WO2016136944A1 - 環状アミン誘導体及びその医薬用途 - Google Patents

環状アミン誘導体及びその医薬用途 Download PDF

Info

Publication number
WO2016136944A1
WO2016136944A1 PCT/JP2016/055814 JP2016055814W WO2016136944A1 WO 2016136944 A1 WO2016136944 A1 WO 2016136944A1 JP 2016055814 W JP2016055814 W JP 2016055814W WO 2016136944 A1 WO2016136944 A1 WO 2016136944A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
reaction
group
mmol
solution
Prior art date
Application number
PCT/JP2016/055814
Other languages
English (en)
French (fr)
Inventor
唯正 新井
康弘 盛田
秀二 宇田川
克彦 伊関
直樹 泉本
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PL16755688T priority Critical patent/PL3263565T3/pl
Priority to AU2016224420A priority patent/AU2016224420B2/en
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP16755688.5A priority patent/EP3263565B1/en
Priority to KR1020177014826A priority patent/KR102488848B1/ko
Priority to JP2016520708A priority patent/JP6569671B2/ja
Priority to BR112017017859-1A priority patent/BR112017017859B1/pt
Priority to SG11201705701UA priority patent/SG11201705701UA/en
Priority to ES16755688T priority patent/ES2744785T3/es
Priority to MX2017010624A priority patent/MX2017010624A/es
Priority to US15/553,211 priority patent/US10173999B2/en
Priority to CA2977614A priority patent/CA2977614C/en
Priority to CN201680007467.6A priority patent/CN107250128B/zh
Priority to DK16755688.5T priority patent/DK3263565T3/da
Priority to RU2017133423A priority patent/RU2667062C1/ru
Publication of WO2016136944A1 publication Critical patent/WO2016136944A1/ja
Priority to IL253410A priority patent/IL253410A/en
Priority to PH12017501297A priority patent/PH12017501297A1/en
Priority to ZA2017/05293A priority patent/ZA201705293B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41781,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/454Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • A61P29/02Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID] without antiinflammatory effect
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms

Definitions

  • the present invention relates to a cyclic amine derivative and its pharmaceutical use.
  • Pain is an experience with an unpleasant sensation or an unpleasant emotion that occurs when tissue damage is or is likely to occur. Pain is mainly classified as nociceptive pain, neuropathic pain or psychogenic pain, depending on the cause. In addition, fibromyalgia is known as a pain of unknown cause.
  • Neuropathic pain is pathological pain caused by abnormal functioning of the peripheral or central nervous system itself, and is caused by direct damage or compression of nerve tissue even though nociceptors are not subjected to noxious stimulation. This refers to the pain that occurs.
  • Anticonvulsants, antidepressants, anxiolytics or antiepileptics are used as therapeutic agents for neuropathic pain.
  • Fibromyalgia is a disease with systemic pain as the main symptom and psychological and autonomic nervous system symptoms as secondary symptoms.
  • therapeutic agents for fibromyalgia pregabalin approved in the United States and Japan, duloxetine and milnacipran approved in the United States are mainly used. It is also used for non-steroidal anti-inflammatory drugs, opioid compounds, antidepressants, anticonvulsants and antiepileptic drugs that are not approved for the treatment of fibromyalgia.
  • non-patent Document 1 the therapeutic effects of nonsteroidal anti-inflammatory drugs and opioid compounds are generally considered to be low.
  • Patent Document 1 discloses that certain types of substituted piperidines have cardiotonic activity.
  • Patent Document 2 discloses that an imidazole derivative exhibits an FXa inhibitory action.
  • Patent Document 3 suggests that substituted piperidines may have a medicinal effect on overweight or obesity.
  • Patent Document 4 discloses that imidazole derivatives exhibit analgesic action.
  • an object of the present invention is to provide a compound showing analgesic action against pain, particularly neuropathic pain and / or fibromyalgia.
  • a cyclic amine derivative having a strong analgesic action against pain, particularly neuropathic pain and / or fibromyalgia.
  • the present invention provides a cyclic amine derivative represented by the following general formula (I) or a pharmacologically acceptable salt thereof.
  • the carbon attached with * is an asymmetric carbon
  • A represents a group represented by the general formula (IIa), (IIb) or (IIc);
  • R 1 represents a methyl group or an ethyl group which may be substituted with a halogen atom
  • R 2 represents a hydrogen atom or an alkylcarbonyl group having 2 to 5 carbon atoms
  • each R 3 independently represents: Represents a methyl group or an ethyl group, and n represents 1 or 2.
  • A is preferably a group represented by the general formula (IIa), and in this case, R 1 is a methyl group or an ethyl group which may be substituted with a fluorine atom. More preferably, R 1 is more preferably a methyl group, an ethyl group, a difluoromethyl group or a 2,2,2-trifluoroethyl group. By limiting to these, the analgesic action can be enhanced.
  • A is preferably a group represented by the general formula (IIb) or (IIc).
  • R 1 is a methyl group optionally substituted with a fluorine atom, More preferably, it is an ethyl group, and R 1 is more preferably a methyl group, an ethyl group, a difluoromethyl group, or a 2,2,2-trifluoroethyl group.
  • A is a group represented by the general formula (IIa), and the stereochemistry of the asymmetric carbon marked with * is preferably S configuration, and R 1 is More preferably, it is a methyl group or an ethyl group which may be substituted with a fluorine atom, and R 1 is a methyl group, an ethyl group, a difluoromethyl group or a 2,2,2-trifluoroethyl group. Further preferred. By limiting to these, the analgesic action can be further enhanced.
  • the present invention also provides a medicament containing the cyclic amine derivative represented by the above general formula (I) or a pharmacologically acceptable salt thereof as an active ingredient.
  • the drug is preferably an analgesic, and more preferably a neuropathic pain therapeutic agent or a fibromyalgia therapeutic agent.
  • the present invention also provides a pharmaceutical composition containing the cyclic amine derivative represented by the above general formula (I) or a pharmacologically acceptable salt thereof, a pharmacologically acceptable excipient, and the like. .
  • the present invention also provides a cyclic amine derivative represented by the above general formula (I) or a pharmacologically acceptable salt thereof for use as a medicament.
  • the present invention also provides a cyclic amine derivative represented by the above general formula (I) or a pharmacologically acceptable salt thereof for use in the treatment of pain.
  • the pain is preferably neuropathic pain or fibromyalgia.
  • the present invention also provides use of the cyclic amine derivative represented by the above general formula (I) or a pharmacologically acceptable salt thereof for treating pain.
  • the pain is preferably neuropathic pain or fibromyalgia.
  • the present invention also provides use of the cyclic amine derivative represented by the above general formula (I) or a pharmacologically acceptable salt thereof in the manufacture of a medicament for treating pain.
  • the pain is preferably neuropathic pain or fibromyalgia.
  • the present invention also relates to a method for treating pain, wherein a therapeutically effective amount of a cyclic amine derivative represented by the above general formula (I) or a pharmacologically acceptable salt thereof is administered to a patient in need of treatment.
  • a method comprising:
  • the pain is preferably neuropathic pain or fibromyalgia.
  • the cyclic amine derivative of the present invention or a pharmacologically acceptable salt thereof exhibits a strong analgesic action against pain, particularly neuropathic pain and fibromyalgia.
  • FIG. 11 shows the effects of the compounds of Comparative Examples 3 to 6 on the mouse partial sciatic nerve ligation model and, as a comparison, the effects of the compound of Example 11 shown in FIG. 10 (oral administration). It is the figure which showed the effect of the compound of the comparative example 1 with respect to a rat fibromyalgia model, and the effect of the compound of Example 11 described in FIG. 13 as a comparison (oral administration). It is the figure which showed the plasma level transition of the compound of Example 11 in a cynomolgus monkey (intravenous administration and oral administration). It is the figure which showed the plasma level transition of the compound of the comparative example 2 in a cynomolgus monkey (intravenous administration and oral administration).
  • the cyclic amine derivative of the present invention is characterized by being represented by the following general formula (I).
  • the carbon attached with * is an asymmetric carbon
  • A represents a group represented by the general formula (IIa), (IIb) or (IIc)
  • R 1 represents a methyl group or an ethyl group which may be substituted with a halogen atom
  • R 2 represents a hydrogen atom or an alkylcarbonyl group having 2 to 5 carbon atoms
  • each R 3 independently represents: Represents a methyl group or an ethyl group, and n represents 1 or 2.
  • A is preferably a group represented by the general formula (IIa), and R 1 is preferably a methyl group or an ethyl group which may be substituted with a fluorine atom, More preferably, R 1 is a methyl group, an ethyl group, a difluoromethyl group or a 2,2,2-trifluoroethyl group.
  • A is preferably a group represented by the general formula (IIb) or (IIc), and R 1 may be a methyl group or an ethyl group optionally substituted with a fluorine atom. And R 1 is more preferably a methyl group, an ethyl group, a difluoromethyl group or a 2,2,2-trifluoroethyl group.
  • A is preferably a group represented by the general formula (IIa), and the stereochemistry of the asymmetric carbon marked with * is preferably S configuration, and in this case, R 1 Is preferably a methyl group or an ethyl group optionally substituted by a fluorine atom, and R 1 is a methyl group, an ethyl group, a difluoromethyl group or a 2,2,2-trifluoroethyl group Is more preferable.
  • A is a group represented by the general formula (IIa), and R 1 represents a methyl group or an ethyl group which may be substituted with a fluorine atom.
  • R 2 represents a hydrogen atom or an alkylcarbonyl group having 2 to 5 carbon atoms
  • R 3 each independently represents a methyl group or an ethyl group.
  • the stereochemistry of the asymmetric carbon marked with * is preferably S configuration.
  • A is a group represented by the general formula (IIa), and R 1 is a methyl group, an ethyl group, a difluoromethyl group or a 2,2,2-trimethyl group.
  • R 1 is a methyl group, an ethyl group, a difluoromethyl group or a 2,2,2-trimethyl group.
  • R 2 represents a hydrogen atom or an alkylcarbonyl group having 2 to 5 carbon atoms
  • R 3 each independently represents a methyl group or an ethyl group.
  • the stereochemistry of the asymmetric carbon marked with * is preferably S configuration.
  • A is a group represented by the general formula (IIa), R 1 represents a methyl group or a 2,2,2-trifluoroethyl group, R 2 represents a hydrogen atom or an alkylcarbonyl group having 2 carbon atoms, and R 3 represents a methyl group.
  • R 1 represents a methyl group or a 2,2,2-trifluoroethyl group
  • R 2 represents a hydrogen atom or an alkylcarbonyl group having 2 carbon atoms
  • R 3 represents a methyl group.
  • the stereochemistry of the asymmetric carbon marked with * is preferably S configuration.
  • A represents a group represented by the general formula (IIb), and R 1 represents a methyl group or an ethyl group which may be substituted with a fluorine atom.
  • R 2 represents a hydrogen atom or an alkylcarbonyl group having 2 to 5 carbon atoms
  • R 3 independently represents a methyl group or an ethyl group
  • n represents 1 or 2.
  • the stereochemistry of the asymmetric carbon marked with * is preferably S configuration.
  • A is a group represented by the general formula (IIb), and R 1 is a methyl group, an ethyl group, a difluoromethyl group or 2,2,2-trimethyl.
  • R 1 represents a fluoroethyl group
  • R 2 represents a hydrogen atom or an alkylcarbonyl group having 2 to 5 carbon atoms
  • R 3 independently represents a methyl group or an ethyl group
  • n represents 1 or 2 .
  • the stereochemistry of the asymmetric carbon marked with * is preferably S configuration.
  • A is a group represented by the general formula (IIb), R 1 represents a methyl group or a 2,2,2-trifluoroethyl group, R 2 represents a hydrogen atom or an alkylcarbonyl group having 2 carbon atoms, R 3 represents a methyl group, and n represents 1 or 2.
  • the stereochemistry of the asymmetric carbon marked with * is preferably S configuration.
  • A represents a group represented by the general formula (IIc), and R 1 represents a methyl group or an ethyl group which may be substituted with a fluorine atom.
  • R 2 represents a hydrogen atom or an alkylcarbonyl group having 2 to 5 carbon atoms, and R 3 represents a methyl group or an ethyl group.
  • the stereochemistry of the asymmetric carbon marked with * is preferably S configuration.
  • A is a group represented by the general formula (IIc), and R 1 is a methyl group, an ethyl group, a difluoromethyl group or a 2,2,2-trimethyl group.
  • R 1 is a methyl group, an ethyl group, a difluoromethyl group or a 2,2,2-trimethyl group.
  • R 2 represents a hydrogen atom or an alkylcarbonyl group having 2 to 5 carbon atoms
  • R 3 represents a methyl group or an ethyl group.
  • the stereochemistry of the asymmetric carbon marked with * is preferably S configuration.
  • A is a group represented by the general formula (IIc), R 1 represents a methyl group or a 2,2,2-trifluoroethyl group, R 2 represents a hydrogen atom or an alkylcarbonyl group having 2 carbon atoms, and R 3 represents a methyl group.
  • R 1 represents a methyl group or a 2,2,2-trifluoroethyl group
  • R 2 represents a hydrogen atom or an alkylcarbonyl group having 2 carbon atoms
  • R 3 represents a methyl group.
  • the stereochemistry of the asymmetric carbon marked with * is preferably S configuration.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the methyl group or ethyl group optionally substituted with a halogen atom means a methyl group or an ethyl group in which each hydrogen atom may be independently substituted with the above halogen atom. Examples thereof include a methyl group or an ethyl group, a difluoromethyl group, a 2-fluoroethyl group, a 2-chloroethyl group, a 2,2-difluoroethyl group, or a 2,2,2-trifluoroethyl group.
  • alkylcarbonyl group having 2 to 5 carbon atoms means a group in which a linear, branched or cyclic saturated hydrocarbon group having 1 to 4 carbon atoms is bonded to a carbonyl group.
  • an acetyl group, n-propionyl group, n-butyryl group, isobutyryl group or valeryl group can be mentioned.
  • cyclic amine derivative (I) Specific examples of preferred compounds of the cyclic amine derivative represented by the above general formula (I) (hereinafter, cyclic amine derivative (I)) are shown in Table 1-1 and Table 1-2, but the present invention is not limited thereto. It is not something.
  • cyclic amine derivative (I) contains isomers, such as an enantiomer and a stereoisomer, any one isomer and mixtures thereof are also included in cyclic amine derivative (I).
  • isomers due to conformation may be generated, and such isomers and mixtures thereof are also included in the cyclic amine derivative (I).
  • the target isomer can be obtained by a known method or a method analogous thereto. For example, when the enantiomer exists in the cyclic amine derivative (I), the enantiomer separated from the cyclic amine derivative (I) is also included in the cyclic amine derivative (I).
  • the target enantiomer is a known means (for example, an optically active synthetic intermediate is used, or a known method or an equivalent method (for example, optical resolution) is used for a racemic mixture of the final product) Can be obtained.
  • the present invention also includes a prodrug or pharmacologically acceptable salt of the cyclic amine derivative (I).
  • the prodrug of the cyclic amine derivative (I) is a compound that is enzymatically or chemically converted into the cyclic amine derivative (I) in vivo.
  • the active body of the prodrug of the cyclic amine derivative (I) is the cyclic amine derivative (I), but the prodrug itself of the cyclic amine derivative (I) may have activity.
  • Examples of the prodrug of the cyclic amine derivative (I) include compounds in which the hydroxyl group of the cyclic amine derivative (I) is alkylated, phosphorylated or borated. These compounds can be synthesized from the cyclic amine derivative (I) according to a known method.
  • prodrugs of the cyclic amine derivative (I) are known in the literature ("Development of Pharmaceuticals", Hirokawa Shoten, 1990, Vol. 7, p.163-198 and Progress in Medicine, Vol. 5, 1985, p. .2157 to 2161) may be converted into the cyclic amine derivative (I).
  • the cyclic amine derivative (I) may be labeled with an isotope.
  • Examples of the labeled isotope include 2 H, 3 H, 13 C, 14 C, 15 N, 15 O, 18 O and / or Or 125 I is mentioned.
  • Examples of the pharmacologically acceptable salt of the cyclic amine derivative (I) include inorganic acid salts such as hydrochloride, sulfate, phosphate, and hydrobromide; or oxalate, malonate, Citrate, fumarate, lactate, malate, succinate, tartrate, acetate, trifluoroacetate, maleate, gluconate, benzoate, salicylate, xinafoate, pamo And organic acid salts such as acid salts, ascorbates, adipates, methanesulfonates, p-toluenesulfonates and cinnamates. In addition, these salts may form hydrates, solvates or crystalline polymorphs.
  • the cyclic amine derivative (I) can be synthesized according to the production method described below.
  • the cyclic amine derivative (I) obtained by the following production method can be isolated and purified by a known means (for example, solvent extraction, recrystallization and / or chromatography), and can be purified by a known method or a method analogous thereto. Can be converted into a salt.
  • the cyclic amine derivative (I) is obtained in the form of a salt, it can be converted to the cyclic amine derivative (I) or other desired salt by a known method or a method analogous thereto.
  • a protecting group may be introduced into these groups, and the protecting group is deprotected as necessary after the reaction. By doing so, the target compound can be obtained.
  • hydroxyl-protecting group examples include a trityl group, an aralkyl group having 7 to 10 carbon atoms (eg, benzyl group), or a substituted silyl group (eg, trimethylsilyl group, triethylsilyl group, or tert-butyldimethylsilyl group). .
  • amino-protecting group examples include an alkylcarbonyl group having 2 to 6 carbon atoms (for example, acetyl group), a benzoyl group, an alkyloxycarbonyl group having 2 to 8 carbon atoms (for example, tert-butoxycarbonyl group or benzyloxy group) Carbonyl group), an aralkyl group having 7 to 10 carbon atoms (for example, benzyl group) or a phthaloyl group.
  • alkylcarbonyl group having 2 to 6 carbon atoms for example, acetyl group
  • benzoyl group an alkyloxycarbonyl group having 2 to 8 carbon atoms (for example, tert-butoxycarbonyl group or benzyloxy group) Carbonyl group)
  • an aralkyl group having 7 to 10 carbon atoms for example, benzyl group
  • a phthaloyl group examples include an alkylcarbonyl group having 2 to 6 carbon atoms (for example
  • Examples of the protecting group for the carboxyl group include an alkyl group having 1 to 6 carbon atoms (for example, a methyl group, an ethyl group, or a tert-butyl group) or an aralkyl group having 7 to 10 carbon atoms (for example, a benzyl group).
  • the deprotection of the protecting group varies depending on the type of the protecting group, but is in accordance with a known method (for example, Greene, TW, “Green's Protective Groups in Organic Synthesis”, Wiley-Interscience) or a method equivalent thereto. It can be carried out.
  • the compound (Ia-a) in which A is a group represented by the general formula (IIa) is, for example, an aldol-type condensation between the compound (IIIA) and the compound (IV) in the presence of a base. Obtained by reaction.
  • Examples of the base used in the aldol type condensation reaction include lithium diisopropylamide, potassium tert-butoxide, sodium hydride, phenyllithium, and tert-butyllithium.
  • the amount of base used in the aldol type condensation reaction is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, relative to 1 mol of compound (IIIA).
  • the amount of compound (IV) used in the aldol-type condensation reaction is preferably 0.5 to 3 mol, more preferably 0.8 to 1.5 mol, relative to 1 mol of compound (IIIA).
  • the aldol-type condensation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include halogenated hydrocarbons such as dichloromethane, chloroform or 1,2-dichloroethane; or ethers such as tetrahydrofuran or 1,4-dioxane. These mixed solvents may be used.
  • the reaction temperature in the aldol type condensation reaction is preferably ⁇ 78 ° C. to 100 ° C., more preferably ⁇ 78 ° C. to 50 ° C.
  • the reaction time in the aldol-type condensation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • Examples of the base used in the aldol type condensation reaction include lithium diisopropylamide, potassium tert-butoxide, sodium hydride, phenyllithium, and tert-butyllithium.
  • the amount of base used in the aldol type condensation reaction is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, relative to 1 mol of compound (IIIA).
  • the amount of compound (IV) used in the aldol-type condensation reaction is preferably 0.5 to 3 mol, more preferably 0.8 to 1.5 mol, relative to 1 mol of compound (IIIA).
  • the aldol-type condensation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include halogenated hydrocarbons such as dichloromethane, chloroform or 1,2-dichloroethane; or ethers such as tetrahydrofuran or 1,4-dioxane. These mixed solvents may be used.
  • the reaction temperature in the aldol type condensation reaction is preferably ⁇ 78 ° C. to 100 ° C., more preferably ⁇ 78 ° C. to 50 ° C.
  • the reaction time in the aldol-type condensation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • the compound (VA) used for the reduction reaction can be synthesized, for example, according to the production method described below.
  • Examples of the reducing agent used in the reduction reaction include lithium borohydride, sodium borohydride, diisobutylaluminum hydride, lithium aluminum hydride, lithium triethyl hydride, sodium bis (2-methoxyethoxy) aluminum hydride, and borane complex.
  • the amount of the reducing agent used in the reduction reaction is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, relative to 1 mol of the compound (VA).
  • the reduction reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • solvents include hydrocarbons such as octane, hexane, benzene, and toluene; ethers such as tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether, and diethyl ether; or methanol, ethanol, 2-propanol, and the like. Alcohols. These mixed solvents may be used.
  • the reaction temperature in the reduction reaction is preferably ⁇ 78 ° C. to 150 ° C., more preferably ⁇ 78 ° C. to 100 ° C.
  • the reaction time in the reduction reaction varies depending on the reaction conditions, but is preferably 5 minutes to 72 hours, more preferably 30 minutes to 24 hours.
  • the compound (Ia-c) in which A is a group represented by the general formula (IIa) and R 2 is an alkylcarbonyl group having 2 to 5 carbon atoms is, for example, a base
  • the compound (Ia-b) can be obtained by an acylation reaction using an acylating agent such as a halide or acid anhydride of a carboxylic acid having 2 to 5 carbon atoms.
  • compound (Ia-b) and a salt thereof can be used.
  • the salt in this case include the same salts as the above pharmacologically acceptable salts.
  • Examples of the base used in the acylation reaction include pyridine, triethylamine, diisopropylethylamine, and N, N-dimethylaminopyridine.
  • the amount of base used in the acylation reaction is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, relative to 1 mol of compound (Ia-b).
  • acylating agent used in the acylation reaction a commercially available product can be used as it is.
  • the amount of the acylating agent used in the acylation reaction is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, relative to 1 mol of compound (Ia-b).
  • the acylation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include aromatic amines such as pyridine; halogenated hydrocarbons such as dichloromethane, chloroform or 1,2-dichloroethane; ethers such as tetrahydrofuran or 1,4-dioxane; Examples thereof include aliphatic nitriles such as pionitrile. These mixed solvents may be used.
  • aromatic amine such as pyridine
  • halogenated hydrocarbons such as dichloromethane, chloroform or 1,2-dichloroethane
  • ethers such as tetrahydrofuran or 1,4-dioxane
  • aliphatic nitriles such as pionitrile.
  • the reaction temperature in the acylation reaction is preferably ⁇ 40 ° C. to 100 ° C., more preferably ⁇ 20 ° C. to 80 ° C.
  • the reaction time in the acylation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 72 hours, more preferably 30 minutes to 24 hours.
  • Chlorination step of compounds (Ia-a), (Ia-b) and (Ia-c) The pharmaceutically acceptable salts of compounds (Ia-a), (Ia-b) and (Ia-c) are, for example, those of compound (Ia-a), (Ia-b) or (Ia-c) It is obtained by a chlorination reaction using an acid.
  • Examples of the acid used for the chlorination reaction include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid or hydrobromic acid; or oxalic acid, malonic acid, citric acid, fumaric acid, lactic acid, malic acid, succinic acid, tartaric acid, acetic acid Organic acids such as trifluoroacetic acid, maleic acid, gluconic acid, benzoic acid, salicylic acid, xinafoic acid, pamoic acid, ascorbic acid, adipic acid, methanesulfonic acid, p-toluenesulfonic acid or cinnamic acid.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid or hydrobromic acid
  • Organic acids such as trifluoroacetic acid, male
  • the chlorination reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include aliphatic alcohols such as methanol, ethanol and 2-propanol; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane and ethylene glycol dimethyl ether; N, N-dimethylformamide or N Amides such as methylpyrrolidone; Sulfoxides such as dimethyl sulfoxide; Aliphatic nitriles such as acetonitrile or propionitrile; Ketones such as acetone or 2-butanone; Esters such as ethyl acetate, methyl acetate or n-butyl acetate Or water. These mixed solvents may be used.
  • the reductive amination reaction can be performed according to a known method (for example, Journal of Organic Chemistry, 2003, Vol. 68, p. 770-779) or a method analogous thereto.
  • Step 6 Compound (VIIIA) is obtained by a reductive amination reaction between compound (VIA) and compound (VIIA).
  • the reductive amination reaction can be performed according to a known method (for example, Journal of Organic Chemistry, 2003, Vol. 68, p. 770-779) or a method analogous thereto.
  • Step 7 Compound (IIa-a) is obtained by deprotection of compound (VIIIA).
  • the deprotection of the protecting group varies depending on the type of the protecting group, but is in accordance with a known method (for example, Greene, TW, “Green's Protective Groups in Organic Synthesis”, Wiley-Interscience) or a method equivalent thereto. It can be carried out.
  • the acetylation reaction can be carried out according to a known method (for example, Greene, TW, “Green's Protective Groups in Organic Synthesis”, Wiley-Interscience) or a method equivalent thereto.
  • Step 9 Compound (X) can be obtained by an alkylation reaction in which an alkylating reagent (LI) is allowed to act after deprotonation of compound (IX) with a base.
  • an alkylating reagent (LI) is allowed to act after deprotonation of compound (IX) with a base.
  • Examples of the base used in the alkylation reaction include alkali metal hydrides such as sodium hydride or potassium hydride; or butyllithiums such as n-butyllithium, sec-butyllithium or tert-butyllithium.
  • the amount of base used in the alkylation reaction is preferably 0.5 to 3 mol, more preferably 0.8 to 2 mol, relative to 1 mol of compound (IX).
  • alkylating reagent (LI) used for the alkylation reaction a commercially available product can be used as it is.
  • the amount of the alkylating reagent (LI) used in the alkylation reaction is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, relative to 1 mol of compound (IX).
  • the alkylation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include ethers such as tetrahydrofuran or 1,4-dioxane; amides such as N, N-dimethylformamide or N-methylpyrrolidone; or aliphatic nitriles such as acetonitrile or propionitrile. Can be mentioned. These mixed solvents may be used.
  • the reaction temperature in the alkylation reaction is preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 to 100 ° C.
  • the reaction time in the alkylation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 72 hours, more preferably 30 minutes to 48 hours.
  • Compound (IV) is obtained by a formylation reaction in which a formyl group introduction reagent is allowed to act after deprotonation of compound (X) with a base.
  • the compound (X) used in the formylation reaction a commercially available product can be used as it is, but it can be synthesized, for example, according to the above production method.
  • Examples of the base used in the formylation reaction include n-butyllithium, sec-butyllithium, and tert-butyllithium.
  • the amount of base used in the formylation reaction is preferably 0.5 to 3 mol, more preferably 0.8 to 2 mol, relative to 1 mol of compound (X).
  • Examples of the formyl group introduction reagent used in the formylation reaction include N, N-dimethylformamide.
  • N, N-dimethylformamide a commercially available product can be used as it is.
  • the amount of formyl group introduction reagent used in the formylation reaction is preferably 0.5 to 3 mol, more preferably 0.8 to 2 mol, relative to 1 mol of compound (X).
  • the formylation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include aliphatic hydrocarbons such as heptane and hexane; and ethers such as tetrahydrofuran, diethyl ether and 1,4-dioxane. These mixed solvents may be used.
  • the reaction temperature in the deprotonation of the formylation reaction is preferably ⁇ 100 to 0 ° C., more preferably ⁇ 80 to ⁇ 20 ° C.
  • the reaction temperature in the formylation of the formylation reaction is preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 to 100 ° C.
  • the reaction time of the formylation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 72 hours, more preferably 30 minutes to 48 hours.
  • Step 11 Compound (IV) is obtained by an alkylation reaction in which an alkylating reagent (LI) is allowed to act after deprotonation of compound (XI) with a base.
  • an alkylating reagent (LI) is allowed to act after deprotonation of compound (XI) with a base.
  • Examples of the base used for the alkylation reaction include metal carbonates such as sodium carbonate, potassium carbonate or cesium carbonate; or alkali metal hydroxides such as sodium hydroxide or potassium hydroxide.
  • the amount of base used in the alkylation reaction is preferably 0.5 to 3 mol, more preferably 0.8 to 2 mol, relative to 1 mol of compound (XI).
  • alkylating reagent (LI) used for the alkylation reaction a commercially available product can be used as it is.
  • the amount of the alkylating reagent (LI) used in the alkylation reaction is preferably 0.5 to 3 mol, more preferably 0.8 to 2 mol, relative to 1 mol of compound (XI).
  • the alkylation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include ethers such as tetrahydrofuran or 1,4-dioxane; amides such as N, N-dimethylformamide or N-methylpyrrolidone; or aliphatic nitriles such as acetonitrile or propionitrile. Can be mentioned. These mixed solvents may be used.
  • the reaction temperature in the alkylation reaction is preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 to 100 ° C.
  • the reaction time in the alkylation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 72 hours, more preferably 30 minutes to 48 hours.
  • Step 12 Compound (VA) is obtained by oxidation reaction of compound (Ia-b).
  • Compound (Ia-b) used in the oxidation reaction can be synthesized according to the above production method.
  • Examples of the oxidizing agent used in the oxidation reaction include manganese dioxide, sulfur trioxide-pyridine, activated dimethyl sulfoxide, and desmartin reagent.
  • the amount of the oxidizing agent used in the oxidation reaction is preferably 0.5 to 50 mol, more preferably 0.8 to 35 mol, relative to 1 mol of compound (Ia-b).
  • the oxidation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include aromatic amines such as pyridine; halogenated hydrocarbons such as dichloromethane, chloroform or 1,2-dichloroethane; ethers such as tetrahydrofuran or 1,4-dioxane; Examples thereof include aliphatic nitriles such as pionitrile. These mixed solvents may be used.
  • the reaction temperature in the oxidation reaction is preferably ⁇ 78 ° C. to 100 ° C., more preferably ⁇ 78 ° C. to 40 ° C.
  • the reaction time in the oxidation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 72 hours, more preferably 30 minutes to 48 hours.
  • R 4 represents an alkyl group having 1 to 6 carbon atoms or an aralkyl group having 7 to 10 carbon atoms, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and a benzyl group. . Each other symbol has the same definition as above. ]
  • Step 13 Compound (XII) is obtained by esterification reaction of compound (X) using an ester group introduction reagent in the presence of a base.
  • the compound (X) used for the esterification reaction a commercially available product can be used as it is, but for example, it can be synthesized according to the above production method.
  • Examples of the base used in the esterification reaction include aromatic amines such as pyridine and lutidine; or triethylamine, triisopropylamine, tributylamine, cyclohexyldimethylamine, 4-dimethylaminopyridine, N, N-dimethylaniline, N— And tertiary amines such as methylpiperidine, N-methylpyrrolidine, N-methylmorpholine or diisopropylethylamine (DIEA).
  • aromatic amines such as pyridine and lutidine
  • tertiary amines such as methylpiperidine, N-methylpyrrolidine, N-methylmorpholine or diisopropylethylamine (DIEA).
  • the amount of base used in the esterification reaction is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, relative to 1 mol of compound (X).
  • ester group introduction reagent used in the esterification reaction examples include halogenated formate such as ethyl chloroformate. Commercially available ethyl chloroformate can be used as it is.
  • the amount of the ester group introduction reagent used in the esterification reaction is preferably 0.5 to 3 mol, more preferably 0.8 to 2 mol, relative to 1 mol of compound (X).
  • the esterification reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include ethers such as tetrahydrofuran or 1,4-dioxane; amides such as N, N-dimethylformamide or N-methylpyrrolidone; or aliphatic nitriles such as acetonitrile or propionitrile. Can be mentioned. These mixed solvents may be used.
  • the reaction temperature in the esterification reaction is preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 to 100 ° C.
  • the reaction time of the esterification reaction varies depending on the reaction conditions, but is preferably 5 minutes to 72 hours, more preferably 30 minutes to 48 hours.
  • Step 14 Compound (XII) is obtained by an alkylation reaction in which an alkylating reagent (LI) is allowed to act after deprotonation of compound (XIII) with a base.
  • an alkylating reagent (LI) is allowed to act after deprotonation of compound (XIII) with a base.
  • Examples of the base used for the alkylation reaction include metal carbonates such as sodium carbonate, potassium carbonate or cesium carbonate; or alkali metal hydroxides such as sodium hydroxide or potassium hydroxide.
  • the amount of base used in the alkylation reaction is preferably 0.5 to 3 mol, more preferably 0.8 to 2 mol, relative to 1 mol of compound (XIII).
  • alkylating reagent (LI) used for the alkylation reaction a commercially available product can be used as it is.
  • the amount of the alkylating reagent (LI) used in the alkylation reaction is preferably 0.5 to 3 mol, more preferably 0.8 to 2 mol, relative to 1 mol of compound (XIII).
  • the alkylation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include ethers such as tetrahydrofuran or 1,4-dioxane; amides such as N, N-dimethylformamide or N-methylpyrrolidone; or aliphatic nitriles such as acetonitrile or propionitrile. Can be mentioned. These mixed solvents may be used.
  • the reaction temperature in the alkylation reaction is preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 to 100 ° C.
  • the reaction time in the alkylation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 72 hours, more preferably 30 minutes to 48 hours.
  • Step 15 Compound (VA) is obtained by a condensation reaction between compound (XII) and compound (IIIA) in the presence of a base.
  • Examples of the base used for the condensation reaction include lithium diisopropylamide, potassium tert-butoxide, sodium hydride, phenyllithium, and tert-butyllithium.
  • the amount of base used in the condensation reaction is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, relative to 1 mol of compound (IIIA).
  • the amount of compound (XII) used in the condensation reaction is preferably 0.5 to 3 mol, more preferably 0.8 to 1.5 mol, relative to 1 mol of compound (IIIA).
  • the condensation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include halogenated hydrocarbons such as dichloromethane, chloroform or 1,2-dichloroethane; or ethers such as tetrahydrofuran or 1,4-dioxane. These mixed solvents may be used.
  • the reaction temperature in the condensation reaction is preferably ⁇ 78 ° C. to 100 ° C., more preferably ⁇ 78 ° C. to 50 ° C.
  • the reaction time in the condensation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • the compound (XII) used for the hydrolysis reaction a commercially available product can be used as it is, but for example, it can be synthesized according to the above production method.
  • Examples of the base used for the hydrolysis reaction include lithium hydroxide, potassium hydroxide, and sodium hydroxide.
  • the amount of base used in the hydrolysis reaction is preferably 0.5 to 3 mol, more preferably 0.8 to 2 mol, relative to 1 mol of compound (XII).
  • the hydrolysis reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include aliphatic alcohols such as methanol, ethanol, and propanol; or water. These mixed solvents may be used.
  • the reaction temperature in the hydrolysis reaction is preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 to 100 ° C.
  • the reaction time of the hydrolysis reaction varies depending on the reaction conditions, but is preferably 5 minutes to 72 hours, more preferably 30 minutes to 48 hours.
  • Step 17 Compound (XVI) is obtained by a condensation reaction of compound (XIV) and compound (XV) in the presence of a base, carbonyldiimidazole and magnesium salt.
  • the above condensation reaction can be carried out according to a known method (for example, ACS Medicinal Chemistry Letters, 2011, Vol. 2, p. 171-176) or a method analogous thereto.
  • Step 18 Compound (VA) is obtained by amidation reaction of compound (XVI) and compound (IIa-a).
  • the amount of compound (IIa-a) used in the amidation reaction is preferably 0.5 to 3 mol, more preferably 0.8 to 1.5 mol, relative to 1 mol of compound (XVI).
  • the amidation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include aromatic hydrocarbons such as toluene, chlorobenzene and xylene; ethers such as tetrahydrofuran and 1,4-dioxane; amides such as N, N-dimethylformamide and N-methylpyrrolidone; Or aliphatic nitriles, such as acetonitrile or propionitrile, are mentioned. These mixed solvents may be used.
  • the reaction temperature in the amidation reaction is preferably ⁇ 20 ° C. to 200 ° C., more preferably 0 to 150 ° C.
  • the reaction time of the amidation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 72 hours, more preferably 30 minutes to 48 hours.
  • Step 19 Among the cyclic amine derivatives (I), the compound (Ib-a) in which A is a group represented by the general formula (IIb) is, for example, an aldol-type condensation between the compound (IIIB) and the compound (IV) in the presence of a base. Obtained by reaction.
  • the compound (IIIB) and compound (IV) used in the aldol-type condensation reaction commercially available products can be used as they are.
  • the compound (IIIB) can be synthesized according to the production method described below, and the compound (IV) can be synthesized as described above. According to the production method of
  • Examples of the base used in the aldol type condensation reaction include lithium diisopropylamide, potassium tert-butoxide, sodium hydride, phenyllithium, and tert-butyllithium.
  • the amount of base used in the aldol type condensation reaction is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, relative to 1 mol of compound (IIIB).
  • the amount of compound (IV) used in the aldol-type condensation reaction is preferably 0.5 to 3 mol, more preferably 0.8 to 1.5 mol, relative to 1 mol of compound (IIIB).
  • the aldol-type condensation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include halogenated hydrocarbons such as dichloromethane, chloroform or 1,2-dichloroethane; or ethers such as tetrahydrofuran or 1,4-dioxane. These mixed solvents may be used.
  • the reaction temperature in the aldol type condensation reaction is preferably ⁇ 78 ° C. to 100 ° C., more preferably ⁇ 78 ° C. to 50 ° C.
  • the reaction time in the aldol-type condensation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • Step 20 Among the cyclic amine derivatives (I), the compound (Ib-b) in which A is a group represented by the general formula (IIb) and R 2 is a hydrogen atom is, for example, compound (IIIB) in the presence of a base. It is obtained by an aldol type condensation reaction between the compound and compound (IV).
  • the compound (IIIB) and compound (IV) used in the aldol-type condensation reaction commercially available products can be used as they are.
  • the compound (IIIB) can be synthesized according to the production method described below, and the compound (IV) can be synthesized as described above. According to the production method of
  • Examples of the base used in the aldol type condensation reaction include lithium diisopropylamide, potassium tert-butoxide, sodium hydride, phenyllithium, and tert-butyllithium.
  • the amount of base used in the aldol type condensation reaction is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, relative to 1 mol of compound (IIIB).
  • the amount of compound (IV) used in the aldol-type condensation reaction is preferably 0.5 to 3 mol, more preferably 0.8 to 1.5 mol, relative to 1 mol of compound (IIIB).
  • the aldol-type condensation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include halogenated hydrocarbons such as dichloromethane, chloroform or 1,2-dichloroethane; or ethers such as tetrahydrofuran or 1,4-dioxane. These mixed solvents may be used.
  • the reaction temperature in the aldol type condensation reaction is preferably ⁇ 78 ° C. to 100 ° C., more preferably ⁇ 78 ° C. to 50 ° C.
  • the reaction time in the aldol-type condensation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • Step 21 Among the cyclic amine derivatives (I), the compound (Ib-b) in which A is a group represented by the general formula (IIb) and R 2 is a hydrogen atom is obtained by the reduction reaction of the compound (VB). .
  • the compound (VB) used for the reduction reaction can be synthesized, for example, according to the production method described below.
  • Examples of the reducing agent used in the reduction reaction include lithium borohydride, sodium borohydride, diisobutylaluminum hydride, lithium aluminum hydride, lithium triethyl hydride, sodium bis (2-methoxyethoxy) aluminum hydride, and borane complex.
  • the amount of the reducing agent used in the reduction reaction is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, relative to 1 mol of the compound (VB).
  • the reduction reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • solvents include hydrocarbons such as octane, hexane, benzene, and toluene; ethers such as tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether, and diethyl ether; or methanol, ethanol, 2-propanol, and the like. Alcohols. These mixed solvents may be used.
  • the reaction temperature in the reduction reaction is preferably ⁇ 78 ° C. to 150 ° C., more preferably ⁇ 78 ° C. to 100 ° C.
  • the reaction time in the reduction reaction varies depending on the reaction conditions, but is preferably 5 minutes to 72 hours, more preferably 30 minutes to 24 hours.
  • the compound (Ib-c) in which A is a group represented by the general formula (IIb) and R 2 is an alkylcarbonyl group having 2 to 5 carbon atoms includes, for example, a base
  • the compound (Ib-b) can be obtained by an acylation reaction using an acylating agent such as a halide or acid anhydride of a carboxylic acid having 2 to 5 carbon atoms.
  • compound (Ib-b) and a salt thereof can be used.
  • the salt in this case include the same salts as the above pharmacologically acceptable salts.
  • Examples of the base used in the acylation reaction include pyridine, triethylamine, diisopropylethylamine, and N, N-dimethylaminopyridine.
  • the amount of base used in the acylation reaction is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, relative to 1 mol of compound (Ib-b).
  • acylating agent used in the acylation reaction a commercially available product can be used as it is.
  • the amount of the acylating agent used in the acylation reaction is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, relative to 1 mol of the compound (Ib-b).
  • the acylation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include aromatic amines such as pyridine; halogenated hydrocarbons such as dichloromethane, chloroform or 1,2-dichloroethane; ethers such as tetrahydrofuran or 1,4-dioxane; Examples thereof include aliphatic nitriles such as pionitrile. These mixed solvents may be used.
  • aromatic amine such as pyridine
  • halogenated hydrocarbons such as dichloromethane, chloroform or 1,2-dichloroethane
  • ethers such as tetrahydrofuran or 1,4-dioxane
  • aliphatic nitriles such as pionitrile.
  • the reaction temperature in the acylation reaction is preferably ⁇ 40 ° C. to 100 ° C., more preferably ⁇ 20 ° C. to 80 ° C.
  • the reaction time in the acylation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 72 hours, more preferably 30 minutes to 24 hours.
  • Chlorination step of compounds (Ib-a), (Ib-b) and (Ib-c) The pharmacologically acceptable salts of compounds (Ib-a), (Ib-b) and (Ib-c) are, for example, those of compound (Ib-a), (Ib-b) or (Ib-c) It can be obtained by a chlorination reaction using an acid.
  • Examples of the acid used for the chlorination reaction include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid or hydrobromic acid; or oxalic acid, malonic acid, citric acid, fumaric acid, lactic acid, malic acid, succinic acid, tartaric acid, acetic acid Organic acids such as trifluoroacetic acid, maleic acid, gluconic acid, benzoic acid, salicylic acid, xinafoic acid, pamoic acid, ascorbic acid, adipic acid, methanesulfonic acid, p-toluenesulfonic acid or cinnamic acid.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid or hydrobromic acid
  • Organic acids such as trifluoroacetic acid, male
  • the chlorination reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include aliphatic alcohols such as methanol, ethanol and 2-propanol; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane and ethylene glycol dimethyl ether; N, N-dimethylformamide or N Amides such as methylpyrrolidone; Sulfoxides such as dimethyl sulfoxide; Aliphatic nitriles such as acetonitrile or propionitrile; Ketones such as acetone or 2-butanone; Esters such as ethyl acetate, methyl acetate or n-butyl acetate Or water. These mixed solvents may be used.
  • Step 23 Compound (IIIB) is obtained by a reductive amination reaction between compound (VIB) in which PG is an acetyl group and compound (VIIB).
  • the reductive amination reaction can be performed according to a known method (for example, Journal of Organic Chemistry, 2003, Vol. 68, p. 770-779) or a method analogous thereto.
  • Step 24 Compound (VIIIB) is obtained by a reductive amination reaction between compound (VIB) and compound (VIIB).
  • the reductive amination reaction can be performed according to a known method (for example, Journal of Organic Chemistry, 2003, Vol. 68, p. 770-779) or a method analogous thereto.
  • the deprotection of the protecting group varies depending on the type of the protecting group, but is in accordance with a known method (for example, Greene, TW, “Green's Protective Groups in Organic Synthesis”, Wiley-Interscience) or a method equivalent thereto. It can be carried out.
  • Step 26 Compound (IIIB) is obtained by acetylation reaction of compound (IIb-a).
  • the acetylation reaction can be carried out according to a known method (for example, Greene, TW, “Green's Protective Groups in Organic Synthesis”, Wiley-Interscience) or a method equivalent thereto.
  • Step 27 Compound (VB) is obtained by oxidation reaction of compound (Ib-b).
  • the compound (Ib-b) used in the oxidation reaction can be synthesized according to the above production method.
  • Examples of the oxidizing agent used in the oxidation reaction include manganese dioxide, sulfur trioxide-pyridine, activated dimethyl sulfoxide, and desmartin reagent.
  • the amount of oxidant used in the oxidation reaction is preferably 0.5 to 50 mol, more preferably 0.8 to 35 mol, relative to 1 mol of compound (Ib-b).
  • the oxidation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include aromatic amines such as pyridine; halogenated hydrocarbons such as dichloromethane, chloroform or 1,2-dichloroethane; ethers such as tetrahydrofuran or 1,4-dioxane; Examples thereof include aliphatic nitriles such as pionitrile. These mixed solvents may be used.
  • the reaction temperature in the oxidation reaction is preferably ⁇ 78 ° C. to 100 ° C., more preferably ⁇ 78 ° C. to 40 ° C.
  • the reaction time in the oxidation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 72 hours, more preferably 30 minutes to 48 hours.
  • Step 28 Compound (VB) is obtained by a condensation reaction of compound (XII) and compound (IIIB) in the presence of a base.
  • Examples of the base used for the condensation reaction include lithium diisopropylamide, potassium tert-butoxide, sodium hydride, phenyllithium, and tert-butyllithium.
  • the amount of base used in the condensation reaction is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, relative to 1 mol of compound (IIIB).
  • the amount of compound (XII) used in the condensation reaction is preferably 0.5 to 3 mol, more preferably 0.8 to 1.5 mol, relative to 1 mol of compound (IIIB).
  • the condensation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include halogenated hydrocarbons such as dichloromethane, chloroform or 1,2-dichloroethane; or ethers such as tetrahydrofuran or 1,4-dioxane. These mixed solvents may be used.
  • the reaction temperature in the condensation reaction is preferably ⁇ 78 ° C. to 100 ° C., more preferably ⁇ 78 ° C. to 50 ° C.
  • the reaction time in the condensation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • Step 29 Compound (VB) is obtained by amidation reaction of compound (XVI) and compound (IIb-a).
  • the amount of compound (IIb-a) used in the amidation reaction is preferably 0.5 to 3 mol, more preferably 0.8 to 1.5 mol, relative to 1 mol of compound (XVI).
  • the amidation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include aromatic hydrocarbons such as toluene, chlorobenzene and xylene; ethers such as tetrahydrofuran and 1,4-dioxane; amides such as N, N-dimethylformamide and N-methylpyrrolidone; Or aliphatic nitriles, such as acetonitrile or propionitrile, are mentioned. These mixed solvents may be used.
  • the reaction temperature in the amidation reaction is preferably ⁇ 20 ° C. to 200 ° C., more preferably 0 to 150 ° C.
  • the reaction time of the amidation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 72 hours, more preferably 30 minutes to 48 hours.
  • the compound (Ic-a) in which A is a group represented by the general formula (IIc) is, for example, an aldol-type condensation between the compound (IIIC) and the compound (IV) in the presence of a base. Obtained by reaction.
  • compound (IIIC) and compound (IV) used for the aldol-type condensation reaction commercially available products can be used as they are.
  • compound (IIIC) can be synthesized according to the production method described below, and compound (IV) is synthesized as described above. According to the production method of
  • Examples of the base used in the aldol type condensation reaction include lithium diisopropylamide, potassium tert-butoxide, sodium hydride, phenyllithium, and tert-butyllithium.
  • the amount of base used in the aldol-type condensation reaction is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, relative to 1 mol of compound (IIIC).
  • the amount of compound (IV) used in the aldol-type condensation reaction is preferably 0.5 to 3 mol, more preferably 0.8 to 1.5 mol, relative to 1 mol of compound (IIIC).
  • the aldol-type condensation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include halogenated hydrocarbons such as dichloromethane, chloroform or 1,2-dichloroethane; or ethers such as tetrahydrofuran or 1,4-dioxane. These mixed solvents may be used.
  • the reaction temperature in the aldol type condensation reaction is preferably ⁇ 78 ° C. to 100 ° C., more preferably ⁇ 78 ° C. to 50 ° C.
  • the reaction time in the aldol-type condensation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • Step 31 Of the cyclic amine derivatives (I), the compound (Ic-b) in which A is a group represented by the general formula (IIc) and R 2 is a hydrogen atom can be obtained by, for example, compound (IIIC) It is obtained by an aldol type condensation reaction between the compound and compound (IV).
  • compound (IIIC) and compound (IV) used for the aldol-type condensation reaction commercially available products can be used as they are.
  • compound (IIIC) can be synthesized according to the production method described below, and compound (IV) is synthesized as described above. According to the production method of
  • Examples of the base used in the aldol type condensation reaction include lithium diisopropylamide, potassium tert-butoxide, sodium hydride, phenyllithium, and tert-butyllithium.
  • the amount of base used in the aldol-type condensation reaction is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, relative to 1 mol of compound (IIIC).
  • the amount of compound (IV) used in the aldol-type condensation reaction is preferably 0.5 to 3 mol, more preferably 0.8 to 1.5 mol, relative to 1 mol of compound (IIIC).
  • the aldol-type condensation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include halogenated hydrocarbons such as dichloromethane, chloroform or 1,2-dichloroethane; or ethers such as tetrahydrofuran or 1,4-dioxane. These mixed solvents may be used.
  • the reaction temperature in the aldol type condensation reaction is preferably ⁇ 78 ° C. to 100 ° C., more preferably ⁇ 78 ° C. to 50 ° C.
  • the reaction time in the aldol-type condensation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • Step 32 Among the cyclic amine derivatives (I), the compound (Ic-b) in which A is a group represented by the general formula (IIc) and R 2 is a hydrogen atom is obtained by a reduction reaction of the compound (VC). .
  • the compound (VC) used for the reduction reaction can be synthesized, for example, according to the production method described below.
  • Examples of the reducing agent used in the reduction reaction include lithium borohydride, sodium borohydride, diisobutylaluminum hydride, lithium aluminum hydride, lithium triethyl hydride, sodium bis (2-methoxyethoxy) aluminum hydride, and borane complex.
  • the amount of the reducing agent used in the reduction reaction is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, relative to 1 mol of the compound (VC).
  • the reduction reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • solvents include hydrocarbons such as octane, hexane, benzene, and toluene; ethers such as tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether, and diethyl ether; or methanol, ethanol, 2-propanol, and the like. Alcohols. These mixed solvents may be used.
  • the reaction temperature in the reduction reaction is preferably ⁇ 78 ° C. to 150 ° C., more preferably ⁇ 78 ° C. to 100 ° C.
  • the reaction time in the reduction reaction varies depending on the reaction conditions, but is preferably 5 minutes to 72 hours, more preferably 30 minutes to 24 hours.
  • the compound (Ic-c) in which A is a group represented by the general formula (IIc) and R 2 is an alkylcarbonyl group having 2 to 5 carbon atoms includes, for example, a base
  • the compound (Ic-b) can be obtained by an acylation reaction using an acylating agent such as a halide or acid anhydride of a carboxylic acid having 2 to 5 carbon atoms.
  • compound (Ic-b) and a salt thereof can be used.
  • the salt in this case include the same salts as the above pharmacologically acceptable salts.
  • Examples of the base used in the acylation reaction include pyridine, triethylamine, diisopropylethylamine, and N, N-dimethylaminopyridine.
  • the amount of base used in the acylation reaction is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, relative to 1 mol of compound (Ic-b).
  • acylating agent used in the acylation reaction a commercially available product can be used as it is.
  • the amount of the acylating agent used in the acylation reaction is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, relative to 1 mol of the compound (Ic-b).
  • the acylation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include aromatic amines such as pyridine; halogenated hydrocarbons such as dichloromethane, chloroform or 1,2-dichloroethane; ethers such as tetrahydrofuran or 1,4-dioxane; Examples thereof include aliphatic nitriles such as pionitrile. These mixed solvents may be used.
  • aromatic amine such as pyridine
  • halogenated hydrocarbons such as dichloromethane, chloroform or 1,2-dichloroethane
  • ethers such as tetrahydrofuran or 1,4-dioxane
  • aliphatic nitriles such as pionitrile.
  • the reaction temperature in the acylation reaction is preferably ⁇ 40 ° C. to 100 ° C., more preferably ⁇ 20 ° C. to 80 ° C.
  • the reaction time in the acylation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 72 hours, more preferably 30 minutes to 24 hours.
  • Chlorination step of compounds (Ic-a), (Ic-b) and (Ic-c) The pharmacologically acceptable salts of compounds (Ic-a), (Ic-b) and (Ic-c) are, for example, those of compound (Ic-a), (Ic-b) or (Ic-c) It is obtained by a chlorination reaction using an acid.
  • Examples of the acid used for the chlorination reaction include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid or hydrobromic acid; or oxalic acid, malonic acid, citric acid, fumaric acid, lactic acid, malic acid, succinic acid, tartaric acid, acetic acid Organic acids such as trifluoroacetic acid, maleic acid, gluconic acid, benzoic acid, salicylic acid, xinafoic acid, pamoic acid, ascorbic acid, adipic acid, methanesulfonic acid, p-toluenesulfonic acid or cinnamic acid.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid or hydrobromic acid
  • Organic acids such as trifluoroacetic acid, male
  • the chlorination reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include aliphatic alcohols such as methanol, ethanol and 2-propanol; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane and ethylene glycol dimethyl ether; N, N-dimethylformamide or N Amides such as methylpyrrolidone; Sulfoxides such as dimethyl sulfoxide; Aliphatic nitriles such as acetonitrile or propionitrile; Ketones such as acetone or 2-butanone; Esters such as ethyl acetate, methyl acetate or n-butyl acetate Or water. These mixed solvents may be used.
  • Step 34 Compound (IIIC) is obtained by a reductive amination reaction between compound (VIC) in which PG is an acetyl group and compound (XVII).
  • the reductive amination reaction can be performed according to a known method (for example, Journal of Organic Chemistry, 2003, Vol. 68, p. 770-779) or a method analogous thereto.
  • Step 35 Compound (VIIIC) is obtained by a reductive amination reaction between compound (VIC) and compound (XVII).
  • the reductive amination reaction can be performed according to a known method (for example, Journal of Organic Chemistry, 2003, Vol. 68, p. 770-779) or a method analogous thereto.
  • the deprotection of the protecting group varies depending on the type of the protecting group, but is in accordance with a known method (for example, Greene, TW, “Green's Protective Groups in Organic Synthesis”, Wiley-Interscience) or a method equivalent thereto. It can be carried out.
  • Step 37 Compound (IIIC) is obtained by acetylation reaction of compound (IIc-a).
  • the acetylation reaction can be carried out according to a known method (for example, Greene, TW, “Green's Protective Groups in Organic Synthesis”, Wiley-Interscience) or a method equivalent thereto.
  • Step 38 Compound (VC) is obtained by oxidation reaction of compound (Ic-b).
  • the compound (Ic-b) used in the oxidation reaction can be synthesized according to the above production method.
  • Examples of the oxidizing agent used in the oxidation reaction include manganese dioxide, sulfur trioxide-pyridine, activated dimethyl sulfoxide, and desmartin reagent.
  • the amount of the oxidizing agent used in the oxidation reaction is preferably 0.5 to 50 mol, more preferably 0.8 to 35 mol, relative to 1 mol of the compound (Ic-b).
  • the oxidation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include aromatic amines such as pyridine; halogenated hydrocarbons such as dichloromethane, chloroform or 1,2-dichloroethane; ethers such as tetrahydrofuran or 1,4-dioxane; Examples thereof include aliphatic nitriles such as pionitrile. These mixed solvents may be used.
  • the reaction temperature in the oxidation reaction is preferably ⁇ 78 ° C. to 100 ° C., more preferably ⁇ 78 ° C. to 40 ° C.
  • the reaction time in the oxidation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 72 hours, more preferably 30 minutes to 48 hours.
  • Step 39 Compound (VC) is obtained by a condensation reaction of compound (XII) and compound (IIIC) in the presence of a base.
  • Examples of the base used for the condensation reaction include lithium diisopropylamide, potassium tert-butoxide, sodium hydride, phenyllithium, and tert-butyllithium.
  • the amount of base used in the condensation reaction is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, relative to 1 mol of compound (IIIC).
  • the amount of compound (XII) used in the condensation reaction is preferably 0.5 to 3 mol, more preferably 0.8 to 1.5 mol, relative to 1 mol of compound (IIIC).
  • the condensation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include halogenated hydrocarbons such as dichloromethane, chloroform or 1,2-dichloroethane; or ethers such as tetrahydrofuran or 1,4-dioxane. These mixed solvents may be used.
  • the reaction temperature in the condensation reaction is preferably ⁇ 78 ° C. to 100 ° C., more preferably ⁇ 78 ° C. to 50 ° C.
  • the reaction time in the condensation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • Step 40 Compound (VC) is obtained by amidation reaction of compound (XVI) and compound (IIc-a).
  • the amount of compound (IIc-a) used in the amidation reaction is preferably 0.5 to 3 mol, more preferably 0.8 to 1.5 mol, relative to 1 mol of compound (XVI).
  • the amidation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include aromatic hydrocarbons such as toluene, chlorobenzene and xylene; ethers such as tetrahydrofuran and 1,4-dioxane; amides such as N, N-dimethylformamide and N-methylpyrrolidone; Or aliphatic nitriles, such as acetonitrile or propionitrile, are mentioned. These mixed solvents may be used.
  • the reaction temperature in the amidation reaction is preferably ⁇ 20 ° C. to 200 ° C., more preferably 0 to 150 ° C.
  • the reaction time of the amidation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 72 hours, more preferably 30 minutes to 48 hours.
  • Step 41 Among the cyclic amine derivatives (I), a compound (XVIII-a) in which A is a group represented by the general formula (IIa) and the stereochemistry of the asymmetric carbon marked with * is S configuration is known Means (for example, an optically active intermediate of compound (Ia-a) is used, or a known method or a method analogous thereto (for example, optical resolution) is used for a racemic mixture of compound (Ia-a) ).
  • Means for example, an optically active intermediate of compound (Ia-a) is used, or a known method or a method analogous thereto (for example, optical resolution) is used for a racemic mixture of compound (Ia-a) ).
  • optical resolution method examples include known means, for example, a chiral column method or a diastereomer method.
  • a chiral column method In this method, a racemic mixture is applied to an enantiomer separation column (chiral column) to obtain a desired enantiomer.
  • a racemic mixture is added to a chiral column such as a chiral column for HPLC (for example, manufactured by Daicel Corporation), and water, various buffers (for example, phosphate buffer), an organic solvent (for example, The enantiomers can be separated by developing them as a single or mixed solution of n-hexane, ethanol, methanol, 1-propanol, 2-propanol, acetonitrile, trifluoroacetic acid, diethylamine or ethylenediamine).
  • a chiral column such as a chiral column for HPLC (for example, manufactured by Daicel Corporation)
  • various buffers for example, phosphate buffer
  • an organic solvent for example,
  • the enantiomers can be separated by developing them as a single or mixed solution of n-hexane, ethanol, methanol, 1-propanol, 2-propanol, acetonitrile, trifluoroacetic acid, diethylamine or ethylene
  • Diastereomeric method After the racemic mixture is converted into a diastereomeric mixture using an optically active reagent and separated using the difference in physicochemical properties between the diastereomers to form a single diastereomer. This is a method for obtaining a target enantiomer by separating an optically active reagent site.
  • Racemic mixtures can be prepared using optically active reagents such as MTPA ( ⁇ -methoxy- ⁇ - (trifluoromethyl) phenylacetic acid), N- (p-toluenesulfonyl) -L-phenylalanyl chloride or N- (4-nitro It can be converted into a diastereomeric mixture by a known method using (phenylsulfonyl) -L-phenylalanyl chloride) or a method analogous thereto. By separating the diastereomeric mixture by a known means (for example, fractional recrystallization method or chromatographic method), a single diastereomer is obtained.
  • optically active reagents such as MTPA ( ⁇ -methoxy- ⁇ - (trifluoromethyl) phenylacetic acid), N- (p-toluenesulfonyl) -L-phenylalanyl chloride or N- (4-nitro It can be converted into a diaste
  • the target enantiomer can be obtained by separating the optically active reagent site of a single diastereomer by a known method or a method analogous thereto.
  • an ester compound is formed by a condensation reaction between an intramolecular hydroxyl group of compound (Ia-a) and an optically active organic acid or an acid halide thereof (for example, N- (p-toluenesulfonyl) -L-phenylalanyl chloride).
  • an optically active organic acid or an acid halide thereof for example, N- (p-toluenesulfonyl) -L-phenylalanyl chloride.
  • Step 42 Among the cyclic amine derivatives (I), a compound in which A is a group represented by the general formula (IIa), the stereochemistry of the asymmetric carbon marked with * is S configuration, and R 2 is a hydrogen atom ( XVIII-b) can be obtained by known means, for example, an asymmetric reduction reaction of compound (VA) or a method analogous thereto.
  • the asymmetric reduction reaction can be carried out according to a known method (for example, Journal of American Chemical Society, 2011, Vol. 133, p. 14960-14963) or a method analogous thereto.
  • Step 43 Among the cyclic amine derivatives (I), A is a group represented by the general formula (IIa), the stereochemistry of the asymmetric carbon marked with * is S configuration, and R 2 is a group having 2 to 5 carbon atoms.
  • Compound (XVIII-c), which is an alkylcarbonyl group, can be prepared, for example, by using an acylating agent such as halide or acid anhydride of carboxylic acid having 2 to 5 carbon atoms of compound (XVIII-b) in the presence of a base. It is obtained by the chemical reaction.
  • compound (XVIII-b) and a salt thereof can be used.
  • the salt in this case include the same salts as the above pharmacologically acceptable salts.
  • Examples of the base used in the acylation reaction include pyridine, triethylamine, diisopropylethylamine, and N, N-dimethylaminopyridine.
  • the amount of base used in the acylation reaction is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, relative to 1 mol of compound (XVIII-b).
  • acylating agent used in the acylation reaction a commercially available product can be used as it is.
  • the amount of the acylating agent used in the acylation reaction is preferably 0.5 to 10 mol, more preferably 0.8 to 5 mol, relative to 1 mol of compound (XVIII-b).
  • the acylation reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include aromatic amines such as pyridine; halogenated hydrocarbons such as dichloromethane, chloroform or 1,2-dichloroethane; ethers such as tetrahydrofuran or 1,4-dioxane; Examples thereof include aliphatic nitriles such as pionitrile. These mixed solvents may be used.
  • aromatic amine such as pyridine
  • halogenated hydrocarbons such as dichloromethane, chloroform or 1,2-dichloroethane
  • ethers such as tetrahydrofuran or 1,4-dioxane
  • aliphatic nitriles such as pionitrile.
  • the reaction temperature in the acylation reaction is preferably ⁇ 40 ° C. to 100 ° C., more preferably ⁇ 20 ° C. to 80 ° C.
  • the reaction time in the acylation reaction varies depending on the reaction conditions, but is preferably 5 minutes to 72 hours, more preferably 30 minutes to 24 hours.
  • Chlorination step of compounds (XVIII-a), (XVIII-b) and (XVIII-c) The pharmacologically acceptable salts of compounds (XVIII-a), (XVIII-b) and (XVIII-c) are, for example, those of compound (XVIII-a), (XVIII-b) or (XVIII-c) It is obtained by a chlorination reaction using an acid.
  • Examples of the acid used for the chlorination reaction include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid or hydrobromic acid; or oxalic acid, malonic acid, citric acid, fumaric acid, lactic acid, malic acid, succinic acid, tartaric acid, acetic acid Organic acids such as trifluoroacetic acid, maleic acid, gluconic acid, benzoic acid, salicylic acid, xinafoic acid, pamoic acid, ascorbic acid, adipic acid, methanesulfonic acid, p-toluenesulfonic acid or cinnamic acid.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid or hydrobromic acid
  • Organic acids such as trifluoroacetic acid, male
  • the chlorination reaction is generally performed in a solvent.
  • a solvent that does not inhibit the reaction is appropriately selected.
  • examples of such a solvent include aliphatic alcohols such as methanol, ethanol and 2-propanol; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane and ethylene glycol dimethyl ether; N, N-dimethylformamide or N Amides such as methylpyrrolidone; Sulfoxides such as dimethyl sulfoxide; Aliphatic nitriles such as acetonitrile or propionitrile; Ketones such as acetone or 2-butanone; Esters such as ethyl acetate, methyl acetate or n-butyl acetate Or water. These mixed solvents may be used.
  • the analgesic action of the cyclic amine derivative (I) or a pharmacologically acceptable salt thereof, particularly the therapeutic effect of neuropathic pain and fibromyalgia can be evaluated using an appropriate animal model.
  • Suitable animal models for neuropathic pain include, for example, the mouse or rat sciatic partial ligation model (Malberg et al., Pain, 1998, Vol. 76, p. 215-222) or mouse or rat spinal nerve ligation. Model (Kim et al., Pain, 1992, 50, 355-363).
  • Suitable animal models for fibromyalgia include, for example, the rat fibromyalgia model (Sluka et al., Journal of Pharmacology and Experimental Therapeutics, 2002, 302, p. 1146-1150; Nagakura et al., Pain, 2009, 146, p. 26-33; Sluka et al., Pain, 2009, 146, p. 3-4).
  • the cyclic amine derivative (I) or a pharmacologically acceptable salt thereof has an excellent analgesic action, particularly a therapeutic effect for neuropathic pain and / or fibromyalgia, and therefore is used as a medicine. And is preferably used as an analgesic, and particularly preferably used as a therapeutic agent for neuropathic pain and / or a therapeutic agent for fibromyalgia.
  • cyclic amine derivative of the present invention or a pharmacologically acceptable salt thereof exhibits a strong analgesic action against pain, particularly neuropathic pain and fibromyalgia, and has a central side effect.
  • Analgesics that can be administered for a long period of time because they have high safety, excellent metabolic stability, oral absorption, and pharmacokinetics such as plasma concentration, and also have sustained drug efficacy. It can be used as a therapeutic agent for neuropathic pain and a therapeutic agent for fibromyalgia.
  • neuropathic pain examples include cancer pain, herpes zoster pain, postherpetic neuralgia, AIDS-related neuralgia, diabetic neuropathic pain, or trigeminal neuralgia.
  • Fibromyalgia refers to symptoms diagnosed by a specialist as fibromyalgia. Diagnosis by a specialist is generally performed with reference to classification criteria of the American College of Rheumatology.
  • the cyclic amine derivative (I) or a pharmacologically acceptable salt thereof is also useful for treating acute and chronic pain.
  • Acute pain is usually short-term, but includes post-operative pain, post-extraction pain, or trigeminal neuralgia.
  • Chronic pain is usually defined as pain lasting for 3-6 months and includes somatic and psychogenic pain, including rheumatoid arthritis, osteoarthritis or postherpetic neuralgia .
  • the pharmaceutical containing the cyclic amine derivative (I) or a pharmaceutically acceptable salt thereof as an active ingredient is a mammal (eg, mouse, rat, hamster, rabbit, cat, dog, cow, sheep, monkey or human).
  • a mammal eg, mouse, rat, hamster, rabbit, cat, dog, cow, sheep, monkey or human.
  • it when administered to humans, it exhibits excellent analgesic action, particularly therapeutic effects on neuropathic pain and / or fibromyalgia.
  • the cyclic amine derivative (I) or a pharmacologically acceptable salt thereof is used as a medicine
  • the cyclic amine derivative (I) or a pharmacologically acceptable salt thereof is incorporated as it is or with a pharmaceutically acceptable carrier.
  • it can be administered orally or parenterally.
  • Examples of dosage forms for oral administration of a pharmaceutical containing the cyclic amine derivative (I) or a pharmacologically acceptable salt thereof as an active ingredient include tablets (including sugar-coated tablets and film-coated tablets), pills, Examples include granules, powders, capsules (including soft capsules and microcapsules), syrups, emulsions, and suspensions.
  • Examples of dosage forms for parenteral administration of a pharmaceutical containing the cyclic amine derivative (I) or a pharmacologically acceptable salt thereof as an active ingredient include, for example, injections, infusions, infusions, and suppositories. And a coating agent or a patch.
  • a suitable base for example, a polymer of butyric acid, a polymer of glycolic acid, a copolymer of butyric acid-glycolic acid, a mixture of a polymer of butyric acid and a polymer of glycolic acid, or a polyglycerol fatty acid ester
  • a suitable base for example, a polymer of butyric acid, a polymer of glycolic acid, a copolymer of butyric acid-glycolic acid, a mixture of a polymer of butyric acid and a polymer of glycolic acid, or a polyglycerol fatty acid ester
  • the preparation of the above dosage form can be performed according to a known production method generally used in the pharmaceutical field. In this case, if necessary, it is produced by containing excipients, binders, lubricants, disintegrants, sweeteners, surfactants, suspending agents, emulsifiers and the like generally used in the pharmaceutical field. be able to.
  • Tablets can be prepared, for example, by containing an excipient, a binder, a disintegrant, or a lubricant. Pills and granules can be prepared, for example, by containing an excipient, a binder or a disintegrant. Moreover, powders and capsules can be prepared, for example, by containing an excipient.
  • the syrup preparation can be prepared, for example, by adding a sweetener.
  • the emulsion or suspension can be prepared, for example, by containing a surfactant, suspending agent or emulsifier.
  • excipient examples include lactose, glucose, starch, sucrose, microcrystalline cellulose, licorice powder, mannitol, sodium bicarbonate, calcium phosphate or calcium sulfate.
  • binder examples include starch paste, gum arabic solution, gelatin solution, tragacanth solution, carboxymethyl cellulose solution, sodium alginate solution, and glycerin.
  • disintegrant examples include starch and calcium carbonate.
  • Examples of the lubricant include magnesium stearate, stearic acid, calcium stearate, and purified talc.
  • sweetener examples include glucose, fructose, invert sugar, sorbitol, xylitol, glycerin and simple syrup.
  • surfactant examples include sodium lauryl sulfate, polysorbate 80, sorbitan monofatty acid ester, and polyoxyl 40 stearate.
  • suspending agent examples include gum arabic, sodium alginate, sodium carboxymethyl cellulose, methyl cellulose, and bentonite.
  • emulsifier examples include gum arabic, tragacanth, gelatin, and polysorbate 80.
  • a pharmaceutical containing the cyclic amine derivative (I) or a pharmacologically acceptable salt thereof as an active ingredient is prepared in the above-mentioned dosage form, a colorant generally used in the pharmaceutical field, storage Agents, fragrances, flavoring agents, stabilizers, thickeners and the like can be added.
  • the daily dose of a pharmaceutical containing the cyclic amine derivative (I) or a pharmacologically acceptable salt thereof as an active ingredient varies depending on the patient's condition or body weight, the type of compound, the administration route, and the like.
  • the cyclic amine derivative (I) or a pharmacologically acceptable salt thereof is divided into 1 to 3 times within the range of 1 to 1000 mg as an active ingredient amount.
  • the cyclic amine derivative (I) or a pharmacologically acceptable salt thereof as the active ingredient amount is 0.01 per kg body weight.
  • Administration by intravenous injection in the range of ⁇ 100 mg is preferred.
  • the cyclic amine derivative (I) or a pharmacologically acceptable salt thereof may be used in combination with or in combination with other drugs in order to supplement or enhance the therapeutic or preventive effect, or to reduce the dose.
  • Other drugs in this case include, for example, antidepressants such as amitriptyline, milnacipran or duloxetine; anxiolytics such as alprazolam; anticonvulsants such as carbamazepine; local anesthetics such as lidocaine; and sympathetic nerves such as adrenaline.
  • Agonists such as ketamine
  • GABA transaminase inhibitors such as sodium valproate
  • calcium channel blockers such as pregabalin
  • serotonin receptor antagonists such as risperidone
  • GABA receptor function promoters such as diazepam
  • Anti-inflammatory drugs such as diclofenac.
  • the solvent name shown in the NMR data indicates the solvent used for the measurement.
  • the 400 MHz NMR spectrum was measured using a JNM-AL400 type nuclear magnetic resonance apparatus (manufactured by JEOL Ltd.).
  • the chemical shift is represented by ⁇ (unit: ppm) based on tetramethylsilane, and the signals are s (single line), d (double line), t (triple line), q (quadruplex line), quint, respectively.
  • ESI-MS spectrum was measured using Agilent Technologies 1200 Series, G6130A (manufactured by Agilent Technology). All solvents were commercially available. For flash column chromatography, YFLC W-prep2XY (manufactured by Yamazen) was used.
  • HPLC purification was performed under the following conditions.
  • Equipment K-Prep system column manufactured by Kyoto Chromatography Co., Ltd .: CHIRALPAK IC, 50 ⁇ 250 mm (manufactured by Daicel Corporation)
  • Flow rate 35 mL / min
  • Detection method UV 220 nm
  • Column temperature 40 ° C
  • the raw material and intermediate of the cyclic amine derivative (I) were synthesized by the method described in the following reference examples.
  • the commercially available compound was used about the compound which is used for the synthesis
  • the organic layer was dried over anhydrous sodium sulfate and filtered, and the filtrate was concentrated under reduced pressure.
  • the residue was dissolved in hydrochloric acid (1.0N) and extracted with ethyl acetate.
  • the aqueous layer was made basic by adding a 48% aqueous sodium hydroxide solution, and extracted with dichloromethane.
  • the organic layer was dried over anhydrous sodium sulfate and filtered, and the filtrate was concentrated under reduced pressure.
  • the residue was dissolved in methanol (25.0 mL), concentrated hydrochloric acid (5.0 mL) was added, and the mixture was stirred at 40 ° C. for 12 hr.
  • the reaction solution was concentrated under reduced pressure and then dissolved in distilled water.
  • reaction solution B The reaction solution was added at room temperature and stirred at the same temperature for 2.5 hours (reaction solution B).
  • Reaction solution A was added to reaction solution B at room temperature, and the reaction solution was stirred at 80 ° C. for 2 hours.
  • the reaction was cooled to room temperature.
  • Hydrochloric acid (1.0 N) was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with 10% aqueous sodium chloride solution, dried over anhydrous sodium sulfate and filtered, and the filtrate was concentrated under reduced pressure.
  • Example 4 1-((R) -3- (3- (Dimethylamino) piperidin-1-yl) -3-hydroxy-3- (1-methyl-1H-imidazol-2-yl) propane-1 -On synthesis: (R) -1- (3- (Dimethylamino) piperidin-1-yl) -3- (1-methyl-1H-imidazol-2-yl) propane-1,3-dione (0.140 g, 0.503 mmol) ) In ethanol (2.5 mL) was added sodium borohydride (0.0210 g, 0.553 mmol) at room temperature and the reaction was stirred at the same temperature for 3 hours.
  • Example 7 Synthesis of 1- (4- (dimethylamino) piperidin-1-yl) -3-hydroxy-3- (1-methyl-1H-imidazol-2-yl) propan-1-one hydrochloride Of 1- (4- (dimethylamino) piperidin-1-yl) -3-hydroxy-3- (1-methyl-1H-imidazol-2-yl) propan-1-one (0.0220 g, 0.0785 mmol) To a water (0.156 mL) solution, hydrochloric acid (1.0 N, 0.086 mL, 0.086 mmol) was added at 0 ° C., and the reaction solution was stirred at room temperature for 15 hours.
  • hydrochloric acid 1.0 N, 0.086 mL, 0.086 mmol
  • Example 8 Synthesis of 1- (4- (dimethylamino) piperidin-1-yl) -3- (1-ethyl-1H-imidazol-2-yl) -3-hydroxypropan-1-one: A solution of 1- (4- (dimethylamino) piperidin-1-yl) ethanone (0.300 g, 1.76 mmol) in tetrahydrofuran (6.0 mL) and a solution of lithium diisopropylamide in tetrahydrofuran (2.0 M, 0.969 mL, 1 .94 mmol) was added dropwise at ⁇ 78 ° C., and the mixture was stirred at the same temperature for 1 hour.
  • Example 9 1- (4- (Dimethylamino) piperidin-1-yl) -3-hydroxy-3- (1- (2,2,2-trifluoroethyl) -1H-imidazol-2-yl) Synthesis of propan-1-one: A solution of 1- (4- (dimethylamino) piperidin-1-yl) ethanone (0.267 g, 1.57 mmol) in tetrahydrofuran (6.0 mL) and a solution of lithium diisopropylamide in tetrahydrofuran (2.0 M, 0.862 mL, 1 72 mmol) was added dropwise at ⁇ 78 ° C., and the mixture was stirred at the same temperature for 1 hour.
  • aqueous sodium hydroxide solution 1.0 N, 1.19 mL, 1.19 mmol
  • Chloroform (10.0 mL) was added to the obtained residue at room temperature and dissolved.
  • Diisopropylethylamine 0.568 mL, 3.25 mmol
  • HBTU 0.616 g, 1.63 mmol
  • 4- (dimethylamino) piperidine (0.125 g, 0.975 mmol
  • a sodium hydroxide aqueous solution (1.0 N, 1.47 mL, 1.47 mmol) was added to the reaction solution at 0 ° C., and the mixture was stirred at room temperature for 4 hours, and then concentrated under reduced pressure.
  • Chloroform (16.0 mL) was added to the obtained residue at room temperature and dissolved.
  • Diisopropylethylamine (0.863 mL, 4.94 mmol), HBTU (0.937 g, 2.47 mmol) and 4- (dimethylamino) piperidine (0.190 g, 1.48 mmol) were added to the reaction solution at room temperature, and the reaction solution was added. Stir at the same temperature for 16 hours.
  • a sodium hydroxide aqueous solution (1.0 N, 1.47 mL, 1.47 mmol) was added to the reaction solution at 0 ° C., and the mixture was stirred at room temperature for 4 hours, and then concentrated under reduced pressure. Chloroform (15.0 mL) was added to the resulting residue at room temperature and dissolved. Diisopropylethylamine (0.801 mL, 4.59 mmol), HBTU (0.870 g, 2.29 mmol) and 4- (dimethylamino) piperidine (0.176 g, 1.38 mmol) were added to the reaction solution at room temperature, and the reaction solution was added. Stir at the same temperature for 16 hours.
  • a sodium hydroxide aqueous solution (1.0 N, 2.05 mL, 2.05 mmol) was added to the reaction solution at 0 ° C., and the mixture was stirred at room temperature for 16 hours, and then concentrated under reduced pressure. Chloroform (18.6 mL) was added to the obtained residue at room temperature and dissolved. Diisopropylethylamine (0.976 mL, 5.59 mmol), HBTU (1.06 g, 2.80 mmol) and 4- (dimethylamino) piperidine (0.215 g, 1.68 mmol) were added to the reaction solution at room temperature, and the reaction solution was added. Stir at the same temperature for 16 hours.
  • mice sciatic nerve partial ligation model Effect on mouse sciatic nerve partial ligation model: Using a mouse partial sciatic nerve ligation model (Seltzer model) that can evaluate neuropathic pain, the analgesic action of the cyclic amine derivative (I) or a pharmacologically acceptable salt thereof was examined.
  • a mouse partial sciatic nerve ligation model was prepared according to the method of Seltzer et al. (Malberg et al., Pain, 1998, Vol. 76, p. 215-222).
  • neuropathic pain (hereinafter von Frey test) was performed by acclimatizing a mouse for at least 1 hour in a measurement acrylic cage (Natsume Seisakusho or Shinano Seisakusho) installed on a net, and then applying 0.16 g of pressure.
  • mice of the sciatic nerve partial ligation group were treated with the compound of Example 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12 or 13 (Examples 1, 2).
  • 3, 4, 5, 8, 10, and 13 are each 10 mg / kg
  • the compound of Example 7 is 0.01 to 1 mg / kg
  • the compound of Example 9 is 0.01 to 10 mg / kg.
  • the compound of Example 11 is 0.001 to 0.1 mg / kg
  • the compound of Example 12 is 0.01 to 1 mg / kg)
  • the group in which the compound of Example 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12 or 13 was administered to mice in the sciatic nerve partial ligation group was referred to as “sciatic nerve partial ligation + example.
  • the group in which distilled water was orally administered to mice in the sciatic nerve partial ligation group was referred to as the “sciatic nerve partial ligation + distilled water” group
  • the group in which distilled water was orally administered to mice in the sham operation group was referred to as “sham surgery + Distilled water "group.
  • the von Frey test was conducted before oral administration of the test compound (pre value), 1 hour, 2 hours and 3 hours after oral administration.
  • the horizontal axis shows the time (hr) after administration of the test compound.
  • the evaluation of drug efficacy was performed by using the “Sciatic nerve partial ligation + distilled water” group (“sciatic nerve partial ligation + distilled water” in the figure) at each measurement time as a control, and two unmatched Welch tests or Shirley-Williams tests Statistical processing was performed.
  • the ⁇ or # mark in the figure is statistically significant in comparison with the “sciatic nerve partial ligation + distilled water” group ( ⁇ : Welch test (p ⁇ 0.05), or #: Shirley ⁇ Williams test (p ⁇ 0.025)).
  • Comparative Example 7 Effect on mouse sciatic nerve partial ligation model: The analgesic action of the compounds of Comparative Examples 1, 3, 4, 5, and 6 was examined using a mouse partial sciatic nerve ligation model (Seltzer model) that can evaluate neuropathic pain.
  • a mouse partial sciatic nerve ligation model was prepared according to the method of Seltzer et al. (Malberg et al., Pain, 1998, Vol. 76, p. 215-222).
  • neuropathic pain (hereinafter von Frey test) was performed by acclimatizing a mouse for at least 2 hours in a measurement acrylic cage (Natsume Seisakusho or Shinano Seisakusho) installed on a net, and then applying 0.16 g of pressure.
  • mice of the sciatic nerve partial ligation group were given compounds of Comparative Example 1, 3, 4, 5 or 6 (Compound of Comparative Example 1 was 0.01 to 1 mg / kg, and Comparative Examples 3 to 3). 6 was 10 mg / kg each) or pregabalin (10 mg / kg; Bosch Scientific) as a positive control was orally administered after dissolving in distilled water.
  • the group in which the compound of Comparative Example 1, 3, 4, 5 or 6 was administered to the mice of the sciatic nerve partial ligation group was divided into the “sciatic nerve partial ligation + compound of Comparative Example 1” group and “sciatic nerve partial ligation + comparison”, respectively.
  • Pregabalin as “Compound of Example 3”, “Partial ligation of sciatic nerve + Compound of Comparative Example 4” group, “Partial ligation of sciatic nerve + Compound of Comparative Example 5” group, “Partial ligation of sciatic nerve + Compound of Comparative Example 6” was administered as a “sciatic nerve partial ligation + pregabalin” group.
  • the group in which distilled water was orally administered to mice in the sciatic nerve partial ligation group was referred to as the “sciatic nerve partial ligation + distilled water” group
  • the group in which distilled water was orally administered to mice in the sham operation group was referred to as “sham surgery + Distilled water "group.
  • the von Frey test was conducted before oral administration of the test compound (pre value), 1 hour, 2 hours and 3 hours after oral administration.
  • the horizontal axis shows the time (hr) after administration of the test compound.
  • the efficacy of the compounds of Comparative Examples 1, 3, 4, 5 or 6 was evaluated by the “sciatic nerve partial ligation + distilled water” group (“sciatic nerve partial ligation + distilled water” in the left side of FIGS. 14 and 15).
  • statistical processing was performed by unpaired t-test (corrected by Dunnett) of multiple groups.
  • the ⁇ marks in the left side of FIGS. 14 and 15 indicate that the comparison with the “sciatic nerve partial ligation + distilled water” group is statistically significant ( ⁇ : p ⁇ 0.05).
  • the compound of Comparative Example 1 showed a statistically significant analgesic effect from a dose of 0.01 mg / kg, but was strongest after 1 hour of oral administration and attenuated after 2 and 3 hours. There was a tendency to.
  • the compound of Comparative Example 3, 4, 5 or 6 was strongest 1 hour after oral administration, and its analgesic action tended to decrease after 2 hours and 3 hours.
  • the compound of Example 11 showed a statistically significant analgesic action from an extremely low dose of 0.001 mg / kg, and the analgesic action lasted up to 2 hours after oral administration. Furthermore, the analgesic action of the compound of Example 11 at 0.1 mg / kg persisted until 3 hours after oral administration.
  • Example 15 Effect on rat fibromyalgia model: Using a rat fibromyalgia model capable of evaluating fibromyalgia, the analgesic action of the cyclic amine derivative (I) or a pharmacologically acceptable salt thereof was examined.
  • Fibromyalgia model rats generally used in basic research of fibromyalgia (Sluka et al., Journal of Pharmaceutical and Experimental Therapeutics, 2002, Vol. 302, p. 1146-1150; Nagakura et al., Pain, 2009, Vol.146, p.26-33; Sluka et al., Pain, 2009, vol.146, p.3-4) 100 ⁇ L of acidic physiological saline adjusted to pH 4.0 was used to produce isoflurane continuous inhalation anesthesia.
  • Allodynia in each rat was measured on the 7th day from the first administration of acidic physiological saline, and fibromyalgia was observed in rats with a 50% response threshold (average value of right hind limb and left hind limb) of 2 g to 6 g.
  • the rats were selected as onset fibromyalgia model rats and used in the following administration experiments.
  • Allodynia was measured using a von Frey filament (North Coast Medical) according to the method described in publicly known literature (Chaplan et al., Journal of Neuroscience Methods, 1994, Vol. 53, p.55-63). .
  • the fibromyalgia model rats thus obtained were divided into groups so that the 50% response threshold (average value of right hind limb and left hind limb) was equal between groups, and 7 days from the first administration of acidic physiological saline. Eyes were administered test compounds to fibromyalgia model rats.
  • Example 11 The compound of Example 11 (0.1 to 10 mg / kg) was dissolved in distilled water and orally administered to a fibromyalgia model rat (“acidic physiological saline + compound of Example 11” in FIG. 13).
  • pregabalin 10 mg / kg; KEMPROTEC
  • distilled water was orally administered to a fibromyalgia model rat (“acidic physiological saline + distilled water” in FIG. 13).
  • distilled water was orally administered to rats in which fibromyalgia did not develop ("physiological saline + distilled water" in FIG.
  • the analgesic effect was evaluated by measuring the allodynia of each rat 1 hour and 3 hours after oral administration. At that time, the 50% reaction threshold value in the allodynia measurement before the oral administration of the test compound on the seventh day from the first administration day of the acidic physiological saline was defined as the pre value.
  • FIG. 13 shows the results of oral administration of the compound of Example 11.
  • the horizontal axis of the figure shows the pre-oral administration (pre value) of the compound of Example 11 and the elapsed time (hr) from the oral administration.
  • ⁇ mark or # mark in the figure is a non-corresponding t test or Williams test with the “acidic saline solution + distilled water” group (“acidic saline solution + distilled water” in the figure) for each measurement time as a control.
  • ⁇ : t test (p ⁇ 0.05) or #: Williams test (p ⁇ 0.025) is statistically significant.
  • Fibromyalgia model rats generally used in basic research of fibromyalgia (Sluka et al., Journal of Pharmaceutical and Experimental Therapeutics, 2002, 302, p. 1146-50; Nagakura et al., Pain, 2009, Vol.146, p.26-33; Sluka et al., Pain, 2009, vol.146, p.3-4) 100 ⁇ L of acidic physiological saline adjusted to pH 4.0 was used to produce isoflurane continuous inhalation anesthesia.
  • Fibromyalgia developed in rats with a 50% response threshold (average value of right hind limb and left hind limb) of 6 g or less when allodynia of each rat was measured on the 7th day from the first administration of acidic saline. It selected as a fibromyalgia model rat, and used for the following administration experiments. Allodynia was measured using a von Frey filament according to the method described in known literature (Chaplan et al., Journal of Neuroscience Methods, 1994, Vol. 53, p. 55-63).
  • the fibromyalgia model rats thus obtained were divided into groups so that the 50% response threshold was uniform between the groups, and the compound of Comparative Example 1 (0 0.1 to 1 mg / kg) or pregabalin (10 mg / kg; Bosch Scientific) as a positive control was dissolved in distilled water and orally administered.
  • distilled water was orally administered to a fibromyalgia model rat ("acidic physiological saline + distilled water" group on the left side of FIG. 16). It should be noted that distilled water was orally administered to rats in which fibromyalgia did not develop ("physiological saline + distilled water” group).
  • the analgesic action of the test compound was evaluated by measuring the allodynia of each rat at 1 hour, 2 hours and 3 hours after oral administration. At that time, the 50% reaction threshold value in the allodynia measurement before the oral administration of the test compound on the seventh day from the first administration day of the acidic physiological saline was defined as the pre value.
  • the horizontal axis represents the time (hr) elapsed before or after oral administration of the test compound (pre value).
  • the ⁇ mark in the left side shows a group of “acidic saline solution + distilled water” for each measurement time (“acidic saline solution + distilled water” in the left side of FIG. 16) as a control.
  • As a result of the test (correction by Dunnett), it is statistically significant ( ⁇ : p ⁇ 0.05).
  • the group to which the compound of Comparative Example 1 was orally administered (“acidic physiological saline + compound of Comparative Example 1” in the left side of FIG. 16) was the group to which pregabalin as a positive control was orally administered (“acidic” in the left side of FIG. 16). Similar to “saline solution + pregabalin”), allodynia observed in fibromyalgia model rats was statistically significantly improved as compared with the “acid saline solution + distilled water” group.
  • the compound of Comparative Example 1 showed a statistically significant analgesic action, but the analgesic action tended to be significantly attenuated 3 hours after oral administration.
  • the compound of Example 11 showed a statistically significant analgesic action, and the analgesic action lasted for 3 hours after oral administration.
  • the cyclic amine derivative (I) or a pharmacologically acceptable salt thereof is more effective against fibromyalgia than the imidazole derivative described in International Publication No. 2013/147160 (Patent Document 4). It became clear that it showed a sustained analgesic action.
  • Example 16 Stability test in human, monkey, dog and mouse liver microsomes: Using a stability test in liver microsomes known as in vitro evaluation to evaluate the stability of compounds to liver metabolism, humans, monkeys of cyclic amine derivatives (I) or pharmacologically acceptable salts thereof, The stability to hepatic metabolism of dogs and mice was evaluated.
  • Example 11 The compound of Example 11, Comparative Example 1 or Comparative Example 6 was used as a test compound, and human liver microsomes (Xenotech), monkey liver microsomes (Xenotech), dog liver microsomes (Xenotech) or mouse liver microsomes (Xenotech) as liver microsomes. Experiment).
  • the reagent used for the stability test in the liver microsome was prepared as follows. D-glucose 6-phosphate disodium salt (hereinafter referred to as G6P) was dissolved in distilled water to prepare a 100 mmol / L G6P aqueous solution. 1000 units of Glucose 6-phosphate dehydrogenase from Yeast (hereinafter referred to as G6PDH) was dissolved in 5 mL of distilled water to prepare a 200 units / mL G6PDH aqueous solution. MgCl 2 was dissolved in distilled water to prepare a 100 mmol / L MgCl 2 aqueous solution.
  • G6P D-glucose 6-phosphate disodium salt
  • G6PDH 1000 units of Glucose 6-phosphate dehydrogenase from Yeast
  • MgCl 2 was dissolved in distilled water to prepare a 100 mmol / L MgCl 2 aqueous solution.
  • NADPH ⁇ -nicotinamide-adenine dinuclide phosphate, reduced form, tetrasodium salt
  • the stability test in liver microsomes was performed according to the following procedure. First, the reagents listed in Table 2 (except NADPH) were mixed to obtain a reaction mixture.
  • the mixed solution for the reaction plays a role of four wells (respectively, a 0-minute reaction well, a 30-minute reaction well, a 20-minute reaction well, and a 10-minute reaction well) of a 96-well tube plate (hereinafter referred to as a plate). 135 ⁇ L each, and the whole plate was covered with a silicon cap and immersed in a 37 ° C. water bath for 10 minutes for preincubation.
  • the residual ratio of the test compound was plotted on the semilogarithm with respect to the reaction time, and fitted to the following formula 1 by the least square method to calculate the disappearance rate constant k (min ⁇ 1 ). Furthermore, based on the following formula 2, the obtained k was divided by the microsomal protein concentration to calculate the liver specific clearance CL int (mL / min / mg).
  • Test compound residual ratio A ⁇ exp ( ⁇ kt) Equation 1
  • CL int k / microsomal protein concentration Equation 2
  • Table 3 shows the values of the liver intrinsic clearance obtained as a result of the stability test in liver microsomes. In addition, it shows that metabolism of the test compound in liver microsome is quick, so that the value of liver intrinsic clearance is large. “NE” in the table indicates that the test was not conducted.
  • the value of liver intrinsic clearance in the liver microsome stability test using the compound of Example 11 as the test compound was compared with that when the compound of Comparative Example 1 or Comparative Example 6 was used as the test compound. It was small in common for all animal species that were tested in this Example. Therefore, it was clarified that the compound of Example 11 is hardly metabolized in human, monkey, dog and mouse liver, that is, stably exists in the living body.
  • Example 17 Pharmacokinetics (PK) test As a test compound, the concentration in plasma after the compound of Example 11 or Comparative Example 2 was intravenously or orally administered to monkeys was examined.
  • experimental method A 4-6 year old cynomolgus monkey (male) that freely ingested solid feed (Oriental Yeast Co., Ltd.) and tap water was used after fasting from the evening of the day before administration (after 16:00). Feeding was resumed after blood collection was completed 4 hours after administration.
  • the compound of Example 11 or Comparative Example 2 was administered to cynomolgus monkeys once intravenously (1 mg / kg) or once orally (1 mg / kg).
  • the intravenous administration solution of the compound of Example 11 or Comparative Example 2 was dissolved in Japanese Pharmacopoeia physiological saline to prepare a concentration of 10 mg / mL.
  • the oral administration liquid of the compound of Example 11 or Comparative Example 2 was dissolved in Japanese Pharmacopoeia water for injection to prepare a concentration of 1 mg / mL.
  • Intravenous administration was performed from the saphenous vein using a syringe equipped with an injection needle. Oral administration was forced into the stomach by inserting a catheter into the nasal cavity.
  • the collected blood was centrifuged at 1800 ⁇ g for 15 minutes at 4 ° C. to obtain plasma.
  • the obtained plasma was stored at about ⁇ 80 ° C. until preparation of the sample for analysis.
  • the plasma obtained from the cynomolgus monkey administered with the test compound is called a plasma sample, and the plasma obtained from the cynomolgus monkey not administered with the test compound is called blank plasma.
  • an internal standard solution and 150 ⁇ L of methanol were added to 50 ⁇ L of a plasma sample obtained from a cynomolgus monkey administered with the compound of Comparative Example 2 or appropriately diluted with blank plasma, and stirred at 4 ° C. Cooled for 10 minutes.
  • a calibration curve sample was prepared by treating a blank plasma with a calibration curve standard solution added thereto in the same manner. Each sample after cooling was centrifuged at 4 ° C. and 2000 rpm for 10 minutes (Hitachi Koki), and the supernatant was diluted 10-fold with 70 vol% acetonitrile containing 0.1 vol% formic acid as an analytical sample. MS / MS analysis was performed. LC / MS / MS analysis conditions are as follows.
  • the plasma concentration average value of the cynomolgus monkey administered with the compound of Example 11 was compared with the average plasma concentration value of the cynomolgus monkey administered with the compound of Comparative Example 2 at all time points. It was expensive.
  • the maximum plasma concentration (C max ) at the time of oral administration was 279 ng / mL for the compound of Example 11 and 146 ng / mL for the compound of Comparative Example 2.
  • the plasma half-life (t 1/2 ) upon oral administration was 7.55 h for the compound of Example 11 and 6.56 h for the compound of Comparative Example 2.
  • the systemic clearance (CL tot ) representing the disappearance rate of the compound was 195 mL / h / kg for the compound of Example 11 and 501 mL / h / kg for the compound of Comparative Example 2.
  • the bioavailability (BA) indicating the ratio of oral absorption was 52.6% for the compound of Example 11 and 42.6% for the compound of Comparative Example 2.
  • the cyclic amine derivative (I) or a pharmacologically acceptable salt thereof has higher oral absorbability than the imidazole derivative described in International Publication No. 2013/147160 (Patent Document 4).
  • Patent Document 4 it was revealed that a high plasma concentration can be obtained.
  • Example 18 Evaluation of cytoplasmic vacuolation induction using aortic smooth muscle cells: Using an aortic smooth muscle cell line, which is an in vitro evaluation system for evaluating the cytoplasmic vacuolation induction of a compound, the cytoplasmic vacuolation induction of a cyclic amine derivative (I) or a pharmacologically acceptable salt thereof is demonstrated. evaluated.
  • test compounds As test compounds, the compounds of Examples 3, 9, 11, 12 or Comparative Examples 2 to 6 were used.
  • Canine aortic smooth muscle cells (source: Toyobo) or human aortic smooth muscle cells (T / G HA-VSMG, source: ATCC) with test compound at 1.0 or 1.2 mmol
  • the cells were treated for 24 hours or 2 weeks at a concentration of / L, and the cells were stained with HE staining, LAMP-2 immunostaining or toluidine blue staining, and then the presence or absence of cytoplasmic vacuolation was determined with an optical microscope.
  • Tables 5 and 6 The results of evaluation of cytoplasmic vacuolation induction are shown in Tables 5 and 6.
  • Table 5 shows the results of evaluation using canine aortic smooth muscle cells (test compound concentration: 1.0 mmol / L, test compound treatment time: 24 hours), and Table 6 uses human aortic smooth muscle cells. (Test compound concentration: 1.0 or 1.2 mmol / L, test compound treatment time: 24 hours or 2 weeks). “Yes” in the table indicates that cytoplasmic vacuolation was confirmed, and “None” indicates that cytoplasmic vacuolation was not confirmed.
  • Example 11 or Comparative Example 2 was used as the test compound.
  • the compound of Example 11 or Comparative Example 2 was orally administered repeatedly for 2 weeks to Crl: CD (SD) rats (7 weeks old, female and male; Charles River Japan, Inc.), general condition observation, body weight measurement, food intake Measurement, ophthalmological examination (only the compound of Example 11), hematological examination, blood chemistry examination, urinalysis, bone marrow examination, pathological anatomical examination, organ weight measurement, histopathological examination and immunotoxicity examination Carried out.
  • the toxicokinetics (TK) measurement was implemented on the 1st day and 14th day of administration, and it confirmed that each test compound was exposed.
  • the administration dose of the test compound was 0, 250, 500, 1000 mg / kg / day, and the administration volume was 10 mL / kg.
  • the compound of Example 11 was phosphate buffered saline, and the compound of Comparative Example 2 was distilled water.
  • the cyclic amine derivative (I) or a pharmacologically acceptable salt thereof has a high non-toxic amount compared to the imidazole derivative described in International Publication No. 2013/147160 (Patent Document 4). It became clear that.
  • Table 7 shows a comparison with the imidazole derivatives described in No. 147160 (Patent Document 4).
  • Table 8 shows the general formula of the cyclic amine derivative (I) of the present invention or a pharmacologically acceptable salt thereof and the imidazole derivative described in International Publication No. 2013/147160 (Patent Document 4).
  • Patent Document 4 The imidazole derivatives described in International Publication No. 2013/147160 (Patent Document 4) are represented by the general formula in the lower part of Table 8. According to the chemical structure shown in the general formula in the lower part of Table 8, the analgesic action was remarkably reduced when each dimethylamino group, X or imidazolyl group was converted to another structure, and WO 2013/147160 ( Patent Document 4, paragraph [0209]).
  • the cyclic amine derivative (I) of the present invention or a pharmacologically acceptable salt thereof corresponds to a compound obtained by converting the chemical structure X shown in the general formula in the lower part of Table 8 into another chemical structure. .
  • the cyclic amine derivative (I) of the present invention or a pharmacologically acceptable salt thereof is superior to the imidazole derivative described in International Publication No. 2013/147160 (Patent Document 4).
  • Patent Document 4 the cyclic amine derivative (I) of the present invention or a pharmacologically acceptable salt thereof is superior to the imidazole derivative described in International Publication No. 2013/147160 (Patent Document 4).
  • it also has long-lasting medicinal properties, and also has high safety and excellent pharmacokinetics (metabolic stability, oral absorption, plasma concentration, etc.) and is excellent as a medicine It was revealed that the compound had the above characteristics.
  • the cyclic amine derivative of the present invention or a pharmacologically acceptable salt thereof can exert an analgesic action on pain, particularly neuropathic pain or fibromyalgia, it can be used as a medicament for pain symptoms.
  • the cyclic amine derivative of the present invention or a pharmacologically acceptable salt thereof has high safety, excellent pharmacokinetics such as metabolic stability, oral absorption and plasma concentration, and also has sustained drug efficacy. Therefore, it is useful as a therapeutic agent for pain, particularly neuropathic pain or fibromyalgia.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pain & Pain Management (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Rheumatology (AREA)
  • Neurology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

痛み、特に神経障害性疼痛及び/又は線維筋痛症に対して鎮痛作用を示す化合物を提供すること。 本発明は、下記の化学式に代表される環状アミン誘導体又はその薬理学的に許容される塩を提供する。

Description

環状アミン誘導体及びその医薬用途
 本発明は、環状アミン誘導体及びその医薬用途に関する。
 痛みとは、組織の損傷が引き起こされる時又はその可能性がある時に生じる不快な感覚や不快な情動を伴う体験のことである。痛みは、その原因により、主に、侵害受容性疼痛、神経障害性疼痛又は心因性疼痛に分類される。また、原因不明の痛みとして、線維筋痛症が知られている。
 神経障害性疼痛とは、末梢又は中枢神経系そのものの機能異常による病的な痛みであり、侵害受容器が侵害刺激を受けていないにもかかわらず、神経組織の直接的な損傷や圧迫等によって生じる疼痛のことをいう。神経障害性疼痛の治療薬としては、抗痙攣薬、抗うつ薬、抗不安薬又は抗てんかん薬(ガバペンチン若しくはプレガバリン等)が使用されている。
 線維筋痛症とは、全身の疼痛を主症状とし、精神神経症状や自律神経系の症状を副症状とする疾患である。線維筋痛症の治療薬としては、米国及び日本で承認されているプレガバリン、米国で承認されているデュロキセチン及びミルナシプランが主に使用されている。線維筋痛症の治療薬として承認されていない非ステロイド性抗炎症薬、オピオイド化合物、抗うつ薬、抗痙攣薬及び抗てんかん薬についても使用されている。ただし、非ステロイド性抗炎症薬及びオピオイド化合物の治療効果は、一般的に低いとされている(非特許文献1)。
 その一方で、特許文献1には、ある種の置換ピペリジン類が強心活性を有していることが開示されている。特許文献2には、イミダゾール誘導体がFXa阻害作用を示すことが開示されている。特許文献3には、置換ピペリジン類が超過体重又は肥満に対して薬効を有する可能性が示唆されている。特許文献4には、イミダゾール誘導体が鎮痛作用を示すことが開示されている。
仏国特許発明第2567885号明細書 特開2006-008664号公報 国際公開第2003/031432号 国際公開第2013/147160号
Pain and Therapy、2013年、第2巻、p.87-104
 しかしながら、従来の神経障害性疼痛の治療薬による治療では、中枢性の副作用(めまい、悪心又は嘔吐等)が高い頻度で伴う。長期投与を可能にするには、新たな神経障害性疼痛治療薬の開発が望まれている。
 また、線維筋痛症の治療薬として承認されているプレガバリン、デュロキセチン及びミルナシプランであっても、線維筋痛症に対する治療効果は臨床的に満足のいくものではなく、患者間における薬効差も大きい。そのため、薬理活性が強く、広範囲の患者に対して治療効果を発揮する新たな線維筋痛症治療薬の開発が切望されている。
 なお、特許文献1に記載の置換ピペリジン類については、偏頭痛への有効性がある旨の示唆がされており、特許文献4に記載のイミダゾール誘導体については、鎮痛作用を有することが開示されている。しかしながら、本願で鎮痛作用を明らかにした化合物自体の開示や鎮痛作用と化学構造との関連性についての示唆は一切ない。特許文献2に記載のイミダゾール誘導体及び特許文献3に記載の置換ピペリジン類については、鎮痛作用を有する可能性すら開示も示唆もされていない。
 そこで本発明は、痛み、特に神経障害性疼痛及び/又は線維筋痛症に対して鎮痛作用を示す化合物を提供することを目的とする。
 本発明者らは上記課題を解決するために鋭意研究を重ねた結果、痛み、特に神経障害性疼痛及び/又は線維筋痛症に対して強い鎮痛作用を有する環状アミン誘導体を見出すに至った。
 すなわち、本発明は、下記の一般式(I)で示される環状アミン誘導体又はその薬理学的に許容される塩を提供する。
Figure JPOXMLDOC01-appb-C000003
[式中、*を付した炭素は不斉炭素であり、Aは、一般式(IIa)、(IIb)又は(IIc)で示される基を表し、
Figure JPOXMLDOC01-appb-C000004
 Rは、ハロゲン原子で置換されていてもよい、メチル基又はエチル基を表し、Rは、水素原子又は炭素数2~5のアルキルカルボニル基を表し、Rは、それぞれ独立して、メチル基又はエチル基を表し、nは、1又は2を表す。]
 上記の環状アミン誘導体は、Aが一般式(IIa)で示される基であることが好ましく、その際、Rは、フッ素原子で置換されていてもよい、メチル基又はエチル基であることがより好ましく、Rは、メチル基、エチル基、ジフルオロメチル基又は2,2,2-トリフルオロエチル基であることがさらに好ましい。これらに限定することで、鎮痛作用を高めることができる。
 また、上記の環状アミン誘導体は、Aが一般式(IIb)又は(IIc)で示される基であることが好ましく、その際、Rは、フッ素原子で置換されていてもよい、メチル基又はエチル基であることがより好ましく、Rは、メチル基、エチル基、ジフルオロメチル基又は2,2,2-トリフルオロエチル基であることがさらに好ましい。これらに限定することで、鎮痛作用を高めることができる。
 また、上記の環状アミン誘導体は、Aが一般式(IIa)で示される基であり、*を付した不斉炭素の立体化学は、S配置であることが好ましく、その際、Rは、フッ素原子で置換されていてもよい、メチル基又はエチル基であることがより好ましく、Rは、メチル基、エチル基、ジフルオロメチル基又は2,2,2-トリフルオロエチル基であることがさらに好ましい。これらに限定することで、鎮痛作用をさらに高めることができる。
 また本発明は、上記の一般式(I)で示される環状アミン誘導体又はその薬理学的に許容される塩を有効成分として含有する医薬を提供する。
 上記医薬は、鎮痛薬であることが好ましく、特に神経障害性疼痛治療薬又は線維筋痛症治療薬であることがより好ましい。
 また本発明は、上記の一般式(I)で示される環状アミン誘導体又はその薬理学的に許容される塩、及び薬理学的に許容される賦形剤等を含有する医薬組成物を提供する。
 また本発明は、医薬として使用するための、上記の一般式(I)で示される環状アミン誘導体又はその薬理学的に許容される塩を提供する。
 また本発明は、疼痛の治療に使用するための、上記の一般式(I)で示される環状アミン誘導体又はその薬理学的に許容される塩を提供する。疼痛は、神経障害性疼痛又は線維筋痛症であることが好ましい。
 また本発明は、疼痛を治療するための、上記の一般式(I)で示される環状アミン誘導体又はその薬理学的に許容される塩の使用を提供する。疼痛は、神経障害性疼痛又は線維筋痛症であることが好ましい。
 また本発明は、疼痛の治療用医薬の製造における、上記の一般式(I)で示される環状アミン誘導体又はその薬理学的に許容される塩の使用を提供する。疼痛は、神経障害性疼痛又は線維筋痛症であることが好ましい。
 また本発明は、疼痛を治療する方法であって、治療の必要のある患者に治療有効量の上記の一般式(I)で示される環状アミン誘導体又はその薬理学的に許容される塩を投与することを含む方法を提供する。疼痛は、神経障害性疼痛又は線維筋痛症であることが好ましい。
 本発明の環状アミン誘導体又はその薬理学的に許容される塩は、痛み、特に神経障害性疼痛及び線維筋痛症に対して強い鎮痛作用を示す。
マウス坐骨神経部分結紮モデルに対する実施例1の化合物の効果を示した図である(経口投与)。 マウス坐骨神経部分結紮モデルに対する実施例2の化合物の効果を示した図である(経口投与)。 マウス坐骨神経部分結紮モデルに対する実施例3の化合物の効果を示した図である(経口投与)。 マウス坐骨神経部分結紮モデルに対する実施例4の化合物の効果を示した図である(経口投与)。 マウス坐骨神経部分結紮モデルに対する実施例5の化合物の効果を示した図である(経口投与)。 マウス坐骨神経部分結紮モデルに対する実施例7の化合物の効果を示した図である(経口投与)。 マウス坐骨神経部分結紮モデルに対する実施例8の化合物の効果を示した図である(経口投与)。 マウス坐骨神経部分結紮モデルに対する実施例9の化合物の効果を示した図である(経口投与)。 マウス坐骨神経部分結紮モデルに対する実施例10の化合物の効果を示した図である(経口投与)。 マウス坐骨神経部分結紮モデルに対する実施例11の化合物の効果を示した図である(経口投与)。 マウス坐骨神経部分結紮モデルに対する実施例12の化合物の効果を示した図である(経口投与)。 マウス坐骨神経部分結紮モデルに対する実施例13の化合物の効果を示した図である(経口投与)。 ラット線維筋痛症モデルに対する実施例11の化合物の効果を示した図である(経口投与)。 マウス坐骨神経部分結紮モデルに対する比較例1の化合物の効果、及び、比較として、図10に記載の実施例11の化合物の効果を示した図である(経口投与)。 マウス坐骨神経部分結紮モデルに対する比較例3~6の化合物の効果、及び、比較として、図10に記載の実施例11の化合物の効果を示した図である(経口投与)。 ラット線維筋痛症モデルに対する比較例1の化合物の効果、及び、比較として、図13に記載の実施例11の化合物の効果を示した図である(経口投与)。 カニクイザルにおける実施例11の化合物の血漿中濃度推移を示した図である(静脈内投与及び経口投与)。 カニクイザルにおける比較例2の化合物の血漿中濃度推移を示した図である(静脈内投与及び経口投与)。
 本明細書で使用する次の用語は、特に断りがない限り、下記の定義の通りである。
 本発明の環状アミン誘導体は、下記の一般式(I)で示されることを特徴としている。
Figure JPOXMLDOC01-appb-C000005
[式中、*を付した炭素は不斉炭素であり、Aは、一般式(IIa)、(IIb)又は(IIc)で示される基を表し、
Figure JPOXMLDOC01-appb-C000006
 Rは、ハロゲン原子で置換されていてもよい、メチル基又はエチル基を表し、Rは、水素原子又は炭素数2~5のアルキルカルボニル基を表し、Rは、それぞれ独立して、メチル基又はエチル基を表し、nは、1又は2を表す。]
 上記の環状アミン誘導体は、Aが、一般式(IIa)で示される基であることが好ましく、Rが、フッ素原子で置換されていてもよい、メチル基又はエチル基であることが好ましく、Rが、メチル基、エチル基、ジフルオロメチル基又は2,2,2-トリフルオロエチル基であることがより好ましい。
 また、上記の環状アミン誘導体は、Aが、一般式(IIb)又は(IIc)で示される基であることが好ましく、Rが、フッ素原子で置換されていてもよい、メチル基又はエチル基であることが好ましく、Rが、メチル基、エチル基、ジフルオロメチル基又は2,2,2-トリフルオロエチル基であることがより好ましい。
 また、上記の環状アミン誘導体は、Aが一般式(IIa)で示される基であることが好ましく、*を付した不斉炭素の立体化学がS配置であることが好ましく、その際、Rが、フッ素原子で置換されていてもよい、メチル基又はエチル基であることが好ましく、Rが、メチル基、エチル基、ジフルオロメチル基又は2,2,2-トリフルオロエチル基であることがより好ましい。
 本発明の上記の環状アミン誘導体の一実施形態では、Aは、一般式(IIa)で示される基であり、Rは、フッ素原子で置換されていてもよい、メチル基又はエチル基を表し、Rは、水素原子又は炭素数2~5のアルキルカルボニル基を表し、Rは、それぞれ独立して、メチル基又はエチル基を表す。本実施形態では、*を付した不斉炭素の立体化学がS配置であることが好ましい。
 本発明の上記の環状アミン誘導体の一実施形態では、Aは、一般式(IIa)で示される基であり、Rは、メチル基、エチル基、ジフルオロメチル基又は2,2,2-トリフルオロエチル基を表し、Rは、水素原子又は炭素数2~5のアルキルカルボニル基を表し、Rは、それぞれ独立して、メチル基又はエチル基を表す。本実施形態では、*を付した不斉炭素の立体化学がS配置であることが好ましい。
 本発明の上記の環状アミン誘導体の一実施形態では、Aは、一般式(IIa)で示される基であり、Rは、メチル基又は2,2,2-トリフルオロエチル基を表し、Rは、水素原子又は炭素数2のアルキルカルボニル基を表し、Rは、メチル基を表す。本実施形態では、*を付した不斉炭素の立体化学がS配置であることが好ましい。
 本発明の上記の環状アミン誘導体の一実施形態では、Aは、一般式(IIb)で示される基であり、Rは、フッ素原子で置換されていてもよい、メチル基又はエチル基を表し、Rは、水素原子又は炭素数2~5のアルキルカルボニル基を表し、Rは、それぞれ独立して、メチル基又はエチル基を表し、nは、1又は2を表す。本実施形態では、*を付した不斉炭素の立体化学がS配置であることが好ましい。
 本発明の上記の環状アミン誘導体の一実施形態では、Aは、一般式(IIb)で示される基であり、Rは、メチル基、エチル基、ジフルオロメチル基又は2,2,2-トリフルオロエチル基を表し、Rは、水素原子又は炭素数2~5のアルキルカルボニル基を表し、Rは、それぞれ独立して、メチル基又はエチル基を表し、nは、1又は2を表す。本実施形態では、*を付した不斉炭素の立体化学がS配置であることが好ましい。
 本発明の上記の環状アミン誘導体の一実施形態では、Aは、一般式(IIb)で示される基であり、Rは、メチル基又は2,2,2-トリフルオロエチル基を表し、Rは、水素原子又は炭素数2のアルキルカルボニル基を表し、Rは、メチル基を表し、nは、1又は2を表す。本実施形態では、*を付した不斉炭素の立体化学がS配置であることが好ましい。
 本発明の上記の環状アミン誘導体の一実施形態では、Aは、一般式(IIc)で示される基であり、Rは、フッ素原子で置換されていてもよい、メチル基又はエチル基を表し、Rは、水素原子又は炭素数2~5のアルキルカルボニル基を表し、Rは、メチル基又はエチル基を表す。本実施形態では、*を付した不斉炭素の立体化学がS配置であることが好ましい。
 本発明の上記の環状アミン誘導体の一実施形態では、Aは、一般式(IIc)で示される基であり、Rは、メチル基、エチル基、ジフルオロメチル基又は2,2,2-トリフルオロエチル基を表し、Rは、水素原子又は炭素数2~5のアルキルカルボニル基を表し、Rは、メチル基又はエチル基を表す。本実施形態では、*を付した不斉炭素の立体化学がS配置であることが好ましい。
 本発明の上記の環状アミン誘導体の一実施形態では、Aは、一般式(IIc)で示される基であり、Rは、メチル基又は2,2,2-トリフルオロエチル基を表し、Rは、水素原子又は炭素数2のアルキルカルボニル基を表し、Rは、メチル基を表す。本実施形態では、*を付した不斉炭素の立体化学がS配置であることが好ましい。
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を意味する。
 「ハロゲン原子で置換されていてもよい、メチル基又はエチル基」とは、水素原子が、それぞれ独立に、上記のハロゲン原子で置換されていてもよい、メチル基又はエチル基を意味する。例えば、メチル基若しくはエチル基又はジフルオロメチル基、2-フルオロエチル基、2-クロロエチル基、2,2-ジフルオロエチル基若しくは2,2,2-トリフルオロエチル基が挙げられる。
 「炭素数2~5のアルキルカルボニル基」とは、炭素数1~4の直鎖状、分岐鎖状又は環状の飽和炭化水素基がカルボニル基に結合した基を意味する。例えば、アセチル基、n-プロピオニル基、n-ブチリル基、イソブチリル基又はバレリル基が挙げられる。
 上記の一般式(I)で示される環状アミン誘導体(以下、環状アミン誘導体(I))の好ましい化合物の具体例を表1-1及び表1-2に示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 なお、環状アミン誘導体(I)が、鏡像異性体、立体異性体等の異性体を含有する場合には、いずれか一方の異性体及びそれらの混合物も環状アミン誘導体(I)に包含される。また、コンホメーションによる異性体が生成する場合があるが、このような異性体及びそれらの混合物も環状アミン誘導体(I)に含まれる。目的とする異性体は、公知の方法又はそれに準ずる方法によって得ることができる。例えば、環状アミン誘導体(I)に鏡像異性体が存在する場合には、環状アミン誘導体(I)から分割された鏡像異性体も環状アミン誘導体(I)に包含される。
 目的とする鏡像異性体は、公知の手段(例えば、光学活性な合成中間体を用いるか、又は、最終物のラセミ混合物に対し、公知の方法又はそれに準ずる方法(例えば、光学分割)を用いる)により得ることができる。
 また本発明は、環状アミン誘導体(I)のプロドラッグ又は薬理学的に許容される塩が含まれる。環状アミン誘導体(I)のプロドラッグとは、生体内で酵素的又は化学的に、環状アミン誘導体(I)に変換される化合物である。環状アミン誘導体(I)のプロドラッグの活性本体は、環状アミン誘導体(I)であるが、環状アミン誘導体(I)のプロドラッグそのものが活性を有していてもよい。
 環状アミン誘導体(I)のプロドラッグとしては、例えば、環状アミン誘導体(I)の水酸基が、アルキル化、リン酸化又はホウ酸化された化合物が挙げられる。これらの化合物は、公知の方法に従って、環状アミン誘導体(I)から合成することができる。
 また、環状アミン誘導体(I)のプロドラッグは、公知文献(「医薬品の開発」、広川書店、1990年、第7巻、p.163~198及びProgress in Medicine、第5巻、1985年、p.2157~2161)に記載の生理的条件で、環状アミン誘導体(I)に変化するものであってもよい。
 環状アミン誘導体(I)は、同位元素で標識されていてもよく、標識される同位元素としては、例えば、H、H、13C、14C、15N、15O、18O及び/又は125Iが挙げられる。
 環状アミン誘導体(I)の薬理学的に許容される塩としては、例えば、塩酸塩、硫酸塩、リン酸塩若しくは臭化水素酸塩等の無機酸塩;又はシュウ酸塩、マロン酸塩、クエン酸塩、フマル酸塩、乳酸塩、リンゴ酸塩、コハク酸塩、酒石酸塩、酢酸塩、トリフルオロ酢酸塩、マレイン酸塩、グルコン酸塩、安息香酸塩、サリチル酸塩、キシナホ酸塩、パモ酸塩、アスコルビン酸塩、アジピン酸塩、メタンスルホン酸塩、p-トルエンスルホン酸塩若しくはケイ皮酸塩等の有機酸塩が挙げられる。さらに、これらの塩は、水和物、溶媒和物又は結晶多形を形成してもよい。
 環状アミン誘導体(I)は、以下に記載する製造方法に従って合成できる。なお、以下の製造方法により得られた環状アミン誘導体(I)は、公知の手段(例えば、溶媒抽出、再結晶及び/又はクロマトグラフィー)によって単離精製でき、公知の方法又はそれに準ずる方法によって目的とする塩に変換できる。環状アミン誘導体(I)が塩の状態で得られた場合には、公知の方法又はそれに準ずる方法によって、環状アミン誘導体(I)又は目的とする他の塩に変換できる。
 以下に記載する製造方法の各反応において、原料化合物が水酸基、アミノ基又はカルボキシル基を有する場合、これらの基に保護基が導入されていてもよく、反応後に必要に応じて保護基を脱保護することにより目的化合物を得ることができる。
 水酸基の保護基としては、例えば、トリチル基、炭素数7~10のアラルキル基(例えば、ベンジル基)又は置換シリル基(例えば、トリメチルシリル基、トリエチルシリル基又はtert-ブチルジメチルシリル基)が挙げられる。
 アミノ基の保護基としては、例えば、炭素数2~6のアルキルカルボニル基(例えば、アセチル基)、ベンゾイル基、炭素数2~8のアルキルオキシカルボニル基(例えば、tert-ブトキシカルボニル基又はベンジルオキシカルボニル基)、炭素数7~10のアラルキル基(例えば、ベンジル基)又はフタロイル基が挙げられる。
 カルボキシル基の保護基としては、例えば、炭素数1~6のアルキル基(例えば、メチル基、エチル基又はtert-ブチル基)又は炭素数7~10アラルキル基(例えば、ベンジル基)が挙げられる。
 保護基の脱保護は、保護基の種類によって異なるが、公知の方法(例えば、Greene, T. W.、「Greene’s Protective Groups in Organic Synthesis」、Wiley-Interscience社)又はこれに準ずる方法に従って行うことができる。
1.化合物(Ia)の製造:
1-1.化合物(Ia-a)の製造方法:
Figure JPOXMLDOC01-appb-C000009
[式中、各記号は、上記の定義と同義である。]
(工程1)
 環状アミン誘導体(I)のうち、Aが一般式(IIa)で示される基である化合物(Ia-a)は、例えば、塩基存在下、化合物(IIIA)と化合物(IV)とのアルドール型縮合反応により得られる。
 アルドール型縮合反応に用いる化合物(IIIA)及び化合物(IV)は、市販品をそのまま用いることができるが、例えば、以下に記載する製造方法に従って合成できる。
 アルドール型縮合反応に用いる塩基としては、例えば、リチウムジイソプロピルアミド、カリウムtert-ブトキシド、水素化ナトリウム、フェニルリチウム又はtert-ブチルリチウムが挙げられる。
 アルドール型縮合反応における塩基の使用量は、1モルの化合物(IIIA)に対して0.5~10モルが好ましく、0.8~5モルがより好ましい。
 アルドール型縮合反応における化合物(IV)の使用量は、1モルの化合物(IIIA)に対して0.5~3モルが好ましく、0.8~1.5モルがより好ましい。
 アルドール型縮合反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、ジクロロメタン、クロロホルム若しくは1,2-ジクロロエタン等のハロゲン化炭化水素類;又はテトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類が挙げられる。これらの混合溶媒を用いてもよい。
 アルドール型縮合反応における反応温度は、-78℃~100℃が好ましく、-78℃~50℃がより好ましい。
 アルドール型縮合反応における反応時間は、反応条件によっても異なるが、5分間~48時間が好ましく、30分間~24時間がより好ましい。
1-2.化合物(Ia-b)及び(Ia-c)の製造方法:
Figure JPOXMLDOC01-appb-C000010
[式中、R2aは、水素原子を表し、R2bは、炭素数2~5のアルキルカルボニル基を表し、その他の各記号は、上記の定義と同義である。]
(工程2)
 環状アミン誘導体(I)のうち、Aが一般式(IIa)で示される基であり、かつ、Rが水素原子である化合物(Ia-b)は、例えば、塩基存在下、化合物(IIIA)と化合物(IV)とのアルドール型縮合反応により得られる。
 アルドール型縮合反応に用いる化合物(IIIA)及び化合物(IV)は、市販品をそのまま用いることができるが、例えば、以下に記載する製造方法に従って合成できる。
 アルドール型縮合反応に用いる塩基としては、例えば、リチウムジイソプロピルアミド、カリウムtert-ブトキシド、水素化ナトリウム、フェニルリチウム又はtert-ブチルリチウムが挙げられる。
 アルドール型縮合反応における塩基の使用量は、1モルの化合物(IIIA)に対して0.5~10モルが好ましく、0.8~5モルがより好ましい。
 アルドール型縮合反応における化合物(IV)の使用量は、1モルの化合物(IIIA)に対して0.5~3モルが好ましく、0.8~1.5モルがより好ましい。
 アルドール型縮合反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、ジクロロメタン、クロロホルム若しくは1,2-ジクロロエタン等のハロゲン化炭化水素類;又はテトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類が挙げらる。これらの混合溶媒を用いてもよい。
 アルドール型縮合反応における反応温度は、-78℃~100℃が好ましく、-78℃~50℃がより好ましい。
 アルドール型縮合反応における反応時間は、反応条件によっても異なるが、5分間~48時間が好ましく、30分間~24時間がより好ましい。
(工程3)
 環状アミン誘導体(I)のうち、Aが一般式(IIa)で示される基であり、かつ、Rが水素原子である化合物(Ia-b)は、化合物(VA)の還元反応により得られる。
 還元反応に用いる化合物(VA)は、例えば、以下に記載する製造方法に従って合成できる。
 還元反応に用いる還元剤としては、例えば、水素化ホウ素リチウム、水素化ホウ素ナトリウム、ジイソブチルアルミニウムヒドリド、リチウムアルミニウムヒドリド、リチウムトリエチルヒドリド、ナトリウムビス(2-メトキシエトキシ)アルミニウムヒドリド又はボラン錯体が挙げられる。
 還元反応における還元剤の使用量は、1モルの化合物(VA)に対して0.5~10モルが好ましく、0.8~5モルがより好ましい。
 還元反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、オクタン、ヘキサン、ベンゼン若しくはトルエン等の炭化水素類;テトラヒドロフラン、1,4-ジオキサン、エチレングリコールジメチルエーテル若しくはジエチルエーテル等のエーテル類;又はメタノール、エタノール若しくは2-プロパノール等のアルコール類が挙げられる。これらの混合溶媒を用いてもよい。
 還元反応における反応温度は、-78℃~150℃が好ましく、-78℃~100℃がより好ましい。
 還元反応における反応時間は、反応条件によっても異なるが、5分間~72時間が好ましく、30分間~24時間がより好ましい。
(工程4)
 環状アミン誘導体(I)のうち、Aが一般式(IIa)で示される基であり、かつ、Rが炭素数2~5のアルキルカルボニル基である化合物(Ia-c)は、例えば、塩基存在下、化合物(Ia-b)の、炭素数2~5のカルボン酸のハロゲン化物又は酸無水物等のアシル化剤を用いるアシル化反応により得られる。
 アシル化反応には、化合物(Ia-b)及びその塩を用いることができる。この場合の塩としては、例えば、上記の薬理学的に許容される塩と同様のものが挙げられる。
 アシル化反応に用いる塩基としては、例えば、ピリジン、トリエチルアミン、ジイソプロピルエチルアミン又はN,N-ジメチルアミノピリジンが挙げられる。
 アシル化反応における塩基の使用量は、1モルの化合物(Ia-b)に対して0.5~10モルが好ましく、0.8~5モルがより好ましい。
 アシル化反応に用いるアシル化剤は、市販品をそのまま用いることができる。
 アシル化反応におけるアシル化剤の使用量は、1モルの化合物(Ia-b)に対して0.5~10モルが好ましく、0.8~5モルがより好ましい。
 アシル化反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、ピリジン等の芳香族アミン類;ジクロロメタン、クロロホルム若しくは1,2-ジクロロエタン等のハロゲン化炭化水素類;テトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類;又はアセトニトリル若しくはプロピオニトリル等の脂肪族ニトリル類が挙げられる。これらの混合溶媒を用いてもよい。ピリジン等の芳香族アミン類を溶媒として選択した場合は、塩基非存在下にてアシル化反応を行うこともできる。
 アシル化反応における反応温度は、-40℃~100℃が好ましく、-20℃~80℃がより好ましい。
 アシル化反応における反応時間は、反応条件によっても異なるが、5分間~72時間が好ましく、30分間~24時間がより好ましい。
1-3.化合物(Ia-a)、(Ia-b)及び(Ia-c)の塩化工程:
 化合物(Ia-a)、(Ia-b)及び(Ia-c)の薬理学的に許容される塩は、例えば、化合物(Ia-a)、(Ia-b)又は(Ia-c)の、酸を用いる塩化反応により得られる。
 塩化反応に用いる酸としては、例えば、塩酸、硫酸、リン酸若しくは臭化水素酸等の無機酸;又はシュウ酸、マロン酸、クエン酸、フマル酸、乳酸、リンゴ酸、コハク酸、酒石酸、酢酸、トリフルオロ酢酸、マレイン酸、グルコン酸、安息香酸、サリチル酸、キシナホ酸、パモ酸、アスコルビン酸、アジピン酸、メタンスルホン酸、p-トルエンスルホン酸若しくはケイ皮酸等の有機酸が挙げられる。
 塩化反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、メタノール、エタノール若しくは2-プロパノール等の脂肪族アルコール類;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン若しくはエチレングリコールジメチルエーテル等のエーテル類;N,N-ジメチルホルムアミド若しくはN-メチルピロリドン等のアミド類;ジメチルスルホキシド等のスルホキシド類;アセトニトリル若しくはプロピオニトリル等の脂肪族ニトリル類;アセトン若しくは2-ブタノン等のケトン類;酢酸エチル、酢酸メチル若しくは酢酸n-ブチル等のエステル類;又は水が挙げられる。これらの混合溶媒を用いてもよい。
2.化合物(IIIA)の製造:
Figure JPOXMLDOC01-appb-C000011
[式中、PGは、保護基を表し、その他の各記号は、上記の定義と同義である。]
(工程5)
 化合物(IIIA)は、PGがアセチル基である化合物(VIA)と化合物(VIIA)との還元的アミノ化反応により得られる。
 還元的アミノ化反応に用いる化合物(VIA)及び化合物(VIIA)は、市販品をそのまま用いることができる。
 還元的アミノ化反応は、公知の方法(例えば、Journal of Organic Chemistry、2003年、第68巻、p.770-779)又はこれに準ずる方法に従って行うことができる。
(工程6)
 化合物(VIIIA)は、化合物(VIA)と化合物(VIIA)との還元的アミノ化反応により得られる。
 還元的アミノ化反応に用いる化合物(VIA)及び化合物(VIIA)は、市販品をそのまま用いることができる。
 還元的アミノ化反応は、公知の方法(例えば、Journal of Organic Chemistry、2003年、第68巻、p.770-779)又はこれに準ずる方法に従って行うことができる。
(工程7)
 化合物(IIa-a)は、化合物(VIIIA)の脱保護により得られる。
 保護基の脱保護は、保護基の種類によって異なるが、公知の方法(例えば、Greene, T.W.、「Greene’s Protective Groups in Organic Synthesis」、Wiley-Interscience社)又はこれに準ずる方法に従って行うことができる。
(工程8)
 化合物(IIIA)は、化合物(IIa-a)のアセチル化反応により得られる。
 アセチル化反応は、公知の方法(例えば、Greene, T.W.、「Greene’s Protective Groups in Organic Synthesis」、Wiley-Interscience社)又はこれに準ずる方法に従って行うことができる。
3.化合物(IV)の製造:
Figure JPOXMLDOC01-appb-C000012
[式中、Lは、脱離基を表し、その他の各記号は、上記の定義と同義である。]
(工程9)
 化合物(X)は、化合物(IX)の塩基による脱プロトン化後にアルキル化試薬(LI)を作用させるアルキル化反応により得られる。
 アルキル化反応に用いる化合物(IX)は、市販品をそのまま用いることができる。
 アルキル化反応に用いる塩基としては、例えば、水素化ナトリウム若しくは水素化カリウム等のアルカリ金属水素化物類;又はn-ブチルリチウム、sec-ブチルリチウム若しくはtert-ブチルリチウム等のブチルリチウム類が挙げられる。
 アルキル化反応における塩基の使用量は、1モルの化合物(IX)に対して0.5~3モルが好ましく、0.8~2モルがより好ましい。
 アルキル化反応に用いるアルキル化試薬(LI)は、市販品をそのまま用いることができる。
 アルキル化反応におけるアルキル化試薬(LI)の使用量は、1モルの化合物(IX)に対して0.5~10モルが好ましく、0.8~5モルがより好ましい。
 アルキル化反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、テトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類;N,N-ジメチルホルムアミド若しくはN-メチルピロリドン等のアミド類;又はアセトニトリル若しくはプロピオニトリル等の脂肪族ニトリル類が挙げられる。これらの混合溶媒を用いてもよい。
 アルキル化反応における反応温度は、-20℃~150℃が好ましく、0~100℃がより好ましい。
 アルキル化反応における反応時間は、反応条件によっても異なるが、5分間~72時間が好ましく、30分間~48時間がより好ましい。
(工程10)
 化合物(IV)は、化合物(X)の塩基による脱プロトン化後にホルミル基導入試薬を作用させるホルミル化反応により得られる。
 ホルミル化反応に用いる化合物(X)は、市販品をそのまま用いることができるが、例えば、上記の製造方法に従って合成できる。
 ホルミル化反応に用いる塩基としては、例えば、n-ブチルリチウム、sec-ブチルリチウム又はtert-ブチルリチウムが挙げられる。
 ホルミル化反応における塩基の使用量は、1モルの化合物(X)に対して0.5~3モルが好ましく、0.8~2モルがより好ましい。
 ホルミル化反応に用いるホルミル基導入試薬としては、例えば、N,N-ジメチルホルムアミドが挙げられる。N,N-ジメチルホルムアミドは、市販品をそのまま用いることができる。
 ホルミル化反応におけるホルミル基導入試薬の使用量は、1モルの化合物(X)に対して0.5~3モルが好ましく、0.8~2モルがより好ましい。
 ホルミル化反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、ヘプタン若しくはヘキサン等の脂肪族炭化水素類;又はテトラヒドロフラン、ジエチルエーテル若しくは1,4-ジオキサン等のエーテル類が挙げられる。これらの混合溶媒を用いてもよい。
 ホルミル化反応の脱プロトン化における反応温度は、-100~0℃が好ましく、-80~-20℃がより好ましい。また、ホルミル化反応のホルミル化における反応温度は、-20℃~150℃が好ましく、0~100℃がより好ましい。
 ホルミル化反応の反応時間は、反応条件によっても異なるが、5分間~72時間が好ましく、30分間~48時間がより好ましい。
(工程11)
 化合物(IV)は、化合物(XI)の塩基による脱プロトン化後にアルキル化試薬(LI)を作用させるアルキル化反応により得られる。
 アルキル化反応に用いる化合物(XI)は、市販品をそのまま用いることができる。
 アルキル化反応に用いる塩基としては、例えば、炭酸ナトリウム、炭酸カリウム若しくは炭酸セシウム等の金属炭酸塩類;又は水酸化ナトリウム若しくは水酸化カリウム等のアルカリ金属水酸化物類が挙げられる。
 アルキル化反応における塩基の使用量は、1モルの化合物(XI)に対して0.5~3モルが好ましく、0.8~2モルがより好ましい。
 アルキル化反応に用いるアルキル化試薬(LI)は、市販品をそのまま用いることができる。
 アルキル化反応におけるアルキル化試薬(LI)の使用量は、1モルの化合物(XI)に対して0.5~3モルが好ましく、0.8~2モルがより好ましい。
 アルキル化反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、テトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類;N,N-ジメチルホルムアミド若しくはN-メチルピロリドン等のアミド類;又はアセトニトリル若しくはプロピオニトリル等の脂肪族ニトリル類が挙げられる。これらの混合溶媒を用いてもよい。
 アルキル化反応における反応温度は、-20℃~150℃が好ましく、0~100℃がより好ましい。
 アルキル化反応における反応時間は、反応条件によっても異なるが、5分間~72時間が好ましく、30分間~48時間がより好ましい。
4.化合物(VA)の製造:
4-1.化合物(VA)の製造方法: 
Figure JPOXMLDOC01-appb-C000013
[式中、各記号は、上記の定義と同義である。]
(工程12)
 化合物(VA)は、化合物(Ia-b)の酸化反応により得られる。
 酸化反応に用いる化合物(Ia-b)は、上記の製造方法に従って合成できる。
 酸化反応に用いる酸化剤としては、例えば、二酸化マンガン、三酸化硫黄-ピリジン、活性化ジメチルスルホキシド又はデスマーチン試薬が挙げられる。
 酸化反応における酸化剤の使用量は、1モルの化合物(Ia-b)に対して0.5~50モルが好ましく、0.8~35モルがより好ましい。
 酸化反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、ピリジン等の芳香族アミン類;ジクロロメタン、クロロホルム若しくは1,2-ジクロロエタン等のハロゲン化炭化水素類;テトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類;又はアセトニトリル若しくはプロピオニトリル等の脂肪族ニトリル類が挙げられる。これらの混合溶媒を用いてもよい。
 酸化反応における反応温度は、-78℃~100℃が好ましく、-78℃~40℃がより好ましい。
 酸化反応における反応時間は、反応条件によっても異なるが、5分間~72時間が好ましく、30分間~48時間がより好ましい。
4-2.化合物(VA)の製造方法:
Figure JPOXMLDOC01-appb-C000014
[式中、Rは、炭素数1~6のアルキル基又は炭素数7~10アラルキル基を表し、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基又はベンジル基が挙げられる。その他の各記号は、上記の定義と同義である。]
(工程13)
 化合物(XII)は、塩基存在下、化合物(X)の、エステル基導入試薬を用いるエステル化反応により得られる。
 エステル化反応に用いる化合物(X)は、市販品をそのまま用いることができるが、例えば、上記の製造方法に従って合成できる。
 エステル化反応に用いる塩基としては、例えば、ピリジン若しくはルチジン等の芳香族アミン類;又はトリエチルアミン、トリイソプロピルアミン、トリブチルアミン、シクロヘキシルジメチルアミン、4-ジメチルアミノピリジン、N,N-ジメチルアニリン、N-メチルピペリジン、N-メチルピロリジン、N-メチルモルホリン若しくはジイソプロピルエチルアミン(DIEA)等の第3級アミン類が挙げられる。
 エステル化反応における塩基の使用量は、1モルの化合物(X)に対して0.5~10モルが好ましく、0.8~5モルがより好ましい。
 エステル化反応に用いるエステル基導入試薬としては、例えば、クロロギ酸エチル等のハロゲン化ギ酸エステルが挙げられる。クロロギ酸エチルは、市販品をそのまま用いることができる。
 エステル化反応におけるエステル基導入試薬の使用量は、1モルの化合物(X)に対して0.5~3モルが好ましく、0.8~2モルがより好ましい。
 エステル化反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、テトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類;N,N-ジメチルホルムアミド若しくはN-メチルピロリドン等のアミド類;又はアセトニトリル若しくはプロピオニトリル等の脂肪族ニトリル類が挙げられる。これらの混合溶媒を用いてもよい。
 エステル化反応における反応温度は、-20℃~150℃が好ましく、0~100℃がより好ましい。
 エステル化反応の反応時間は、反応条件によっても異なるが、5分間~72時間が好ましく、30分間~48時間がより好ましい。
(工程14)
 化合物(XII)は、化合物(XIII)の塩基による脱プロトン化後にアルキル化試薬(LI)を作用させるアルキル化反応により得られる。
 アルキル化反応に用いる化合物(XIII)は、市販品をそのまま用いることができる。
 アルキル化反応に用いる塩基としては、例えば、炭酸ナトリウム、炭酸カリウム若しくは炭酸セシウム等の金属炭酸塩類;又は水酸化ナトリウム若しくは水酸化カリウム等のアルカリ金属水酸化物類が挙げられる。
 アルキル化反応における塩基の使用量は、1モルの化合物(XIII)に対して0.5~3モルが好ましく、0.8~2モルがより好ましい。
 アルキル化反応に用いるアルキル化試薬(LI)は、市販品をそのまま用いることができる。
 アルキル化反応におけるアルキル化試薬(LI)の使用量は、1モルの化合物(XIII)に対して0.5~3モルが好ましく、0.8~2モルがより好ましい。
 アルキル化反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、テトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類;N,N-ジメチルホルムアミド若しくはN-メチルピロリドン等のアミド類;又はアセトニトリル若しくはプロピオニトリル等の脂肪族ニトリル類が挙げられる。これらの混合溶媒を用いてもよい。
 アルキル化反応における反応温度は、-20℃~150℃が好ましく、0~100℃がより好ましい。
 アルキル化反応における反応時間は、反応条件によっても異なるが、5分間~72時間が好ましく、30分間~48時間がより好ましい。
(工程15)
 化合物(VA)は、塩基存在下、化合物(XII)と化合物(IIIA)との縮合反応により得られる。
 縮合反応に用いる化合物(XII)及び化合物(IIIA)は、市販品をそのまま用いることができるが、例えば、上記の製造方法に従って合成できる。
 縮合反応に用いる塩基としては、例えば、リチウムジイソプロピルアミド、カリウムtert-ブトキシド、水素化ナトリウム、フェニルリチウム又はtert-ブチルリチウムが挙げられる。
 縮合反応における塩基の使用量は、1モルの化合物(IIIA)に対して0.5~10モルが好ましく、0.8~5モルがより好ましい。
 縮合反応における化合物(XII)の使用量は、1モルの化合物(IIIA)に対して0.5~3モルが好ましく、0.8~1.5モルがより好ましい。
 縮合反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、ジクロロメタン、クロロホルム若しくは1,2-ジクロロエタン等のハロゲン化炭化水素類;又はテトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類が挙げられる。これらの混合溶媒を用いてもよい。
 縮合反応における反応温度は、-78℃~100℃が好ましく、-78℃~50℃がより好ましい。
 縮合反応における反応時間は、反応条件によっても異なるが、5分間~48時間が好ましく、30分間~24時間がより好ましい。
4-3.化合物(VA)の製造方法:
Figure JPOXMLDOC01-appb-C000015
[式中、Mは、水素原子又はアルカリ金属を表し、アルカリ金属としては、例えば、リチウム又はナトリウムが挙げられる。その他の各記号は、上記の定義と同義である。]
(工程16)
 化合物(XIV)は、化合物(XII)の加水分解反応により得られる。
 加水分解反応に用いる化合物(XII)は、市販品をそのまま用いることができるが、例えば、上記の製造方法に従って合成できる。
 加水分解反応に用いる塩基としては、例えば、水酸化リチウム、水酸化カリウム又は水酸化ナトリウムが挙げられる。
 加水分解反応における塩基の使用量は、1モルの化合物(XII)に対して0.5~3モルが好ましく、0.8~2モルがより好ましい。
 加水分解反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、メタノール、エタノール若しくはプロパノール等の脂肪族アルコール類;又は水が挙げられる。これらの混合溶媒を用いてもよい。
 加水分解反応における反応温度は、-20℃~150℃が好ましく、0~100℃がより好ましい。
 加水分解反応の反応時間は、反応条件によっても異なるが、5分間~72時間が好ましく、30分間~48時間がより好ましい。
(工程17)
 化合物(XVI)は、塩基、カルボニルジイミダゾール及びマグネシウム塩存在下、化合物(XIV)と化合物(XV)との縮合反応により得られる。
 上記縮合反応は、公知の方法(例えば、ACS Medicinal Chemistry Letters、2011年、第2巻、p.171-176)又はこれに準ずる方法に従って行うことができる。
(工程18)
 化合物(VA)は、化合物(XVI)と化合物(IIa-a)とのアミド化反応により得られる。
 アミド化反応に用いる化合物(XVI)及び化合物(IIa-a)は、市販品をそのまま用いることができるが、例えば、上記の製造方法に従って合成できる。
 アミド化反応における化合物(IIa-a)の使用量は、1モルの化合物(XVI)に対して0.5~3モルが好ましく、0.8~1.5モルがより好ましい。
 アミド化反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、トルエン、クロロベンゼン若しくはキシレン等の芳香族炭化水素類;テトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類;N,N-ジメチルホルムアミド若しくはN-メチルピロリドン等のアミド類;又はアセトニトリル若しくはプロピオニトリル等の脂肪族ニトリル類が挙げられる。これらの混合溶媒を用いてもよい。
 アミド化反応における反応温度は、-20℃~200℃が好ましく、0~150℃がより好ましい。
 アミド化反応の反応時間は、反応条件によっても異なるが、5分間~72時間が好ましく、30分間~48時間がより好ましい。
5.化合物(Ib)の製造:
5-1.化合物(Ib-a)の製造方法:
Figure JPOXMLDOC01-appb-C000016
[式中、各記号は、上記の定義と同義である。]
(工程19)
 環状アミン誘導体(I)のうち、Aが一般式(IIb)で示される基である化合物(Ib-a)は、例えば、塩基存在下、化合物(IIIB)と化合物(IV)とのアルドール型縮合反応により得られる。
 アルドール型縮合反応に用いる化合物(IIIB)及び化合物(IV)は、市販品をそのまま用いることができるが、例えば、化合物(IIIB)は以下に記載する製造方法に従って合成でき、化合物(IV)は上記の製造方法に従って合成できる。
 アルドール型縮合反応に用いる塩基としては、例えば、リチウムジイソプロピルアミド、カリウムtert-ブトキシド、水素化ナトリウム、フェニルリチウム又はtert-ブチルリチウムが挙げられる。
 アルドール型縮合反応における塩基の使用量は、1モルの化合物(IIIB)に対して0.5~10モルが好ましく、0.8~5モルがより好ましい。
 アルドール型縮合反応における化合物(IV)の使用量は、1モルの化合物(IIIB)に対して0.5~3モルが好ましく、0.8~1.5モルがより好ましい。
 アルドール型縮合反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、ジクロロメタン、クロロホルム若しくは1,2-ジクロロエタン等のハロゲン化炭化水素類;又はテトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類が挙げられる。これらの混合溶媒を用いてもよい。
 アルドール型縮合反応における反応温度は、-78℃~100℃が好ましく、-78℃~50℃がより好ましい。
 アルドール型縮合反応における反応時間は、反応条件によっても異なるが、5分間~48時間が好ましく、30分間~24時間がより好ましい。
5-2.化合物(Ib-b)及び(Ib-c)の製造方法:
Figure JPOXMLDOC01-appb-C000017
[式中、各記号は、上記の定義と同義である。]
(工程20)
 環状アミン誘導体(I)のうち、Aが一般式(IIb)で示される基であり、かつ、Rが水素原子である化合物(Ib-b)は、例えば、塩基存在下、化合物(IIIB)と化合物(IV)とのアルドール型縮合反応により得られる。
 アルドール型縮合反応に用いる化合物(IIIB)及び化合物(IV)は、市販品をそのまま用いることができるが、例えば、化合物(IIIB)は以下に記載する製造方法に従って合成でき、化合物(IV)は上記の製造方法に従って合成できる。
 アルドール型縮合反応に用いる塩基としては、例えば、リチウムジイソプロピルアミド、カリウムtert-ブトキシド、水素化ナトリウム、フェニルリチウム又はtert-ブチルリチウムが挙げられる。
 アルドール型縮合反応における塩基の使用量は、1モルの化合物(IIIB)に対して0.5~10モルが好ましく、0.8~5モルがより好ましい。
 アルドール型縮合反応における化合物(IV)の使用量は、1モルの化合物(IIIB)に対して0.5~3モルが好ましく、0.8~1.5モルがより好ましい。
 アルドール型縮合反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、ジクロロメタン、クロロホルム若しくは1,2-ジクロロエタン等のハロゲン化炭化水素類;又はテトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類が挙げられる。これらの混合溶媒を用いてもよい。
 アルドール型縮合反応における反応温度は、-78℃~100℃が好ましく、-78℃~50℃がより好ましい。
 アルドール型縮合反応における反応時間は、反応条件によっても異なるが、5分間~48時間が好ましく、30分間~24時間がより好ましい。
(工程21)
 環状アミン誘導体(I)のうち、Aが一般式(IIb)で示される基であり、かつ、Rが水素原子である化合物(Ib-b)は、化合物(VB)の還元反応により得られる。
 還元反応に用いる化合物(VB)は、例えば、以下に記載する製造方法に従って合成できる。
 還元反応に用いる還元剤としては、例えば、水素化ホウ素リチウム、水素化ホウ素ナトリウム、ジイソブチルアルミニウムヒドリド、リチウムアルミニウムヒドリド、リチウムトリエチルヒドリド、ナトリウムビス(2-メトキシエトキシ)アルミニウムヒドリド又はボラン錯体が挙げられる。
 還元反応における還元剤の使用量は、1モルの化合物(VB)に対して0.5~10モルが好ましく、0.8~5モルがより好ましい。
 還元反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、オクタン、ヘキサン、ベンゼン若しくはトルエン等の炭化水素類;テトラヒドロフラン、1,4-ジオキサン、エチレングリコールジメチルエーテル若しくはジエチルエーテル等のエーテル類;又はメタノール、エタノール若しくは2-プロパノール等のアルコール類が挙げられる。これらの混合溶媒を用いてもよい。
 還元反応における反応温度は、-78℃~150℃が好ましく、-78℃~100℃がより好ましい。
 還元反応における反応時間は、反応条件によっても異なるが、5分間~72時間が好ましく、30分間~24時間がより好ましい。
(工程22)
 環状アミン誘導体(I)のうち、Aが一般式(IIb)で示される基であり、かつ、Rが炭素数2~5のアルキルカルボニル基である化合物(Ib-c)は、例えば、塩基存在下、化合物(Ib-b)の、炭素数2~5のカルボン酸のハロゲン化物又は酸無水物等のアシル化剤を用いるアシル化反応により得られる。
 アシル化反応には、化合物(Ib-b)及びその塩を用いることができる。この場合の塩としては、例えば、上記の薬理学的に許容される塩と同様のものが挙げられる。
 アシル化反応に用いる塩基としては、例えば、ピリジン、トリエチルアミン、ジイソプロピルエチルアミン又はN,N-ジメチルアミノピリジンが挙げられる。
 アシル化反応における塩基の使用量は、1モルの化合物(Ib-b)に対して0.5~10モルが好ましく、0.8~5モルがより好ましい。
 アシル化反応に用いるアシル化剤は、市販品をそのまま用いることができる。
 アシル化反応におけるアシル化剤の使用量は、1モルの化合物(Ib-b)に対して0.5~10モルが好ましく、0.8~5モルがより好ましい。
 アシル化反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、ピリジン等の芳香族アミン類;ジクロロメタン、クロロホルム若しくは1,2-ジクロロエタン等のハロゲン化炭化水素類;テトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類;又はアセトニトリル若しくはプロピオニトリル等の脂肪族ニトリル類が挙げられる。これらの混合溶媒を用いてもよい。ピリジン等の芳香族アミン類を溶媒として選択した場合は、塩基非存在下にてアシル化反応を行うこともできる。
 アシル化反応における反応温度は、-40℃~100℃が好ましく、-20℃~80℃がより好ましい。
 アシル化反応における反応時間は、反応条件によっても異なるが、5分間~72時間が好ましく、30分間~24時間がより好ましい。
5-3.化合物(Ib-a)、(Ib-b)及び(Ib-c)の塩化工程:
 化合物(Ib-a)、(Ib-b)及び(Ib-c)の薬理学的に許容される塩は、例えば、化合物(Ib-a)、(Ib-b)又は(Ib-c)の、酸を用いる塩化反応により得られる。
 塩化反応に用いる酸としては、例えば、塩酸、硫酸、リン酸若しくは臭化水素酸等の無機酸;又はシュウ酸、マロン酸、クエン酸、フマル酸、乳酸、リンゴ酸、コハク酸、酒石酸、酢酸、トリフルオロ酢酸、マレイン酸、グルコン酸、安息香酸、サリチル酸、キシナホ酸、パモ酸、アスコルビン酸、アジピン酸、メタンスルホン酸、p-トルエンスルホン酸若しくはケイ皮酸等の有機酸が挙げられる。
 塩化反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、メタノール、エタノール若しくは2-プロパノール等の脂肪族アルコール類;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン若しくはエチレングリコールジメチルエーテル等のエーテル類;N,N-ジメチルホルムアミド若しくはN-メチルピロリドン等のアミド類;ジメチルスルホキシド等のスルホキシド類;アセトニトリル若しくはプロピオニトリル等の脂肪族ニトリル類;アセトン若しくは2-ブタノン等のケトン類;酢酸エチル、酢酸メチル若しくは酢酸n-ブチル等のエステル類;又は水が挙げられる。これらの混合溶媒を用いてもよい。
6.化合物(IIIB)の製造:
Figure JPOXMLDOC01-appb-C000018
[式中、各記号は、上記の定義と同義である。]
(工程23)
 化合物(IIIB)は、PGがアセチル基である化合物(VIB)と化合物(VIIB)との還元的アミノ化反応により得られる。
 還元的アミノ化反応に用いる化合物(VIB)及び化合物(VIIB)は、市販品をそのまま用いることができる。
 還元的アミノ化反応は、公知の方法(例えば、Journal of Organic Chemistry、2003年、第68巻、p.770-779)又はこれに準ずる方法に従って行うことができる。
(工程24)
 化合物(VIIIB)は、化合物(VIB)と化合物(VIIB)との還元的アミノ化反応により得られる。
 還元的アミノ化反応に用いる化合物(VIB)及び化合物(VIIB)は、市販品をそのまま用いることができる。
 還元的アミノ化反応は、公知の方法(例えば、Journal of Organic Chemistry、2003年、第68巻、p.770-779)又はこれに準ずる方法に従って行うことができる。
(工程25)
 化合物(IIb-a)は、化合物(VIIIB)の脱保護により得られる。
 保護基の脱保護は、保護基の種類によって異なるが、公知の方法(例えば、Greene, T.W.、「Greene’s Protective Groups in Organic Synthesis」、Wiley-Interscience社)又はこれに準ずる方法に従って行うことができる。
(工程26)
 化合物(IIIB)は、化合物(IIb-a)のアセチル化反応により得られる。
 アセチル化反応は、公知の方法(例えば、Greene, T.W.、「Greene’s Protective Groups in Organic Synthesis」、Wiley-Interscience社)又はこれに準ずる方法に従って行うことができる。
7.化合物(VB)の製造:
Figure JPOXMLDOC01-appb-C000019
[式中、各記号は、上記の定義と同義である。]
(工程27)
 化合物(VB)は、化合物(Ib-b)の酸化反応により得られる。
 酸化反応に用いる化合物(Ib-b)は上記の製造方法に従って合成できる。
 酸化反応に用いる酸化剤としては、例えば、二酸化マンガン、三酸化硫黄-ピリジン、活性化ジメチルスルホキシド又はデスマーチン試薬が挙げられる。
 酸化反応における酸化剤の使用量は、1モルの化合物(Ib-b)に対して0.5~50モルが好ましく、0.8~35モルがより好ましい。
 酸化反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、ピリジン等の芳香族アミン類;ジクロロメタン、クロロホルム若しくは1,2-ジクロロエタン等のハロゲン化炭化水素類;テトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類;又はアセトニトリル若しくはプロピオニトリル等の脂肪族ニトリル類が挙げられる。これらの混合溶媒を用いてもよい。
 酸化反応における反応温度は、-78℃~100℃が好ましく、-78℃~40℃がより好ましい。
 酸化反応における反応時間は、反応条件によっても異なるが、5分間~72時間が好ましく、30分間~48時間がより好ましい。
(工程28)
 化合物(VB)は、塩基存在下、化合物(XII)と化合物(IIIB)との縮合反応により得られる。
 縮合反応に用いる化合物(XII)及び化合物(IIIB)は、市販品をそのまま用いることができるが、例えば、上記の製造方法に従って合成できる。
 縮合反応に用いる塩基としては、例えば、リチウムジイソプロピルアミド、カリウムtert-ブトキシド、水素化ナトリウム、フェニルリチウム又はtert-ブチルリチウムが挙げられる。
 縮合反応における塩基の使用量は、1モルの化合物(IIIB)に対して0.5~10モルが好ましく、0.8~5モルがより好ましい。
 縮合反応における化合物(XII)の使用量は、1モルの化合物(IIIB)に対して0.5~3モルが好ましく、0.8~1.5モルがより好ましい。
 縮合反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、ジクロロメタン、クロロホルム若しくは1,2-ジクロロエタン等のハロゲン化炭化水素類;又はテトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類が挙げられる。これらの混合溶媒を用いてもよい。
 縮合反応における反応温度は、-78℃~100℃が好ましく、-78℃~50℃がより好ましい。
 縮合反応における反応時間は、反応条件によっても異なるが、5分間~48時間が好ましく、30分間~24時間がより好ましい。
(工程29)
 化合物(VB)は、化合物(XVI)と化合物(IIb-a)とのアミド化反応により得られる。
 アミド化反応に用いる化合物(XVI)及び化合物(IIb-a)は、市販品をそのまま用いることができるが、例えば、上記の製造方法に従って合成できる。
 アミド化反応における化合物(IIb-a)の使用量は、1モルの化合物(XVI)に対して0.5~3モルが好ましく、0.8~1.5モルがより好ましい。
 アミド化反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、トルエン、クロロベンゼン若しくはキシレン等の芳香族炭化水素類;テトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類;N,N-ジメチルホルムアミド若しくはN-メチルピロリドン等のアミド類;又はアセトニトリル若しくはプロピオニトリル等の脂肪族ニトリル類が挙げられる。これらの混合溶媒を用いてもよい。
 アミド化反応における反応温度は、-20℃~200℃が好ましく、0~150℃がより好ましい。
 アミド化反応の反応時間は、反応条件によっても異なるが、5分間~72時間が好ましく、30分間~48時間がより好ましい。
8.化合物(Ic)の製造:
8-1.化合物(Ic-a)の製造方法:
Figure JPOXMLDOC01-appb-C000020
[式中、各記号は、上記の定義と同義である。]
(工程30)
 環状アミン誘導体(I)のうち、Aが一般式(IIc)で示される基である化合物(Ic-a)は、例えば、塩基存在下、化合物(IIIC)と化合物(IV)とのアルドール型縮合反応により得られる。
 アルドール型縮合反応に用いる化合物(IIIC)及び化合物(IV)は、市販品をそのまま用いることができるが、例えば、化合物(IIIC)は以下に記載する製造方法に従って合成でき、化合物(IV)は上記の製造方法に従って合成できる。
 アルドール型縮合反応に用いる塩基としては、例えば、リチウムジイソプロピルアミド、カリウムtert-ブトキシド、水素化ナトリウム、フェニルリチウム又はtert-ブチルリチウムが挙げられる。
 アルドール型縮合反応における塩基の使用量は、1モルの化合物(IIIC)に対して0.5~10モルが好ましく、0.8~5モルがより好ましい。
 アルドール型縮合反応における化合物(IV)の使用量は、1モルの化合物(IIIC)に対して0.5~3モルが好ましく、0.8~1.5モルがより好ましい。
 アルドール型縮合反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、ジクロロメタン、クロロホルム若しくは1,2-ジクロロエタン等のハロゲン化炭化水素類;又はテトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類が挙げられる。これらの混合溶媒を用いてもよい。
 アルドール型縮合反応における反応温度は、-78℃~100℃が好ましく、-78℃~50℃がより好ましい。
 アルドール型縮合反応における反応時間は、反応条件によっても異なるが、5分間~48時間が好ましく、30分間~24時間がより好ましい。
8-2.化合物(Ic-b)及び(Ic-c)の製造方法:
Figure JPOXMLDOC01-appb-C000021
[式中、各記号は、上記の定義と同義である。]
(工程31)
 環状アミン誘導体(I)のうち、Aが一般式(IIc)で示される基であり、かつ、Rが水素原子である化合物(Ic-b)は、例えば、塩基存在下、化合物(IIIC)と化合物(IV)とのアルドール型縮合反応により得られる。
 アルドール型縮合反応に用いる化合物(IIIC)及び化合物(IV)は、市販品をそのまま用いることができるが、例えば、化合物(IIIC)は以下に記載する製造方法に従って合成でき、化合物(IV)は上記の製造方法に従って合成できる。
 アルドール型縮合反応に用いる塩基としては、例えば、リチウムジイソプロピルアミド、カリウムtert-ブトキシド、水素化ナトリウム、フェニルリチウム又はtert-ブチルリチウムが挙げられる。
 アルドール型縮合反応における塩基の使用量は、1モルの化合物(IIIC)に対して0.5~10モルが好ましく、0.8~5モルがより好ましい。
 アルドール型縮合反応における化合物(IV)の使用量は、1モルの化合物(IIIC)に対して0.5~3モルが好ましく、0.8~1.5モルがより好ましい。
 アルドール型縮合反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、ジクロロメタン、クロロホルム若しくは1,2-ジクロロエタン等のハロゲン化炭化水素類;又はテトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類が挙げられる。これらの混合溶媒を用いてもよい。
 アルドール型縮合反応における反応温度は、-78℃~100℃が好ましく、-78℃~50℃がより好ましい。
 アルドール型縮合反応における反応時間は、反応条件によっても異なるが、5分間~48時間が好ましく、30分間~24時間がより好ましい。
(工程32)
 環状アミン誘導体(I)のうち、Aが一般式(IIc)で示される基であり、かつ、Rが水素原子である化合物(Ic-b)は、化合物(VC)の還元反応により得られる。
 還元反応に用いる化合物(VC)は、例えば、以下に記載する製造方法に従って合成できる。
 還元反応に用いる還元剤としては、例えば、水素化ホウ素リチウム、水素化ホウ素ナトリウム、ジイソブチルアルミニウムヒドリド、リチウムアルミニウムヒドリド、リチウムトリエチルヒドリド、ナトリウムビス(2-メトキシエトキシ)アルミニウムヒドリド又はボラン錯体が挙げられる。
 還元反応における還元剤の使用量は、1モルの化合物(VC)に対して0.5~10モルが好ましく、0.8~5モルがより好ましい。
 還元反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、オクタン、ヘキサン、ベンゼン若しくはトルエン等の炭化水素類;テトラヒドロフラン、1,4-ジオキサン、エチレングリコールジメチルエーテル若しくはジエチルエーテル等のエーテル類;又はメタノール、エタノール若しくは2-プロパノール等のアルコール類が挙げられる。これらの混合溶媒を用いてもよい。
 還元反応における反応温度は、-78℃~150℃が好ましく、-78℃~100℃がより好ましい。
 還元反応における反応時間は、反応条件によっても異なるが、5分間~72時間が好ましく、30分間~24時間がより好ましい。
(工程33)
 環状アミン誘導体(I)のうち、Aが一般式(IIc)で示される基であり、かつ、Rが炭素数2~5のアルキルカルボニル基である化合物(Ic-c)は、例えば、塩基存在下、化合物(Ic-b)の、炭素数2~5のカルボン酸のハロゲン化物又は酸無水物等のアシル化剤を用いるアシル化反応により得られる。
 アシル化反応には、化合物(Ic-b)及びその塩を用いることができる。この場合の塩としては、例えば、上記の薬理学的に許容される塩と同様のものが挙げられる。
 アシル化反応に用いる塩基としては、例えば、ピリジン、トリエチルアミン、ジイソプロピルエチルアミン又はN,N-ジメチルアミノピリジンが挙げられる。
 アシル化反応における塩基の使用量は、1モルの化合物(Ic-b)に対して0.5~10モルが好ましく、0.8~5モルがより好ましい。
 アシル化反応に用いるアシル化剤は、市販品をそのまま用いることができる。
 アシル化反応におけるアシル化剤の使用量は、1モルの化合物(Ic-b)に対して0.5~10モルが好ましく、0.8~5モルがより好ましい。
 アシル化反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、ピリジン等の芳香族アミン類;ジクロロメタン、クロロホルム若しくは1,2-ジクロロエタン等のハロゲン化炭化水素類;テトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類;又はアセトニトリル若しくはプロピオニトリル等の脂肪族ニトリル類が挙げられる。これらの混合溶媒を用いてもよい。ピリジン等の芳香族アミン類を溶媒として選択した場合は、塩基非存在下にてアシル化反応を行うこともできる。
 アシル化反応における反応温度は、-40℃~100℃が好ましく、-20℃~80℃がより好ましい。
 アシル化反応における反応時間は、反応条件によっても異なるが、5分間~72時間が好ましく、30分間~24時間がより好ましい。
8-3.化合物(Ic-a)、(Ic-b)及び(Ic-c)の塩化工程:
 化合物(Ic-a)、(Ic-b)及び(Ic-c)の薬理学的に許容される塩は、例えば、化合物(Ic-a)、(Ic-b)又は(Ic-c)の、酸を用いる塩化反応により得られる。
 塩化反応に用いる酸としては、例えば、塩酸、硫酸、リン酸若しくは臭化水素酸等の無機酸;又はシュウ酸、マロン酸、クエン酸、フマル酸、乳酸、リンゴ酸、コハク酸、酒石酸、酢酸、トリフルオロ酢酸、マレイン酸、グルコン酸、安息香酸、サリチル酸、キシナホ酸、パモ酸、アスコルビン酸、アジピン酸、メタンスルホン酸、p-トルエンスルホン酸若しくはケイ皮酸等の有機酸が挙げられる。
 塩化反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、メタノール、エタノール若しくは2-プロパノール等の脂肪族アルコール類;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン若しくはエチレングリコールジメチルエーテル等のエーテル類;N,N-ジメチルホルムアミド若しくはN-メチルピロリドン等のアミド類;ジメチルスルホキシド等のスルホキシド類;アセトニトリル若しくはプロピオニトリル等の脂肪族ニトリル類;アセトン若しくは2-ブタノン等のケトン類;酢酸エチル、酢酸メチル若しくは酢酸n-ブチル等のエステル類;又は水が挙げられる。これらの混合溶媒を用いてもよい。
9.化合物(IIIC)の製造:
Figure JPOXMLDOC01-appb-C000022
[式中、各記号は、上記の定義と同義である。]
(工程34)
 化合物(IIIC)は、PGがアセチル基である化合物(VIC)と化合物(XVII)との還元的アミノ化反応により得られる。
 還元的アミノ化反応に用いる化合物(VIC)及び化合物(XVII)は、市販品をそのまま用いることができる。
 還元的アミノ化反応は、公知の方法(例えば、Journal of Organic Chemistry、2003年、第68巻、p.770-779)又はこれに準ずる方法に従って行うことができる。
(工程35)
 化合物(VIIIC)は、化合物(VIC)と化合物(XVII)との還元的アミノ化反応により得られる。
 還元的アミノ化反応に用いる化合物(VIC)及び化合物(XVII)は、市販品をそのまま用いることができる。
 還元的アミノ化反応は、公知の方法(例えば、Journal of Organic Chemistry、2003年、第68巻、p.770-779)又はこれに準ずる方法に従って行うことができる。
(工程36)
 化合物(IIc-a)は、化合物(VIIIC)の脱保護により得られる。
 保護基の脱保護は、保護基の種類によって異なるが、公知の方法(例えば、Greene, T.W.、「Greene’s Protective Groups in Organic Synthesis」、Wiley-Interscience社)又はこれに準ずる方法に従って行うことができる。
(工程37)
 化合物(IIIC)は、化合物(IIc-a)のアセチル化反応により得られる。
 アセチル化反応は、公知の方法(例えば、Greene, T.W.、「Greene’s Protective Groups in Organic Synthesis」、Wiley-Interscience社)又はこれに準ずる方法に従って行うことができる。
10.化合物(VC)の製造:
Figure JPOXMLDOC01-appb-C000023
[式中、各記号は、上記の定義と同義である。]
(工程38)
 化合物(VC)は、化合物(Ic-b)の酸化反応により得られる。
 酸化反応に用いる化合物(Ic-b)は上記の製造方法に従って合成できる。
 酸化反応に用いる酸化剤としては、例えば、二酸化マンガン、三酸化硫黄-ピリジン、活性化ジメチルスルホキシド又はデスマーチン試薬が挙げられる。
 酸化反応における酸化剤の使用量は、1モルの化合物(Ic-b)に対して0.5~50モルが好ましく、0.8~35モルがより好ましい。
 酸化反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、ピリジン等の芳香族アミン類;ジクロロメタン、クロロホルム若しくは1,2-ジクロロエタン等のハロゲン化炭化水素類;テトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類;又はアセトニトリル若しくはプロピオニトリル等の脂肪族ニトリル類が挙げられる。これらの混合溶媒を用いてもよい。
 酸化反応における反応温度は、-78℃~100℃が好ましく、-78℃~40℃がより好ましい。
 酸化反応における反応時間は、反応条件によっても異なるが、5分間~72時間が好ましく、30分間~48時間がより好ましい。
(工程39)
 化合物(VC)は、塩基存在下、化合物(XII)と化合物(IIIC)との縮合反応により得られる。
 縮合反応に用いる化合物(XII)及び化合物(IIIC)は、市販品をそのまま用いることができるが、例えば、上記の製造方法に従って合成できる。
 縮合反応に用いる塩基としては、例えば、リチウムジイソプロピルアミド、カリウムtert-ブトキシド、水素化ナトリウム、フェニルリチウム又はtert-ブチルリチウムが挙げられる。
 縮合反応における塩基の使用量は、1モルの化合物(IIIC)に対して0.5~10モルが好ましく、0.8~5モルがより好ましい。
 縮合反応における化合物(XII)の使用量は、1モルの化合物(IIIC)に対して0.5~3モルが好ましく、0.8~1.5モルがより好ましい。
 縮合反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、ジクロロメタン、クロロホルム若しくは1,2-ジクロロエタン等のハロゲン化炭化水素類;又はテトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類が挙げられる。これらの混合溶媒を用いてもよい。
 縮合反応における反応温度は、-78℃~100℃が好ましく、-78℃~50℃がより好ましい。
 縮合反応における反応時間は、反応条件によっても異なるが、5分間~48時間が好ましく、30分間~24時間がより好ましい。
(工程40)
 化合物(VC)は、化合物(XVI)と化合物(IIc-a)とのアミド化反応により得られる。
 アミド化反応における化合物(IIc-a)の使用量は、1モルの化合物(XVI)に対して0.5~3モルが好ましく、0.8~1.5モルがより好ましい。
 アミド化反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、トルエン、クロロベンゼン若しくはキシレン等の芳香族炭化水素類;テトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類;N,N-ジメチルホルムアミド若しくはN-メチルピロリドン等のアミド類;又はアセトニトリル若しくはプロピオニトリル等の脂肪族ニトリル類が挙げられる。これらの混合溶媒を用いてもよい。
 アミド化反応における反応温度は、-20℃~200℃が好ましく、0~150℃がより好ましい。
 アミド化反応の反応時間は、反応条件によっても異なるが、5分間~72時間が好ましく、30分間~48時間がより好ましい。
11.化合物(XVIII-a)、(XVIII-b)及び(XVIII-c)の製造:
11-1.化合物(XVIII-a)の製造方法:
Figure JPOXMLDOC01-appb-C000024
[式中、各記号は、上記の定義と同義である。]
(工程41)
 環状アミン誘導体(I)のうち、Aが一般式(IIa)で示される基であり、かつ、*を付した不斉炭素の立体化学がS配置である化合物(XVIII-a)は、公知の手段(例えば、化合物(Ia-a)の光学活性な合成中間体を用いるか、又は、化合物(Ia-a)のラセミ混合物に対し、公知の方法若しくはそれに準ずる方法(例えば、光学分割)を用いる)により得られる。
 光学分割法としては、公知の手段、例えば、キラルカラム法又はジアステレオマー法が挙げられる。
1)キラルカラム法
 ラセミ混合物を鏡像異性体分離用カラム(キラルカラム)にかけて分離することにより目的とする鏡像異性体を得る方法である。例えば、液体クロマトグラフィーの場合は、HPLC用キラルカラム(例えば、株式会社ダイセル製)等のキラルカラムにラセミ混合物を添加し、水、種々の緩衝液(例えば、リン酸緩衝液)、有機溶媒(例えば、n-ヘキサン、エタノール、メタノール、1-プロパノール、2-プロパノール、アセトニトリル、トリフルオロ酢酸、ジエチルアミン又はエチレンジアミン)を単独あるいは混合した溶液として展開させることにより、鏡像異性体を分離することができる。
2)ジアステレオマー法
 ラセミ混合物を光学活性な試薬を用いてジアステレオマー混合物に変換し、ジアステレオマー間の物理化学的性質の差を利用して分離し、単一ジアステレオマーとした後、光学活性な試薬部位を切り離すことにより目的とする鏡像異性体を得る方法である。ラセミ混合物は、光学活性な試薬(例えば、MTPA(α-メトキシ-α-(トリフルオロメチル)フェニル酢酸)、N-(p-トルエンスルホニル)-L-フェニルアラニルクロリド又はN-(4-ニトロフェニルスルホニル)-L-フェニルアラニルクロリド)を用いた公知の方法又はそれに準ずる方法によりジアステレオマー混合物に変換することができる。ジアステレオマー混合物を公知の手段(例えば、分別再結晶法又はクロマトグラフィー法)により分離することにより、単一ジアステレオマーが得られる。単一ジアステレオマーの光学活性な試薬部位を公知の方法又はそれに準ずる方法により切り離すことにより、目的とする鏡像異性体を得ることができる。例えば、化合物(Ia-a)の分子内水酸基と光学活性な有機酸又はその酸ハロゲン化物(例えば、N-(p-トルエンスルホニル)-L-フェニルアラニルクロリド)との縮合反応によりエステル体のジアステレオマー混合物に変換し、この混合物を分離後、酸加水分解反応又は塩基性加水分解反応により目的とする鏡像異性体を得ることができる。
11-2.化合物(XVIII-b)及び(XVIII-c)の製造方法:
Figure JPOXMLDOC01-appb-C000025
[式中、各記号は、上記の定義と同義である。]
(工程42)
 環状アミン誘導体(I)のうち、Aが一般式(IIa)で示される基であり、*を付した不斉炭素の立体化学がS配置であり、かつ、Rが水素原子である化合物(XVIII-b)は、公知の手段、例えば、化合物(VA)の不斉還元反応又はそれに準ずる方法、により得られる。
 不斉還元反応は、公知の方法(例えば、Journal of American Chemical Society、2011年、第133巻、p.14960-14963)又はこれに準ずる方法に従って行うことができる。
(工程43)
 環状アミン誘導体(I)のうち、Aが一般式(IIa)で示される基であり、*を付した不斉炭素の立体化学がS配置であり、かつ、Rが炭素数2~5のアルキルカルボニル基である化合物(XVIII-c)は、例えば、塩基存在下、化合物(XVIII-b)の、炭素数2~5のカルボン酸のハロゲン化物又は酸無水物等のアシル化剤を用いるアシル化反応により得られる。
 アシル化反応には、化合物(XVIII-b)及びその塩を用いることができる。この場合の塩としては、例えば、上記の薬理学的に許容される塩と同様のものが挙げられる。
 アシル化反応に用いる塩基としては、例えば、ピリジン、トリエチルアミン、ジイソプロピルエチルアミン又はN,N-ジメチルアミノピリジンが挙げられる。
 アシル化反応における塩基の使用量は、1モルの化合物(XVIII-b)に対して0.5~10モルが好ましく、0.8~5モルがより好ましい。
 アシル化反応に用いるアシル化剤は、市販品をそのまま用いることができる。
 アシル化反応におけるアシル化剤の使用量は、1モルの化合物(XVIII-b)に対して0.5~10モルが好ましく、0.8~5モルがより好ましい。
 アシル化反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、ピリジン等の芳香族アミン類;ジクロロメタン、クロロホルム若しくは1,2-ジクロロエタン等のハロゲン化炭化水素類;テトラヒドロフラン若しくは1,4-ジオキサン等のエーテル類;又はアセトニトリル若しくはプロピオニトリル等の脂肪族ニトリル類が挙げられる。これらの混合溶媒を用いてもよい。ピリジン等の芳香族アミン類を溶媒として選択した場合は、塩基非存在下にてアシル化反応を行うこともできる。
 アシル化反応における反応温度は、-40℃~100℃が好ましく、-20℃~80℃がより好ましい。
 アシル化反応における反応時間は、反応条件によっても異なるが、5分間~72時間が好ましく、30分間~24時間がより好ましい。
11-3.化合物(XVIII-a)、(XVIII-b)及び(XVIII-c)の塩化工程:
 化合物(XVIII-a)、(XVIII-b)及び(XVIII-c)の薬理学的に許容される塩は、例えば、化合物(XVIII-a)、(XVIII-b)又は(XVIII-c)の、酸を用いる塩化反応により得られる。
 塩化反応に用いる酸としては、例えば、塩酸、硫酸、リン酸若しくは臭化水素酸等の無機酸;又はシュウ酸、マロン酸、クエン酸、フマル酸、乳酸、リンゴ酸、コハク酸、酒石酸、酢酸、トリフルオロ酢酸、マレイン酸、グルコン酸、安息香酸、サリチル酸、キシナホ酸、パモ酸、アスコルビン酸、アジピン酸、メタンスルホン酸、p-トルエンスルホン酸若しくはケイ皮酸等の有機酸が挙げられる。
 塩化反応は、一般に溶媒中で行われる。反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えば、メタノール、エタノール若しくは2-プロパノール等の脂肪族アルコール類;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン若しくはエチレングリコールジメチルエーテル等のエーテル類;N,N-ジメチルホルムアミド若しくはN-メチルピロリドン等のアミド類;ジメチルスルホキシド等のスルホキシド類;アセトニトリル若しくはプロピオニトリル等の脂肪族ニトリル類;アセトン若しくは2-ブタノン等のケトン類;酢酸エチル、酢酸メチル若しくは酢酸n-ブチル等のエステル類;又は水が挙げられる。これらの混合溶媒を用いてもよい。
 環状アミン誘導体(I)又はその薬理学的に許容される塩の鎮痛作用、特に神経障害性疼痛及び線維筋痛症の治療効果は、適切な動物モデルを用いて評価することができる。神経障害性疼痛の適切な動物モデルとしては、例えば、マウス若しくはラットの坐骨神経部分結紮モデル(Malmbergら、Pain、1998年、第76巻、p.215-222)又はマウス若しくはラットの脊髄神経結紮モデル(Kimら、Pain、1992年、第50巻、p.355-363)が挙げられる。線維筋痛症の適切な動物モデルとしては、例えば、ラットの線維筋痛症モデル(Slukaら、Journal of Pharmacology and Experimental Therapeutics、2002年、第302巻、p.1146-1150;Nagakuraら、Pain、2009年、第146巻、p.26-33;Slukaら、Pain、2009年、第146巻、p.3-4)が挙げられる。
 環状アミン誘導体(I)又はその薬理学的に許容される塩は、優れた鎮痛作用、特に神経障害性疼痛及び/又は線維筋痛症の治療効果を有していることから、医薬として用いることができ、鎮痛薬として好ましく用いられ、特に神経障害性疼痛治療薬及び/又は線維筋痛症治療薬として好ましく用いられる。
 ところで、医薬品には、薬効・安全性・体内動態(代謝安定性、経口吸収性及び血漿中濃度等)の全ての面において、厳しいクライテリアを満たすことが求められている。しかし、このような医薬品開発上の総合的課題を満たすものを見出すことは非常に困難である。そのため、医薬品開発においては、十分な薬効が認められない場合のみならず、安全性の問題及び不適切な体内動態から、開発中止に追いやられる化合物が非常に多い。そのため、新薬開発の成功確率は非常に低いのが実情である。それにも関わらず、本発明の環状アミン誘導体又はその薬理学的に許容される塩は、痛み、特に神経障害性疼痛及び線維筋痛症に対して強い鎮痛作用を示し、かつ、中枢性の副作用が軽減されており、さらに、高い安全性を兼ね備え、代謝安定性、経口吸収性及び血漿中濃度等の体内動態に優れ、薬効の持続性をも兼ね備えているため、長期投与が可能な鎮痛薬(神経障害性疼痛治療薬及び線維筋痛症治療薬)として利用できる。
 ここでいう神経障害性疼痛としては、例えば、癌性疼痛、帯状疱疹痛、帯状疱疹後神経痛、エイズ関連神経痛、糖尿病性神経障害痛又は三叉神経痛が挙げられる。
 「線維筋痛症」とは、専門医により線維筋痛症であると診断された症状をいう。専門医の診断は、一般には、米国リウマチ学会の分類基準を参考に行われる。
 環状アミン誘導体(I)又はその薬理学的に許容される塩は、急性及び慢性疼痛の治療にも有用である。急性疼痛は、通常短期間であるが、例えば、術後疼痛、抜歯後疼痛又は三叉神経痛が挙げられる。慢性疼痛は、通常3~6ヶ月間持続する疼痛と定義され、かつ、体因性疼痛及び心因性疼痛を含むが、例えば、慢性関節リウマチ、変形性関節症又は帯状疱疹後神経痛が挙げられる。
 環状アミン誘導体(I)又はその薬理学的に許容される塩を有効成分として含有する医薬は、哺乳動物(例えば、マウス、ラット、ハムスター、ウサギ、ネコ、イヌ、ウシ、ヒツジ、サル又はヒト)、特にヒトに対して投与した場合に、優れた鎮痛作用、特に神経障害性疼痛及び/又は線維筋痛症に対し治療効果を発揮する。
 環状アミン誘導体(I)又はその薬理学的に許容される塩を医薬として用いる場合、環状アミン誘導体(I)又はその薬理学的に許容される塩を、そのまま若しくは医薬として許容される担体と配合して、経口的又は非経口的に投与することができる。
 環状アミン誘導体(I)又はその薬理学的に許容される塩を有効成分として含有する医薬を経口投与する場合の剤形としては、例えば、錠剤(糖衣錠及びフィルムコーティング錠を含む)、丸剤、顆粒剤、散剤、カプセル剤(ソフトカプセル剤及びマイクロカプセル剤を含む)、シロップ剤、乳剤又は懸濁剤が挙げられる。また、環状アミン誘導体(I)又はその薬理学的に許容される塩を有効成分として含有する医薬を非経口投与する場合の剤形としては、例えば、注射剤、注入剤、点滴剤、坐剤、塗布剤又は貼付剤が挙げられる。さらには、適当な基剤(例えば、酪酸の重合体、グリコール酸の重合体、酪酸-グリコール酸の共重合体、酪酸の重合体とグリコール酸の重合体との混合物又はポリグリセロール脂肪酸エステル)と組み合わせて、徐放性製剤とすることも有効である。
 上記の剤形の製剤の調製は、製剤分野において一般的に用いられる公知の製造方法に従って行うことができる。この場合、必要に応じて、製剤分野において一般的に用いられる賦形剤、結合剤、滑沢剤、崩壊剤、甘味剤、界面活性剤、懸濁化剤又は乳化剤等を含有させて製造することができる。
 錠剤の調製は、例えば、賦形剤、結合剤、崩壊剤又は滑沢剤を含有させて行うことができる。丸剤及び顆粒剤の調製は、例えば、賦形剤、結合剤又は崩壊剤を含有させて行うことができる。また、散剤及びカプセル剤の調製は、例えば、賦形剤を含有させて行うことができる。シロップ剤の調製は、例えば、甘味剤を含有させて行うことができる。乳剤又は懸濁剤の調製は、例えば、界面活性剤、懸濁化剤又は乳化剤を含有させて行うことができる。
 賦形剤としては、例えば、乳糖、ブドウ糖、デンプン、ショ糖、微結晶セルロース、カンゾウ末、マンニトール、炭酸水素ナトリウム、リン酸カルシウム又は硫酸カルシウムが挙げられる。
 結合剤としては、例えば、デンプンのり液、アラビアゴム液、ゼラチン液、トラガント液、カルボキシメチルセルロース液、アルギン酸ナトリウム液又はグリセリンが挙げられる。
 崩壊剤としては、例えば、デンプン又は炭酸カルシウムが挙げられる。
 滑沢剤としては、例えば、ステアリン酸マグネシウム、ステアリン酸、ステアリン酸カルシウム又は精製タルクが挙げられる。
 甘味剤としては、例えば、ブドウ糖、果糖、転化糖、ソルビトール、キシリトール、グリセリン又は単シロップが挙げられる。
 界面活性剤としては、例えば、ラウリル硫酸ナトリウム、ポリソルベート80、ソルビタンモノ脂肪酸エステル又はステアリン酸ポリオキシル40が挙げられる。
 懸濁化剤としては、例えば、アラビアゴム、アルギン酸ナトリウム、カルボキシメチルセルロースナトリウム、メチルセルロース又はベントナイトが挙げられる。
 乳化剤としては、例えば、アラビアゴム、トラガント、ゼラチン又はポリソルベート80が挙げられる。
 さらに、環状アミン誘導体(I)又はその薬理学的に許容される塩を有効成分として含有する医薬を、上記の剤形に調製する場合には、製剤分野において一般的に用いられる着色剤、保存剤、芳香剤、矯味剤、安定剤又は粘稠剤等を添加することができる。
 環状アミン誘導体(I)又はその薬理学的に許容される塩を有効成分として含有する医薬の1日あたりの投与量は、患者の状態若しくは体重、化合物の種類又は投与経路等によって異なる。例えば、成人(体重約60kg)に経口投与する場合には、環状アミン誘導体(I)又はその薬理学的に許容される塩を有効成分量として1~1000mgの範囲で、1~3回に分けて投与することが好ましい。例えば、成人(体重約60kg)に非経口投与する場合には、注射剤であれば、環状アミン誘導体(I)又はその薬理学的に許容される塩を有効成分量として体重1kgあたり0.01~100mgの範囲で静脈注射により投与することが好ましい。
 環状アミン誘導体(I)又はその薬理学的に許容される塩は、治療若しくは予防効果の補完又は増強、あるいは投与量の低減のために、他の薬剤と適量配合又は併用しても構わない。この場合の他の薬剤としては、例えば、アミトリプチリン、ミルナシプラン若しくはデュロキセチン等の抗うつ薬;アルプラゾラム等の抗不安薬;カルバマゼピン等の抗痙攣薬;リドカイン等の局所麻酔薬;アドレナリン等の交感神経作動薬;ケタミン等のNMDA受容体拮抗薬;バルプロ酸ナトリウム等のGABAトランスアミナーゼ阻害薬;プレガバリン等のカルシウムチャネル遮断薬;リスペリドン等のセロトニン受容体拮抗薬;ジアゼパム等のGABA受容体機能促進薬;又はジクロフェナク等の抗炎症薬が挙げられる。
 以下、実施例、比較例及び参考例を用いて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 以下の記載において、NMRデータ中に示される溶媒名は、測定に使用した溶媒を示している。また、400 MHz NMRスペクトルは、JNM-AL400型核磁気共鳴装置(日本電子社製)を用いて測定した。ケミカルシフトは、テトラメチルシランを基準として、δ(単位:ppm)で表し、シグナルはそれぞれs(一重線)、d(二重線)、t(三重線)、q(四重線)、quint(五重線)、sept(七重線)、m(多重線)、br(幅広)、dd(二重二重線)、dt(二重三重線)、ddd(二重二重二重線)、dq(二重四重線)、td(三重二重線)、tt(三重三重線)で表した。ESI-MSスペクトルは、Agilent Technologies 1200 Series、G6130A(AgilentTechnology社製)を用いて測定した。溶媒は全て市販のものを用いた。フラッシュカラムクロマトグラフィーはYFLC W-prep2XY(山善社製)を用いた。
 HPLC精製は以下の条件により行った。
機器:株式会社京都クロマト製K-Prepシステム
カラム:CHIRALPAK IC、50×250mm(株式会社ダイセル製)
溶媒:0.01%エチレンジアミン含有n-ヘキサン/エタノール=60:40(v/v)
流量:35mL/min
検出法:UV220nm
カラム温度:40℃
 環状アミン誘導体(I)の原料及び中間体は、以下の参考例に記載する方法で合成した。なお、参考例化合物の合成に使用される化合物で合成法の記載のないものについては、市販の化合物を使用した。
(参考例1)粗4-エチルメチルアミノピペリジンの合成:
Figure JPOXMLDOC01-appb-C000026
 ベンジル 4-オキソピペリジン-1-カルボキシレート(0.500g、2.14mmol)のジクロロメタン(12.0mL)溶液に、エチルメチルアミン(0.230mL、2.68mmol)、酢酸(0.0120mL、0.214mmol)及びナトリウムトリアセトキシボロヒドリド(0.681g、3.22mmol)を0℃で加え、反応液を室温にて16時間撹拌した。反応液を0℃まで冷却した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製した。得られた粗精製物をメタノール(8.0mL)に溶解し、パラジウム/炭素(10%wet、0.185g、0.174mmol)を室温で加え、水素雰囲気下、16時間撹拌した。反応液をセライト濾過し、濾液を減圧濃縮し、4-エチルメチルアミノピペリジンの粗生成物を得た。
(参考例2)粗4-ジエチルアミノピペリジンの合成:
Figure JPOXMLDOC01-appb-C000027
 ベンジル 4-オキソピペリジン-1-カルボキシレート(0.500g、2.14mmol)のジクロロメタン(12.0mL)溶液に、ジエチルアミン(0.276mL、2.68mmol)、酢酸(0.0120mL、0.214mmol)及びナトリウムトリアセトキシボロヒドリド(0.681g、3.22mmol)を0℃で加え、反応液を室温にて16時間撹拌をした。反応液を0℃まで冷却した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製した。得られた粗精製物をメタノール(8.0mL)に溶解し、パラジウム/炭素(10%wet、0.180g、0.169mmol)を室温で加え、水素雰囲気下、16時間撹拌した。反応液をセライト濾過し、濾液を減圧濃縮し、4-ジエチルアミノピペリジンの粗生成物を得た。
(参考例3)4-(1-メチルピペラジン-4-イル)ピペリジンの合成:
Figure JPOXMLDOC01-appb-C000028
 1-tert-ブトキシカルボニル-4-ピペリジノン(1.50g、7.53mmol)のジクロロメタン(25.0mL)溶液に、1-メチルピペラジン(0.905g、9.03mmol)、酢酸(0.497g、8.28mmol)及びナトリウムトリアセトキシボロヒドリド(1.92g、9.03mmol)を0℃で加え、反応液を室温にて16時間撹拌した。反応液を0℃まで冷却した。反応液に飽和炭酸水素ナトリウム水溶液を加え、ジクロロメタンで抽出した。有機層を無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣を塩酸(1.0N)に溶解し、酢酸エチルで抽出した。水層に48%水酸化ナトリウム水溶液を加えて塩基性とした後、ジクロロメタンで抽出した。有機層を無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をメタノール(25.0mL)に溶解し、濃塩酸(5.0mL)を加えた後に40℃で12時間撹拌した。反応液を減圧濃縮した後に蒸留水に溶解した。48%水酸化ナトリウム水溶液を加えて塩基性とした後、ジクロロメタンで抽出した。有機層を無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮し、4-(1-メチルピペラジン-4-イル)ピペリジン(0.826g、4.51mmol、60%)を白色固体として得た。
1H-NMR (400 MHz, CDCl3) δ: 1.35 (2H, dd, J=12.0, 3.6 Hz), 1.41 (2H, dd, J=12.0, 3.6 Hz), 1.85 (2H, d, J=12.8 Hz), 1.96-2.06 (2H, br), 2.28 (3H, s), 2.32 (1H, tt, J=11.6, 3.6 Hz), 3.37-3.70 (8H, m), 3.14 (2H, d, J=12.8 Hz).
ESI-MS: m/z= 169 (M+H)+.
(参考例4)粗(R)-3-ジメチルアミノピペリジン塩酸塩の合成:
Figure JPOXMLDOC01-appb-C000029
 (R)-tert-ブチル 3-アミノピペリジン-1-カルボキシレート(0.500g、2.50mmol)のジクロロメタン(12.0mL)溶液に、ホルマリン水溶液(35wt%、0.884mL、11.2mmol)、酢酸(0.0290mL、0.499mmol)及びナトリウムトリアセトキシボロヒドリド(1.11g、5.24mmol)を0℃で加え、反応液を室温にて16時間撹拌した。反応液を0℃まで冷却した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製した。得られた残渣に1,4-ジオキサン(10.0mL)を室温で加え、溶解させた。反応液へ塩化水素の1,4-ジオキサン溶液(4.0N、3.74mL、14.9mmol)を室温で加え、反応液を同じ温度で3時間撹拌した。析出した白色固体を濾取し、ヘキサンにて洗浄後、室温で乾燥し、(R)-3-ジメチルアミノピペリジン塩酸塩の粗生成物を得た。
(参考例5)1-(4-(ジメチルアミノ)ピペリジン-1-イル)エタノンの合成:
Figure JPOXMLDOC01-appb-C000030
 4-ジメチルアミノピペリジン(1.00g、7.79mmol)のジクロロメタン(7.8mL)溶液にピリジン(0.922mL、9.75mmol)及び無水酢酸(0.946mL、11.7mmol)を0℃で加え、反応液を室温にて16時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を10%塩化ナトリウム水溶液で洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製し、1-(4-(ジメチルアミノ)ピペリジン-1-イル)エタノン(0.869g、6.78mmol、87%)を無色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 1.30-1.47 (2H, m), 1.79-1.92 (2H, m), 2.10 (3H, s), 2.25-2.40 (7H, m), 2.53-2.63 (1H, m), 3.01-3.11 (1H, m), 3.81-3.90 (1H, m), 4.58-4.66 (1H, m).
ESI-MS: m/z= 171 (M+H)+.
(参考例6)1-エチル-1H-イミダゾール-2-カルバルデヒドの合成:
Figure JPOXMLDOC01-appb-C000031
 1-エチル-1H-イミダゾール(1.00g、10.4mmol)のテトラヒドロフラン(26mL)溶液にn-ブチルリチウムのn-ヘキサン溶液(1.6M、7.15mL、11.4mmol)を-78℃で滴下し、同じ温度で1時間撹拌した。反応液に同じ温度でN,N-ジメチルホルムアミド(2.42mL、31.2mmol)を加え、1時間撹拌後室温に昇温した。反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。有機層を10%塩化ナトリウム水溶液で洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製し、1-エチル-1H-イミダゾール-2-カルバルデヒド(1.12g、9.02mmol、87%)を黄色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 1.44 (3H, t, J=7.6 Hz), 4.45 (2H, q, J=7.6 Hz), 7.18 (1H, s), 7.28 (1H, d, J=1.6 Hz), 9.82 (1H, s).
(参考例7)1-(2,2,2-トリフルオロエチル)-1H-イミダゾール-2-カルバルデヒドの合成:
Figure JPOXMLDOC01-appb-C000032
 (1-(2,2,2-トリフルオロエチル)-1H-イミダゾール-2-イル)メタノール(0.360g、2.00mmol)のジクロロメタン(20.0mL)溶液に、デスマーチン試薬(1.02g、2.40mmol)を0℃で加え、室温で1時間撹拌した。反応液をセライト濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製し、1-(2,2,2-トリフルオロエチル)-1H-イミダゾール-2-カルバルデヒドを白色固体として得た(0.335g、1.88mmol、94%)。
1H-NMR(400 MHz, CDCl3) δ:5.16 (2H, q, J=8.0 Hz), 7.25 (1H, brs), 7.38 (1H, brs), 9.83-9.85 (1H, m).
ESI-MS: m/z= 179 (M+H)+.
(参考例8)エチル 1-(ジフルオロメチル)-1H-イミダゾール-2-カルボキシレートの合成:
Figure JPOXMLDOC01-appb-C000033
 エチル 1H-イミダゾール-2-カルボキシレート(1.00g、7.14mmol)のアセトニトリル(35mL)溶液に、炭酸カリウム(1.28g、9.28mmol)及びクロロジフルオロ酢酸ナトリウム(1.31g、8.56mmol)を室温で加え、60℃にて24時間撹拌を行った。更に、炭酸カリウム(0.640g、4.63mmol)及びクロロジフルオロ酢酸ナトリウム(0.660g、4.33mmol)を室温で加え、80℃にて8時間撹拌を行った。反応液を室温まで冷却し、反応液へ蒸留水を加え、酢酸エチルで抽出した。有機層を10%塩化ナトリウム水溶液で洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製し、エチル 1-(ジフルオロメチル)-1H-イミダゾール-2-カルボキシレート(0.838g、4.41mmol、62%)を無色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 1.46 (3H, t, J=7.2 Hz), 4.47 (2H, q, J=7.2 Hz), 7.28 (1H, s), 7.53 (1H, d, J=1.6 Hz), 8.16 (1H, t, J=60.8 Hz).
(参考例9)エチル 1-メチル-1H-イミダゾール-2-カルボキシレートの合成:
Figure JPOXMLDOC01-appb-C000034
 1-メチル-1H-イミダゾール(1.00g、12.2mmol)のアセトニトリル(4.0mL)溶液に、トリエチルアミン(3.40mL、24.4mmol)、クロロギ酸エチル(2.34mL、24.4mmol)を0℃で加え、反応液を室温にて16時間撹拌した。反応液をセライト濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製し、エチル 1-メチル-1H-イミダゾール-2-カルボキシレート(1.50g、9.73mmol、80%)を白色固体として得た。
1H-NMR (400 MHz, CDCl3) δ: 1.42 (3H, t, J=7.2 Hz), 4.01 (3H, s), 4.40 (2H, q, J=7.2 Hz), 7.01-7.03 (1H, m), 7.13-7.15 (1H, m).
ESI-MS: m/z= 155 (M+H)+.
(参考例10)エチル 3-(1-メチル-1H-イミダゾール-2-イル)-3-オキソプロパノエートの合成:
Figure JPOXMLDOC01-appb-C000035
 エチル 1-メチル-1H-イミダゾール-2-カルボキシレート(1.50g、9.73mmol)のメタノール(15.0mL)溶液に、水酸化ナトリウム水溶液(1.0N、14.6mL、14.6mmol)を室温で加え、反応液を同じ温度で3時間撹拌した。反応液を0℃まで冷却した。反応液に塩酸(1.0N)を加え中和後、減圧濃縮した。トルエンで共沸し、エタノールを加えた。析出物をセライト濾過し、濾液を減圧濃縮した。得られた粗生成物にアセトニトリル(7.0mL)に溶解し、カルボニルジイミダゾール(1.54g、9.52mmol)を室温で加え、反応液を同じ温度で2.5時間撹拌した(反応液A)。別途、マグネシウムクロリド(0.997g、10.5mmol)をアセトニトリル(7.0mL)に溶解し、マロン酸エチルカリウム塩(1.70g、9.99mmol)、トリエチルアミン(2.98mL、21.4mmol)を室温で加え、反応液を同じ温度で2.5時間撹拌した(反応液B)。反応液Aを反応液Bに室温で加え、反応液を80℃にて2時間撹拌した。反応液を室温まで冷却した。反応液に塩酸(1.0N)を加えた後、酢酸エチルで抽出した。有機層を10%塩化ナトリウム水溶液にて洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製し、エチル 3-(1-メチル-1H-イミダゾール-2-イル)-3-オキソプロパノエート(0.721g、3.67mmol、38%)を白色固体として得た。
1H-NMR (400 MHz, CDCl3) δ: 1.27 (3H, t, J=7.2 Hz), 4.01 (3H, s), 4.13 (2H, s), 4.21 (2H, q, J=7.2 Hz), 7.05-7.07 (1H, m), 7.15-7.17 (1H, m).
ESI-MS: m/z= 197 (M+H)+.
(参考例11)1-(4-(エチルメチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1,3-ジオンの合成:
Figure JPOXMLDOC01-appb-C000036
 エチル 3-(1-メチル-1H-イミダゾール-2-イル)-3-オキソプロパノエート(0.150g、0.765mmol)のトルエン(0.38mL)溶液に、粗4-エチルメチルアミノピペリジン(0.130g、0.917mmol)を室温で加え、反応液を110℃にて10時間撹拌を行った。反応液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製し、1-(4-(エチルメチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1,3-ジオン(0.191g、0.653mmol、85%)を無色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 1.06 (3H, t, J=7.2 Hz), 1.40-1.70 (2H, m), 1.76-1.85 (2H, m), 2.25 (3H, s), 2.48-2.67 (4H, m), 3.03-3.13 (1H, m), 3.82-3.90 (1H, m), 4.01 (3H, s), 4.15-4.30 (2H, m), 4.62-4.70 (1H, m), 7.03-7.05 (1H, m), 7.13-7.15 (1H, m).
ESI-MS: m/z= 293 (M+H)+.
(参考例12)1-(4-(ジエチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1,3-ジオンの合成:
Figure JPOXMLDOC01-appb-C000037
 エチル 3-(1-メチル-1H-イミダゾール-2-イル)-3-オキソプロパノエート(0.150g、0.765mmol)のトルエン(0.38mL)溶液に、粗4-ジエチルアミノピペリジン(0.143g、0.917mmol)を室温で加え、反応液を110℃にて10時間撹拌した。反応液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製し、1-(4-(ジエチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1,3-ジオン(0.0750g、0.245mmol、32%)を無色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 1.02 (6H, t, J=6.8 Hz), 1.37-1.58 (2H, m), 1.73-1.98 (2H, m), 2.48-2.78 (6H, m), 3.01-3.11 (1H, m), 3.80-3.88 (1H, m), 4.00 (3H, s), 4.14-4.28 (2H, m), 4.60-4.70 (1H, m), 7.03-7.05 (1H, m), 7.12-7.14 (1H, m).
ESI-MS: m/z= 307 (M+H)+.
(参考例13)1-(1-メチル-1H-イミダゾール-2-イル)-3-(4-(4-メチルピペラジン-1-イル)ピペリジン-1-イル)プロパン-1,3-ジオンの合成:
Figure JPOXMLDOC01-appb-C000038
 エチル 3-(1-メチル-1H-イミダゾール-2-イル)-3-オキソプロパノエート(0.200g、1.02mmol)のトルエン(0.46mL)溶液に、4-(1-メチルピペラジン-4-イル)ピペリジン(0.170g、0.927mmol)を室温で加え、反応液を110℃にて16時間撹拌した。反応液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製し、1-(1-メチル-1H-イミダゾール-2-イル)-3-(4-(4-メチルピペラジン-1-イル)ピペリジン-1-イル)プロパン-1,3-ジオン(0.290g、0.870mmol、94%)を無色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 1.38-1.60 (2H, m), 1.82-1.90 (2H, m), 1.95-2.10 (1H, m), 2.27 (3H, s), 2.36-2.68 (9H, m), 3.02-3.12 (1H, m), 3.79-3.88 (1H, m), 3.98 (3H, s), 4.13-4.28 (2H, m), 4.57-4.90 (1H, m), 7.02-7.04 (1H, m), 7.11-7.13 (1H, m).
ESI-MS: m/z= 334 (M+H)+.
(参考例14)(R)-1-(3-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1,3-ジオンの合成:
Figure JPOXMLDOC01-appb-C000039
 エチル 3-(1-メチル-1H-イミダゾール-2-イル)-3-オキソプロパノエート(0.200g、1.02mmol)に、粗(R)-3-ジメチルアミノピペリジン塩酸塩(0.186g、0.927mmol)及びジイソプロピルエチルアミン(0.809mL、4.63mmol)を室温で加え、反応液を110℃にて12時間撹拌した。反応液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製し、(R)-1-(3-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1,3-ジオン(0.140g、0.503mmol、54%)を無色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 1.35-1.85 (2H, m), 1.97-2.07 (1H, m), 2.16-2.38 (7H, m), 2.42-2.68 (1H, m), 2.87-3.05 (1H, m), 3.63-3.76 (1H, m), 3.84-4.02 (4H, m), 4.12-4.32 (2H, m), 4.53-4.70 (1H, m), 7.03-7.05 (1H, m), 7.13-7.15 (1H, m).
ESI-MS: m/z= 279 (M+H)+.
(参考例15)(R)-1-(3-(ジメチルアミノ)ピロリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1,3-ジオンの合成:
Figure JPOXMLDOC01-appb-C000040
 エチル 3-(1-メチル-1H-イミダゾール-2-イル)-3-オキソプロパノエート(0.200g、1.02mmol)に、(R)-3-ジメチルアミノピロリジン(0.106g、0.927mmol)を室温で加え、反応液を110℃にて6時間撹拌を行った。反応液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製し、(R)-1-(3-(ジメチルアミノ)ピロリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1,3-ジオン(0.220g、0.832mmol、90%)を無色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 1.62-2.22 (6H, m), 1.85-1.98 (1H, m), 2.07-2.22 (1H, m), 2.65-2.87 (1H, m), 3.18-3.90 (4H, m), 4.00 (3H, s), 4.12-4.16 (2H, m), 7.03-7.05 (1H, m), 7.12-7.14 (1H, m).
ESI-MS: m/z= 265 (M+H)+.
(参考例16)1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1,3-ジオンの合成:
Figure JPOXMLDOC01-appb-C000041
 1-(4-(ジメチルアミノ)ピペリジン-1-イル)エタノン(1.00g、5.87mmol)のテトラヒドロフラン(20mL)溶液にリチウムジイソプロピルアミドのテトラヒドロフラン溶液(2.0M、7.05mL、14.1mmol)を-78℃で滴下し、同じ温度で1時間撹拌した。反応液に同じ温度でエチル 1-メチル-1H-イミダゾール-2-カルボキシレート(1.09g、7.05mmol)のテトラヒドロフラン溶液(9.0mL)を加え、1時間撹拌後、0℃で更に1時間撹拌した。反応液に飽和塩化アンモニウム水溶液、炭酸カリウム水溶液を順に加え、クロロホルムで抽出した。有機層を10%塩化ナトリウム水溶液で洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、ヘキサン/酢酸エチル)で精製し、1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1,3-ジオン(0.990g、3.56mmol、61%)を無色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 1.32-1.5 (2H, m), 1.80-1.94 (2H, m), 2.22-41 (7H, m), 2.60-2.70 (1H, m), 3.03-3.13 (1H, m), 3.80-3.89 (1H, m), 4.01 (3H, s), 4.23 (2H, dd, J=15.6, 36.8 Hz), 4.55-4.67 (1H, m), 7.05 (1H, s), 7.14 (1H, s).
ESI-MS: m/z= 279 (M+H)+.
(参考例17)1-(1-(ジフルオロメチル)-1H-イミダゾール-2-イル)-3-(4-(ジメチルアミノ)ピペリジン-1-イル)プロパン-1,3-ジオンの合成:
Figure JPOXMLDOC01-appb-C000042
 1-(4-(ジメチルアミノ)ピペリジン-1-イル)エタノン(0.310g、1.82mmol)のテトラヒドロフラン(6.0mL)溶液にリチウムジイソプロピルアミドのテトラヒドロフラン溶液(2.0M、2.19mL、4.37mmol)を-78℃で滴下し、同じ温度で1時間撹拌した。反応液に同じ温度でエチル 1-(ジフルオロメチル)-1H-イミダゾール-2-カルボキシレート(0.415g、2.19mmol)のテトラヒドロフラン溶液(3.0mL)を加え、1時間撹拌後、0℃で更に1時間撹拌した。反応液に飽和塩化アンモニウム水溶液、炭酸カリウム水溶液を順に加え、クロロホルムで抽出した。有機層を10%塩化ナトリウム水溶液で洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、ヘキサン/酢酸エチル)で精製し、1-(1-(ジフルオロメチル)-1H-イミダゾール-2-イル)-3-(4-(ジメチルアミノ)ピペリジン-1-イル)プロパン-1,3-ジオン(0.311g、0.989mmol、54%)を黄色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 1.38-1.58 (2H, m), 1.80-1.94 (2H, m), 2.05 (6H, s), 2.31-2.42 (1H, m), 2.63-2.72 (1H, m), 3.08-3.18 (1H, m), 3.79-3.86 (1H, m), 4.22 (2H, dd, J=15.6, 24.6 Hz), 4.55-4.62 (1H, m), 7.27 (1H, s), 7.55 (1H, s), 8.08 (1H, t, J=60.8 Hz).
ESI-MS: m/z= 315 (M+H)+.
(実施例1)1-(4-(エチルメチルアミノ)ピペリジン-1-イル)-3-ヒドロキシ-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オンの合成:
Figure JPOXMLDOC01-appb-C000043
 1-(4-(エチルメチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1,3-ジオン(0.160g、0.547mmol)のメタノール(2.7mL)溶液に、水素化ホウ素ナトリウム(0.0220g、0.582mmol)を室温で加え、反応液を同じ温度で3時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、減圧濃縮した。残渣に蒸留水を加え、クロロホルムで抽出した。有機層を10%塩化ナトリウム水溶液にて洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製し、1-(4-(エチルメチルアミノ)ピペリジン-1-イル)-3-ヒドロキシ-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オン(0.0699g、0.237mmol、43%)(以下、実施例1の化合物)を無色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 1.02-1.10 (3H, m), 1.35-1.58 (2H, m), 1.78-1.88 (2H, m), 2.23-2.25 (3H, m), 2.56-2.67 (4H, m), 2.98-3.09 (2H, m), 3.13-3.23 (1H, m), 3.77 (3H, s), 4.00-4.10 (1H, m), 4.60-4.74 (2H, m), 5.18-5.25 (1H, m), 6.85-6.87 (1H, m), 6.92-6.94 (1H, m).
ESI-MS: m/z= 295 (M+H)+.
(実施例2)1-(4-(ジエチルアミノ)ピペリジン-1-イル)-3-ヒドロキシ-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オンの合成:
Figure JPOXMLDOC01-appb-C000044
 1-(4-(ジエチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1,3-ジオン(0.0800g、0.261mmol)のメタノール(1.3mL)溶液に、水素化ホウ素ナトリウム(0.0109g、0.287mmol)を室温で加え、反応液を同じ温度で3時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、減圧濃縮した。残渣に蒸留水を加え、クロロホルムで抽出した。有機層を10%塩化ナトリウム水溶液にて洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製し、1-(4-(ジエチルアミノ)ピペリジン-1-イル)-3-ヒドロキシ-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オン(0.0561g、0.182mmol、70%)(以下、実施例2の化合物)を無色油状物として得た。
1H-NMR (400 MHz, DMSO-d6) δ: 0.94 (6H, t, J=6.8 Hz), 1.05-1.75 (5H, m), 2.42-3.10 (8H, m), 3.64 (3H, s), 3.93-4.02 (1H, m), 4.32-4.43 (1H, m), 5.00-5.08 (1H, m), 5.34-5.42 (1H, m), 6.69-6.71 (1H, m), 7.01-7.03 (1H, m).
ESI-MS: m/z= 309 (M+H)+.
(実施例3)3-ヒドロキシ-3-(1-メチル-1H-イミダゾール-2-イル)-1-(4-(4-メチルピペラジン-1-イル)ピペリジン-1-イル)プロパン-1-オンの合成:
Figure JPOXMLDOC01-appb-C000045
 1-(1-メチル-1H-イミダゾール-2-イル)-3-(4-(4-メチルピペラジン-1-イル)ピペリジン-1-イル)プロパン-1,3-ジオン(0.290g、0.870mmol)のメタノール(4.4mL)溶液に、水素化ホウ素ナトリウム(0.0360g、0.957mmol)を室温で加え、反応液を同じ温度で3時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、減圧濃縮した。残渣に蒸留水を加え、クロロホルムで抽出した。有機層を10%塩化ナトリウム水溶液にて洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製し、3-ヒドロキシ-3-(1-メチル-1H-イミダゾール-2-イル)-1-(4-(4-メチルピペラジン-1-イル)ピペリジン-1-イル)プロパン-1-オン(0.140g、0.417mmol、48%)(以下、実施例3の化合物)を無色油状物として得た。
1H-NMR (400 MHz, DMSO-d6) δ: 1.45-1.66 (4H, m), 1.87-1.95 (2H, m), 2.26-2.30(3H, s), 2.38-2.70 (8H, m), 2.98-3.23 (3H, m), 3.77 (3H, s), 4.00-4.10 (1H, m), 4.60-4.70 (2H, m), 5.17-5.25 (1H, m), 6.85-6.88 (1H, m), 6.92-6.95 (1H, m).
ESI-MS: m/z= 336 (M+H)+.
(実施例4)1-((R)-3-(3-(ジメチルアミノ)ピペリジン-1-イル)-3-ヒドロキシ-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オンの合成:
Figure JPOXMLDOC01-appb-C000046
 (R)-1-(3-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1,3-ジオン(0.140g、0.503mmol)のエタノール(2.5mL)溶液に、水素化ホウ素ナトリウム(0.0210g、0.553mmol)を室温で加え、反応液を同じ温度で3時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、減圧濃縮した。残渣に蒸留水を加え、クロロホルムで抽出した。有機層を10%塩化ナトリウム水溶液にて洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製し、1-((R)-3-(3-(ジメチルアミノ)ピペリジン-1-イル)-3-ヒドロキシ-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オン(0.120g、0.428mmol、85%)(以下、実施例4の化合物)を無色油状物として得た。
1H-NMR (400 MHz, DMSO-d6) δ: 1.33-1.43 (1H, m), 1.57-1.90 (1H, m), 2.14-2.24 (6H, m), 2.45-2.54 (4H, m), 2.75-3.06 (3H, m), 3.63-4.40 (5H, m), 4.99-5.08 (1H, m), 5.32-5.42 (1H, m), 6.70-6.73 (1H, m), 7.01-7.03 (1H, m).
ESI-MS: m/z= 281 (M+H)+.
(実施例5)1-((R)-3-(ジメチルアミノ)ピロリジン-1-イル)-3-ヒドロキシ-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オンの合成:
Figure JPOXMLDOC01-appb-C000047
 (R)-1-(3-(ジメチルアミノ)ピロリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1,3-ジオン(0.220g、0.832mmol)のエタノール(4.2mL)溶液に、水素化ホウ素ナトリウム(0.0350g、0.916mmol)を室温で加え、反応液を同じ温度で3時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、減圧濃縮した。残渣に蒸留水を加え、クロロホルムで抽出した。有機層を10%塩化ナトリウム水溶液にて洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(シリカゲル、クロロホルム/メタノール)で精製し、1-((R)-3-(ジメチルアミノ)ピロリジン-1-イル)-3-ヒドロキシ-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オン(0.209g、0.785mmol、94%)(以下、実施例5の化合物)を無色油状物として得た。
1H-NMR (400 MHz, DMSO-d6) δ: 1.50-1.78 (1H, m), 1.93-2.18 (7H, m), 2.60-2.95 (3H, m), 3.05-3.80 (7H, m), 4.98-5.07 (1H, m), 5.38-5.43 (1H, m), 6.71-6.73 (1H, m), 7.02-7.04 (1H, m).
ESI-MS: m/z= 267 (M+H)+.
(実施例6)1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-ヒドロキシ-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オンの合成:
Figure JPOXMLDOC01-appb-C000048
 1-(4-(ジメチルアミノ)ピペリジン-1-イル)エタノン(0.0500g、0.294mmol)のテトラヒドロフラン(0.8mL)溶液にリチウムジイソプロピルアミドのテトラヒドロフラン溶液(2.0M、0.162mL、0.323mmol)を-78℃で滴下し、同じ温度で1時間撹拌した。反応液に同じ温度で1-メチル-1H-イミダゾール-2-カルバルデヒド(0.0390g、0.352mmol)のテトラヒドロフラン溶液(0.4mL)を加え、1時間撹拌後、0℃で更に1時間撹拌した。反応液に飽和塩化アンモニウム水溶液、炭酸カリウム水溶液を順に加え、クロロホルムで抽出した。有機層を10%塩化ナトリウム水溶液で洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(シリカゲル、クロロホルム/メタノール)で精製し、1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-ヒドロキシ-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オン(0.0220g、0.0785mmol、27%)を無色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 1.32-1.53 (2H, m), 1.82-1.92 (2H, m), 2.27-2.41 (7H, m), 2.60-2.72 (1H, m), 2.98-3.23 (3H, m), 3.77 (3H, s), 3.99-4.08 (1H, m), 4.58-4.82 (2H, m), 5.18-5.26 (1H, m), 6.86 (1H, s), 6.93 (1H, s).
ESI-MS: m/z= 281 (M+H)+.
(実施例7)1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-ヒドロキシ-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オン塩酸塩の合成
Figure JPOXMLDOC01-appb-C000049
 1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-ヒドロキシ-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オン(0.0220g、0.0785mmol)の水(0.156mL)溶液に、塩酸(1.0N、0.086mL、0.086mmol)を0℃で加え、反応液を室温で15時間撹拌した。反応液を減圧濃縮し、室温にて乾燥後、1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-ヒドロキシ-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オン塩酸塩(0.0220g、0.0623mmol、79%)(以下、実施例7の化合物)を白色固体として得た。
1H-NMR (400 MHz, D2O) δ: 1,40-1.70 (2H, m), 1.98-2.10 (2H, m), 2.55-2.68 (1H,m), 2.72-2.77 (7H, m), 2.95-3.13 (3H, m), 3.36-3.45 (1H, m), 3.76 (3H, s), 3.97-4.06 (1H, m), 4.38-4.48 (1H, m), 6.40-6.47 (1H, m), 7.24-7.28 (2H, m).
ESI-MS: m/z= 281 (M+H)+.
(実施例8)1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-エチル-1H-イミダゾール-2-イル)-3-ヒドロキシプロパン-1-オンの合成:
Figure JPOXMLDOC01-appb-C000050
 1-(4-(ジメチルアミノ)ピペリジン-1-イル)エタノン(0.300g、1.76mmol)のテトラヒドロフラン(6.0mL)溶液にリチウムジイソプロピルアミドのテトラヒドロフラン溶液(2.0M、0.969mL、1.94mmol)を-78℃で滴下し、同じ温度で1時間撹拌した。反応液に同じ温度で1-エチル-1H-イミダゾール-2-カルバルデヒド(0.262g、2.12mmol)のテトラヒドロフラン溶液(2.8mL)を加え、1時間撹拌後、0℃で更に1時間撹拌した。反応液に飽和塩化アンモニウム水溶液、炭酸カリウム水溶液を順に加え、クロロホルムで抽出した。有機層を10%塩化ナトリウム水溶液で洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製し、1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-エチル-1H-イミダゾール-2-イル)-3-ヒドロキシプロパン-1-オン(0.221g、0.751mmol、43%)(以下、実施例8の化合物)を無色油状物として得た。
1H-NMR (400 MHz, DMSO-d6) δ: 1.04-1.21 (1H, m), 1.32 (4H, t, J=7.2 Hz), 1.62-1.80 (2H, m), 2.15 (6H, s), 2.24-2.35 (1H, m), 2.42-2.59 (1H, m), 2.76-2.88 (1H, m), 2.95-3.13 (2H, m), 3.90-4.08 (3H, m), 4.27-4.35 (1H, m), 5.00-5.10 (1H, m), 5.38-5.42 (1H, m), 6.74 (1H, s), 7.10 (s, 1H).
ESI-MS: m/z= 295 (M+H)+.
(実施例9)1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-ヒドロキシ-3-(1-(2,2,2-トリフルオロエチル)-1H-イミダゾール-2-イル)プロパン-1-オンの合成:
Figure JPOXMLDOC01-appb-C000051
 1-(4-(ジメチルアミノ)ピペリジン-1-イル)エタノン(0.267g、1.57mmol)のテトラヒドロフラン(6.0mL)溶液にリチウムジイソプロピルアミドのテトラヒドロフラン溶液(2.0M、0.862mL、1.72mmol)を-78℃で滴下し、同じ温度で1時間撹拌した。反応液に同じ温度で1-(2,2,2-トリフルオロエチル)-1H-イミダゾール-2-カルバルデヒド(0.335g、1.88mmol)のテトラヒドロフラン溶液(1.9mL)を加え、1時間撹拌後、0℃で更に1時間撹拌した。反応液に飽和塩化アンモニウム水溶液、炭酸カリウム水溶液を順に加え、クロロホルムで抽出した。有機層を10%塩化ナトリウム水溶液で洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製し、1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-ヒドロキシ-3-(1-(2,2,2-トリフルオロエチル)-1H-イミダゾール-2-イル)プロパン-1-オン(0.192g、0.551mmol、35%)(以下、実施例9の化合物)を無色油状物として得た。
1H-NMR (400 MHz, DMSO-d6) δ: 1.10-1.41 (2H, m), 1.64-1.80 (2H, m), 2.16 (6H, s), 2.25-2.37 (1H, m), 2.47-2.60 (1H, m), 2.80-3.12 (3H, m), 3.90-4.00 (1H, m), 4.29-4.39 (1H, m), 5.00-5.18 (3H, m), 5.60-5.68 (1H, m), 6.85 (1H, s), 7.17 (s, 1H).
ESI-MS: m/z= 349 (M+H)+.
(実施例10)3-(1-(ジフルオロメチル)-1H-イミダゾール-2-イル)-1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-ヒドロキシプロパン-1-オンの合成:
Figure JPOXMLDOC01-appb-C000052
 1-(1-(ジフルオロメチル)-1H-イミダゾール-2-イル)-3-(4-(ジメチルアミノ)ピペリジン-1-イル)プロパン-1,3-ジオン(0.310g、0.986mmol)のメタノール(10mL)溶液に、水素化ホウ素ナトリウム(0.0560g、1.48mmol)を室温で加え、反応液を同じ温度で3時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、減圧濃縮した。残渣に蒸留水を加え、クロロホルムで抽出した。有機層を10%塩化ナトリウム水溶液にて洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製し、3-(1-(ジフルオロメチル)-1H-イミダゾール-2-イル)-1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-ヒドロキシプロパン-1-オン(0.202g、0.639mmol、65%)(以下、実施例10の化合物)を黄色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 1.08-1.40 (2H, m), 1.64-1.80 (2H, m), 2.17 (6H, s), 2.25-2.35 (1H, m), 2.49-2.62 (1H, m), 2.80-3.12 (3H, m), 3.88-3.97 (1H, m), 4.28-4.37 (1H, m), 5.18-5.26 (1H, m), 5.83 (1H, d, J=6.8 Hz), 6.95 (1H, s), 7.51 (1H, s), 7.93 (1H, t, J=60.0 Hz).
ESI-MS: m/z= 317 (M+H)+.
(実施例11)(S)-1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-ヒドロキシ-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オンの合成:
Figure JPOXMLDOC01-appb-C000053
 1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-ヒドロキシ-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オン(3.32g)をHPLC精製にて光学分割し、溶出液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製し、(S)-1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-ヒドロキシ-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オン(0.467g、>99%ee)(以下、実施例11の化合物)を白色固体として得た。
HPLC保持時間:8.4min、機器:株式会社島津製作所製LC-10ADvpシステム、カラム:CHIRALCEL OZ-H、4.6×250mm(株式会社ダイセル製)、溶媒:0.01%エチレンジアミン含有メタノール(v/v)、流量:0.5mL/min、検出法:UV220nm、カラム温度:40℃.
1H-NMR (400 MHz, CDCl3) δ: 1.32-1.53 (2H, m), 1.82-1.92 (2H, m), 2.27-2.41 (7H, m), 2.60-2.72 (1H, m), 2.98-3.23 (3H, m), 3.77 (3H, s), 3.99-4.08 (1H, m), 4.58-4.82 (2H, m), 5.18-5.26 (1H, m), 6.86 (1H, s), 6.93 (1H, s).
ESI-MS: m/z= 281 (M+H)+.
(実施例12)3-(4-(ジメチルアミノ)ピペリジン-1-イル)-1-(1-メチル-1H-イミダゾール-2-イル)―3-オキソプロピル アセテートの合成:
Figure JPOXMLDOC01-appb-C000054
 1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-ヒドロキシ-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オン(0.120g、0.428mmol)のジクロロメタン(2.1mL)溶液に、ピリジン(0.042mL、0.51mmol)、無水酢酸(0.042mL、0.51mmol)を0℃で加え、反応液を室温で2時間撹拌した。更に、無水酢酸(0.020mL、0.24mmol)を室温で加え、反応液を同じ温度で1時間撹拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を10%塩化ナトリウム水溶液にて洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製し、3-(4-(ジメチルアミノ)ピペリジン-1-イル)-1-(1-メチル-1H-イミダゾール-2-イル)―3-オキソプロピル アセテート(0.114g、0.353mmol、82%)(以下、実施例12の化合物)を無色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 1.08-1.47 (2H, m), 1.68-1.92 (2H, m), 2.04 (3H, dd, J=2.4 Hz), 2.21-2.38 (7H, m), 2.47-2.60 (1H, m), 2.96-3.14 (2H, m), 3.35-3.43 (1H, m), 3.83 (3H, d, J=4.0 Hz), 3.89-4.00 (1H, m), 4.45-4.53 (1H, m), 6.21-6.29 (1H, m), 6.79 (1H, m), 6.98 (1H, m).
ESI-MS: m/z= 323 (M+H)+.
(実施例13)3-(4-(ジメチルアミノ)ピペリジン-1-イル)-1-(1-メチル-1H-イミダゾール-2-イル)―3-オキソプロピル ペンタノエートの合成:
Figure JPOXMLDOC01-appb-C000055
 1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-ヒドロキシ-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オン(0.200g、0.713mmol)のジクロロメタン(3.5mL)溶液に、ピリジン(0.069mL、0.86mmol)、ペンタノイルクロリド(0.093mL、0.79mmol)を室温で加え、反応液を同じ温度で16時間撹拌した。反応液に飽和塩化アンモニウム水溶液を加え、クロロホルムで抽出した。有機層を10%塩化ナトリウム水溶液にて洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製し、3-(4-(ジメチルアミノ)ピペリジン-1-イル)-1-(1-メチル-1H-イミダゾール-2-イル)-3-オキソプロピルペンタノエート(0.101g、0.277mmol、39%)(以下、実施例13の化合物)を無色油状物として得た。
1H-NMR (400 MHz, DMSO-d6) δ: 0.77-0.85 (3H, m), 0.98-1.33 (4H, m), 1.41-1.50(2H, m), 1.60-1.79 (2H, m), 2.11-2.15 (6H, m), 2.20-2.33 (3H, m), 2.89-3.02 (2H, m), 3.22-3.34 (2H, m), 3.65 (3H, s), 3.84-3.92 (1H, m), 4.18-4.26 (1H, m), 6.10-6.15 (1H, m), 6.77-6.82 (1H, m), 7.05-7.10 (1H, m).
ESI-MS: m/z= 365 (M+H)+.
 以下の比較例において、1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オン塩酸塩(比較例1の化合物)、1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オン硫酸塩1水和物(比較例2の化合物)、1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-エチル-1H-イミダゾール-2-イル)プロパン-1-オン塩酸塩(比較例3の化合物)、1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-プロピル-1H-イミダゾール-2-イル)プロパン-1-オン塩酸塩(比較例4の化合物)、1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-ブチル-1H-イミダゾール-2-イル)プロパン-1-オン塩酸塩(比較例5の化合物)及び1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-イソプロピル-1H-イミダゾール-2-イル)プロパン-1-オン塩酸塩(比較例6の化合物)を、国際公開第2013/147160号(特許文献4)に記載のイミダゾール誘導体から、好適な比較化合物として選択した。
 比較例1~6の化合物について、国際公開第2013/147160号(特許文献4)の記載と同様に、以下の方法で調製した。
(参考例18)1-プロピル-1H-イミダゾールの合成:
Figure JPOXMLDOC01-appb-C000056
 イミダゾール(1.37g、20.1mmol)のテトラヒドロフラン(50.0mL)溶液に、水素化ナトリウム(55%、0.966g、22.1mmol)を室温で加えた。反応液を同じ温度で1時間撹拌した後、1-ブロモプロパン(5.48mL、60.3mmol)を室温で加えた。反応液を同じ温度で16時間撹拌を行った。反応液をセライト濾過し、テトラヒドロフランで洗浄後、濾液及び洗浄液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(シリカゲル、クロロホルム/メタノール)で精製し、1-プロピルイミダゾール(2.07g、18.8mmol、93%)を無色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 0.93 (3H, t, J=7.2 Hz), 1.81 (2H, td, J=7.2, 14.4 Hz), 3.90 (2H, t, J=7.2 Hz), 6.91 (1H, s), 7.06 (1H, s), 7.46 (1H, s).
(参考例19)1-プロピル-1H-イミダゾール-2-カルバルデヒドの合成:
Figure JPOXMLDOC01-appb-C000057
 1-プロピル-1H-イミダゾール(1.67g、15.2mmol)のテトラヒドロフラン(30.4mL)溶液を、-78℃に冷却した。反応液へn-ブチルリチウム(1.62M n-ヘキサン溶液、10.3mL、16.7mmol)を-78℃で加えた。反応液を同じ温度で1時間撹拌した後、N,N-ジメチルホルムアミド(1.41mL、18.2mmol)を-78℃で加えた。反応液を同じ温度で1時間撹拌した後、室温へ昇温した。反応液に飽和塩化アンモニウム水溶液を加えた後、酢酸エチルを加えた。有機層を10%塩化ナトリウム水溶液で洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(シリカゲル、n-ヘキサン/酢酸エチル)で精製し、1-プロピル-1H-イミダゾール-2-カルバルデヒド(0.492g、3.56mmol、24%)を無色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 0.91-0.95 (3H, m), 1.79-1.84 (2H, m), 4.34-4.38 (2H, m), 7.15 (1H, s), 7.28 (1H, s), 9.82 (1H, s).
ESI-MS: m/z= 139 (M+H)+.
(参考例20)1-ブチル-1H-イミダゾール-2-カルバルデヒドの合成:
Figure JPOXMLDOC01-appb-C000058
 1-ブチル-1H-イミダゾール(1.00g、8.05mmol)のテトラヒドロフラン(16.1mL)溶液を、-78℃に冷却した。反応液へn-ブチルリチウム(1.62M n-ヘキサン溶液、5.5mL、8.86mmol)を-78℃で加えた。反応液を同じ温度で1時間撹拌した後、N,N-ジメチルホルムアミド(0.75mL、9.66mmol)を-78℃で加えた。反応液を同じ温度で1時間撹拌した後、室温へ昇温した。反応液に飽和塩化アンモニウム水溶液を加えた後、酢酸エチルを加えた。有機層を10%塩化ナトリウム水溶液で洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(シリカゲル、n-ヘキサン/酢酸エチル)で精製し、1-ブチル-1H-イミダゾール-2-カルバルデヒド(1.02g、6.70mmol、83%)を無色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 0.95 (3H, t, J=7.2 Hz), 1.33 (2H, td, J=7.2, 14.8 Hz), 1.75-1.78 (2H, m), 4.34 (2H, t, J=7.2 Hz), 7.15 (1H, s), 7.28 (1H, s), 9.81 (1H, s).
ESI-MS: m/z= 153 (M+H)+.
(参考例21)1-イソプロピル-1H-イミダゾール-2-カルバルデヒドの合成:
Figure JPOXMLDOC01-appb-C000059
 1H-イミダゾール-2-カルバルデヒド(0.500g、5.20mmol)のN,N-ジメチルホルムアミド(5.2mL)溶液に、炭酸カリウム(0.863g、6.24mmol)及び2-ヨードプロパン(0.614mL、6.24mmol)を室温で加え、60℃にて4時間撹拌を行った。反応液を室温まで冷却し、反応液へ酢酸エチル及び蒸留水を加えた。有機層を10%塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(シリカゲル、n-ヘキサン/酢酸エチル)で精製し、1-イソプロピル-1H-イミダゾール-2-カルバルデヒド(0.355g、2.57mmol、49%)を無色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 1.48 (3H, d, J=6.4 Hz), 1.48 (3H, d, J=6.4 Hz), 5.48 (1H, quint, J=6.4 Hz), 7.30 (1H, s), 7.33 (1H, s), 9.83 (1H, s).
ESI-MS: m/z= 139 (M+H)+.
(参考例22)(E)-メチル 3-(1-メチル-1H-イミダゾール-2-イル)アクリレートの合成:
Figure JPOXMLDOC01-appb-C000060
 1-メチル-1H-イミダゾール-2-カルバルデヒド(10.0g、90.8mmol)のジクロロメタン(240mL)溶液に、メチル(トリフェニルホスホラニリデン)アセタート(33.4g、99.9mmol)を室温で加え、16時間撹拌した後に、減圧濃縮した。残渣をヘキサン/ジクロロメタン=19/1の混合溶媒で洗浄し、洗浄液を濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、(E)-メチル 3-(1-メチル-1H-イミダゾール-2-イル)アクリレートを白色固体として得た(11.9g、71.6mmol、79%)。
1H-NMR(400 MHz, CDCl3) δ: 3.76 (3H, s), 3.81 (3H, s), 6.82 (1H, d, J=15.6 Hz), 6.98 (1H, brs), 7.16 (1H, brs), 7.53 (1H, d, J=15.6Hz).
ESI-MS: m/z= 167 (M+H)+.
(参考例23)(E)-メチル 3-(1-エチル-1H-イミダゾール-2-イル)アクリレートの合成:
Figure JPOXMLDOC01-appb-C000061
 1-エチル-1H-イミダゾール-2-カルバルデヒド(1.17g、9.42mmol)のジクロロメタン(28.3mL)溶液に、メチル(トリフェニルホスホラニリデン)アセタート(3.15g、9.42mmol)を室温で加え、16時間撹拌した後に、減圧濃縮した。残渣をヘキサン/ジクロロメタン=20/1の混合溶媒で洗浄し、洗浄液を濃縮した。残渣をフラッシュカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製し、(E)-メチル 3-(1-エチル-1H-イミダゾール-2-イル)アクリレートを白色固体として得た(0.670g、3.72mmol、39%)。
1H-NMR (400 MHz, CDCl3) δ: 1.45 (3H, t, J=7.6 Hz), 3.81(3H ,s), 4.10 (2H, dd, J=7.6, 14.8 Hz), 6.85 (1H, d, J=15.2 Hz), 7.03 (1H, brs), 7.17 (1H, brs), 7.52 (1H, d, J=15.2 Hz).
ESI-MS: m/z= 181 (M+H)+.
(参考例24)(E)-メチル 3-(1-プロピル-1H-イミダゾール-2-イル)アクリレートの合成:
Figure JPOXMLDOC01-appb-C000062
 1-プロピル-1H-イミダゾール-2-カルバルデヒド(0.492g、3.56mmol)のジクロロメタン(10.0mL)溶液に、メチル(トリフェニルホスホラニリデン)アセタート(1.31g、3.92mmol)を室温で加え、16時間撹拌した後に、減圧濃縮した。残渣をヘキサン/ジクロロメタン=19/1の混合溶媒で洗浄し、洗浄液を濃縮した。残渣をフラッシュカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製し、(E)-メチル 3-(1-プロピル-1H-イミダゾール-2-イル)アクリレートを白色固体として得た(0.520g、2.68mmol、75%)。
1H-NMR (400 MHz, CDCl3) δ: 0.94 (3H, t, J=7.2 Hz), 1.75-1.85 (2H, m), 3.81(3H ,s), 4.00 (2H, t, J=7.2 Hz), 6.85 (1H, d, J=15.6 Hz), 7.00 (1H, brs), 7.16 (1H, brs), 7.50 (1H, d, J=15.6 Hz).
ESI-MS: m/z= 195 (M+H)+.
(参考例25)(E)-メチル 3-(1-ブチル-1H-イミダゾール-2-イル)アクリレートの合成:
Figure JPOXMLDOC01-appb-C000063
 1-ブチル-1H-イミダゾール-2-カルバルデヒド(1.02g、6.70mmol)のジクロロメタン(18.0mL)溶液に、メチル(トリフェニルホスホラニリデン)アセタート(2.47g、7.37mmol)を室温で加え、16時間撹拌した後に、減圧濃縮した。残渣をヘキサン/ジクロロメタン=19/1の混合溶媒で洗浄し、洗浄液を濃縮した。残渣を残渣をフラッシュカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製し、(E)-メチル 3-(1-ブチル-1H-イミダゾール-2-イル)アクリレートを白色固体として得た(1.23g、5.91mmol、88%)。
1H-NMR (400 MHz, CDCl3) δ: 0.95 (3H, t, J=7.2 Hz), 1.28-1.40 (2H, m), 1.70-1.80 (2H, m), 3.81 (3H, s), 4.03 (2H, t, J=7.2 Hz), 6.84 (1H, d, J=15.2 Hz), 7.00 (1H, brs), 7.16 (1H, brs), 7.50 (1H, d, J=15.2 Hz).
ESI-MS: m/z= 209 (M+H)+.
(参考例26)(E)-メチル 3-(1-イソプロピル-1H-イミダゾール-2-イル)アクリレートの合成:
Figure JPOXMLDOC01-appb-C000064
 1-イソプロピル-1H-イミダゾール-2-カルバルデヒド(0.350mg、2.53mmol)のジクロロメタン(7.59mL)溶液に、メチル(トリフェニルホスホラニリデン)アセタート(0.932g、2.79mmol)を室温で加え、16時間撹拌した後に、減圧濃縮した。残渣をヘキサン/ジクロロメタン=20/1の混合溶媒で洗浄し、洗浄液を濃縮した。残渣をフラッシュカラムクロマトグラフィー(シリカゲル、ヘキサン/酢酸エチル)で精製し、(E)-メチル 3-(1-イソプロピル-1H-イミダゾール-2-イル)アクリレートを白色固体として得た(0.362g、1.86mmol、74%)。
1H-NMR (400 MHz, CDCl3) δ: 1.50 (3H, d, J=6.4 Hz), 1.50 (3H, d, J=6.4 Hz), 3.81 (3H, s), 4.62 (1H, quint, J=6.4 Hz), 6.87 (1H, d, J=15.6 Hz), 7.10 (1H, brs), 7.18 (1H, brs), 7.56 (1H, d, J=15.6 Hz).
ESI-MS: m/z= 195 (M+H)+.
(参考例27)1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オンの合成:
Figure JPOXMLDOC01-appb-C000065
 (E)-メチル 3-(1-メチル-1H-イミダゾール-2-イル)アクリレート(0.180g、1.08mmol)のエタノール(4.0mL)溶液に、パラジウム-炭素(10%wet、15mg)を室温で加え、水素雰囲気下、4時間撹拌した。反応液をセライト濾過し、濾液を減圧濃縮した。得られた残渣にメタノール(1.0mL)を室温で加え、溶解させ、0℃に冷却した。反応液へ水酸化ナトリウム水溶液(1.0N、1.19mL、1.19mmol)を0℃で加え、室温で2時間撹拌した後に、減圧濃縮した。得られた残渣にクロロホルム(10.0mL)を室温で加え、溶解させた。反応液へジイソプロピルエチルアミン(0.568mL、3.25mmol)、HBTU(0.616g、1.63mmol)及び4-(ジメチルアミノ)ピペリジン(0.125g、0.975mmol)を室温で加え、反応液を同じ温度で16時間撹拌した。反応液へ飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を10%塩化ナトリウム水溶液にて洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製し、1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オン(0.179g、0.68mmol、63%)を無色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 1.29-1.43 (2H, m), 1.80-1.88 (2H, m), 2.27 (6H, s), 2.29-2.38 (1H, m), 2.54-2.63 (1H, m), 2.88-3.04 (5H, m), 3.62 (3H, s), 3.98-4.05 (1H, m), 4.57-4.65 (1H, m), 6.79 (1H, d, J=1.2 Hz), 6.91 (1H, d, J=1.2 Hz).
ESI-MS: m/z= 265 (M+H)+.
(参考例28)1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-エチル-1H-イミダゾール-2-イル)プロパン-1-オンの合成:
Figure JPOXMLDOC01-appb-C000066
 (E)-メチル 3-(1-エチル-1H-イミダゾール-2-イル)アクリレート(0.670g、3.71mmol)のメタノール(14.8mL)溶液に、パラジウム-炭素(10%wet、65mg)を室温で加え、水素雰囲気下、16時間撹拌した。反応液をセライト濾過し、濾液を減圧濃縮した。得られた残渣にメタノール(3.70mL)を室温で加え、溶解させ、0℃に冷却した。反応液へ水酸化ナトリウム水溶液(1.0N、4.07mL、4.07mmol)を0℃で加え、室温で16時間撹拌した後に、減圧濃縮した。得られた残渣にクロロホルム(37.0mL)を室温で加え、溶解させた。反応液へジイソプロピルエチルアミン(1.94mL、11.1mmol)、HBTU(2.10g、5.54mmol)及び4-(ジメチルアミノ)ピペリジン(0.427g、3.33mmol)を室温で加え、反応液を同じ温度で16時間撹拌した。反応液へ飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を10%塩化ナトリウム水溶液にて洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製し、1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-エチル-1H-イミダゾール-2-イル)プロパン-1-オン(0.365g、1.31mmol、35%)を無色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 1.32-1.40 (5H, m), 1.83-1.87 (2H, m), 2.27 (6H, s), 2.31-2.37 (1H, m), 2.56-2.63 (1H, m), 2.93-2.98 (5H, m), 3.93-4.04 (3H, m), 4.01-4.04 (1H, m), 6.84 (1H, d, J=1.6 Hz),6.94 (1H, d, J=1.6 Hz).
ESI-MS: m/z= 279 (M+H)+.
(参考例29)1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-プロピル-1H-イミダゾール-2-イル)プロパン-1-オンの合成:
Figure JPOXMLDOC01-appb-C000067
 (E)-メチル 3-(1-プロピル-1H-イミダゾール-2-イル)アクリレート(260mg、1.34mmol)のメタノール(5.0mL)溶液に、パラジウム-炭素(10%wet、19mg)を室温で加え、水素雰囲気下、4時間撹拌した後に、反応液をセライト濾過し、濾液を減圧濃縮した。得られた残渣にメタノール(1.50mL)を室温で加え、溶解させ、0℃に冷却した。反応液へ水酸化ナトリウム水溶液(1.0N、1.47mL、1.47mmol)を0℃で加え、室温で4時間撹拌した後に、減圧濃縮した。得られた残渣にクロロホルム(16.0mL)を室温で加え、溶解させた。反応液へジイソプロピルエチルアミン(0.863mL、4.94mmol)、HBTU(0.937g、2.47mmol)及び4-(ジメチルアミノ)ピペリジン(0.190g、1.48mmol)を室温で加え、反応液を同じ温度で16時間撹拌した。反応液へ飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を10%塩化ナトリウム水溶液にて洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製し、1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-プロピル-1H-イミダゾール-2-イル)プロパン-1-オン(110mg、0.376mmol、28%)を無色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 0.93 (3H, t, J=7.2Hz), 1.30-1.43 (2H, m), 1.71-1.88 (4H, m), 2.27 (6H, s), 2.28-2.39 (1H, m), 2.55-2.64 (1H, m), 2.90-3.05 (5H, m), 3.86 (2H, t, J=7.2 Hz), 4.00-4.09 (1H, m), 4.58-4.66 (1H, m), 6.82 (1H, d, J=1.6 Hz),6.93 (1H, d, J=1.6 Hz).
ESI-MS: m/z= 293 (M+H)+.
(参考例30)1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-ブチル-1H-イミダゾール-2-イル)プロパン-1-オンの合成:
Figure JPOXMLDOC01-appb-C000068
 (E)-メチル 3-(1-ブチル-1H-イミダゾール-2-イル)アクリレート(260mg、1.25mmol)のエタノール(5.0mL)溶液に、パラジウム-炭素(10%wet、19mg)を室温で加え、水素雰囲気下、4時間撹拌した後に、反応液をセライト濾過し、濾液を減圧濃縮した。得られた残渣にメタノール(1.5mL)を室温で加え、溶解させ、0℃に冷却した。反応液へ水酸化ナトリウム水溶液(1.0N、1.47mL、1.47mmol)を0℃で加え、室温で4時間撹拌した後に、減圧濃縮した。得られた残渣にクロロホルム(15.0mL)を室温で加え、溶解させた。反応液へジイソプロピルエチルアミン(0.801mL、4.59mmol)、HBTU(0.870g、2.29mmol)及び4-(ジメチルアミノ)ピペリジン(0.176g、1.38mmol)を室温で加え、反応液を同じ温度で16時間撹拌した。反応液へ飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を10%塩化ナトリウム水溶液にて洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製し、1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-ブチル-1H-イミダゾール-2-イル)プロパン-1-オン(120mg、0.392mmol、31%)を無色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 0.93 (3H, t, J=7.2 Hz),1.29-1.43 (4H,m), 1.65-1.74 (2H, m), 1.78-1.88 (2H, m), 2.25-2.37 (7H, m), 2.54-2.64 (1H, m), 2.88-3.04 (5H, m), 3.88 (2H, t, J=7.2 Hz), 3.98-4.06 (1H, m), 4.56-4.66 (1H, m), 6.81 (1H, brs), 6.92 (1H, brs).
ESI-MS: m/z= 307 (M+H)+.
(参考例31)1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-イソプロピル-1H-イミダゾール-2-イル)プロパン-1-オンの合成:
Figure JPOXMLDOC01-appb-C000069
 (E)-メチル 3-(1-イソプロピル-1H-イミダゾール-2-イル)アクリレート(362mg、1.86mmol)のメタノール(7.46mL)溶液に、パラジウム-炭素(10%wet、36mg)を室温で加え、水素雰囲気下、16時間撹拌した後に、反応液をセライト濾過し、濾液を減圧濃縮した。得られた残渣にメタノール(1.86mL)を室温で加え、溶解させ、0℃に冷却した。反応液へ水酸化ナトリウム水溶液(1.0N、2.05mL、2.05mmol)を0℃で加え、室温で16時間撹拌した後に、減圧濃縮した。得られた残渣にクロロホルム(18.6mL)を室温で加え、溶解させた。反応液へジイソプロピルエチルアミン(0.976mL、5.59mmol)、HBTU(1.06g、2.80mmol)及び4-(ジメチルアミノ)ピペリジン(0.215g、1.68mmol)を室温で加え、反応液を同じ温度で16時間撹拌した。反応液へ飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。有機層を10%塩化ナトリウム水溶液にて洗浄後、無水硫酸ナトリウムで乾燥、濾過し、濾液を減圧濃縮した。残渣をフラッシュカラムクロマトグラフィー(NHシリカゲル、クロロホルム/メタノール)で精製し、1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-イソプロピル-1H-イミダゾール-2-イル)プロパン-1-オン(335mg、1.15mmol、62%)を無色油状物として得た。
1H-NMR (400 MHz, CDCl3) δ: 1.32-1.42 (8H, m), 1.83-1.86 (2H, m), 2.27-2.34 (7H, m), 2.57-2.64 (1H, m), 2.96-3.02 (5H, m), 4.03-4.06 (1H, m), 4.42-4.49 (1H, m), 4.61-4.64 (1H, m), 6.91 (1H, brs), 6.95 (1H, brs).
ESI-MS: m/z= 293 (M+H)+.
(比較例1)1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オン塩酸塩の合成:
Figure JPOXMLDOC01-appb-C000070
 1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オン(1.50g、5.67mmol)のジエチルエーテル(60.0mL)溶液に、塩化水素のジオキサン溶液(4.0M、3.69mL、14.8mmol)を0℃で加えた。反応液を同じ温度で1時間撹拌後、室温で30分間撹拌した。析出した白色固体を濾取し、ジエチルエーテル(100mL)で洗浄、室温にて36時間乾燥後、1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オン塩酸塩(1.41g、4.18mmol、74%)(以下、比較例1の化合物)を白色固体として得た。
1H-NMR (400 MHz, D2O) δ: 1.53-1.80 (2H, m), 2.12-2.23 (2H, m), 2.68-2.80 (1H, m), 2.88 (6H, s), 3.01-3.08 (2H, m), 3.15-3.26 (3H, m), 3.47-3.58 (1H, m), 3.84 (3H, s), 4.08-4.16 (1H, m), 4.50-4.59 (1H, m), 7.29-7.33 (2H, m).
ESI-MS; 1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オンとして: m/z= 265 (M+H)+.
(比較例2)1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オン硫酸塩1水和物の合成:
Figure JPOXMLDOC01-appb-C000071
 1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オン(6.72g、25.4mmol)のDMSO(100mL)溶液に、濃硫酸(2.49g、25.4mmol)、水(1.83g、102mmol)及び1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オン硫酸塩1水和物の種晶(50mg、0.13mmol)を80℃で加えた。反応液を同じ温度で2.5時間、50℃で2.5時間、室温で15時間撹拌した。析出した白色固体を濾取し、DMSO(20mL)とメチルエチルケトン(40mL)で順次洗浄、室温にて乾燥後、1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オン硫酸塩1水和物(8.42g、22.1mmol、87%)(以下、比較例2の化合物)を白色結晶として得た。
1H-NMR (400 MHz, DMSO-d6) δ: 1.36 (1H, m), 1.58 (1H, m), 1.95 (2H, br), 2.44-2.57 (1H, m), 2.65 (6H, s), 2.74-2.88 (4H, m), 3.00 (1H, t, J=12.0 Hz), 3.22 (1H, m), 3.61 (3H, s), 4.02 (1H, d, J=14.0 Hz), 4.47 (1H, d, J=12.8 Hz), 6.87 (1H, d, J=1.2 Hz), 7.11 (1H, d, J=1.2 Hz).
ESI-MS; 1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-メチル-1H-イミダゾール-2-イル)プロパン-1-オンとして: m/z= 265 (M+H)+.
(比較例3)1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-エチル-1H-イミダゾール-2-イル)プロパン-1-オン塩酸塩の合成:
Figure JPOXMLDOC01-appb-C000072
 1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-エチル-1H-イミダゾール-2-イル)プロパン-1-オン(0.271g、0.973mmol)のジエチルエーテル(19.5mL)溶液に、塩化水素のジエチルエーテル溶液(2.0N、1.07mL、2.14mmol)を0℃で加えた。反応液を同じ温度で1時間撹拌後、室温で30分間撹拌した。析出した白色固体を濾取し、ジエチルエーテル(58.5mL)で洗浄、室温にて36時間乾燥後、1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-エチル-1H-イミダゾール-2-イル)プロパン-1-オン塩酸塩(0.283g、0.806mmol、83%)(以下、比較例3の化合物)を白色固体として得た。
1H-NMR (400 MHz, D2O) δ: 1.32 (3H, t, J=7.2 Hz), 1.45 (1H, ddd, J=4.4, 12.4, 24.4), 1.58 (1H, ddd, J=4.4, 12.4, 24.4), 1.99-2.07 (2H, m), 2.56-2.63 (1H, m), 2.73 (6H, s), 2.90-2.93 (2H, m), 3.03-3.13 (3H, m), 3.35-3.41 (1H, m), 3.96-3.99 (1H, m), 4.06 (2H, d, J=7.2 Hz),4.38-4.42 (1H, m), 7.18 (1H, d, J=2.4 Hz),7.26 (1H, d, J=2.4 Hz).
ESI-MS: 1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-エチル-1H-イミダゾール-2-イル)プロパン-1-オンとして: m/z= 279 (M+H)+.
(比較例4)1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-プロピル-1H-イミダゾール-2-イル)プロパン-1-オン塩酸塩の合成:
Figure JPOXMLDOC01-appb-C000073
 1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-プロピル-1H-イミダゾール-2-イル)プロパン-1-オン(0.110g、0.376mmol)のジエチルエーテル(4.00mL)溶液に、塩化水素のジオキサン溶液(4.0M、0.245mL、0.978mmol)を0℃で加えた。反応液を同じ温度で1時間撹拌後、室温で30分間撹拌した。析出した白色固体を濾取し、ジエチルエーテル(7.00mL)で洗浄、室温にて36時間乾燥後、1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-プロピル-1H-イミダゾール-2-イル)プロパン-1-オン塩酸塩(0.105g、0.287mmol、76%)(以下、比較例4の化合物)を白色固体として得た。
1H-NMR (400 MHz, D2O) δ: 0.93 (3H, t, J=7.2 Hz), 1.50-1.80 (2H, m), 1.81-1.92 (2H, m), 2.10-2.23 (2H, m), 2.68-2.78 (1H, m), 2.86 (6H, s), 3.02-3.08 (2H, m), 3.15-3.28 (3H, m), 3.45-3.57 (1H, m), 4.08-4.16 (3H, m), 4.50-4.58 (1H, m), 7.32 (1H, brs), 7.38 (1H, brs).
ESI-MS; 1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-プロピル-1H-イミダゾール-2-イル)プロパン-1-オンとして: m/z= 293 (M+H)+.
(比較例5)1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-ブチル-1H-イミダゾール-2-イル)プロパン-1-オン塩酸塩の合成:
Figure JPOXMLDOC01-appb-C000074
 1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-ブチル-1H-イミダゾール-2-イル)プロパン-1-オン(0.120g、0.392mmol)のジエチルエーテル(4.00mL)溶液に、塩化水素のジオキサン溶液(4.0M、0.255mL、1.02mmol)を0℃で加えた。反応液を同じ温度で1時間撹拌後、室温で30分間撹拌した。析出した白色固体を濾取し、ジエチルエーテル(7.00mL)で洗浄、室温にて36時間乾燥後、1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-ブチル-1H-イミダゾール-2-イル)プロパン-1-オン塩酸塩(0.136g、0.358mmol、91%)(以下、比較例5の化合物)を白色固体として得た。
1H-NMR (400 MHz, D2O) δ: 0.93 (3H, t, J=6.8 Hz), 1.30-1.40 (2H, m), 1.52-1.86 (4H, m), 2.10-2.22 (2H, m), 2.68-2.78 (1H, m), 2.86 (6H, s), 3.02-3.08 (2H, m), 3.15-3.27 (3H, m), 3.47-3.57 (1H, m), 4.06-4.18 (3H, m), 4.49-4.57 (1H, m), 7.32 (1H, d, J=2.0 Hz), 7.38 (1H, d, J=2.0 Hz).
ESI-MS: 1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-ブチル-1H-イミダゾール-2-イル)プロパン-1-オンとして: m/z= 307 (M+H)+.
(比較例6)1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-イソプロピル-1H-イミダゾール-2-イル)プロパン-1-オン塩酸塩の合成:
Figure JPOXMLDOC01-appb-C000075
 1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-イソプロピル-1H-イミダゾール-2-イル)プロパン-1-オン(0.283g、0.967mmol)のジエチルエーテル(19.3mL)溶液に、塩化水素のジエチルエーテル溶液(2.0N、1.06mL、2.13mmol)を0℃で加えた。反応液を同じ温度で1時間撹拌後、室温で30分間撹拌した。析出した白色固体を濾取し、ジエチルエーテル(58.5mL)で洗浄、室温にて36時間乾燥後、1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-イソプロピル-1H-イミダゾール-2-イル)プロパン-1-オン塩酸塩(0.313g、0.806mmol、92%)(以下、比較例6の化合物)を白色固体として得た。
1H-NMR (400 MHz, D2O) δ: 1.36-1.63 (8H, m), 2.00-2.08 (2H, m), 2.58-2.74 (1H, m), 2.74 (6H, s), 2.91-2.94 (2H, m), 3.04-3.16 (3H, m), 3.36-3.44 (1H, m), 3.97-4.01 (1H, m), 4.39-4.42 (1H, m), 4.57-4.65 (1H, m), 7.21 (1H, d, J=2.0 Hz),7.37 (1H, d, J=2.0 Hz).
ESI-MS: 1-(4-(ジメチルアミノ)ピペリジン-1-イル)-3-(1-イソプロピル-1H-イミダゾール-2-イル)プロパン-1-オンとして: m/z= 293 (M+H)+.
(実施例14)マウス坐骨神経部分結紮モデルに対する効果:
 神経障害性疼痛を評価できるマウス坐骨神経部分結紮モデル(Seltzerモデル)を用い、環状アミン誘導体(I)又はその薬理学的に許容される塩の鎮痛作用を検討した。
 環状アミン誘導体(I)又はその薬理学的に許容される塩としては、実施例1、2、3、4、5、7、8、9、10、11、12又は13の化合物を評価に用いた。
1.実験方法:
 マウス坐骨神経部分結紮モデルは、Seltzerらの方法(Malmbergら、Pain、1998年、第76巻、p.215-222)に従って作製した。
 Slc:ICRマウス(5週齢、オス;日本エスエルシー)又はCrl:CD1(ICR)マウス(5週齢、オス;日本チャールス・リバー)をペントバルビタールナトリウム(70mg/kg、腹腔内投与)にて麻酔し、右側後肢大腿部の坐骨神経を露出させ、実体顕微鏡下で8-0の絹糸(夏目製作所)を用いて坐骨神経を半周だけ強度に三重結紮した群を坐骨神経部分結紮群とし、坐骨神経を露出しただけで、結紮しなかった群を偽手術群とした。
 神経障害性疼痛の評価(以下、von Frey試験)は、網上に設置した測定用アクリル製ケージ(夏目製作所又はシナノ製作所)内でマウスを最低1時間馴化させた後、0.16gの圧がかかるフィラメント(North Coast Medical又はneuroscience)を用い、右側後肢の足底にフィラメントを3秒間押し当てる機械的触刺激を3秒間隔で3回繰り返し行い、機械的触刺激を加えたときの逃避行動の強度をスコア化(0:無反応、1:刺激に対して緩徐でわずかな逃避行動、2:flinching(足をすばやく連続的に振る行動)やlicking(足舐め行動)を伴わない刺激に対する素早い逃避行動、3:flinching又はlickingを伴う素早い逃避行動)し、その3回のスコアの合計値(以下、総スコア)を痛みの指標とした。
 坐骨神経結紮手術7日後に、坐骨神経部分結紮群のマウスに、実施例1、2、3、4、5、7、8、9、10、11、12若しくは13の化合物(実施例1、2、3、4、5、8、10及び13の化合物は、それぞれ10mg/kg、実施例7の化合物は、0.01~1mg/kg、実施例9の化合物は、0.01~10mg/kg、実施例11の化合物は、0.001~0.1mg/kg、実施例12の化合物は、0.01~1mg/kg)又は陽性対照としてプレガバリン(10mg/kg;Bosche Scientific)を、蒸留水に溶解して経口投与した。坐骨神経部分結紮群のマウスに、実施例1、2、3、4、5、7、8、9、10、11、12又は13の化合物を投与した群を、「坐骨神経部分結紮+実施例1の化合物」群、「坐骨神経部分結紮+実施例2の化合物」群、「坐骨神経部分結紮+実施例3の化合物」群、「坐骨神経部分結紮+実施例4の化合物」群、「坐骨神経部分結紮+実施例5の化合物」群、「坐骨神経部分結紮+実施例7の化合物」群、「坐骨神経部分結紮+実施例8の化合物」群、「坐骨神経部分結紮+実施例9の化合物」群、「坐骨神経部分結紮+実施例10の化合物」群、「坐骨神経部分結紮+実施例11の化合物」群、「坐骨神経部分結紮+実施例12の化合物」群、「坐骨神経部分結紮+実施例13の化合物」群とし、プレガバリンを投与した群を、「坐骨神経部分結紮+プレガバリン」群とした。また、坐骨神経部分結紮群のマウスに蒸留水を経口投与した群を、「坐骨神経部分結紮+蒸留水」群とし、偽手術群のマウスに蒸留水を経口投与した群を、「偽手術+蒸留水」群とした。
 von Frey試験は、被験化合物の経口投与前(pre値)、経口投与1時間後、2時間後及び3時間後に実施した。
2.結果:
 結果を図1~12に示す。図において、縦軸はvon Frey試験の総スコア(平均値±標準誤差;図1~12は、n=5~6である。)を示し、数値が高いほど痛みが強いことを示す。横軸には被験化合物投与後の時間(hr)を示す。薬効評価は、測定時間毎の「坐骨神経部分結紮+蒸留水」群(図中の「坐骨神経部分結紮+蒸留水」)を対照として、対応のない2群のWelch検定又はShirley-Williams検定により統計処理を行った。図中の§印又は♯印は、「坐骨神経部分結紮+蒸留水」群との比較で統計学的に有意である(§:Welch検定(p<0.05)、又は、♯:Shirley-Williams検定(p<0.025))ことを示す。
 von Frey試験の結果によれば、実施例1、2、3、4、5、7、8、9、10、11、12又は13の化合物の経口投与(図中の「坐骨神経部分結紮+実施例1、2、3、4、5、7、8、9、10、11、12又は13の化合物」)は、陽性対照であるプレガバリン(図中の「坐骨神経部分結紮+プレガバリン」)と同様に、統計学的に有意な鎮痛作用を示した。
 この結果から、環状アミン誘導体(I)又はその薬理学的に許容される塩が、神経障害性疼痛に対して強い鎮痛作用を示すことが明らかとなった。
(比較例7)マウス坐骨神経部分結紮モデルに対する効果:
 神経障害性疼痛を評価できるマウス坐骨神経部分結紮モデル(Seltzerモデル)を用い、比較例1、3、4、5及び6の化合物の鎮痛作用を検討した。
1.実験方法:
 マウス坐骨神経部分結紮モデルは、Seltzerらの方法(Malmbergら、Pain、1998年、第76巻、p.215-222)に従って作製した。
 Slc:ICRマウス(5週齢、オス;日本エスエルシー)をペントバルビタールナトリウム(70mg/kg、腹腔内投与)にて麻酔し、右側後肢大腿部の坐骨神経を露出させ、実体顕微鏡下で8-0の絹糸(夏目製作所)を用いて坐骨神経を半周だけ強度に三重結紮した群を坐骨神経部分結紮群とし、坐骨神経を露出しただけで、結紮しなかった群を偽手術群とした。
 神経障害性疼痛の評価(以下、von Frey試験)は、網上に設置した測定用アクリル製ケージ(夏目製作所又はシナノ製作所)内でマウスを最低2時間馴化させた後、0.16gの圧がかかるフィラメント(North Coast Medical)を用い、右側後肢の足底にフィラメントを3秒間押し当てる機械的触刺激を3秒間隔で3回繰り返し行い、機械的触刺激を加えたときの逃避行動の強度をスコア化(0:無反応、1:刺激に対して緩徐でわずかな逃避行動、2:flinching(足をすばやく連続的に振る行動)やlicking(足舐め行動)を伴わない刺激に対する素早い逃避行動、3:flinching又はlickingを伴う素早い逃避行動)し、その3回のスコアの合計値(以下、総スコア)を痛みの指標とした。
 坐骨神経結紮手術7日後に、坐骨神経部分結紮群のマウスに、比較例1、3、4、5若しくは6の化合物(比較例1の化合物は0.01~1mg/kg、及び比較例3~6の化合物はそれぞれ10mg/kg)又は陽性対照としてプレガバリン(10mg/kg;Bosche Scientific)を、蒸留水に溶解して経口投与した。坐骨神経部分結紮群のマウスに、比較例1、3、4、5又は6の化合物を投与した群を、それぞれ「坐骨神経部分結紮+比較例1の化合物」群、「坐骨神経部分結紮+比較例3の化合物」、「坐骨神経部分結紮+比較例4の化合物」群、「坐骨神経部分結紮+比較例5の化合物」群、「坐骨神経部分結紮+比較例6の化合物」群とし、プレガバリンを投与した群を、「坐骨神経部分結紮+プレガバリン」群とした。また、坐骨神経部分結紮群のマウスに蒸留水を経口投与した群を、「坐骨神経部分結紮+蒸留水」群とし、偽手術群のマウスに蒸留水を経口投与した群を、「偽手術+蒸留水」群とした。
 von Frey試験は、被験化合物の経口投与前(pre値)、経口投与1時間後、2時間後及び3時間後に実施した。
2.結果:
 比較例1の化合物の結果を図14左側、比較例3、4、5又は6の化合物の結果を図15左側に示す。また、比較として、図10(実施例14)に記載の実施例11の化合物の効果を図14及び15の右側に示す。
 図14及び15左側において、縦軸はvon Frey試験の総スコア(平均値±標準誤差、n=4~5)を示し、数値が高いほど痛みが強いことを示す。横軸には被験化合物投与後の時間(hr)を示す。比較例1、3、4、5又は6の化合物の薬効評価は、測定時間毎の「坐骨神経部分結紮+蒸留水」群(図14及び15左側中の「坐骨神経部分結紮+蒸留水」)を対照として、多群の対応のないt検定(Dunnettによる補正)により統計処理を行った。図14及び15左側中の‡印は、「坐骨神経部分結紮+蒸留水」群との比較で統計学的に有意である(‡:p<0.05)ことを示す。
 von Frey試験の結果によれば、比較例1、3、4、5又は6の化合物の経口投与(図14及び15中の「坐骨神経部分結紮+比較例1、3、4、5又は6の化合物」)は、陽性対照であるプレガバリン(図中の「坐骨神経部分結紮+プレガバリン」)と同様に、統計学的に有意な鎮痛作用を示した。
 しかしながら、比較例1の化合物は、0.01mg/kgの用量から統計学的に有意な鎮痛作用を示したが、経口投与1時間後に最も強く、2時間及び3時間後にはその鎮痛作用が減弱する傾向があった。比較例3、4、5又は6の化合物も同様に、経口投与1時間後に最も強く、2時間及び3時間後にはその鎮痛作用が減弱する傾向があった。一方で、実施例11の化合物は、0.001mg/kgという極めて低い用量から統計学的に有意な鎮痛作用を示し、かつ、その鎮痛作用は経口投与後2時間まで持続した。さらに、実施例11の化合物の0.1mg/kgにおける鎮痛作用は、経口投与後3時間まで持続した。なお、鎮痛作用の持続は、図6に記載の実施例7の化合物、図8に記載の実施例9の化合物及び図11に記載の実施例12の化合物についても確認された。したがって、環状アミン誘導体(I)又はその薬理学的に許容される塩は、国際公開第2013/147160号(特許文献4)に記載のイミダゾール誘導体と比較して、神経障害性疼痛に対してより持続的な鎮痛作用を示すことが明らかとなった。
(実施例15)ラット線維筋痛症モデルに対する効果:
 線維筋痛症を評価できるラット線維筋痛症モデルを用い、環状アミン誘導体(I)又はその薬理学的に許容される塩の鎮痛作用を検討した。
 環状アミン誘導体(I)又はその薬理学的に許容される塩としては、実施例11の化合物を評価に用いた。
1.実験方法:
 線維筋痛症の基礎研究において一般に広く用いられる線維筋痛症モデルラット(Slukaら、Journal of Pharmacology and Experimental Therapeutics、2002年、第302巻、p.1146-1150;Nagakuraら、Pain、2009年、第146巻、p.26-33;Slukaら、Pain、2009年、第146巻、p.3-4)を作製するために、pH4.0に調整した酸性生理食塩液100μLをイソフルラン持続吸入麻酔下のCrl:CD(SD)ラット(6~7週齢、オス;日本チャールス・リバー)の右側後肢腓腹筋に2回(酸性生理食塩液の初回投与日を1日目として、1日目と6日目にそれぞれ1回ずつ)筋肉内注射し、室内温度21~25℃、室内湿度40~70%に調節された飼育室で、自由摂餌・摂水させながら飼育した。また、酸性生理食塩液の代わりに生理食塩液を同様に筋肉内注射して飼育した線維筋痛症が発症していないラット(図13の「生理食塩液+蒸留水」群)を実験に使用した。
 酸性生理食塩液の初回投与日から7日目に各ラットのアロディニアを測定し、50%反応閾値(右側後肢と左側後肢の平均値)が2g以上6g以下になったラットを線維筋痛症が発症した線維筋痛症モデルラットとして選別し、以下の投与実験に使用した。なお、アロディニアの測定は、公知文献(Chaplanら、Journal of Neuroscience Methods、1994年、第53巻、p.55-63)に記載の方法に従い、von Freyフィラメント(North Coast Medical)を用いて行った。
 こうして得られた線維筋痛症モデルラットを、50%反応閾値(右側後肢と左側後肢の平均値)が群間で均等になるように群分けし、酸性生理食塩液の初回投与日から7日目に、線維筋痛症モデルラットに被験化合物を投与した。
 実施例11の化合物(0.1~10mg/kg)は、蒸留水に溶解して線維筋痛症モデルラットに経口投与した(図13中の「酸性生理食塩液+実施例11の化合物」)。陽性対照としてプレガバリン(10mg/kg;KEMPROTEC)を、蒸留水に溶解して経口投与した(図13中の「酸性生理食塩液+プレガバリン」)。対照として、線維筋痛症モデルラットに蒸留水を経口投与した(図13中の「酸性生理食塩液+蒸留水」)。また、線維筋痛症が発症していないラットには、蒸留水を経口投与した(図13中の「生理食塩液+蒸留水」)。経口投与1時間後及び3時間後に、各ラットのアロディニアを測定することにより、鎮痛作用を評価した。その際、酸性生理食塩液の初回投与日から7日目の被験化合物の経口投与前のアロディニア測定における50%反応閾値の値をpre値とした。
2.結果:
 結果を図13に示す。図において、縦軸は50%反応閾値(右側後肢と左側後肢の平均値)(g)(平均値±標準誤差、n=5~6)を示し、数値が高いほど線維筋痛症モデルラットにおいて認められたアロディニアが改善されていることを示す。
 図13は、実施例11の化合物の経口投与の結果を示す。図の横軸は、実施例11の化合物の経口投与前(pre値)及び経口投与からの経過時間(hr)を示す。図中の†印又は♯印は、測定時間毎の「酸性生理食塩液+蒸留水」群(図中の「酸性生理食塩液+蒸留水」)を対照として、対応のないt検定又はWilliams検定を行った結果、統計学的に有意である(†:t検定(p<0.05)、又は、♯:Williams検定(p<0.025))ことを示す。
 実施例11の化合物を経口投与した群(図13中の「酸性生理食塩液+実施例11の化合物」は、陽性対照であるプレガバリンを経口投与した群(図13中の「酸性生理食塩液+プレガバリン」)と同様に、線維筋痛症モデルラットにおいて認められたアロディニアを「酸性生理食塩液+蒸留水」群と比較して統計学的に有意に改善した。
 これらの結果から、環状アミン誘導体(I)又はその薬理学的に許容される塩は、線維筋痛症に対して有効であることが明らかとなった。
(比較例8)ラット線維筋痛症モデルに対する効果:
 線維筋痛症を評価できるラット線維筋痛症モデルを用い、比較例1の化合物の鎮痛作用を検討した。
1.実験方法:
 線維筋痛症の基礎研究において一般に広く用いられる線維筋痛症モデルラット(Slukaら、Journal of Pharmacology and Experimental Therapeutics、2002年、第302巻、p.1146-50;Nagakuraら、Pain、2009年、第146巻、p.26-33;Slukaら、Pain、2009年、第146巻、p.3-4)を作製するために、pH4.0に調整した酸性生理食塩液100μLをイソフルラン持続吸入麻酔下のSlc:SDラット(6~7週齢、オス;日本エスエルシー)の右側後肢腓腹筋に2回(酸性生理食塩液の初回投与日を1日目として、1日目と6日目にそれぞれ1回ずつ)筋肉内注射し、室内温度21~25℃、室内湿度40~70%に調節された飼育室で、自由摂餌・摂水させながら飼育した。また、酸性生理食塩液の代わりに生理食塩液を同様に筋肉内注射して飼育した線維筋痛症が発症していないラット(図16左側の「生理食塩液+蒸留水」群)を実験に使用した。
 酸性生理食塩液の初回投与日から7日目に各ラットのアロディニアを測定し、50%反応閾値(右側後肢と左側後肢の平均値)が6g以下になったラットを線維筋痛症が発症した線維筋痛症モデルラットとして選別し、以下の投与実験に使用した。なお、アロディニアの測定は、公知文献(Chaplanら、Journal of Neuroscience Methods、1994年、第53巻、p.55-63)に記載の方法に従い、von Freyフィラメントを用いて行った。
 こうして得られた線維筋痛症モデルラットは、50%反応閾値が群間で均等になるように群分けし、酸性生理食塩液の初回投与日から7日目に、比較例1の化合物(0.1~1mg/kg)又は陽性対照としてのプレガバリン(10mg/kg;Bosche Scientific社)をそれぞれ蒸留水に溶解して経口投与した。また、対照として、線維筋痛症モデルラットに蒸留水を経口投与した(図16左側の「酸性生理食塩液+蒸留水」群)。なお、線維筋痛症が発症していないラット(「生理食塩液+蒸留水」群)には蒸留水を経口投与した。経口投与後1時間目、2時間目及び3時間目に各ラットのアロディニアを測定することにより、被験化合物の鎮痛作用を評価した。その際、酸性生理食塩液の初回投与日から7日目の被験化合物の経口投与前のアロディニア測定における50%反応閾値の値をpre値とした。
2.結果:
 比較例1の化合物の結果を図16左側に示す。また、比較として、図13(実施例15)に記載の実施例11の化合物の効果を図16右側に示す。
 図16左側において、縦軸は50%反応閾値(g)(平均値±標準誤差、n=4~6)を示し、数値が高いほど線維筋痛症モデルラットにおいて認められたアロディニアが改善されていることを示す。横軸は被験化合物の経口投与前(pre値)又は経口投与からの経過時間(hr)を示す。図16左側中の‡印は、測定時間毎の「酸性生理食塩液+蒸留水」群(図16左側中の「酸性生理食塩液+蒸留水」)を対照として、多群の対応のないt検定(Dunnettによる補正)を行った結果、統計学的に有意である(‡:p<0.05)ことを示す。
 比較例1の化合物を経口投与した群(図16左側中の「酸性生理食塩液+比較例1の化合物」、)は、陽性対照であるプレガバリンを経口投与した群(図16左側中の「酸性生理食塩液+プレガバリン」)と同様に、線維筋痛症モデルラットにおいて認められたアロディニアを「酸性生理食塩液+蒸留水」群と比較して統計学的に有意に改善した。
 しかしながら、比較例1の化合物は、統計学的に有意な鎮痛作用を示したが、経口投与3時間後にはその鎮痛作用が著しく減弱する傾向があった。一方で、実施例11の化合物は、統計学的に有意な鎮痛作用を示し、その鎮痛作用は経口投与後3時間まで持続した。したがって、環状アミン誘導体(I)又はその薬理学的に許容される塩は、国際公開第2013/147160号(特許文献4)に記載のイミダゾール誘導体と比較して、線維筋痛症に対してより持続的な鎮痛作用を示すことが明らかとなった。
(実施例16)ヒト、サル、イヌ及びマウス肝ミクロソーム中安定性試験:
 化合物の肝代謝に対する安定性を評価するためのin vitro評価として知られている肝ミクロソーム中安定性試験を用い、環状アミン誘導体(I)又はその薬理学的に許容される塩のヒト、サル、イヌ及びマウスの肝代謝に対する安定性を評価した。
1.実験方法:
 被験化合物として実施例11、比較例1又は比較例6の化合物を、肝ミクロソームとしてヒト肝ミクロソーム(Xenotech社)、サル肝ミクロソーム(Xenotech社)、イヌ肝ミクロソーム(Xenotech社)又はマウス肝ミクロソーム(Xenotech社)を用いて実験を行った。
 肝ミクロソーム中安定性試験に用いる試薬は、以下のように調製した。D-glucose 6-phosphate disodium salt(以下、G6P)を蒸留水で溶解し、100mmol/L G6P水溶液を調製した。1000unitsの Glucose 6-phosphate dehydrogenase from Yeast(以下、G6PDH)を蒸留水5mLで溶解し、200units/mL G6PDH水溶液を調製した。MgClを蒸留水で溶解し、100mmol/L MgCl水溶液を調製した。200mmol/L KHPO水溶液500mLに、200mmol/L KHPO水溶液(約130mL)を添加し、pHを7.4に調整して、200mmol/L KHPO/KHPO Buffer pH7.4(以下、200mmol/L PB)を調製した。β-nicotinamide-adenine dinucleotide phosphate, reduced form, tetrasodium salt(以下、NADPH)を蒸留水で溶解し、10mmol/L NADPH水溶液を調製した。
 肝ミクロソーム中安定性試験は、以下の手順で実施した。まず、表2に列挙された試薬(NADPHを除く)を混合し、反応用混液とした。その反応用混液を96well tube plate(ビーエム機器;以下、プレート)の4つのウェル(それぞれ、0分反応用ウェル、30分反応用ウェル、20分反応用ウェル、10分反応用ウェルの役割を担う)に135μLずつ分注し、シリコンキャップでプレート全体に蓋をして、37℃のウォーターバスに10分間浸してプレインキュベーションをした。
 プレインキュベーション後、10mmol/L NADPH水溶液15.0μLを30分反応用のウェルに添加してからプレートに蓋をして、37℃のウォーターバスに浸して反応を開始した。反応開始から10分後に10mmol/L NADPH水溶液15.0μLを20分反応用のウェルに、反応開始から20分後には10mmol/L NADPH水溶液15.0μLを10分反応用のウェルにそれぞれ添加して、さらに37℃のウォーターバスに浸して反応を継続した。
 反応開始から30分後、プレートをウォーターバスから取り出し、アセトニトリル120μLをそれぞれのウェルに添加して、プレートに蓋をしてからDirect Mixerで10秒間撹拌し、その後10分間氷冷して反応を停止させた。反応停止後に、10mmol/L NADPH水溶液15.0μLを0分反応用ウェルに添加した。
Figure JPOXMLDOC01-appb-T000076
 実施例11の化合物については、各ウェルの反応液を、4℃、2500rpmでそれぞれ10分間遠心分離し、その上清をLC/MS/MS分析した。LC/MS/MS分析条件は以下の通りである。
 ≪ヒト及びマウス肝ミクロソーム分析用≫
 [HPLCsystem] LC-20A/30A(島津製作所)
 [カラム] Ascentis Express F5、2.7μm
       5cm×2.1mm(SUPELCO社)
 [移動相] A液:0.1vol%ギ酸水
       B液:0.1vol%ギ酸アセトニトリル
 [流速] 0.7mL/min
 [グラジエントプログラム] B液:70→30vol%
 ≪サル及びイヌ肝ミクロソーム分析用≫
 [HPLCsystem] Agiletnt 1200(Agiletnt社)
 [カラム] CHIRALCEL OZ-3R、 3μm
      4.6mm×150 mm ID(DAICEL社)
 [移動相] メタノール:2-プロパノール:エチレンジアミン
       =500:500:0.1
 [流速] 0.5mL/min
 比較例1の化合物については、各ウェルの反応液を、4℃、2500rpmでそれぞれ10分間遠心分離し、その上清をLC/MS分析した。LC/MS分析条件は以下の通りである。
 ≪ヒト肝ミクロソーム分析用≫
 [HPLCsystem] Waters HPLC(Waters社)
 [カラム] BEH C18、1.7μm
       2.1mm ID×50mm(Waters社)
 [移動相] A液:10mM 重炭酸アンモニウム水(pH10)
       B液:アセトニトリル
 [流速] 0.3mL/min
 [グラジエントプログラム] B液: 1→50vol%
 ≪サル及びイヌ肝ミクロソーム分析用≫
 [HPLCsystem] Waters HPLC(Waters社)
 [カラム] PC HILIC、3μm
       2.0mm ID×50mm(資生堂)
 [移動相] A液:0.1vol%ギ酸水
       B液:アセトニトリル
 [流速] 0.55mL/min
 [グラジエントプログラム] B液: 5→60vol%
 ≪マウス肝ミクロソーム分析用≫
 [HPLCsystem] Waters HPLC(Waters社)
 [カラム] XBridge C18、2.5μm
       2.1mm ID×50mm(Waters社)
 [移動相] A液:10mM 重炭酸アンモニウム水(pH10)
       B液:アセトニトリル
 [流速] 0.3mL/min
 [グラジエントプログラム] B液: 1→20vol%
 比較例6の化合物については、各ウェルの反応液を、4℃、2500rpmでそれぞれ10分間遠心分離し、その上清をLC/MS/MS分析した。LC/MS/MS分析条件は以下の通りである。
 ≪ヒト肝ミクロソーム分析用≫
 [HPLCsystem] Agiletnt 1200(Agiletnt社)
 [カラム] Unison UK-Silica
       50mm×3mm(Unison社)
 [移動相] A液:0.05mM 酢酸アンモニウム(pH4)
       B液:アセトニトリル
 [流速] 0.5mL/min
 [グラジエントプログラム] B液:50vol%
 ≪サル及びイヌ肝ミクロソーム分析用≫
 [HPLCsystem] Agiletnt 1200(Agiletnt社)
 [カラム] CAPCELL PAK C18 MGIII、5μm
       2.0mm ID×50mm(資生堂)
 [移動相] A液:10mM ギ酸アンモニウム(pH3)
       B液:アセトニトリル
 [流速] 0.4mL/min
 [グラジエントプログラム] B液:1→90vol%
 LC/MS分析又はLC/MS/MS分析により得られた各ウェルの反応液のクロマトグラムについて、反応時間0分のピーク面積を100%とした場合の各反応時間t(min)での被験化合物残存率(%)を算出した。この被験化合物残存率を反応時間に対して片対数プロットして、最小二乗法により下記の式1にフィッティングさせ、消失速度定数k(min-1)を算出した。さらに、下記の式2に基づき、得られたkをミクロソーム蛋白濃度で除して、肝固有クリアランスCLint(mL/min/mg)を算出した。
  被験化合物残存率 = A × exp(-kt) ・・・ 式1
  CLint = k / ミクロソーム蛋白濃度   ・・・ 式2
2.結果:
 肝ミクロソーム中安定性試験の結果得られた肝固有クリアランスの値を、表3に示す。なお、肝固有クリアランスの値が大きいほど、肝ミクロソーム中での被験化合物の代謝が速いことを示す。表中の「N.E.」は、試験を実施していないことを示す。
Figure JPOXMLDOC01-appb-T000077
 表3に示すように、実施例11の化合物を被験化合物とした肝ミクロソーム中安定性試験における肝固有クリアランスの値は、比較例1又は比較例6の化合物を被験化合物とした場合に比較して、本実施例試験を行った全動物種に共通して小さかった。したがって、実施例11の化合物は、ヒト、サル、イヌ及びマウス肝臓で代謝を受けにくいこと、すなわち、生体内で安定に存在することが明らかとなった。
 この結果から、環状アミン誘導体(I)又はその薬理学的に許容される塩は、国際公開第2013/147160号(特許文献4)に記載のイミダゾール誘導体と比較して、生体内でより安定に存在することが明らかとなった。
(実施例17)ファーマコキネティクス(PK)試験
 被験化合物として、実施例11又は比較例2の化合物を、サルに静脈内又は経口投与した後の血漿中濃度を検討した。
1.実験方法:
 固形飼料(オリエンタル酵母工業(株))及び水道水を自由に摂取させた4~6年齢のカニクイザル(雄)を、投与前日の夕刻(16時以降)より絶食させた後に使用した。なお、投与後4時間の採血終了後に給餌を再開した。
 実施例11又は比較例2の化合物を、カニクイザルに単回静脈内投与(1mg/kg)又は、単回経口投与(1mg/kg)した。実施例11又は比較例2の化合物の静脈内投与液は、日本薬局方生理食塩液に溶解して、10mg/mLの濃度を調製した。また、実施例11又は比較例2の化合物の経口投与液は、日本薬局方注射用水に溶解して、1mg/mLの濃度を調製した。静脈内投与は、注射針を装着した注射筒を用いて伏在静脈より行った。また、経口投与は、カテーテルを鼻腔に挿入して、胃内へ強制的に行った。
 実施例11又は比較例2の化合物の静脈内投与液を静脈内投与した時は、静脈内投与前、投与後5、15、30分間及び1、2、4、8、24時間のそれぞれの時点で、無麻酔下で前腕橈側皮静脈から計9回の採血をした。
 実施例11の化合物の経口投与液を経口投与した時は、経口投与前、投与後15、30、45分間及び1、2、4、8、24時間のそれぞれの時点で、無麻酔下で前腕橈側皮静脈から計9回の採血をした。また、比較例2の化合物の経口投与液を経口投与した時は、経口投与前、投与後30分間及び1、2、3、4、6、8、24時間のそれぞれの時点で、無麻酔下で前腕橈側皮静脈から計9回の採血をした。
 採取した血液を4℃、1800×gで15分間遠心分離して、血漿を得た。得られた血漿は、分析用試料の調製時まで約-80℃で保管した。なお、被験化合物を投与したカニクイザルから得られた血漿を血漿サンプルとよび、被験化合物を投与していないカニクイザルから得られた血漿をブランク血漿とよぶ。
 実施例11の化合物を投与したカニクイザルから得られた血漿サンプル、又は、ブランク血漿で適宜希釈した血漿サンプル50μLに、内部標準溶液及び200μLのメタノールを添加して撹拌してから、4℃で10分間冷却した。検量線サンプルは、ブランク血漿に検量線用標準溶液を添加したものを、同様に処理して調製した。冷却後の各サンプルは、4℃、2000rpmでそれぞれ10分間遠心分離(日立工機)し、得られた上清を分析用試料として、LC/MS/MS分析した。LC/MS/MS分析条件は、実施例16に記載の、実施例11の化合物のサル及びイヌ肝ミクロソーム中安定性試験(≪サル及びイヌ肝ミクロソーム分析用≫)と同一とした。
 また、比較例2の化合物を投与したカニクイザルから得られた血漿サンプル、又は、ブランク血漿で適宜希釈した血漿サンプル50μLに、内部標準溶液及び150μLのメタノールを添加して撹拌してから、4℃で10分間冷却した。検量線サンプルは、ブランク血漿に検量線用標準溶液を添加したものを、同様に処理して調製した。冷却後の各サンプルは、4℃、2000rpmでそれぞれ10分間遠心分離(日立工機)し、上清を0.1vol%ギ酸入り70vol%アセトニトリルで10倍希釈したものを分析用試料として、LC/MS/MS分析した。LC/MS/MS分析条件は以下の通りである。
 [HPLCsystem] Agiletnt 1200(Agiletnt社)
 [カラム] Ascentis Express F5、2.7μm
       5cm×2.1 mm(SUPELCO社)
 [移動相] A液:0.1vol%ギ酸水
       B液:0.1vol%ギ酸アセトニトリル
 [流速] 0.7mL/min
 [グラジエントプログラム] B液:70→30vol%
 LC/MS/MS分析の結果から、Analysis 1.6.2(Applied Biosystems)を用いて検量線を作成し、分析用試料中の被験化合物の濃度を算出した。静脈内投与又は経口投与した各時点の、血漿中の被験化合物濃度を算出し、個体ごとにPK解析を実施した。PKパラメータは、WinNonlin(Pharsight社)を用いてモデルによらない解析(静脈内投与:Bolus IV Administration、経口投与:Extravascular Administration;ともにWeight=1/y)で算出した。さらに、生体利用率(BA)は、下記の式3に基づき、静脈内投与の無限時間までのAUC0-∞,iv及び経口投与後の無限時間までのAUC0-∞,poを、それぞれ投与量で除することにより規格化し算出した。
  生体利用率(BA) = (AUC0-∞,po/投与量)/(AUC0-∞,iv/投与量)  ・・・ 式3
2.結果:
 実施例11の化合物の血漿中濃度推移を図17に、比較例2の化合物の血漿中濃度推移を図18に示す。各プロットは各時点の血漿中濃度の平均値±標準偏差を表す。また、PKパラメータを表4に示す。Cmax(ng/mL)は経口投与時の最高血漿中濃度、AUC0-∞,po(ng・h/mL)は経口投与時の血漿中濃度-時間曲線下面積、t1/2(h)は経口投与時の血漿中半減期、CLtot(mL/h/kg)は静脈内投与時の全身クリアランス、BA(%)は生体利用率を示す。
Figure JPOXMLDOC01-appb-T000078
 図17及び図18に示すように、実施例11の化合物を投与したカニクイザルの血漿中濃度平均値は、比較例2の化合物を投与したカニクイザルの血漿中濃度平均値と比較して、全ての時点において高かった。
 また、表4に示すように、経口投与時の最高血漿中濃度(Cmax)は、実施例11の化合物では279ng/mLであるところ、比較例2の化合物では146ng/mLであった。さらに、経口投与時の血漿中半減期(t1/2)についても、実施例11の化合物では7.55hであるところ、比較例2の化合物では6.56hであった。化合物の消失速度を表す全身クリアランス(CLtot)は、実施例11の化合物では195mL/h/kgであるところ、比較例2の化合物では501mL/h/kgであった。経口吸収の割合を示す生体利用率(BA)は、実施例11の化合物では52.6%であるところ、比較例2の化合物では42.6%であった。
 この結果から、環状アミン誘導体(I)又はその薬理学的に許容される塩は、国際公開第2013/147160号(特許文献4)に記載のイミダゾール誘導体と比較して、高い経口吸収性を有し、かつ、高い血漿中濃度が得られることが明らかとなった。
(実施例18)大動脈平滑筋細胞を用いた細胞質空胞化誘発性の評価:
 化合物の細胞質空胞化誘発性を評価するためのin vitro評価系である大動脈平滑筋株化細胞を用い、環状アミン誘導体(I)又はその薬理学的に許容される塩の細胞質空胞化誘発性を評価した。
1.実験方法:
 被験化合物として、実施例3、9、11、12又は比較例2~6の化合物を用いた。イヌの大動脈平滑筋細胞(Canine Aortic Smooth Muscle Cells、供給源:東洋紡)又はヒトの大動脈平滑筋細胞(T/G HA-VSMG、供給源:ATCC)に、被験化合物を1.0又は1.2mmol/Lの濃度で24時間又は2週間処置し、細胞をHE染色、LAMP-2免疫染色又はトルイジンブルー染色で染色後、光学顕微鏡にて細胞質空胞化の有無を判定した。
2.結果:
 細胞質空胞化誘発性の評価の結果を、表5及び6に示す。表5は、イヌの大動脈平滑筋細胞を用いた評価の結果(被験化合物濃度:1.0mmol/L、被験化合物処置時間:24時間)を示し、表6は、ヒトの大動脈平滑筋細胞を用いた評価の結果(被験化合物濃度:1.0又は1.2mmol/L、被験化合物処置時間:24時間又は2週間)を示す。表中の「あり」は細胞質空胞化が確認されたことを、「なし」は細胞質空胞化が確認されなかったことを、それぞれ示す。
Figure JPOXMLDOC01-appb-T000079
 表5に示すように、実施例11の化合物のイヌの大動脈平滑筋細胞に対する細胞質空胞化誘発性は「なし」であり、細胞質空胞化は確認されなかった。一方で、全ての比較例化合物は、イヌの大動脈平滑筋細胞に対する細胞質空胞化誘発性を有していることが明らかとなった。
Figure JPOXMLDOC01-appb-T000080
 表6に示すように、実施例3、9、11又は12の化合物のヒトの大動脈平滑筋細胞に対する細胞質空胞化誘発性は、いずれも「なし」であり、細胞質空胞化は確認されなかった。さらに、実施例11の化合物については、処置時間を2週間まで延長しても細胞質空胞化は確認されなかった。一方で、比較例2の化合物は、ヒトの大動脈平滑筋細胞に対する細胞質空胞化誘発性を有していることが明らかとなった。
 この結果から、環状アミン誘導体(I)又はその薬理学的に許容される塩の細胞質空胞化誘発性は確認されなかったが、国際公開第2013/147160号(特許文献4)に記載のイミダゾール誘導体は細胞質空胞化誘発性を有していることが明らかとなった。
(実施例19)ラットを用いた安全性の評価:
 ラットの2週間経口投与試験を用い、環状アミン誘導体(I)又はその薬理学的に許容される塩の安全性を評価した。
1.実験方法
 被験化合物として、実施例11又は比較例2の化合物を用いた。Crl:CD(SD)ラット(7週齢、雌及び雄;日本チャールス・リバー社)に実施例11又は比較例2の化合物を2週間反復経口投与し、一般状態観察、体重測定、摂餌量測定、眼科学的検査(実施例11の化合物のみ)、血液学的検査、血液化学的検査、尿検査、骨髄検査、病理解剖学的検査、器官重量測定、病理組織学的検査及び免疫毒性検査を実施した。また、投与1日目及び14日目にトキシコキネティクス(TK)測定を実施し、各々の被験化合物が暴露されていることを確認した。被験化合物の投与用量は0、250、500、1000mg/kg/day、投与容量は10mL/kgとした。投与溶媒として実施例11の化合物はリン酸緩衝生理食塩液、比較例2の化合物は蒸留水を用いた。
2.結果
 比較例2の化合物を250mg/kg/dayで2週間経口投与したラットでは、いずれの検査項目においても異常が認められなかった。しかし、比較例2の化合物が500mg/kg/day以上では、顎下腺血管中膜等における空胞化がみられ、比較例2の化合物の無毒性量は250mg/kg/dayと推定された。一方、実施例11の化合物を投与したラットでは、1000mg/kg/dayまで投与しても、いずれの検査項目においても異常はみられず、実施例11の化合物の無毒性量は1000mg/kg/day以上と推定された。
 この結果から、環状アミン誘導体(I)又はその薬理学的に許容される塩は、国際公開第2013/147160号(特許文献4)に記載のイミダゾール誘導体と比較して、無毒性量は高い値であることが明らかとなった。
 上記の各実施例の結果から、医薬としての特性(薬効、体内動態及び安全性)について、本発明の環状アミン誘導体(I)又はその薬理学的に許容される塩と、国際公開第2013/147160号(特許文献4)に記載のイミダゾール誘導体との比較を、表7に示す。また、本発明の環状アミン誘導体(I)又はその薬理学的に許容される塩と、国際公開第2013/147160号(特許文献4)に記載のイミダゾール誘導体の一般式を表8に示す。
Figure JPOXMLDOC01-appb-T000081
 表7に示すように、本発明の環状アミン誘導体(I)又はその薬理学的に許容される塩は、全ての比較項目(薬効、体内動態及び安全性)において、国際公開第2013/147160号(特許文献4)に記載のイミダゾール誘導体より、医薬として優れた特性を有していることが明らかとなった。
 国際公開第2013/147160号(特許文献4)に記載のイミダゾール誘導体は、表8下段の一般式で示される。表8下段の一般式中に示される化学構造である、「ジメチルアミノ基、X又はイミダゾリル基をそれぞれ他の構造に変換すると、鎮痛作用は著しく低下した」と、国際公開第2013/147160号(特許文献4、段落[0209])に開示されている。一方で、本発明の環状アミン誘導体(I)又はその薬理学的に許容される塩は、表8下段の一般式中に示される化学構造Xを、他の化学構造へ変換した化合物に該当する。それにもかかわらず、本発明の環状アミン誘導体(I)又はその薬理学的に許容される塩は、国際公開第2013/147160号(特許文献4)に記載のイミダゾール誘導体と比較して、優れた鎮痛作用を有するだけでなく、その薬効の持続性も有し、さらには、高い安全性及び、優れた体内動態(代謝安定性、経口吸収性及び血漿中濃度等)をも兼ね備え、医薬として優れた特性を備えた化合物であることが明らかとなった。
 本発明の環状アミン誘導体又はその薬理学的に許容される塩は、痛み、特に神経障害性疼痛又は線維筋痛症に対して鎮痛作用を発揮できることから、疼痛症状に対する医薬として利用できる。
 本発明の環状アミン誘導体又はその薬理学的に許容される塩は、高い安全性を兼ね備え、代謝安定性、経口吸収性及び血漿中濃度等の体内動態に優れ、薬効の持続性をも兼ね備えているため、痛み、特に神経障害性疼痛又は線維筋痛症の治療薬として、有用である。

Claims (10)

  1.  一般式(I)で示される環状アミン誘導体又はその薬理学的に許容される塩。
    Figure JPOXMLDOC01-appb-C000001
    [式中、*を付した炭素は不斉炭素であり、Aは、一般式(IIa)、(IIb)又は(IIc)で示される基を表し、
    Figure JPOXMLDOC01-appb-C000002
     Rは、ハロゲン原子で置換されていてもよい、メチル基又はエチル基を表し、Rは、水素原子又は炭素数2~5のアルキルカルボニル基を表し、Rは、それぞれ独立して、メチル基又はエチル基を表し、nは、1又は2を表す。]
  2.  Aは、一般式(IIa)で示される基である、請求項1記載の環状アミン誘導体又はその薬理学的に許容される塩。
  3.  Aは、一般式(IIb)又は(IIc)で示される基である、請求項1記載の環状アミン誘導体又はその薬理学的に許容される塩。
  4.  Aは、一般式(IIa)で示される基であり、*を付した不斉炭素の立体化学は、S配置である、請求項1記載の環状アミン誘導体又はその薬理学的に許容される塩。
  5.  Rは、フッ素原子で置換されていてもよい、メチル基又はエチル基である、請求項1~4のいずれか一項記載の環状アミン誘導体又はその薬理学的に許容される塩。
  6.  Rは、メチル基、エチル基、ジフルオロメチル基又は2,2,2-トリフルオロエチル基である、請求項1~4のいずれか一項記載の環状アミン誘導体又はその薬理学的に許容される塩。
  7.  請求項1~6のいずれか一項記載の環状アミン誘導体又はその薬理学的に許容される塩を有効成分として含有する、医薬。
  8.  請求項1~6のいずれか一項記載の環状アミン誘導体又はその薬理学的に許容される塩を有効成分として含有する、鎮痛薬。
  9.  請求項1~6のいずれか一項記載の環状アミン誘導体又はその薬理学的に許容される塩を有効成分として含有する、神経障害性疼痛治療薬。
  10.  請求項1~6のいずれか一項記載の環状アミン誘導体又はその薬理学的に許容される塩を有効成分として含有する、線維筋痛症治療薬。
PCT/JP2016/055814 2015-02-27 2016-02-26 環状アミン誘導体及びその医薬用途 WO2016136944A1 (ja)

Priority Applications (17)

Application Number Priority Date Filing Date Title
DK16755688.5T DK3263565T3 (da) 2015-02-27 2016-02-26 Cyklisk aminderivat og farmaceutisk anvendelse deraf
ES16755688T ES2744785T3 (es) 2015-02-27 2016-02-26 Derivado de amina cíclica y utilización farmacéutica del mismo
EP16755688.5A EP3263565B1 (en) 2015-02-27 2016-02-26 Cyclic amine derivative and pharmaceutical use thereof
KR1020177014826A KR102488848B1 (ko) 2015-02-27 2016-02-26 환상 아민 유도체 및 그 의약용도
JP2016520708A JP6569671B2 (ja) 2015-02-27 2016-02-26 環状アミン誘導体及びその医薬用途
BR112017017859-1A BR112017017859B1 (pt) 2015-02-27 2016-02-26 Derivado de amina cíclica ou um sal farmacologicamente aceitável medicamento, agente analgésico, e, seu uso
SG11201705701UA SG11201705701UA (en) 2015-02-27 2016-02-26 Cyclic amine derivative and pharmaceutical use thereof
PL16755688T PL3263565T3 (pl) 2015-02-27 2016-02-26 Pochodna aminy cyklicznej i jej farmaceutyczne zastosowanie
MX2017010624A MX2017010624A (es) 2015-02-27 2016-02-26 Derivado de amina ciclica y su uso farmaceutico.
CA2977614A CA2977614C (en) 2015-02-27 2016-02-26 Cyclic amine derivative and pharmaceutical use thereof
US15/553,211 US10173999B2 (en) 2015-02-27 2016-02-26 Cyclic amine derivative and pharmaceutical use thereof
CN201680007467.6A CN107250128B (zh) 2015-02-27 2016-02-26 环状胺衍生物和其医药用途
AU2016224420A AU2016224420B2 (en) 2015-02-27 2016-02-26 Cyclic amine derivative and pharmaceutical use thereof
RU2017133423A RU2667062C1 (ru) 2015-02-27 2016-02-26 Производное циклического амина и его фармацевтическое применение
IL253410A IL253410A (en) 2015-02-27 2017-07-11 Derivable Cyclic amine and its pharmacist use
PH12017501297A PH12017501297A1 (en) 2015-02-27 2017-07-14 Cyclic amine derivative and pharmaceutical use thereof
ZA2017/05293A ZA201705293B (en) 2015-02-27 2017-08-04 Cyclic amine derivative and pharmaceutical use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015038809 2015-02-27
JP2015-038809 2015-02-27

Publications (1)

Publication Number Publication Date
WO2016136944A1 true WO2016136944A1 (ja) 2016-09-01

Family

ID=56788746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055814 WO2016136944A1 (ja) 2015-02-27 2016-02-26 環状アミン誘導体及びその医薬用途

Country Status (20)

Country Link
US (1) US10173999B2 (ja)
EP (1) EP3263565B1 (ja)
JP (1) JP6569671B2 (ja)
KR (1) KR102488848B1 (ja)
CN (1) CN107250128B (ja)
AU (1) AU2016224420B2 (ja)
CA (1) CA2977614C (ja)
DK (1) DK3263565T3 (ja)
ES (1) ES2744785T3 (ja)
HU (1) HUE044722T2 (ja)
IL (1) IL253410A (ja)
MX (1) MX2017010624A (ja)
PH (1) PH12017501297A1 (ja)
PL (1) PL3263565T3 (ja)
PT (1) PT3263565T (ja)
RU (1) RU2667062C1 (ja)
SG (1) SG11201705701UA (ja)
TW (1) TWI682927B (ja)
WO (1) WO2016136944A1 (ja)
ZA (1) ZA201705293B (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016152955A1 (ja) * 2015-03-24 2018-01-11 東レ株式会社 環状アミン誘導体及びその医薬用途
JPWO2016152952A1 (ja) * 2015-03-24 2018-01-11 東レ株式会社 環状アミン誘導体及びその医薬用途
WO2018038255A1 (ja) * 2016-08-26 2018-03-01 東レ株式会社 環状アミン誘導体の結晶及びその医薬用途
WO2018181860A1 (ja) 2017-03-31 2018-10-04 東レ株式会社 末梢神経障害の治療剤又は予防剤
WO2019189781A1 (ja) 2018-03-30 2019-10-03 東レ株式会社 神経細胞内カルシウム濃度上昇抑制剤
WO2020138281A1 (ja) 2018-12-26 2020-07-02 東レ株式会社 アドビリン機能促進剤としての環状アミン誘導体並びに新規環状アミン誘導体及びその医薬用途
WO2021153744A1 (ja) * 2020-01-31 2021-08-05 東レ株式会社 環状アミン誘導体の結晶及びその医薬用途
WO2021172488A1 (ja) * 2020-02-28 2021-09-02 東レ株式会社 環状アミン誘導体及びその医薬用途
RU2783208C2 (ru) * 2018-03-30 2022-11-10 Торэй Индастриз, Инк. Агент для ингибирования повышения внутринейронной концентрации кальция

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111410181A (zh) * 2020-03-31 2020-07-14 福建省龙德新能源股份有限公司 一种利用醚及其衍生物回用六氟磷酸锂合成尾气中五氟化磷的方法
CN111929392B (zh) * 2020-06-18 2023-11-14 吉林医药学院 一种柱前衍生化分析n-(对甲苯磺酰基)-l-丙氨酰氯及其对映异构体的方法
CN111574437A (zh) * 2020-06-22 2020-08-25 上海长车生物科技有限公司 (e)-3-芳杂环基丙-2-烯酸衍生物及其制备和用途
CN115215803B (zh) * 2022-09-19 2022-12-30 苏州美诺医药科技有限公司 一种4-卤代-1-(二氟甲基)-1h-咪唑的制备方法
CN115260103B (zh) * 2022-09-19 2023-01-17 苏州美诺医药科技有限公司 一种4,5-二卤代-1-(二氟甲基)-1h-咪唑的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005527519A (ja) * 2002-03-14 2005-09-15 ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト 新規な置換ピペリジン、これら化合物を含む医薬組成物、その使用及びその調製方法
WO2010119875A1 (ja) * 2009-04-14 2010-10-21 アステラス製薬株式会社 縮合ピロロピリジン誘導体
WO2013147160A1 (ja) * 2012-03-29 2013-10-03 東レ株式会社 環状アミン誘導体及びその医薬用途
WO2015046403A1 (ja) * 2013-09-26 2015-04-02 東レ株式会社 環状アミン誘導体及びその医薬用途

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2163150B (en) 1984-07-19 1988-05-25 Sandoz Ltd 3-aminopropoxyaryl derivatives
JP2567885B2 (ja) 1987-12-15 1996-12-25 東燃化学株式会社 検体の密封方法
JP4563675B2 (ja) 2001-10-12 2010-10-13 ハイ・ポイント・ファーマスーティカルズ、エルエルシー 置換ピペリジン類、およびヒスタミンh3受容体関連疾患の治療のためのその使用
US7026312B2 (en) * 2002-03-14 2006-04-11 Boehringer Ingelheim Pharma Gmbh & Co. Kg Substituted piperidines, pharmaceutical compositions containing these compounds, their use and processes for the preparation thereof
FR2862647B1 (fr) * 2003-11-25 2008-07-04 Aventis Pharma Sa Derives de pyrazolyle, procede de preparation et intermediaires de ce procede a titre de medicaments et de compositions pharmaceutiques les renfermant
JP2006008664A (ja) 2004-05-21 2006-01-12 Takeda Chem Ind Ltd イミダゾール誘導体、その製造法及び用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005527519A (ja) * 2002-03-14 2005-09-15 ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト 新規な置換ピペリジン、これら化合物を含む医薬組成物、その使用及びその調製方法
WO2010119875A1 (ja) * 2009-04-14 2010-10-21 アステラス製薬株式会社 縮合ピロロピリジン誘導体
WO2013147160A1 (ja) * 2012-03-29 2013-10-03 東レ株式会社 環状アミン誘導体及びその医薬用途
WO2015046403A1 (ja) * 2013-09-26 2015-04-02 東レ株式会社 環状アミン誘導体及びその医薬用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3263565A4 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016152952A1 (ja) * 2015-03-24 2018-01-11 東レ株式会社 環状アミン誘導体及びその医薬用途
JPWO2016152955A1 (ja) * 2015-03-24 2018-01-11 東レ株式会社 環状アミン誘導体及びその医薬用途
US11834431B2 (en) 2016-08-26 2023-12-05 Toray Industries, Inc. Crystals of cyclic amine derivative and pharmaceutical use thereof
WO2018038255A1 (ja) * 2016-08-26 2018-03-01 東レ株式会社 環状アミン誘導体の結晶及びその医薬用途
AU2017314560B2 (en) * 2016-08-26 2021-06-03 Toray Industries, Inc. Crystals of cyclic amine derivative and pharmaceutical use thereof
JPWO2018038255A1 (ja) * 2016-08-26 2019-02-28 東レ株式会社 環状アミン誘導体の結晶及びその医薬用途
US10961217B2 (en) 2016-08-26 2021-03-30 Toray Industries, Inc. Crystals of cyclic amine derivative and pharmaceutical use thereof
JPWO2018181860A1 (ja) * 2017-03-31 2020-02-13 東レ株式会社 末梢神経障害の治療剤又は予防剤
AU2018245892B2 (en) * 2017-03-31 2022-02-24 Toray Industries, Inc. Therapeutic or prophylactic agent for peripheral neuropathies
KR20190129036A (ko) 2017-03-31 2019-11-19 도레이 카부시키가이샤 말초신경장해의 치료제 또는 예방제
CN110446494A (zh) * 2017-03-31 2019-11-12 东丽株式会社 周围神经病变的治疗剂或预防剂
KR102633957B1 (ko) * 2017-03-31 2024-02-06 도레이 카부시키가이샤 말초신경장해의 치료제 또는 예방제
JP7163906B2 (ja) 2017-03-31 2022-11-01 東レ株式会社 末梢神経障害の治療剤又は予防剤
WO2018181860A1 (ja) 2017-03-31 2018-10-04 東レ株式会社 末梢神経障害の治療剤又は予防剤
IL269502B (en) * 2017-03-31 2022-09-01 Toray Industries A therapeutic or preventive factor for peripheral neuropathies
RU2770307C2 (ru) * 2017-03-31 2022-04-15 Торэй Индастриз, Инк. Терапевтическое или профилактическое средство против периферических невропатий
RU2783208C2 (ru) * 2018-03-30 2022-11-10 Торэй Индастриз, Инк. Агент для ингибирования повышения внутринейронной концентрации кальция
JPWO2019189781A1 (ja) * 2018-03-30 2021-04-08 東レ株式会社 神経細胞内カルシウム濃度上昇抑制剤
KR20200136895A (ko) 2018-03-30 2020-12-08 도레이 카부시키가이샤 신경세포내 칼슘 농도 상승 억제제
US11510914B2 (en) 2018-03-30 2022-11-29 Toray Industries, Inc. Agent for inhibiting rise in intraneuronal calcium concentration
JP7264158B2 (ja) 2018-03-30 2023-04-25 東レ株式会社 神経細胞内カルシウム濃度上昇抑制剤
WO2019189781A1 (ja) 2018-03-30 2019-10-03 東レ株式会社 神経細胞内カルシウム濃度上昇抑制剤
KR20210107713A (ko) 2018-12-26 2021-09-01 도레이 카부시키가이샤 애드빌린 기능 촉진제로서의 환상 아민 유도체 및 신규 환상 아민 유도체 및 그 의약 용도
RU2792056C2 (ru) * 2018-12-26 2023-03-16 Торэй Индастриз, Инк. Производное циклического амина в качестве средства стимулирования действия адвиллина и новое производное циклического амина и его применение в фармацевтике
WO2020138281A1 (ja) 2018-12-26 2020-07-02 東レ株式会社 アドビリン機能促進剤としての環状アミン誘導体並びに新規環状アミン誘導体及びその医薬用途
JP7447803B2 (ja) 2018-12-26 2024-03-12 東レ株式会社 アドビリン機能促進剤としての環状アミン誘導体並びに新規環状アミン誘導体及びその医薬用途
WO2021153744A1 (ja) * 2020-01-31 2021-08-05 東レ株式会社 環状アミン誘導体の結晶及びその医薬用途
WO2021172488A1 (ja) * 2020-02-28 2021-09-02 東レ株式会社 環状アミン誘導体及びその医薬用途

Also Published As

Publication number Publication date
CA2977614A1 (en) 2016-09-01
IL253410A0 (en) 2017-09-28
DK3263565T3 (da) 2019-10-07
PH12017501297B1 (en) 2018-01-29
IL253410A (en) 2017-12-31
PL3263565T3 (pl) 2019-11-29
PT3263565T (pt) 2019-09-27
US20180065950A1 (en) 2018-03-08
TW201639826A (zh) 2016-11-16
CN107250128A (zh) 2017-10-13
RU2667062C1 (ru) 2018-09-14
JP6569671B2 (ja) 2019-09-04
US10173999B2 (en) 2019-01-08
HUE044722T2 (hu) 2019-11-28
EP3263565A1 (en) 2018-01-03
KR102488848B1 (ko) 2023-01-17
MX2017010624A (es) 2017-12-07
AU2016224420A1 (en) 2017-08-03
CA2977614C (en) 2023-01-17
SG11201705701UA (en) 2017-08-30
KR20170122712A (ko) 2017-11-06
JPWO2016136944A1 (ja) 2017-12-07
EP3263565B1 (en) 2019-06-26
TWI682927B (zh) 2020-01-21
ZA201705293B (en) 2019-02-27
AU2016224420B2 (en) 2019-08-22
PH12017501297A1 (en) 2018-01-29
CN107250128B (zh) 2019-07-26
BR112017017859A2 (ja) 2018-04-10
EP3263565A4 (en) 2018-10-17
ES2744785T3 (es) 2020-02-26

Similar Documents

Publication Publication Date Title
JP6569671B2 (ja) 環状アミン誘導体及びその医薬用途
WO2013147160A1 (ja) 環状アミン誘導体及びその医薬用途
RU2638549C2 (ru) Производное циклического амина и его фармацевтическое применение
EP3275879B1 (en) Cyclic amine derivative and pharmaceutical use thereof
WO2021172488A1 (ja) 環状アミン誘導体及びその医薬用途
BR112017017859B1 (pt) Derivado de amina cíclica ou um sal farmacologicamente aceitável medicamento, agente analgésico, e, seu uso
US10253014B2 (en) Cyclic amine derivative and pharmaceutical use thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016520708

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755688

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177014826

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 253410

Country of ref document: IL

REEP Request for entry into the european phase

Ref document number: 2016755688

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12017501297

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 11201705701U

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2016224420

Country of ref document: AU

Date of ref document: 20160226

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/010624

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2977614

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15553211

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017017859

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017133423

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017017859

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170821