WO2016140008A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2016140008A1
WO2016140008A1 PCT/JP2016/053236 JP2016053236W WO2016140008A1 WO 2016140008 A1 WO2016140008 A1 WO 2016140008A1 JP 2016053236 W JP2016053236 W JP 2016053236W WO 2016140008 A1 WO2016140008 A1 WO 2016140008A1
Authority
WO
WIPO (PCT)
Prior art keywords
current path
current
devices
connection conductor
terminal
Prior art date
Application number
PCT/JP2016/053236
Other languages
English (en)
French (fr)
Inventor
秀夫 網
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to DE112016000092.8T priority Critical patent/DE112016000092T5/de
Priority to CN201680002449.9A priority patent/CN106605300B/zh
Priority to JP2017503381A priority patent/JP6319509B2/ja
Publication of WO2016140008A1 publication Critical patent/WO2016140008A1/ja
Priority to US15/446,012 priority patent/US10121773B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/62Protection against overvoltage, e.g. fuses, shunts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Definitions

  • the present invention relates to a semiconductor device.
  • Patent Document 1 JP-A-9-172139
  • Patent Document 2 JP-A-2002-353407
  • connection conductor includes the first device of the first area and the second device of the second area, and the connection conductor electrically connecting the first device and the second device.
  • the present invention provides a semiconductor device in which mutually opposite current paths included in the connection conductor are at least partially adjacent to each other.
  • the semiconductor device may comprise one or more first devices of the first region.
  • the semiconductor device may comprise one or more second devices of the second region.
  • the semiconductor device may include a connection conductor electrically connecting the first device and the second device. In the connection conductor, the current paths reverse to each other included in the connection conductor may be adjacent at least in part.
  • the connection conductor may conduct current from the first device to the second device.
  • the connecting conductor may carry current at least in part in a direction from the second device to the first device.
  • the connection conductor may conduct current from the second device to the first device.
  • the connection conductor may carry current at least in part in a direction from the first device to the second device.
  • connection conductor may have a first current path facing away from the second device on the first device side.
  • the connecting conductor may have a second current path that turns from the first current path back towards the second device.
  • the connection conductor may have a third current path facing away from the first device on the second device side.
  • the connecting conductor may have a fourth current path that turns back from the third current path and approaches the first device.
  • the connection conductor may have a parallel plate structure formed by current paths adjacent to each other.
  • the semiconductor device may include a plurality of first devices in the first region.
  • the connection conductor may connect the plurality of first devices in parallel, respectively.
  • semiconductor device may include a plurality of second devices in the second region.
  • the connection conductor may connect the plurality of second devices in parallel, respectively.
  • the connection conductor may include a main conductor portion including a first current path, a second current path, a third current path, and a fourth current path.
  • the connection conductor may comprise a plurality of first connections connecting between the first current path and each of the plurality of first devices.
  • the connection conductor may comprise a plurality of second connections connecting between the third current path and each of the plurality of second devices.
  • the semiconductor device may include a plurality of first devices in the first region.
  • the semiconductor device may include a plurality of second devices in the second region.
  • the plurality of first devices and the plurality of second devices may be arranged in a direction from the first area to the second area.
  • connection conductor may further include a terminal portion connected to the outside and exchanging current with the outside.
  • the semiconductor device may further comprise a substrate.
  • the substrate may be provided with a first region and a second region.
  • the substrate may be an insulating substrate.
  • the first and second devices may be insulated gate bipolar transistors or power MOSFETs. Note that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a subcombination of these feature groups can also be an invention.
  • composition of semiconductor device 10 concerning this embodiment is shown.
  • An example of a top view of semiconductor device 10 concerning this embodiment is shown.
  • An example of the circuit mounted in the semiconductor device 10 which concerns on this embodiment is shown.
  • substrate 100 which concerns on this embodiment is shown.
  • 1 shows an example of a semiconductor device 10 according to the present embodiment.
  • 7 shows a first operation example of the three-level circuit configured by the semiconductor device 10 according to the present embodiment.
  • FIG. 7 shows a second operation example of the three-level circuit shown in FIG.
  • FIG. 7 shows a third operation example of the three-level circuit shown in FIG.
  • FIG. 7 shows a fourth operation example of the three-level circuit shown in FIG.
  • the 5th operation example of the 3 level circuit shown in FIG. 6 is shown.
  • the 6th operation example of the 3 level circuit shown in FIG. 6 is shown.
  • FIG. 1 shows a configuration example of a semiconductor device 10 according to the present embodiment.
  • the semiconductor device 10 exchanges current between a plurality of devices mounted on the semiconductor device 10, the semiconductor device 10 applies the current so as to reduce the influence of the inductance and the induction magnetic field. This reduces the influence of the current externally or internally. That is, the surge voltage generated due to the change of the current due to the switching of the device is reduced.
  • the semiconductor device 10 includes a first device 110, a second device 120, and a connection conductor 130.
  • the semiconductor device 10 also includes a substrate 100.
  • the substrate 100 mounts a device and a circuit board or the like connecting the device.
  • the substrate 100 is preferably a single-sided mounting substrate on which a device or the like is mounted on one surface.
  • the substrate 100 is preferably an insulating substrate such as a DCB (Direct Copper Bonding) substrate or an AMB (Active Metal Blazed) substrate.
  • DCB Direct Copper Bonding
  • AMB Active Metal Blazed
  • One or more first devices 110 are mounted in the first area 102.
  • a plurality of first devices 110 may be mounted in the first area 102.
  • the first devices 110 are arranged along the direction from the first area 102 to the second area 104, for example.
  • One or more second devices 120 are mounted in the second area 104.
  • a plurality of second devices 120 may be mounted in the second area 104.
  • the second devices 120 are arranged along the direction from the first area 102 to the second area 104, as an example.
  • FIG. 1 shows an example in which three first devices 110 and three second devices 120 are arranged in the X-axis direction.
  • the first device 110 and the second device 120 are, for example, power semiconductor elements used for control of power devices and the like, and are devices for power control such as diodes, transistors, thyristors, triacs and the like.
  • the first device and the second device are, as an example, reverse blocking insulated gate bipolar transistors (RB-IGBTs). Further, the first device 110 and the second device 120 may be a circuit in which a plurality of these power control devices are connected.
  • connection conductor 130 electrically connects the first device 110 and the second device 120.
  • the connection conductor 130 causes current to flow from the first device 110 to the second device 120 or from the second device 120 to the first device 110 depending on the voltage difference between the first device 110 and the second device 120.
  • connection conductor 130 includes a plurality of current paths, and the mutually opposite current paths included in the connection conductor 130 are adjacent to each other at least in part.
  • the connection conductor 130 is desirably made of a metal having a high electrical conductivity such as copper or aluminum, and desirably formed integrally.
  • the connection conductor 130 includes a first current path 132, a second current path 134, a third current path 136, a fourth current path 138, a first connection portion 142, a second connection portion 144, and a terminal portion 146. And.
  • the first current path 132 extends away from the second device 120 on the first device 110 side. That is, the first current path 132 extends in the direction away from the second region 104 (for example, the ⁇ X axis direction) on the first region 102 side.
  • the first current path 132 is connected to the second current path 134.
  • the second current path 134 is folded back from the first current path 132 and extends toward the second device 120 on the first region 102 side. That is, the second current path 134 is folded back from the first current path 132 to be adjacent to the first current path 132, and extends from the first area 102 to the second area 104 (for example, in the + X axis direction).
  • the third current path 136 extends away from the first device 110 on the second device 120 side. That is, the third current path 136 extends in the direction away from the first region 102 (for example, the + X axis direction) on the second region 104 side.
  • the third current path 136 is connected to the fourth current path 138.
  • the fourth current path 138 is folded back from the third current path 136 and extends toward the first device 110 on the second region 104 side. That is, the fourth current path 138 is folded back from the third current path 136 to be adjacent to the third current path 136, and extends from the second area 104 to the first area 102 (for example, in the -X axis direction) , And the second current path 134. That is, viewed from the second current path 134 side, the fourth current path 138 extends in the direction away from the first region 102 following the second current path 134. Furthermore, the third current path 136 is folded back from the fourth current path 138 to be adjacent to the fourth current path 138 and to approach the first region 102.
  • the first current path 132 is not electrically connected directly to the third current path 136, but is connected to the third current path 136 via the second current path 134 and the fourth current path 138.
  • the main conductor portion is constituted by a plurality of continuous current paths from the first current path 132 to the second current path 134, the fourth current path 138, and the third current path 136.
  • the semiconductor device 10 current flows between the first device 110 and the second device 120 using the main conductor portion.
  • the main conductor portion and the first device 110 are connected by the first connection portion 142, and the main conductor portion and the second device 120 are connected by the second connection portion 144.
  • the first connection portion 142 connects between the first current path 132 and the first device 110.
  • a plurality of first connection portions 142 are provided on the connection conductor 130.
  • the first current path 132 and the plurality of first devices 110 are connected by the plurality of first connection portions 142, respectively.
  • the first connection portion 142 is connected to a circuit board or the like formed on one surface of the substrate 100 with copper or the like, and is electrically connected to the first device 110 through the circuit board or the like.
  • the connection conductor 130 is electrically connected to the plurality of first devices 110 by the first connection portion 142, and branches or merges the flowing current.
  • the terminal portion 146 is connected to the outside and exchanges current with the outside.
  • the terminal portion 146 functions as an input terminal and / or an output terminal when a current (voltage) is exchanged between the outside of the semiconductor device 10 and the first device 110 and / or the second device 120.
  • connection conductor 130 causes a current to flow from the first device 110 to the second device 120 or from the second device 120 to the first device 110 via the turnaround of the current path. For example, if the voltage of the first device 110 is high compared to the second device 120, the connection conductor 130 will conduct current from the first device 110 to the second device 120. At this time, the connection conductor 130 causes a current to flow in the direction from the second device 120 to the first device 110 in at least a part of the connection conductor 130. In the present embodiment, the connection conductor 130 causes a current to flow in the direction ( ⁇ X direction) from the second device 120 to the first device 110 in the first current path 132.
  • the second current path 134 is connected to the fourth current path 138, and the fourth current path 138 is a direction in which the current from the second current path 134 is separated from the first device 110 on the second region 104 side (+ X axis direction Flow towards).
  • the fourth current path 138 is connected to the third current path 136, and the third current path 136 turns the current from the fourth current path 138 back to flow in a direction (-X axis direction) closer to the first device 110. .
  • the third current path 136 and the fourth current path 138 are adjacent to each other, and at least a part thereof has a parallel plate structure. That is, since currents in opposite directions flow in the parallel plate, the inductance and induction magnetic field generated due to the currents flowing in the third current path 136 and the fourth current path 138 are opposite to each other. It will cancel each other. Therefore, by the third current path 136 and the fourth current path 138 being adjacent to each other, the inductance and the induced magnetic field generated due to the current flowing in the third current path 136 and the fourth current path 138 can be reduced. .
  • the plurality of second connection parts 144 respectively divide the current flowing in the third current path 136 and supply the branched current to the second device 120. That is, the third current path 136 flows the current supplied from the plurality of first devices 110 aligned in the X-axis direction in the direction (+ X-axis direction) toward the first device 110 on the second region 104 side. , And branches into a plurality of second devices 120 aligned in the X-axis direction.
  • connection conductor 130 can flow current from the plurality of first devices 110 to the plurality of second devices 120 while reducing the generation of the inductance and the induction magnetic field.
  • the connection conductor 130 reduces the generation of the inductance and the induced magnetic field by turning back the current flowing to itself and by causing the current paths opposite to each other to be adjacent to each other.
  • the connecting conductor 130 can reduce the generation of the inductance and the induced magnetic field without the need for other connecting conductors, current paths and the like. Therefore, even when the connection conductor 130 provides a current path for supplying current from one device to another, the influence of the inductance and the induced magnetic field on the external or internal device can be reduced.
  • connection conductor 130 since the connection conductor 130 according to the present embodiment reduces the influence on the external or internal device, the connection conductor 130 can be wired without considering the balance with other current paths. Therefore, the connection conductor 130 can increase the degree of freedom in wiring design for high power transmission / reception, control circuits, and the like.
  • the connection conductor 130 since the connection conductor 130 reduces the influence on the internal devices, the devices (eg, the first device 110, the second device 120, etc.) can be disposed close to the connection conductor 130. Therefore, the mounting area of the semiconductor device 10 can be reduced.
  • FIG. 3 shows an example of a circuit mounted on the semiconductor device 10 according to the present embodiment.
  • FIG. 3 illustrates an example of a semiconductor device that switches the supply of a plurality of predetermined types of power.
  • the semiconductor device connects the first device 110 and the second device 120 in antiparallel between the terminal M and the terminal U.
  • the semiconductor device also connects the third device 210 and the fourth device 220 in series between the terminal P and the terminal N.
  • the semiconductor device connects the fifth device 212 and the sixth device 222 in series between the terminal P and the terminal N.
  • the collector terminal of the first device 110 is connected to the terminal M, and the emitter terminal is connected to the terminal U. That is, the first device 110 functions as a switching device that switches whether or not current flows from the terminal M to the terminal U in accordance with a control signal supplied to the base terminal.
  • the collector terminal of the second device 120 is connected to the terminal U, and the emitter terminal is connected to the terminal M. That is, the second device 120 functions as a switching device that switches whether or not current flows from the terminal U to the terminal M according to the control signal supplied to the base terminal.
  • the collector terminal of the third device 210 is connected to the terminal P, and the emitter terminal is connected to the terminal U. That is, the third device 210 functions as a switching device that switches whether or not current flows from the terminal P to the terminal U in accordance with a control signal supplied to the base terminal.
  • the collector terminal of the fourth device 220 is connected to the terminal U, and the emitter terminal is connected to the terminal N. That is, the fourth device 220 functions as a switching device that switches whether current flows from the terminal U to the terminal N according to the control signal supplied to the base terminal.
  • the fifth device 212 is a diode in which one anode terminal is connected to the terminal U, the other cathode terminal is connected to the terminal P, and current flows from the terminal U to the terminal P in one direction. That is, the fifth device 212 is connected in antiparallel with the third device 210 between the terminal P and the terminal U.
  • the sixth device 222 is a diode in which one anode terminal is connected to the terminal N, the other cathode terminal is connected to the terminal U, and current flows from the terminal N to the terminal U in one direction. That is, the sixth device 222 is connected in antiparallel to the fourth device 220 between the terminal U and the terminal N.
  • FIG. 4 shows an example of a substrate 100 according to the present embodiment.
  • the connection conductor 130 is connected to the substrate 100 to form the semiconductor device 10. That is, the substrate 100 shown in FIG. 4 shows a state before the connection conductor 130 is mounted. Further, the substrate 100 shown in FIG. 4 shows a state in which devices, circuit boards and the like have already been formed.
  • a circuit board corresponding to the terminal P, the terminal N, the terminal M, and the terminal U is formed on the substrate 100.
  • a plurality of terminals indicated by the same reference numerals are electrically connected by wire bonding or the like.
  • the first device 110 is provided in the first region 102, and is connected to the terminal M and the terminal U, respectively.
  • the second device 120 is provided in the second region 104, and is connected to the terminal M and the terminal U, respectively.
  • the third device 210 and the fifth device 212 are provided in the first region 102, and are connected to the terminal P and the terminal U, respectively.
  • the fourth device 220 and the sixth device 222 are provided in the second region 104 and connected to the terminal U and the terminal N, respectively.
  • FIG. 4 shows an example in which three devices are mounted on the substrate 100.
  • the terminals M, N, P, and U may be connected to a circuit board or the like provided on the substrate 100.
  • each electrode of the first device 110, the second device 120, the third device 210, and the fourth device 220 may be connected to a circuit board or the like provided on the substrate 100.
  • FIG. 5 shows an example of the semiconductor device 10 according to the present embodiment.
  • FIG. 5 shows a state in which the connection conductor 130 according to the present embodiment is mounted on the substrate 100 shown in FIG. Further, FIG. 5 further mounts the connection conductor 230, the connection conductor 240, and the connection conductor 250.
  • the first connection portion 142 of the connection conductor 130 is connected to the terminal U of the first region 102, and the second connection portion 144 is connected to the terminal U of the second region 104.
  • the terminal portion 146 functioning as the U terminal of the semiconductor device 10 is connected to an external load, as an example.
  • the emitter terminal of the first device 110 is connected to the collector terminal of the second device 120 via the connection conductor 130.
  • the emitter terminal of the first device 110 and the collector terminal of the second device 120 are connected to an external load via the terminal portion 146.
  • the connection conductor 230 has a third connection portion 232 and a fourth connection portion 234.
  • the third connection portion 232 is connected to the terminal M of the first region 102
  • the fourth connection portion 234 is connected to the terminal M of the second region 104.
  • the connection conductor 230 further includes, as an example, a terminal portion functioning as an M terminal of the semiconductor device 10, and the terminal portion is connected to an external power supply.
  • the collector terminal of the first device 110 is connected to the emitter terminal of the second device 120 via the connection conductor 230.
  • the collector terminal of the first device 110 and the emitter terminal of the second device 120 are connected to an external power supply.
  • the connection conductor 240 has a fifth connection portion 242.
  • the fifth connection portion 242 is connected to the terminal P of the first region 102.
  • the connection conductor 240 further includes a terminal portion functioning as a P terminal of the semiconductor device 10 as an example, and the terminal portion is connected to an external power supply. Thereby, the collector terminals of the plurality of third devices 210 and the cathode terminals of the fifth device 212 are connected to the external power supply via the connection conductor 240.
  • the connection conductor 250 has a sixth connection 252.
  • the sixth connection portion 252 is connected to the terminal N of the second region 104.
  • the connection conductor 250 further includes a terminal portion functioning as an N terminal of the semiconductor device 10 as an example, and the terminal portion is connected to an external power supply or a reference potential.
  • the emitter terminals of the plurality of fourth devices 220 and the anode terminals of the sixth device 222 are connected to an external power supply or reference potential via the connection conductor 250.
  • a current is input from the outside via the connection conductor 240 (that is, from the terminal P) and a current is output to the outside via the connection conductor 230 (that is, from the terminal M) There is.
  • the connecting conductor 230 has a parallel plate structure with the connecting conductor 240 in the first region 102, the currents flowing through the connecting conductor 230 and the connecting conductor 240 become current paths in mutually opposite directions. Therefore, in the semiconductor device 10, the generation of the inductance and the induction magnetic field can be reduced.
  • a current is input from the outside via the connection conductor 230 (that is, from the terminal M), and a current is output to the outside via the connection conductor 250 (that is, from the terminal N).
  • connection conductor 230 has a parallel plate structure with the connection conductor 250 in the second region 104, the current flowing in the connection conductor 230 and the current flowing in the connection conductor 250 are mutually opposite current paths. Therefore, in the semiconductor device 10, the generation of the inductance and the induction magnetic field can be reduced.
  • the semiconductor device 10 is provided adjacent to one another so that the two current paths have a parallel plate structure.
  • the semiconductor device 10 when there is no corresponding current path through which current flows in the opposite direction, and there is one independent current path, the one current path has a plurality of continuous current paths, and the currents in the opposite directions are mutually opposite.
  • the paths are provided to be adjacent to one another at least in part.
  • a power control circuit which reduces the inductance and the induction magnetic field can be configured.
  • a more complex power control circuit can be configured.
  • a power control circuit that outputs a plurality of signal levels can be configured.
  • FIG. 6 shows a first operation example of the three-level circuit configured by the semiconductor device 10 according to the present embodiment.
  • FIG. 6 shows an example of a power control circuit in which the semiconductor device 10 shown in FIG. 5 has two phases.
  • members included in the first phase semiconductor device 10 are indicated by small letters a (for example, the first device 110a, the second device 120a, etc.), and members included in the second phase semiconductor device 10 are illustrated in small letters.
  • Indicated by b for example, the first device 110 b, the second device 120 b, etc.).
  • the terminals Ma and Mb, the terminals Na and Nb, and the terminals Pa and Pb are electrically connected to one another.
  • the power supply E1 is connected between the terminal Ma and the terminal Pa. That is, the power supply E1 is connected between the terminal Mb and the terminal Pb.
  • a power supply E2 is connected between the terminal Ma and the terminal Na. That is, the power supply E2 is connected between the terminal Mb and the terminal Nb.
  • the power sources E1 and E2 may be substantially the same power source.
  • a load L is connected between the terminal Ua and the terminal Ub.
  • the power control circuit shown in FIG. 6 outputs a plurality of signal levels to the load L.
  • FIG. 6 shows an example in which the first device 110a and the second device 120b are turned on, and all the other switching devices are turned off.
  • the power supplies E1 and E2 do not form a closed circuit with the load L, the voltage level supplied to the load L by the power control circuit is 0 [V].
  • FIG. 7 shows a second operation example of the three-level circuit shown in FIG.
  • FIG. 7 shows an example in which the second device 120b and the third device 210a are turned on and all the other switching devices are turned off.
  • the power control circuit can supply the load L with a predetermined constant voltage level.
  • a predetermined constant voltage level is + V [V].
  • FIG. 8 shows a third operation example of the three-level circuit shown in FIG. FIG. 8 shows an example in which the third device 210a and the fourth device 220b are turned on and all the other switching devices are turned off.
  • the power control circuit can supply the load L with a predetermined constant voltage level.
  • a predetermined constant voltage level is +2 V [V].
  • the power control circuit shown in FIG. 6 can supply the load L with three positive signal levels such as 0 [V], + V [V], and +2 V [V].
  • FIG. 9 shows a fourth operation example of the three-level circuit shown in FIG.
  • FIG. 9 shows an example in which the first device 110 b and the second device 120 a are turned on and all the other switching devices are turned off.
  • the voltage level supplied to the load L by the power control circuit is 0 [V].
  • FIG. 10 shows a fifth operation example of the three-level circuit shown in FIG.
  • FIG. 10 shows an example in which the third device 210b and the fourth device 220a are turned on and all the other switching devices are turned off.
  • the power supplies E1 and E2 form a closed circuit with the load L
  • the power control circuit can supply the load L with a predetermined constant voltage level.
  • the predetermined constant voltage level is ⁇ 2 V [FIG. V].
  • FIG. 11 shows a sixth operation example of the three-level circuit shown in FIG.
  • FIG. 11 shows an example in which the first device 110b and the fourth device 220a are turned on, and all the other switching devices are turned off.
  • the power control circuit can supply the load L with a predetermined constant voltage level.
  • the connection between the power supply E2 and the load L is reverse to the connection between the power supply E1 and the load L shown in FIG. 7, so the predetermined constant voltage level is -V [V].
  • the power control circuit shown in FIG. 6 can supply the load L with three negative signal levels such as 0 [V], -V [V], and -2 V [V].
  • the semiconductor device 10 can configure a power control circuit that outputs a plurality of signal levels.
  • a terminal or the like of the semiconductor device 10 is short-circuited and, for example, an excessive current flows between the first device 110 and the second device 120 in the same semiconductor device 10, the inductance and the induced magnetic field are reduced. It is possible to prevent destruction of the device.
  • the inductance and the induced magnetic field can be reduced, and destruction of the element can be prevented.
  • an excessive current flows between the terminal N and the terminal M in the same semiconductor device 10
  • the inductance and the induced magnetic field can be reduced, and destruction of the element can be prevented.
  • Reference Signs List 10 semiconductor device 100 substrate, 102 first region, 104 second region, 110 first device, 120 second device, 130 connection conductor, 132 first current path, 134 second current path, 136 third current path, 138 Fourth current path, 142 first connection portion, 144 second connection portion, 146 terminal portion, 210 third device, 212 fifth device, 220 fourth device, 222 sixth device, 230 connection conductor, 232 third connection portion , 234 fourth connection, 240 connection conductor, 242 fifth connection, 250 connection conductor, 252 sixth connection

Abstract

 インダクタンスおよび誘導磁場の影響を低減させて、一のデバイスから他のデバイスへと大電流を流す半導体装置。第1領域の第1デバイスおよび第2領域の第2デバイスと、第1デバイスおよび第2デバイスを電気的に接続する接続導体と、を備え、接続導体は、当該接続導体に含まれる互いに逆向きの電流経路同士が少なくとも一部において隣接する半導体装置を提供する。接続導体は、第1デバイスから第2デバイスへと電流を流し、少なくとも一部において第2デバイスから第1デバイスへと向かう方向に電流を流す。

Description

半導体装置
 本発明は、半導体装置に関する。
 従来、大電力を取り扱う半導体装置であるパワー半導体モジュールは、例えば、一の方向に電流を流す配線電極と、当該一の方向とは逆向きに電流を流す他の配線電極とを平行に近接させて、互いの配線電極に発生するインダクタンスおよび誘導磁場をキャンセルさせていた(例えば、特許文献1および2参照)。
 特許文献1 特開平9-172139号公報
 特許文献2 特開2002-353407号公報
 しかしながら、パワー半導体モジュールが有する回路構造によっては、キャンセルさせるように配置できる電流経路がない場合が生じていた。例えば、単に一のデバイスから他のデバイスに電流を供給するだけの電流経路しかない場合、逆向きに略同一の電流を流す電流経路が無いので、外部または内部のデバイスにインダクタンスおよび誘導磁場の影響を生じさせてしまうことがあった。
 本発明の第1の態様においては、第1領域の第1デバイスおよび第2領域の第2デバイスと、第1デバイスおよび第2デバイスを電気的に接続する接続導体と、を備え、接続導体は、当該接続導体に含まれる互いに逆向きの電流経路同士が少なくとも一部において隣接する半導体装置を提供する。
(一般的開示)
(項目1)
 半導体装置は、第1領域の1以上の第1デバイスを備えてよい。
 半導体装置は、第2領域の1以上の第2デバイスを備えてよい。
 半導体装置は、第1デバイスおよび第2デバイスを電気的に接続する接続導体を備え手よい。
 接続導体は、当該接続導体に含まれる互いに逆向きの電流経路同士が少なくとも一部において隣接してよい。
(項目2)
 接続導体は、第1デバイスから第2デバイスへと電流を流してよい。
 接続導体は、少なくとも一部において第2デバイスから第1デバイスへと向かう方向に電流を流してよい。
(項目3)
 接続導体は、第2デバイスから第1デバイスへと電流を流してよい。
 接続導体は、少なくとも一部において第1デバイスから第2デバイスへと向かう方向に電流を流してよい。
(項目4)
 接続導体は、第1デバイス側において第2デバイスから離れる方向に向く第1電流経路を有してよい。
 接続導体は、第1電流経路から折り返して第2デバイスへと近づく方向に向く第2電流経路を有してよい。
(項目5)
 接続導体は、第2デバイス側において第1デバイスから離れる方向に向く第3電流経路を有してよい。
 接続導体は、第3電流経路から折り返して第1デバイスへと近づく方向に向く第4電流経路を有してよい。
(項目6)
 接続導体は、互いに隣接する電流経路同士で平行平板構造が形成されてよい。
(項目7)
 半導体装置は、第1領域に複数の第1デバイスを備えてよい。
 接続導体は、複数の第1デバイスをそれぞれ並列に接続してよい。
(項目8)
 半導体装置は、第2領域に複数の第2デバイスを備えてよい。
 接続導体は、複数の第2デバイスをそれぞれ並列に接続してよい。
(項目9)
 接続導体は、第1電流経路と、第2電流経路と、第3電流経路と、第4電流経路と、を含むメイン導体部を備えてよい。
 接続導体は、第1電流経路と複数の第1デバイスのそれぞれとの間を接続する複数の第1接続部を備えてよい。
 接続導体は、第3電流経路と複数の第2デバイスのそれぞれとの間を接続する複数の第2接続部を備えてよい。
(項目10)
 半導体装置は、第1領域に複数の第1デバイスを備えてよい。
 半導体装置は、第2領域に複数の第2デバイスを備えてよい。
 複数の第1デバイスおよび複数の第2デバイスは、第1領域から第2領域に向かう方向に配列されてよい。
(項目11)
 接続導体は、外部と接続され、外部と電流を授受する端子部を更に有してよい。
(項目12)
 半導体装置は、基板をさらに備えてよい。
 半導体装置は、基板に第1領域および第2領域が設けられてよい。
(項目13)
 基板は絶縁基板でよい。
(項目14)
 第1デバイスおよび第2デバイスは、絶縁ゲートバイポーラトランジスタまたはパワーMOSFETでよい。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
本実施形態に係る半導体装置10の構成例を示す。 本実施形態に係る半導体装置10の上面図の一例を示す。 本実施形態に係る半導体装置10に搭載する回路の一例を示す。 本実施形態に係る基板100の一例を示す。 本実施形態に係る半導体装置10の一例を示す。 本実施形態に係る半導体装置10で構成される3レベル回路の第1の動作例を示す。 図6に示す3レベル回路の第2の動作例を示す。 図6に示す3レベル回路の第3の動作例を示す。 図6に示す3レベル回路の第4の動作例を示す。 図6に示す3レベル回路の第5の動作例を示す。 図6に示す3レベル回路の第6の動作例を示す。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、本実施形態に係る半導体装置10の構成例を示す。半導体装置10は、当該半導体装置10に搭載された複数のデバイス間で電流を授受する場合に、インダクタンスおよび誘導磁場の影響を低減させるように当該電流を流す。これにより、外部または内部への当該電流による影響を低減させる。すなわち、デバイスのスイッチングによる当該電流の変化によって発生するサージ電圧を低減させる。半導体装置10は、第1デバイス110と、第2デバイス120と、接続導体130とを備える。また、半導体装置10は、基板100も備える。
 基板100は、デバイスおよび当該デバイスを接続する回路板等を搭載する。基板100は、一方の面にデバイス等を搭載する片面実装型基板が好ましい。基板100は、DCB(Direct Copper Bonding)基板やAMB(Active Metal Blazed)基板などの絶縁基板であることが望ましい。ここでは、本実施形態の基板100が、第1領域102と、当該第1領域102に隣接する第2領域104を有する例を説明する。図1において、第1領域102および第2領域104は、基板100の一方の面においてX軸方向に並ぶ領域として示す。
 1以上の第1デバイス110は、第1領域102に搭載される。第1デバイス110は、第1領域102に複数搭載されてよい。また、第1デバイス110は、一例として、第1領域102から第2領域104に向かう方向に沿って配列される。
 1以上の第2デバイス120は、第2領域104に搭載される。第2デバイス120は、第2領域104に複数搭載されてよい。また、第2デバイス120は、一例として、第1領域102から第2領域104に向かう方向に沿って配列される。図1は、3つの第1デバイス110および3つの第2デバイス120がX軸方向に配列される例を示す。
 第1デバイス110および第2デバイス120は、例えば、電力機器の制御等に用いられる電力用半導体素子であり、ダイオード、トランジスタ、サイリスタ、トライアック等の電力制御用デバイスである。第1デバイスおよび第2デバイスは、一例として、逆阻止絶縁ゲートバイポーラトランジスタ(RB-IGBT)である。また、第1デバイス110および第2デバイス120は、これらの電力制御用デバイスを複数接続した回路であってもよい。
 接続導体130は、第1デバイス110および第2デバイス120を電気的に接続する。接続導体130は、第1デバイス110および第2デバイス120の間の電圧差に応じて、第1デバイス110から第2デバイス120へ、または第2デバイス120から第1デバイス110へと電流を流す。
 接続導体130は、複数の電流経路を含み、当該接続導体130に含まれる互いに逆向きの電流経路同士が少なくとも一部において隣接する。接続導体130は、銅やアルミニウムなどの電気伝導率の高い金属で構成されることが望ましく、また、一体に形成されることが望ましい。接続導体130は、第1電流経路132と、第2電流経路134と、第3電流経路136と、第4電流経路138と、第1接続部142と、第2接続部144と、端子部146とを有する。
 第1電流経路132は、第1デバイス110側において第2デバイス120から離れる方向に向いて延伸する。即ち、第1電流経路132は、第1領域102側において第2領域104から離れる方向(例えば、-X軸方向)に向かって延伸する。第1電流経路132は、第2電流経路134と接続する。
 第2電流経路134は、第1領域102側において、第1電流経路132から折り返して第2デバイス120へと近づく方向に向いて延伸する。即ち、第2電流経路134は、第1電流経路132から折り返して当該第1電流経路132と隣接し、第1領域102から第2領域104へと(例えば、+X軸方向に)延伸する。
 第3電流経路136は、第2デバイス120側において第1デバイス110から離れる方向に向いて延伸する。即ち、第3電流経路136は、第2領域104側において第1領域102から離れる方向(例えば、+X軸方向)に向かって延伸する。第3電流経路136は、第4電流経路138と接続する。
 第4電流経路138は、第2領域104側において、第3電流経路136から折り返して第1デバイス110へと近づく方向に向いて延伸する。即ち、第4電流経路138は、第3電流経路136から折り返して当該第3電流経路136と隣接し、第2領域104から第1領域102へと(例えば、-X軸方向に)延伸して、第2電流経路134と接続する。即ち、第2電流経路134側から見ると、第4電流経路138は、第2電流経路134に続いて第1領域102から離れる方向に向かって延伸する。さらに、第3電流経路136は、第4電流経路138から折り返して当該第4電流経路138と隣接し、第1領域102へと近づく。
 即ち、第1電流経路132は、第3電流経路136に電気的に直接接続されずに、第2電流経路134および第4電流経路138を経由して第3電流経路136に接続される。このように、接続導体130は、第1電流経路132から、第2電流経路134、第4電流経路138、第3電流経路136までの連続する複数の電流経路によってメイン導体部が構成される。そして、半導体装置10では、当該メイン導体部を用いて、第1デバイス110および第2デバイス120の間で電流を流す。メイン導体部と第1デバイス110の間は、第1接続部142によって接続され、メイン導体部と第2デバイス120の間は、第2接続部144によって接続される。
 第1接続部142は、第1電流経路132と第1デバイス110の間を接続する。第1デバイス110が基板100に複数搭載される場合、第1接続部142は、接続導体130に複数設けられる。そして、第1電流経路132と複数の第1デバイス110との間が、複数の第1接続部142によりそれぞれ接続される。第1接続部142は、一例として、基板100の一方の面に銅などで形成された回路板等に接続され、当該回路板等を介して第1デバイス110に電気的に接続される。第1領域102に複数の第1デバイス110が設けられる場合、接続導体130は、第1接続部142により、複数の第1デバイス110とそれぞれ電気的に接続され、流れる電流を分岐または合流させる。
 第2接続部144は、第3電流経路136と第2デバイス120の間を接続する。第2デバイス120が基板100に複数搭載される場合、第2接続部144は、接続導体130に複数設けられる。そして、第3電流経路136と複数の第2デバイス120との間が、複数の第2接続部144によりそれぞれ接続される。第2接続部144は、一例として、基板100の一方の面に形成された回路板等に接続され、当該回路板等を介して第2デバイス120に電気的に接続される。第2領域104に複数の第2デバイス120が設けられる場合、接続導体130は、第2接続部144により、複数の第2デバイス120とそれぞれ電気的に接続され、流れる電流を分岐または合流させる。
 端子部146は、外部と接続され、外部と電流を授受する。端子部146は、半導体装置10の外部と、第1デバイス110および/または第2デバイス120との間で電流(電圧)を授受する場合において、入力端子および/または出力端子として機能する。
 以上の接続導体130は、電流経路の折り返しを介して、第1デバイス110から第2デバイス120へ、または第2デバイス120から第1デバイス110へと電流を流す。例えば、第2デバイス120と比較して第1デバイス110の電圧が高い場合、接続導体130は、第1デバイス110から第2デバイス120へと電流を流す。この際、接続導体130は、当該接続導体130の少なくとも一部において第2デバイス120から第1デバイス110へと向かう方向に電流を流す。本実施の形態においては、接続導体130は、第1電流経路132において、第2デバイス120から第1デバイス110へと向かう方向(-X方向)に電流を流す。
 また、第1デバイス110と比較して第2デバイス120の電圧が高い場合、接続導体130は、第2デバイス120から第1デバイス110へと電流を流す。この際、接続導体130は、少なくとも一部において第1デバイス110から第2デバイス120へと向かう方向に電流を流す。本実施の形態においては、接続導体130は、第3電流経路136において、第1デバイス110から第2デバイス120へと向かう方向(+X方向)に電流を流す。接続導体130は、互いに隣接する電流経路同士で平行平板構造を形成し、当該電流経路に発生するインダクタンスおよび誘導磁場を低減させる。接続導体130がインダクタンスおよび誘導磁場を低減させる動作について、図2を用いて説明する。
 図2は、本実施形態に係る半導体装置10の上面図の一例を示す。図2は、図1で説明した半導体装置10の接続導体130が、第1デバイス110から第2デバイス120へと電流を流す例を示す。即ち、図2において、複数の第1デバイス110は、複数の第2デバイス120と比較して電位が高く、第2デバイス120へと電流を供給する例を説明する。
 複数の第1接続部142は、複数の第1デバイス110からそれぞれ供給される電流を第1電流経路132へとそれぞれ伝達して合流させる。第1電流経路132は、X軸方向に並ぶ複数の第1デバイス110からそれぞれ供給される電流を、第2デバイス120から離れる方向(-X軸方向)へと合流させつつ流す。そして、第1電流経路132は第2電流経路134に接続され、第2電流経路134は、第1電流経路132からの電流を折り返して第2デバイス120に近づく方向(+X軸方向)に流す。
 ここで、第1電流経路132および第2電流経路134は隣接し、少なくとも一部において平行平板構造となる。即ち、平行平板において、互いに逆向きの電流が流れることになるので、第1電流経路132および第2電流経路134に流れる電流に起因してそれぞれ生じるインダクタンスおよび誘導磁場は、互いに逆向きとなって打ち消し合うことになる。したがって、第1電流経路132および第2電流経路134が隣接することにより、当該第1電流経路132および第2電流経路134に流れる電流に起因して発生するインダクタンスおよび誘導磁場を低減させることができる。
 そして、第2電流経路134は第4電流経路138に接続され、第4電流経路138は、第2電流経路134からの電流を第2領域104側において第1デバイス110から離れる方向(+X軸方向)に向かって流す。そして、第4電流経路138は第3電流経路136に接続され、第3電流経路136は、第4電流経路138からの電流を折り返して第1デバイス110に近づく方向(-X軸方向)に流す。
 ここで、第3電流経路136および第4電流経路138は隣接し、少なくとも一部において平行平板構造となる。即ち、平行平板において、互いに逆向きの電流が流れることになるので、第3電流経路136および第4電流経路138に流れる電流に起因してそれぞれ生じるインダクタンスおよび誘導磁場は、互いに逆向きとなって打ち消し合うことになる。したがって、第3電流経路136および第4電流経路138が隣接することにより、当該第3電流経路136および第4電流経路138に流れる電流に起因して発生するインダクタンスおよび誘導磁場を低減させることができる。
 そして、複数の第2接続部144は、第3電流経路136に流れる電流をそれぞれ分岐して第2デバイス120にそれぞれ供給する。即ち、第3電流経路136は、X軸方向に並ぶ複数の第1デバイス110からそれぞれ供給される電流を、第2領域104側において第1デバイス110に向く方向(+X軸方向)へと流しつつ、X軸方向に並ぶ複数の第2デバイス120へと分岐する。
 これによって、本実施形態に係る接続導体130は、インダクタンスおよび誘導磁場の発生を低減させつつ、複数の第1デバイス110から複数の第2デバイス120へと電流を流すことができる。このように、接続導体130は、自らに流れる電流を折り返し、互いに逆向きの電流経路同士を隣接させることでインダクタンスおよび誘導磁場の発生を低減させる。したがって、接続導体130は、他の接続導体、電流経路等を必要とせずに、インダクタンスおよび誘導磁場の発生を低減させることができる。そのため、接続導体130は、一のデバイスから他のデバイスに電流を供給する電流経路を設ける場合であっても、外部または内部のデバイスに与えるインダクタンスおよび誘導磁場の影響を低減させることができる。
 このように、本実施形態に係る接続導体130は、外部または内部のデバイスに与える影響を低減させるので、他の電流経路との兼ね合いを考慮することなしに配線できる。そのため、接続導体130により、大電力送受信、制御回路等の配線設計の自由度を高めることができる。また、接続導体130は、内部のデバイスに与える影響を低減させるので、当該接続導体130に近接してデバイス(例えば、第1デバイス110、第2デバイス120)等を配置することができる。そのため、半導体装置10の実装面積を小さくすることができる。
 図3は、本実施形態に係る半導体装置10に搭載する回路の一例を示す。図3は、予め定められた複数種類の電力の供給を切り換える半導体装置の一例を示す。半導体装置は、端子Mおよび端子Uの間に、第1デバイス110および第2デバイス120を逆並列に接続する。また、半導体装置は、端子Pおよび端子Nの間に、第3デバイス210および第4デバイス220を直列に接続する。更に、半導体装置は、端子Pおよび端子Nの間に、第5デバイス212および第6デバイス222を直列に接続する。
 第1デバイス110のコレクタ端子は端子Mと接続され、エミッタ端子は端子Uに接続される。即ち、第1デバイス110は、ベース端子に供給される制御信号に応じて、端子Mから端子Uに電流を流すか否かを切り換えるスイッチングデバイスとして機能する。また、第2デバイス120のコレクタ端子は端子Uと接続され、エミッタ端子は端子Mに接続される。即ち、第2デバイス120は、ベース端子に供給される制御信号に応じて、端子Uから端子Mに電流を流すか否かを切り換えるスイッチングデバイスとして機能する。
 第3デバイス210のコレクタ端子は端子Pと接続され、エミッタ端子は端子Uに接続される。即ち、第3デバイス210は、ベース端子に供給される制御信号に応じて、端子Pから端子Uに電流を流すか否かを切り換えるスイッチングデバイスとして機能する。第4デバイス220のコレクタ端子は端子Uと接続され、エミッタ端子は端子Nに接続される。即ち、第4デバイス220は、ベース端子に供給される制御信号に応じて、端子Uから端子Nに電流を流すか否かを切り換えるスイッチングデバイスとして機能する。
 第5デバイス212は、一方のアノード端子が端子Uに接続され、他方のカソード端子が端子Pに接続され、端子Uから端子Pへと一方向に電流を流すダイオードである。即ち、第5デバイス212は、端子Pおよび端子Uの間において、第3デバイス210と逆並列に接続される。第6デバイス222は、一方のアノード端子が端子Nに接続され、他方のカソード端子が端子Uに接続され、端子Nから端子Uへと一方向に電流を流すダイオードである。即ち、第6デバイス222は、端子Uおよび端子Nの間において、第4デバイス220と逆並列に接続される。
 以上の半導体装置を、図1および図2で説明した半導体装置10として構成する例を図4および図5を用いて説明する。図4は、本実施形態に係る基板100の一例を示す。基板100は、接続導体130が接続され、半導体装置10となる。即ち、図4に示す基板100は、接続導体130が搭載される前の状態を示す。また、図4に示す基板100は、デバイス、および回路板等が既に形成された状態を示す。
 基板100には、例えば、端子P、端子N、端子M、および端子Uに対応する回路板が形成される。なお、同一の符号で示す複数の端子は、ワイヤボンディング等でそれぞれ電気的に接続される。
 第1デバイス110は、第1領域102に設けられ、端子Mおよび端子Uとにそれぞれ接続される。第2デバイス120は、第2領域104に設けられ、端子Mおよび端子Uとにそれぞれ接続される。また、第3デバイス210および第5デバイス212は、第1領域102に設けられ、端子Pおよび端子Uとにそれぞれ接続される。また、第4デバイス220および第6デバイス222は、第2領域104に設けられ、端子Uおよび端子Nとにそれぞれ接続される。図4は、各デバイスがそれぞれ3個ずつ基板100に搭載される例を示す。
 なお、端子M、端子N、端子P、および端子Uは、基板100に設けられた回路板等に接続されてよい。同様に、第1デバイス110、第2デバイス120、第3デバイス210、および第4デバイス220の各電極は、基板100に設けられた回路板等に接続されてよい。
 図5は、本実施形態に係る半導体装置10の一例を示す。図5は、図4に示す基板100に、本実施形態に係る接続導体130が搭載された状態を示す。また、図5は、接続導体230、接続導体240、および接続導体250をさらに搭載する。
 接続導体130の第1接続部142は、第1領域102の端子Uに接続され、第2接続部144は、第2領域104の端子Uに接続される。また、半導体装置10のU端子として機能する端子部146は、一例として、外部の負荷と接続される。これにより、第1デバイス110のエミッタ端子は、接続導体130を経由して第2デバイス120のコレクタ端子と接続される。また、第1デバイス110のエミッタ端子および第2デバイス120のコレクタ端子は、端子部146を経由して外部の負荷と接続される。
 接続導体230は、第3接続部232および第4接続部234を有する。第3接続部232は、第1領域102の端子Mに接続され、第4接続部234は、第2領域104の端子Mに接続される。また、接続導体230は、一例として、半導体装置10のM端子として機能する端子部を更に有し、当該端子部は外部の電源と接続される。これにより、第1デバイス110のコレクタ端子は、接続導体230を経由して第2デバイス120のエミッタ端子と接続される。また、第1デバイス110のコレクタ端子および第2デバイス120のエミッタ端子は、外部の電源と接続される。
 接続導体240は、第5接続部242を有する。第5接続部242は、第1領域102の端子Pに接続する。また、接続導体240は、一例として、半導体装置10のP端子として機能する端子部を更に有し、当該端子部は外部の電源と接続される。これにより、複数の第3デバイス210のコレクタ端子および第5デバイス212のカソード端子は、接続導体240を経由して外部の電源と接続される。
 接続導体250は、第6接続部252を有する。第6接続部252は、第2領域104の端子Nに接続する。また、接続導体250は、一例として、半導体装置10のN端子として機能する端子部を更に有し、当該端子部は外部の電源または基準電位と接続される。これにより、複数の第4デバイス220のエミッタ端子および第6デバイス222のアノード端子は、接続導体250を介して外部の電源または基準電位と接続される。
 以上のように接続された半導体装置10は、図1および図2で説明したように、第1デバイス110から第2デバイス120に電流が流れる場合、接続導体130により、インダクタンスおよび誘導磁場の発生を低減させつつ、複数の第1デバイス110から複数の第2デバイス120へと電流を流すことができる。
 半導体装置10においては、外部から接続導体240を経由して(即ち、端子Pから)電流が入力され、接続導体230を経由して(即ち、端子Mから)外部へと電流が出力される場合がある。この場合、接続導体230は、第1領域102において、接続導体240と平行平板構造であることから、接続導体230および接続導体240をそれぞれ流れる電流は、互いに逆向きの電流経路同士となる。このため、半導体装置10において、インダクタンスおよび誘導磁場の発生を低減させることができる。
 また、半導体装置10においては、外部から接続導体230を経由して(即ち、端子Mから)電流が入力され、接続導体250を経由して(即ち、端子Nから)外部へと電流が出力される場合もある。この場合、接続導体230は、第2領域104において、接続導体250と平行平板構造であることから、接続導体230および接続導体250をそれぞれ流れる電流は、互いに逆向きの電流経路同士となる。このため、半導体装置10において、インダクタンスおよび誘導磁場の発生を低減させることができる。
 以上のように、半導体装置10は、互いに逆向きに電流が流れる相異なる独立した2つの電流経路がある場合、当該2つの電流経路が平行平板構造となるように隣接して設けられる。また、半導体装置10は、逆向きに電流が流れる対応する電流経路がなく1つの独立した電流経路がある場合、当該1つの電流経路が複数の連続する電流経路を有し、互いに逆向きの電流経路同士が少なくとも一部において隣接するように設けられる。これにより、半導体装置10は、電力制御によって流れる電流に応じて発生するパワー半導体モジュール全体のインダクタンスおよび誘導磁場を低減させることができる。すなわち、半導体モジュールに発生するサージ電圧を低減させることができる。
 また、図5に示す半導体装置10を1または複数組み合わせることで、インダクタンスおよび誘導磁場を低減させる電力制御回路を構成することができる。特に、2以上の半導体装置10を組み合わせることで、より複雑な電力制御回路を構成することができる。例えば、2つの半導体装置10を組み合わせることで、複数の信号レベルを出力する電力制御回路を構成できる。
 図6は、本実施形態に係る半導体装置10で構成される3レベル回路の第1の動作例を示す。図6は、図5に示す半導体装置10を2相にした電力制御回路の一例を示す。図6において、第1相の半導体装置10が備える部材を、小文字のaで示し(例えば、第1デバイス110a、第2デバイス120a等)、第2相の半導体装置10が備える部材を、小文字のbで示す(例えば、第1デバイス110b、第2デバイス120b等)。
 端子Maと端子Mb、端子Naと端子Nb、および端子Paと端子Pbは、電気的にそれぞれ接続される。端子Maおよび端子Paの間に、電源E1が接続される。即ち、端子Mbおよび端子Pbの間に、電源E1が接続されることになる。また、端子Maおよび端子Naの間に、電源E2が接続される。即ち、端子Mbおよび端子Nbの間に、電源E2が接続されることになる。電源E1およびE2は、略同一の電源でよい。また、端子Uaおよび端子Ubの間に、負荷Lが接続される。図6に示す電力制御回路は、負荷Lに複数の信号レベルを出力する。
 図6は、第1デバイス110aおよび第2デバイス120bをオンにし、それ以外のスイッチングデバイスをすべてオフにした例を示す。この場合、電源E1およびE2は、負荷Lと閉回路にならないので、電力制御回路が負荷Lに供給する電圧レベルは0[V]となる。
 図7は、図6に示す3レベル回路の第2の動作例を示す。図7は、第2デバイス120bおよび第3デバイス210aをオンにし、それ以外のスイッチングデバイスをすべてオフにした例を示す。この場合、電源E1が負荷Lと閉回路になるので、電力制御回路は負荷Lに予め定められた一定の電圧レベルを供給することができる。ここで、予め定められた一定の電圧レベルを+V[V]とする。
 図8は、図6に示す3レベル回路の第3の動作例を示す。図8は、第3デバイス210aおよび第4デバイス220bをオンにし、それ以外のスイッチングデバイスをすべてオフにした例を示す。この場合、電源E1およびE2が負荷Lと閉回路になるので、電力制御回路は負荷Lに予め定められた一定の電圧レベルを供給することができる。ここで、一例として、電源E1およびE2が略同一の電圧を供給すると、予め定められた一定の電圧レベルは+2V[V]となる。以上のように、図6に示す電力制御回路は、負荷Lに0[V]、+V[V]、および+2V[V]といった3つの正の信号レベルを供給することができる。
 図9は、図6に示す3レベル回路の第4の動作例を示す。図9は、第1デバイス110bおよび第2デバイス120aをオンにし、それ以外のスイッチングデバイスをすべてオフにした例を示す。この場合、電源E1およびE2は、負荷Lと閉回路にならないので、電力制御回路が負荷Lに供給する電圧レベルは0[V]となる。
 図10は、図6に示す3レベル回路の第5の動作例を示す。図10は、第3デバイス210bおよび第4デバイス220aをオンにし、それ以外のスイッチングデバイスをすべてオフにした例を示す。この場合、電源E1およびE2が負荷Lと閉回路となり、電力制御回路は負荷Lに予め定められた一定の電圧レベルを供給することができる。図10において、電源E1およびE2と負荷Lとの接続は、図8に示す電源E1およびE2と負荷Lとの接続とは逆向きになるので、予め定められた一定の電圧レベルは-2V[V]となる。
 図11は、図6に示す3レベル回路の第6の動作例を示す。図11は、第1デバイス110bおよび第4デバイス220aをオンにし、それ以外のスイッチングデバイスをすべてオフにした例を示す。この場合、電源E2が負荷Lと閉回路になるので、電力制御回路は負荷Lに予め定められた一定の電圧レベルを供給することができる。図11において、電源E2と負荷Lとの接続は、図7に示す電源E1と負荷Lとの接続とは逆向きになるので、予め定められた一定の電圧レベルは-V[V]となる。以上のように、図6に示す電力制御回路は、負荷Lに0[V]、-V[V]、および-2V[V]といった3つの負の信号レベルを供給することができる。
 以上のように、本実施形態に係る半導体装置10は、複数の信号レベルを出力する電力制御回路を構成することができる。また、半導体装置10の端子等が短絡して、例えば、同一の半導体装置10における第1デバイス110および第2デバイス120の間で過大な電流が流れた場合に、インダクタンスおよび誘導磁場を低減させることができ、素子の破壊等を防止することができる。また、同一の半導体装置10における端子Pおよび端子Mの間で過大な電流が流れた場合に、インダクタンスおよび誘導磁場を低減させることができ、素子の破壊等を防止することができる。同様に、同一の半導体装置10における端子Nおよび端子Mの間で過大な電流が流れた場合に、インダクタンスおよび誘導磁場を低減させることができ、素子の破壊等を防止することができる。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10 半導体装置、100 基板、102 第1領域、104 第2領域、110 第1デバイス、120 第2デバイス、130 接続導体、132 第1電流経路、134 第2電流経路、136 第3電流経路、138 第4電流経路、142 第1接続部、144 第2接続部、146 端子部、210 第3デバイス、212 第5デバイス、220 第4デバイス、222 第6デバイス、230 接続導体、232 第3接続部、234 第4接続部、240 接続導体、242 第5接続部、250 接続導体、252 第6接続部

Claims (14)

  1.  第1領域の1以上の第1デバイスと、
     第2領域の1以上の第2デバイスと、
     前記第1デバイスおよび前記第2デバイスを電気的に接続する接続導体と、
     を備え、
     前記接続導体は、当該接続導体に含まれる互いに逆向きの電流経路同士が少なくとも一部において隣接する
     半導体装置。
  2.  前記接続導体は、前記第1デバイスから前記第2デバイスへと電流を流し、少なくとも一部において前記第2デバイスから前記第1デバイスへと向かう方向に電流を流す請求項1に記載の半導体装置。
  3.  前記接続導体は、前記第2デバイスから前記第1デバイスへと電流を流し、少なくとも一部において前記第1デバイスから前記第2デバイスへと向かう方向に電流を流す請求項1に記載の半導体装置。
  4.  前記接続導体は、前記第1デバイス側において前記第2デバイスから離れる方向に向く第1電流経路と、前記第1電流経路から折り返して前記第2デバイスへと近づく方向に向く第2電流経路と、を有する請求項1から3のいずれか一項に記載の半導体装置。
  5.  前記接続導体は、前記第2デバイス側において前記第1デバイスから離れる方向に向く第3電流経路と、前記第3電流経路から折り返して前記第1デバイスへと近づく方向に向く第4電流経路と、を有する請求項4に記載の半導体装置。
  6.  前記接続導体は、互いに隣接する前記電流経路同士で平行平板構造が形成される請求項1から5のいずれか一項に記載の半導体装置。
  7.  前記第1領域に複数の前記第1デバイスを備え、
     前記接続導体は、複数の前記第1デバイスをそれぞれ並列に接続する
     請求項1から6のいずれか一項に記載の半導体装置。
  8.  前記第2領域に複数の前記第2デバイスを備え、
     前記接続導体は、複数の前記第2デバイスをそれぞれ並列に接続する
     請求項1から7のいずれか一項に記載の半導体装置。
  9.  前記接続導体は、
     前記第1電流経路と、前記第2電流経路と、前記第3電流経路と、前記第4電流経路と、を含むメイン導体部と、
     前記第1電流経路と複数の前記第1デバイスのそれぞれとの間を接続する複数の第1接続部と、
     前記第3電流経路と複数の前記第2デバイスのそれぞれとの間を接続する複数の第2接続部と、
     を備える
     請求項5に記載の半導体装置。
  10.  前記第1領域に複数の前記第1デバイスを備え、
     前記第2領域に複数の前記第2デバイスを備え、
     複数の前記第1デバイスおよび複数の前記第2デバイスは、前記第1領域から前記第2領域に向かう方向に配列される
     請求項1から9のいずれか一項に記載の半導体装置。
  11.  前記接続導体は、外部と接続され、外部と電流を授受する端子部を更に有する請求項1から10のいずれか一項に記載の半導体装置。
  12.  基板をさらに備え、
     前記基板に前記第1領域および前記第2領域が設けられている請求項1から11のいずれか一項に記載の半導体装置。
  13.  前記基板は絶縁基板である請求項12に記載の半導体装置。
  14.  前記第1デバイスおよび前記第2デバイスは、絶縁ゲートバイポーラトランジスタまたはパワーMOSFETである請求項1から13のいずれか一項に記載の半導体装置。
PCT/JP2016/053236 2015-03-05 2016-02-03 半導体装置 WO2016140008A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112016000092.8T DE112016000092T5 (de) 2015-03-05 2016-02-03 Halbleitervorrichtung
CN201680002449.9A CN106605300B (zh) 2015-03-05 2016-02-03 半导体装置
JP2017503381A JP6319509B2 (ja) 2015-03-05 2016-02-03 半導体装置
US15/446,012 US10121773B2 (en) 2015-03-05 2017-03-01 Semiconductor apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-043316 2015-03-05
JP2015043316 2015-03-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/446,012 Continuation US10121773B2 (en) 2015-03-05 2017-03-01 Semiconductor apparatus

Publications (1)

Publication Number Publication Date
WO2016140008A1 true WO2016140008A1 (ja) 2016-09-09

Family

ID=56848805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053236 WO2016140008A1 (ja) 2015-03-05 2016-02-03 半導体装置

Country Status (5)

Country Link
US (1) US10121773B2 (ja)
JP (1) JP6319509B2 (ja)
CN (1) CN106605300B (ja)
DE (1) DE112016000092T5 (ja)
WO (1) WO2016140008A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018177732A1 (en) * 2017-03-27 2018-10-04 Danfoss Silicon Power Gmbh 3-level power module
WO2022025041A1 (ja) * 2020-07-28 2022-02-03 ローム株式会社 半導体装置
DE102021131508A1 (de) 2021-01-14 2022-07-14 Fuji Electric Co., Ltd. Dämpfungsvorrichtung und stromrichter
WO2022158258A1 (ja) * 2021-01-22 2022-07-28 住友電気工業株式会社 半導体装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3748835A1 (en) * 2019-06-06 2020-12-09 Infineon Technologies AG Power semiconductor module arrangement
CN112367760B (zh) * 2020-10-29 2022-06-10 科华恒盛股份有限公司 过流结构、电容模块和变流装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195471A (ja) * 1995-01-17 1996-07-30 Hitachi Ltd モジュール型半導体装置
JP2002353407A (ja) * 2001-05-30 2002-12-06 Fuji Electric Co Ltd 半導体素子の並列接続用導体
JP2007266608A (ja) * 2006-03-29 2007-10-11 Infineon Technologies Ag 半導体モジュール

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3480771B2 (ja) 1995-12-20 2003-12-22 三菱電機株式会社 半導体装置
JP4603956B2 (ja) * 2005-08-26 2010-12-22 日立オートモティブシステムズ株式会社 電力変換装置
JP4564937B2 (ja) * 2006-04-27 2010-10-20 日立オートモティブシステムズ株式会社 電気回路装置及び電気回路モジュール並びに電力変換装置
CN201478300U (zh) * 2009-07-30 2010-05-19 比亚迪股份有限公司 功率模块电极结构以及功率模块
JP6076865B2 (ja) * 2013-09-02 2017-02-08 ルネサスエレクトロニクス株式会社 電子装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195471A (ja) * 1995-01-17 1996-07-30 Hitachi Ltd モジュール型半導体装置
JP2002353407A (ja) * 2001-05-30 2002-12-06 Fuji Electric Co Ltd 半導体素子の並列接続用導体
JP2007266608A (ja) * 2006-03-29 2007-10-11 Infineon Technologies Ag 半導体モジュール

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018177732A1 (en) * 2017-03-27 2018-10-04 Danfoss Silicon Power Gmbh 3-level power module
WO2022025041A1 (ja) * 2020-07-28 2022-02-03 ローム株式会社 半導体装置
DE102021131508A1 (de) 2021-01-14 2022-07-14 Fuji Electric Co., Ltd. Dämpfungsvorrichtung und stromrichter
US11632038B2 (en) 2021-01-14 2023-04-18 Fuji Electric Co., Ltd. Snubber apparatus and power conversion apparatus
WO2022158258A1 (ja) * 2021-01-22 2022-07-28 住友電気工業株式会社 半導体装置

Also Published As

Publication number Publication date
CN106605300B (zh) 2019-05-03
JP6319509B2 (ja) 2018-05-09
JPWO2016140008A1 (ja) 2017-06-08
US10121773B2 (en) 2018-11-06
CN106605300A (zh) 2017-04-26
DE112016000092T5 (de) 2017-04-20
US20170179095A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
WO2016140008A1 (ja) 半導体装置
US10153708B2 (en) Three-level power converter
JP6400201B2 (ja) パワー半導体モジュール
WO2015121899A1 (ja) 電力用半導体モジュール
JP5867472B2 (ja) 電力変換装置
US10256640B2 (en) Semiconductor device
US10600716B2 (en) Power converter
US6021060A (en) Power converter device
JPWO2015053142A1 (ja) ドライバ基板および電力変換装置
US20130039103A1 (en) Power-converting apparatus having improved electro-thermal characteristics
US10608546B2 (en) Power converter
JP3793700B2 (ja) 電力変換装置
US10340816B2 (en) Semiconductor device and multiphase semiconductor device
US9041460B2 (en) Packaged power transistors and power packages
US11239766B2 (en) Flying capacitor circuit, circuit module and power conversion apparatus
JP6362959B2 (ja) 電力変換回路、その製造方法、および、パワーコンディショナ
US10014795B2 (en) Power converter
JP2016144333A (ja) 相ユニット及びこれを用いた3レベル電力変換装置
JPWO2019016929A1 (ja) 電力変換装置
EP4297087A1 (en) Power electronic module with parallely connected power electronic devices
US11469681B2 (en) Power supply device
US20230402922A1 (en) Power converter
US20230307332A1 (en) Power Semiconductor Module and Method for Producing a Power Semiconductor Module
JP2018157618A (ja) 並列接続コネクタ付ゲート駆動基板
JP6352556B1 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503381

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016000092

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758703

Country of ref document: EP

Kind code of ref document: A1