WO2016135787A1 - 半導体ウェーハの枚葉式片面研磨方法および半導体ウェーハの枚葉式片面研磨装置 - Google Patents

半導体ウェーハの枚葉式片面研磨方法および半導体ウェーハの枚葉式片面研磨装置 Download PDF

Info

Publication number
WO2016135787A1
WO2016135787A1 PCT/JP2015/005085 JP2015005085W WO2016135787A1 WO 2016135787 A1 WO2016135787 A1 WO 2016135787A1 JP 2015005085 W JP2015005085 W JP 2015005085W WO 2016135787 A1 WO2016135787 A1 WO 2016135787A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
semiconductor wafer
wafer
polishing head
head
Prior art date
Application number
PCT/JP2015/005085
Other languages
English (en)
French (fr)
Inventor
智憲 川崎
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to CN201580076898.3A priority Critical patent/CN107431006B/zh
Priority to US15/552,563 priority patent/US10391607B2/en
Priority to DE112015006224.6T priority patent/DE112015006224B4/de
Publication of WO2016135787A1 publication Critical patent/WO2016135787A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers
    • B24B37/30Work carriers for single side lapping of plane surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • H01L21/67219Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one polishing chamber

Definitions

  • the present invention relates to a single wafer single-side polishing method for a semiconductor wafer and a single wafer single-side polishing apparatus for a semiconductor wafer.
  • Semiconductor wafer surface polishing methods that require high flatness are broadly divided into double-side polishing methods that simultaneously polish both surfaces of a semiconductor and single-side polishing methods that polish only one surface.
  • the single-side polishing method is widely used from rough polishing using a relatively hard polishing cloth to finish polishing using a relatively soft polishing cloth.
  • the polishing apparatus 10 includes a polishing head 12 that holds the semiconductor wafer 1 via a backing plate 11 and a rotating surface plate 14 to which a polishing cloth 13 is attached.
  • the polishing head 12 includes a rotating mechanism that rotates the polishing head 12 and a moving mechanism that moves the polishing head 12 in and out of the rotating surface plate 14.
  • the polishing head 12 holds the semiconductor wafer 1 and holds the surface to be polished of the semiconductor wafer 1 (that is, opposite to the polishing head 12) with respect to the polishing cloth 13 attached to the upper surface of the rotating surface plate 14.
  • the polishing time required until the polishing is completed is divided into at least two stages, and a rest time is provided between the divided polishing and the polishing is performed in multiple stages for one semiconductor wafer.
  • a method for polishing a semiconductor wafer is described. In this polishing method, a resting time is provided between polishings to perform multi-stage polishing, and the flatness of the polished surface is prevented by preventing deterioration of flatness that occurs when the polishing time is prolonged. Can be suppressed.
  • an object of the present invention is to provide a single-wafer single-side polishing method and single-wafer single-side polishing apparatus capable of increasing the flatness of a polished semiconductor wafer and suppressing variations in flatness.
  • the semiconductor wafer is held by being attracted to the polishing head via the backing plate.
  • the backing plate is bonded to the polishing head by an adhesive or the like, minute unevenness of nm order unavoidably exists on the holding surface of the backing plate that holds the semiconductor wafer due to the influence of each member.
  • non-uniform pressure is applied to the semiconductor wafer due to such irregularities, so that the fine irregularities present on the gripping surface of the semiconductor wafer are transferred to the polished semiconductor wafer, so that the polishing allowance in-plane Variation occurs.
  • the present inventor has paid attention to the fact that this causes a deterioration in flatness and a variation in flatness, and is particularly noticeable at the outer peripheral portion of the wafer. Therefore, after moving the relative position of the polishing head and the semiconductor wafer in the direction of rotation of the polishing head, it is possible to level the influence of minute irregularities by performing a holding process for holding the semiconductor wafer by the polishing head. As a result, the present inventor has found that the flatness of the polished semiconductor wafer can be improved and the variation in flatness can be suppressed, and the present invention has been completed. That is, the gist configuration of the present invention is as follows.
  • the single wafer single-side polishing method of a semiconductor wafer comprises a polishing step of polishing the semiconductor wafer by pressing the semiconductor wafer held by the polishing head against a surface plate, and the semiconductor wafer held by the polishing head.
  • the semiconductor wafer is transported from the surface plate to a tray outside the surface plate, and then the semiconductor wafer is detached from the polishing head and the semiconductor wafer is placed on the tray, and the semiconductor wafer and the polishing head placed on the tray Moving the wafer in the rotational direction of the polishing head, and then holding the semiconductor wafer placed above by the polishing head, and performing the polishing step a plurality of times.
  • the holding step is performed at least once between the steps.
  • the plurality of times is N times (where N is an integer equal to or greater than 2), it is preferable to perform the holding step (N-1) times.
  • the movement in the rotation direction in the holding step is (360 / N) degrees.
  • a single wafer single-side polishing apparatus for a semiconductor wafer includes a polishing head that holds a semiconductor wafer and includes a rotation mechanism and a moving mechanism, a surface plate to which a polishing cloth for polishing the semiconductor wafer is attached, A gantry comprising a tray for placing a semiconductor wafer, and a relative position of the semiconductor wafer and the polishing head in the rotation direction of the polishing head when the polishing head grips the semiconductor wafer placed on the tray And a control unit for controlling.
  • the gantry includes a rotating means.
  • the holding of the semiconductor wafer by the polishing head is changed, so that the flatness of the polished semiconductor wafer is increased. It is possible to provide a single-wafer single-side polishing method and a single-wafer single-side polishing apparatus that can enhance and suppress variations in flatness.
  • FIG. 1 It is a schematic diagram explaining the single-side polishing method of the conventional semiconductor wafer. It is a schematic diagram explaining the single-wafer
  • FIG. 2 schematically shows the cross-sectional structure of each step in the single-sided single-side polishing method using the single-sided single-side polishing apparatus according to the present invention
  • (A) is a schematic diagram showing the polishing step
  • (B) is a schematic diagram which shows a change-over process. Note that FIG. 2 exaggerates the aspect ratio of the semiconductor wafer and the components of the apparatus from the actual ratio for convenience of explanation. For simplification of the drawings, only the main part of the configuration is schematically shown.
  • FIG. 2A is a schematic diagram in a polishing process of a single wafer single-side polishing apparatus 100 for a semiconductor wafer according to an embodiment of the present invention.
  • This single-wafer single-side polishing apparatus 100 holds a semiconductor wafer 1, a polishing head 120 having a rotating mechanism and a moving mechanism, a surface plate 140 to which a polishing cloth 130 for polishing the semiconductor wafer 1 is attached, and the semiconductor wafer 1.
  • a gantry 180 including a tray 190 on which the stool is placed.
  • the single-wafer single-side polishing apparatus 100 when the polishing head 120 grips the semiconductor wafer 1 placed on the tray 190, the single-wafer single-side polishing apparatus 100 has a relative position of the semiconductor wafer 1 and the polishing head 120 in the rotation direction of the polishing head 120. It has the control part 170 which controls this. By having such a configuration, a single wafer single-side polishing method for a conductor wafer described later can be performed. Details of each component will be described below.
  • the polishing head 120 generally holds the semiconductor wafer 1 via the backing plate 110.
  • the polishing head 120 and the backing plate 110 are bonded together with a conventionally known adhesive or the like.
  • a conventionally known adhesive or the like In general, surface tension or vacuum suction using a liquid such as water is used for gripping the semiconductor wafer 1, but the polishing head 120 can grip and detach the semiconductor wafer 1 by any means.
  • the polishing head 120 includes a moving mechanism capable of moving the polishing head 120 up and down and transporting the polishing head 120 in and out of the surface plate, and also includes a rotating mechanism capable of rotating the polishing head 120.
  • a polishing cloth 130 having a count corresponding to a desired polishing purpose from rough polishing to finish polishing is affixed to the surface plate 140. Further, when polishing the semiconductor wafer 1, the surface plate 140 is generally rotated by a motor or the like.
  • the single-wafer single-side polishing apparatus 100 may have the polishing liquid supply means described above with reference to FIG.
  • the semiconductor wafer 1 can be subjected to chemical mechanical polishing.
  • the polishing in this embodiment is not limited to chemical mechanical polishing, and the present invention can be applied to mechanical polishing.
  • a tray 190 for temporarily placing the semiconductor wafer 1 is provided outside the surface plate 140.
  • This tray 190 is usually installed on a gantry 180.
  • the gantry 180 may be provided with a rotating means, and in that case, the rotation can be controlled by the control unit 170.
  • a turntable 181 can be cited. That is, the tray 190 may be installed on the turntable 181.
  • an embodiment using a general gantry not provided with a rotating means will be described.
  • the control unit 170 controls the relative positions of the semiconductor wafer 1 and the polishing head 120 in the rotation direction of the polishing head 120 when the polishing head 120 grips the semiconductor wafer 1 placed on the tray 190.
  • the relative position can be controlled as follows. That is, as shown in FIG. 2A, the polishing head 120 is conveyed onto the tray 190 while holding the semiconductor wafer 1 from the state where the polishing head 120 is holding the semiconductor wafer 1. Next, the semiconductor wafer 1 is detached from the polishing head 120 and the semiconductor wafer 1 is placed on the tray 190. Thereafter, the polishing head 120 is rotated. For this rotation itself, general means such as a motor can be used. However, the rotation angle is rotated by a desired angle to move the relative positions of the semiconductor wafer 1 and the polishing head 120 in the rotation direction of the polishing head 120. It is important to let
  • the positioning of the holding surface in the rotation direction of the polishing head is not performed with respect to the notch or the orientation flat provided on the semiconductor wafer.
  • the relative position is not controlled.
  • the single-wafer single-side polishing apparatus 100 includes the control unit 170 described above, it is possible to change the semiconductor wafer to be described later in detail. By such holding, the flatness of the semiconductor wafer after polishing can be increased and variations in flatness can be suppressed.
  • the single-wafer single-side polishing apparatus 100 also preferably includes a detection unit that can detect the mobility of the relative positions of the semiconductor wafer 1 and the polishing head 120 in the rotation direction of the polishing head 120.
  • a detection unit that can detect the mobility of the relative positions of the semiconductor wafer 1 and the polishing head 120 in the rotation direction of the polishing head 120.
  • a laser detector or the like can be provided in the polishing head 120.
  • the angle at which the polishing head is rotated can be detected by pulse control of the servo motor of the polishing head 120 or the like.
  • the turntable 181 provided with a rotation means as the gantry 180, what is necessary is just to rotate either one or both of the grinding
  • the turntable 181 can be rotated by pulse control of a servo motor or the like, and the rotation angle can be detected.
  • the holding step of moving the relative position between the mounted semiconductor wafer 1 and the polishing head 120 in the rotational direction of the polishing head 120 and then holding the semiconductor wafer 1 placed previously by the polishing head 120 (FIG. 2).
  • the polishing step is performed a plurality of times, and the holding step is performed at least once between the plurality of polishing steps.
  • the polishing step (FIG. 2A) is performed a plurality of times, but each of the polishing steps performed a plurality of times can be performed according to a conventional method.
  • the polishing head 120 and the surface plate 140 are rotated together to move the polishing head 120 and the surface plate 140 relative to each other, and only the surface to be polished of the semiconductor wafer 1 is supplied while supplying the polishing liquid from the polishing liquid supply means.
  • Chemical mechanical polishing is generally used. However, only the polishing head 120 may be rotated, or only the surface plate 140 may be rotated. Further, mechanical polishing may be performed without supplying the polishing liquid.
  • the holding change process (FIG. 2B) is performed by the control unit 170, and the control of the relative position of the polishing head 120 and the semiconductor wafer 1 in the rotation direction of the polishing head is as described above. That is, once the semiconductor wafer 1 is detached from the polishing head 120 to the tray 190 and the relative position of the semiconductor wafer 1 and the polishing head 120 is moved in the rotation direction of the polishing head 120, the polishing head 120 grips the semiconductor wafer again. Thus, the semiconductor wafer 1 is replaced.
  • the polishing step (FIG. 2A) a plurality of times, and to carry out the holding step (FIG. 2B) at least once between the plurality of polishing steps. It is. That is, by performing a holding step between a plurality of polishing steps, the influence of minute irregularities of nm order existing on the backing plate 110 which is the holding surface of the polishing head 120 and the semiconductor wafer 1 is leveled. Can do. As a result, the flatness of the semiconductor wafer after polishing can be increased, and variations in flatness can be suppressed.
  • the change-over step (N ⁇ 1) times when the plurality of times is N times (where N is an integer of 2 or more), it is preferable to perform the change-over step (N ⁇ 1) times. That is, it is preferable to perform the holding step between all the polishing steps performed a plurality of times.
  • N an integer of 2 or more
  • N ⁇ 1 By changing the semiconductor wafer, the influence of the unevenness can be leveled, the flatness of the polished semiconductor wafer can be increased, and variations in flatness can be suppressed.
  • the upper limit can be set to 100 times.
  • the lower limit of the number of changes is one.
  • the number of times of change is preferably 1 to 10 times, more preferably 2 to 8 times, and 3 to 6 times. Is most preferable.
  • the rotation angle for moving the relative position of the semiconductor wafer 1 and the polishing head 120 in the rotation direction of the polishing head 120 is arbitrary and is not limited as long as the relative position changes.
  • the rotation angle by which the relative position of the semiconductor wafer 1 and the polishing head 120 is moved in the rotation direction of the polishing head 120 when the number of times is N times. Is most preferably (360 / N) degrees.
  • the polishing allowance by polishing is proportional to the polishing time without depending on the implementation of the change-over process, which is a feature of the present embodiment.
  • the total polishing time T of the polishing process performed N times can be appropriately set according to a desired machining allowance, and the polishing time of each polishing process is arbitrary.
  • the rotation angle is set to (360 / N) degrees as described above, it is preferable that the polishing time for each polishing step is made the same (that is, T / N) in order to level the influence of unevenness. .
  • the present invention can be applied to any semiconductor wafer and is not intended to be any limitation.
  • a silicon wafer or a compound semiconductor (GaAs, GaN, SiC) wafer can be exemplified, and an epitaxial layer is formed on the surface thereof.
  • the present invention can also be applied to a semiconductor epitaxial wafer having the same.
  • “same” or “equal” as used in the present specification does not mean strictly equal in a mathematical sense, but includes inevitable errors that occur in the manufacturing process of a semiconductor wafer. Of course, it includes an error that is allowed within a range in which the effects of the above are exhibited. For example, an error of about 2% is included in the present invention.
  • any member can be applied to the backing plate 110, the polishing head 120, the polishing cloth 130, the surface plate 140, the mount 180 (turn table 181), and the tray 190.
  • Example 1-1 A silicon wafer having a diameter of 300 mm and a thickness of 775 ⁇ m was prepared, a polishing cloth made of a suede material was placed on the surface of the surface plate, and finish polishing was performed by a single-wafer single-side polishing apparatus 100 shown in FIGS. . Further, a suede material was used for the backing plate 110. The silicon wafer was changed every time between polishing.
  • the polishing conditions were as follows.
  • Polishing pressure 135 g / cm 2 ⁇ Number of polishing process: 6 times (Number of holding process: 5 times) -Total polishing time: 360 seconds-Polishing time in each polishing step: 60 seconds-Rotation angle when changing: 60 degrees-Polishing liquid: Alkaline polishing liquid (containing colloidal silica)
  • Example 1-2 A silicon wafer according to Example 1-2 was obtained in the same manner as Example 1-1 except that the number of polishing steps, the polishing time, and the rotation angle in Example 1-1 were changed to the conditions shown in Table 1 below. It was.
  • FIGS. 3 to 5 show the shape profiles of the polished silicon wafers of Examples 1-1 and 1-2 and Conventional Example 1-1 divided in 8 sectors (in 45 degree increments) in the circumferential direction. .
  • the horizontal axis of the graph indicates the radial position from the wafer center. That is, the wafer center corresponds to 0 mm, and the outer peripheral edge of the wafer corresponds to 150 mm.
  • the vertical axis represents the relative value of the thickness of the wafer and is an arbitrary unit (AU). The vertical arrow in the figure indicates the absolute value of the thickness range.
  • Example 2-1 63 silicon wafers with a diameter of 300 mm and a thickness of 775 ⁇ m were prepared, a suede polishing cloth was placed on the surface of the surface plate, and final polishing was performed by the single-wafer single-side polishing apparatus 100 shown in FIGS. went. The silicon wafer was changed every time between polishing.
  • the polishing conditions were as follows.
  • Polishing pressure 135 g / cm 2 ⁇ Number of polishing process: 6 times (Number of holding process: 5 times) -Total polishing time: 360 seconds-Polishing time in each polishing step: 60 seconds-Rotation angle when changing: 60 degrees-Polishing liquid: Alkaline polishing liquid (containing colloidal silica)
  • Example 2-2 A silicon wafer according to Example 2-2 was obtained in the same manner as in Example 2-1, except that the number of polishing steps, the polishing time, and the rotation angle in Example 2-1 were changed to the conditions shown in Table 2 below. It was.
  • Example 2-3 A silicon wafer according to Example 2-3 was obtained in the same manner as in Example 2-1, except that the number of polishing steps, the polishing time, and the rotation angle in Example 2-1 were changed to the conditions shown in Table 2 below. It was.
  • Example 2-4 A silicon wafer according to Example 2-4 was obtained in the same manner as in Example 2-1, except that the number of polishing steps, the polishing time, and the rotation angle in Example 2-1 were changed to the conditions shown in Table 2 below. It was.
  • ESFQR Edge flatness metric, Sector based, Front surface referenced, least sQuares fit reference plane, Range of the data within before and after polishing of each silicon wafer obtained in Examples 2-1 to 2-4 and Conventional Example 2-1. sector
  • FIG. 6 shows ESFQR change amount before and after polishing ([ESFQR before polishing]-[ESFQR after polishing]) before and after polishing in Example 2-1, Example 2-2, Example 2-3, and Conventional Example 2-1. Show.
  • Table 3 shows the average value and standard deviation of the ESFQR variation before and after polishing in Example 2-1, Example 2-2, Example 2-3, and Conventional Example 2-1. Similarly, the amount of change in ESFQR before and after polishing in Example 2-2 and Example 2-4 is shown in FIG. 7, and the average value and standard deviation are also shown in Table 3.
  • the ESFQR is an index indicating the flatness of the wafer as defined in the SEMI standard, and is a fan shape formed in the peripheral area of the entire circumference of the wafer (72 equally in the circumferential direction within a range of 30 mm from the outer periphery of the wafer). Is obtained by calculating the sum of the absolute values of the maximum displacement amounts from the reference plane obtained by the least square method. In addition, it means that the flatness of a wafer is so favorable that the value of ESFQR is small.
  • Example 2-1 to 2-3 the absolute value and variation of the ESFQR value before and after polishing could be reduced compared to Conventional Example 2-1. did it. Further, from FIG. 7 and Table 3, also in Example 2-4 in which the rotation angle between the polishing head and the silicon wafer was 5 degrees, the absolute value of the change amount of the ESFQR value before and after polishing compared to Conventional Example 2-1, It was confirmed that the variation could be reduced. However, when Example 2-2 is compared with Example 2-4, the absolute value and variation of the change amount of the ESFQR value are further reduced by setting the rotation angle to (360 / [number of polishing steps]) degrees. I was able to confirm that I was able to. Moreover, it has also confirmed that the effect of this invention was acquired more reliably, so that there were many frequency
  • the present invention it is possible to provide a single-wafer single-side polishing method and single-wafer single-side polishing apparatus capable of increasing the flatness of a polished semiconductor wafer and suppressing variations in flatness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

 半導体ウェーハの平坦度を高め、かつ平坦度のばらつきを抑制できる枚葉式片面研磨方法および枚葉式片面研磨装置を提供する。 本発明の半導体ウェーハの枚葉式片面研磨方法は、半導体ウェーハ1を研磨する研磨工程と、半導体ウェーハ1を定盤140から該定盤外のトレイ190上に搬送し、半導体ウェーハ1および研磨ヘッド120の相対位置を研磨ヘッド120の回転方向に移動させ、その後半導体ウェーハ1を把持する持ち替え工程と、を含み、前記研磨工程を複数回行い、該複数回の研磨工程の合間に、前記持ち替え工程を少なくとも1回以上行うことを特徴とする。

Description

半導体ウェーハの枚葉式片面研磨方法および半導体ウェーハの枚葉式片面研磨装置
 本発明は、半導体ウェーハの枚葉式片面研磨方法および半導体ウェーハの枚葉式片面研磨装置に関する。
 シリコンウェーハなどの、高平坦度が要求される半導体ウェーハの表面研磨法は、半導体の両面を同時に研磨する両面研磨法と、片面のみを研磨する片面研磨法とに大別される。片面研磨法は、比較的硬質な研磨布を用いる粗研磨から、比較的軟質な研磨布を用いる仕上げ研磨まで、広く用いられている。
 ここで、図1を用いて、従来用いられている片面研磨装置10による一般的な片面研磨方法を説明する。研磨装置10は、バッキングプレート11を介して半導体ウェーハ1を把持する研磨ヘッド12と、研磨布13が貼付された回転定盤14とを有する。なお、研磨ヘッド12は、研磨ヘッド12を回転させる回転機構と、研磨ヘッド12を回転定盤14の内外に移動させる移動機構を備える。かかる片面研磨装置10においては、研磨ヘッド12は半導体ウェーハ1を把持しつつ回転定盤14の上面に貼付された研磨布13に対して半導体ウェーハ1の被研磨面(すなわち、研磨ヘッド12と反対側の面)を押圧し、研磨ヘッド12と回転定盤14を共に回転させることにより研磨ヘッド12と回転定盤14とを相対運動させ、研磨液供給手段15から研磨液16を供給しながら半導体ウェーハ1の被研磨面のみを化学機械研磨する。
 片面研磨により、ある程度の高平坦度を達成することはできるが、完全な平坦面を得ることはできない。特に、半導体ウェーハ周縁部における「面ダレ」と呼ばれる研磨後の平坦度の悪化は現在のところ、不可避である。そこで、研磨による面ダレを防止し、平坦度の高い半導体ウェーハを得るための試みが行われている。
 例えば、特許文献1では、研磨が終了するまでに要する研磨時間を少なくとも2段階に分割し、その分割された研磨と研磨の間に休息時間を設けて、1枚の半導体ウェーハにつき多段階の研磨をする半導体ウェーハの研磨方法が記載されている。この研磨方法では、研磨と研磨の間に休息時間を設けて多段階の研磨を行って、研磨時間が長時間化するときに生じる平坦度の悪化を防止することにより、研磨面の面ダレを抑制することができる。
特開平成9-174394号公報
 特許文献1に記載の研磨方法により、従来よりも高平坦度に半導体ウェーハを仕上げ研磨することができるが、かかる方法により研磨された後の半導体ウェーハの平坦度では、微細化が益々進む今日において不十分である。さらに、複数枚の半導体ウェーハを研磨した後のそれぞれの半導体ウェーハの平坦度にばらつきが大きく、歩留まりの悪化にもつながる。
 そこで本発明は、研磨後の半導体ウェーハの平坦度を高め、かつ平坦度のばらつきを抑制することのできる枚葉式片面研磨方法および枚葉式片面研磨装置を提供することを目的とする。
 本発明者は、上記課題を解決する方途について鋭意検討した。ここで、バッキングプレートを介して研磨ヘッドに吸着されることで、半導体ウェーハが把持されることは既述のとおりである。ところで、バッキングプレートは接着剤等により研磨ヘッドに接着されているため、各部材の影響により半導体ウェーハを把持するバッキングプレートの把持面には、nmオーダーの微小な凹凸が不可避的に存在する。研磨時においては、かかる凹凸により半導体ウェーハに不均一な圧力が加わるために、半導体ウェーハの把持面に存在する微小な凹凸が研磨後の半導体ウェーハに転写されることで研磨取り代形状の面内ばらつきが発生する。このことが、平坦度の悪化や、平坦度のばらつきの原因となり、特にウェーハの外周部で顕著となることに本発明者は着目した。そこで、研磨ヘッドと、半導体ウェーハとの相対位置を研磨ヘッドの回転方向に移動させた後に、研磨ヘッドに半導体ウェーハを把持させる持ち替え工程を行うことにより、微小な凹凸の影響を平準化することができ、その結果、研磨後の半導体ウェーハの平坦度を向上させ、かつ平坦度のばらつきを抑制できることを本発明者は知見し、本願発明を完成するに至った。
 すなわち、本発明の要旨構成は以下のとおりである。
 本発明による半導体ウェーハの枚葉式片面研磨方法は、研磨ヘッドに把持された半導体ウェーハを定盤に押圧して前記半導体ウェーハを研磨する研磨工程と、前記研磨ヘッドに把持された前記半導体ウェーハを、前記定盤から該定盤外のトレイ上に搬送し、次いで前記研磨ヘッドから前記半導体ウェーハを離脱させて前記トレイに前記半導体ウェーハを載置し、該載置した前記半導体ウェーハおよび前記研磨ヘッドの相対位置を前記研磨ヘッドの回転方向に移動させ、その後前記載置された前記半導体ウェーハを前記研磨ヘッドにより把持する持ち替え工程と、を含み、前記研磨工程を複数回行い、該複数回の研磨工程の合間に、前記持ち替え工程を少なくとも1回以上行うことを特徴とする。
 ここで、前記複数回をN回(但し、Nは2以上の整数とする)としたときに、前記持ち替え工程を(N-1)回行うことが好ましい。
 この場合、前記持ち替え工程における前記回転方向の移動を(360/N)度とすることが好ましい。
 また、本発明による半導体ウェーハの枚葉式片面研磨装置は、半導体ウェーハを把持し、回転機構および移動機構を備える研磨ヘッドと、前記半導体ウェーハを研磨する研磨布が貼付された定盤と、前記半導体ウェーハを載置するトレイを備える架台と、前記トレイに載置された前記半導体ウェーハを前記研磨ヘッドが把持するときに、前記半導体ウェーハおよび前記研磨ヘッドの、該研磨ヘッドの回転方向における相対位置を制御する制御部と、を有することを特徴とする。
 この場合、前記架台は回転手段を備えることが好ましい。
 本発明によれば、研磨ヘッドと、半導体ウェーハとの相対位置を研磨ヘッドの回転方向に移動させた後に、研磨ヘッドに半導体ウェーハを把持させる持ち替えを行うので、研磨後の半導体ウェーハの平坦度を高め、かつ平坦度のばらつきを抑制することのできる枚葉式片面研磨方法および枚葉式片面研磨装置を提供することができる。
従来の半導体ウェーハの片面研磨方法を説明する模式図である。 本発明の一実施形態に従う枚葉式片面研磨方法を説明する模式図であり、(A)は研磨工程を示す模式図であり、(B)は持ち替え工程を示す模式図である。 実施例1-1における、片面研磨後のシリコンウェーハの形状プロファイルを示すグラフである。 実施例1-2における、片面研磨後のシリコンウェーハの形状プロファイルを示すグラフである。 従来例1-1における、片面研磨後のシリコンウェーハの形状プロファイルを示すグラフである。 実施例2における、片面研磨前後のシリコンウェーハのESFQR変化量を示すグラフである。 実施例2における、片面研磨前後のシリコンウェーハのESFQR変化量を示すグラフである。
 以下、図面を参照して本発明の実施形態について説明する。図2は、本発明に従う枚葉式片面研磨装置を用いた枚葉式片面研磨方法における各工程の断面構造を模式的に示したものであり、(A)は研磨工程を示す模式図であり、(B)は持ち替え工程を示す模式図である。なお、図2は、説明の便宜上、半導体ウェーハおよび装置の構成要素の縦横の比率を実際の比率から誇張して示している。また、図面の簡略化のため、構成の要部のみを模式的に示すこととする。
(枚葉式片面研磨装置)
 図2(A)は、本発明の一実施形態に従う半導体ウェーハの枚葉式片面研磨装置100の研磨工程における模式図である。この枚葉式片面研磨装置100は、半導体ウェーハ1を把持し、回転機構および移動機構を備える研磨ヘッド120と、半導体ウェーハ1を研磨する研磨布130が貼付された定盤140と、半導体ウェーハ1を載置するトレイ190を備える架台180と、を有する。ここで、枚葉式片面研磨装置100は、トレイ190に載置された半導体ウェーハ1を研磨ヘッド120が把持するときに、半導体ウェーハ1および研磨ヘッド120の、研磨ヘッド120の回転方向における相対位置を制御する制御部170を有することを特徴とする。かかる構成を有することにより、後述の導体ウェーハの枚葉式片面研磨方法を行うことができる。以下、各構成の詳細を説明する。
 研磨ヘッド120は、一般的にバッキングプレート110を介して半導体ウェーハ1を把持する。研磨ヘッド120とバッキングプレート110とは、従来公知の接着剤等により貼り合わせられる。半導体ウェーハ1の把持にあたっては、水等の液体による表面張力または真空吸着が用いられることが一般的であるが、研磨ヘッド120は任意の手段により半導体ウェーハ1を把持および離脱することができる。また、この研磨ヘッド120は、研磨ヘッド120を昇降および定盤の内外に搬送可能な移動機構を備え、また、研磨ヘッド120を回転させることのできる回転機構を備える。
 定盤140には、粗研磨から仕上げ研磨までの所望の研磨目的に応じた番手の研磨布130が貼付される。また、半導体ウェーハ1を研磨する際には、モーター等により定盤140を回転するのが一般的である。
 なお、図示しないが、本実施形態に従う枚葉式片面研磨装置100は図1を用いて既述の研磨液供給手段を有してもよい。かかる研磨液供給手段を用いることで、半導体ウェーハ1を化学機械研磨することができる。もちろん、本実施形態における研磨は化学機械研磨に限られず、機械研磨であっても本発明は適用可能である。
 定盤140外には、半導体ウェーハ1を一時的の載置するためのトレイ190が設けられる。このトレイ190は架台180上に設置されることが通常である。この架台180は回転手段を備えていてもよく、その場合制御部170によって回転を制御することができる。回転手段を備える架台180の一具体例として、ターンテーブル181を挙げることができる。すなわち、トレイ190をターンテーブル181上に設置してもよい。以下、回転手段を備えない一般的な架台を用いる実施形態を説明する。
 ここで、本実施形態の特徴事項の一つである制御部170について説明する。既述のとおり、制御部170は、トレイ190に載置された半導体ウェーハ1を研磨ヘッド120が把持するときに、半導体ウェーハ1および研磨ヘッド120の、研磨ヘッド120の回転方向における相対位置を制御する。具体的には以下のようにして、かかる相対位置を制御することができる。すなわち、図2(A)に示すように、研磨ヘッド120が半導体ウェーハ1を把持していた状態から、半導体ウェーハ1を把持しながら研磨ヘッド120をトレイ190上に搬送する。次いで、研磨ヘッド120から半導体ウェーハ1を離脱させて、トレイ190に半導体ウェーハ1を載置する。その後、研磨ヘッド120を回転させる。この回転自体は、モーター等の一般的な手段を用いることができるが、回転角度を所望の角度だけ回転させて、半導体ウェーハ1および研磨ヘッド120の、研磨ヘッド120の回転方向における相対位置を移動させることが重要である。
 従来における片面研磨装置では、半導体ウェーハを研磨ヘッドにより把持する際に、半導体ウェーハに設けられるノッチまたはオリエンテーションフラットに対して、研磨ヘッドの回転方向における把持面の位置合わせなどは行っていないし、ましてや上述の相対位置の制御も行っていない。既述のとおり、研磨ヘッドに貼り付けられたバッキングプレートの半導体ウェーハとの把持面には微小な凹凸が存在するため、かかる凹凸の影響により半導体ウェーハの研磨後の平坦度の向上や、複数枚の半導体ウェーハを研磨したときの平坦度のばらつきの改善には限界があったのである。
 本実施形態に従う枚葉式片面研磨装置100は、前述の制御部170を有するので、詳細を後述する半導体ウェーハの持ち替えを行うことができる。かかる持ち替えにより、研磨後の半導体ウェーハの平坦度を高め、かつ平坦度のばらつきを抑制することができる。
 ここで、本実施形態に従う枚葉式片面研磨装置100は、半導体ウェーハ1および研磨ヘッド120の、研磨ヘッド120の回転方向における相対位置の移動度を検出することのできる検出部を有することも好ましい。このような検出部として、レーザー検知機等を研磨ヘッド120に設けることができる。他にも、研磨ヘッド120のサーボモーターのパルス制御等により、研磨ヘッドを回転させた角度を検出することもできる。
 なお、架台180として回転手段を備えるターンテーブル181を用いる場合、上記実施形態において研磨ヘッド120およびターンテーブル181のいずれか一方または両方を回転させればよい。また、研磨ヘッド120と同様に、サーボモーターのパルス制御等によってターンテーブル181を回転させることができ、その回転角度を検出することもできる。
(枚葉式片面研磨方法)
 次に、本発明の一実施形態に従う半導体ウェーハの枚葉式片面研磨方法を説明する。
 本発明の一実施形態に従う半導体ウェーハの枚葉式片面研磨方法は、研磨ヘッド120に把持された半導体ウェーハ1を定盤140に押圧して半導体ウェーハ1を研磨する研磨工程(図2(A))と、研磨ヘッド120に把持された半導体ウェーハ1を、定盤140から該定盤外のトレイ190上に搬送し、次いで研磨ヘッド120から半導体ウェーハ1を離脱させてトレイ190に半導体ウェーハ1を載置し、該載置した半導体ウェーハ1および研磨ヘッド120の相対位置を研磨ヘッド120の回転方向に移動させ、その後前記載置された半導体ウェーハ1を研磨ヘッド120により把持する持ち替え工程(図2(B))と、を含む。本実施形態では、前記研磨工程を複数回行い、該複数回の研磨工程の合間に、前記持ち替え工程を少なくとも1回以上行うことを特徴とする。かかる工程を経ることで、研磨後の半導体ウェーハの平坦度を高め、かつ平坦度のばらつきを抑制することができる。以下、各工程について説明する。
 本実施形態において、研磨工程(図2(A))を複数回行うことが本実施形態の特徴の一つであるが、複数回行う研磨工程のそれぞれは、常法に従い行うことができる。既述のとおり、研磨ヘッド120が半導体ウェーハ1を把持しつつ定盤140の上面に貼付された研磨布130に対して半導体ウェーハ1の被研磨面(すなわち、研磨ヘッド120と反対側の面)を押圧し、研磨ヘッド120と定盤140を共に回転させることにより研磨ヘッド120と定盤140とを相対運動させ、研磨液供給手段から研磨液を供給しながら半導体ウェーハ1の被研磨面のみを化学機械研磨するのが一般的である。しかしながら、研磨ヘッド120のみを回転させてもよいし、定盤140のみを回転させてもよい。また、研磨液を供給せずに機械研磨をしてもよい。
 また、持ち替え工程(図2(B))は、制御部170により行われ、研磨ヘッド120と半導体ウェーハ1との研磨ヘッドの回転方向における相対位置の制御は既述のとおりである。すなわち、一旦半導体ウェーハ1を研磨ヘッド120からトレイ190に離脱させ、半導体ウェーハ1および研磨ヘッド120の相対位置を研磨ヘッド120の回転方向に移動させた後に、研磨ヘッド120が半導体ウェーハを再度把持することで、半導体ウェーハ1は持ち替えられる。
 ここで、本実施形態において、研磨工程(図2(A))を複数回行い、該複数回の研磨工程の合間に、持ち替え工程(図2(B))を少なくとも1回以上行うことが重要である。すなわち、複数回の研磨工程の合間に、持ち替え工程を行うことにより、研磨ヘッド120と半導体ウェーハ1との把持面であるバッキングプレート110に存在するnmオーダーの微小な凹凸による影響を平準化することができる。その結果、研磨後の半導体ウェーハの平坦度を高め、かつ平坦度のばらつきを抑制できるのである。
 ここで、本実施形態において、上記複数回をN回(但し、Nは2以上の整数とする)としたときに、前記持ち替え工程を(N-1)回行うことが好ましい。すなわち、複数回行う研磨工程の全ての間で持ち替え工程を行うことが好ましい。半導体ウェーハの持ち替えにより、凹凸の影響を平準化することができ、研磨後の半導体ウェーハの平坦度を高め、かつ平坦度のばらつきを抑制できる。持ち替え回数が多ければ多いほど、凹凸の影響が小さくなるため好ましいが、持ち替え回数が過剰になると生産効率の低下を招くため、限定を意図しないものの、上限を100回とすることができる。一方、一度でも持ち替えを行えば本発明の効果を得ることができるため、持ち替え回数の下限は1回である。なお、本発明の効果をより確実に得つつ、生産効率を向上させるためには、持ち替え回数を1~10回とすることが好ましく、2~8回とすることがより好ましく、3~6回とすることが最も好ましい。
 また、本実施形態において、半導体ウェーハ1および研磨ヘッド120の相対位置を研磨ヘッド120の回転方向に移動させる回転角度は、相対位置が変化する限りは任意であり限定されない。しかしながら、半導体ウェーハ1の把持面における凹凸の影響を平準化して抑制するためには、少なくとも2度以上回転させて相対位置を移動させることが好ましく、5度以上回転させて相対位置を移動させることがより好ましい。また、凹凸の影響を最も平準化して抑制するためには、上記複数回をN回としたときに、半導体ウェーハ1および研磨ヘッド120の相対位置を研磨ヘッド120の回転方向に移動される回転角度を(360/N)度とすることが最も好ましい。
 ここで、本実施形態の特徴である持ち替え工程の実施に依存せず、研磨による研磨取り代は研磨時間に比例する。N回行う研磨工程の合計研磨時間Tは、所望の取り代に応じて適宜設定することができ、各研磨工程の研磨時間は任意である。ただし、上述のように回転角度を(360/N)度とする場合には、凹凸の影響を平準化するために研磨工程毎の研磨時間を同じにする(すなわち、T/N)ことが好ましい。
 なお、本発明は任意の半導体ウェーハに適用可能であり、何らの限定も意図しないが、例えばシリコンウェーハ、化合物半導体(GaAs、GaN、SiC)ウェーハを例示することができ、その表面にエピタキシャル層を有する半導体エピタキシャルウェーハにも本発明を適用可能である。
 ここで、本明細書で言う「同じ」または「等しい」とは、厳密に数学的な意味での等しさを意味するものではなく、半導体ウェーハの製造工程上生ずる不可避な誤差をはじめ、本発明の作用効果を奏する範囲で許容される誤差を含むものであることは勿論である。例えば、2%程度の誤差は本発明に含まれる。
 以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではない。例えば、バッキングプレート110、研磨ヘッド120、研磨布130、定盤140、架台180(ターンテーブル181)、トレイ190は任意の部材を適用することが可能である。
(実施例1-1)
 直径300mm、厚み775μmのシリコンウェーハを用意し、スウェード素材の研磨布を定盤の表面に設置し、図2(A),(B)に示す枚葉式片面研磨装置100により仕上げ研磨を行った。また、バッキングプレート110にはスウェード素材の部材を使用した。研磨と研磨の間には毎回シリコンウェーハの持ち替えを行った。研磨条件は以下のとおりとした。
 ・研磨圧力:135g/cm2
 ・研磨工程回数:6回(持ち替え工程回数:5回)
 ・合計研磨時間:360秒
  -各研磨工程における研磨時間:60秒
  -持ち替え時の回転角度:60度
 ・研磨液:アルカリ研磨液(コロイダルシリカ含有)
 以上の片面研磨を経て、実施例1-1にかかるシリコンウェーハを得た。
(実施例1-2)
 実施例1-1における研磨工程回数、研磨時間および回転角度を下記の表1に記載の条件に変えた以外は、実施例1-1と同様にして実施例1-2にかかるシリコンウェーハを得た。
(従来例1-1)
 実施例1-1における研磨工程回数、持ち替え工程回数、研磨時間および回転角度を下記の表1に記載の条件に変えた以外は、実施例1-1と同様にして従来例1-1にかかるシリコンウェーハを得た。すなわち、従来例1-1では持ち替え工程を行っていない。
Figure JPOXMLDOC01-appb-T000001
(評価1:シリコンウェーハの研磨後の形状)
 実施例1-1、1-2および従来例1-1に係る研磨後のシリコンウェーハの形状を、平坦度測定装置(KLA-Tencor社製:WaferSight)を用いて測定した。結果を図3~図5にそれぞれ示す。図3~図5は、実施例1-1、1-2および従来例1-1の研磨後のシリコンウェーハの形状プロファイルを、円周方向に8セクター(45度刻み)で区切ったものである。グラフの横軸はウェーハ中心からの径方向の位置を示す。すなわち、ウェーハ中心は0mmに相当し、ウェーハの外周端は150mmに相当する。また、縦軸はウェーハの厚さの相対値であり、任意単位(A.U.)としているが、図中の縦方向の矢印は厚さ範囲の絶対値を示す。
 図3~図5より、従来例1-1では周縁部のばらつきは150nm程度あったのに対して、実施例1-1では周縁部のばらつきを20nmに改善することができ、実施例1-2では周縁部のばらつきを50nmに改善することができることがわかった。
(実施例2-1)
 直径300mm、厚み775μmのシリコンウェーハを63枚用意し、スウェード素材の研磨布を定盤の表面に設置し、図2(A),(B)に示す枚葉式片面研磨装置100により仕上げ研磨を行った。研磨と研磨の間には毎回シリコンウェーハの持ち替えを行った。研磨条件は以下のとおりとした。
 ・研磨圧力:135g/cm2
 ・研磨工程回数:6回(持ち替え工程回数:5回)
 ・合計研磨時間:360秒
  -各研磨工程における研磨時間:60秒
  -持ち替え時の回転角度:60度
 ・研磨液:アルカリ研磨液(コロイダルシリカ含有)
 以上の片面研磨を経て、実施例2-1にかかるシリコンウェーハを得た。
(実施例2-2)
 実施例2-1における研磨工程回数、研磨時間および回転角度を下記の表2に記載の条件に変えた以外は、実施例2-1と同様にして実施例2-2にかかるシリコンウェーハを得た。
(実施例2-3)
 実施例2-1における研磨工程回数、研磨時間および回転角度を下記の表2に記載の条件に変えた以外は、実施例2-1と同様にして実施例2-3にかかるシリコンウェーハを得た。
(実施例2-4)
 実施例2-1における研磨工程回数、研磨時間および回転角度を下記の表2に記載の条件に変えた以外は、実施例2-1と同様にして実施例2-4にかかるシリコンウェーハを得た。
(従来例2-1)
 実施例2-1における研磨工程回数、持ち替え工程回数、研磨時間および回転角度を下記の表1に記載の条件に変えた以外は、実施例2-1と同様にして従来例2-1にかかるシリコンウェーハを得た。すなわち、従来例2-1では持ち替え工程を行っていない。
Figure JPOXMLDOC01-appb-T000002
(評価2)
 実施例2-1~2-4および従来例2-1により得られた各シリコンウェーハの研磨前後のESFQR(Edge flatness metric, Sector based, Front surface referenced, least sQuares fit reference plane, Range of the data within sector)を、平坦度測定装置(KLA-Tencor社製:WaferSight)を用いて測定した。実施例2-1、実施例2-2、実施例2-3および従来例2-1におけるESFQRの研磨前後の変化量([研磨前のESFQR]-[研磨後のESFQR])を図6に示す。また、実施例2-1、実施例2-2、実施例2-3および従来例2-1における研磨前後のESFQRの変化量の平均値および標準偏差を表3に示す。同様に、実施例2-2および実施例2-4におけるESFQRの研磨前後の変化量を図7に示し、その平均値および標準偏差を表3に併せて示す。
 なお、ESFQRとは、SEMI規格に規定される、ウェーハの平坦度を示す指標であり、ウェーハ全周の周縁領域に形成した扇形(ウェーハの外周から30mmの範囲で円周方向に72等分)の各領域のウェーハ厚みについて、最小二乗法により求められた基準面からの最大変位量の絶対値の和を算出することにより求めるものである。なお、ESFQRの値が小さいほど、ウェーハの平坦度が良好であることを意味する。
Figure JPOXMLDOC01-appb-T000003
 図6および表3から、従来例2-1に比べて、実施例2-1~2-3では、研磨前後のESFQR値の変化量の絶対値およびばらつきを小さくすることができたことが確認できた。また、図7および表3から、研磨ヘッドとシリコンウェーハとの回転角度を5度とした実施例2-4でも、従来例2-1に比べて研磨前後のESFQR値の変化量の絶対値およびばらつきを小さくすることができたことが確認できた。ただし、実施例2-2と実施例2-4とを比べると、回転角度を(360/[研磨工程数])度とすることで、よりESFQR値の変化量の絶対値およびばらつきを小さくすることができたことが確認できた。また、研磨工程回数および持ち替え工程回数が多いほど、本発明の効果をより確実に得られることも確認できた。
 本発明によれば、研磨後の半導体ウェーハの平坦度を高め、かつ平坦度のばらつきを抑制することのできる枚葉式片面研磨方法および枚葉式片面研磨装置を提供することができる。
10,100  片面研磨装置
11,110  バッキングプレート
12,120  研磨ヘッド
13,130  研磨布
14,140  定盤
170     制御部
180     架台
181     ターンテーブル
190     トレイ

Claims (5)

  1.  半導体ウェーハの枚葉式片面研磨方法であって、
     研磨ヘッドに把持された半導体ウェーハを定盤に押圧して前記半導体ウェーハを研磨する研磨工程と、
     前記研磨ヘッドに把持された前記半導体ウェーハを、前記定盤から該定盤外のトレイ上に搬送し、次いで前記研磨ヘッドから前記半導体ウェーハを離脱させて前記トレイに前記半導体ウェーハを載置し、該載置した前記半導体ウェーハおよび前記研磨ヘッドの相対位置を前記研磨ヘッドの回転方向に移動させ、その後前記載置された前記半導体ウェーハを前記研磨ヘッドにより把持する持ち替え工程と、を含み、
     前記研磨工程を複数回行い、該複数回の研磨工程の合間に、前記持ち替え工程を少なくとも1回以上行うことを特徴とする半導体ウェーハの枚葉式片面研磨方法。
  2.  前記複数回をN回(但し、Nは2以上の整数とする)としたときに、前記持ち替え工程を(N-1)回行う、請求項1に記載の枚葉式片面研磨方法。
  3.  前記持ち替え工程における前記回転方向の移動を(360/N)度とする、請求項2に記載の枚葉式片面研磨方法。
  4.  半導体ウェーハの枚葉式片面研磨装置であって、
     半導体ウェーハを把持し、回転機構および移動機構を備える研磨ヘッドと、
     前記半導体ウェーハを研磨する研磨布が貼付された定盤と、
     前記半導体ウェーハを載置するトレイを備える架台と、
     前記トレイに載置された前記半導体ウェーハを前記研磨ヘッドが把持するときに、前記半導体ウェーハおよび前記研磨ヘッドの、該研磨ヘッドの回転方向における相対位置を制御する制御部と、を有することを特徴とする半導体ウェーハの枚葉式片面研磨装置。
  5.  前記架台は回転手段を備える、請求項4に記載の枚葉式片面研磨装置。
PCT/JP2015/005085 2015-02-25 2015-10-06 半導体ウェーハの枚葉式片面研磨方法および半導体ウェーハの枚葉式片面研磨装置 WO2016135787A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580076898.3A CN107431006B (zh) 2015-02-25 2015-10-06 半导体晶片的单片式单面研磨方法及半导体晶片的单片式单面研磨装置
US15/552,563 US10391607B2 (en) 2015-02-25 2015-10-06 Single-wafer processing method of polishing one side of semiconductor wafer and single-wafer processing apparatus for polishing one side of semiconductor wafer
DE112015006224.6T DE112015006224B4 (de) 2015-02-25 2015-10-06 Einzelwaferverarbeitungsverfahren zum polieren einer seite eines halbleiterwafers und einzelwaferverarbeitungsvorrichtung zum polieren einer seite eines halbleiterwafers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-035650 2015-02-25
JP2015035650A JP6421640B2 (ja) 2015-02-25 2015-02-25 半導体ウェーハの枚葉式片面研磨方法および半導体ウェーハの枚葉式片面研磨装置

Publications (1)

Publication Number Publication Date
WO2016135787A1 true WO2016135787A1 (ja) 2016-09-01

Family

ID=56788064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005085 WO2016135787A1 (ja) 2015-02-25 2015-10-06 半導体ウェーハの枚葉式片面研磨方法および半導体ウェーハの枚葉式片面研磨装置

Country Status (7)

Country Link
US (1) US10391607B2 (ja)
JP (1) JP6421640B2 (ja)
KR (2) KR20160103912A (ja)
CN (1) CN107431006B (ja)
DE (1) DE112015006224B4 (ja)
TW (1) TWI608897B (ja)
WO (1) WO2016135787A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6418174B2 (ja) * 2016-02-03 2018-11-07 株式会社Sumco シリコンウェーハの片面研磨方法
KR101952403B1 (ko) * 2016-11-16 2019-02-26 주식회사 케이씨텍 기판 처리 장치 및 이에 사용되는 연마 벨트 조립체
KR101970620B1 (ko) * 2017-03-20 2019-08-13 주식회사 케이씨텍 기판 처리 장치
DE102017210423A1 (de) * 2017-06-21 2018-12-27 Siltronic Ag Verfahren, Steuerungssystem und Anlage zum Bearbeiten einer Halbleiterscheibe sowie Halbleiterscheibe
US20220115226A1 (en) * 2020-10-08 2022-04-14 Okmetic Oy Manufacture method of a high-resistivity silicon handle wafer for a hybrid substrate structure
CN115338694B (zh) * 2022-07-01 2024-02-02 金华博蓝特新材料有限公司 一种双面抛光晶片的加工方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072025A (ja) * 2002-08-09 2004-03-04 Shin Etsu Handotai Co Ltd ウエーハの研磨方法及び装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288620A (ja) 1987-05-22 1988-11-25 Kobe Steel Ltd アルミニウムの電解複合超鏡面加工方法
JP3795947B2 (ja) 1995-12-27 2006-07-12 コマツ電子金属株式会社 半導体ウェハの研磨方法
JP3580936B2 (ja) * 1996-02-26 2004-10-27 株式会社荏原製作所 ポリッシング装置のプッシャー及びポリッシング装置
EP0911114B1 (en) * 1997-10-20 2007-08-01 Ebara Corporation Polishing apparatus
JP2000077369A (ja) 1998-09-01 2000-03-14 Mitsubishi Materials Corp 半導体ウェーハの研磨装置および記録媒体
CN1203530C (zh) * 2000-04-24 2005-05-25 三菱住友硅晶株式会社 半导体晶片的制造方法
US7044832B2 (en) * 2003-11-17 2006-05-16 Applied Materials Load cup for chemical mechanical polishing
JP2008149408A (ja) * 2006-12-18 2008-07-03 Fujitsu Ltd ラッピング装置
CN202053163U (zh) * 2011-03-03 2011-11-30 中芯国际集成电路制造(上海)有限公司 研磨头
JP6239354B2 (ja) * 2012-12-04 2017-11-29 不二越機械工業株式会社 ウェーハ研磨装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072025A (ja) * 2002-08-09 2004-03-04 Shin Etsu Handotai Co Ltd ウエーハの研磨方法及び装置

Also Published As

Publication number Publication date
JP2016157866A (ja) 2016-09-01
TW201634180A (zh) 2016-10-01
CN107431006A (zh) 2017-12-01
US10391607B2 (en) 2019-08-27
DE112015006224B4 (de) 2022-10-20
US20180036864A1 (en) 2018-02-08
JP6421640B2 (ja) 2018-11-14
KR20170061653A (ko) 2017-06-05
KR102041240B1 (ko) 2019-11-06
TWI608897B (zh) 2017-12-21
DE112015006224T5 (de) 2017-11-02
KR20160103912A (ko) 2016-09-02
CN107431006B (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
JP6421640B2 (ja) 半導体ウェーハの枚葉式片面研磨方法および半導体ウェーハの枚葉式片面研磨装置
JP5847789B2 (ja) 両面研磨装置用キャリアの製造方法およびウエーハの両面研磨方法
JP5491273B2 (ja) ウェーハの面取り装置
EP2225070A1 (en) Nanotopography control and optimization using feedback from warp data
TWI727490B (zh) 晶圓製造方法以及晶圓
WO2016038800A1 (ja) 半導体ウェーハの加工方法、貼り合わせウェーハの製造方法、及びエピタキシャルウェーハの製造方法
CN110010458B (zh) 控制半导体晶圆片表面形貌的方法和半导体晶片
US9573241B2 (en) Polishing apparatus and polishing method
CN116330084A (zh) 晶片的镜面倒角方法、晶片的制造方法及晶片
JP2016198864A (ja) 両面研磨装置用のキャリアの製造方法およびウェーハの両面研磨方法
KR20160008550A (ko) 워크의 연마장치
CN109623553A (zh) 一种倒角磨轮、倒角研磨装置及研磨方法
JP2019507027A (ja) ポリッシング測定装置およびその研磨時間の制御方法、ならびにそれを含んだポリッシング制御システム
Park et al. Effect of contact angle between retaining ring and polishing pad on material removal uniformity in CMP process
TWI673138B (zh) 晶圓的研磨方法
TWI740606B (zh) 工件的兩面研磨方法
JP6432497B2 (ja) 研磨方法
JP2018101695A (ja) シリコンウェーハの枚葉式片面研磨方法
TW202025270A (zh) 矽晶圓的螺旋去角加工方法
US20190224807A1 (en) Dual-surface polishing device
JP2017136653A (ja) ウェーハの両面研磨方法
JP2013110322A (ja) シリコン酸化膜の形成方法及び形成装置、並びにシリコンウェーハの研磨方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883087

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15552563

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015006224

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883087

Country of ref document: EP

Kind code of ref document: A1