WO2016136341A1 - 信号処理装置 - Google Patents

信号処理装置 Download PDF

Info

Publication number
WO2016136341A1
WO2016136341A1 PCT/JP2016/051640 JP2016051640W WO2016136341A1 WO 2016136341 A1 WO2016136341 A1 WO 2016136341A1 JP 2016051640 W JP2016051640 W JP 2016051640W WO 2016136341 A1 WO2016136341 A1 WO 2016136341A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
signal
degrees
phase rotation
coefficient
Prior art date
Application number
PCT/JP2016/051640
Other languages
English (en)
French (fr)
Inventor
宮阪 修二
一任 阿部
Original Assignee
株式会社ソシオネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソシオネクスト filed Critical 株式会社ソシオネクスト
Priority to JP2017501982A priority Critical patent/JP6673328B2/ja
Priority to CN201680009683.4A priority patent/CN107251578B/zh
Publication of WO2016136341A1 publication Critical patent/WO2016136341A1/ja
Priority to US15/671,461 priority patent/US10075794B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S1/00Two-channel systems
    • H04S1/002Non-adaptive circuits, e.g. manually adjustable or static, for enhancing the sound image or the spatial distribution
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/50Controlling the output signals based on the game progress
    • A63F13/54Controlling the output signals based on the game progress involving acoustic signals, e.g. for simulating revolutions per minute [RPM] dependent engine sounds in a driving game or reverberation against a virtual wall
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S1/00Two-channel systems
    • H04S1/007Two-channel systems in which the audio signals are in digital form
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/50Controlling the output signals based on the game progress
    • A63F13/52Controlling the output signals based on the game progress involving aspects of the displayed game scene
    • A63F13/525Changing parameters of virtual cameras
    • A63F13/5255Changing parameters of virtual cameras according to dedicated instructions from a player, e.g. using a secondary joystick to rotate the camera around a player's character
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/60Methods for processing data by generating or executing the game program
    • A63F2300/6063Methods for processing data by generating or executing the game program for sound processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/01Enhancing the perception of the sound image or of the spatial distribution using head related transfer functions [HRTF's] or equivalents thereof, e.g. interaural time difference [ITD] or interaural level difference [ILD]

Definitions

  • the present invention relates to a signal processing apparatus that moves a sound image localized at a predetermined position toward a listener's position, or moves a sound image localized at a listener's position toward a predetermined position.
  • Japanese Patent Application Laid-Open No. 2004-228561 describes a technique for localizing an audio object to a predetermined position. By applying such a technique, a process for moving the audio object from moment to moment is possible. For example, if a method as shown in FIG. 9 is used, a sound image localized on the right side (or left side) of the listener can be moved to the left side (or right side) of the listener momentarily.
  • reference numeral 650 denotes a sound image localization filter that localizes the sound image to the left side, for example, a sound image localization filter created by the technique of Patent Document 1.
  • reference numeral 651 denotes a sound image localization filter that localizes the sound image to the right side.
  • Reference numeral 652 denotes synthesis means for moving the sound image to the left and right. When moving the sound image to the left, the coefficient ⁇ in the synthesizing unit 652 is set to 1. By doing so, the output signal of the left localization sound image localization filter 650 is output from the speakers 603a and 603b, so that the sound image is localized to the left.
  • the coefficient ⁇ in the synthesizing means 652 is set to zero. By doing so, the output signal of the right localization sound image localization filter 651 is output from the speakers 603a and 603b, so that the sound image is localized to the right. Also, by setting the value of ⁇ between 0 and 1, the sound image can be moved to the left and right.
  • the audio object 662 shown in FIG. 10 can be moved to the left and right of the listener 660, but the audio object is positioned at the listener.
  • the audio object moves away from the listener and moves to the center of the left and right speaker positions as it approaches (in the middle of the left and right) (although it wants to pass through the immediate vicinity of the listener).
  • the left localization sound image localization filter 650 and the right localization sound image localization filter 651 are symmetric, that is, the left speaker output signal of the left localization filter 650 is the right speaker output signal of the right localization filter 651 (at least). This is because the right speaker output signal of the left localization filter 650 is (at least approximately) the same as the left speaker output signal of the right localization filter 651.
  • the sound image localization filter is bilaterally symmetrical, the left speaker direction signal and the right speaker direction signal that are the outputs of the synthesizing means 652 become the same signal. That is, the monaural signal is output from the left and right speakers 603a and 603b. In this case, the sound image is localized at the center position of the speakers 603a and 603b arranged on the left and right. As a result, in the process where the sound image localized at the left ear moves to the right ear, the sound image moves away from the vicinity of the head and moves to the position between the speakers (see FIG. 11).
  • the present invention has been made in view of such conventional problems, and moves a sound image localized at a predetermined position toward a listener's position. In particular, the listener's back-and-forth and right-and-left movement is uncomfortable.
  • An object of the present invention is to provide a signal processing device that can be realized without any problems.
  • the phase rotation means A for rotating the phase of the signal A to generate two signals having a phase difference of ⁇ , and transitioning the ⁇ with time.
  • Control means controls the phase so that ⁇ is approximately 0 degrees at a predetermined time T0, and controls the phase so that ⁇ is approximately 180 degrees at time T1. It is characterized by this.
  • phase rotation unit A includes a first phase rotation unit that rotates the phase of the signal A by ⁇ 1 degrees, and a second phase rotation unit that rotates the phase of the signal A by ⁇ 1 degrees.
  • Phase rotation means, wherein the ⁇ 1 is ⁇ / 2.
  • a signal processing apparatus comprising: a phase rotation unit A that rotates the phase of the signal A to generate two signals having a phase difference of ⁇ ; and a phase difference of 2 that rotates the phase of the signal B.
  • Phase rotation means B for generating two signals, a signal obtained by multiplying the first output signal of the phase rotation means A by a coefficient G1, and a signal obtained by multiplying the first output signal of the phase rotation means B by a coefficient G2.
  • a first adding means for adding, a signal obtained by multiplying the second output signal of the phase rotating means A by the coefficient G2, and a signal obtained by multiplying the second output signal of the phase rotating means B by the coefficient G1.
  • the phase is controlled to be approximately 180 degrees at time T1.
  • the coefficient G1 is a positive value h smaller than g when the ⁇ is 0 degrees, and the positive value G is 180 degrees when the ⁇ is 0 degrees, and the h when the ⁇ is 180 degrees.
  • the coefficient G1 and the coefficient G2 are controlled so that
  • control means sets the coefficient G1 so that the coefficient G1 is 0 when the ⁇ is 360 degrees, and the coefficient G2 is g when the ⁇ is 360 degrees. G1 and the coefficient G2 are controlled.
  • phase rotation unit A includes a first phase rotation unit that rotates the phase of the signal A by ⁇ 1 degrees, and a second phase rotation unit that rotates the phase of the signal A by ⁇ 1 degrees.
  • the phase rotation means B includes a third phase rotation means for rotating the phase of the signal B by ⁇ 1 degrees, and a fourth phase rotation means for rotating the phase of the signal B by ⁇ 1 degrees.
  • the ⁇ 1 is ⁇ / 2.
  • the signal processing apparatus wherein the signal A and the signal B are signals generated from a sound image localization filter for localizing a sound image of the signal S to a predetermined position by two speakers. It is what.
  • the sound image localized at a predetermined position can be gradually brought closer to or away from the listener.
  • the second aspect of the present invention it is possible to gradually move the sound image localized at a predetermined position closer to or away from the listener while maintaining a natural timbre.
  • the sound image localized at a predetermined position by the virtual sound image localization technique can be gradually brought closer to or away from the listener.
  • the sound image that has been localized at a predetermined position is gradually brought closer to the listener, further away from the listener, and the position of the symmetrical position of the originally localized position can be localized.
  • the sound image localized at a predetermined position by the virtual sound image localization technique can be gradually brought closer to or away from the listener while maintaining a natural tone color.
  • the virtual sound image localization technique and the sound image localization processing according to claims 3 and 4 can be processed in an integrated manner.
  • FIG. 1 is a diagram illustrating a configuration of a signal processing device according to the first embodiment.
  • FIG. 2 is a diagram showing a simplified configuration of the signal processing device according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of how the phase difference transitions.
  • FIG. 4 is a diagram showing a configuration for using a combination of a sound image localization filter and a signal processing device.
  • FIG. 5 is a diagram illustrating a configuration of the signal processing device according to the second embodiment.
  • FIG. 6 is a diagram illustrating another example of how the phase difference transitions.
  • FIG. 7 is a diagram for explaining the effect of the second embodiment.
  • FIG. 8 is a diagram showing a simplified configuration of the signal processing device according to the second embodiment.
  • FIG. 9 is a diagram showing a conventional technique for moving a sound image.
  • FIG. 10 is a diagram for explaining a problem of the conventional technique.
  • FIG. 11 is a diagram for explaining a problem of the conventional technique.
  • a technique for moving a monaural signal sound image from moment to moment will be described.
  • a technique for realizing an acoustic expression in which a sound image that has been localized in front of a listener (a center position between stereo speakers) at a predetermined time approaches the listener's own direction over time will be described.
  • in-head localization a phenomenon called so-called in-head localization. This is because when a monaural signal is played back by a stereo speaker, if the monaural signal is output as it is from one speaker and a signal obtained by inverting the phase of the monaural signal is output from the other speaker, the monaural signal is output. This is a phenomenon in which the sound image of the signal has an illusion as if it were localized in the listener's head (see Non-Patent Document 1: Kashima Publishing Co., Jens Brawelt et al., Spatial Sound P138).
  • FIG. 1 is a diagram illustrating a configuration of a signal processing device according to the present embodiment.
  • reference numeral 100 denotes a first phase rotation means for rotating the phase of the input signal A by ⁇ 1 degree.
  • Reference numeral 101 denotes second phase rotation means for rotating the phase of the input signal A by ⁇ 1 degrees.
  • Reference numeral 102 denotes control means for changing ⁇ 1 with time.
  • Reference numerals 103a and 103b denote stereo speakers that output the output signals of the first phase rotation unit 100 and the second phase rotation unit 101, respectively.
  • the control means 102 sets ⁇ 1 to 0 degree. By doing so, the first phase rotation means 100 rotates the phase of the input signal A by 0 degrees. Similarly, the second phase rotation means 101 rotates the phase of the input signal A by 0 degrees.
  • the stereo speakers 103a and 103b output the output signal of the first phase rotation unit 100 and the output signal of the second phase rotation unit 101, respectively. By doing so, since the same sound is output from the left and right stereo speakers 103a and 103b, the sound image is localized at the center position between the left and right stereo speakers 103a and 103b.
  • the control means 102 sets ⁇ 1 to 1 degree. By doing so, the phase of the input signal A is rotated once by the first phase rotating means 100. Similarly, the second phase rotation means 101 rotates the phase of the input signal A by ⁇ 1 degree.
  • the stereo speakers 103a and 103b output the output signal of the first phase rotation unit 100 and the output signal of the second phase rotation unit 101, respectively.
  • ⁇ 1 is gradually updated in the + direction by the control means 102, and the phase of the input signal is respectively changed by the first phase rotation means 100 and the second phase rotation means 101 accordingly. Rotate.
  • phase difference between the output signal of the first phase rotation means 100 and the output signal of the second phase rotation means 101 is 180 degrees, the phase of the signals output from the stereo speakers 103a and 103b is inverted. Signal. In that case, it becomes the state of localization in the head described at the beginning of the present embodiment, and it feels as if the sound image is localized in the listener's own head.
  • the control means 102 By controlling ⁇ 1 in this way by the control means 102, the sound image that has been localized in front of the listener gradually moves at time 0, and is localized in the listener's head at time T. Sound expression that approaches
  • the initial value of the phase at time is set to 0 degrees, but it is not necessary to be 0 degrees, and may be set to 30 degrees, for example.
  • the phase may be the same phase at time 0 and the opposite phase at time T, and the phase angle rotated by the first phase rotating unit 100 and the phase angle rotated by the second phase rotating unit 101 are the same. It does not have to be positive and negative and the same absolute value.
  • FIG. 2 shows the configuration in that case.
  • a delay unit that realizes the same delay time as the delay time generated by the phase rotation unit 200 is required on the path to the lower stereo speaker 103b, but it is not shown.
  • the configuration of FIG. 2 is simpler than the configuration of FIG. 1, but in the case of the configuration of FIG. 2, a signal without any phase rotation is emitted from one speaker, so that the tone color between both speakers is There is a problem of being different.
  • the timbre becomes uniform, so that the moving process of the sound image can be performed with a natural timbre.
  • only the low frequency component of the frequency component of the input signal A may be phase rotated.
  • only the frequency component of 1.5 kHz or less where the phenomenon of localization in the head due to the anti-phase component is remarkable may be rotated.
  • the acoustic expression that the sound image gradually approaches the listener is realized, but the sound expression that the sound image that was in the listener's head gradually moves away from the listener is also realized with the same technology. It can. That is, ⁇ 1 is set to 90 degrees at time 0, and ⁇ 1 is updated in the ⁇ direction every moment. Thus, at time T, ⁇ 1 is set to 0 degrees. By doing so, the sound image localized in the listener's head moves to the front of the listener at time T.
  • FIG. 3 shows an example of how the phase difference ( ⁇ 1) transitions with time.
  • the sound image is at a position away from the listener at time T0, gradually approaches the listener direction with time, and approaches the listener most at time T1. Further, the sound image gradually moves away from the listener with time and is localized at the original position away from the listener at time T2.
  • the method of transition of the phase difference shown in FIG. 3 is merely an example, and is not limited to linear transition as shown in FIG. 3, and the phase difference starts from 0 and transitions in the + direction at time T0. It is not limited to.
  • the first phase rotating means 100 that rotates the phase of the signal A by ⁇ 1 degrees
  • the second phase rotating means 101 that rotates the phase of the signal A by ⁇ 1 degrees
  • And control means 102 for causing the ⁇ 1 to transition with time.
  • the control means 102 controls the phase so that the ⁇ 1 becomes approximately 0 degrees at a predetermined time T0, and the ⁇ 1 is approximately set at the time T1.
  • the phase so that it is 90 degrees, the sound image that has been localized in front of the listener gradually approaches the listener, or the sound image that has been localized at the listener's position gradually moves away from the listener. It is possible to achieve an acoustic expression that goes on.
  • Embodiment 2 a technique for moving a sound image localized at a predetermined position by a sound image localization filter from moment to moment will be described.
  • a technique for moving a sound image so that the sound image localized at a predetermined position at a predetermined time approaches the listener's own direction as time passes will be described. That is, as shown in FIG. 4, the monaural signal is processed by the sound image localization filter 20, and the sound image is moved by the signal processing apparatus 10 described in the present embodiment for the two signals output therefrom.
  • any sound image localization filter 20 may be used. For example, it may be disclosed in Patent Document 1 mentioned above.
  • in-head localization a phenomenon called so-called in-head localization. This is because when a monaural signal is played back by a stereo speaker, if the monaural signal is output as it is from one speaker and a signal obtained by inverting the phase of the monaural signal is output from the other speaker, the monaural signal is output. This is a phenomenon in which the sound image of the signal is illusioned as if it were localized in the listener's head.
  • FIG. 5 is a diagram showing a configuration of the signal processing apparatus according to the present embodiment.
  • reference numeral 300 denotes first phase rotation means for rotating the phase of the signal A by ⁇ degrees.
  • Reference numeral 301 denotes second phase rotation means for rotating the phase of the signal A by ⁇ degrees.
  • Reference numeral 302 denotes third phase rotation means for rotating the phase of the signal B by ⁇ degrees.
  • Reference numeral 303 denotes fourth phase rotating means for rotating the phase of the signal B by ⁇ degrees.
  • Reference numeral 305 denotes a first addition unit that adds the output signal of the first phase rotation unit 300 and the output signal of the third phase rotation unit 302.
  • Reference numeral 306 denotes second addition means for adding the output signal of the second phase rotation means 301 and the output signal of the fourth phase rotation means 303.
  • Reference numeral 304 denotes control means for causing the ⁇ and the coefficients (G1, G2) indicating the weights of signals to be added by the first addition means 305 and the second addition means 306 to transition with time.
  • Reference numerals 103a and 103b denote stereo speakers for outputting the output signals of the first addition means 305 and the second addition means 306.
  • the first phase rotating means 300 rotates the phase of the input signal A by 0 degrees
  • the second phase rotating means 301 rotates the phase of the input signal A by 0 degrees
  • the third phase
  • the phase of the input signal B can be rotated by 0 degrees by the rotating means 302, and the phase of the input signal B can be rotated by 0 degrees by the fourth phase rotating means 303.
  • the stereo speakers 103a and 103b output the output signal of the first addition means 305 and the output signal of the second addition means 306, respectively.
  • the signals A and B are output from the left and right speakers, respectively, so that the sound image is placed at a position localized by the sound image localization filter 20.
  • the first phase rotation means 300 rotates the phase of the input signal A by 1 degree
  • the second phase rotation means 301 rotates the phase of the input signal A by ⁇ 1 degree
  • the third phase rotation means 300 The phase of the input signal B is rotated by ⁇ 1 degree by the phase rotating means 302, and the phase of the input signal B is rotated by 1 degree by the fourth phase rotating means 303.
  • G1 cos (( ⁇ / 2) * ⁇ / 180)
  • G2 sin (( ⁇ / 2) * ⁇ / 180)
  • the present invention is not limited to this.
  • the stereo speakers 103a and 103b output the output signal of the first addition means 305 and the output signal of the second addition means 306, respectively.
  • the sound output from the left and right speakers is localized at a position slightly moved from the position localized by the sound image localization filter 20 into the listener's head.
  • the control means 304 gradually approaches ⁇ to +90 degrees. Further, the coefficient G1 and the coefficient G2 are gradually brought closer to the same value.
  • the first phase rotation unit 300 rotates the phase of the input signal A by 90 degrees
  • the second phase rotation unit 301 rotates the input signal A.
  • the third phase rotating means 302 rotates the phase of the input signal B by ⁇ 90 degrees
  • the fourth phase rotating means 303 rotates the phase of the input signal B by 90 degrees.
  • the first adding unit 305 outputs the above-described output signal to the first phase rotating unit 300.
  • a signal obtained by adding the output signals of the third phase rotation means 302 with the same weight is output.
  • the second addition means 306 outputs a signal obtained by adding the output signal of the fourth phase rotation means 303 to the output signal of the second phase rotation means 301 with the same weight.
  • the stereo speakers 103a and 103b output the output signal of the first addition means 305 and the output signal of the second addition means 306, respectively.
  • the acoustic expression that the sound image gradually approaches the listener is realized, but the sound expression that the sound image that was in the listener's head gradually moves away from the listener is also realized with the same technology. It can. That is, ⁇ is set to 90 degrees at time 0, and ⁇ is updated in the ⁇ direction every moment. Thus, at time T, ⁇ is set to 0 degrees. By doing so, the sound image localized in the listener's head is moved to a position localized at the time T by the sound image localization filter 20.
  • G1 cos (( ⁇ / 2) * ⁇ / 180)
  • G2 sin (( ⁇ / 2) * ⁇ / 180) even after ⁇ exceeds 90 degrees. That's fine.
  • FIG. 7 is a diagram for explaining the effect.
  • reference numeral 501 denotes a listener
  • 502 to 504 denote virtual sound source positions at time T0, time T1, and time T2, respectively.
  • the first phase rotating means 300 the second phase rotating means 301, the third phase rotating means 302, and the fourth phase rotating means 303, only the low frequency component in the frequency component of the input signal A is obtained. May be rotated in phase. For example, only the frequency component of 1.5 kHz or less where the phenomenon of localization in the head due to the anti-phase component is remarkable may be rotated.
  • FIG. 8 shows the configuration in that case.
  • a delay means for realizing the same delay time as the delay time generated by the phase rotation means is necessary on the path on the side where the phase rotation is not processed, but it is not shown.
  • the configuration of FIG. 8 is simpler than the configuration of FIG. 5, but in the case of the configuration of FIG. 8, a signal that does not undergo any phase rotation is output from one speaker, so the timbre differs between the two speakers. There is a problem. In the case of the configuration shown in FIG. 5, since the phase rotation process is performed on both signals, the timbre becomes uniform, so that the moving process of the sound image can be performed with a natural timbre.
  • the first phase rotation unit 300 that rotates the phase of the signal A by ⁇ degrees
  • the second phase rotation unit 301 that rotates the phase of the signal A by ⁇ degrees
  • a third phase rotating means 302 for rotating the phase of the signal B by - ⁇ degrees
  • a fourth phase rotating means 303 for rotating the phase of the signal B by ⁇ degrees
  • an output signal of the first phase rotating means and a third
  • the first addition means 305 for adding the weighted output signals from the phase rotation means
  • the first addition means for weighting and adding the output signals from the second phase rotation means and the fourth phase rotation means. 2 adding means 306, and control means 304 for changing the coefficient indicating ⁇ and the weight with time.
  • the ⁇ is 0 degrees at a predetermined time T0, and the control means 304 at time T1.
  • Gradually phase so that ⁇ becomes 90 degrees
  • the addition coefficient in the first addition means 305 and the second addition means 306 so as to approach the same value as the ⁇ approaches 90 degrees, it has been localized at a predetermined position. It is possible to realize an acoustic expression in which the sound image gradually approaches the listener, or the sound image that has been localized at the listener position gradually moves away from the listener.
  • the signal processing apparatus can be applied to a wide range of game machines and game machines since sound effects such as sound effects and character sound images can be expressed close to or away from the listener.
  • Sound image localization filter 100 300 First phase rotation means 101, 301 Second phase rotation means 102, 201, 304 Control means 103a, 103b, 603a, 603b Stereo speaker 200 Phase Rotating means 302 Third phase rotating means 303 Fourth phase rotating means 305 First adding means 306 Second adding means 501 Listener 502, 503, 504 Virtual sound source position 650 Sound image localization filter (left localization filter) 651 Sound image localization filter (right localization filter) 652 Composing means 662 Audio object

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Stereophonic System (AREA)

Abstract

 信号処理装置(1)は、信号Aの位相を回転させ位相差がθである2つの信号を生成する位相回転手段(100、101)と、位相差θを時間とともに遷移させる制御手段(102)と、を有し、制御手段(102)は、所定の時刻T0において位相差θが概ね0度になるように位相を制御し、時刻T1において位相差θが概ね180度になるように位相を制御する。

Description

信号処理装置
 本発明は、所定の位置に定位している音像をリスナーの位置に向けて移動させる、或いは、リスナーの位置に定位している音像を所定の位置に向けて移動される信号処理装置に関する。
 近年のゲーム機などでは、効果音やキャラクタの音声(オーディオオブジェクト)の音像定位位置をリスナーに対して時々刻々移動させるような処理がおこなわれている。特許文献1では、オーディオオブジェクトを所定の位置に定位させる技術が述べられており、このような技術を応用することにより、オーディオオブジェクト時々刻々移動させるような処理が可能である。例えば、図9のような方法を用いれば、リスナーの右側(或いは左側)に定位していた音像をリスナーの左側(或いは右側)に定位時々刻々移動させることが出来る。
 図9において、650は、音像を左側に定位させる音像定位フィルタであり例えば特許文献1の技術で作成された音像定位フィルタである。651も同様に、音像を右側に定位させる音像定位フィルタである。652は、音像を左右に移動させるための合成手段である。音像を左に移動させる場合、上記合成手段652内の係数αを1に設定する。そうすることによって、上記左側定位の音像定位フィルタ650の出力信号がスピーカ603aおよび603bから出音されるので、音像が左側に定位する。音像を右に移動させる場合、上記合成手段652内の係数αを0に設定する。そうすることによって、上記右側定位の音像定位フィルタ651の出力信号がスピーカ603aおよび603bから出音されるので、音像が右側に定位する。またαの値を0から1の間に設定することで、音像を左右に移動させることが出来る。
特開平9-233599号公報
 しかしながら、上記特許文献1に記載の技術に対し、上記図9に示した方法を適用すると、図10に示すオーディオオブジェクト662をリスナー660の左右に移動させることが出来るが、オーディオオブジェクトがリスナーの位置(左右の真ん中)に近づくにつれて(本来リスナーの直ぐ近くを通過してほしいにも関わらず)当該オーディオオブジェクトがリスナーから離れ、左右のスピーカ位置の中心に移動してしまうという課題がある。それは、左側定位の音像定位フィルタ650と右側定位の音像定位フィルタ651は、左右対称である、すなわち、左側定位フィルタ650の左スピーカ用出力信号は右側定位フィルタ651の右スピーカ用出力信号と(少なくとも概ね)同じであり、同様に、左側定位フィルタ650の右スピーカ用出力信号は右側定位フィルタ651の左スピーカ用出力信号と(少なくとも概ね)同じであることに起因する。
 音像を左から右に移動させる途中段階で図9における前記αを0.5に設定した場合、音像定位フィルタが左右対称なので、合成手段652の出力である左側スピーカ向き信号と右側スピーカ向き信号とが同じ信号になる。すなわち、モノラル信号を左右のスピーカ603aおよび603bで出音していることになる。その場合、音像は左右に配置されているスピーカ603aおよび603bの中心の位置に定位する。結果として、左耳元に定位していた音像が右耳元に移動する過程で頭部周辺を大きく離れスピーカ間位置に移動してしまうことになる(図11参照)。
 また、上記特許文献1と図9に記載の方法を組み合わせても、オーディオオブジェクトをリスナーの正面からリスナーの方向に向かって(あるいはその逆に)移動させる音響表現を行うことは出来ない。
 本発明は、このような従来の問題点に鑑みてなされたものであって、所定の位置に定位している音像をリスナーの位置に向けて移動させる、とりわけリスナーの前後や左右の移動を違和感なく実現できる信号処理装置を提供することを目的とする。
 上記の課題を解決するため、請求項1記載の信号処理装置は、信号Aの位相を回転させ位相差がθである2つの信号を生成する位相回転手段Aと、前記θを時間とともに遷移させる制御手段と、を有し、前記制御手段は、所定の時刻T0において前記θが概ね0度になるように位相を制御し、時刻T1において前記θが概ね180度になるように位相を制御することを特徴とするものである。
 請求項2に記載の信号処理装置は、前記位相回転手段Aは、前記信号Aの位相をθ1度回転させる第1の位相回転手段と、前記信号Aの位相を-θ1度回転させる第2の位相回転手段と、からなり、前記θ1はθ/2であることを特徴とするものである。
 請求項3に記載の信号処理装置は、信号Aの位相を回転させ位相差がθである2つの信号を生成する位相回転手段Aと、信号Bの位相を回転させ位相差がθである2つの信号を生成する位相回転手段Bと、前記位相回転手段Aの第1の出力信号に係数G1を乗じた信号と前記位相回転手段Bの第1の出力信号に係数G2を乗じた信号とを加算する第1の加算手段と、前記位相回転手段Aの第2の出力信号に前記係数G2を乗じた信号と前記位相回転手段Bの第2の出力信号に前記係数G1を乗じた信号とを加算する第2の加算手段と、前記θ、前記係数G1、前記係数G2と、を時間とともに遷移させる制御手段と、を有し、前記制御手段は、前記θが、時刻T0において概ね0度、時刻T1において概ね180度になるように位相を制御し、かつ、前記係数G1が、前記θが0度のとき正の値G180度のときgより小さい正の値h、前記係数G2が、前記θが0度のとき0、180度のとき前記h、となるように前記係数G1、前記係数G2を制御するものであることを特徴とするものである。
 請求項4に記載の信号処理装置は、前記制御手段は、前記係数G1が、前記θが360度のとき0、前記係数G2が、前記θが360度のときg、となるように前記係数G1、前記係数G2を制御するものであることを特徴とするものである。
 請求項5に記載の信号処理装置は、前記位相回転手段Aは、前記信号Aの位相をθ1度回転させる第1の位相回転手段と、前記信号Aの位相を-θ1度回転させる第2の位相回転手段と、からなり、前記位相回転手段Bは、前記信号Bの位相を-θ1度回転させる第3の位相回転手段と、前記信号Bの位相をθ1度回転させる第4の位相回転手段と、からなり、前記θ1はθ/2であることを特徴とするものである。
 請求項6に記載の信号処理装置は、前記信号A、前記信号Bは、2つのスピーカで信号Sの音像を所定の位置に定位させるための音像定位フィルタから生成された信号であることを特徴とするものである。
 請求項1の発明によれば、所定の位置に定位していた音像を徐々にリスナーに近づける、或いは遠ざけることができる。
 請求項2の発明によれば、自然な音色を維持したまま、所定の位置に定位していた音像を徐々にリスナーに近づける、或いは遠ざけることができる。
 請求項3の発明によれば、仮想音像定位技術によって所定の位置に定位していた音像を徐々にリスナーに近づける、或いは遠ざけることができる。
 請求項4の発明によれば、所定の位置に定位していた音像を徐々にリスナーに近づけ、さらに徐々に遠ざけ、もともと定位していた位置の左右対称の位置の定位させることができる。
 請求項5の発明によれば、自然な音色を維持したまま、仮想音像定位技術によって所定の位置に定位していた音像を徐々にリスナーに近づける、或いは遠ざけることができる。
 請求項6の発明によれば、仮想音像定位技術と請求項3、4に記載の音像定位処理とを一体化して処理することができる。
図1は、実施の形態1における信号処理装置の構成を示す図である。 図2は、簡素化した実施の形態1における信号処理装置の構成を示す図である。 図3は、位相差の遷移の仕方の一例を示す図である。 図4は、音像定位フィルタと信号処理装置を組み合わせて用いるための構成を示す図である。 図5は、実施の形態2における信号処理装置の構成を示す図である。 図6は、位相差の遷移の仕方の他の例を示す図である。 図7は、実施の形態2の効果を説明する図である。 図8は、簡素化した実施の形態2における信号処理装置の構成を示す図である。 図9は、音像を移動させるために従来の技術を示す図である。 図10は、従来の技術の課題を説明する図である。 図11は、従来の技術の課題を説明する図である。
 以下、信号処理装置の一態様として、実施の形態を示す。なお、以下で説明する実施の形態は、いずれも一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態等は、一例であり、本発明を限定する主旨ではない。本発明は、請求の範囲によって特定される。よって、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。
 (実施の形態1)
 以下、実施の形態1における信号処理装置について、図面を参照しながら説明する。
 本実施の形態では、モノラル信号の音像を時々刻々移動させる技術を説明する。所定の時刻でリスナーの正面(ステレオスピーカ間の中心の位置)に定位していた音像が、時間の経過につれてリスナー自身の方向に迫ってくるような音響表現を実現する技術を説明する。
 この実施の形態では、所謂頭内定位といわれる現象を利用する。これは、モノラル信号をステレオスピーカで再生する際、片方のスピーカからは当該モノラル信号をそのまま出音し、もう片方のスピーカからは当該モノラル信号の位相を反転させた信号を出音すると、当該モノラル信号の音像があたかもリスナーの頭内に定位したかのように錯覚する、という現象である(非特許文献1:鹿島出版会、イェンス ブラウエルト他著、空間音響P138参照)。
 図1は、本実施の形態における信号処理装置の構成を示す図である。
 図1において、100は、入力信号Aの位相をθ1度回転させる第1の位相回転手段である。101は、入力信号Aの位相を-θ1度回転させる第2の位相回転手段である。102は、θ1を時間とともに遷移させる制御手段である。103aおよび103bは、それぞれ第1の位相回転手段100と第2の位相回転手段101の出力信号を出音するステレオスピーカである。
 以上のように構成された信号処理装置の動作について、以下説明する。
 まず、時刻0において、制御手段102では、θ1を0度とする。そうすることによって、第1の位相回転手段100で入力信号Aの位相を0度回転させる。同様に、第2の位相回転手段101で入力信号Aの位相を0度回転させる。ステレオスピーカ103aおよび103bの各スピーカで、第1の位相回転手段100の出力信号と第2の位相回転手段101の出力信号を出音する。そうすることによって、左右のステレオスピーカ103aおよび103bから同じ音が出音されるので、音像は左右のステレオスピーカ103aおよび103b間の中心の位置に定位する。
 次の時刻(例えば10msec後)において、制御手段102では、θ1を1度とする。そうすることによって、第1の位相回転手段100で入力信号Aの位相を1度回転させる。同様に、第2の位相回転手段101で入力信号Aの位相を-1度回転させる。ステレオスピーカ103aおよび103bの各スピーカで、第1の位相回転手段100の出力信号と第2の位相回転手段101の出力信号を出音する。
 このように、時刻が進むごとに、制御手段102で、θ1を徐々に+方向に更新し、それに応じて、第1の位相回転手段100と第2の位相回転手段101でそれぞれ入力信号の位相を回転させる。
 時刻が経過し、制御手段102、時刻Tにおいて、θ1を90度に設定したとする。その場合、第1の位相回転手段100の出力信号と第2の位相回転手段101の出力信号との位相差は180度となるので、ステレオスピーカ103aおよび103bから出音される信号は位相が反転した信号となる。その場合、本実施の形態の冒頭で述べた頭内定位の状態となり音像がリスナー自身の頭内に定位したかのような錯覚を感じる。
 制御手段102でこのようにθ1を制御することによって、時刻0ではリスナーの正面に定位していた音像が徐々に移動し、時刻Tではリスナーの頭内に定位するので、時々刻々音像が自分自身に迫ってくるような音響表現を実現できる。
 本実施の形態では、時刻における位相の初期値を0度としているが、0度である必要はなく、例えば30度などとしてもよい。その場合、時刻Tでは、第1の位相回転手段100では120(=30+90)度、第2の位相回転手段101では-60(=30-90)度位相を回転させることになる。つまり、時刻0において同位相であり、時刻Tにおいて逆位相であればよいのであって、第1の位相回転手段100で回転させる位相角と第2の位相回転手段101で回転させる位相角とが正負で同じ絶対値である必要はない。
 また、一方の回転角を固定にし、もう一方だけを更新することで時刻Tにおいて位相差を180度にするように制御してもよい。図2にその場合の構成を示した。なお、図2において、下側のステレオスピーカ103bに至る経路上には、位相回転手段200で生じる遅延時間と同じ遅延時間を実現する遅延手段が必要であるが図示していない。図2の構成は、図1の構成より簡素であるが、図2の構成の場合、一方のスピーカからは位相回転が全く行われない信号が出音されるので、双方のスピーカ間で音色が異なるという課題がある。図1の構成の場合、双方の信号に位相回転処理が行われるので音色が均一となるので自然な音色のまま音像の移動処理が可能となる。
 また、第1の位相回転手段100、第2の位相回転手段101では、入力信号Aの周波数成分の中の低域の周波数成分だけを位相回転させてもよい。例えば、逆相成分による頭内定位の現象が顕著な1.5kHz以下の周波数成分のみを位相回転させてもよい。
 また、本実施の形態では、音像が徐々にリスナーに迫ってくる音響表現を実現したが、リスナーの頭内にあった音像が徐々にリスナーから遠ざかっていくような音響表現も同様の技術で実現できる。すなわち、時刻0でθ1を90度とし、時々刻々θ1を-方向に更新する。そうして、時刻Tには、θ1を0度になるようにする。そうすることによって、リスナーの頭内に定位していた音像が時刻Tではリスナーの正面に移動するのである。
 図3に、位相差(θ1)が時刻とともに遷移する様子の一例を図示した。この例では、時刻T0では音像はリスナーから離れた位置にあり、時刻とともに徐々にリスナーの方向に近づき、時刻T1で最もリスナーに近づく。さらに、音像は時刻とともに徐々にリスナーから遠ざかり時刻T2ではリスナーから離れた元の位置に定位する。
 勿論、図3に示した位相差の遷移の仕方は一例に過ぎず、図3のように直線的に遷移することに限定されないし、時刻T0で位相差が0から始まり+方向に遷移することに限定されない。
 以上のように、本実施の形態によれば、信号Aの位相をθ1度回転させる第1の位相回転手段100と、上記信号Aの位相を-θ1度回転させる第2の位相回転手段101と、上記θ1を時間とともに遷移させる制御手段102と、を有し、上記制御手段102において、所定の時刻T0において上記θ1を概ね0度になるように位相を制御し、時刻T1において上記θ1を概ね90度になるように位相を制御することで、リスナーの正面に定位していた音像が徐々にリスナーの方に迫ってくる、あるいは、リスナーの位置に定位していた音像が徐々にリスナーから遠ざかっていくような音響表現を実現できる。
 (実施の形態2)
 以下、実施の形態2における信号処理装置について、図面を参照しながら説明する。本実施の形態では、音像定位フィルタで所定の位置に定位した音像を時々刻々移動させる技術を説明する。ある所定の時刻で所定の位置に定位していた音像が時間の経過につれてリスナー自身の方向に迫ってくるように音像を移動させる技術を説明する。つまり、図4に示すように、モノラル信号が音像定位フィルタ20で処理され、そこから出力される2つの信号を本実施の形態で説明する信号処理装置10で音像を移動させる。ここで、音像定位フィルタ20は、どのようなものであってもよい。例えば、先に挙げた特許文献1で開示されているものでもよい。
 この実施の形態では、所謂頭内定位といわれる現象を利用する。これは、モノラル信号をステレオスピーカで再生する際、片方のスピーカからは当該モノラル信号をそのまま出音し、もう片方のスピーカからは当該モノラル信号の位相を反転させた信号を出音すると、当該モノラル信号の音像があたかもリスナーの頭内に定位したかのように錯覚する、という現象である。
 図5は、本実施の形態における信号処理装置の構成を示す図である。
 図4における信号処理装置10は、図5における信号処理装置10を表しており、図4における信号A、信号Bはそれぞれ図5における信号A、信号Bに合致している。
 図5において、300は、信号Aの位相をθ度回転させる第1の位相回転手段である。301は、信号Aの位相を-θ度回転させる第2の位相回転手段である。302は、信号Bの位相を-θ度回転させる第3の位相回転手段である。303は、信号Bの位相をθ度回転させる第4の位相回転手段である。305は、第1の位相回転手段300の出力信号と第3の位相回転手段302の出力信号とを加算する第1の加算手段である。306は、第2の位相回転手段301の出力信号と第4の位相回転手段303の出力信号とを加算する第2の加算手段である。304は、上記θと、上記第1の加算手段305、第2の加算手段306において加算する信号の重みを示す係数(G1、G2)を、時間とともに遷移させる制御手段である。103aおよび103bは、上記第1の加算手段305と上記第2の加算手段306の出力信号を出音するステレオスピーカである。
 以上のように構成された信号処理装置10の動作について、以下説明する。
 まず、時刻0において、制御手段304では、θを0度、係数G1(=g)を1.0、係数G2を0.0とする。そうすることによって、上記第1の位相回転手段300で入力信号Aの位相を0度回転させ、上記第2の位相回転手段301で入力信号Aの位相を0度回転させ、上記第3の位相回転手段302で入力信号Bの位相を0度回転させ、上記第4の位相回転手段303で入力信号Bの位相を0度回転させることができる。
 次に、上記第1の加算手段305で上記第1の位相回転手段300の出力信号に1.0を乗じた信号と上記第3の位相回転手段302の出力信号に0.0を乗じた信号とを加算する。つまり、上記第1の加算手段305の出力信号は、信号Aと同じものとなる。
 上記第2の加算手段306で上記第2の位相回転手段301の出力信号に0.0を乗じた信号と、上記第4の位相回転手段303の出力信号に1.0を乗じた信号とを加算する。つまり、上記第2の加算手段306の出力信号は、信号Bと同じものとなる。
 ステレオスピーカ103aおよび103bの各スピーカで、第1の加算手段305の出力信号と第2の加算手段306の出力信号を出音する。
 そうすることによって、左右のスピーカからそれぞれ、信号A、信号Bが出音されるので、音像は、音像定位フィルタ20によって定位する位置に置かれることになる。
 次の時刻(例えば、10msec後)において、制御手段304では、θを1度、係数G1を1.0より少し小さい値(=h)、係数G2を0.0より少し大きな値、に設定する。そうすることによって、上記第1の位相回転手段300により入力信号Aの位相を1度回転させ、上記第2の位相回転手段301により入力信号Aの位相を-1度回転させ、上記第3の位相回転手段302により入力信号Bの位相を-1度回転させ、上記第4の位相回転手段303により入力信号Bの位相を1度回転させる。
 係数G1、係数G2については、本実施の形態では説明の簡単化のために、G1=cos((θ/2)*π/180)、G2=sin((θ/2)*π/180)とするが、それに限定されるものではない。
 次に、上記第1の加算手段305で上記第1の位相回転手段300の出力信号にcos((1.0/2)*π/180)を乗じた信号と上記第3の位相回転手段302の出力信号にsin((1.0/2)*π/180)を乗じた信号とを加算する。
 上記第2の加算手段306で上記第2の位相回転手段301の出力信号にsin((1.0/2)*π/180)を乗じた信号と上記第4の位相回転手段303の出力信号にcos((1.0/2)*π/180)を乗じた信号とを加算する。
 ステレオスピーカ103aおよび103bの各スピーカで、第1の加算手段305の出力信号と第2の加算手段306の出力信号を出音する。
 そうすることによって、左右のスピーカから出音される音は、音像定位フィルタ20によって定位する位置からややリスナーの頭内に移動した位置に定位することになる。
 このように、時刻が進むごとに、制御手段304で、θを徐々に+90度に近づけていく。また、係数G1と係数G2とを徐々に同じ値に近づけていく。本実施の形態では、G1=cos((θ/2)*π/180)、G2=sin((θ/2)*π/180)としているので、θが+90度に近づくにつれ、係数G1、係数G2は自動的に同じ値に近づいていく。
 そして、時刻Tにおいて、制御手段304がθを90度に設定すると、上記第1の位相回転手段300により入力信号Aの位相を90度回転させ、上記第2の位相回転手段301により入力信号Aの位相を-90度回転させ、上記第3の位相回転手段302により入力信号Bの位相を-90度回転させ、上記第4の位相回転手段303により入力信号Bの位相を90度回転させる。
 係数G1、係数G2は、同じ値(cos(π/4)=sin(π/4))になるので、上記第1の加算手段305では、上記第1の位相回転手段300の出力信号に上記第3の位相回転手段302の出力信号を同じ重みで加算した信号を出力する。
 上記第2の加算手段306では、上記第2の位相回転手段301の出力信号に上記第4の位相回転手段303の出力信号を同じ重みで加算した信号を出力する。
 ステレオスピーカ103aおよび103bの各スピーカで、第1の加算手段305の出力信号と第2の加算手段306の出力信号を出音する。
 そうすることによって、上側のステレオスピーカ103aでは、
 (信号Aの90度位相回転+信号Bの-90度位相回転)*sin(π/4)
下側のステレオスピーカ103bでは、
 (信号Aの-90度位相回転+信号Bの90度位相回転)*sin(π/4)
を出音するので、それらは180度位相差がついている、すなわち位相が反転していることとなるので、出音される音の音像はリスナーの頭内に定位する。
 このように制御することで、時刻0では所定の位置に定位していた音像が徐々にリスナーに近づき時刻Tではリスナーの頭内に定位するような音響表現が出来る。
 また、本実施の形態では、音像が徐々にリスナーに迫ってくる音響表現を実現したが、リスナーの頭内にあった音像が徐々にリスナーから遠ざかっていくような音響表現も同様の技術で実現できる。すなわち、時刻0でθを90度とし、時々刻々θを-方向に更新する。そうして時刻Tには、θを0度になるようにする。そうすることによって、リスナーの頭内に定位していた音像が時刻Tでは音像定位フィルタ20で定位する位置に移動するのである。
 また、図6のように遷移することによって、いったんリスナーに近づいた後、リスナーから遠ざかり、もともと音像が定位していた位置の左右対称の位置に近づいていく効果が得られる。時刻T0でθを0度(位相差0度)とし、時刻T1でθを90度(位相差180度)とし、時刻T1でθを180度(位相差360度)とすることで、音像が徐々にリスナーに近づき、その後遠ざかっていくという音響表現をおこなうことができる。
 この時、係数G1と係数G2はθが90度を越えた後も、G1=cos((θ/2)*π/180)、G2=sin((θ/2)*π/180)とすればよい。そうすることで、θが180度(位相差360度)になったときG1は0.0、G2(=g)は、1.0となり、スピーカ103aからは信号Bが(位相反転しているが)出音され、スピーカ103bからは信号Aが(位相反転しているが)出音される。すなわち、θが0度のときと、左右逆の信号がステレオスピーカから出音される。
 図7はその効果を説明する図である。図中、501はリスナー、502~504はそれぞれ時刻T0、時刻T1、時刻T2での仮想音源位置を示す。このように制御することにより、仮想音源位置502がリスナー501の左側から近づき、リスナー501の頭内位置を通過して右側へと離れていく効果を得ることができる。
 また、第1の位相回転手段300、第2の位相回転手段301、第3の位相回転手段302、第4の位相回転手段303では、入力信号Aの周波数成分の中の低域の周波数成分だけを位相回転させてもよい。例えば、逆相成分による頭内定位の現象が顕著な1.5kHz以下の周波数成分のみを位相回転させてもよい。
 なお、一方の回転角(位相角)を固定にし、もう一方だけを更新することで時刻Tにおいて位相差を180度にするように制御してもよい。図8にその場合の構成を示した。なおこの図において、位相回転を処理しない側の経路上には、位相回転手段で生じる遅延時間と同じ遅延時間を実現する遅延手段が必要であるが図示していない。図8の構成は図5の構成より簡素であるが、図8の構成の場合、一方のスピーカからは位相回転が全く行われない信号が出音されるので、双方のスピーカ間で音色が異なるという課題がある。図5の構成の場合、双方の信号に位相回転処理が行われるので音色が均一となるので自然な音色のまま音像の移動処理が可能となる。
 以上のように、本実施の形態によれば、信号Aの位相をθ度回転させる第1の位相回転手段300と、信号Aの位相を-θ度回転させる第2の位相回転手段301と、信号Bの位相を-θ度回転させる第3の位相回転手段302と、信号Bの位相をθ度回転させる第4の位相回転手段303と、第1の位相回転手段の出力信号と第3の位相回転手段の出力信号とを重みを付けて加算する第1の加算手段305と、第2の位相回転手段の出力信号と第4の位相回転手段の出力信号とを重みをつけて加算する第2の加算手段306と、上記θ、上記重みを示す係数を時間とともに遷移させる制御手段304と、を有し、上記制御手段304において、所定の時刻T0において上記θを0度、時刻T1において上記θを90度となるように徐々に位相を制御し、上記第1の加算手段305および第2の加算手段306での加算の係数を上記θが90度に近づくにつれ同じ値の近づくように制御することで、所定の位置に定位していた音像が徐々にリスナーの方に迫ってくる、あるいは、リスナーの位置に定位していた音像が徐々にリスナーから遠ざかっていくような音響表現を実現できる。
 以上、本発明の実施の形態に係る信号処理装置について説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。
 本発明にかかる信号処理装置は、効果音やキャラクタの音声の音像を、リスナーに近づけたり遠ざけたりする音響表現ができるので、広くゲーム機器や遊技機器に応用できる。
 1、1a、10、10a 信号処理装置
 20 音像定位フィルタ
 100、300 第1の位相回転手段
 101、301 第2の位相回転手段
 102、201、304 制御手段
 103a、103b、603a、603b ステレオスピーカ
 200 位相回転手段
 302 第3の位相回転手段
 303 第4の位相回転手段
 305 第1の加算手段
 306 第2の加算手段
 501 リスナー
 502、503、504 仮想音源位置
 650 音像定位フィルタ(左側定位フィルタ)
 651 音像定位フィルタ(右側定位フィルタ)
 652 合成手段
 662 オーディオオブジェクト

Claims (6)

  1.  信号Aの位相を回転させ位相差がθである2つの信号を生成する位相回転手段Aと、前記θを時間とともに遷移させる制御手段と、を有し、
     前記制御手段は、所定の時刻T0において前記θが概ね0度になるように位相を制御し、時刻T1において前記θが概ね180度になるように位相を制御する
     信号処理装置。
  2.  前記位相回転手段Aは、前記信号Aの位相をθ1度回転させる第1の位相回転手段と、前記信号Aの位相を-θ1度回転させる第2の位相回転手段と、からなり、
     前記θ1は、θ/2である
     請求項1に記載の信号処理装置。
  3.  信号Aの位相を回転させ位相差がθである2つの信号を生成する位相回転手段Aと、
     信号Bの位相を回転させ位相差がθである2つの信号を生成する位相回転手段Bと、
     前記位相回転手段Aの第1の出力信号に係数G1を乗じた信号と前記位相回転手段Bの第1の出力信号に係数G2を乗じた信号とを加算する第1の加算手段と、
     前記位相回転手段Aの第2の出力信号に前記係数G2を乗じた信号と前記位相回転手段Bの第2の出力信号に前記係数G1を乗じた信号とを加算する第2の加算手段と、
     前記θ、前記係数G1、前記係数G2と、を時間とともに遷移させる制御手段と、を有し、
     前記制御手段は、前記θが、時刻T0において概ね0度、時刻T1において概ね180度になるように位相を制御し、かつ、前記係数G1が、前記θが0度のとき正の値g、180度のときgより小さい正の値h、前記係数G2が、前記θが0度のとき0、180度のとき前記h、となるように前記係数G1および前記係数G2を制御する
     信号処理装置。
  4.  前記制御手段は、前記係数G1が、前記θが360度のとき0、前記係数G2が、前記θが360度のときg、となるように前記係数G1および前記係数G2を制御する
     請求項3に記載の信号処理装置。
  5.  前記位相回転手段Aは、
     前記信号Aの位相をθ1度回転させる第1の位相回転手段と、前記信号Aの位相を-θ1度回転させる第2の位相回転手段と、からなり、
     前記位相回転手段Bは、
     前記信号Bの位相を-θ1度回転させる第3の位相回転手段と、前記信号Bの位相をθ1度回転させる第4の位相回転手段と、からなり、
     前記θ1は、θ/2である
     請求項3または4に記載の信号処理装置。
  6.  前記信号Aおよび前記信号Bは、2つのスピーカで信号Sの音像を所定の位置に定位させるための音像定位フィルタから生成された信号である
     請求項3~5のいずれか1項に記載の信号処理装置。
PCT/JP2016/051640 2015-02-25 2016-01-21 信号処理装置 WO2016136341A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017501982A JP6673328B2 (ja) 2015-02-25 2016-01-21 信号処理装置
CN201680009683.4A CN107251578B (zh) 2015-02-25 2016-01-21 信号处理装置
US15/671,461 US10075794B2 (en) 2015-02-25 2017-08-08 Signal processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015035611 2015-02-25
JP2015-035611 2015-02-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/671,461 Continuation US10075794B2 (en) 2015-02-25 2017-08-08 Signal processing device

Publications (1)

Publication Number Publication Date
WO2016136341A1 true WO2016136341A1 (ja) 2016-09-01

Family

ID=56788463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051640 WO2016136341A1 (ja) 2015-02-25 2016-01-21 信号処理装置

Country Status (4)

Country Link
US (1) US10075794B2 (ja)
JP (1) JP6673328B2 (ja)
CN (1) CN107251578B (ja)
WO (1) WO2016136341A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698400A (ja) * 1992-07-27 1994-04-08 Yamaha Corp 音像定位装置
JPH07288897A (ja) * 1994-04-19 1995-10-31 Sanyo Electric Co Ltd 音の遠近感制御装置
JP2007531915A (ja) * 2004-04-05 2007-11-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ステレオコーディング及びデコーディングの方法及び装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3618159B2 (ja) 1996-02-28 2005-02-09 松下電器産業株式会社 音像定位装置およびそのパラメータ算出方法
DE69924896T2 (de) * 1998-01-23 2005-09-29 Onkyo Corp., Neyagawa Vorrichtung und Verfahren zur Schallbildlokalisierung
US7242782B1 (en) * 1998-07-31 2007-07-10 Onkyo Kk Audio signal processing circuit
ATE533315T1 (de) * 2004-09-16 2011-11-15 Panasonic Corp Anordnung zur schallbildlocalisierung
JP4940671B2 (ja) * 2006-01-26 2012-05-30 ソニー株式会社 オーディオ信号処理装置、オーディオ信号処理方法及びオーディオ信号処理プログラム
US9264812B2 (en) * 2012-06-15 2016-02-16 Kabushiki Kaisha Toshiba Apparatus and method for localizing a sound image, and a non-transitory computer readable medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698400A (ja) * 1992-07-27 1994-04-08 Yamaha Corp 音像定位装置
JPH07288897A (ja) * 1994-04-19 1995-10-31 Sanyo Electric Co Ltd 音の遠近感制御装置
JP2007531915A (ja) * 2004-04-05 2007-11-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ステレオコーディング及びデコーディングの方法及び装置

Also Published As

Publication number Publication date
JPWO2016136341A1 (ja) 2017-11-30
US10075794B2 (en) 2018-09-11
CN107251578A (zh) 2017-10-13
JP6673328B2 (ja) 2020-03-25
US20170339502A1 (en) 2017-11-23
CN107251578B (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
JP6914994B2 (ja) 高次アンビソニックス・オーディオ信号の再生のための方法および装置
CN109068263B (zh) 使用元数据处理的耳机的双耳呈现
BR9712912B1 (pt) método e dispositivo para a projeção de ondas sonoras em alto-falantes.
KR102119240B1 (ko) 스테레오 오디오를 바이노럴 오디오로 업 믹스하는 방법 및 이를 위한 장치
JP2006114945A5 (ja)
JPWO2010004649A1 (ja) 遅延量決定装置、音像定位装置、遅延量決定方法、遅延量決定処理プログラム
JP2006033847A (ja) 最適な仮想音源を提供する音響再生装置及び音響再生方法
JPH0430700A (ja) 音像定位装置
US10708679B2 (en) Distributed audio capture and mixing
JPH10136497A (ja) 音像定位装置
WO2016136341A1 (ja) 信号処理装置
JP2014093727A (ja) 音響制御装置、音響制御装置の制御方法、プログラム
CN113645531A (zh) 一种耳机虚拟空间声回放方法、装置、存储介质及耳机
JP4318841B2 (ja) 音響効果装置
JP2011160179A (ja) 音声処理装置
JP5015266B2 (ja) センターチャンネル定位装置
JP2022092184A (ja) 音声信号処理装置、音声信号処理プログラム
JP7513020B2 (ja) 情報処理装置および方法、再生装置および方法、並びにプログラム
JP6905411B2 (ja) チャンネル数変換装置及びプログラム
JP3409364B2 (ja) 音像定位制御装置
JP4536627B2 (ja) 信号処理装置および音像定位装置
JP3180714U (ja) 立体音響生成装置
JP2022090727A (ja) 音声信号処理装置、音声信号処理プログラム
JPH0134480Y2 (ja)
WO2013067712A1 (zh) 一种在耳机上建立5.1声道的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017501982

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755091

Country of ref document: EP

Kind code of ref document: A1