第2のn型非晶質半導体膜6よりも低いのが好ましい。
 (実施の形態3)
 次に、実施の形態3に係るHBC型太陽電池セルについて説明する。実施の形態3に係るHBC型太陽電池セルは、基本的には実施の形態1に係るHBC型太陽電池セル10と同様の構成を備えるが、第1導電型をn型、第2導電型をp型として、p型(第2導電型)の半導体基板と第2導電型非晶質膜としてのp型非晶質半導体膜4とを備えている点で異なる。すなわち、実施の形態3に係るHBC型太陽電池セルは、図1に示されるHBC型太陽電池セル10におけるn型の半導体基板1、p型非晶質半導体膜3、およびn型非晶質半導体膜4に代えて、p型半導体基板1、n型非晶質半導体膜3、およびp型非晶質半導体膜4を備えている。
 実施の形態3に係るHBC型太陽電池セルは、第1の面1aを有する半導体基板1と、第1の面1a上のi型非晶質半導体膜2と、i型非晶質半導体膜2上のn型非晶質半導体膜3と、第1の面1a上のp型非晶質半導体膜4と、n型非晶質半導体膜3上の第1電極7と、p型非晶質半導体膜4上の第2電極8とを備える。p型非晶質半導体膜4において、第1の面1aと接する第1の部分4Aのp型の不純物濃度は、第2電極8と接する第2の部分4Bのp型の不純物濃度よりも低く、かつi型非晶質半導体膜2のp型の不純物濃度よりも高い。p型非晶質半導体膜4のp型不純物濃度は、第1の面1aから第2電極8に近づくにつれて連続的に高くなっている。
 p型非晶質半導体膜4は、原料ガスに対するドーパントガスの流量比率を連続的に増加させることにより、容易に形成され得る。
 このようにしても、実施の形態3に係るHBC型太陽電池セルは、実施の形態1に係るHBC型太陽電池セル10と比較してキャリアが電子でなく正孔である点のみ異なるため、HBC型太陽電池セル10と同様の作用効果を奏することができる。
 実施の形態3における上記以外の説明は、実施の形態1と同様であるため、その説明については繰り返さない。
 (実施の形態4)
 次に、実施の形態4に係るHBC型太陽電池セルについて説明する。実施の形態4に係るHBC型太陽電池セルは、基本的には実施の形態2に係るHBC型太陽電池セル20と同様の構成を備えるが、第1導電型をn型、第2導電型をp型として、p型(第2導電型)の半導体基板と第2導電型非晶質膜としてのp型非晶質半導体膜4とを備えている点で異なる。
 すなわち、実施の形態4に係るHBC型太陽電池セルは、図14に示されるHBC型太陽電池セル20におけるn型半導体基板1、p型非晶質半導体膜3、および第1のn型非晶質半導体膜5と第2のn型非晶質半導体膜6とが積層してなるn型非晶質半導体膜4に代えて、p型半導体基板1、n型非晶質半導体膜3、および第1のp型非晶質半導体膜5と第2のp型非晶質半導体膜6とが積層してなるp型非晶質半導体膜4を備えている。
 実施の形態4に係るHBC型太陽電池セルは、第1の面1aを有する半導体基板1と、第1の面1a上のi型非晶質半導体膜2と、i型非晶質半導体膜2上のn型非晶質半導体膜3と、第1の面1a上のp型非晶質半導体膜4と、n型非晶質半導体膜3上の第1電極7と、p型非晶質半導体膜4上の第2電極8とを備える。p型非晶質半導体膜4において、第1の面1aと接する第1の部分4Aのp型の不純物濃度は、第2電極8と接する第2の部分4Bのp型の不純物濃度よりも低く、かつi型非晶質半導体膜2のp型の不純物濃度よりも高い。p型非晶質半導体膜4のp型不純物濃度は、第1の面1aから第2電極8に近づくにつれて段階的に高くなっている。
 p型非晶質半導体膜4は、原料ガスに対するドーパントガスの流量比率を段階的に増加させることにより、容易に形成され得る。
 このようにしても、実施の形態4に係るHBC型太陽電池セルは、実施の形態2に係るHBC型太陽電池セル20と比較してキャリアが電子でなく正孔である点のみ異なるため、HBC型太陽電池セル20と同様の作用効果を奏することができる。
 実施の形態4における上記以外の説明は、実施の形態2と同様であるため、その説明については繰り返さない。
 [付記]
 (1)ここで開示された実施形態の光電変換素子は、第1の面を有し、第1導電型または第2導電型の半導体基板と、第1の面上のi型非晶質半導体膜と、i型非晶質半導体膜上の第1導電型非晶質半導体膜と、第1の面上の第2導電型非晶質半導体膜と、第1導電型非晶質半導体膜上の第1電極と、第2導電型非晶質半導体膜上の第2電極とを備える。第2導電型非晶質半導体膜において、第1の面と接する第1の部分の第2導電型の不純物濃度は、第2電極と接する第2の部分の第2導電型の不純物濃度よりも低く、かつ、i型非晶質半導体膜の第2導電型の不純物濃度よりも高い。
 このような光電変換素子によれば、半導体基板と第2電極との間の直列抵抗が低いため、光電変換時に高い曲線因子(F.F.)を発現させることができる。さらにこのような光電変換素子によれば、i型非晶質半導体膜およびn型非晶質半導体膜のいずれもが、半導体基板とのヘテロ接合界面に要求される高いパッシベーション性を有しているため、高い開放電圧(Voc)を得ることができる。
 (2)ここで開示された実施形態の光電変換素子において、第2導電型非晶質半導体膜の第2導電型の不純物濃度は、第1の面から第2電極に近づくにつれて高くなっているのが好ましい。
 このようにしても、半導体基板と第2電極との間の直列抵抗を低くすることができ、かつ、i型非晶質半導体膜およびn型非晶質半導体膜のいずれもが半導体基板とのヘテロ接合界面に要求される高いパッシベーション性を有することができる。このような光電変換素子によれば、高い曲線因子を発現可能であると同時に、高い開放電圧(Voc)を得ることができる。
 (3)ここで開示された実施形態の光電変換素子において、第2導電型非晶質半導体膜の第2導電型の不純物濃度は、第1の面から第2電極に近づくにつれて連続的に高くなっているのが好ましい。
 このようにしても、半導体基板と第2電極との間の直列抵抗を低くすることができ、かつ、i型非晶質半導体膜およびn型非晶質半導体膜のいずれもが半導体基板とのヘテロ接合界面に要求される高いパッシベーション性を有することができる。このような光電変換素子によれば、高い曲線因子を発現可能であると同時に、高い開放電圧(Voc)を得ることができる。
 (4)ここで開示された実施形態の光電変換素子において、第2導電型非晶質半導体膜の第2導電型の不純物濃度は、第1の面から第2電極に近づくにつれて段階的に高くなっているのが好ましい。
 このようにしても、半導体基板と第2電極との間の直列抵抗を低くすることができ、かつ、i型非晶質半導体膜およびn型非晶質半導体膜のいずれもが半導体基板とのヘテロ接合界面に要求される高いパッシベーション性を有することができる。このような光電変換素子によれば、高い曲線因子を発現可能であると同時に、高い開放電圧(Voc)を得ることができる。
 (5)ここで開示された実施形態の光電変換素子において、第2導電型非晶質半導体膜は、i型非晶質半導体膜および第1導電型非晶質半導体膜のそれぞれと接しており、第2導電型非晶質半導体膜において、i型非晶質半導体膜と接する第3の部分および第1導電型非晶質半導体膜と接する第4の部分の第2導電型の不純物濃度は、いずれも第2の部分の第2導電型の不純物濃度よりも低く、かつ、i型非晶質半導体膜の第2導電型の不純物濃度よりも高いのが好ましい。
 (6)ここで開示された実施形態の光電変換素子において、第1の部分の第2導電型の不純物濃度は、1×1015個/cm以上1×1017個/cm以下であるのが好ましく、より好ましくは1×1015個/cm以上1×1016個/cm以下である。
 このような光電変換素子は、半導体基板と第2導電型非晶質半導体膜とのヘテロ接合界面でのキャリア再結合が抑制されているため、高い開放電圧(Voc)を有している。また、このような光電変換素子は、半導体基板と、該半導体基板と第2導電型非晶質半導体膜を介して接続されている第2電極との間の直列抵抗を低くすることができるため、高い曲線因子を発現可能である。
 (7)ここで開示された実施形態の光電変換素子において、第1導電型はn型であってもよい。この場合、第2導電型非晶質半導体膜は、p型非晶質半導体膜として構成される。このようにしても、曲線因子が高く、かつ開放電圧(Voc)が高い光電変換素子とすることができる。
 (8)ここで開示された実施形態の光電変換素子において、第1導電型はp型であってもよい。この場合、第2導電型非晶質半導体膜は、n型非晶質半導体膜として構成される。このようにしても、曲線因子が高く、かつ開放電圧(Voc)が高い光電変換素子とすることができる。
 (9)ここで開示された実施形態の光電変換素子の製造方法は、第1導電型または第2導電型の半導体基板の第1の面上にi型非晶質半導体膜を形成する工程と、i型非晶質半導体膜上に第1導電型非晶質半導体膜を形成する工程と、i型非晶質半導体膜および第1導電型非晶質半導体膜を部分的に除去する工程と、i型非晶質半導体膜および第1導電型非晶質半導体膜を部分的に除去する工程の後に、第1の面側に第2導電型非晶質半導体膜を形成する工程と、第1導電型非晶質半導体膜上に形成されている第2導電型非晶質半導体膜を部分的に除去する工程と、第1導電型非晶質半導体膜上に第1電極を形成する工程と、第2導電型非晶質半導体膜上に第2電極を形成する工程とを備える。第2導電型非晶質半導体膜を形成する工程は、化学気相成長法により原料ガスおよびドーパントガスを用いて、原料ガスに対するドーパントガスの流量比が連続的または段階的に大きくなるように第2導電型非晶質半導体膜を形成する工程を含む。
 このようにすれば、第1の部分4Aのn型不純物濃度が第2の部分4Bのn型不純物濃度よりも低く、かつi型非晶質半導体膜2のn型不純物濃度よりも高いn型非晶質半導体膜4を容易に形成することができる。その結果、上記実施の形態の光電変換素子を容易に製造することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 個々で開示された実施形態は、ヘテロ接合型バックコンタクトセルおよびヘテロ接合型バックコンタクトセルの製造方法に利用することができ、特に、ヘテロ接合型バックコンタクトセル等の太陽電池およびその製造方法に好適に利用することができる。
 1 半導体基板、1a 第1の面、1b 第2の面、2 i型非晶質半導体膜、3 第1導電型非晶質半導体膜、4 第2導電型非晶質半導体膜、5 第1の第2導電型非晶質半導体膜、6 第2の第2導電型非晶質半導体膜、3a 第3の面、4A 第1の部分、4B 第2の部分、4C 第3の部分、4D 第4の部分、7 第1電極、8 第2電極、10,20 HBC型太陽電池セル(光電変換素子)、21 保護膜、31,32 エッチングマスク。

Claims (5)

  1.  第1の面を有し、第1導電型または第2導電型の半導体基板と、
     前記第1の面上のi型非晶質半導体膜と、
     前記i型非晶質半導体膜上の第1導電型非晶質半導体膜と、
     前記第1の面上の第2導電型非晶質半導体膜と、
     前記第1導電型非晶質半導体膜上の第1電極と、
     前記第2導電型非晶質半導体膜上の第2電極とを備え、
     前記第2導電型非晶質半導体膜において、前記第1の面と接する第1の部分の前記第2導電型の不純物濃度は、前記第2電極と接する第2の部分の前記第2導電型の不純物濃度よりも低く、かつ、前記i型非晶質半導体膜の前記第2導電型の不純物濃度よりも高い、光電変換素子。
  2.  前記第2導電型非晶質半導体膜の前記第2導電型の不純物濃度は、前記第1の面から前記第2電極に近づくにつれて高くなっている、請求項1に記載の光電変換素子。
  3.  前記第2導電型非晶質半導体膜は、前記i型非晶質半導体膜および前記第1導電型非晶質半導体膜のそれぞれと接しており、
     前記第2導電型非晶質半導体膜において、前記i型非晶質半導体膜と接する第3の部分および前記第1導電型非晶質半導体膜と接する第4の部分の前記第2導電型の不純物濃度は、いずれも前記第2の部分の前記第2導電型の不純物濃度よりも低く、かつ、前記i型非晶質半導体膜の前記第2導電型の不純物濃度よりも高い、請求項1または請求項2に記載の光電変換素子。
  4.  前記第1の部分の前記第2導電型の不純物濃度は、1×1015個/cm以上1×1017個/cm以下である、請求項1~請求項3のいずれか1項に記載の光電変換素子。
  5.  第1導電型または第2導電型の半導体基板の第1の面上にi型非晶質半導体膜を形成する工程と、
     前記i型非晶質半導体膜上に第1導電型非晶質半導体膜を形成する工程と、
     前記i型非晶質半導体膜および前記第1導電型非晶質半導体膜を部分的に除去する工程と、
     前記i型非晶質半導体膜および前記第1導電型非晶質半導体膜を部分的に除去する工程の後に、前記第1の面側に第2導電型非晶質半導体膜を形成する工程と、
     前記第1導電型非晶質半導体膜上に形成されている前記第2導電型非晶質半導体膜を部分的に除去する工程と、
     前記第1導電型非晶質半導体膜上に第1電極を形成する工程と、
     前記第2導電型非晶質半導体膜上に第2電極を形成する工程とを備え、
     前記第2導電型非晶質半導体膜を形成する工程は、化学気相成長法により原料ガスおよびドーパントガスを用いて、前記原料ガスに対する前記ドーパントガスの流量比が連続的または段階的に大きくなるように前記第2導電型非晶質半導体膜を形成する工程を含む、光電変換素子の製造方法。
PCT/JP2016/056593 2015-03-04 2016-03-03 光電変換素子およびその製造方法 WO2016140309A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-042190 2015-03-04
JP2015042190 2015-03-04

Publications (1)

Publication Number Publication Date
WO2016140309A1 true WO2016140309A1 (ja) 2016-09-09

Family

ID=56848953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056593 WO2016140309A1 (ja) 2015-03-04 2016-03-03 光電変換素子およびその製造方法

Country Status (1)

Country Link
WO (1) WO2016140309A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019242550A1 (zh) * 2018-06-21 2019-12-26 君泰创新(北京)科技有限公司 太阳能电池及其制作方法
US11728446B2 (en) * 2021-06-30 2023-08-15 Jinko Green Energy (shanghai) Management Co., Ltd. Solar cell and solar cell module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021993A (ja) * 2006-06-30 2008-01-31 General Electric Co <Ge> 全背面接点構成を含む光起電力デバイス及び関連する方法
US20080173347A1 (en) * 2007-01-23 2008-07-24 General Electric Company Method And Apparatus For A Semiconductor Structure
JP2010147324A (ja) * 2008-12-19 2010-07-01 Kyocera Corp 太陽電池素子および太陽電池素子の製造方法
JP2011061197A (ja) * 2009-09-04 2011-03-24 Lg Electronics Inc 太陽電池およびその製造方法
US20120048370A1 (en) * 2010-08-26 2012-03-01 Hyungseok Kim Solar cell
JP2013125891A (ja) * 2011-12-15 2013-06-24 Sharp Corp 光電変換素子およびその製造方法
JP2013191657A (ja) * 2012-03-13 2013-09-26 Sharp Corp 光電変換素子およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021993A (ja) * 2006-06-30 2008-01-31 General Electric Co <Ge> 全背面接点構成を含む光起電力デバイス及び関連する方法
US20080173347A1 (en) * 2007-01-23 2008-07-24 General Electric Company Method And Apparatus For A Semiconductor Structure
JP2010147324A (ja) * 2008-12-19 2010-07-01 Kyocera Corp 太陽電池素子および太陽電池素子の製造方法
JP2011061197A (ja) * 2009-09-04 2011-03-24 Lg Electronics Inc 太陽電池およびその製造方法
US20120048370A1 (en) * 2010-08-26 2012-03-01 Hyungseok Kim Solar cell
JP2013125891A (ja) * 2011-12-15 2013-06-24 Sharp Corp 光電変換素子およびその製造方法
JP2013191657A (ja) * 2012-03-13 2013-09-26 Sharp Corp 光電変換素子およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019242550A1 (zh) * 2018-06-21 2019-12-26 君泰创新(北京)科技有限公司 太阳能电池及其制作方法
US11728446B2 (en) * 2021-06-30 2023-08-15 Jinko Green Energy (shanghai) Management Co., Ltd. Solar cell and solar cell module

Similar Documents

Publication Publication Date Title
JP5383792B2 (ja) 太陽電池
JP4171428B2 (ja) 光起電力装置
KR20140027047A (ko) 개선된 패시베이션을 구비하는 광전 디바이스 및 모듈 및 제조 방법
JP2009164544A (ja) 太陽電池のパッシベーション層構造およびその製造方法
JP2012015523A (ja) 太陽電池モジュール及びその製造方法
US9761749B2 (en) Photoelectric conversion device
US20120264253A1 (en) Method of fabricating solar cell
JP6141670B2 (ja) 太陽電池の製造方法
US20140373919A1 (en) Photovoltaic cell and manufacturing process
WO2016140309A1 (ja) 光電変換素子およびその製造方法
JP6115806B2 (ja) 光起電力装置
WO2013161145A1 (ja) 裏面接合型太陽電池及びその製造方法
US10026853B2 (en) Solar cell
JP5645734B2 (ja) 太陽電池素子
KR20120078904A (ko) 후면 전극형 태양전지 및 이의 제조방법
JP2675754B2 (ja) 太陽電池
WO2016021267A1 (ja) 光電変換素子
TW201431108A (zh) 指叉狀背部電極太陽能電池之製造方法及其元件
WO2017038733A1 (ja) 光電変換素子
KR20100012715A (ko) 태양전지 및 그 제조방법
JP2017157781A (ja) 光電変換素子および光電変換素子の製造方法
JP6333139B2 (ja) 光電変換素子および光電変換素子の製造方法
TWI536595B (zh) 太陽能電池、其製造方法及其模組
WO2015141339A1 (ja) ヘテロ接合型バックコンタクトセルおよびヘテロ接合型バックコンタクトセルの製造方法
JP2014072210A (ja) 光電変換素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16759001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16759001

Country of ref document: EP

Kind code of ref document: A1