WO2016136707A1 - 膜透過性ペプチド鎖を有する多糖誘導体 - Google Patents

膜透過性ペプチド鎖を有する多糖誘導体 Download PDF

Info

Publication number
WO2016136707A1
WO2016136707A1 PCT/JP2016/055173 JP2016055173W WO2016136707A1 WO 2016136707 A1 WO2016136707 A1 WO 2016136707A1 JP 2016055173 W JP2016055173 W JP 2016055173W WO 2016136707 A1 WO2016136707 A1 WO 2016136707A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysaccharide derivative
general formula
group
cells
compound
Prior art date
Application number
PCT/JP2016/055173
Other languages
English (en)
French (fr)
Inventor
信至 佐久間
浩太 毛利
謙一郎 日渡
恭平 落合
Original Assignee
学校法人常翔学園
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人常翔学園, 株式会社Adeka filed Critical 学校法人常翔学園
Priority to CN201680007432.2A priority Critical patent/CN107207627B/zh
Priority to US15/547,595 priority patent/US10793603B2/en
Priority to KR1020177020483A priority patent/KR102604870B1/ko
Priority to JP2017502368A priority patent/JP6692051B2/ja
Priority to EP16755451.8A priority patent/EP3263604A4/en
Publication of WO2016136707A1 publication Critical patent/WO2016136707A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K9/00Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof
    • C07K9/001Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof the peptide sequence having less than 12 amino acids and not being part of a ring structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/14Peptides containing saccharide radicals; Derivatives thereof, e.g. bleomycin, phleomycin, muramylpeptides or vancomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/02Peptides being immobilised on, or in, an organic carrier
    • C07K17/10Peptides being immobilised on, or in, an organic carrier the carrier being a carbohydrate
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K9/00Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0045Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Galacturonans, e.g. methyl ester of (alpha-1,4)-linked D-galacturonic acid units, i.e. pectin, or hydrolysis product of methyl ester of alpha-1,4-linked D-galacturonic acid units, i.e. pectinic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Definitions

  • the present invention relates to a polysaccharide derivative useful for introducing a low membrane permeability compound into cells or mucous membranes.
  • water-soluble high molecular weight substances such as polypeptides, nucleic acids, and sugars have high hydrophilicity and are difficult to pass through cell membranes. Therefore, as a method for introducing them into cells, a microinjection method, an electroporation method, a calcium phosphate method, a lipofection method, a virus vector method, a membrane-permeable peptide method, and the like are known.
  • the membrane-permeable peptide method is a method that utilizes the fact that a membrane-permeable peptide induces macropinocytosis of cells.
  • Examples of the membrane-permeable peptide method include a method in which a target compound to be introduced into a cell and a membrane-permeable peptide are introduced by covalent bonding (for example, see Patent Documents 1 and 2) or a membrane-permeable peptide in the side chain.
  • a method in which a polymer compound and a target compound to be introduced into cells coexist and only the target compound is introduced (see, for example, Patent Documents 3 and 4).
  • the method of introducing a target compound and a membrane-permeable peptide by covalently bonding them causes little damage to cells, but requires complicated pretreatment.
  • the method of using a polymer compound having a membrane-permeable peptide in the side chain is simple, but the conventionally known polymer compound having a membrane-permeable peptide in the side chain is slightly high in cytotoxicity and used. In some cases, the concentration may be limited, which is a problem in improving the introduction efficiency of the target compound.
  • a compound obtained by crosslinking a polysaccharide having a carboxyl group with a polyamine is useful as a thickener, lubricant, gelling agent and the like in the fields of medicine, medicine and skin cosmetics. It is known that there is. However, a compound obtained by reacting a polysaccharide having a carboxyl group with a membrane-permeable peptide is not known.
  • the present invention has been made in view of the above circumstances, and can introduce water-soluble high molecular weight substances such as nucleic acids and proteins and drugs into cells or mucous membranes in a simple manner with high efficiency. It aims at providing the compound with low toxicity and mucous membrane irritation.
  • polysaccharide derivatives having a membrane-permeable peptide group in the side chain have little cytotoxicity and mucosal irritation, and by using such compounds, water-soluble high molecular weight substances such as nucleic acids and proteins and drugs Has been found to be easily introduced into cells and mucous membranes, and the present invention has been completed.
  • the present invention is a polysaccharide derivative having a partial structure represented by the following general formula (1).
  • X 1 represents a residue obtained by removing a terminal amino group and a terminal carboxyl group from a neutral amino acid or ⁇ -aminoalkanoic acid
  • X 2 excludes a terminal amino group and a terminal carboxyl group from a membrane-permeable peptide.
  • X 3 represents a hydroxyl group, an amino group, an alkoxyl group having 1 to 4 carbon atoms or a benzyloxy group, a represents a number of 0 or 1, and b represents a number of 0 to 50.
  • the polysaccharide derivative having the partial structure represented by the general formula (1) has low cytotoxicity and mucosal irritation, and the low membrane permeability compound can be produced with high efficiency even without complicated pretreatment. It can be introduced into the inside and mucous membranes.
  • the low membrane permeability compound means a compound having low bioavailability, and specifically, a compound having an extent of bioavailability of 50% or less. Means.
  • the polysaccharide derivative having the partial structure represented by the general formula (1) (hereinafter sometimes referred to as the polysaccharide derivative of the present invention) has a membrane-permeable peptide residue, and efficiently converts a low membrane-permeable compound. Can be taken up by cells.
  • the mechanism by which membrane-permeable peptides are taken up by cells is generally that membrane-permeable peptides are taken up by inducing macropinocytosis of cells, and when there are low membrane-permeable compounds in the surrounding area It is believed that these low membrane-permeable compounds are incorporated along with membrane-permeable peptides.
  • the polysaccharide derivative of the present invention macropinocytosis is induced at a plurality of locations of the cell by the membrane-permeable peptide residue.
  • the polysaccharide derivative of the present invention is a macromolecule, and the polysaccharide derivative of the present invention It is also difficult for cells to take up one molecule from multiple locations. For this reason, when a low membrane permeability compound is present around the polysaccharide derivative of the present invention, the low membrane permeability compound is accidentally caused by cells in which macropinocytosis is induced by the polysaccharide derivative of the present invention, And it will be taken in continuously.
  • the interaction between the membrane permeable peptide residue and the low membrane permeable compound is not necessarily required, and the mixture of the polysaccharide derivative of the present invention and the low membrane permeable compound is brought into contact with the cell or mucous membrane. It is considered that a low membrane permeation compound can be introduced into cells or mucous membranes simply by making them. In addition, all the mechanisms described in this specification are speculations, and do not limit the present invention.
  • the saccharide unit represented by the general formula (1) may be either L-form or D-form, and the linkage between the saccharide unit represented by the general formula (1) and other saccharide units is ⁇ -glycoside. Either a bond or a ⁇ -glycoside bond may be used.
  • a represents the number of 0 or 1.
  • a is 1, due to the production method of the polysaccharide derivative of the present invention, a plurality of membrane-permeable peptide residues are introduced into the same sugar unit, resulting in a decrease in handling property due to an increase in viscosity and the introduction of a low membrane-permeable compound. Since a decrease in efficiency may occur, a is preferably a number of 0.
  • X 2 represents the residue obtained by removing the terminal amino group and terminal carboxyl groups from the membrane-permeable peptide.
  • the membrane-permeable peptide residue of the polysaccharide derivative of the present invention may be appropriately selected according to cells, mucous membranes, and the low membrane-permeable compound to be introduced, but at least one of the amino acids constituting the membrane-permeable peptide residue.
  • One is preferably a basic amino acid.
  • the basic amino acid may be either L-form or D-form, and may be appropriately selected depending on the cells, mucous membranes, and the low membrane permeability compound to be introduced.
  • Examples of basic amino acids include arginine, ornithine, lysine, hydroxylysine, histidine, etc. Among them, guanidino group-containing amino acids are preferable, and arginine is more preferable.
  • the ratio of basic amino acids in the membrane-permeable peptide residue increases, the introduction efficiency of the low membrane-permeable compound increases, so the ratio of basic amino acids to all amino acids constituting the membrane-permeable peptide is on a molar basis. 50% or more, more preferably 70% or more.
  • amino acids other than basic amino acids are preferably neutral amino acids.
  • amino acid means an ⁇ -amino acid unless otherwise specified.
  • the number of amino acids constituting the membrane-permeable peptide residue is preferably 5 to 30, more preferably 6 to 20, and more preferably 7 to 15 because the introduction efficiency of the low membrane permeability compound is increased. Most preferably it is.
  • the membrane-permeable peptide include an arginine oligomer in which 7 to 30 arginines are peptide-bonded, a peptide having an amino acid sequence of GRKKRRQRRPPQ (commonly known as HIV-1 ⁇ Tat: SEQ ID NO: 1), and a peptide having an amino acid sequence of TRQARRRRRRRWRERRQR (Commonly referred to as HIV-1 Rev: SEQ ID NO: 2), peptide having an amino acid sequence of RRRRNRTRRNNRRRVR (commonly known as FHV Coat: SEQ ID NO: 3), peptide having an amino acid sequence of TRRQRTRRRRRNR (commonly referred to as HTLV-II Rex: SEQ ID NO: 4), KLTRAQRRAAARKNKRNTR A hydrophilic basic peptide such as a peptide having an amino acid sequence (commonly known as CCMV Gag: SEQ ID NO: 5); RQKIKIWFQNR
  • hydrophilic basic peptides are preferable and arginine oligomers are more preferable because of the excellent introduction efficiency of the low membrane permeability compound.
  • the arginine oligomers the arginine repeat number is preferably 7 to 20, more preferably 7 to 15, and most preferably 7 to 10.
  • X 1 represents a residue obtained by removing a terminal amino group and a terminal carboxyl group from a neutral amino acid or ⁇ -aminoalkanoic acid
  • b represents a number of 0 to 50.
  • a neutral amino acid either L-form or D-form may be used.
  • neutral ⁇ -amino acids examples include alanine, asparagine, cysteine, glutamine, glycine, isoleucine, leucine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, hydroxyproline and the like, and ⁇ -amino As alkanoic acids, 3-aminopropanoic acid, 4-aminobutanoic acid, 5-aminopentanoic acid, 6-aminohexanoic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 9-aminononanoic acid, 10-aminodecanoic acid, Examples thereof include 11-aminoundecanoic acid.
  • Is in neutral amino acid is applied to X 1, since the transfer efficiency of low membrane permeability compound increases, glycine, alanine, valine, isoleucine, leucine, serine, threonine, phenylalanine is preferred, glycine, alanine, serine More preferred is glycine, most preferred.
  • b is preferably a number of 1 to 30, more preferably a number of 1 to 20, and most preferably a number of 1 to 10.
  • X 1 may be one neutral amino acid residue or a combination of two or more.
  • X 3 represents a hydroxyl group, an amino group, an alkoxyl group having 1 to 4 carbon atoms, or a benzyloxy group.
  • X 3 is preferably a hydroxyl group, an amino group, a t-butoxy group or a benzyloxy group, more preferably a hydroxyl group or an amino group, and most preferably an amino group, from the viewpoint of the introduction efficiency of the low membrane permeability compound.
  • polysaccharide derivative of the present invention when there are a plurality of partial structures represented by the general formula (1), a plurality of (—CH 2 —O—CH 2 —) a , (—NH—X 1 —CO—) are present.
  • b 1 , X 2 and X 3 may be the same or different.
  • the partial structure represented by the general formula (1) is preferably a partial structure represented by the following general formula (2) from the viewpoint of the introduction efficiency of the low membrane permeability compound.
  • X 1 to X 3 and b have the same meaning as in the general formula (1).
  • the polysaccharide derivative of the present invention will be described.
  • the polysaccharide derivative of the present invention is characterized by having a partial structure represented by the general formula (1).
  • the proportion of the partial structure represented by the general formula (1) is too small, the low membrane permeability If the introduction efficiency of the active compound is low and too high, it will be difficult to produce the polysaccharide derivative of the present invention, and the polysaccharide derivative of the present invention will have a high viscosity and the introduction efficiency of the low membrane permeability compound will be reduced.
  • the ratio of the partial structure represented by the general formula (1) in the polysaccharide derivative of the present invention is preferably 0.001 to 0.8 relative to the total sugar units of the polysaccharide derivative of the present invention. 005 to 0.6 is more preferable, and 0.01 to 0.5 is most preferable.
  • the ratio here is the ratio of the number of partial structures to the number of sugar units.
  • the sugar unit here refers to a monosaccharide unit.
  • the polysaccharide derivative of the present invention when the molecular weight of the polysaccharide derivative of the present invention is too small, the polysaccharide derivative of the present invention itself may be taken up by cells, and when it is too large, the viscosity becomes high and the low membrane permeability compound.
  • the molecular weight of the polysaccharide derivative of the present invention is preferably 5,000 to 50 million, more preferably 10,000 to 40 million, and most preferably 50,000 to 30 million in terms of weight average molecular weight.
  • the weight average molecular weight of the polysaccharide derivative of the present invention means a weight average molecular weight in terms of pullulan when GPC analysis is performed using an aqueous solvent (represented by the general formula (1a) described later). The same applies to polysaccharide derivatives having a partial structure).
  • the polysaccharide derivative represented by any one of the general formulas (3) to (5) is preferable because of its high introduction efficiency of the low membrane permeability compound, and is represented by the general formula (3). More preferred are polysaccharide derivatives.
  • c and d represent numbers in which c + d is a polysaccharide derivative represented by the general formula (3) having a weight average molecular weight of 5,000 to 50 million, and d / (c + d) is 0.002 to 1.
  • X 1 to X 3 and b have the same meaning as in the general formula (1), provided that the unit c and the unit d are connected in a random manner.
  • e + f + g is a number where the weight average molecular weight of the polysaccharide derivative represented by the general formula (4) is 5,000 to 50 million, and g / (e + f + g) is 0.001 to 1 And X 1 to X 3 and b are as defined in the general formula (1), provided that the unit e, the unit f, and the unit g are connected in a random manner.
  • h, j, k and m are numbers where h + j + k + m is the number average molecular weight of the polysaccharide derivative represented by the general formula (5) of 5,000 to 50 million, and (k + m / (h + j + k + m) is 0.00.
  • X 1 to X 3 and b are the same as those in the general formula (1), provided that the h unit, j unit, k unit and m unit are connected in a random manner. ing.
  • the carboxyl group of the polysaccharide derivative having a partial structure represented by the following general formula (1a) and the amino group of the peptide compound represented by the following general formula (1a) are subjected to peptide reaction.
  • a known method may be used for the reaction between the carboxyl group and the amino group, and examples thereof include a method in which the carboxyl group is converted to succinimide ester with N-hydroxysuccinimide and then the amino group is reacted.
  • examples of the compound in which a is 0 include pectin or pectinic acid, hyaluronic acid, alginic acid, and the like; Carboxymethylated polysaccharide derivatives such as modified starch, carboxymethylated cellulose and carboxymethylated ⁇ -glucose.
  • the polysaccharide derivative represented by the general formula (3) from hyaluronic acid, the polysaccharide derivative represented by the general formula (4) from pectin or pectic acid, and the polysaccharide derivative represented by the general formula (5) from alginic acid. are obtained respectively.
  • Low membrane permeability compound By using the polysaccharide derivative of the present invention as an introduction agent for introducing a low membrane-permeable compound into cells or mucous membranes, various low membrane-permeable compounds can be introduced.
  • low membrane permeability compounds include peptide and protein drugs such as insulin and insulin secretagogues (eg, exendin-4, GLP-1), steroid hormones, non-steroidal analgesic anti-inflammatory agents, Tranquilizer, antihypertensive, ischemic heart disease, antihistamine, antiasthma, antiparkinson, cerebral circulation improving, antiemetic, antidepressant, antiarrhythmic, anticoagulant, antigout , Antifungal, anti-dementia, Sjogren's syndrome treatment, narcotic analgesic, beta blocker, ⁇ 1 agonist, ⁇ 2 agonist, parasympathomimetic, antitumor agent, diuretic, antithrombotic, histamine H1 Recept
  • Nucleic acid compounds such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) and analogs or derivatives thereof (for example, peptide nucleic acid (PNA), phosphorothioate DNA, etc.); peptide compounds such as enzymes, antibodies, glycoproteins, transcription factors;
  • Examples include polysaccharide derivatives such as pullulan, amylopectin, amylose, glycogen, cyclodextrin, dextran, hydroxyethyldextran, mannan, cellulose, starch, alginic acid, chitin, chitosan, hyaluronic acid, and derivatives thereof.
  • the cells to which the polysaccharide derivative of the present invention is applied may be any cells of animals, plants, bacteria, etc., but mammalian cells such as humans are preferred from the viewpoint of introduction efficiency of the low membrane permeability compound.
  • the mucosa to which the polysaccharide derivative of the present invention is applied is also preferably a mammalian cell such as a human from the viewpoint of the introduction efficiency of the low membrane permeability compound.
  • [cell] By using the polysaccharide derivative of the present invention, it is possible to introduce a low membrane permeability compound into various cells and adhere to cells dispersed in a culture solution (also referred to as a liquid medium), a fixed medium, etc. It is possible to introduce the low membrane permeability compound into any cell such as cells obtained from living cells or living tissue. Cells can be broadly classified into adhesive cells that form tissue cells and nerve cells, and floating cells such as blood cells. For suspension cells, the microinjection method and the electroporation method could not be applied, and the calcium phosphate method, lipofection method, virus vector method, etc. could be applied, but the introduction efficiency was not satisfactory. The introduction method of the present invention can introduce a low membrane permeability compound with high introduction efficiency into not only adhesive cells but also floating cells.
  • aqueous medium in which the polysaccharide derivative of the present invention and the low membrane permeability compound are dissolved or dispersed to form an aqueous solution or dispersion containing them examples include distilled water and culture media generally used for cell culture.
  • isotonic water such as physiological saline and 5% by mass glucose aqueous solution is preferable, but culture medium, physiological saline and 5% by mass glucose aqueous solution are preferable because they have little influence on cells.
  • the cells When cells are suspended in an aqueous solution or aqueous dispersion, the cells may be suspended in an aqueous solution or aqueous dispersion containing the low membrane permeability compound and the polysaccharide derivative of the present invention. Accordingly, the suspension containing these three components may be stirred or shaken.
  • the cells when the cells cannot be suspended in an aqueous solution or dispersion due to the fact that the cells are adhered to a solid medium or the like or the cell tissue is large, the low membrane permeability compound and the polysaccharide derivative of the present invention
  • the cells may be immersed in an aqueous solution or aqueous dispersion containing
  • the use concentration of the polysaccharide derivative of the present invention is not particularly limited, but is preferably 0.1 ⁇ g / mL to 10 mg / mL in an aqueous solution or aqueous dispersion. is there.
  • the concentration of the low membrane permeability compound to be introduced is not particularly limited, but is preferably 0.5 ⁇ g / mL to 10 mg / mL in the aqueous solution or aqueous dispersion.
  • the concentration of cells when cells are suspended in an aqueous solution or aqueous dispersion using a culture solution or physiological saline as a medium is not limited, but in an aqueous solution or aqueous dispersion, 10,000 to 2 million cells / It is preferable to use mL.
  • the time for which the polysaccharide derivative of the present invention, the low membrane permeability compound to be introduced, and the cell are allowed to coexist is not particularly limited, but is preferably 30 minutes to 24 hours.
  • [Mucosa] By using the polysaccharide derivative of the present invention in the mucosa, it is possible to introduce a low membrane permeability compound into various mucosa.
  • the mucosa include nasal mucosa, oral mucosa, vaginal mucosa, rectal mucosa, ocular mucosa, gastric mucosa, intestinal mucosa and the like. Since the conventional polymer compound having a membrane-permeable peptide in the side chain was highly irritating to the mucosa, for example, itching may occur when used on the nasal mucosa. Such itchiness is reduced.
  • the mixture of the polysaccharide derivative of the present invention and the low membrane permeability compound may be brought into close contact with the mucosa.
  • the dosage form is not limited as long as it is a dosage form that is difficult to peel off from the mucous membrane.
  • the preferred dosage form varies depending on the mucous membrane, and examples thereof include pills, tablets, troches, patches, suppositories, and poultices.
  • the mixture of the polysaccharide derivative of the present invention and the low membrane permeability compound may be selected from liquid, milky, suspension, gel, powder, solid and other shapes depending on the dosage form. Only one type of low membrane permeation compound may be introduced according to the purpose, or two or more types may be combined. Moreover, you may use together an excipient
  • a small protrusion array (a drug delivery member in which fine protrusions are arranged on a sheet.
  • US2005050778A1 Can be used to introduce a low membrane permeability compound into cells under the skin.
  • a microprojection array in which a mixture of the polysaccharide derivative of the present invention and a low membrane permeability compound is applied to the surface or a microprojection array having a microprojection containing a mixture of the polysaccharide derivative of the present invention and a low membrane permeability compound Is applied to the skin surface, penetrates the skin with fine protrusions, and permeates the polysaccharide derivative of the present invention and the low membrane permeability compound under the skin, so that the low membrane permeability compound is introduced into the cells under the skin. It becomes possible to introduce.
  • ⁇ Production Example 1 Polysaccharide derivative 1> 50 mg of hyaluronic acid (weight average molecular weight: 5000 to 150,000) was dissolved in 1 mL of dimethyl sulfoxide (DMSO). To this solution, 47 mg of N-hydroxysuccinimide dissolved in 0.5 mL of DMSO was added, and 82 mg of dicyclohexylcarbodiimide (DCC) dissolved in 0.5 mL of DMSO was added, and the solution was added at room temperature (25 ° C.) for 24 hours. The reaction was carried out with stirring for an hour.
  • DMSO dimethyl sulfoxide
  • the precipitated solid was separated by filtration, and 0.5 mL of DMSO was added to obtain 2.5 mL of a DMSO solution of succinimide esterified hyaluronic acid.
  • a DMSO solution 500 mg / mL
  • 0.4 mL was mixed and stirred at 60 ° C. for 24 hours to carry out the reaction.
  • the reaction solution was put in a cellulose dialysis tube (seamless cellulose tube, manufactured by Wako Pure Chemical Industries, Ltd.), both ends of the tube were tied, and then dialyzed with ion-exchanged water for 2 days. Thereafter, the contents of the tube were lyophilized to obtain 102 mg of the polysaccharide derivative 1 of the present invention.
  • b in the general formula (3) is 0, X 2 is a residue obtained by removing the terminal amino group and the terminal carboxyl group from octaarginine, X 3 is an amino group, and d / (c + d) is 0. 58.
  • the value of d / (c + d) was calculated
  • X 2 is octaarginine residue
  • compound X 3 is an amino group (RS Synthesis Ltd., trade name: H- (Gly) 4 - ( D-Arg) 8 - 60 mg of the polysaccharide derivative 2 of the present invention was obtained in the same manner as in Production Example 1, except that 0.5 mL of a DMSO solution (320 mg / mL) of NH 2 (Purity: 90%), TFA Salt) was used.
  • X 1 is a residue obtained by removing the terminal amino group and the terminal carboxyl group from glycine
  • X 2 is a residue obtained by removing the terminal amino group and the terminal carboxyl group from octaarginine.
  • the value of d / (c + d) was calculated
  • the weight average molecular weight of polysaccharide derivative 2 was 370,000.
  • Comparative compound 1 was obtained according to Production Example 1 of JP2011-229495A.
  • Comparative compound 1 is a compound having the following structure. (In the formula, R represents an arginine residue.)
  • CHO cells Chinese hamster ovary-derived cells ⁇ medium> Ham'sF12 medium (trade name, manufactured by Wako) Opti-MEM medium (trade name, manufactured by Life Technologies) ⁇ Reagent> Trypsin / EDTA solution: 0.25% trypsin, 1 mmol / L EDTA aqueous solution ⁇ cytotoxicity test kit> Cell Counting Kit-8 (trade name, manufactured by Dojin Chemical) ⁇ Low membrane permeability compound> FITC-BSA: fluorescein-labeled bovine serum albumin (manufactured by Sigma-Aldrich) ⁇ Introduction efficiency into cells> Each well of the 24-well plate was inoculated with 500 ⁇ L of Ham's F12 medium suspension (2 ⁇ 10 5 cells / mL) of CHO cells, and precultured in a carbon dioxide incubator for 24 hours.
  • FITC-BSA Opti-MEM medium solution 10 ⁇ g / mL was added, and then the polysaccharide derivative 1-2, or the Opti-MEM medium solution of Comparative Compounds 1-2 (100 ⁇ g / mL) was added.
  • mL 250 ⁇ L was added and cultured in a carbon dioxide incubator for 1 hour.
  • 100 ⁇ L of trypsin / EDTA solution was added to detach and disperse the cultured CHO cells from the plate.
  • Extracellular FITC-BSA is inactivated by trypan blue and does not emit fluorescence, and only FITC-BSA introduced into the cell emits fluorescence. Since MFI shows the average fluorescence intensity per cell, the higher the MFI value, the more water-soluble polymer compound and low membrane permeability compound FITC-BSA is taken into the cell. It represents that. From the results in Table 1, it can be seen that polysaccharide derivatives 1 and 2 have high efficiency of introducing water-soluble high molecular weight substances into cells.
  • ⁇ Cytotoxicity test> Each well of a 96-well plate was inoculated with 100 ⁇ L of a Ham's F12 medium suspension (2 ⁇ 10 5 cells / mL) of CHO cells, and precultured in a carbon dioxide incubator for 24 hours. Add 10 ⁇ L of Opti-MEM medium solution (2 g / mL) of polysaccharide derivative 1-2 or comparative compound 1-2, incubate for 1 hour in a carbon dioxide incubator, and then add 10 ⁇ L of Cell Counting Kit-8. It left still for 1 hour with the gas incubator.
  • the absorbance at 450 nm was measured, and the ratio (%) of the absorbance when the polysaccharide derivative 1 or 2 or the comparative compound 1 or 2 was not added to the absorbance when the polysaccharide derivative 1 or 2 was not added was defined as the cell viability.
  • the results are shown in Table 2. In addition, it shows that cytotoxicity is so high that a cell viability is low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Materials Engineering (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)
  • Cosmetics (AREA)

Abstract

本発明の多糖誘導体は、下記一般式(1)で表される部分構造を有する。下記一般式(1)のX2を構成するアミノ酸の少なくとも1つが塩基性アミノ酸であることが好ましい。(式中、X1は、中性アミノ酸又はω-アミノアルカン酸から末端アミノ基及び末端カルボキシル基を除いた残基を表し、X2は膜透過性ペプチドから末端アミノ基及び末端カルボキシル基を除いた残基を表し、X3は、水酸基、アミノ基、炭素数1~4のアルコキシル基又はベンジルオキシ基を表し、aは0又は1の数を表し、bは0~50の数を表す。)

Description

膜透過性ペプチド鎖を有する多糖誘導体
 本発明は、低膜透過性化合物を、細胞内又は粘膜内に導入する場合に有用な、多糖誘導体に関する。
 近年、合成ペプチドやタンパク質、さらにはDNAや糖を細胞内に導入し、細胞内でのタンパク質相互作用を調節し、細胞内情報伝達や転写などをコントロールすることで、それらの機能を解明したり、特殊な機能を誘導したりする試みがなされている。このようなアプローチにより、今まで謎とされてきた遺伝情報の解明や、病原の解明、またその治療方法の開発が期待できる。また、ES細胞やiPS細胞の開発により、核酸やタンパク質によって細胞機能をコントロールする技術はますます重要性を増している。
 一般に、ポリペプチド、核酸、糖等の水溶性高分子量物質は、高い親水性を有するため、細胞膜を通過することが困難である。そこで、これらを細胞内に導入する方法として、マイクロインジェクション法、エレクトロポレーション法、リン酸カルシウム法、リポフェクション法、ウイルスベクター法、膜透過性ペプチド法等が知られている。
 このうち、膜透過性ペプチド法は、膜透過性ペプチドが細胞のマクロピノサイトーシスを誘発するのを利用する方法である。膜透過性ペプチド法としては、細胞に導入しようとする目的化合物と膜透過性ペプチドを共有結合させて導入する方法(例えば、特許文献1及び2を参照)や膜透過性ペプチドを側鎖に有する高分子化合物と細胞に導入しようとする目的化合物を共存させ、目的化合物のみを導入する方法(例えば、特許文献3及び4を参照)が知られている。目的化合物と膜透過性ペプチドとを共有結合させて導入する方法は、細胞へのダメージが少ないが、煩雑な前処理が必要である。一方、膜透過性ペプチドを側鎖に有する高分子化合物を使用する方法は、簡便であるが、従来知られた膜透過性ペプチドを側鎖に有する高分子化合物は、細胞毒性がやや高く、使用濃度に制限がでる場合があり、目的化合物の導入効率を向上させる場合に問題となっていた。
 また、膜透過性ペプチドを側鎖に有する高分子は、薬剤の上皮からの吸収性促進剤への応用(例えば、特許文献5を参照)も提案されているが、粘膜に対する刺激性があり実用化する場合の課題となっている。
 一方、カルボキシル基を有する多糖をポリアミンで架橋した化合物(例えば、特許文献6を参照)は、医療、医薬及び皮膚化粧料の分野において、増粘剤、滑沢剤、ゲル化剤等として有用であることが知られている。しかし、カルボキシル基を有する多糖と膜透過性ペプチドとを反応させた化合物は知られていない。
US2003/229202A1 特開2005-052083号公報 US2010/113559A1 特開2011-229495号公報 特開2010-100781号公報 US2004/167098A1
 本発明は、以上の実情に鑑みてなされたものであり、核酸、タンパク質等の水溶性高分子量物質や、薬剤を、簡便な方法で、高い効率で、細胞内又は粘膜内に導入でき、細胞毒性や粘膜刺激性が低い化合物を提供することを目的とする。
 本発明者らは、膜透過性ペプチド基を側鎖に有する多糖誘導体が細胞毒性や粘膜刺激性が少なく、そのような化合物を使用することにより、核酸、タンパク質等の水溶性高分子量物質や薬剤を細胞内や粘膜内に容易に導入できることを見出し、本発明を完成するに至った。
 即ち、本発明は、下記一般式(1)で表される部分構造を有する多糖誘導体である。
Figure JPOXMLDOC01-appb-C000004
(式中、X1は、中性アミノ酸又はω-アミノアルカン酸から末端アミノ基及び末端カルボキシル基を除いた残基を表し、X2は膜透過性ペプチドから末端アミノ基及び末端カルボキシル基を除いた残基を表し、X3は、水酸基、アミノ基、炭素数1~4のアルコキシル基又はベンジルオキシ基を表し、aは0又は1の数を表し、bは0~50の数を表す。)
 本発明によれば、一般式(1)で表される部分構造を有する多糖誘導体は細胞毒性や粘膜刺激性が低く、煩雑な前処理を行わなくとも、低膜透過性化合物を高い効率で細胞内や粘膜内に導入できる。
 以下、本発明の実施形態の一例について説明するが、本発明は以下の実施形態に限定されない。なお、本発明において、低膜透過性化合物とは、生物学的利用能(bioavailability)の低い化合物を意味し、具体的には、生物学的利用率(extent of bioavailability)が50%以下の化合物を意味する。生物学的利用率は以下の式により算出することができる。
生物学的利用率(%)=100×(経口投与により血液中に到達した量)/(静脈投与により血液中に到達した量)
 ここでいう「血液中に到達した量」は、血中濃度と横軸(時間軸)によって囲まれた部分の面積(薬物血中濃度-時間曲線下面積:AUC)として求められる。
 一般式(1)で表される部分構造を有する多糖誘導体(以下、本発明の多糖誘導体という場合がある)は、膜透過性ペプチド残基を有しており、低膜透過性化合物を効率良く細胞に取り込ませることができる。膜透過性ペプチドが細胞に取り込まれる機構は、一般的には、膜透過性ペプチドが細胞のマクロピノサイトーシスを誘発して取り込まれるもので、周囲に低膜透過性化合物が存在する場合には、膜透過性ペプチドとともにこれらの低膜透過性化合物が取り込まれるものと考えられている。本発明の多糖誘導体では、膜透過性ペプチド残基により細胞の複数の箇所でマクロピノサイトーシスが誘発されるが、本発明の多糖誘導体は、巨大分子であり、また、本発明の多糖誘導体の1分子を細胞が複数の箇所から取り込むことも困難である。このため、本発明の多糖誘導体の周囲に低膜透過性化合物が存在する場合には、本発明の多糖誘導体によりマクロピノサイトーシスを誘発された細胞により、低膜透過性化合物が偶発的に、かつ継続的に取り込まれることになる。従って、膜透過性ペプチド残基と低膜透過性化合物との間の相互作用は、必ずしも必要とされず、本発明の多糖誘導体と低膜透過性化合物とを混合したものを細胞又は粘膜に接触させるだけで、低膜透過性化合物を細胞内又は粘膜内に導入できるものと考えられる。なお、本明細書で述べる機構は、いずれも推測であって、本発明を限定するものではない。
[一般式(1)で表される部分構造]
 一般式(1)で表される部分構造について説明する。一般式(1)に示された糖単位は、L体又はD体のいずれであってもよく、一般式(1)に示された糖単位と他の糖単位との結合は、α-グリコシド結合又はβ-グリコシド結合のいずれであってもよい。一般式(1)において、aは0又は1の数を表す。aが1である場合には、本発明の多糖誘導体の製法上、同一の糖単位に複数の膜透過性ペプチド残基が導入され、粘度増加によるハンドリング性の低下や低膜透過性化合物の導入効率の低下が起こる場合があることから、aは0の数が好ましい。
 一般式(1)において、X2は膜透過性ペプチドから末端アミノ基及び末端カルボキシル基を除いた残基を表す。本発明の多糖誘導体の膜透過性ペプチド残基は、細胞や粘膜、導入しようとする低膜透過性化合物に応じて適宜選択されてよいが、膜透過性ペプチド残基を構成するアミノ酸の少なくとも1つは塩基性アミノ酸であることが好ましい。また、塩基性アミノ酸は、L体又はD体のいずれであってもよく、細胞や粘膜、導入しようとする低膜透過性化合物に応じて適宜選択されてよい。
 塩基性アミノ酸としては、アルギニン、オルニチン、リジン、ヒドロキシリジン、ヒスチジン等が挙げられ、中でも、グアニジノ基含有アミノ酸が好ましく、アルギニンが更に好ましい。膜透過性ペプチド残基中の塩基性アミノ酸の割合が高いほど、低膜透過性化合物の導入効率が上がることから、膜透過性ペプチドを構成する全アミノ酸に対する塩基性アミノ酸の割合は、モル基準で、50%以上であることが好ましく、70%以上であることが更に好ましい。膜透過性ペプチド残基を構成するアミノ酸のうち、塩基性アミノ酸以外のアミノ酸は、中性アミノ酸であることが好ましい。尚、本明細書中でアミノ酸と記載する場合、特に断らない限り、α―アミノ酸を意味する。
 膜透過性ペプチド残基を構成するアミノ酸の数は、低膜透過性化合物の導入効率が上がることから、5~30であることが好ましく、6~20であることが更に好ましく、7~15であることが最も好ましい。
  膜透過性ペプチドの好ましい具体例としては、7~30個のアルギニンがペプチド結合したアルギニンオリゴマー、GRKKRRQRRRPPQなるアミノ酸配列を有するペプチド(通称HIV-1 Tat:配列番号1)、TRQARRNRRRRWRERQRなるアミノ酸配列を有するペプチド(通称HIV-1 Rev:配列番号2)、RRRRNRTRRNRRRVRなるアミノ酸配列を有するペプチド(通称FHV Coat:配列番号3)、TRRQRTRRARRNRなるアミノ酸配列を有するペプチド(通称HTLV-II Rex:配列番号4)、KLTRAQRRAAARKNKRNTRなるアミノ酸配列を有するペプチド(通称CCMV Gag:配列番号5)等の親水性の塩基性ペプチド;RQIKIWFQNRRMKWKKなるアミノ酸配列を有するペプチド(通称アンテナペディア:配列番号6)、KMTRAQRRAAARRNRWTARなるアミノ酸配列を有するペプチド(通称BMW Gag:配列番号7)、RQIKIWFQNRRMKWKKなるアミノ酸配列を有するペプチド(通称ペネトラチン:配列番号8)、NAKTRRHERRRKLAIERなるアミノ酸配列を有するペプチド(通称P22N:配列番号9)、DAATATRGRSAASRPTERPRAPARSASRPDDPVDなるアミノ酸配列を有するペプチド(通称VP22:配列番号10)等の両親媒性の塩基性ペプチド;GWTLNSAGYLLGKINLKALAALAKKILなるアミノ酸配列を有するペプチド(通称トランスポータン:配列番号11)、AGYLLGKINLKALAALAKKILなるアミノ酸配列を有するペプチド(通称TP-10:配列番号12)等の疎水性の塩基性ペプチドが挙げられる。これらの中で、低膜透過性化合物の導入効率が優れることから、親水性の塩基性ペプチドが好ましく、アルギニンオリゴマーが更に好ましい。アルギニンオリゴマーの中でも、アルギニンの繰り返し数は、7~20が好ましく、7~15が更に好ましく、7~10が最も好ましい。
 X1は、中性アミノ酸又はω-アミノアルカン酸から末端アミノ基及び末端カルボキシル基を除いた残基を表し、bは0~50の数を表す。中性アミノ酸の場合は、L体又はD体のいずれであってもよい。中性α-アミノ酸としては、例えば、アラニン、アスパラギン、システイン、グルタミン、グリシン、イソロイシン、ロイシン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、バリン、ヒドロキシプロリン等が挙げられ、ω-アミノアルカン酸としては、3-アミノプロパン酸、4-アミノブタン酸、5-アミノペンタン酸、6-アミノヘキサン酸、7-アミノヘプタン酸、8-アミノオクタン酸、9-アミノノナン酸、10-アミノデカン酸、11-アミノウンデカン酸等が挙げられる。X1に適用される中性アミノ酸しては、低膜透過性化合物の導入効率が上がることから、グリシン、アラニン、バリン、イソロイシン、ロイシン、セリン、トレオニン、フェニルアラニンが好ましく、グリシン、アラニン、セリンが更に好ましく、グリシンが最も好ましい。また低膜透過性化合物の導入効率の点や合成の容易さの点から、bは、1~30の数が好ましく、1~20の数が更に好ましく、1~10の数が最も好ましい。bが2~50の数の場合には、X1は、1種の中性アミノ酸残基でもよいし、2種以上の組合せでもよい。
 一般式(1)において、X3は、水酸基、アミノ基、炭素数1~4のアルコキシル基又はベンジルオキシ基を表す。低膜透過性化合物の導入効率の点から、X3としては、水酸基、アミノ基、t-ブトキシ基、ベンジルオキシ基が好ましく、水酸基、アミノ基が更に好ましく、アミノ基が最も好ましい。
 本発明の多糖誘導体中、一般式(1)で表される部分構造が複数存在する場合、複数存在する(-CH2-O-CH2-)a、(-NH-X1-CO-)b、X2及びX3はそれぞれ同一であってもよく異なっていてもよい。
 一般式(1)で表される部分構造は、低膜透過性化合物の導入効率の点から、下記一般式(2)で表される部分構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
(式中、X1~X3及びbは一般式(1)と同義である。)
[本発明の多糖誘導体]
 本発明の多糖誘導体について説明する。本発明の多糖誘導体は、一般式(1)で表される部分構造を有することに特徴があるが、一般式(1)で表される部分構造の割合があまりに少ない場合には、低膜透過性化合物の導入効率が低く、またあまりに多い場合には、本発明の多糖誘導体の製造が困難になるとともに、本発明の多糖誘導体が高粘度になり低膜透過性化合物の導入効率が低下することから、本発明の多糖誘導体中の、一般式(1)で表される部分構造の割合は、本発明の多糖誘導体の全糖単位に対して、0.001~0.8が好ましく、0.005~0.6が更に好ましく、0.01~0.5が最も好ましい。ここでいう割合とは、糖単位の数に対する部分構造の数の割合である。また、ここでいう糖単位とは、単糖単位を指す。
 また、本発明の多糖誘導体の分子量があまりに小さい場合には、本発明の多糖誘導体自体が、細胞に取り込まれてしまう場合があり、またあまりに大きい場合には、高粘度になり低膜透過性化合物の導入効率が低下することから、本発明の多糖誘導体の分子量は、重量平均分子量で、5000~5000万が好ましく1万~4000万が更に好ましく、5万~3000万が最も好ましい。なお、本発明において本発明の多糖誘導体の重量平均分子量とは、水系溶媒を用いてGPC分析を行った場合の、プルラン換算の重量平均分子量をいう(後述する一般式(1a)で表される部分構造を有する多糖誘導体も同様である)。
 本発明の多糖誘導体の中でも、低膜透過性化合物の導入効率が高いことから、一般式(3)~(5)のいずれかで表される多糖誘導体が好ましく、一般式(3)で表される多糖誘導体が更に好ましい。
Figure JPOXMLDOC01-appb-C000006
(式中、c及びdは、c+dが一般式(3)で表される多糖誘導体の重量平均分子量が5000~5000万であり、d/(c+d)が0.002~1になる数を表し、X1~X3及びbは一般式(1)と同義である。但し、cのユニットとdのユニットとはランダム状に連結している。)
Figure JPOXMLDOC01-appb-C000007
(式中、e、f及びgは、e+f+gが一般式(4)で表される多糖誘導体の重量平均分子量が5000~5000万となる数であり、g/(e+f+g)が0.001~1となる数を表し、X1~X3及びbは一般式(1)と同義である。但し、eのユニット、fのユニット及びgのユニットはランダム状に連結している。)
Figure JPOXMLDOC01-appb-C000008
(式中、h、j、k及びmは、h+j+k+mが一般式(5)で表される多糖誘導体の重量平均分子量が5000~5000万となる数であり、(k+m/(h+j+k+m)が0.001~1となる数を表し、X1~X3及びbは一般式(1)と同義である。但し、hのユニット、jのユニット、kのユニット及びmのユニットはランダム状に連結している。)
[本発明の多糖誘導体の製法]
 本発明の多糖誘導体は、例えば、下記一般式(1a)で表される部分構造を有する多糖誘導体のカルボキシル基と、下記一般式(1a)で表されるペプチド化合物のアミノ基とをペプチド反応させることにより得ることができる。カルボキシル基とアミノ基との反応は、公知の方法を用いればよく、例えば、カルボキシル基をN-ヒドロキシコハク酸イミドによりスクシイミドエステル化した後、アミノ基を反応させる方法等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
(式中、aは一般式(1)と同義である。)
Figure JPOXMLDOC01-appb-C000010
(式中、X1~X3及びbは一般式(1)と同義である。)
 一般式(1a)で表される部分構造を有する多糖誘導体のうち、aが0の化合物としては、ペクチン又はペクチン酸、ヒアルロン酸、アルギン酸等が挙げられ;aが1の化合物としては、カルボキシメチル化デンプン、カルボキシメチル化セルロース、カルボキシメチル化βグルコース等のカルボキシメチル化多糖誘導体が挙げられる。なお、ヒアルロン酸からは一般式(3)で表される多糖誘導体、ペクチン又はペクチン酸からは一般式(4)で表される多糖誘導体、アルギン酸からは一般式(5)で表される多糖誘導体がそれぞれ得られる。
[低膜透過性化合物]
 本発明の多糖誘導体は、低膜透過性化合物を細胞内や粘膜内に導入するための導入剤として使用することにより、種々の低膜透過性化合物が導入可能になる。このような低膜透過性化合物としては、例えば、インスリン及びインスリン分泌促進剤(例えば、エキセンディン-4、GLP-1)などのペプチド・タンパク性医薬品、ステロイドホルモン、非ステロイド系鎮痛抗炎症剤、精神安定剤、抗高血圧薬、虚血性心疾患治療薬、抗ヒスタミン薬、抗喘息薬、抗パーキンソン薬、脳循環改善薬、制吐剤、抗うつ薬、抗不整脈薬、抗凝固薬、抗痛風薬、抗真菌薬、抗痴呆薬、シェーングレン症候群治療薬、麻薬性鎮痛薬、ベータ遮断薬、β1作動薬、β2作動薬、副交感神経作動薬、抗腫瘍薬、利尿薬、抗血栓薬、ヒスタミンH1レセプター拮抗薬、ヒスタミンH2レセプター拮抗薬、抗アレルギー薬、禁煙補助薬、ビタミン等の医薬品;
デオキシリボ核酸(DNA)又はリボ核酸(RNA)及びこれらの類似体又は誘導体(例えば、ペプチド核酸(PNA)、ホスホロチオエートDNA等)等の核酸化合物;酵素、抗体、糖タンパク質、転写因子等のペプチド化合物;
プルラン、アミロペクチン、アミロース、グリコーゲン、シクロデキストリン、デキストラン、ヒドロキシエチルデキストラン、マンナン、セルロース、デンプン、アルギン酸、キチン、キトサン、ヒアルロン酸等の多糖誘導体及びそれらの誘導体等が挙げられる。
 本発明の多糖誘導体が、適用される細胞は、動物、植物、細菌等のいずれの細胞でもよいが、低膜透過性化合物の導入効率の点から、ヒト等の哺乳類の細胞が好ましい。本発明の多糖誘導体が、適用される粘膜も、低膜透過性化合物の導入効率の点から、ヒト等の哺乳類の細胞が好ましい。
[細胞]
 本発明の多糖誘導体を使用することにより、種々の細胞内に低膜透過性化合物を導入することが可能であり、培養液(液体培地ともいう)等に分散された細胞、固定培地等に接着した細胞、生体組織の細胞等のいずれの細胞にも低膜透過性化合物を導入することが可能である。細胞は、組織細胞や神経細胞等を形成する接着系の細胞と、血球細胞等の浮遊系の細胞に大別できる。浮遊系の細胞に対しては、マイクロインジェクション法やエレクトロポレーション法は適用できず、リン酸カルシウム法、リポフェクション法、ウイルスベクター法等が適用できたが、導入効率は満足できるものではなかった。本発明の導入方法は、接着系の細胞だけでなく、浮遊系の細胞に対しても、低膜透過性化合物を高い導入効率で導入することが可能である。
[細胞内への導入方法]
 本発明の多糖誘導体を用いて、細胞内に低膜透過性化合物を導入する場合には、本発明の多糖誘導体と低膜透過性化合物を含有する水性溶液又は水性分散液を、細胞と接触させればよく、ウイルスベクター法や膜透過性ペプチドを用いた従来の導入方法のような煩雑な前処理を必要とせず、また細胞への悪影響をあまり与えることなく、細胞内に低膜透過性化合物を導入できる。
 本発明の多糖誘導体と低膜透過性化合物とを溶解又は分散させ、これらを含有する水性溶液又は水性分散液となる水性媒体としては、蒸留水、細胞培養に一般的に用いられる培養液のほか、生理食塩水、5質量%ブドウ糖水溶液等の等張水が挙げられるが、細胞に対する影響が少ないことから培養液、生理食塩水及び5質量%ブドウ糖水溶液が好ましい。
 細胞を水性溶液又は水性分散液に懸濁する場合には、低膜透過性化合物と本発明の多糖誘導体とを含有する水性溶液又は水性分散液に、細胞を懸濁させればよく、必要に応じて、これら3者を含有する懸濁液を撹拌や振盪してもよい。また、細胞が固体培地等に接着されていたり、細胞組織が大きかったり等の理由により、細胞を水性溶液又は水性分散液に懸濁できない場合には、低膜透過性化合物と本発明の多糖誘導体とを含有する水性溶液又は水性分散液に細胞を浸漬させればよい。
 低膜透過性化合物を細胞内に導入する場合、本発明の多糖誘導体の使用濃度は、特に限定されないが、水性溶液又は水性分散液において0.1μg/mL~10mg/mLとするのが好適である。また、導入する低膜透過性化合物の濃度も特に限定されないが、水性溶液又は水性分散液において0.5μg/mL~10mg/mLとするのが好適である。更に、細胞を、培養液若しくは生理食塩水等を媒体とする水性溶液又は水性分散液に懸濁させる場合の細胞の濃度も限定されないが、水性溶液又は水性分散液において1万~200万cells/mLとするのが好適である。
 本発明の多糖誘導体、導入しようとする低膜透過性化合物、及び細胞の3者を共存させる時間は特に限定されないが、30分~24時間とするのが好適である。
[粘膜]
 本発明の多糖誘導体を粘膜内に使用することにより、種々の粘膜内に低膜透過性化合物を導入することが可能である。粘膜としては、鼻粘膜、口腔粘膜、膣粘膜、直腸粘膜、眼粘膜、胃粘膜、腸管粘膜等が挙げられる。従来の膜透過性ペプチドを側鎖に有する高分子化合物は粘膜への刺激性が大きかったことから、例えば、鼻粘膜に使用すると痒みが発生する場合があったが、本発明の多糖誘導体ではこのような痒みが軽減される。
[粘膜内への導入方法]
 本発明の多糖誘導体を用いて、粘膜内に低膜透過性化合物を導入する場合には、本発明の多糖誘導体と低膜透過性化合物との混合物を粘膜に密着させればよく、この混合物が粘膜から剥離しにくい剤形であれば、剤形は限定されない。好ましい剤形は、粘膜によって異なるが、例えば、丸剤、錠剤、トローチ剤、貼付剤、坐薬、パップ剤等が挙げられる。本発明の多糖誘導体と低膜透過性化合物との混合物は、剤形により、液状、乳状、懸濁状、ゲル状、粉末状、固形状等の形状を選択すればよい。低膜透過性化合物は目的に応じて、1種のみを導入してもよく、2種以上を組み合わせてもよい。また、必要に応じて、賦形剤、乳化剤、分散剤、ゲル化剤、保湿剤等を併用してもよい。
[小突起アレイの利用]
 本発明の多糖誘導体は低膜透過性化合物を、皮膚を経由して細胞内に導入することはできないが、小突起アレイ(シート上に微細な突起を配した薬剤送達部材。例えば、US2005025778A1、特開2008-006178等を参照)を利用することにより、皮膚下の細胞内に低膜透過性化合物を導入することが可能になる。例えば、本発明の多糖誘導体と低膜透過性化合物との混合物を表面に塗布した小突起アレイ、又は本発明の多糖誘導体と低膜透過性化合物との混合物を含有する小突起を有する小突起アレイを、皮膚表面に貼り、微細な突起により皮膚を貫通させて、皮膚下に本発明の多糖誘導体と低膜透過性化合物とを浸透させることにより、皮膚下の細胞内に低膜透過性化合物を導入することが可能になる。
 以下、実施例により本発明を更に説明するが、本発明はこれらの実施例によって限定されるものではない。尚、特に限定のない限り、実施例中の「部」や「%」は質量基準によるものである。
<製造例1:多糖誘導体1>
 1mLのジメチルスルホキシド(DMSO)に50mgのヒアルロン酸(重量平均分子量:5000~150000)を溶解した。この溶液へ0.5mLのDMSOに溶解した47mgのN-ヒドロキシコハク酸イミドを添加し、更に0.5mLのDMSOに溶解した82mgのジシクロヘキシルカルボジイミド(DCC)を添加して室温(25℃)で24時間攪拌し反応を行った。析出する固体をろ過によりろ別し、0.5mLのDMSOを添加して、スクシンイミドエステル化されたヒアルロン酸のDMSO溶液2.5mLを得た。
 スクシンイミドエステル化されたヒアルロン酸のDMSO溶液1mLへ、オクタアルギニンの末端カルボキシル基がアミド化された化合物(GL Biochem社製、商品名:RRRRRRRR-NH2,[R=D-Arg]TFA Salt)のDMSO溶液(500mg/mL)0.4mLを混合し、60℃で24時間攪拌し、反応を行った。反応の後、反応溶液をセルロース透析チューブ(シームレスセルロースチューブ,和光純薬社製)に入れ、チューブの両口を縛った後、イオン交換水を用いて2日間透析を行った。その後、チューブの内容物を凍結乾燥して、102mgの本発明の多糖誘導体1を得た。多糖誘導体1は、一般式(3)のbが0、X2がオクタアルギニンから末端アミノ基及び末端カルボキシル基を除いた残基、X3がアミノ基であり、d/(c+d)が0.58である化合物である。なお、d/(c+d)の値はNMRの積分値より求めた。このd/(c+d)の値から、多糖誘導体1に係る全糖単位に対する一般式(1)で表される部分構造の割合は0.29と算出された。多糖誘導体1の重量平均分子量は22万であった。
<製造例2:多糖誘導体2>
 製造例1において、オクタアルギニンの末端カルボキシル基がアミド化された化合物のDMSO溶液(500mg/mL)0.4mLの代わりに、一般式(1b)において、bが4、X1がグリシンから末端アミノ基及び末端カルボキシル基を除いた残基、X2がオクタアルギニン残基、X3がアミノ基である化合物(RS Synthesis社製、商品名:H-(Gly)4-(D-Arg)8-NH2(Purity:90%), TFA Salt)のDMSO溶液(320mg/mL)0.5mLを使用した以外は、製造例1と同様の操作を行い60mgの本発明の多糖誘導体2を得た。多糖誘導体2は、一般式(3)のbが4、X1がグリシンから末端アミノ基及び末端カルボキシル基を除いた残基、X2がオクタアルギニンから末端アミノ基及び末端カルボキシル基を除いた残基、X3がアミノ基であり、d/(c+d)が1.0である化合物である。なお、d/(c+d)の値はNMRの積分値より求めた。このd/(c+d)の値から、多糖誘導体2に係る全糖単位に対する一般式(1)で表される部分構造の割合は0.5と算出された。また、多糖誘導体2の重量平均分子量は37万であった。
<比較化合物1>
 特開2011-229495号公報の製造例1に準拠して製造し、比較化合物1を得た。比較化合物1は下記の構造を有する化合物である。(式中、Rはアルギニン残基を表す。)
Figure JPOXMLDOC01-appb-C000011
<比較化合物2>
 US2010113559A1の製造例に準拠し、重量平均分子量約10万のキトサンを用いて、比較化合物2を製造した。比較化合物2は下記の構造を有する化合物である。(式中、Rはアルギニン残基を表し、x:y=80:20)
Figure JPOXMLDOC01-appb-C000012
<細胞>
CHO細胞:チャイニーズハムスター卵巣由来細胞
<培地>
Ham'sF12培地(商品名、和光社製)
Opti-MEM培地(商品名、Life Technologies社製)
<試薬>
トリプシン/EDTA溶液:0.25%のトリプシン、1mmol/LのEDTA水溶液<細胞毒性試験キット>
Cell Counting Kit-8(商品名、同仁化学社製) 
<低膜透過性化合物>
FITC-BSA:フルオレセイン標識-牛血清アルブミン(Sigma-Aldrich社製)
<細胞内への導入効率>
 24穴プレートの各ウエルにCHO細胞のHam'sF12培地懸濁液(2×105cells/mL)500μLを播種し、炭酸ガスインキュベーターで24時間、前培養した。上清の培地を除去した後、FITC-BSAのOpti-MEM培地溶液(10μg/mL)250μLを添加し、更に多糖誘導体1~2、又は比較化合物1~2のOpti-MEM培地溶液(100μg/mL)250μL添加して、炭酸ガスインキュベーターで1時間培養した。上清の培地溶液を除去し、リン酸緩衝生理食塩水500μLで2回洗浄した後、トリプシン/EDTA溶液100μLを添加して、培養したCHO細胞をプレートから剥離、分散させた。次に、0.08%トリパンブルー溶液100μLを添加し細胞を懸濁させ、マイクロチューブに回収した。回収した細胞懸濁液を、セルストレーナーを通過させ、フローサイトメトリーによりMFI(平均蛍光強度)を測定した。また、多糖誘導体を使用しなかったものをブランクとした。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000013
 細胞外のFITC-BSAはトリパンブルーにより失活して蛍光を発せず、細胞内に導入されたFITC-BSAのみが蛍光を発する。MFIは細胞あたりの1ケあたりの蛍光強度の平均値を示すことから、MFIの値が大きいほど、水溶性高分子化合物であり低膜透過性化合物であるFITC-BSAが細胞内に取込まれたことを表している。表1の結果から、多糖誘導体1及び2は、水溶性高分子量物質の細胞内への導入効率が高いことが分かる。
<細胞毒性試験>
 96穴プレートの各ウエルにCHO細胞のHam'sF12培地懸濁液(2×105cells/mL)100μLを播種し、炭酸ガスインキュベーターで24時間、前培養した。多糖誘導体1~2、又は比較化合物1~2のOpti-MEM培地溶液(2g/mL)を10μL添加し、炭酸ガスインキュベーターで1時間培養し、更に、Cell Counting Kit-8を10μL添加して炭酸ガスインキュベーターで1時間静置した。この後、450nmにおける吸光度を測定し、多糖誘導体1~2、又は比較化合物1~2を、入れない場合の吸光度に対する、入れた場合の吸光度の割合(%)を細胞生存率とした。結果を表2に示す。なお、細胞生存率が低いほど、細胞毒性が高いことを示す。
Figure JPOXMLDOC01-appb-T000014
 表2の結果から、多糖誘導体1及び2は、比較化合物1及び2に比べて細胞生存率が高く、細胞毒性が低いことが分かる。

Claims (9)

  1.  下記一般式(1)で表される部分構造を有する多糖誘導体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、X1は、中性アミノ酸又はω-アミノアルカン酸から末端アミノ基及び末端カルボキシル基を除いた残基を表し、X2は膜透過性ペプチドから末端アミノ基及び末端カルボキシル基を除いた残基を表し、X3は、水酸基、アミノ基、炭素数1~4のアルコキシル基又はベンジルオキシ基を表し、aは0又は1の数を表し、bは0~50の数を表す。)
  2.  前記一般式(1)のX2を構成するアミノ酸の少なくとも1つが塩基性アミノ酸である請求項1に記載の多糖誘導体。
  3.  前記一般式(1)のaが0の数である請求項1又は2に記載の多糖誘導体。
  4.  多糖誘導体の全糖単位に対して、前記一般式(1)で表される部分構造の割合が0.001~0.8である請求項1~3の何れか1項に記載の多糖誘導体。
  5.  前記一般式(1)で表される部分構造が、下記一般式(2)で表される部分構造である、請求項1~4の何れか1項に記載の多糖誘導体。
    Figure JPOXMLDOC01-appb-C000002
    (式中、X1~X3及びbは一般式(1)と同義である。)
  6.  前記一般式(2)で表される部分構造を有する多糖誘導体が、下記一般式(3)で表される多糖誘導体である、請求項5に記載の多糖誘導体。

    Figure JPOXMLDOC01-appb-C000003
    (式中、c及びdは、c+dが一般式(3)で表される多糖誘導体の重量平均分子量が5000~5000万であり、d/(c+d)が0.002~1になる数を表し、X1~X3及びbは一般式(1)と同義である。但し、cのユニットとdのユニットとはランダム状に連結している。)
  7.  低膜透過性化合物を、細胞内又は粘膜内に導入するための導入剤であって、請求項1~6の何れか1項に記載の多糖誘導体からなる導入剤。
  8.  請求項7に記載の導入剤を使用する、低膜透過性化合物を、細胞内に導入するための方法。
  9.  請求項7に記載の導入剤を使用する、低膜透過性化合物を、粘膜内に導入するための方法。
PCT/JP2016/055173 2015-02-27 2016-02-23 膜透過性ペプチド鎖を有する多糖誘導体 WO2016136707A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680007432.2A CN107207627B (zh) 2015-02-27 2016-02-23 具有膜透过性肽链的多糖衍生物
US15/547,595 US10793603B2 (en) 2015-02-27 2016-02-23 Polysaccharide derivative having membrane-permeable peptide chain
KR1020177020483A KR102604870B1 (ko) 2015-02-27 2016-02-23 막투과성 펩티드 사슬을 가지는 다당 유도체
JP2017502368A JP6692051B2 (ja) 2015-02-27 2016-02-23 膜透過性ペプチド鎖を有する多糖誘導体
EP16755451.8A EP3263604A4 (en) 2015-02-27 2016-02-23 Polysaccharide derivative having membrane-permeable peptide chain

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015038432 2015-02-27
JP2015-038432 2015-02-27

Publications (1)

Publication Number Publication Date
WO2016136707A1 true WO2016136707A1 (ja) 2016-09-01

Family

ID=56788948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055173 WO2016136707A1 (ja) 2015-02-27 2016-02-23 膜透過性ペプチド鎖を有する多糖誘導体

Country Status (7)

Country Link
US (1) US10793603B2 (ja)
EP (1) EP3263604A4 (ja)
JP (1) JP6692051B2 (ja)
KR (1) KR102604870B1 (ja)
CN (1) CN107207627B (ja)
TW (1) TWI698446B (ja)
WO (1) WO2016136707A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016159159A1 (ja) * 2015-03-31 2018-01-25 キユーピー株式会社 ヒアルロン酸誘導体およびその製造方法、ならびにヒアルロン酸誘導体を含む化粧料、食品組成物および医薬組成物
WO2020013265A1 (ja) 2018-07-11 2020-01-16 学校法人常翔学園 高分子化合物及びそれを用いた細胞内化合物導入促進剤
WO2022080294A1 (ja) * 2020-10-16 2022-04-21 学校法人常翔学園 組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102294257B1 (ko) * 2019-04-30 2021-08-26 한양대학교 에리카산학협력단 바이오셀룰로오스-펩티드 복합체 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134096A (ja) * 1990-09-21 1992-05-07 Seikagaku Kogyo Co Ltd ペプチド誘導体および血栓症治療剤
JPH04300900A (ja) * 1991-03-29 1992-10-23 Asahi Glass Co Ltd ペプチド複合体、及びそれを有効成分とする癌転移阻害剤
JP2010515678A (ja) * 2007-01-05 2010-05-13 バイオポリメド インコーポレーテッド キトサン基材高分子接合体及びその製造方法
JP2011229495A (ja) * 2010-04-30 2011-11-17 Adeka Corp 細胞への水溶性高分子量物質の導入方法及び導入剤
WO2012118189A1 (ja) * 2011-03-03 2012-09-07 中外製薬株式会社 アミノ-カルボン酸により修飾されたヒアルロン酸誘導体

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0671412A1 (en) * 1990-11-30 1995-09-13 Asahi Glass Company Ltd. Tumor cell invasion-inhibiting peptides and cancer metastasis inhibitors
IT1303738B1 (it) 1998-11-11 2001-02-23 Aquisitio S P A Processo di reticolazione di polisaccaridi carbossilati.
GB0103110D0 (en) 2000-08-25 2001-03-28 Aventis Pharma Inc A membrane penetrating peptide encoded by a nuclear localization sequence from human period 1
JP2004261024A (ja) * 2003-02-28 2004-09-24 Japan Science & Technology Agency ペプチド修飾多糖類を用いる遺伝子治療剤
JP2005052083A (ja) 2003-08-05 2005-03-03 Rikogaku Shinkokai タンパク質の細胞内導入方法
JP2007145761A (ja) * 2005-11-28 2007-06-14 Tokyo Univ Of Pharmacy & Life Science 細胞膜透過性ペプチド修飾多糖−コレステロールまたは多糖−脂質非ウイルス性ベクターおよびその製造方法
EP1797901A1 (en) 2005-12-16 2007-06-20 Diatos Cell penetrating peptide conjugates for delivering nucleic acids into cells
EP1968643A2 (en) * 2005-12-16 2008-09-17 Diatos Cell penetrating peptide conjugates for delivering of nucleic acids into a cell
JP5264502B2 (ja) * 2005-12-30 2013-08-14 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング 細胞透過性ペプチドとして使用できるペプチド
JP5635512B2 (ja) * 2008-09-16 2014-12-03 カリエム・アーメド 遺伝子調節化合物の改良された送達のための化学的に修飾された細胞透過性ペプチド
JP5281358B2 (ja) * 2008-10-27 2013-09-04 学校法人常翔学園 高分子、経上皮吸収促進剤、及び医薬用製剤
CN201682430U (zh) 2010-05-14 2010-12-22 维尔斯电子(昆山)有限公司 温控式电源装置
EP2820033A4 (en) * 2012-02-29 2015-01-07 Ambrx Inc INTERLEUKIN 10 POLYPEPTIDE CONJUGATES AND ITS USES
US9761549B2 (en) * 2012-11-08 2017-09-12 Tongfu Microelectronics Co., Ltd. Semiconductor device and fabrication method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134096A (ja) * 1990-09-21 1992-05-07 Seikagaku Kogyo Co Ltd ペプチド誘導体および血栓症治療剤
JPH04300900A (ja) * 1991-03-29 1992-10-23 Asahi Glass Co Ltd ペプチド複合体、及びそれを有効成分とする癌転移阻害剤
JP2010515678A (ja) * 2007-01-05 2010-05-13 バイオポリメド インコーポレーテッド キトサン基材高分子接合体及びその製造方法
JP2011229495A (ja) * 2010-04-30 2011-11-17 Adeka Corp 細胞への水溶性高分子量物質の導入方法及び導入剤
WO2012118189A1 (ja) * 2011-03-03 2012-09-07 中外製薬株式会社 アミノ-カルボン酸により修飾されたヒアルロン酸誘導体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3263604A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016159159A1 (ja) * 2015-03-31 2018-01-25 キユーピー株式会社 ヒアルロン酸誘導体およびその製造方法、ならびにヒアルロン酸誘導体を含む化粧料、食品組成物および医薬組成物
WO2020013265A1 (ja) 2018-07-11 2020-01-16 学校法人常翔学園 高分子化合物及びそれを用いた細胞内化合物導入促進剤
KR20210031478A (ko) 2018-07-11 2021-03-19 각코호우징 조쇼 가쿠엔 고분자 화합물 및 이를 이용한 세포내 화합물 도입 촉진제
WO2022080294A1 (ja) * 2020-10-16 2022-04-21 学校法人常翔学園 組成物

Also Published As

Publication number Publication date
JP6692051B2 (ja) 2020-05-13
KR102604870B1 (ko) 2023-11-22
US10793603B2 (en) 2020-10-06
CN107207627A (zh) 2017-09-26
JPWO2016136707A1 (ja) 2017-12-07
CN107207627B (zh) 2022-05-24
TW201639864A (zh) 2016-11-16
EP3263604A1 (en) 2018-01-03
US20180044381A1 (en) 2018-02-15
KR20170122179A (ko) 2017-11-03
TWI698446B (zh) 2020-07-11
EP3263604A4 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
Ryser A membrane effect of basic polymers dependent on molecular size
JP6692051B2 (ja) 膜透過性ペプチド鎖を有する多糖誘導体
ES2900805T3 (es) Nanopartículas de quitosano doblemente transformado en derivado y métodos para producirlas, y uso de las mismas para transferencia in vivo de genes
JP2007145761A (ja) 細胞膜透過性ペプチド修飾多糖−コレステロールまたは多糖−脂質非ウイルス性ベクターおよびその製造方法
EP3263582B1 (en) Polymer compound which has membrane-permeable peptide in side chain
WO2018130282A1 (en) Star-like (guanidyl)x-oligosaccharidic compounds and conjugates or complexes thereof
US9018156B2 (en) Organic nanotube having hydrophobized inner surface, and encapsulated medicinal agent prepared using the nanotube
JP5808082B2 (ja) 細胞への水溶性高分子量物質の導入方法及び導入剤
JP4477815B2 (ja) Tat49−57ペプチドまたはTat49−57ペプチドを含むペプチド鎖と生分解性脂肪族ポリエステルとのコンジュゲート、およびこれを使用して製造されるナノ粒子
CN112424239B (zh) 高分子化合物及使用了该高分子化合物的细胞内化合物导入促进剂
CN101686940B (zh) 一种将蛋白质递送到细胞中的方法
WO2022080294A1 (ja) 組成物
CN113501864B (zh) 一种糖肽或药学上可接受的盐及其制备方法与应用
CA2794217C (en) Thiosulfonate compound, reversible cationization agent for protein and/or peptide, and method for solubilization
WO2024141787A2 (en) A hydrogel bead-based platform for the high throughput screening of immunomodulatory peptides and designer peptides for dendritic cells/macrophage reprogramming
KR20190056606A (ko) 사이티딘 5-삼인산 또는 이의 고분자를 유효성분으로 포함하는 핵 내로의 약물 전달용 조성물 및 면역 증강제

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017502368

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177020483

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016755451

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15547595

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE