WO2016133148A1 - プーリ構造体 - Google Patents

プーリ構造体 Download PDF

Info

Publication number
WO2016133148A1
WO2016133148A1 PCT/JP2016/054646 JP2016054646W WO2016133148A1 WO 2016133148 A1 WO2016133148 A1 WO 2016133148A1 JP 2016054646 W JP2016054646 W JP 2016054646W WO 2016133148 A1 WO2016133148 A1 WO 2016133148A1
Authority
WO
WIPO (PCT)
Prior art keywords
air passage
rotating body
notch
pulley structure
end cap
Prior art date
Application number
PCT/JP2016/054646
Other languages
English (en)
French (fr)
Inventor
勝也 今井
隼人 島村
Original Assignee
三ツ星ベルト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016011352A external-priority patent/JP6290944B2/ja
Application filed by 三ツ星ベルト株式会社 filed Critical 三ツ星ベルト株式会社
Priority to KR1020177023081A priority Critical patent/KR101960260B1/ko
Priority to CN201680010995.7A priority patent/CN107250617B/zh
Priority to EP16752534.4A priority patent/EP3260738B1/en
Priority to US15/550,815 priority patent/US10415685B2/en
Priority to CA2975987A priority patent/CA2975987C/en
Publication of WO2016133148A1 publication Critical patent/WO2016133148A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/20Freewheels or freewheel clutches with expandable or contractable clamping ring or band
    • F16D41/206Freewheels or freewheel clutches with expandable or contractable clamping ring or band having axially adjacent coils, e.g. helical wrap-springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/32Friction members
    • F16H55/36Pulleys

Definitions

  • the present invention relates to a pulley structure having a spring accommodating space between two rotating bodies capable of relative rotation.
  • a belt is stretched over a pulley connected to a drive shaft of the auxiliary machine such as an alternator and a pulley connected to a crankshaft of the engine.
  • the torque of the engine is transmitted to the auxiliary machine through this belt.
  • a pulley connected to a drive shaft of an auxiliary machine such as an alternator for example, a pulley structure disclosed in Patent Document 1 capable of absorbing the rotational fluctuation of the crankshaft is used.
  • the pulley structure described in Patent Document 1 includes a first rotating body around which a belt is wound, a second rotating body that is provided inside the first rotating body and is rotatable relative to the first rotating body, and 2 And a coil spring arranged in a space formed between the two rotating bodies (hereinafter referred to as a spring accommodating space).
  • the spring accommodating space is an end cap that closes the opening on the front side of the first rotating body, and a roll interposed between the rear end of the first rotating body and the second rotating body. And a bearing.
  • a contact seal type sealed ball bearing in which grease (hereinafter referred to as bearing grease) is enclosed is used as a rolling bearing of a pulley structure provided on a drive shaft of an auxiliary machine such as an alternator.
  • Contact seal type sealed ball bearings are arranged on the outer ring, the inner ring arranged on the inner periphery of the outer ring, a plurality of balls arranged to roll between the inner ring and the outer ring, and on both sides of the plurality of balls.
  • an annular contact seal member is formed of a rubber-like elastic body and a sheet metal.
  • the outer peripheral edge of the contact seal member is fixed to the outer ring, and the lip portion formed on the inner peripheral edge of the contact seal member is in contact with the seal surface of the inner ring so as to be spread. Therefore, the contact seal type sealed ball bearing is excellent in dust resistance and waterproofness, and the bearing grease can remain for a long time.
  • muddy water or the like When an automobile or the like travels on a wet road surface, muddy water or the like is wound up into the engine room, and muddy water or the like may adhere to the auxiliary machine drive unit located on the side of the engine block. In particular, when traveling on a flooded road surface, the muddy water that has been rolled up can easily reach the accessory drive unit.
  • the pulley structure provided on the drive shaft of the auxiliary machine not only directly adheres the muddy water wound up, but also adheres muddy water from the auxiliary machine through the belt.
  • the end cap of the pulley structure disclosed in Patent Literature 1 is made of resin and is fitted with a claw provided on the flange portion in a recess provided on the outer periphery of the first rotating body, taking advantage of the elasticity of the flange portion protruding in the axial direction. It is attached to the first rotating body.
  • Such a fitting portion between the claw and the recess has poor sealing performance. Therefore, when an aqueous medium such as muddy water adheres to the surface of the pulley structure, the aqueous medium easily passes through the fitting portion and enters the inside of the pulley structure. As a result, the component parts in contact with the spring accommodating space may be corroded or malfunction due to foreign matter biting, and the life of the pulley structure may be shortened.
  • an end cap having a structure capable of reliably sealing the opening of the first rotating body over the entire circumference.
  • the communication between the spring housing space and the outside is blocked, so that when the temperature of the spring housing space rises due to the influence of a heat source such as an engine, the pressure of the spring housing space In addition, the pressure inside the rolling bearing increases.
  • the present invention prevents an aqueous medium such as muddy water from entering the spring accommodating space and excessively leaks the grease enclosed in the rolling bearing due to the pressure difference between the inside and outside of the pulley structure. It is an object of the present invention to provide a pulley structure that can prevent the occurrence of the failure and realize a long life of the pulley structure.
  • a cylindrical first rotating body around which a belt is wound, and an inner side of the first rotating body are provided so as to be relatively rotatable with respect to the first rotating body.
  • An end cap for closing the portion, a rolling bearing interposed between the second rotating body on the other side in the rotating shaft direction of the first rotating body, and a radial shift from the rotating shaft of the first rotating body
  • An air passage that communicates the spring housing space with the outside, and at least a part of the air passage is formed in the end cap, and the end cap is formed in the spring housing space. Is the one in the rotational axis direction only in the air passage Headed closes the said opening of the first rotating body so as to communicate with the outside.
  • the end cap is configured so that the spring accommodating space formed between the first rotating body and the second rotating body communicates with the outside toward the one side in the rotation axis direction only by the air passage.
  • the opening of the first rotating body is closed, that is, the opening of the first rotating body is closed so as not to communicate with the outside toward the one side in the direction of the rotation axis except for the air passage. Since at least a part of the air passage is formed in the end cap, the minimum flow path cross-sectional area of the air passage can be freely set. By reducing the minimum flow path cross-sectional area of the air passage, even if an aqueous medium such as muddy water adheres to the end cap, the aqueous medium such as muddy water can be prevented from entering the spring accommodating space.
  • the air passage formed in the end cap also rotates with the rotation of the first rotating body. Rotate around an axis. Therefore, even if an aqueous medium such as muddy water adheres to the end cap, the aqueous medium such as muddy water is unlikely to enter the ventilation path due to the action of centrifugal force, and foreign substances are not easily clogged in the ventilation path. In this way, by preventing the intrusion of muddy water or other aqueous medium into the spring housing space, it is possible to prevent malfunctions due to corrosion of the components in contact with the spring housing space or biting of foreign matter, and the pulley structure has a long service life.
  • the pulley can be operated even when the temperature of the internal space of the pulley structure (including the space inside the spring housing space and the rolling bearing) rises.
  • the pressure balance between the internal space of the structure and the outside can be maintained. Therefore, it is possible to prevent the grease sealed inside the rolling bearing from leaking to the outside due to the difference between the internal pressure of the rolling bearing and the external pressure. Thereby, early breakage of the rolling bearing can be prevented and the life of the pulley structure can be extended.
  • the pulley structure according to the second aspect of the present invention is the pulley structure according to the first aspect, wherein a recess extending in the circumferential direction is formed on the inner peripheral surface of the opening of the first rotating body, and the end cap is An elastic portion made of an elastic body; and a rigid portion that is higher in rigidity than the elastic portion and integrated with the elastic portion, and the end cap contacts the concave portion of the first rotating body at an outer edge portion. And at least the seal portion is formed by the elastic portion, and the outer edge portion of the end cap is fitted into the concave portion in a radially compressed state.
  • At least the seal portion that is in contact with the concave portion of the first rotating body among the outer edge portions of the end cap is formed by the elastic portion made of an elastic body, and the outer edge portion of the end cap is radially It is fitted in the recess in a compressed state. Therefore, since the sealing performance between the seal portion and the recess is high, a configuration in which the spring accommodating space does not communicate with the outside toward the one side in the direction of the rotation axis other than the air passage can be more reliably realized. Moreover, since the end cap has higher rigidity than the elastic portion and has a rigid portion integrated with the elastic portion, deformation of the end cap can be suppressed by the rigid portion. Therefore, the sealing performance between the seal portion and the recess can be further improved.
  • the pulley structure according to a third aspect of the present invention is the pulley structure according to the second aspect, wherein the air passage includes at least one notch air passage formed by notching a part of the seal portion of the end cap. .
  • the ventilation path includes a cutout ventilation path formed by cutting out a part of the seal portion of the end cap, the ventilation path is formed in the vicinity of the outer edge portion of the end cap.
  • An aqueous medium such as muddy water adhering to the inner side of the outer edge portion of the end cap has a higher moving speed as it moves radially outward due to the action of centrifugal force during the rotation of the first rotating body and the end cap. For this reason, it is difficult for an aqueous medium such as muddy water to enter the ventilation path formed near the outer edge of the end cap, and it is possible to more reliably prevent the aqueous medium such as muddy water from entering the spring accommodating space.
  • “formed by cutting out” includes not only the case of actually forming the cutout but also the case of forming the cutout shape by die molding or the like.
  • a pulley structure according to a fourth aspect of the present invention is the pulley structure according to the third aspect, wherein the notch air passage located closest to the one side in the rotational axis direction of the at least one notch air passage is the rotary shaft. Seen from the one side of the direction, it is covered by the recess.
  • the pulley structure according to the fifth aspect of the present invention in the third or fourth aspect, at least a part of the outer edge protrudes from the recess toward the one side in the rotation axis direction.
  • the aqueous medium such as muddy water adhered to the inner side from the outer edge portion of the end cap is caused by the action of centrifugal force. Even if it moves outward in the radial direction, it is difficult to enter the recess. Thereby, it can prevent more reliably that aqueous media, such as a muddy water, penetrate
  • the pulley structure according to a sixth aspect of the present invention is the pulley structure according to any one of the third to fifth aspects, wherein the air passage is oriented in the middle from the portion extending along the bottom surface of the recess to the spring accommodating space. Shaped to change.
  • a pulley structure according to a seventh aspect of the present invention is the pulley structure according to the sixth aspect, wherein the seal portion is in contact with the bottom surface of the recess, and the other side surface of the recess in the rotational axis direction.
  • the at least one notch air passage includes a first notch air passage formed by notching a part of the first seal portion, and one of the second seal portions. And a second notch air passage formed by notching the portion.
  • the seal portion since the first notch air passage extends along the bottom surface of the recess, it is possible to realize a configuration in which the air passage changes its direction on the way from the portion extending along the bottom surface of the recess to the spring accommodating space.
  • the seal portion includes a second seal portion that contacts the other side surface in the rotation axis direction of the recess. Therefore, compared with the case where only the first seal portion is provided, the sealing performance between the seal portion and the recess can be further improved.
  • the air passage is branched in a plurality of directions on the way to the spring accommodating space.
  • a pulley structure according to a ninth aspect of the present invention is the pulley structure according to the second aspect, wherein the air passage passes through a portion inside the outer edge of the end cap and has a diameter of 0.5 mm or greater and 1.2 mm or less. Includes a substantially circular hole.
  • the diameter of the substantially circular hole by setting the diameter of the substantially circular hole to 1.2 mm or less, the intrusion of an aqueous medium such as muddy water into the substantially circular hole can be more reliably suppressed. Further, by setting the diameter of the substantially circular hole to 0.5 mm or more, it is possible to more reliably prevent foreign matters such as dust from being clogged in the substantially circular hole.
  • the substantially circular hole is formed radially inward of the spring accommodating space.
  • FIG. 1 is a cross-sectional view of a pulley structure according to a first embodiment of the present invention.
  • 2 is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is a rear view of the end cap of FIG.
  • FIG. 4 is a graph showing the relationship between the torsion angle and the torsion torque of the torsion coil spring of the pulley structure according to the first embodiment.
  • FIG. 5 is a cross-sectional view of the pulley structure according to the second embodiment of the present invention.
  • FIG. 6 is a view of the end cap of FIG. 5 as viewed from the rear.
  • FIG. 7 is a partially enlarged cross-sectional view of the pulley structure according to the third embodiment of the present invention.
  • FIG. 7A shows the pulley structure when cut at the same position as the line AA in FIG.
  • FIG. 7B is a cross-sectional view of the pulley structure when cut at the same position as the line BB of FIG.
  • FIG. 8 is a rear view of the end cap of FIG.
  • FIG. 9 is a view showing an end cap applied to a pulley structure according to another embodiment of the present invention.
  • FIG. 9A is a view of the end cap as viewed from the rear
  • FIG. FIG. 10B is a cross-sectional view of the pulley structure when cut at the same position as the CC line in FIG.
  • FIG. 10 is a diagram illustrating a configuration of an idle durability tester used in the test of the example.
  • the pulley structure 1 of 1st Embodiment of this invention is demonstrated.
  • the pulley structure 1 of the present embodiment is installed on a drive shaft of an alternator in an auxiliary machine drive system (not shown) of an automobile.
  • the auxiliary drive system has a configuration in which a belt is stretched over a drive pulley connected to a crankshaft of an engine and a driven pulley that drives an auxiliary machine such as an alternator, and the rotation of the crankshaft is performed via the belt.
  • an auxiliary machine such as an alternator is driven.
  • the rotation speed of the crankshaft varies due to engine combustion, and the belt speed also varies accordingly.
  • the pulley structure 1 of the present embodiment includes a substantially cylindrical first rotating body (pulley) 2 around which a belt B is wound, and a rotating shaft inside the first rotating body 2.
  • an end cap 5 disposed on one side of the rotating bodies 2 and 3 in the direction of the rotation axis.
  • the left direction in FIG. 1 is referred to as the front direction
  • the right direction is referred to as the rear direction. The same applies to the second and third embodiments described later.
  • a recess 22 extending in the circumferential direction is formed on the inner peripheral surface of the opening 21 in front of the first rotating body 2.
  • the recess 22 extends continuously over the entire circumference.
  • the recess 22 is formed by a bottom surface 22a and two side surfaces 22b and 22c.
  • the front side surface 22b (hereinafter sometimes referred to as the front side surface 22b) is shorter than the rear side surface 22c (hereinafter also referred to as the rear side surface 22c).
  • the opening 21 in front of the first rotating body 2 is closed by the end cap 5.
  • the end cap 5 includes a disk part 51 facing the inside of the opening 21 of the first rotating body 2 and an outer edge part 52 on the outer peripheral side of the disk part 51.
  • the outer edge portion 52 protrudes rearward from the disc portion 51.
  • the outer edge portion 52 is in contact with the bottom surface 22 a and the rear side surface 22 c of the recess 22.
  • a portion of the outer edge portion 52 that contacts the bottom surface 22 a of the recess 22 is referred to as a first seal portion 53, and a portion that contacts the rear side surface 22 c of the recess 22 is referred to as a second seal portion 54.
  • the end cap 5 is formed by integrating an elastic portion 55 made of an elastic body and a rigid portion 56 having higher rigidity than the elastic portion 55.
  • the elastic body forming the elastic portion 55 for example, a rubber composition containing a rubber component such as chloroprene rubber, urethane rubber, nitrile rubber, hydrogenated nitrile rubber, acrylic rubber, silicone rubber, or fluororubber is preferable. This is because these rubbers are excellent in oil resistance and heat resistance.
  • the rigid portion 56 is an annular metal plate. Specifically, for example, a cold rolled steel plate, an electrogalvanized steel plate, a stainless steel plate, an aluminum alloy plate or the like is used.
  • the elastic portion 55 covers the entire front surface of the rigid portion 56. That is, the front surface of the end cap 5 is all formed by the elastic portion 55. Thereby, the rust of the end cap 5 can be suppressed.
  • the diameter of the elastic part 55 is larger than the diameter of the rigid part 56. Therefore, the first seal portion 53 that is the outer peripheral end of the outer edge portion 52 is formed by an elastic portion 55. Further, the elastic portion 55 covers the vicinity of the outer peripheral end of the rear surface of the rigid portion 56, and the second seal portion 54 is formed by the covered portion.
  • the outer edge portion 52 of the end cap 5 is fitted into the recess 22 in a state where the first seal portion 53 is compressed in the radial direction by the bottom surface 22 a of the recess 22. Therefore, the opening 21 is reliably sealed (sealed) by the first seal portion 53. Since the second seal portion 54 is not pressed against the recess 22 like the first seal portion 53, the second seal portion 54 may not be in contact with the rear side surface 22c of the recess 22.
  • the thickness of the outer edge portion 52 increases from the boundary portion with the disk portion 51 toward the outer peripheral side, and then decreases from a certain position toward the outer peripheral end.
  • the front surface of the outer edge portion 52 extends from the outer peripheral end of the outer edge portion 52 in a direction inclined with respect to the rotation axis direction (front-rear direction).
  • the foremost end of the outer edge portion 52 is located in front of the recess 22. In other words, a part of the outer edge portion 52 projects forward from the recess 22.
  • the rigid portion 56 has a substantially annular shape, only the elastic portion 55 is formed near the center in the radial direction of the end cap 5.
  • the portion formed by only the elastic portion 55 is preferably the same size or smaller than the inner space of the front end of a cylinder body 31 (described later) of the second rotating body 3 when viewed from the front-rear direction. Since the vicinity of the center of the end cap 5 is formed of only the elastic portion 55, the work of pulling out the end cap 5 can be easily performed during maintenance work. Specifically, the end cap 5 can be easily pulled out by breaking the elastic portion 55 with a tool such as a flat-blade screwdriver and kneading with the lever principle.
  • a circular hole 51 a (corresponding to a substantially circular hole of the present invention) is formed in the disc portion 51 of the end cap 5.
  • the circular hole 51a is substantially perfect circle, but may be substantially circular.
  • dot hatching is displayed on the rigid portion 56 in order to easily distinguish the elastic portion 55 and the rigid portion 56.
  • the circular hole 51a is formed radially inward from the front end of a cylinder body 31 described later of the second rotating body 3.
  • the circular hole 51a passes through a portion formed only by the elastic portion 55. Therefore, the circular hole 51a can be easily formed and the rust of the rigid portion 56 can be suppressed.
  • the circular hole 51a is formed at a position deviated from the center of the end cap 5 (that is, a position deviated from the rotation axis of the rotating bodies 2 and 3).
  • the diameter of the circular hole 51a is not less than 0.5 mm and not more than 1.2 mm.
  • An example of the manufacturing method of the end cap 5 is, for example, after closing the mold with the rigid portion 56 set in the mold as an insert material, the material of the elastic portion 55 (unvulcanized rubber) is press-fitted or The elastic part 55 and the rigid part 56 are integrally formed by filling into a mold with an injection molding machine and vulcanizing by heating and pressing. Thereafter, the circular hole 51a is processed. In order to improve the adhesion between the rigid portion 56 and the elastic portion 55, it is preferable to apply a vulcanized adhesive to the surface of the rigid portion 56 that contacts the elastic portion 55 and dry it in the pre-vulcanization process.
  • the second rotating body 3 includes a cylindrical main body 31 fixed to the drive shaft S of the alternator, an outer cylindrical portion 32 disposed outside the front end portion of the cylindrical main body 31, a front end of the cylindrical main body 31, and an outer cylindrical portion 32. And an annular plate portion 33 connecting the front ends.
  • the drive shaft S is fixed by being screwed into a thread groove on the inner peripheral surface of the cylinder main body 31.
  • a sliding bearing 6 is interposed between the inner peripheral surface of the front end portion of the first rotating body 2 and the outer peripheral surface of the outer cylindrical portion 32 of the second rotating body 3.
  • a rolling bearing 7 is interposed between the inner peripheral surface of the rear end portion of the first rotating body 2 and the outer peripheral surface of the cylindrical main body 31 of the second rotating body 3.
  • the sliding bearing 6 is an elastic C-shaped member formed of a synthetic resin such as polyacetal resin or polyamide resin.
  • the slide bearing 6 is attached to the outer cylindrical portion 32 of the second rotating body 3 in a slightly expanded diameter, and is in close contact with the outer cylindrical portion 32 by a self-elastic restoring force. Protrusions that prevent the sliding bearing 6 from coming off are provided on both sides of the sliding bearing 6 of the outer cylindrical portion 32.
  • the slide bearing 6 can move in the axial direction between these two protrusions.
  • a gap 11 exists between the slide bearing 6 and the inner peripheral surface of the first rotating body 2.
  • the size of the gap 11 is, for example, about 0.1 mm.
  • the rolling bearing 7 is a contact seal type sealed ball bearing.
  • the rolling bearing 7 includes an outer ring 71 fixed to the inner peripheral surface of the first rotating body 2, an inner ring 72 fixed to the outer peripheral surface of the cylinder body 31 of the second rotating body 3, and the outer ring 71 and the inner ring 72. And a plurality of balls 73 which are arranged so as to be freely rollable, and annular contact seal members 74 which are arranged on both sides of the plurality of balls 73.
  • the outer ring 71 and the inner ring 72 are provided with holding portions that hold the balls 73 slidably.
  • the contact seal member 74 is formed of a rubber-like elastic body and a sheet metal. The outer peripheral edge of the contact seal member 74 is fixed to the outer ring 71, and the lip formed on the inner peripheral edge of the contact seal member 74 is in contact with the seal surface of the inner ring 72 so as to be spread.
  • Bearing grease (not shown) is enclosed inside the rolling bearing 7.
  • the bearing grease forms a good oil film at the contact portion between the holding portion of the outer ring 71 and the inner ring 72 and each ball 73, and contributes to ensuring the rolling fatigue life of the holding portion.
  • the base oil of the bearing grease is, for example, a synthetic oil such as ester oil, and its kinematic viscosity is preferably about 100 mm 2 / s at 40 ° C. (the test method conforms to ASTM D7042-14: 2014).
  • As a thickener for the bearing grease for example, a urea compound having excellent heat resistance is used.
  • urea compound examples include diurea compounds, triurea compounds, tetraurea compounds, polyurea compounds, urea / urethane compounds, diurethane compounds, and mixtures thereof.
  • the blending ratio of the thickener is preferably 5 to 40% by mass with respect to the total amount of grease. When the blending ratio of the thickener is less than 5% by mass, it becomes difficult to maintain the grease state, and when it exceeds 40% by mass, the grease becomes too hard and the lubrication state can be sufficiently exhibited. Since it disappears, it is not preferable.
  • a spring accommodating space 8 is formed between the first rotating body 2 and the second rotating body 3 and in front of the rolling bearing 7.
  • the torsion coil spring 4 is accommodated in the spring accommodating space 8.
  • the spring accommodating space 8 is partitioned by the inner peripheral surface of the first rotating body 2, the outer peripheral surface of the cylinder body 31 of the second rotating body 3, the rolling bearing 7, and the annular plate portion 33 of the second rotating body 3. Space.
  • the spring accommodating space 8, the gap 11 between the sliding bearing 6 and the inner peripheral surface of the first rotating body 2, and the space inside the rolling bearing 7 are collectively referred to as an inner space 9 of the pulley structure 1.
  • the spring accommodating space 8 includes a gap 11 between the sliding bearing 6 and the inner circumferential surface of the first rotating body 2, an outer circumferential surface of the outer cylindrical portion 32 of the second rotating body 3 in front of the gap 11, and the first rotating body 2.
  • the above-described passage from the spring accommodating space 8 to the outside is referred to as an air passage 10.
  • the air passage 10 is formed at a position shifted in the radial direction from the rotation axis of the first rotating body 2.
  • the material of the first rotating body 2 and the second rotating body 3 is a metal, and for example, a carbon steel material such as S45C is used.
  • the inner surface of the first rotating body 2 may be subjected to a surface treatment (surface hardening treatment) for increasing the surface hardness such as soft nitriding treatment or induction hardening.
  • the inner diameter of the first rotating body 2 decreases in two steps toward the rear.
  • the inner peripheral surface of the portion having the smallest inner diameter is the pressure contact surface 2a
  • the inner peripheral surface of the portion having the second smallest inner diameter is the annular surface 2b.
  • the diameter of the annular surface 2 b is the same as or larger than the inner diameter of the outer cylindrical portion 32 of the second rotating body 3.
  • the front corner of the pressure contact surface 2a is chamfered in a tapered shape over the entire circumference.
  • the inclination angle ⁇ of the chamfered portion 2c with respect to the front-rear direction (rotational axis direction) is preferably 10 to 20 °, and more preferably 15 °.
  • the cylindrical main body 31 of the second rotating body 3 has an outer diameter larger than that of other portions in the spring accommodating space 8 at the front end.
  • the outer peripheral surface of this portion is referred to as a contact surface 31a.
  • a contact surface 3 a that faces the front end surface 4 a of the torsion coil spring 4 in the circumferential direction is formed at the front end portion of the second rotating body 3.
  • the contact surface 3a is formed in an arc shape when viewed from the axial direction.
  • a protrusion 32 a that protrudes radially inward is provided on the inner peripheral surface of the outer cylindrical portion 32.
  • the protrusion 32a is formed at a position about 90 ° away from the contact surface 3a on the side opposite to the rotation direction (the arrow direction in FIG. 2).
  • the protrusion 32 a faces the outer peripheral surface of the front region of the torsion coil spring 4.
  • the torsion coil spring 4 is formed of a wire having a rectangular cross section.
  • a spring oil tempered wire (based on JISG3560: 1994) is used.
  • the torsion coil spring 4 is left-handed (counterclockwise toward the front end in the axial direction).
  • the torsion coil spring 4 has a constant diameter over the entire length in a state where no external force is received.
  • the outer diameter of the torsion coil spring 4 in a state where no external force is received is larger than the inner diameter of the pressure contact surface 2 a of the first rotating body 2.
  • the rear region of the torsion coil spring 4 is in contact with the pressure contact surface 2a of the first rotating body 2 in a reduced diameter state. That is, the outer peripheral surface of the rear region of the torsion coil spring 4 is pressed against the pressure contact surface 2 a of the first rotating body 2 by the self-elastic restoring force of the torsion coil spring 4.
  • the front region of the torsion coil spring 4 is slightly enlarged. In contact with the contact surface 31a of the second rotating body 3. That is, the inner peripheral surface of the front region of the torsion coil spring 4 is pressed against the contact surface 31 a of the second rotating body 3 by the self-elastic restoring force of the torsion coil spring 4.
  • the rust preventive agent is enclosed in the spring accommodating space 8.
  • Grease is used as the rust inhibitor. Specifically, the same grease as the bearing grease enclosed in the rolling bearing 7 may be used.
  • the rust preventive agent is put into the spring accommodating space 8 in the form of a paste-like lump.
  • the input amount is, for example, about 0.2 g.
  • the viscosity of the rust preventive agent decreases due to the temperature rise of the spring accommodating space 8 or shear heat generation (friction heat), and the rust preventive agent diffuses throughout the spring accommodating space 8.
  • the rust preventive agent enters the gap 11 between the sliding bearing 6 and the first rotating body 2, but hardly leaks forward from the gap 11.
  • the first rotating body 2 rotates relative to the second rotating body 3 in the same direction as the rotation direction (the arrow direction in FIG. 2).
  • the rear region of the torsion coil spring 4 rotates relative to the second rotating body 3 together with the pressure contact surface 2 a of the first rotating body 2.
  • the torsion coil spring 4 is twisted in the diameter increasing direction.
  • the pressure contact force against the pressure contact surface 2a in the rear region of the torsion coil spring 4 increases as the torsion angle of the torsion coil spring 4 increases.
  • the region (front region) in contact with the contact surface 31a of the torsion coil spring 4 the vicinity of the position 90 ° away from the front end surface 4a around the rotation axis is defined as the second region 4b2, and the front end of the second region 4b2
  • the portion on the side of the surface 4a is referred to as a first region 4b1, and the remaining portion is referred to as a third region 4b3.
  • the vicinity of the position 90 ° away from the front end face 4a of the torsion coil spring 4 about the rotation axis (second region 4b2) is most susceptible to torsional stress. Therefore, when the torsion angle increases, the second region 4b2 of the torsion coil spring 4 increases. Is away from the contact surface 31a. At this time, the first region 4b1 and the third region 4b3 are in pressure contact with the contact surface 31a. When the second region 4b2 moves away from the contact surface 31a substantially simultaneously or when the twist angle becomes larger than that, the outer peripheral surface of the second region 4b2 comes into contact with the protrusion 32a.
  • the outer peripheral surface of the second region 4b2 is in contact with the protrusion 32a, so that the diameter expansion deformation of the front region of the torsion coil spring 4 is restricted (suppressed), so that the torsional stress is distributed to the windings other than the front region. .
  • the torsional stress applied to the winding portion on the rear side of the torsion coil spring 4 increases. Thereby, the difference of the torsional stress concerning each winding part of the torsion coil spring 4 can be reduced, and the strain energy can be absorbed by the torsion coil spring 4 as a whole, so that local fatigue failure can be prevented.
  • the pressure contact force of the third region 4b3 with respect to the contact surface 31a decreases as the torsion angle increases, and at the same time when the second region 4b2 contacts the protrusion 32a or when the torsion angle becomes larger than that.
  • the pressure contact force with respect to the contact surface 31a of the third region 4b3 is substantially zero.
  • the third region 4b3 moves away from the contact surface 31a due to the expansion of the third region 4b3, but the third region 4b3 and the second region 4b2
  • the torsion coil spring 4 is not bent (bent) in the vicinity of the boundary, that is, in the vicinity of the end far from the contact surface 3a of the protrusion 32a, and the front region is maintained in an arc shape. That is, the front region is maintained in a shape that allows easy sliding of the protrusion 32a.
  • the front region of the torsion coil spring 4 is pressed against the protrusion 32a of the second region 4b2 and the contact surface 31a of the first region 4b1.
  • the front end surface 4a of the torsion coil spring 4 presses the contact surface 3a of the second rotating body 3 by moving in the circumferential direction against the pressure contact force (sliding the protrusion 32a and the contact surface 31a).
  • torque can be reliably transmitted between the two rotating bodies 2 and 3.
  • the third region 4b3 is separated from the contact surface 31a in the front region of the torsion coil spring 4 (
  • the effective number of turns of the torsion coil spring 4 is smaller than when the torsion angle is less than ⁇ 1.
  • the effective number of turns of the coil spring is the number of turns in a range excluding the portion where the spring is fixed from the total length of the spring, and is inversely proportional to the spring constant (torsion torque / torsion angle).
  • FIG. 4 is a graph showing the relationship between the torsion angle of the torsion coil spring 4 and the torsion torque.
  • the torsion angle in the diameter expansion direction exceeds the angle ⁇ 1
  • the effective number of turns increases, and as shown in FIG. 4, the spring constant (the slope of the straight line shown in FIG. 4) decreases.
  • the torsion angle in the diameter increasing direction of the torsion coil spring 4 reaches a predetermined angle ⁇ 2 (for example, 45 °)
  • the outer peripheral surface of the middle region (the region between the front region and the rear region) of the torsion coil spring 4 performs the first rotation.
  • ⁇ 2 for example, 45 °
  • further expansion of the diameter of the torsion coil spring 4 is restricted, and the first rotating body 2 and the second rotating body 3 are Rotates integrally. Thereby, the damage by the diameter expansion deformation of the torsion coil spring 4 can be prevented.
  • the first rotating body 2 rotates relative to the second rotating body 3 in the direction opposite to the rotation direction (the arrow direction in FIG. 2).
  • the torsional angle of the pressure contact force on the pressure contact surface 2a in the rear region of the torsion coil spring 4 is zero.
  • the rear region of the torsion coil spring 4 is in pressure contact with the pressure contact surface 2a.
  • region of the torsion coil spring 4 increases a little compared with the case where a twist angle is zero.
  • the pulley structure 1 of this embodiment described above has the following characteristics.
  • the end cap 5 is configured so that the spring accommodating space 8 formed between the first rotating body 2 and the second rotating body 3 communicates with the outside forward only through the air passage 10.
  • the opening 21 is closed, that is, the opening 21 of the first rotating body 2 is closed so as not to communicate with the outside forward except for the air passage 10. Since the circular hole 51a which is a part of the air passage 10 is formed in the end cap 5, the minimum flow passage cross-sectional area of the air passage 10 can be freely set. By reducing the minimum flow path cross-sectional area of the air passage 10, even if an aqueous medium such as muddy water adheres to the end cap 5, the aqueous medium such as muddy water can be prevented from entering the spring accommodating space 8.
  • the air passage 10 is formed at a position shifted in the radial direction from the rotation axis of the first rotating body 2, the air passage 10 formed in the end cap 5 with the rotation of the first rotating body 2.
  • the (circular hole 51a) also rotates about the rotation axis of the first rotating body 2. Therefore, even if an aqueous medium such as muddy water adheres to the end cap 5, the aqueous medium such as muddy water does not easily enter the air passage 10 (specifically, the circular hole 51a) due to the action of centrifugal force. 10 is less likely to be clogged with foreign matter.
  • the internal space 9 of the pulley structure 1 rises by ensuring ventilation between the spring accommodating space 8 and the outside by the air passage 10, the internal space 9 and the outside of the pulley structure 1 The pressure balance can be maintained. Therefore, it is possible to prevent the bearing grease sealed inside the rolling bearing 7 from leaking to the outside due to the difference between the internal pressure of the rolling bearing 7 and the external pressure. Thereby, the early breakage of the rolling bearing 7 can be prevented, and the life of the pulley structure 1 can be further extended.
  • At least the first seal portion 53 and the second seal portion 54 that are in contact with the concave portion 22 of the first rotating body 2 are formed by an elastic portion 55 made of an elastic body.
  • the outer edge 52 of 5 is fitted in the recess 22 in a state compressed in the radial direction. Therefore, since the sealing performance between the first seal portion 53 and the concave portion 22 is high, a configuration in which the spring accommodating space 8 does not communicate with the outside toward the front other than the air passage 10 can be realized.
  • the end cap 5 has higher rigidity than the elastic portion 55 and has the rigid portion 56 integrated with the elastic portion 55, so that the deformation of the end cap 5 can be suppressed by the rigid portion 56. Therefore, the sealing performance between the first seal portion 53 and the second seal portion 54 and the recess 22 can be further improved.
  • the outer edge portion 52 of the end cap 5 has a second seal portion 54 that contacts the rear side surface 22 c of the recess 22 in addition to the first seal portion 53 that contacts the bottom surface 22 a of the recess 22. Therefore, compared with the case where only the first seal portion 53 is provided, the sealing performance between the outer edge portion 52 and the recessed portion 22 can be further improved.
  • the diameter of the circular hole 51a is 1.2 mm or less, the intrusion of an aqueous medium such as muddy water into the circular hole 51a can be suppressed. Moreover, since the diameter of the circular hole 51a is 0.5 mm or more, it is possible to prevent foreign matters such as dust from clogging the circular hole 51a.
  • the circular hole 51a is formed radially inward from the spring accommodating space 8, and the circular hole 51a and the spring accommodating space 8 are separated from each other in the radial direction. Therefore, even if an aqueous medium such as muddy water enters the circular hole 51a, an aqueous medium such as muddy water does not easily enter the spring accommodating space 8.
  • a tapered chamfer 2c is formed at the front corner of the pressure contact surface 2a. If the corner of the pressure contact surface 2a is chamfered to the extent that it does not become an edge (for example, C 0.3 mm), the surface pressure due to the pressure contact force of the torsion coil spring 4 is concentrated at the corner. There is a risk that the part will wear out early and the durability of the pulley structure 1 will be reduced. On the other hand, in this embodiment, by forming the tapered chamfered portion 2c at the corner of the pressure contact surface 2a, the surface pressure due to the pressure contact force of the torsion coil spring 4 at the corner can be reduced.
  • the surface pressure at the front and rear ends where the surface pressure is highest in the chamfered portion 2c can be reduced from the surface pressure of the chamfered portion that does not become an edge. Further, by setting the taper angle of the chamfered portion 2c to 10 to 20 °, the surface pressure at the front and rear ends of the chamfered portion 2c can be further reduced, and in particular, the surface pressure can be minimized by setting the taper angle to 15 °.
  • the wear resistance of the pressure contact surface 2a that slides with the outer peripheral surface of the torsion coil spring 4 can be improved, and the durability of the pulley structure 1 can be improved. Can be improved.
  • a rust preventive agent is enclosed in the spring accommodating space 8. Therefore, even if moisture containing salt enters from the outside into the spring accommodating space 8 through the slight passage between the air passage 10 and / or the contact seal member 74 of the rolling bearing 7 and the inner ring 72, the rotating body 2 Corrosion of the part facing the three spring accommodating spaces 8, particularly the part contacting the torsion coil spring 4 can be prevented. If the torsion coil spring 4 is formed of the above-described oil temper wire, rust does not occur. However, if the torsion coil spring 4 is formed of a material that causes rust, the torsion coil spring 4 is also prevented from being rusted by a rust inhibitor. it can.
  • the pulley structure 101 of 2nd Embodiment of this invention is demonstrated.
  • the description is abbreviate
  • the pulley structure 101 of the present embodiment is different from the end cap 5 of the first embodiment in the shape of the end cap 105, and other configurations are the same as those of the first embodiment. is there.
  • the end cap 105 of this embodiment is formed by integrating an elastic portion 155 and a rigid portion 156.
  • the materials of the elastic part 155 and the rigid part 156 are the same as those of the elastic part 55 and the rigid part 56 of the first embodiment.
  • the end cap 105 includes a disc portion 151 and an outer edge portion 152.
  • the disc part 151 is the same structure as the disc part 51 of 1st Embodiment except the point which does not have the circular hole 51a.
  • the outer edge portion 152 is a first seal portion 153 that contacts the bottom surface 22 a of the recess 22 and a second seal portion 154 that contacts the rear side surface 22 c of the recess 22.
  • the first seal portion 153 is formed with a first notch 153a in which a part of the first seal portion 153 in the circumferential direction is notched.
  • the second seal portion 154 is formed with a second notch 154a in which a part of the second seal portion 154 in the circumferential direction is notched.
  • the term “notched” includes not only the case where the cutout is actually made, but also the case where the cutout shape is formed by molding or the like.
  • the outer edge portion 152 has the same configuration as the outer edge portion 52 of the first embodiment, except that notches 153a and 154a are formed in the first seal portion 153 and the second seal portion 154.
  • the first notch 153a is formed at two locations 180 ° apart from the first seal portion 153.
  • the first notch 153a extends substantially parallel to the rotation axis direction (front-rear direction).
  • the cross section orthogonal to the rotation axis direction of the first notch 153a is formed in a substantially arc shape.
  • a first notch air passage 116 is formed between the first notch 153 a and the bottom surface 22 a of the recess 22. Therefore, the first cutout air passage 116 is formed by cutting out a part of the first seal portion 153.
  • the first notch air passage 116 extends along the bottom surface 22 a of the recess 22, and communicates the space ahead and the space behind the first seal portion 153.
  • the width (circumferential length) of the first notch 153a is set so that air permeability can be secured and the fitting strength between the first seal portion 153 and the bottom surface 22a of the recess 22 can be secured.
  • the cross-sectional area of the first notch air passage 116 is set so that air permeability can be secured and an aqueous medium such as muddy water does not easily enter.
  • the cross-sectional area of the first notch air passage 116 is, for example, 0.02 mm 2 or more and 0.3 mm 2 or less.
  • the notch depth D of the first notch 153 a is smaller than the radial length (for example, 0.4 mm) of the front side surface 22 b of the recess 22 ( For example, 0.1 mm or more and 0.3 mm or less) is preferable. Thereby, when viewed from the front, the front end of the first notch air passage 116 is covered with the front side surface 22b.
  • the second notch 154a is formed at two locations 180 ° apart from the second seal portion 154.
  • the two second notches 154a are formed at the same position as the two first notches 153a in the circumferential direction.
  • the second notch 154a extends in the radial direction.
  • the second notch 154a is formed by notching the elastic portion 155 of the second seal portion 154 so that the rigid portion 156 is exposed.
  • the cross section orthogonal to the extending direction (radial direction) of the second notch 154a is formed in, for example, a substantially rectangular shape or a substantially arc shape.
  • a second notch air passage 117 is formed between the second notch 154 a and the rear side surface 22 c of the recess 22. Therefore, the second cutout air passage 117 is formed by cutting out a part of the second seal portion 154.
  • the second notch 154a communicates the radially outer space and the radially inner space with respect to the second seal portion 154.
  • the flow path cross-sectional area of the second notch air passage 117 may be within a range (for example, about 0.03 mm 2 ) that ensures air permeability regardless of the flow path cross-sectional area of the first notch air passage 116.
  • the outer edge portion 152 and the concave portion 22 are located behind the contact portion between the first seal portion 153 and the bottom surface 22a of the concave portion 22 and radially outside the contact portion between the second seal portion 154 and the rear side surface 22c of the concave portion 22.
  • a gap 118 is formed between the bottom surface 22a and the rear side surface 22c).
  • a gap 119 is formed between the outer edge portion 152 and the recess 22 (specifically, the bottom surface 22a and the front side surface 22b) in front of the contact portion between the first seal portion 153 and the bottom surface 22a of the recess 22. ing.
  • the gap 118 and the gap 119 extend continuously over the entire circumference.
  • the spring accommodating space 8 includes a gap 11 between the sliding bearing 6 and the inner circumferential surface of the first rotating body 2, an outer circumferential surface of the outer cylindrical portion 32 of the second rotating body 3 in front of the gap 11, and the first rotating body 2.
  • the outer circumferential surface of the pulley structure 101 is communicated by the gap 12 with the inner peripheral surface, the two second notch air passages 117, the gap 118, the two first notch air passages 116, and the gap 119. Yes.
  • the above-described passage from the spring accommodating space 8 to the outside is referred to as an air passage 110.
  • the air flow from the outside toward the spring accommodating space 8 is indicated by a thick arrow.
  • the ventilation path 110 is formed at a position shifted in the radial direction from the rotation axis of the first rotating body 2.
  • the air passage 110 changes its direction from the axial direction to the radially inward direction from the first notch air passage 116 to the second notch air passage 117 through the gap 118.
  • the pulley structure 101 of this embodiment has the following features.
  • the end cap 105 is configured so that the spring accommodating space 8 formed between the first rotating body 2 and the second rotating body 3 communicates with the outside toward the front only through the air passage 110.
  • the opening 21 is closed, that is, the opening 21 of the first rotating body 2 is closed so as not to communicate with the outside forward except for the air passage 110. Since the notch air passages 116 and 117 which are a part of the air passage 110 are formed in the end cap 105, the minimum flow path cross-sectional area of the air passage 110 can be freely set.
  • the air passage 110 is formed at a position shifted in the radial direction from the rotation axis of the first rotating body 2, the air passage 110 formed in the end cap 105 with the rotation of the first rotating body 2. Also rotates about the rotation axis of the first rotating body 2.
  • the ventilation between the spring housing space 8 and the outside is ensured by the ventilation path 110, even if the temperature of the internal space 9 of the pulley structure 101 rises, the internal space 9 and the outside of the pulley structure 101 The pressure balance can be maintained. Therefore, it is possible to prevent the bearing grease sealed inside the rolling bearing 7 from leaking to the outside due to the difference between the internal pressure of the rolling bearing 7 and the external pressure. Thereby, the early breakage of the rolling bearing 7 can be prevented and the life of the pulley structure 101 can be extended.
  • the first seal portion 153 and the second seal portion 154 that come into contact with the concave portion 22 of the first rotating body 2 are formed by an elastic portion 155 made of an elastic body.
  • the outer edge 152 of 105 is fitted in the recess 22 in a state compressed in the radial direction. Therefore, since the sealing performance between the first seal portion 153 and the concave portion 22 is high, a configuration in which the spring housing space 8 does not communicate with the outside toward the front other than the air passage 110 can be more reliably realized.
  • the end cap 105 has higher rigidity than the elastic part 155 and has the rigid part 156 integrated with the elastic part 155, so that the deformation of the end cap 105 can be suppressed by the rigid part 156. Therefore, the sealing performance between the first seal portion 153 and the second seal portion 154 and the recess 22 can be further enhanced.
  • the air passage 110 includes notch air passages 116 and 117 formed by cutting out portions of the seal portions 153 and 154 of the end cap 105, the air passage 110 is near the outer edge portion 152 of the end cap 105. Formed.
  • An aqueous medium such as muddy water adhering to the inner side of the outer edge portion 152 of the end cap 105 has a higher moving speed as it moves outward in the radial direction due to the action of centrifugal force when the first rotating body 2 and the end cap 105 rotate. Become.
  • the notch air passages 116 and 117 are formed by notching the seal portions 153 and 154 formed by the elastic portion 155, the air passage 110 can be easily formed.
  • the front end portion of the first notch air passage 116 located in front is viewed from the front. And is covered by the recess 22. That is, the front end portion of the first notch air passage 116 is hidden inside the recess 22. Therefore, it is possible to more reliably prevent an aqueous medium such as muddy water scattered outside the pulley structure 101 from directly entering the first notch air passage 116.
  • the air passage 110 has a first notch air passage 116 formed by cutting out a part of the first seal portion 153 that contacts the bottom surface 22 a of the recess 22, and a second seal that contacts the side surface 22 c behind the recess 22.
  • a second cutout air passage 117 formed by cutting out a part of the portion 154 is included. Therefore, the direction of the air passage 110 is changed in the middle from the portion extending along the bottom surface 22 a of the recess 22 (the first notch air passage 116) to the spring accommodating space 8. Thereby, even if an aqueous medium such as muddy water enters the ventilation path 110 from the outside, it is possible to prevent the aqueous medium such as muddy water from easily entering the spring accommodating space 8.
  • a pulley structure 201 according to a third embodiment of the present invention will be described.
  • the description is abbreviate
  • the pulley structure 201 of this embodiment is different from the end caps 5 and 105 of the first and second embodiments in the configuration of the end cap 205, and the other configurations are the first. And it is the same as 2nd Embodiment.
  • the end cap 205 is formed by integrating an elastic portion 255 and a rigid portion 156.
  • the end cap 205 includes a disc part 151 and an outer edge part 252.
  • the end cap 205 differs from the second embodiment in the relative positions of the first notch 153a and the second notch 154a, and the other configurations are the same as those of the end cap 105 of the second embodiment.
  • the two second cutouts 154a are each formed at a position shifted by 90 ° from the first cutout 153a.
  • the shapes of the first notch 153a and the second notch 154a are the same as in the second embodiment.
  • 7A is a cross-sectional view when the pulley structure 201 is cut at the same position as the line AA in FIG. 8, and
  • FIG. 7B is a line BB in FIG. It is sectional drawing when the pulley structure 201 is cut
  • the spring accommodating space 8 includes a gap 11 between the sliding bearing 6 and the inner circumferential surface of the first rotating body 2, an outer circumferential surface of the outer cylindrical portion 32 of the second rotating body 3 in front of the gap 11, and the first rotating body 2.
  • the outer circumferential surface of the pulley structure 201 is communicated by the gap 12 with the inner peripheral surface, the two second notch air passages 117, the gap 118, the two first notch air passages 116, and the gap 119. Yes.
  • the above-described passage from the spring accommodating space 8 to the outside is referred to as an air passage 210.
  • the air flow from the outside toward the spring accommodating space 8 is indicated by a thick arrow.
  • the air passage 210 is formed at a position shifted in the radial direction from the rotation axis of the first rotating body 2.
  • the air passage 210 changes the direction from the axial direction to the circumferential direction from the first notch air passage 116 to the second notch air passage 117 through the gap 118 and then from the circumferential direction to the radially inward direction. And changing the direction.
  • the air passage 210 branches from the first notch air passage 116 in two circumferential directions to reach the two second notch air passages 117.
  • the pulley structure 201 of the present embodiment has the same effects as those described in the second embodiment with respect to the same configuration as the pulley structure 101 of the second embodiment.
  • the pulley structure 201 of the present embodiment has the following features in addition to that.
  • the air passage 210 is branched in a plurality of directions on the way to the spring accommodating space 8. Therefore, it is possible to ensure the ventilation between the spring accommodating space 8 and the outside.
  • the air passage 210 changes its direction a plurality of times in the middle of reaching the spring accommodating space 8, and the route is longer than the air passage 110 of the second embodiment. Therefore, it is difficult for an aqueous medium such as muddy water to enter the spring accommodating space 8 from the outside via the air passage 210.
  • a contact seal type sealed ball bearing is used as the rolling bearing 7, but the rolling bearing applied to the pulley structure of the present invention is a contact seal type sealed ball bearing. It may be a rolling bearing other than the bearing. For example, it may be a sealed rolling bearing of a shield type or a non-contact seal type. Moreover, the roller bearing which used the roller instead of the ball for the rolling element may be used.
  • the circular hole 51a is formed radially inward from the spring accommodating space 8, but the circular hole 51a may be formed at a position aligned with the spring accommodating space 8 in the rotation axis direction. .
  • the circular hole 51 a may be formed in the disc part 51 or in the outer edge part 52.
  • the circular hole 51a passes through a portion formed only by the elastic portion 55, but may pass through a portion where the rigid portion 56 and the elastic portion 55 are laminated.
  • each circular hole 51a is provided in the end cap 5, but a plurality of circular holes 51a may be provided. According to this configuration, ventilation between the outside and the spring accommodating space 8 can be ensured more reliably.
  • the diameter of each circular hole 51a is the same as in the first embodiment.
  • the first embodiment may be combined with the second or third embodiment. That is, the end cap may be provided with the circular hole 51a, the first notch air passage 116, and the second notch air passage 117. According to this configuration, ventilation between the outside and the spring accommodating space 8 can be ensured more reliably.
  • the first notch air passage 116 extends linearly in the direction of the rotation axis, but may extend while being inclined in the circumferential direction with respect to the direction of the rotation axis. That is, the position of the front end and the position of the rear end of the first notch air passage 116 may be shifted in the circumferential direction.
  • the 2nd notch ventilation path 117 is linearly extended in radial direction, it may be inclined and extended in the circumferential direction with respect to radial direction. That is, the position of the radially inner end of the second notch air passage 117 and the position of the radially outer end may be shifted in the circumferential direction.
  • the first notch 153a is formed in a substantially arc shape in cross section, but is formed in a shape other than the arc shape such as a triangular shape (V shape) or a rectangular shape. It may be.
  • the end caps 105 and 205 are provided with two first cutout air passages 116, but only one first cutout air passage 116 may be provided. Three or more may be provided. The greater the number of first cutout air passages 116, the more reliably the ventilation between the outside and the spring accommodating space 8 can be ensured.
  • the number of the second notch air passages 117 is the same as the number of the first notch air passages 116, but the number is smaller or larger than the number of the first notch air passages 116. May be. The greater the number of second notch vent paths 117, the more reliably the ventilation between the outside and the spring accommodating space 8 can be ensured.
  • the second notch air passage 117 is formed at the same position as the first notch air passage 116 in the circumferential direction.
  • the second notch air passage 117 is The second notch air passage 117 is formed at a position shifted in the circumferential direction from the first notch air passage 116, but is formed at the same position as the first notch air passage 116 in the circumferential direction, Both the 2nd notch ventilation path 117 formed in the position where the notch ventilation path 116 is not formed may be provided in the end cap.
  • ventilation between the outside and the spring accommodating space 8 can be ensured more reliably.
  • the outer edge portions 52, 152, 252 are in contact with the recess 22 by the first seal portions 53, 153 and the second seal portions 54, 154, but the outer edge portion is in front of the recess 22.
  • You may have another seal part (henceforth a 3rd seal part) which contacts the side surface 22b.
  • the third seal portion may contact not only the front side surface 22 b of the recess 22 but also a portion of the inner peripheral surface of the opening 21 of the first rotating body 2 that is ahead of the recess 22.
  • a part of the third seal portion is notched and a third notch (third notch air passage) is provided. It may be formed.
  • the third notch is preferably formed within a range covered by the recess 22 when viewed from the front. That is, it is preferable that the radially inner end portion of the third notch is located on the radially outer side from the radially inner end portion of the front side surface 22 b of the recess 22.
  • the air passage 110 changes its direction radially inward from the first notch air passage 116 to reach the second notch air passage 117.
  • the air passage 110 210 changes the direction from the first notch air passage 116 in the circumferential direction and then changes the direction radially inward to reach the second notch air passage 117.
  • the direction of the portion connecting the second notch air passage 117 is not limited to the above.
  • a portion extending in the circumferential direction, a portion extending inward in the radial direction, and a radial direction between the first notch air passage 116 and the second notch air passage 117 You may be comprised so that it may have a part extended outward.
  • the outer edge portion 352 of the end cap 305 is provided with a plurality of barrier portions 357 that are in contact with the vicinity of the corner portions of the bottom surface 22a and the rear side surface 22c of the concave portion 22 at intervals in the circumferential direction. Further, a cutout 354 b is formed in the second seal portion 354 of the outer edge portion 352 so as to connect the gaps 118 separated by the barrier portion 357 by bypassing the radially inner side of the barrier portion 357. A notch air passage 320 is formed between the notch 354 b and the rear side surface 22 c of the recess 22.
  • the air passage 310 is configured such that the gaps 118 and the notch air passages 320 are alternately arranged between the first notch air passage 116 and the second notch air passage 117, and the first notch air passage is provided. While the direction from the axial direction to the circumferential direction is changed from the path 116 toward the second notch ventilation path 117, the direction is changed to the radially inward direction, the circumferential direction, and the radially outward direction.
  • some of the outer edge portions 52, 152, and 252 protrude forward from the recess 22, but may not protrude forward from the recess 22.
  • Examples 1 to 3 The pulley structures of Examples 1 to 3 have the same configuration as the pulley structure 1 of the first embodiment, and as shown in Table 1, only the diameters of the circular holes (51a) are different from each other.
  • the diameter of the bottom surface (22a) of the recess (22) is 56 mm, and the radial length of the front side surface (22b) of the recess (22) is 0.4 mm.
  • the elastic part (55) of the end cap (5) is a rubber composition made of nitrile rubber (NBR), and its JISA hardness is 70.
  • the rigid part (56) of the end cap (5) is an electrogalvanized steel sheet, and its thickness is 0.5 mm.
  • the thickness of the part overlapping the rigid part (56) in the disk part (51) is 0.3 mm.
  • the diameter of the central part formed only by the elastic part (55) of the end cap (5) is 6.0 mm.
  • the “offset amount” of the circular hole in Table 1 is a separation distance between the center of the circular hole (51a) and the center of the end cap (5).
  • the pulley structure of Example 4 is a modified form of the pulley structure 101 of the second embodiment.
  • the pulley structure of Example 4 has one first notch air passage (116) and one second notch air passage (117) formed at the same position in the circumferential direction.
  • the materials and thicknesses of the elastic part and the rigid part are the same as in Examples 1 to 3.
  • the first notch (153a) has a notch depth of 0.15 mm, a width of 0.3 mm, and a radius of curvature of 0.15 mm.
  • the notch depth of the first notch is 0.1 mm.
  • the second notch (154a) has a notch depth of 0.1 mm, a notch width of 0.3 mm, and a rectangular cross-sectional shape.
  • the “depth” in Table 1 is the notch depth of the first notch in the fitted state.
  • the “offset amount” of the first notch in Table 1 is the distance between the radially outer end of the first notch air passage and the center of the end cap, and is the recess (22). It is the same as the radius of the bottom surface (22a).
  • Example 5 The pulley structure of Example 5 has the same configuration as the pulley structure 101 of the second embodiment.
  • the materials and thicknesses of the elastic part (155) and the rigid part (156) are the same as those in Examples 1 to 4.
  • the first notch (153a) has a notch depth (D) of 0.4 mm, a width of 2.0 mm, and a radius of curvature of 1.5 mm. is there.
  • the notch depth (D) of the first notch (153a) is 0.3 mm
  • the channel cross-sectional area of the first notch air passage (116) is about 0.3 mm. 2 .
  • the shape of the second notch (154a) is the same as that of the fourth embodiment.
  • Example 6 The pulley structure of Example 6 has the same configuration as the pulley structure 201 of the third embodiment.
  • the materials and thicknesses of the elastic part (255) and the rigid part (156) are the same as in Examples 1 to 5.
  • the shape of the first notch (153a) is the same as that of the fifth embodiment.
  • the shape of the second notch (154a) is the same as in Examples 4 and 5.
  • Comparative Example 1 The pulley structure of Comparative Example 1 has no air passage (circular hole, notch air passage) formed in the end cap, and other configurations are the same as those of the pulley structure of Examples 1 to 6.
  • the depth of the first notch is formed larger than that of the fifth embodiment, and other configurations are the same as those of the pulley structure of the fifth embodiment.
  • the depth of the first notch in Reference Examples 3 to 5 increases in this order.
  • the notch depth of the first notch in the fitted state is the same as the radial length of the front side surface (22b) of the recess (22).
  • the first notch is formed to the inner side in the radial direction from the foremost end of the outer edge portion, and the first notch is located in the front-rear direction (rotational axis direction) shown in FIG.
  • the front end and the front side surface (22b) of the recess (22) are in the same position. Therefore, when viewed from the front, the first notch air passage is not completely covered with the recess and part thereof is exposed, and the outer edge portion is recessed in the circumferential range where the first notch air passage is formed. It does not protrude further forward.
  • the pulley structure of Reference Example 6 has a first notch depth greater than that of Example 6, and the other configurations are the same as those of the pulley structure of Example 6.
  • the notch depth of the first notch of Reference Example 6 is the same as that of Reference Example 4.
  • the idle durability testing machine 80 includes a pulley structure 82 installed on a drive shaft of an alternator 81, a timing pulley 85 in which a V-ribbed belt 84 is wound around a crank pulley 83, and is fixed coaxially with the crank pulley 83; A timing belt 88 is stretched around a timing pulley 87 connected to the rotating shaft of the motor 86. Further, a muddy water dropping device (not shown) is disposed above the pulley structure 82. The muddy water dropping device drops muddy water onto the upper surface of the belt 84 wound around the pulley structure 82.
  • the composition of the muddy water used is 70% by weight for tap water and 30% by weight for 8 types of JIS-Z8901: 2006 test powder (Kanto Loam).
  • crank pulley 83 500 to 800 rpm
  • Rotation speed of alternator 81 and pulley structure 82 2500 rpm
  • Surface temperature of alternator 81 and pulley structure 82 40 to 50 ° C.
  • the muddy water dropping device was subjected to 400 cycles with one cycle of 70.5 minutes as shown in Table 2.
  • the muddy water adhering to the belt 84 scattered as the belt 84 moved and adhered to the entire surface of the pulley structure including the end cap.
  • the presence / absence of blockage in the air passage was examined as follows. In advance, a hole that penetrates the first rotating body (2) in the radial direction and communicates the outside with the spring accommodating space (8) was formed, and the hole was closed with a screw screw. In addition, the cylindrical body (31) of the second rotating body (3) is previously penetrated in the radial direction, and the space inside the spring housing space (8) and the cylinder body (31) (the front end of the alternator drive shaft (S)). And a plurality of holes for communicating with the gap (14) between the end cap and the end cap. And after completion
  • the diameter of the circular hole is preferably 0.5 mm or more and 1.2 mm or less.
  • Reference Example 6 although muddy water entered the first notch passageway, there was no obstruction of the ventilation passage.
  • the depth of the first notch in the reference example 6 is the same as that in the reference example 4, but the air passage in the reference example 6 is 2 from the first notch air passage, similarly to the air passage 210 in the third embodiment. Since it branched in the direction to reach the second notch air passage, intrusion of muddy water into the second notch air passage was avoided.
  • the depth of the first notch (the radial length of the first notch air passage) is smaller than the radial length of the front side surface of the recess. It turns out that it is preferable.
  • an idle durability tester 80 shown in FIG. 10 was used as in the muddy water dropping test.
  • the muddy water dropping device was not used, and the alternator 81, the pulley structure 82, and the crank pulley 83 were covered with a thermostatic bath that kept the ambient temperature constant.
  • the idle endurance tester 80 was operated under the following conditions, assuming the idling state of the actual vehicle in which the temperature of the internal space of the pulley structure is maximized and the rotational fluctuation is greatest.
  • ⁇ Rotation speed of crank pulley 83 500 to 800 rpm
  • Rotation speed of alternator 81 and pulley structure 82 2000 to 2500 rpm -Surface temperature of alternator 81 and pulley structure 82 (temperature in the thermostatic chamber): 130 ° C
  • the pulley structure was cooled to room temperature, the pulley structure was disassembled, and the weight of the rolling bearing was measured. Prior to the test, the weight of the rolling bearing before sealing the bearing grease and the weight of the bearing grease sealed in the rolling bearing were measured in advance, and the remaining ratio of the bearing grease was calculated from the weight of the rolling bearing after the test. .
  • the results are also shown in Table 1.
  • “ ⁇ ” is displayed when the remaining ratio of the bearing grease is 30% by weight or more
  • “X” is displayed when it is less than 30% by weight. In terms of the function of the rolling bearing, there is no problem if the remaining ratio of the bearing grease is 30% by weight or more.
  • Comparative Example 1 a seizure state (carbonization state due to grease breakage) was observed inside the rolling bearing at a test time of 1200 hours, and the rolling bearing was damaged.
  • the residual grease ratio was 60% by weight.
  • the average wear depth of the pressure contact surface of the comparative example was 70 ⁇ m, but the average wear depth of the pressure contact surface (2a) of the example was 50 ⁇ m. That is, the degree of wear on the pressure contact surface (2a) was reduced by about 30% in the wear depth as compared with the case where the surface treatment was not performed.
  • the wire rod of the torsion coil spring (4) used at this time is a spring oil tempered wire (conforming to JISG3560), and its cross-sectional shape is rectangular.
  • the first rotating body (2) and the torsion coil spring (4) used for the test are the same as those in the above-described surface hardening treatment test, and the test machine used is also the same.
  • the pulley structure of the comparative example chamfered at 45 ° (specifically C 0.3 mm chamfer) and the pulley structure of the example chamfered at 15 ° were installed in the test machine, and the actual vehicle against the pressure contact surface (2a) The sliding stress corresponding to the life was given.
  • the wear depth was 110 microns in the comparative example, but the wear depth was 30 ⁇ m in the example. That is, the degree of wear at the corner position of the pressure contact surface (2a) was reduced by about 70% in wear depth compared to the case of 45 ° chamfering.

Abstract

 本発明のプーリ構造体(1)は、第1回転体(2)の回転軸から径方向にずれた位置に形成され、第1回転体(2)と第2回転体(3)との間に形成されたばね収容空間(8)と外部とを連通させる通気路(10)を有する。通気路(10)の少なくとも一部が、第1回転体(2)の回転軸方向の一方側の開口部(21)を塞ぐエンドキャップ(5)に形成されている。エンドキャップ(5)は、ばね収容空間(8)が通気路(10)以外で回転軸方向の前記一方に向かって外部と連通しないように第1回転体(2)の開口部(21)を塞いでいる。

Description

プーリ構造体
 本発明は、相対回転可能な2つの回転体の間にばね収容空間を有するプーリ構造体に関する。
 自動車等のエンジンの動力によってオルタネータ等の補機を駆動する補機駆動ユニットでは、オルタネータ等の補機の駆動軸に連結されるプーリと、エンジンのクランク軸に連結されるプーリにわたってベルトが掛け渡され、このベルトを介してエンジンのトルクが補機に伝達される。オルタネータ等の補機の駆動軸に連結されるプーリには、クランク軸の回転変動を吸収できる、例えば特許文献1のプーリ構造体が用いられる。
 特許文献1に記載のプーリ構造体は、ベルトが巻き掛けられる第1回転体と、第1回転体の内側に設けられ、第1回転体に対して相対回転可能な第2回転体と、2つの回転体の間に形成された空間(以下、ばね収容空間という)に配置されたコイルばねとを有する。ばね収容空間は、2つの回転体に加えて、第1回転体の前側の開口部を塞ぐエンドキャップと、第1回転体の後端部と第2回転体との間に介設された転がり軸受とによって画定されている。
 通常、オルタネータ等の補機の駆動軸に設けられるプーリ構造体の転がり軸受には、グリース(以下、ベアリンググリースという)が封入された、接触シール式の密閉形玉軸受が用いられる。接触シール式の密閉形玉軸受は、外輪と、外輪の内周に配置された内輪と、内輪と外輪との間に転動自在に配置された複数の玉と、複数の玉の両側に配置された環状の接触シール部材とを有する。接触シール部材はゴム状弾性体と板金で形成されている。接触シール部材の外周縁は外輪に固定されており、接触シール部材の内周縁に形成されたリップ部は、内輪のシール面に押し広げられるように接触している。そのため、接触シール式の密閉形玉軸受は、防塵性および防水性に優れ、ベアリンググリースを長期に渡り残存させることができる。
 接触シール式の密閉形玉軸受の接触シール部材のリップ部と、内輪のシール面との間には、わずかな隙間が存在する。軸受の内部と外部との圧力差や、潤滑に寄与しない余剰グリースによる押圧、リップ部と内輪との摺動や振動等が原因で、摩擦・摩耗したり変形したりする。それにより、上述した隙間が生じる。このようなわずかな隙間があることにより、接触シール式の密閉形玉軸受は、外部からの異物や水分は侵入しにくいが通気を許す構造となっている。
日本国特開2014-114947号公報
 自動車等が湿潤路面を走行した場合、エンジンルーム内へ泥水等が巻き上げられて、エンジンブロック側面に位置する補機駆動ユニットに泥水等が付着する場合がある。特に、冠水路面を走行した場合には、巻き上げられた泥水は、補機駆動ユニットに容易に到達し得る。補機の駆動軸に設けられたプーリ構造体には、巻き上げられた泥水が直接付着するだけでなく、補機からベルトを伝って泥水が付着する。
 特許文献1のプーリ構造体のエンドキャップは、樹脂で形成され軸方向に突出するフランジ部の弾力性を活かして、フランジ部に設けられた爪を第1回転体の外周に設けた凹部に嵌め込むことで、第1回転体に取り付けられている。このような爪と凹部との嵌合部は、シール性が乏しい。そのため、プーリ構造体の表面に泥水等の水媒体が付着した場合には、水媒体がこの嵌合部を抜けてプーリ構造体の内部へ侵入しやすい。その結果、ばね収容空間に接している構成部品の腐食や異物噛みによる動作不良等を招き、プーリ構造体の寿命が短くなるおそれがあった。
 この問題を解決する方法として、第1回転体の開口部を全周にわたって確実にシールできる構造のエンドキャップを用いることが考えられる。しかしながら、このようなエンドキャップを採用すると、ばね収容空間と外部との連通が遮断されるので、エンジン等の熱源の影響を受けてばね収容空間の温度が上昇した場合に、ばね収容空間の圧力および転がり軸受の内部の圧力が上昇してしまう。
 それにより、転がり軸受の内部の圧力と転がり軸受よりも後方(オルタネータ等の補機側)の外部空間の圧力に差が生じ、その圧力差に応じて、ベアリンググリースが、接触シール部材のリップ部と内輪との間の隙間をくぐり抜けて、転がり軸受の後方の外部空間に漏れ出てしまう。そして、ベアリンググリースが過度に減少すると、転がり軸受が焼き付き等により破損し、プーリ構造体が早期に寿命に至ってしまう。
 そこで、本発明は、泥水等の水媒体がばね収容空間内に侵入するのを防止すると共に、プーリ構造体の内部と外部の圧力差によって転がり軸受の内部に封入されたグリースが過度に漏れ出るのを防止して、プーリ構造体の長寿命化を実現できる、プーリ構造体を提供することを目的とする。
 本発明のプーリ構造体の第一の態様は、ベルトが巻き掛けられる筒状の第1回転体と、前記第1回転体の内側に、前記第1回転体に対して相対回転可能に設けられた第2回転体と、前記第1回転体と前記第2回転体との間に形成されたばね収容空間に収容されたねじりコイルばねと、前記第1回転体の回転軸方向の一方側の開口部を塞ぐエンドキャップと、前記第1回転体の回転軸方向の他方側において前記第2回転体との間に介設された転がり軸受と、前記第1回転体の回転軸から径方向にずれた位置に形成され、前記ばね収容空間と外部とを連通させる通気路と、を備え、前記通気路の少なくとも一部が、前記エンドキャップに形成されており、前記エンドキャップは、前記ばね収容空間が前記通気路のみで前記回転軸方向の前記一方に向かって外部と連通するように前記第1回転体の前記開口部を塞いでいる。
 この構成によると、エンドキャップは、第1回転体と第2回転体との間に形成されるばね収容空間が、通気路のみで回転軸方向の前記一方に向かって外部と連通するように第1回転体の開口部を塞いでいる、すなわち、通気路以外で回転軸方向の前記一方に向かって外部と連通しないように第1回転体の開口部を塞いでいる。通気路の少なくとも一部はエンドキャップに形成されるため、通気路の最小流路断面積は自在に設定できる。通気路の最小流路断面積を小さくすることで、泥水等の水媒体がエンドキャップに付着しても、ばね収容空間に泥水等の水媒体が侵入するのを防止できる。
 通気路は、第1回転体の回転軸から径方向にずれた位置に形成されているため、第1回転体の回転に伴って、エンドキャップに形成された通気路も第1回転体の回転軸を中心として回転する。そのため、泥水等の水媒体がエンドキャップに付着しても、遠心力の作用によって泥水等の水媒体が通気路内に侵入し難く、また、通気路内に異物が詰まり難い。
 このように、ばね収容空間への泥水等の水媒体の侵入を防止することによって、ばね収容空間に接している構成部品の腐食や異物噛みによる動作不良等を防止でき、プーリ構造体を長寿命化できる。
 また、通気路によってばね収容空間と外部との通気を確保していることにより、プーリ構造体の内部空間(ばね収容空間と転がり軸受の内部の空間を含む)の温度が上昇しても、プーリ構造体の内部空間と外部との圧力の平衡を保つことができる。そのため、転がり軸受の内部の圧力と外部の圧力との差によって転がり軸受の内部に封入されたグリースが外部に漏出するのを防止できる。それにより、転がり軸受の早期破損を防止し、プーリ構造体をより長寿命化できる。
 本発明の第2の態様のプーリ構造体は、第1の態様において、前記第1回転体の前記開口部の内周面に、周方向に延びる凹部が形成されており、前記エンドキャップは、弾性体からなる弾性部と、前記弾性部よりも剛性が高く、前記弾性部と一体化された剛性部とを有し、前記エンドキャップは、外縁部に前記第1回転体の前記凹部と接触するシール部を有し、少なくとも該シール部が前記弾性部によって形成されており、前記エンドキャップの前記外縁部が、径方向に圧縮された状態で前記凹部に嵌合されている。
 この構成によると、エンドキャップの外縁部のうち、少なくとも、第1回転体の凹部と接触するシール部が、弾性体からなる弾性部によって形成されており、エンドキャップの外縁部は、径方向に圧縮された状態で凹部に嵌合されている。したがって、シール部と凹部とのシール性が高いので、ばね収容空間が通気路以外で回転軸方向の前記一方に向かって外部と連通しない構成をより確実に実現できる。
 また、エンドキャップは、弾性部よりも剛性が高く、弾性部と一体化された剛性部とを有するので、剛性部によってエンドキャップの変形を抑制できる。そのため、シール部と凹部とのシール性をより高めることができる。
 本発明の第3の態様のプーリ構造体は、第2の態様において、前記通気路は、前記エンドキャップの前記シール部の一部を切り欠いて形成された少なくとも1つの切欠き通気路を含む。
 この構成によると、通気路は、エンドキャップのシール部の一部を切り欠いて形成された切欠き通気路を含むため、通気路は、エンドキャップの外縁部付近に形成されることとなる。エンドキャップの外縁部よりも内側に付着した泥水等の水媒体は、第1回転体とエンドキャップの回転時に、遠心力の作用によって、径方向外側に移動するほど移動速度が速くなる。そのため、エンドキャップの外縁部付近に形成された通気路に対して泥水等の水媒体が侵入し難く、ばね収容空間への泥水等の水媒体の侵入をより確実に防止できる。
 なお、本発明において「切り欠いて形成される」とは、実際に切り欠いて形成される場合だけでなく、金型成形などで切り欠いた形状に形成される場合を含む。
 本発明の第4の態様のプーリ構造体は、第3の態様において、前記少なくとも1つの切欠き通気路のうち最も前記回転軸方向の前記一方側に位置する切欠き通気路が、前記回転軸方向の前記一方側から見て、前記凹部によって覆われている。
 この構成によると、少なくとも1つの切欠き通気路のうち最も回転軸方向の前記一方側に位置する切欠き通気路が、凹部の内側に隠れているので、プーリ構造体の外部で飛散した泥水等の水媒体が切欠き通気路に直接侵入するのをより確実に防止できる。
 本発明の第5の態様のプーリ構造体は、第3または第4の態様において、前記外縁部は、少なくともその一部分が前記凹部より前記回転軸方向の前記一方側に突出している。
 この構成によると、外縁部の少なくとも一部が、凹部より回転軸方向の前記一方側に突出しているので、エンドキャップの外縁部より内側に付着した泥水等の水媒体が、遠心力の作用によって径方向外側に移動しても、凹部内に侵入し難い。それにより、通気路を介してばね収容空間に泥水等の水媒体が侵入するのをより確実に防止できる。
 本発明の第6の態様のプーリ構造体は、第3~第5のいずれかの態様において、前記通気路は、前記凹部の底面に沿って延びる部分から前記ばね収容空間に至る途中で向きを変えるように形成されている。
 この構成によると、通気路は、凹部の底面に沿って延びる部分からばね収容空間に至る途中で向きを変えるので、たとえ外部から通気路に泥水等の水媒体が侵入しても、泥水等の水媒体がばね収容空間へ容易に侵入するのを防止できる。
 本発明の第7の態様のプーリ構造体は、第6の態様において、前記シール部が、前記凹部の底面と接触する第1シール部と、前記凹部の前記回転軸方向の前記他方側の側面と接触する第2シール部を含み、前記少なくとも1つの切欠き通気路は、前記第1シール部の一部を切り欠いて形成された第1切欠き通気路と、前記第2シール部の一部を切り欠いて形成された第2切欠き通気路とを含む。
 この構成によると、第1切欠き通気路は、凹部の底面に沿って延びるため、通気路が、凹部の底面に沿って延びる部分からばね収容空間に至る途中で向きを変える構成を実現できる。
 また、シール部は、凹部の底面と接触する第1シール部に加えて、凹部の回転軸方向の前記他方側の側面と接触する第2シール部を有する。そのため、第1シール部だけを有する場合に比べて、シール部と凹部とのシール性をより高めることができる。
 本発明の第8の態様のプーリ構造体は、第3~第7のいずれかの態様において、前記通気路は、前記ばね収容空間に至る途中で、複数の方向に分岐している。
 この構成によると、ばね収容空間と外部との通気の確保をより確実にできる。
 本発明の第9の態様のプーリ構造体は、第2の態様において、前記通気路は、前記エンドキャップの前記外縁部より内側の部分を貫通し、直径が0.5mm以上1.2mm以下の略円孔を含む。
 この構成によると、略円孔の直径を1.2mm以下とすることにより、略円孔への泥水等の水媒体の侵入をより確実に抑制できる。また、略円孔の直径を0.5mm以上とすることにより、粉塵等の異物が略円孔に詰まるのをより確実に防止できる。
 本発明の第10の態様のプーリ構造体は、第9の態様において、前記略円孔が、前記ばね収容空間よりも径方向内側に形成されている。
 この構成によると、略円孔とばね収容空間とが径方向に離れているため、たとえ略円孔に泥水等の水媒体が侵入しても、ばね収容空間に泥水等の水媒体が侵入し難い。
図1は、本発明の第1実施形態のプーリ構造体の断面図である。 図2は、図1のII-II線断面図である。 図3は、図1のエンドキャップを後方から見た図である。 図4は、第1実施形態のプーリ構造体のねじりコイルばねのねじり角度とねじりトルクとの関係を示すグラフである。 図5は、本発明の第2実施形態のプーリ構造体の断面図である。 図6は、図5のエンドキャップを後方から見た図である。 図7は、本発明の第3実施形態のプーリ構造体の部分拡大断面図であり、図7の(a)は、図8のA-A線と同じ位置で切断したときのプーリ構造体の断面図であり、図7の(b)は、図8のB-B線と同じ位置で切断したときのプーリ構造体の断面図である。 図8は、図7のエンドキャップを後方から見た図である。 図9は、本発明の他の実施形態のプーリ構造体に適用されるエンドキャップを示す図であり、図9の(a)は、該エンドキャップを後方から見た図であり、図9の(b)は、図9の(a)のC-C線と同じ位置で切断したときのプーリ構造体の断面図である。 図10は、実施例の試験に用いたアイドル耐久試験機の構成を示す図である。
 <第1実施形態>
 以下、本発明の第1実施形態のプーリ構造体1について説明する。
 本実施形態のプーリ構造体1は、自動車の補機駆動システム(図示省略)において、オルタネータの駆動軸に設置される。補機駆動システムは、エンジンのクランク軸に連結された駆動プーリと、オルタネータ等の補機を駆動する従動プーリとにわたってベルトが掛け渡された構成であって、クランク軸の回転がベルトを介して従動プーリに伝達されることで、オルタネータ等の補機が駆動される。クランク軸は、エンジン燃焼に起因して回転速度が変動し、それに伴いベルトの速度も変動する。なお、本発明のプーリ構造体は、オルタネータ以外の補機の駆動軸に設置してもよい。
 図1および図2に示すように、本実施形態のプーリ構造体1は、ベルトBが巻き掛けられる略筒状の第1回転体(プーリ)2と、第1回転体2の内側に回転軸を同一に配置される略筒状の第2回転体(ハブ)3と、第1回転体2と第2回転体3との間に形成されるばね収容空間8に収容されたねじりコイルばね4と、回転体2、3の回転軸方向の一方側に配置されるエンドキャップ5とを備えている。以下の説明において、図1中の紙面上左方向を前方向、右方向を後方向と称する。後述する第2実施形態および第3実施形態でも同様とする。
 第1回転体2の前方の開口部21の内周面には、周方向に延びる凹部22が形成されている。凹部22は、全周にわたって連続して延びている。凹部22は、底面22aと2つの側面22b、22cで形成されている。前方の側面22b(以下、前側面22bという場合がある)は、後方の側面22c(以下、後側面22cという場合がある)よりも短い。
 第1回転体2の前方の開口部21は、エンドキャップ5によって塞がれている。エンドキャップ5は、第1回転体2の開口部21の内側に面する円板部51と、円板部51より外周側の外縁部52とで構成されている。外縁部52は、円板部51よりも後方に突出している。外縁部52は、凹部22の底面22aと後側面22cに接触する。外縁部52のうち、凹部22の底面22aと接触する部分を、第1シール部53とし、凹部22の後側面22cと接触する部分を、第2シール部54とする。
 エンドキャップ5は、弾性体からなる弾性部55と、弾性部55よりも剛性が高い剛性部56とが一体化されてなる。弾性部55を形成する弾性体としては、例えば、クロロプレンゴム、ウレタンゴム、ニトリルゴム、水素添加ニトリルゴム、アクリルゴム、シリコーンゴム、フッ素ゴム等のゴム成分を含むゴム組成物が好ましい。これらのゴムは、耐油性および耐熱性に優れているからである。剛性部56は、円環状の金属板である。具体的には、例えば、冷間圧延鋼板、電気亜鉛めっき鋼板、ステンレス鋼板、アルミニウム合金板等が用いられる。
 弾性部55は、剛性部56の前面全体を覆っている。つまり、エンドキャップ5の前面は、全て弾性部55で形成されている。これにより、エンドキャップ5の錆を抑制できる。弾性部55の直径は、剛性部56の直径よりも大きい。そのため、外縁部52の外周端である第1シール部53は、弾性部55で形成されている。また、弾性部55は、剛性部56の後面の外周端近傍を覆っており、この覆っている部分によって第2シール部54が形成される。
 エンドキャップ5の外縁部52は、第1シール部53が凹部22の底面22aによって径方向に圧縮された状態で、凹部22に嵌合されている。したがって、第1シール部53によって開口部21は確実に封止(シール)されている。なお、第2シール部54は、第1シール部53のように凹部22に押し付けられているわけではないので、第2シール部54は凹部22の後側面22cに接触していない場合もある。
 外縁部52の厚みは、円板部51との境界部分から外周側に向かって厚くなった後、ある位置から外周端に向かって薄くなっている。外縁部52の前面は、外縁部52の外周端から回転軸方向(前後方向)に対して傾斜する方向に延びている。外縁部52の最前端は、凹部22よりも前方に位置している。つまり、外縁部52は、その一部が凹部22より前方に突出している。
 剛性部56は略円環状であるため、エンドキャップ5の径方向中央付近は弾性部55のみで形成されている。この弾性部55のみで形成された部分は、前後方向から見て、第2回転体3の後述する筒本体31の前端の内側空間と同等の大きさもしくはそれより小さいことが好ましい。エンドキャップ5の中央付近が弾性部55のみで形成されていることにより、メンテナンス作業の際、エンドキャップ5を引き抜く作業が行い易い。具体的には、マイナスドライバー等の工具で弾性部55を破って、テコの原理で捏ねることで、エンドキャップ5を容易に引き抜くことができる。
 図3に示すように、エンドキャップ5の円板部51には、円孔51a(本発明の略円孔に相当)が形成されている。円孔51aは、ほぼ真円形であるが、略円形であればよい。なお、図3では、弾性部55と剛性部56を区別しやすくするために、剛性部56にドットのハッチングを表示している。円孔51aは、第2回転体3の後述する筒本体31の前端よりも径方向内側に形成されている。円孔51aは、弾性部55のみで形成された部分を貫通している。そのため、円孔51aを容易に形成できると共に、剛性部56の錆を抑制できる。円孔51aは、エンドキャップ5の中心からずれた位置(即ち、回転体2、3の回転軸からずれた位置)に形成されている。円孔51aの直径は、0.5mm以上1.2mm以下である。
 エンドキャップ5の製造方法の一例を挙げると、例えば、剛性部56をインサート材として金型内へセットした状態で型閉めした後、弾性部55の材料(未加硫ゴム)を圧入成形機または射出成形機により金型内へ充填し、加熱加圧して加硫することにより、弾性部55と剛性部56を一体成形する。その後、円孔51aを加工する。なお、剛性部56と弾性部55との密着性を高めるため、加硫の前工程で、剛性部56の弾性部55と接する面に加硫接着剤を塗布して乾燥させることが好ましい。
 第2回転体3は、オルタネータの駆動軸Sに固定される筒本体31と、筒本体31の前端部の外側に配置された外筒部32と、筒本体31の前端と外筒部32の前端を連結する円環板部33とを有する。駆動軸Sは、筒本体31の内周面のネジ溝に螺合されて固定されている。
 第1回転体2の前端部の内周面と、第2回転体3の外筒部32の外周面との間には、滑り軸受6が介設されている。第1回転体2の後端部の内周面と、第2回転体3の筒本体31の外周面との間には、転がり軸受7が介設されている。この2つの軸受6、7によって、第1回転体2と第2回転体3は相対回転可能に連結されている。第1回転体2および第2回転体3は、図2の矢印方向(前方から見て時計回り)に回転する。
 滑り軸受6は、例えば、ポリアセタール樹脂、ポリアミド樹脂等の合成樹脂で形成された弾性を有するC字状の部材である。滑り軸受6は、若干拡径された状態で第2回転体3の外筒部32に装着されており、自己弾性復元力によって外筒部32に密着している。外筒部32の滑り軸受6の両側には、滑り軸受6の抜けを防止する突起が設けられている。滑り軸受6は、この2つの突起の間で微小に軸方向に移動可能である。滑り軸受6と第1回転体2の内周面との間には、隙間11が存在する。隙間11の大きさは、例えば0.1mm程度である。プーリ構造体1の駆動時には、この隙間11には後述する防錆剤(図示せず)が存在する。防錆剤は隙間11を完全に塞ぐものではなく、隙間11は空気が通過可能である。
 転がり軸受7は、接触シール式の密閉形玉軸受である。転がり軸受7は、第1回転体2の内周面に固定される外輪71と、第2回転体3の筒本体31の外周面に固定される内輪72と、外輪71と内輪72との間に転動自在に配置された複数の玉73と、複数の玉73の両側に配置された環状の接触シール部材74とを有する。図示は省略するが、外輪71および内輪72には、玉73を摺動自在に保持する保持部が設けられている。接触シール部材74はゴム状弾性体と板金で形成されている。接触シール部材74の外周縁は外輪71に固定されており、接触シール部材74の内周縁に形成されたリップ部は、内輪72のシール面に押し広げられるように接触している。
 転がり軸受7の内部には、ベアリンググリース(図示せず)が封入されている。ベアリンググリースは、外輪71および内輪72の保持部と各玉73との接触部に良好な油膜を形成して、保持部の転がり疲れ寿命の確保に寄与する。ベアリンググリースの基油は、例えばエステル油などの合成油であって、その動粘度は、40℃時で約100mm/s(試験方法はASTM D7042-14:2014に準拠)が好ましい。ベアリンググリースの増ちょう剤としては、例えば、耐熱性に優れたウレア化合物が用いられる。ウレア化合物としては、ジウレア化合物、トリウレア化合物、テトラウレア化合物、ポリウレア化合物、ウレア・ウレタン化合物、ジウレタン化合物またはこれらの混合物が挙げられる。増ちょう剤の配合率は、グリース全量に対して5~40質量%であることが好ましい。増ちょう剤の配合率が5質量%未満であると、グリースの状態を維持することが困難になり、40質量%を超えると、グリースが硬くなり過ぎて潤滑状態を充分に発揮することができなくなってしまうため、好ましくない。
 第1回転体2と第2回転体3との間であって、転がり軸受7よりも前方には、ばね収容空間8が形成されている。このばね収容空間8に、ねじりコイルばね4が収容されている。ばね収容空間8は、第1回転体2の内周面と、第2回転体3の筒本体31の外周面と、転がり軸受7と、第2回転体3の円環板部33によって区画された空間である。また、ばね収容空間8と、滑り軸受6と第1回転体2の内周面との隙間11と、転がり軸受7の内部の空間とを合わせて、プーリ構造体1の内部空間9と称する。
 ばね収容空間8は、滑り軸受6と第1回転体2の内周面との隙間11と、隙間11より前方における第2回転体3の外筒部32の外周面と第1回転体2の内周面との隙間12と、第2回転体3の前面とエンドキャップ5との隙間13と、駆動軸Sの前端面とエンドキャップ5との隙間14と、エンドキャップ5の円孔51aとによって、プーリ構造体1の外部と連通している。ばね収容空間8から外部に至る上述の通路を、通気路10とする。通気路10は、第1回転体2の回転軸から径方向にずれた位置に形成されている。
 第1回転体2および第2回転体3の材質は、金属であって、例えばS45Cなどの炭素鋼材などが用いられる。第1回転体2の内面には、例えば、軟窒化処理、高周波焼入れ等の表面硬度を上げる表面処理(表面硬化処理)が施されていてもよい。
 ばね収容空間8内において、第1回転体2の内径は、後方に向かって2段階で小さくなっている。最も小さい内径を有する部分の内周面を圧接面2aとし、2番目に小さい内径を有する部分の内周面を環状面2bとする。環状面2bの径は、第2回転体3の外筒部32の内径と同じか、それよりも大きい。圧接面2aの前方の角部は全周にわたってテーパー状に面取りされている。この面取り部2cの前後方向(回転軸方向)に対する傾斜角度αは、10~20°が好ましく、15°がより好ましい。また、第2回転体3の筒本体31は、前端部において、ばね収容空間8内のその他の部分よりも外径が大きくなっている。この部分の外周面を接触面31aとする。
 図2に示すように、第2回転体3の前端部には、ねじりコイルばね4の前端面4aと周方向に対向する当接面3aが形成されている。当接面3aは軸方向から見て円弧状に形成されている。また、外筒部32の内周面には、径方向内側に向かって突出する突起部32aが設けられている。突起部32aは、当接面3aから回転方向(図2中の矢印方向)と反対側に約90°離れた位置に形成されている。突起部32aは、ねじりコイルばね4の前側領域の外周面と対向する。
 ねじりコイルばね4は、断面形状が矩形状の線材で形成されている。ねじりコイルばね4の線材には、例えば、ばね用オイルテンパー線(JISG3560:1994に準拠)が用いられる。ねじりコイルばね4は、左巻き(軸方向先端に向かって反時計回り)である。ねじりコイルばね4は、外力を受けていない状態において、全長にわたって径が一定である。外力を受けていない状態でのねじりコイルばね4の外径は、第1回転体2の圧接面2aの内径よりも大きい。
 ねじりコイルばね4の後側領域は、縮径された状態で第1回転体2の圧接面2aに当接している。つまり、ねじりコイルばね4の後側領域の外周面は、ねじりコイルばね4の自己弾性復元力によって第1回転体2の圧接面2aに押し付けられている。
 プーリ構造体1が停止しており、ねじりコイルばね4の後側領域の外周面が自己弾性復元力によって圧接面2aに押し付けられた状態において、ねじりコイルばね4の前側領域は、若干拡径された状態で第2回転体3の接触面31aと当接している。つまり、ねじりコイルばね4の前側領域の内周面は、ねじりコイルばね4の自己弾性復元力によって第2回転体3の接触面31aに押し付けられている。
 ねじりコイルばね4の前側領域の内周面が接触面31aに接触している状態において、ねじりコイルばね4の前側領域の外周面と第2回転体3の外筒部32の内周面との間には、隙間が形成されている。また、第1回転体2の環状面2bとねじりコイルばね4の外周面との間には、隙間が形成されている。本実施形態では、プーリ構造体1が停止している状態において、図2に示すように、ねじりコイルばね4の外周面と突起部32aとの間には隙間が形成されているが、ねじりコイルばね4の外周面と突起部32aが接していてもよい。
 ばね収容空間8には、防錆剤が封入されている。防錆剤にはグリースが用いられる。具体的には、転がり軸受7に封入されたベアリンググリースと同じグリースを用いてもよい。防錆剤は、プーリ構造体1の組み付け時に、ペースト状の塊の状態で、ばね収容空間8内に投入される。投入量は、例えば0.2g程度である。プーリ構造体1を動作させると、ばね収容空間8の温度上昇やせん断発熱(摩擦熱)によって、防錆剤の粘度が下がり、防錆剤がばね収容空間8全体に拡散する。防錆剤は、滑り軸受6と第1回転体2との隙間11にまで侵入するが、この隙間11から前方にはほとんど漏れ出ない。
 次に、プーリ構造体1の動作について説明する。
 先ず、第1回転体2の回転速度が第2回転体3の回転速度より速くなった場合、即ち、第1回転体2が加速する場合について説明する。この場合、第1回転体2は、第2回転体3に対して回転方向(図2の矢印方向)と同じ方向に相対回転する。
 第1回転体2の相対回転に伴って、ねじりコイルばね4の後側領域は、第1回転体2の圧接面2aとともに第2回転体3に対して相対回転する。これにより、ねじりコイルばね4は、拡径方向にねじれる。ねじりコイルばね4の後側領域の圧接面2aに対する圧接力は、ねじりコイルばね4のねじり角度が大きくなるほど増大する。
 ここで、ねじりコイルばね4の接触面31aと接触する領域(前側領域)のうち、前端面4aから回転軸回りに90°離れた位置付近を第2領域4b2とし、第2領域4b2よりも前端面4a側の部分を第1領域4b1とし、残りの部分を第3領域4b3とする。
 ねじりコイルばね4の前端面4aから回転軸回りに90°離れた位置付近(第2領域4b2)は、最もねじり応力を受けやすいため、ねじり角度が大きくなると、ねじりコイルばね4の第2領域4b2は接触面31aから離れる。このとき、第1領域4b1と第3領域4b3は接触面31aに圧接している。第2領域4b2が接触面31aから離れるとほぼ同時、または、それよりもねじり角度が大きくなったときに、第2領域4b2の外周面は、突起部32aに当接する。
 第2領域4b2の外周面が突起部32aに当接することにより、ねじりコイルばね4の前側領域の拡径変形が規制(抑制)されるため、ねじり応力が前側領域以外の巻部に分散される。特に、ねじりコイルばね4の後側の巻部にかかるねじり応力が増加する。これにより、ねじりコイルばね4の各巻部にかかるねじり応力の差を低減でき、ねじりコイルばね4全体で歪エネルギーを吸収できるため、局部的な疲労破壊を防止できる。
 また、第3領域4b3の接触面31aに対する圧接力は、ねじり角度が大きくなるほど低下し、第2領域4b2が突起部32aに当接すると同時、または、それよりもねじり角度が大きくなったときに、第3領域4b3の接触面31aに対する圧接力はほぼゼロとなる。このときのねじり角度を角度θ1(例えばθ1=3°)とする。
 ねじりコイルばね4の拡径方向のねじり角度が角度θ1を超えると、第3領域4b3の拡径変形により第3領域4b3は接触面31aから離れていくが、第3領域4b3と第2領域4b2の境界付近、即ち、突起部32aの当接面3aから遠い方の端部付近において、ねじりコイルばね4が湾曲(屈曲)することは無く、前側領域は円弧形状に維持される。つまり、前側領域は、突起部32aを摺動しやすい形状に維持されている。そのため、ねじり角度が大きくなって前側領域にかかるねじり応力が増加すると、ねじりコイルばね4の前側領域は、第2領域4b2の突起部32aに対する圧接力、および、第1領域4b1の接触面31aに対する圧接力に抗して、周方向に移動(突起部32aと接触面31aを摺動)し、ねじりコイルばね4の前端面4aが、第2回転体3の当接面3aを押圧する。前端面4aが当接面3aを押圧することにより、2つの回転体2、3の間で確実にトルクを伝達できる。
 このように、ねじりコイルばね4の拡径方向のねじり角度が角度θ1以上(角度θ2未満)の場合には、ねじりコイルばね4の前側領域は、第3領域4b3が接触面31aから離間し(且つ外筒部32の内周面に接触しておらず)、第2領域4b2が突起部32aに圧接されているため、ねじり角度がθ1未満の場合に比べて、ねじりコイルばね4の有効巻数が増加する。コイルばねの有効巻数とは、ばね全長からばねを固定している部分を除いた範囲の巻き数であって、ばね定数(ねじりトルク/ねじり角度)と反比例する。ここで、図4は、ねじりコイルばね4のねじり角度とねじりトルクとの関係を示すグラフである。拡径方向のねじり角度が角度θ1を超えると、有効巻数が増加することで、図4に示すように、ばね定数(図4に示す直線の傾き)が低下する。
 ねじりコイルばね4の拡径方向のねじり角度が所定の角度θ2(例えば45°)になると、ねじりコイルばね4の中領域(前側領域と後側領域の間の領域)の外周面が第1回転体2の環状面2bに当接するか、もしくは、ねじり角度が限界角度に達することで、ねじりコイルばね4のそれ以上の拡径変形が規制され、第1回転体2と第2回転体3が一体的に回転する。これにより、ねじりコイルばね4の拡径変形による破損を防止できる。
 次に、第1回転体2の回転速度が第2回転体3の回転速度より遅くなった場合、即ち、第1回転体2が減速する場合について説明する。この場合、第1回転体2は、第2回転体3に対して回転方向(図2の矢印方向)と逆方向に相対回転する。
 第1回転体2の相対回転に伴って、ねじりコイルばね4の後側領域が、第1回転体2の圧接面2aとともに第2回転体3に対して相対回転するため、ねじりコイルばね4は、縮径方向にねじれる。
 ねじりコイルばね4の縮径方向のねじり角度が所定の角度θ3(例えばθ3=10°)未満の場合には、ねじりコイルばね4の後側領域の圧接面2aに対する圧接力は、ねじり角度がゼロの場合に比べて若干低下するものの、ねじりコイルばね4の後側領域は圧接面2aに圧接している。また、ねじりコイルばね4の前側領域の接触面31aに対する圧接力は、ねじり角度がゼロの場合に比べて若干増大する。
 ねじりコイルばね4の縮径方向のねじり角度が角度θ3以上の場合には、ねじりコイルばね4の後側領域の圧接面2aに対する圧接力はほぼゼロとなり、ねじりコイルばね4の後側領域は圧接面2aを周方向に摺動する。したがって、2つの回転体2、3の間でトルクは伝達されない。
 以上説明した本実施形態のプーリ構造体1は、以下の特徴を有する。
 エンドキャップ5は、第1回転体2と第2回転体3との間に形成されるばね収容空間8が、通気路10のみで前方に向かって外部と連通するように第1回転体2の開口部21を塞いでいる、すなわち、通気路10以外で前方に向かって外部と連通しないように第1回転体2の開口部21を塞いでいる。通気路10の一部である円孔51aはエンドキャップ5に形成されるため、通気路10の最小流路断面積は自在に設定できる。通気路10の最小流路断面積を小さくすることで、泥水等の水媒体がエンドキャップ5に付着しても、ばね収容空間8に泥水等の水媒体が侵入するのを防止できる。
 また、通気路10は、第1回転体2の回転軸から径方向にずれた位置に形成されているため、第1回転体2の回転に伴って、エンドキャップ5に形成された通気路10(円孔51a)も第1回転体2の回転軸を中心として回転する。そのため、泥水等の水媒体がエンドキャップ5に付着しても、遠心力の作用によって泥水等の水媒体が通気路10内(具体的には円孔51a)に侵入し難く、また、通気路10内に異物が詰まり難い。
 このように、ばね収容空間8への泥水等の水媒体の侵入を防止することによって、ばね収容空間8に接している構成部品の腐食や異物噛みによる動作不良等を防止でき、プーリ構造体1を長寿命化できる。
 また、通気路10によってばね収容空間8と外部との通気を確保していることにより、プーリ構造体1の内部空間9の温度が上昇しても、プーリ構造体1の内部空間9と外部との圧力の平衡を保つことができる。そのため、転がり軸受7の内部の圧力と外部の圧力との差によって転がり軸受7の内部に封入されたベアリンググリースが外部に漏出するのを防止できる。それにより、転がり軸受7の早期破損を防止し、プーリ構造体1をより長寿命化できる。
 エンドキャップ5の外縁部52のうち、少なくとも第1回転体2の凹部22と接触する第1シール部53と第2シール部54は、弾性体からなる弾性部55によって形成されており、エンドキャップ5の外縁部52は、径方向に圧縮された状態で凹部22に嵌合されている。したがって、第1シール部53と凹部22とのシール性が高いので、ばね収容空間8が通気路10以外で前方に向かって外部と連通しない構成を実現できる。
 エンドキャップ5は、弾性部55よりも剛性が高く、弾性部55と一体化された剛性部56を有するので、剛性部56によってエンドキャップ5の変形を抑制できる。そのため、第1シール部53および第2シール部54と、凹部22とのシール性をより高めることができる。
 エンドキャップ5の外縁部52は、凹部22の底面22aと接触する第1シール部53に加えて、凹部22の後方の側面22cと接触する第2シール部54を有する。そのため、第1シール部53だけを有する場合に比べて、外縁部52と凹部22とのシール性をより高めることができる。
 円孔51aの直径が1.2mm以下であるため、円孔51aへの泥水等の水媒体の侵入を抑制できる。また、円孔51aの直径が0.5mm以上であるため、粉塵等の異物が円孔51aに詰まるのを防止できる。
 円孔51aは、ばね収容空間8よりも径方向内側に形成されており、円孔51aとばね収容空間8とは径方向に離れている。そのため、たとえ円孔51aに泥水等の水媒体が侵入しても、ばね収容空間8に泥水等の水媒体が侵入し難い。
 本実施形態では、圧接面2aの前方の角部に、テーパー状の面取り部2cが形成されている。仮に、圧接面2aの角部に、エッジとならない程度の面取り(例えばC0.3mm)がされている場合、当該角部において、ねじりコイルばね4の圧接力による面圧が集中するため、当該角部が早期に摩耗して、プーリ構造体1の耐久性を低下させる恐れがある。これに対して、本実施形態では、圧接面2aの角部にテーパー状の面取り部2cを形成したことにより、当該角部におけるねじりコイルばね4の圧接力による面圧を低減できる。より具体的に言うと、この面取り部2cにおいて最も面圧が高くなる前後両端における面圧を、エッジとならいない程度の面取り部の面圧よりも低減できる。また、面取り部2cのテーパー角度を10~20°とすることで、面取り部2cの前後両端における面圧をより小さくでき、特に、テーパー角度を15°とすることで面圧を最小にできる。
 第1回転体2の内面に表面硬化処理が施されている場合には、ねじりコイルばね4の外周面と摺動する圧接面2aの耐摩耗性を向上でき、プーリ構造体1の耐久性を向上させることができる。
 本実施形態では、ばね収容空間8内に防錆剤を封入している。そのため、通気路10、および/または、転がり軸受7の接触シール部材74と内輪72との間の僅かな隙間を通じて、外部からばね収容空間8内に塩分を含んだ湿気が入り込んでも、回転体2、3のばね収容空間8に面する部分、特に、ねじりコイルばね4と接触する部分の腐食を防止することができる。なお、ねじりコイルばね4は、上述したオイルテンパー線で形成されていれば錆は生じないが、錆が生じる材質で形成されている場合には、防錆剤によってねじりコイルばね4の錆も防止できる。
 <第2実施形態>
 次に、本発明の第2実施形態のプーリ構造体101について説明する。なお、上述の第1実施形態と同様の構成を有するものについては、同じ符号を用いて適宜その説明を省略する。図5および図6に示すように、本実施形態のプーリ構造体101は、エンドキャップ105の形状が第1実施形態のエンドキャップ5と異なっており、その他の構成は第1実施形態と同じである。
 本実施形態のエンドキャップ105は、弾性部155と剛性部156とが一体化されて形成されている。弾性部155および剛性部156の材質は、第1実施形態の弾性部55および剛性部56と同様である。エンドキャップ105は、円板部151と外縁部152とで構成されている。円板部151は、円孔51aを有しない点以外は、第1実施形態の円板部51と同じ構成である。
 外縁部152は、凹部22の底面22aと接触する第1シール部153と、凹部22の後側面22cと接触する第2シール部154とする。第1シール部153には、第1シール部153の周方向の一部を切り欠いた第1切欠き153aが形成されている。第2シール部154には、第2シール部154の周方向の一部を切り欠いた第2切欠き154aが形成されている。なお、「切り欠いた」とは、実際に切り欠いた場合だけでなく、金型成形などで切り欠いた形状に形成される場合を含む。外縁部152は、第1シール部153と第2シール部154に切欠き153a、154aが形成されている点以外は、第1実施形態の外縁部52と同じ構成である。
 第1切欠き153aは、第1シール部153の180°離れた2箇所に形成されている。第1切欠き153aは、回転軸方向(前後方向)と略平行に延びている。図6に示すように、第1切欠き153aの回転軸方向に直交する断面は、略円弧状に形成されている。外縁部152を凹部22に圧縮嵌合することによって、第1切欠き153aの切欠き深さD(第1シール部153の最外縁のラインから第1切欠き153aの底までの径方向長さ)は嵌合前と比べて短くなって、第1切欠き153aの断面形状は三角形状に近づく。
 第1切欠き153aと凹部22の底面22aとの間には、第1切欠き通気路116が形成される。したがって、この第1切欠き通気路116は、第1シール部153の一部を切り欠いて形成されていることになる。第1切欠き通気路116は、凹部22の底面22aに沿って延びており、第1シール部153より前方の空間と後方の空間を連通させる。第1切欠き153aの幅(周方向長さ)は、通気性を確保でき、且つ、第1シール部153と凹部22の底面22aとの嵌合強度を確保できるように設定される。第1切欠き通気路116の流路断面積は、通気性を確保でき、且つ、泥水等の水媒体が侵入しにくいように設定される。第1切欠き通気路116の流路断面積は、例えば0.02mm以上0.3mm以下である。外縁部152が凹部22に圧縮嵌合された状態において、第1切欠き153aの切欠き深さDは、凹部22の前側面22bの径方向長さ(例えば0.4mm)よりも小さいこと(例えば0.1mm以上0.3mm以下)が好ましい。それにより、前方から見て、第1切欠き通気路116の前端は、前側面22bで覆われる。
 第2切欠き154aは、第2シール部154の180°離れた2箇所に形成されている。2つの第2切欠き154aは、周方向において2つの第1切欠き153aと同じ位置に形成されている。第2切欠き154aは、径方向に延びている。第2切欠き154aは、剛性部156を露出させるように、第2シール部154の弾性部155を切り欠いて形成されている。第2切欠き154aの延在方向(径方向)に直交する断面は、例えば、略矩形状や略円弧状に形成されている。
 第2切欠き154aと凹部22の後側面22cとの間には、第2切欠き通気路117が形成される。したがって、この第2切欠き通気路117は、第2シール部154の一部を切り欠いて形成されていることになる。第2切欠き154aは、第2シール部154よりも径方向外側の空間と径方向内側の空間とを連通させる。第2切欠き通気路117の流路断面積は、第1切欠き通気路116の流路断面積に関係なく通気性が確保できる範囲内(例えば0.03mm程度)であればよい。
 第1シール部153と凹部22の底面22aとの接触部より後方で、第2シール部154と凹部22の後側面22cとの接触部より径方向外側において、外縁部152と凹部22(詳細には、底面22aおよび後側面22c)との間には、隙間118が形成されている。また、第1シール部153と凹部22の底面22aとの接触部より前方において、外縁部152と凹部22(詳細には、底面22aと前側面22b)との間には、隙間119が形成されている。隙間118および隙間119は全周にわたって連続して延びている。
 ばね収容空間8は、滑り軸受6と第1回転体2の内周面との隙間11と、隙間11より前方における第2回転体3の外筒部32の外周面と第1回転体2の内周面との隙間12と、2つの第2切欠き通気路117と、隙間118と、2つの第1切欠き通気路116と、隙間119とによって、プーリ構造体101の外部と連通している。ばね収容空間8から外部に至る上述の通路を、通気路110とする。なお、図6には、外部からばね収容空間8へ向かう空気の流れを太線の矢印で表示している。通気路110は、第1回転体2の回転軸から径方向にずれた位置に形成されている。通気路110は、第1切欠き通気路116から隙間118を介して第2切欠き通気路117に至る間に、軸方向から径方向内向きへと向きを変えている。
 本実施形態のプーリ構造体101は、以下の特徴を有する。
 エンドキャップ105は、第1回転体2と第2回転体3との間に形成されるばね収容空間8が、通気路110のみで前方に向かって外部と連通するように第1回転体2の開口部21を塞いでいる、すなわち、通気路110以外で前方に向かって外部と連通しないように第1回転体2の開口部21を塞いでいる。通気路110の一部である切欠き通気路116、117はエンドキャップ105に形成されるため、通気路110の最小流路断面積は自在に設定できる。通気路110の最小流路断面積を小さくすることで、泥水等の水媒体がエンドキャップ105に付着しても、ばね収容空間8に泥水等の水媒体が侵入するのを防止できる。
 また、通気路110は、第1回転体2の回転軸から径方向にずれた位置に形成されているため、第1回転体2の回転に伴って、エンドキャップ105に形成された通気路110も第1回転体2の回転軸を中心として回転する。そのため、泥水等の水媒体がエンドキャップ105に付着しても、遠心力の作用によって泥水等の水媒体が通気路110内に侵入し難く、また、通気路110内に異物が詰まり難い。
 このように、ばね収容空間8への泥水等の水媒体の侵入を防止することによって、ばね収容空間8に接している構成部品の腐食や異物噛みによる動作不良等を防止でき、プーリ構造体101を長寿命化できる。
 また、通気路110によってばね収容空間8と外部との通気を確保していることにより、プーリ構造体101の内部空間9の温度が上昇しても、プーリ構造体101の内部空間9と外部との圧力の平衡を保つことができる。そのため、転がり軸受7の内部の圧力と外部の圧力との差によって転がり軸受7の内部に封入されたベアリンググリースが外部に漏出するのを防止できる。それにより、転がり軸受7の早期破損を防止し、プーリ構造体101をより長寿命化できる。
 エンドキャップ105の外縁部152のうち、少なくとも第1回転体2の凹部22と接触する第1シール部153および第2シール部154は、弾性体からなる弾性部155によって形成されており、エンドキャップ105の外縁部152は、径方向に圧縮された状態で凹部22に嵌合されている。したがって、第1シール部153と凹部22とのシール性が高いので、ばね収容空間8が通気路110以外で前方に向かって外部と連通しない構成をより確実に実現できる。
 エンドキャップ105は、弾性部155よりも剛性が高く、弾性部155と一体化された剛性部156を有するので、剛性部156によってエンドキャップ105の変形を抑制できる。そのため、第1シール部153および第2シール部154と凹部22とのシール性をより高めることができる。
 通気路110は、エンドキャップ105のシール部153、154のそれぞれの一部を切り欠いて形成された切欠き通気路116、117を含むため、通気路110は、エンドキャップ105の外縁部152付近に形成される。エンドキャップ105の外縁部152よりも内側に付着した泥水等の水媒体は、第1回転体2とエンドキャップ105の回転時に、遠心力の作用によって、径方向外側に移動するほど移動速度が速くなる。そのため、エンドキャップ105の外縁部152付近に形成された通気路110に対して泥水等の水媒体が侵入し難く、ばね収容空間8への泥水等の水媒体の侵入をより確実に防止できる。
 また、切欠き通気路116、117は、弾性部155で形成されたシール部153、154を切り欠いて形成されているため、通気路110を容易に形成できる。
 外縁部152の一部を切り欠いて形成された第1切欠き通気路116および第2切欠き通気路117のうち、前方に位置する第1切欠き通気路116の前端部は、前方から見て、凹部22によって覆われている。つまり、第1切欠き通気路116の前端部は、凹部22の内側に隠れている。そのため、プーリ構造体101の外部で飛散した泥水等の水媒体が第1切欠き通気路116に直接侵入するのをより確実に防止できる。
 通気路110は、凹部22の底面22aと接触する第1シール部153の一部を切り欠いて形成された第1切欠き通気路116と、凹部22の後方の側面22cと接触する第2シール部154の一部を切り欠いて形成された第2切欠き通気路117を含む。そのため、通気路110は、凹部22の底面22aに沿って延びる部分(第1切欠き通気路116)からばね収容空間8に至る途中で向きが変わっている。それにより、たとえ外部から通気路110に泥水等の水媒体が侵入しても、泥水等の水媒体がばね収容空間8へ容易に侵入するのを防止できる。
 外縁部152は、その一部が凹部22より前方に突出しているため、エンドキャップ105の外縁部152より内側に付着した泥水等の水媒体が、遠心力の作用によって径方向外側に移動しても、凹部22内に侵入し難い。それにより、通気路110を介してばね収容空間8に泥水等の水媒体が侵入するのをより確実に防止できる。
 <第3実施形態>
 次に、本発明の第3実施形態のプーリ構造体201について説明する。なお、上述の第1または第2実施形態と同様の構成を有するものについては、同じ符号を用いて適宜その説明を省略する。図7および図8に示すように、本実施形態のプーリ構造体201は、エンドキャップ205の構成が第1および第2実施形態のエンドキャップ5、105と異なっており、その他の構成は第1および第2実施形態と同じである。
 エンドキャップ205は、弾性部255と剛性部156とが一体化されて形成されている。エンドキャップ205は、円板部151と外縁部252とで構成されている。エンドキャップ205は、第1切欠き153aと第2切欠き154aの相対位置が、第2実施形態と異なっており、その他の構成は、第2実施形態のエンドキャップ105と同じである。
 本実施形態では、2つの第2切欠き154aは、それぞれ、第1切欠き153aから90°ずれた位置に形成されている。第1切欠き153aおよび第2切欠き154aの形状は、第2実施形態と同じである。なお、図7の(a)は、図8のA-A線と同じ位置でプーリ構造体201を切断したときの断面図であり、図7の(b)は、図8のB-B線と同じ位置でプーリ構造体201を切断したときの断面図である。
 ばね収容空間8は、滑り軸受6と第1回転体2の内周面との隙間11と、隙間11より前方における第2回転体3の外筒部32の外周面と第1回転体2の内周面との隙間12と、2つの第2切欠き通気路117と、隙間118と、2つの第1切欠き通気路116と、隙間119とによって、プーリ構造体201の外部と連通している。ばね収容空間8から外部に至る上述の通路を、通気路210とする。なお、図8には、外部からばね収容空間8へ向かう空気の流れを太線の矢印で表示している。通気路210は、第1回転体2の回転軸から径方向にずれた位置に形成されている。通気路210は、第1切欠き通気路116から隙間118を介して第2切欠き通気路117に至る間に、軸方向から周方向に向きを変えた後、周方向から径方向内向きへと向きを変えている。通気路210は、第1切欠き通気路116から周方向に2方向に分岐して2つの第2切欠き通気路117に達している。
 本実施形態のプーリ構造体201は、第2実施形態のプーリ構造体101と同様の構成については、第2実施形態で述べた効果と同様の効果を奏する。本実施形態のプーリ構造体201は、それ以外に以下の特徴を有する。通気路210は、ばね収容空間8に至る途中で、複数の方向に分岐している。そのため、ばね収容空間8と外部との通気の確保をより確実にできる。また、通気路210は、ばね収容空間8に至る途中で複数回向きを変えていると共に、その経路が第2実施形態の通気路110に比べて長い。そのため、通気路210を介して外部から泥水等の水媒体がばね収容空間8により侵入し難い。
 以上、本発明の好適な実施の形態について説明したが、本発明は上述の第1~第3実施形態に限られるものではなく、様々な変更が可能である。
 上記第1~第3実施形態では、転がり軸受け7として、接触シール式の密閉形玉軸受を用いているが、本発明のプーリ構造体に適用される転がり軸受は、接触シール式の密閉形玉軸受以外の転がり軸受であってもよい。例えば、シールド式や非接触シール式の密閉形転がり軸受であってもよい。また、転動体に玉ではなくころを用いたころ軸受であってもよい。
 上記第1実施形態では、円孔51aは、ばね収容空間8より径方向内側に形成されているが、円孔51aは、ばね収容空間8と回転軸線方向に並ぶ位置に形成されていてもよい。この変更例において、円孔51aは、円板部51に形成しても、外縁部52に形成してもよい。
 上記第1実施形態では、円孔51aは、弾性部55のみで形成された部分を貫通しているが、剛性部56と弾性部55とが積層された部分を貫通していてもよい。
 上記第1実施形態では、エンドキャップ5に円孔51aが1つだけ設けられているが、円孔51aが複数設けられていてもよい。この構成によると、外部とばね収容空間8との通気をより確実に確保できる。なお、この変更例において、各円孔51aの直径は、第1実施形態と同じとする。
 上記第1実施形態と、第2または第3実施形態を組み合わせて実施してもよい。つまり、エンドキャップに、円孔51aと、第1切欠き通気路116および第2切欠き通気路117を設けてもよい。この構成によると、外部とばね収容空間8との通気をより確実に確保できる。
 上記第2および第3実施形態では、第1切欠き通気路116は、回転軸方向に直線状に延びているが、回転軸方向に対して周方向に傾斜して延びていてもよい。つまり、第1切欠き通気路116の前端の位置と後端の位置が周方向にずれていてもよい。また、上記第2および第3実施形態では、第2切欠き通気路117は、径方向に直線状に延びているが、径方向に対して周方向に傾斜して延びていてもよい。つまり、第2切欠き通気路117の径方向内側の端部の位置と径方向外側の端部の位置が周方向にずれていてもよい。
 上記第2~第3実施形態では、第1切欠き153aは、断面形状が略円弧状に形成されているが、三角形状(V字状)や矩形状などの円弧状以外の形状に形成されていてもよい。
 上記第2および第3実施形態では、エンドキャップ105、205に第1切欠き通気路116が2つ設けられているが、第1切欠き通気路116が1つだけ設けられていてもよく、3つ以上設けられていてもよい。第1切欠き通気路116の数が多いほど、外部とばね収容空間8との通気をより確実に確保できる。
 上記第2および第3実施形態では、第2切欠き通気路117の数は、第1切欠き通気路116の数と同じであるが、第1切欠き通気路116の数より多くても少なくてもよい。第2切欠き通気路117の数が多いほど、外部とばね収容空間8との通気をより確実に確保できる。
 上記第2実施形態では、第2切欠き通気路117は、周方向において第1切欠き通気路116と同じ位置に形成されており、上記第3実施形態では、第2切欠き通気路117は、第1切欠き通気路116から周方向にずれた位置に形成されているが、周方向において第1切欠き通気路116と同じ位置に形成された第2切欠き通気路117と、第1切欠き通気路116が形成されていない位置に形成された第2切欠き通気路117の両方が、エンドキャップに設けられていてもよい。例えば、周方向において第1切欠き通気路116と同じ位置に形成された第2切欠き通気路117の周方向両側に、別の2つの第2切欠き通気路117を設けた場合、通気路は、第1切欠き通気路116から3方向(詳細には、周方向の2方向と径方向内向きの1方向)に分岐して3つの第2切欠き通気路117に到達することになる。この構成によると、外部とばね収容空間8との通気をより確実に確保できる。
 上記第1~第3実施形態では、外縁部52、152、252は、第1シール部53、153と第2シール部54、154によって凹部22と接触するが、外縁部は、凹部22の前側面22bと接触する別のシール部(以下、第3シール部とする)を有していてもよい。第3シール部は、凹部22の前側面22bだけでなく、第1回転体2の開口部21の内周面のうち凹部22よりも前方の部分にも接触してもよい。
 外縁部52が上述の第3シール部を有する場合、第2および第3実施形態の変更例として、第3シール部の一部を切り欠いて第3切欠き(第3切欠き通気路)を形成してもよい。第3シール部が、凹部22の前側面22bだけに接触している場合、第3切欠きは、前方から見て、凹部22に覆われる範囲内に形成することが好ましい。つまり、第3切欠きの径方向内側の端部が、凹部22の前側面22bの径方向内側の端部より径方向外側に位置することが好ましい。
 上記第2実施形態では、通気路110は、第1切欠き通気路116から径方向内向きに方向を変えて第2切欠き通気路117に達しており、上記第3実施形態では、通気路210は、第1切欠き通気路116から周方向に向きを変えた後、径方向内向きに方向を変えて第2切欠き通気路117に達しているが、第1切欠き通気路116と第2切欠き通気路117とをつなぐ部分の向きは上記に限定されない。例えば図9に示す通気路310のように、第1切欠き通気路116から第2切欠き通気路117までの間に、周方向に延びる部分と、径方向内向きに延びる部分と、径方向外向きに延びる部分を有するように構成されていてもよい。
 図9の変更例について以下、具体的に説明する。エンドキャップ305の外縁部352は、凹部22の底面22aと後側面22cとの角部付近に接触する障壁部357を、周方向に間隔を空けて複数備えている。さらに、外縁部352の第2シール部354には、障壁部357によって分断された隙間118同士を、障壁部357の径方向内側を迂回してつなぐように切欠き354bが形成されている。この切欠き354bと凹部22の後側面22cとの間に切欠き通気路320が形成される。通気路310は、第1切欠き通気路116と第2切欠き通気路117との間に、隙間118と切欠き通気路320が交互に配置された構成となっており、第1切欠き通気路116から第2切欠き通気路117に向かう間に、軸方向から周方向に向きを変えた後、径方向内向き、周方向、径方向外向きと向きを変えている。
 上記第1~第3実施形態では、外縁部52、152、252の一部が、凹部22より前方に突出しているが、凹部22より前方に突出していなくてもよい。
 以下、本発明の具体的な実施例について説明する。
 表1に示す実施例1~6、比較例1、2、参考例1~6のプーリ構造体を用いて、本発明の効果を実証するための試験を行った。
Figure JPOXMLDOC01-appb-T000001
 <実施例1~3>
 実施例1~3のプーリ構造体は、第1実施形態のプーリ構造体1と同様の構成を有し、表1に示すように円孔(51a)の直径だけが互いに異なっている。凹部(22)の底面(22a)の直径は56mmであって、凹部(22)の前側面(22b)の径方向長さは0.4mmである。エンドキャップ(5)の弾性部(55)は、ニトリルゴム(NBR)からなるゴム組成物であり、そのJISA硬度は70である。エンドキャップ(5)の剛性部(56)は、電気亜鉛めっき鋼板であって、その厚さは0.5mmである。弾性部(55)のうち、円板部(51)において剛性部(56)と重なっている部分の厚さは0.3mmである。エンドキャップ(5)の弾性部(55)のみで形成された中心部分の直径は6.0mmである。
 なお、表1中の円孔の「オフセット量」とは、円孔(51a)の中心とエンドキャップ(5)の中心との離間距離のことである。
 <実施例4>
 実施例4のプーリ構造体は、第2実施形態のプーリ構造体101の変更形態である。実施例4のプーリ構造体は、周方向において同じ位置に形成された第1切欠き通気路(116)と第2切欠き通気路(117)を1つずつ有する。弾性部および剛性部の材質と厚みは、実施例1~3と同じである。エンドキャップが凹部(22)に嵌合されていない状態において、第1切欠き(153a)は、切欠き深さ0.15mm、幅0.3mm、曲率半径0.15mmである。嵌合された状態では、第1切欠きの切欠き深さは0.1mmである。第2切欠き(154a)は、切欠き深さが0.1mmで、切欠き幅が0.3mmで、断面形状が矩形状である。なお、表1の中の「深さ」は、嵌合状態での第1切欠きの切欠き深さのことである。また、表1中の第1切欠きの「オフセット量」とは、第1切欠き通気路の径方向外側の端部とエンドキャップの中心との離間距離のことであって、凹部(22)の底面(22a)の半径と同じである。
 <実施例5>
 実施例5のプーリ構造体は、第2実施形態のプーリ構造体101と同様の構成を有する。弾性部(155)および剛性部(156)の材質と厚みは、実施例1~4と同じである。エンドキャップ(105)が凹部(22)に嵌合されていない状態において、第1切欠き(153a)は、切欠き深さ(D)0.4mm、幅2.0mm、曲率半径1.5mmである。嵌合された状態では、第1切欠き(153a)の切欠き深さ(D)は0.3mmであって、第1切欠き通気路(116)の流路断面積は、約0.3mmである。第2切欠き(154a)の形状は、実施例4と同じである。
 <実施例6>
 実施例6のプーリ構造体は、第3実施形態のプーリ構造体201と同様の構成を有する。弾性部(255)および剛性部(156)の材質と厚みは、実施例1~5と同じである。第1切欠き(153a)の形状は、実施例5と同じである。第2切欠き(154a)の形状は、実施例4、5と同じである。
 <比較例1>
 比較例1のプーリ構造体は、エンドキャップに通気路(円孔、切欠き通気路)が形成されておらず、その他の構成は実施例1~6のプーリ構造体と同じである。
 <比較例2>
 比較例2のプーリ構造体は、エンドキャップの円孔が回転軸線上に形成されており、その他の構成は実施例2のプーリ構造体と同じである。
 <参考例1、2>
 参考例1、2のプーリ構造体は、エンドキャップの円孔の直径が、0.5mm以上1.2mm以下の範囲外であって、その他の構成は実施例1~3のプーリ構造体と同じである。
 <参考例3~5>
 参考例3~5のプーリ構造体は、第1切欠きの深さが実施例5よりも大きく形成されており、その他の構成は実施例5のプーリ構造体と同じである。参考例3~5の第1切欠きの深さはこの順で大きくなっている。参考例3では、嵌合状態での第1切欠きの切欠き深さが、凹部(22)の前側面(22b)の径方向長さと同じである。また、参考例4では、第1切欠きが、外縁部の最前端よりも径方向内側まで形成されていると共に、図1等に示す前後方向(回転軸方向)において、第1切欠きの最前端と、凹部(22)の前側面(22b)が同じ位置にある。そのため、前方から見て、第1切欠き通気路が凹部で完全に覆われず一部が露出していると共に、第1切欠き通気路が形成されている周方向範囲において、外縁部が凹部より前方に突出していない。
 <参考例6>
 参考例6のプーリ構造体は、第1切欠きの深さが実施例6よりも大きく形成されており、その他の構成は実施例6のプーリ構造体と同じである。参考例6の第1切欠きの切欠き深さは、参考例4と同じである。
 (泥水滴下試験)
 実施例1~6、比較例1、2、参考例1~6のプーリ構造体を用いて、プーリ構造体に泥水を滴下したときの、プーリ構造体の内部空間への泥水の侵入の有無と、通気路の異物詰まりを調べる試験を行った。
 この試験では、図10に示すアイドル耐久試験機80を用いた。アイドル耐久試験機80は、オルタネータ81の駆動軸に設置されたプーリ構造体82と、クランクプーリ83にVリブドベルト84が掛け渡されており、クランクプーリ83と同軸に固定されたタイミングプーリ85と、モータ86の回転軸に連結されたタイミングプーリ87にタイミングベルト88が掛け渡された構成となっている。また、プーリ構造体82の上方には、泥水滴下装置(図示せず)を配置した。泥水滴下装置は、プーリ構造体82に巻き掛けられたベルト84の上面に泥水を滴下する。使用した泥水の組成は、水道水が70重量%、JIS-Z8901:2006試験用粉体の8種(関東ローム)が30重量%である。
 試験は、実車の徐行運転時のアイドリング状態を想定して、以下の条件でアイドル耐久試験機80を作動させた。
 ・クランクプーリ83の回転数:500~800rpm
 ・オルタネータ81とプーリ構造体82の回転数:2500rpm
 ・オルタネータ81とプーリ構造体82の表面温度:40~50℃
 上記の条件でアイドル耐久試験機80を作動させつつ、泥水滴下装置を、表2に示す合計70.5分間を1サイクルとして400サイクル実施した。ベルト84に付着した泥水は、ベルト84の移動に伴って飛散してエンドキャップを含むプーリ構造体の表面全体に付着した。
Figure JPOXMLDOC01-appb-T000002
 試験終了後、泥水の侵入の有無と、通気路の閉塞の有無を調べた。その結果も表1に示す。泥水の侵入の有無の判定は、プーリ構造体をそのまま目視、または、エンドキャップを外して目視することで行った。表1の「泥水侵入」の欄には、ばね収容空間(8)だけでなく、円孔(51a)、第1切欠き通気路(116)、第2切欠き通気路(117)のいずれにも泥水が侵入した痕跡がない場合には〇を表示し、ばね収容空間(8)には泥水が侵入した痕跡はないが、円孔(51a)、第1切欠き通気路、第2切欠き通気路のいずれかに侵入した痕跡がある場合には△を表示し、ばね収容空間(8)に泥水が侵入した痕跡がある場合には×を表示している。
 通気路の閉塞の有無は、以下のようにして調べた。予め、第1回転体(2)を径方向に貫通して、外部とばね収容空間(8)を連通させる孔を形成しておき、メクラネジで孔を塞いでおいた。また、予め、第2回転体(3)の筒本体(31)を径方向に貫通して、ばね収容空間(8)と筒本体(31)の内側の空間(オルタネータ駆動軸(S)の前端とエンドキャップとの間の隙間(14))とを連通させる孔を複数形成しておいた。そして、試験終了後、メクラネジを外して第1回転体(2)に形成した孔に火をつけた線香を挿入した。このとき、第2回転体(3)のエンドキャップ側に形成された複数の孔を空気が出入りすることにより、線香の煙をばね収容空間(8)よりもエンドキャップ側の空間(通気路)に確実に充満させることができる。線香の煙をばね収容空間(8)及び通気路に充満させた後、線香を取り除き、第1回転体に設けた孔をメクラネジで塞いで、通気路から煙が漏れるかどうかを目視で確認した。表1の「通気路の閉塞」の欄には、通気路から外部に煙が漏れ出た場合には○(通気路の閉塞無し)を表示し、通気路から外部に煙が漏れ出ない場合には×(通気路の閉塞有り)を表示した。
 表1に示すように、比較例1では、ばね収容空間に泥水が侵入していなかった。このことから、エンドキャップの第1シール部のシール性が高いことがわかる。比較例2では、通気路の閉塞はないものの、ばね収容空間に泥水が侵入していた。比較例2では、円孔が回転軸線上に形成されているため、円孔の周囲に付着した泥水に遠心力の作用が働かず、泥水が円孔に侵入しやすくなったと考えられる。実施例1~6では、ばね収容空間への泥水の侵入も、通気路の閉塞も見られなかった。
 参考例1では、円孔内への泥水の侵入は無かったが、通気路が閉塞していた。具体的には、円孔の外部側の開口端が閉塞していることを目視で確認した。参考例1では、円孔が回転軸線から径方向にずれた位置に形成されているものの、円孔が過度に小さいので、表面張力によって円孔の外部側の開口端を塞ぐよう泥水が付着しやすくなり、遠心力で泥水を飛ばし切れずに乾燥状態となることで円孔が閉塞したと考えられる。
 参考例2では、通気路の閉塞は無かったが、ばね収容空間に泥水が侵入していた。参考例2では、円孔が回転軸線から径方向にずれた位置に形成されているものの、円孔が過度に大きいことで、泥水が円孔に侵入しやすくなったと考えられる。
 参考例1、2と実施例1~3の結果から、円孔の直径は、0.5mm以上1.2mm以下が好ましいことがわかる。
 参考例3では、通気路の閉塞は無かったが、第1切欠き通気路に泥水が侵入した痕跡が見られた。参考例3では、第1切欠きの切欠き深さ(第1切欠き通気路の径方向長さ)が、凹部(22)の前側面(22b)の径方向長さと同じであるため、第1切欠き通気路に泥水が侵入しやすくなったと考えられる。
 参考例4では、ばね収容空間までは泥水は侵入していないものの、第2切欠き通気路が閉塞していた。参考例5では、ばね収容空間にまで泥水が侵入し、その上、第2切欠き通気路が閉塞していた。参考例4、5では、前方から見て、第1切欠き通気路が凹部で完全に覆われず一部が露出していると共に、第1切欠き通気路が形成されている周方向範囲において、外縁部が凹部より前方に突出していないため、第1切欠き通気路に泥水が侵入しやすくなったと考えられる。
 参考例6では、第1切欠き通路路に泥水が侵入したものの、通気路の閉塞は無かった。参考例6の第1切欠きの深さは、参考例4と同じであるが、参考例6の通気路は、第3実施形態の通気路210と同様に、第1切欠き通気路から2方向に分岐して第2切欠き通気路に達するため、第2切欠き通気路への泥水の侵入は免れた。
 実施例4~6と参考例3~6の結果から、第1切欠きの深さ(第1切欠き通気路の径方向長さ)は、凹部の前側面の径方向長さよりも小さいことが好ましいことがわかる。
 (ベアリンググリース残存量確認試験)
 実施例1~6および比較例1のプーリ構造体を用いて、転がり軸受(7)内のベアリンググリースの残存量を調べる試験を行った。
 この試験でも、泥水滴下試験と同様に、図10に示すアイドル耐久試験機80を使用した。但し、泥水滴下装置は使用せず、オルタネータ81とプーリ構造体82とクランクプーリ83は、雰囲気温度を一定に保つ恒温槽で覆った。
 試験は、プーリ構造体の内部空間の温度が最大となるとともに、回転変動が最も大きくなる実車のアイドリング状態を想定して、以下の条件でアイドル耐久試験機80を作動させた。
 ・クランクプーリ83の回転数:500~800rpm
 ・オルタネータ81とプーリ構造体82の回転数:2000~2500rpm
 ・オルタネータ81とプーリ構造体82の表面温度(恒温槽内の温度):130℃
 上記の条件でアイドル耐久試験機80を2000時間連続して作動させた後、プーリ構造体を室温まで冷却させてから、プーリ構造体を分解して、転がり軸受の重量を測定した。また、試験前に予め、ベアリンググリース封入前の転がり軸受の重量と、転がり軸受に封入したベアリンググリースの重量を測定しておき、試験後の転がり軸受の重量から、ベアリンググリースの残存率を算出した。その結果も表1に示す。表1の「グリース残存率」の欄には、ベアリンググリースの残存率が30重量%以上の場合は〇を表示し、30重量%未満の場合には×を表示した。転がり軸受の機能上、ベアリンググリースの残存率は30重量%以上あれば問題ない。
 比較例1では、試験時間1200時間において転がり軸受内部に焼き付き状態(グリース切れによる炭化状態)が認められ、転がり軸受が破損した。実施例1~6は、グリース残存率は全て60重量%であった。
 (その他の試験)
 詳細な説明は省略するが、塩水噴霧(JISK5600-7-1に準拠)と乾燥を繰り返す複合環境サイクル試験(1サイクル24時間)において、実施例2のプーリ構造体を用いて、防錆剤の効果を検証した。その結果、ばね収容空間へ防錆剤を封入しない場合には、60サイクル(1440時間)で第1回転体の内面に錆発生の兆候が認められたが、防錆剤を封入した場合は、90サイクル(2160時間)でも第1回転体の内面に錆発生の兆候はなかった。また、上述の特許文献1のような従来の樹脂製エンドキャップのプーリ構造体で、防錆剤を封入しない場合は、5サイクル(120時間)で第1回転体の内面に錆が発生した。
 また、詳細な説明は省略するが、第1回転体(2)の表面硬化処理の効果を検討する試験を行った。試験に使用した第1回転体(2)の材質はS45Cであって、表面硬化処理は軟窒化処理とした。表面処理前のビッカース硬度がHV200に対し、表面処理後のビッカース硬度はHV600である。表面処理を施していない比較例のプーリ構造体と、表面処理を施した実施例のプーリ構造体を、それぞれ試験機に設置して、短時間の回転と停止を交互に繰り返すことで、圧接面(2a)に対して実車寿命に相当する摺動のストレスを与えた。その結果、比較例の圧接面の平均摩耗深さは70μmであったが、実施例の圧接面(2a)の平均摩耗深さは50μmであった。つまり、圧接面(2a)での摩耗の程度は、表面処理を施さない場合に比べて、摩耗深さで約30%減少した。なお、このとき用いたねじりコイルばね(4)の線材は、ばね用オイルテンパー線(JISG3560に準拠)であって、その断面形状は矩形状である。
 また、詳細な説明は省略するが、第1回転体(2)の圧接面(2a)の角部をテーパー状に面取りしたことによる効果を検討する試験を行った。試験に使用した第1回転体(2)およびねじりコイルばね(4)は、上述の表面硬化処理の試験と同じであって、使用した試験機も同じである。45°で面取り(詳細にはC0.3mm面取り)した比較例のプーリ構造体と、15°で面取りした実施例のプーリ構造体を試験機に設置して、圧接面(2a)に対して実車寿命に相当する摺動のストレスを与えた。その結果、圧接面の角部位置で、比較例では摩耗深さが110ミクロンであったが、実施例では摩耗深さは30μmであった。つまり、圧接面(2a)の角部位置での摩耗の程度は、45°面取りの場合に比べ、摩耗深さで約70%低減した。
 本出願は、2015年2月20日付出願の日本特許出願2015-031338、及び2016年1月25日付出願の日本特許出願2016-011352に基づくものであり、その内容はここに参照として取り込まれる。
1、101、201 プーリ構造体
2 第1回転体
3 第2回転体
4 ねじりコイルばね
5、105、205、305 エンドキャップ
6 滑り軸受
7 転がり軸受
8 ばね収容空間
9 プーリ構造体の内部空間
10、110、210、310 通気路
21 開口部
22 凹部
51、151 円板部
51a 円孔(略円孔)
52、152、252、352 外縁部
53、153 第1シール部
54、154、354 第2シール部
55、155、255 弾性部
56、156 剛性部
116 第1切欠き通気路(切欠き通気路)
117 第2切欠き通気路(切欠き通気路)
153a 第1切欠き
154a 第2切欠き
320 切欠き通気路
354b 切欠き
B ベルト

Claims (10)

  1.  ベルトが巻き掛けられる筒状の第1回転体と、
     前記第1回転体の内側に、前記第1回転体に対して相対回転可能に設けられた第2回転体と、
     前記第1回転体と前記第2回転体との間に形成されたばね収容空間に収容されたねじりコイルばねと、
     前記第1回転体の回転軸方向の一方側の開口部を塞ぐエンドキャップと、
     前記第1回転体の回転軸方向の他方側において前記第2回転体との間に介設された転がり軸受と、
     前記第1回転体の回転軸から径方向にずれた位置に形成され、前記ばね収容空間と外部とを連通させる通気路と、を備え、
     前記通気路の少なくとも一部が、前記エンドキャップに形成されており、
     前記エンドキャップは、前記ばね収容空間が前記通気路のみで前記回転軸方向の前記一方に向かって外部と連通するように前記第1回転体の前記開口部を塞いでいる、プーリ構造体。
  2.  前記第1回転体の前記開口部の内周面に、周方向に延びる凹部が形成されており、
     前記エンドキャップは、弾性体からなる弾性部と、前記弾性部よりも剛性が高く、前記弾性部と一体化された剛性部とを有し、
     前記エンドキャップは、外縁部に前記第1回転体の前記凹部と接触するシール部を有し、少なくとも該シール部が前記弾性部によって形成されており、
     前記エンドキャップの前記外縁部が、径方向に圧縮された状態で前記凹部に嵌合されている、請求項1に記載のプーリ構造体。
  3.  前記通気路は、前記エンドキャップの前記シール部の一部を切り欠いて形成された少なくとも1つの切欠き通気路を含む、請求項2に記載のプーリ構造体。
  4.  前記少なくとも1つの切欠き通気路のうち最も前記回転軸方向の前記一方側に位置する切欠き通気路が、前記回転軸方向の前記一方側から見て、前記凹部によって覆われている、請求項3に記載のプーリ構造体。
  5.  前記外縁部は、少なくともその一部分が前記凹部より前記回転軸方向の前記一方側に突出している、請求項3または4に記載のプーリ構造体。
  6.  前記通気路は、前記凹部の底面に沿って延びる部分から前記ばね収容空間に至る途中で向きを変えるように形成されている、請求項3~5のいずれか一項に記載のプーリ構造体。
  7.  前記シール部が、
     前記凹部の底面と接触する第1シール部と、
     前記凹部の前記回転軸方向の前記他方側の側面と接触する第2シール部を含み、
     前記少なくとも1つの切欠き通気路は、前記第1シール部の一部を切り欠いて形成された第1切欠き通気路と、前記第2シール部の一部を切り欠いて形成された第2切欠き通気路とを含む、請求項6に記載のプーリ構造体。
  8.  前記通気路は、前記ばね収容空間に至る途中で、複数の方向に分岐している、請求項3~7のいずれか一項に記載のプーリ構造体。
  9.  前記通気路は、前記エンドキャップの前記外縁部より内側の部分を貫通し、直径が0.5mm以上1.2mm以下の略円孔を含む、請求項2に記載のプーリ構造体。
  10.  前記略円孔が、前記ばね収容空間よりも径方向内側に形成されている、請求項9に記載のプーリ構造体。
PCT/JP2016/054646 2015-02-20 2016-02-18 プーリ構造体 WO2016133148A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177023081A KR101960260B1 (ko) 2015-02-20 2016-02-18 풀리 구조체
CN201680010995.7A CN107250617B (zh) 2015-02-20 2016-02-18 带轮结构体
EP16752534.4A EP3260738B1 (en) 2015-02-20 2016-02-18 Pulley structure
US15/550,815 US10415685B2 (en) 2015-02-20 2016-02-18 Pulley structure
CA2975987A CA2975987C (en) 2015-02-20 2016-02-18 Pulley structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-031338 2015-02-20
JP2015031338 2015-02-20
JP2016011352A JP6290944B2 (ja) 2015-02-20 2016-01-25 プーリ構造体
JP2016-011352 2016-01-25

Publications (1)

Publication Number Publication Date
WO2016133148A1 true WO2016133148A1 (ja) 2016-08-25

Family

ID=56689343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054646 WO2016133148A1 (ja) 2015-02-20 2016-02-18 プーリ構造体

Country Status (1)

Country Link
WO (1) WO2016133148A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110312880A (zh) * 2017-03-30 2019-10-08 三之星机带株式会社 带轮结构体及带轮结构体的制造方法
US11274739B2 (en) 2017-03-30 2022-03-15 Mitsuboshi Belting Ltd. Pulley structure and method for manufacturing pulley structure
US11353058B2 (en) 2018-06-25 2022-06-07 Mitsuboshi Belting Ltd. Pulley structure, sliding bearing, and production method for sliding bearing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151466U (ja) * 1986-03-19 1987-09-25
JP2003232434A (ja) * 2002-02-07 2003-08-22 Nsk Ltd 一方向クラッチ内蔵型プーリ装置
JP2009162332A (ja) * 2008-01-08 2009-07-23 Jtekt Corp プーリユニット
JP2011045170A (ja) * 2009-08-20 2011-03-03 Denso Corp 車両用回転電機およびその製造方法
JP2014114947A (ja) * 2012-06-20 2014-06-26 Mitsuboshi Belting Ltd プーリ構造体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151466U (ja) * 1986-03-19 1987-09-25
JP2003232434A (ja) * 2002-02-07 2003-08-22 Nsk Ltd 一方向クラッチ内蔵型プーリ装置
JP2009162332A (ja) * 2008-01-08 2009-07-23 Jtekt Corp プーリユニット
JP2011045170A (ja) * 2009-08-20 2011-03-03 Denso Corp 車両用回転電機およびその製造方法
JP2014114947A (ja) * 2012-06-20 2014-06-26 Mitsuboshi Belting Ltd プーリ構造体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110312880A (zh) * 2017-03-30 2019-10-08 三之星机带株式会社 带轮结构体及带轮结构体的制造方法
EP3604860A4 (en) * 2017-03-30 2021-01-20 Mitsuboshi Belting Ltd. PULLEY STRUCTURE AND METHOD FOR MANUFACTURING A PULLEY STRUCTURE
US11274739B2 (en) 2017-03-30 2022-03-15 Mitsuboshi Belting Ltd. Pulley structure and method for manufacturing pulley structure
US11353058B2 (en) 2018-06-25 2022-06-07 Mitsuboshi Belting Ltd. Pulley structure, sliding bearing, and production method for sliding bearing

Similar Documents

Publication Publication Date Title
JP6290944B2 (ja) プーリ構造体
EP2577083B1 (en) Decoupler assembly with sliding interface between hub and pulley
JP5158357B2 (ja) 密封装置
WO2016133148A1 (ja) プーリ構造体
US7547185B2 (en) Output shaft air/oil separator to redundantly protect against output shaft o-ring leakage
KR102036378B1 (ko) 엔진의 전동 케이스의 밀봉 장치
WO2017094787A1 (ja) 環状のポケットと密封装置とを用いた密封構造
JP2008045673A (ja) 車輪用軸受装置
JP2011127702A (ja) 転がり軸受
JP2007270969A (ja) 転がり軸受
JP2005226826A (ja) 転がり軸受
JP5661410B2 (ja) 玉軸受用保持器および玉軸受
KR101411611B1 (ko) 실링 캡 및 이를 이용한 휠 베어링 조립체
US11274739B2 (en) Pulley structure and method for manufacturing pulley structure
CA3052406C (en) Pulley structure and method for manufacturing pulley structure
JP2021060110A (ja) 環状のポケットと密封装置とを用いた密封構造、及び、トーショナルダンパとオイルシールとを用いた密封構造
JP2006258247A (ja) プーリユニット
JP2014059048A (ja) 軸受用密封装置および軸受用密封装置が組み込まれたハブユニット軸受
JP2005069404A (ja) 密封型転がり軸受
JP5816338B2 (ja) 転がり軸受
JP2022024884A (ja) ハブユニット軸受
JP2013170685A (ja) エンジンの伝動ケースの密封装置
JP2005265193A (ja) 一方向クラッチ内蔵型プーリ装置
CN111051714A (zh) 角接触球轴承、轴承装置以及主轴装置
JP2005331096A (ja) 一方向クラッチ内蔵型プーリ装置及びその組立方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752534

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2975987

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15550815

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016752534

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177023081

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE