WO2016133129A1 - エンジン始動装置 - Google Patents

エンジン始動装置 Download PDF

Info

Publication number
WO2016133129A1
WO2016133129A1 PCT/JP2016/054596 JP2016054596W WO2016133129A1 WO 2016133129 A1 WO2016133129 A1 WO 2016133129A1 JP 2016054596 W JP2016054596 W JP 2016054596W WO 2016133129 A1 WO2016133129 A1 WO 2016133129A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
engine
clutch
rotational speed
starting device
Prior art date
Application number
PCT/JP2016/054596
Other languages
English (en)
French (fr)
Inventor
祐輝 久保
蛭間 淳之
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015231824A external-priority patent/JP6432492B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016133129A1 publication Critical patent/WO2016133129A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof

Definitions

  • the present invention relates to an engine starter that starts an engine with a starter.
  • Patent Document 1 is known as a conventional technique. According to the method described in the document 1, after the engine is stopped, the pinion of the starter is engaged with the ring gear of the crankshaft of the engine, and the cranking of the engine is started. That is, the crankshaft of the engine is rotated. At this time, the combustion cycle for burning the first air-fuel mixture after the engine is stopped in the cylinder caused by the rotation of the crankshaft is predicted, and the starter pinion is inserted into the crank of the engine during the predicted first combustion cycle. It is detached from the shaft ring gear. According to this method, the pinion can be quickly disengaged from the ring gear when the engine is started, so that it is possible to reduce starter deterioration, current consumption, clutch deterioration due to overrun, engine noise and vibration, respectively. is there.
  • One aspect of the present invention has been made to solve the above-described problems, and its object is to reduce engine noise and pinion friction during engine cranking, thereby improving engine durability.
  • An engine starter is provided.
  • An engine starter includes a motor having an output shaft, a pinion attached to the output shaft and meshed with a ring gear connected to an engine crankshaft, and attached to the output shaft, It has a clutch that is connected or disconnected so as to transmit rotational force only from the motor in the direction of the pinion, and the rotation of the motor is transmitted to the pinion when the motor rotates and the clutch is connected.
  • the starter is configured to be configured as follows.
  • the engine starter rotates the motor in a state where the pinion meshes with a ring gear connected to the crankshaft of the engine, so that the rotation is transmitted to the ring gear via the clutch and pinion.
  • the engine is cranked by rotating the motor, and after the cranking is started, it is estimated that the clutch is in a disconnected state, and the rotational speed of the motor is reduced when the clutch is in a disconnected state. And a control device.
  • An engine starter includes a ring gear and a pinion that are generated when a clutch is engaged in order to decelerate the rotational speed of a motor in a state where the clutch is not connected after cranking of the engine is started. And the friction between gears can be reduced.
  • FIG. 1 is an overall configuration diagram of an engine starter according to a first embodiment of the present invention.
  • the flowchart which shows roughly an example of the engine starting control performed by the control circuit of the control apparatus shown in FIG. 2 is a graph showing an example of changes in engine speed and motor speed when energization of a motor is stopped at a timing when the clutch shown in FIG. 1 is disconnected. It is a graph which shows an example of a change of engine number of rotations at the time of engine cranking by a usual starter, and motor number of rotations.
  • (A) is a graph which shows an example of a change of the engine speed and the motor speed when the motor speed command value is changed, and
  • (b) is a motor when the motor speed command value is changed.
  • the flowchart which shows roughly an example of the engine starting control performed by the control circuit of the control apparatus in the engine starting control apparatus in connection with 4th Embodiment. It is a graph which shows an example of change of engine number of rotations when the amount of angular movement of the motor in a 4th embodiment is small. It is a graph which shows an example of change of engine number of rotations when the amount of angular movement of a motor in a 4th embodiment is large.
  • the flowchart which shows roughly an example of the engine starting control performed by the control circuit of the control apparatus in the engine starting control apparatus in connection with 5th Embodiment.
  • the engine starting device 1 is a device that starts an engine 10 that is an internal combustion engine.
  • the engine 10 obtains the rotational force of the crankshaft 11 connected to the piston by compressing and expanding the air-fuel mixture in the combustion chamber of the cylinder by the piston.
  • a starter 2 including a motor 3 and a control device 4 that controls the operation of the motor 3 are provided.
  • the starter 2 cranks the engine 10 by the rotational force of the motor 3. That is, the starter 2 includes a pinion (pinion gear) 5, a reduction gear (not shown), a clutch 6, an output shaft 7, a solenoid S and the like in addition to the motor 3.
  • the motor 3 is connected to the first end of the output shaft 7 so that the output shaft 7 can rotate.
  • the pinion 5 is fitted, for example, by a helical spline at a second end portion of the output shaft 7 opposite to the first end portion, and is arranged so as to be movable on the output shaft 7. That is, the pinion 5 can move on the output shaft 7 in the counter-motor direction (left direction in the drawing) and mesh with the ring gear 8 connected to the crankshaft 11 of the engine 10.
  • the reduction gear is constituted by, for example, a planetary gear device, and reduces the rotation speed of the motor 3 at a predetermined reduction ratio.
  • the clutch 6 is disposed between the motor 3 and the pinion 5, and is connected when torque is transmitted from the motor 3 to the pinion 5. The clutch 6 is disconnected when the pinion 5 is rotated by the engine 10. This is a one-way clutch that blocks transmission to the side.
  • the solenoid S generates an electromagnetic force when energized, and the electromagnetic force causes the pinion 5 to be pushed out from a predetermined reference position (not engaged with the ring gear 8 at this reference position) in the counter-motor direction. Can be engaged.
  • the solenoid S is deenergized, the pinion 5 is configured to return to the reference position by a return mechanism (not shown).
  • the motor 3 is an AC motor having a rotor (not shown) and, for example, a three-phase (U, V, W phase) stator winding 3a. That is, in the motor 3, when the three-phase alternating current is applied from the control device 4 to the three-phase stator winding 3a, the three-phase stator winding 3a generates a rotating magnetic field, and rotates the rotor by the rotating magnetic field.
  • the output shaft 7 connected to the rotor can be rotated.
  • the motor (AC motor) 3 is a motor whose speed changes in accordance with the frequency change of the applied three-phase AC voltage.
  • the control device 4 includes a known inverter 4 a that converts a DC voltage output from the DC battery V into an AC voltage and applies the AC voltage to the motor 3.
  • the inverter 4a is configured by connecting a pair of switching elements Sup and Sun in series, and is configured by connecting a U-phase side switch connected to the U-phase winding 3au and a pair of switching elements Svp and Svn in series.
  • a V-phase side switch connected to the V-phase winding 3av and a pair of switching elements Swp and Swn connected in series, and a W-phase side switch connected to the W-phase winding 3aw; It is equipped with.
  • Each switching element Sup, Sun, Svp, Svn, Swp, and Swn is composed of, for example, a MOSFET or an IGBT.
  • the U-phase side switch, the V-phase side switch, and the W-phase side switch are connected in parallel to each other and have a common positive line L1 and a common negative line L2.
  • the common positive line L1 is connected to the positive electrode of the DC battery V
  • the common negative line L2 is connected to the negative electrode of the DC battery V.
  • the inverter 4a includes a diode D connected in antiparallel to each of the switching elements Sup, Sun, Svp, Svn, Swp, and Swn.
  • the control device 4 further includes a current sensor 4b and a control circuit 4c.
  • the current sensor 4b detects a current value of at least two phases (for example, U phase and V phase) in the three-phase AC current based on the AC voltage applied from the inverter 4a to the motor 3, and the detected current value Is fed back to the control circuit 4c.
  • the control circuit 4c is connected to the on / off control terminals of the switching elements Sup, Sun, Svp, Svn, Swp, and Swn.
  • the control circuit 4c individually performs on / off control of the switching elements Sup, Sun, Svp, Svn, Swp, and Swn via the corresponding on / off control terminals based on the detected current value fed back from the current sensor 4b. By doing so, the output torque and rotation speed of the motor 3 are controlled.
  • control circuit 4c of the control device 4 receives the engine start signal output from the engine ECU 20 for controlling the operation of the engine 10 and applies the AC voltage to the motor 3 by controlling the inverter 4a. Then, energization of the motor 3 is started. After the start of energization, the control circuit 4c performs engine start control including motor deceleration control that decelerates the rotational speed of the motor 3 at a predetermined timing.
  • decelerating the rotational speed of the motor 3 is abbreviated as “decelerating the motor 3”.
  • control circuit 4c sets the rotational speed command value of the motor 3 or the torque command value of the motor 3, and controls the inverter 4a based on the set rotational speed command value or the torque command value, whereby the motor 3 The rotation speed or torque is controlled so as to become the set rotation speed command value and torque command value.
  • control circuit 4c receives, for example, an engine start signal output from the engine ECU 20, energizes the solenoid S, and engages the pinion 5 with the ring gear 8 (FIG. 2A, step S1).
  • the energization control of the solenoid S may be performed by a control device other than the control device 4.
  • control circuit 4c controls the inverter 4a to apply an AC voltage to the motor 3 to start energization of the motor 3 and to set the motor 3 in a predetermined direction (hereinafter referred to as a positive direction).
  • a positive direction a predetermined direction
  • the control circuit 4c transmits the torque in the positive direction from the motor 3 to the pinion 5 through the clutch 6 to rotate the pinion 5 (step S2).
  • the pinion 5 rotates, the ring gear 8 and the crankshaft 11 meshed with the pinion 5 are rotated, and as a result, cranking of the engine 10 starts.
  • the engine 10 that has started cranking increases the rotation of the crankshaft 11 by compressing and expanding the air or air-fuel mixture in the combustion chamber of the cylinder by the reciprocating motion of the piston based on the rotation of the crankshaft 11.
  • the rotation speed of the engine 10 decreases during pulsation, that is, compression, and increases during expansion.
  • control circuit 4c predicts a timing t1 (see FIG. 2B and FIG. 4) at which the clutch 6 is disconnected (step S3), and at the timing t1, the inverter 4a To decelerate the motor 3 (step S4).
  • the control circuit 4c controls the inverter 4a at time t1 to stop energization to the motor 3 and decelerate. Since the clutch 6 is in the disconnected state, after t1, the engine speed increases while pulsating, while the rotation speed (rotation speed) of the motor 3 decreases.
  • the control circuit 4c changes the rotational speed command value of the motor 3 from A to B (A> B) at time t1 when the clutch 6 is disconnected.
  • FIG. 4B a torque (negative torque) opposite to the rotation direction of the motor 3 is generated. That is, braking torque can be generated in the motor 3, and the rotational speed of the motor 3 can be reduced.
  • the control circuit 4c keeps the rotation speed command value (indicated by A in the figure) of the motor 3 constant, for example, as shown in (a) and (b) of FIG. During control, as shown in FIG. 6B, it can be predicted from the peak timing (circle in the figure) at which the torque gradient generated in the motor 3 changes from positive to negative. In addition, the control circuit 4c can grasp
  • the control circuit 4c shows the timing at which the rotation speed of the motor 3 changes from decrease to increase (in the figure). (Circle) can also be predicted as the timing t1 at which the clutch 6 is disconnected. Note that the control circuit 4c detects a change in the number of revolutions occurring in the motor 3 by, for example, a sensor RS (indicated by a virtual line in FIG. 1) that detects the position (angle) of the rotor of the motor 3.
  • Example 1 In a normal starter driven by the DC voltage of the DC battery V, as shown in FIG. 3, after the cranking of the engine 10 starts, the engine speed (rpm) exceeds the motor speed in the expansion stroke of the engine 10. The clutch 6 is disconnected. Thereafter, while the engine speed decreases during the compression stroke of the engine 10, the motor speed increases and catches up with the engine speed, whereby the clutch 6 is connected.
  • the pinion 5 moves in the backlash with the ring gear 8, and the pinion 5 and the ring gear 8 that are in contact with each other are in contact with each other in a state where the relative speed difference between the engine speed and the motor speed is large.
  • the pair is replaced with another pair of teeth in the pinion 5 and the ring gear 8. For this reason, the rattling noise when the tooth surface of the pinion 5 abuts against the tooth surface of the ring gear 8 is increased, and the friction between the gears is increased, so that the durability of the pinion 5 and the ring gear 8 is lowered.
  • the engine starter 1 decelerates the motor 3 at the timing t1 when the clutch 6 is disconnected after the starter 2 starts cranking of the engine 10.
  • the control device 4 sets the rotational speed command value B lower than the minimum rotational speed R1 (preliminarily estimated) of the engine 10 in the first compression stroke, so that at least the first The clutch 6 is prevented from being connected when the engine speed decreases during the compression stroke.
  • the connection time of the clutch 6 can be made shorter than when the energization of the motor 3 is stopped, so that the generation period of rattling noise between the pinion 5 and the ring gear 8 can be shortened and the durability of the pinion 5 and the ring gear 8 can be reduced. Can be further improved.
  • control device 4 stops energization of the motor 3 at the timing t1 when the clutch 6 is disconnected without predicting the combustion cycle of the engine 10, or generates reverse torque in the motor 3. Yes. For this reason, since it is not necessary to provide the control device 4 with information such as the crank angle position of the engine 10 and fuel supply data, it is not necessary to add an extra signal line, and the processing load on the control device 4 is reduced accordingly. At the same time, the manufacturing cost of the engine starter 1 can be reduced.
  • control circuit 4c can estimate that the clutch 6 is engaged after stopping energization of the motor 3 in step S4, and the rotational speed of the motor 3 is reduced to a predetermined rotational speed. It is determined whether or not (see step S10 in FIG. 5).
  • the control circuit 4c grasps the change (deceleration) of the rotational speed of the motor 3 based on the detected current value fed back by the current sensor 4b, and the deceleration changes suddenly (for example, see timing t2 in FIG. 2B). In this case, it can be estimated that the clutch 6 is engaged.
  • the predetermined rotational speed is, for example, the lowest rotational speed at which the engine 10 can complete explosion, that is, the lowest rotational speed at which the engine 10 can rotate the crankshaft 11 by itself.
  • step S10 if it is not estimated that the clutch 6 is engaged, or if the rotational speed of the motor 3 is greater than the predetermined rotational speed, the control circuit 4c repeats the determination in step S10. On the other hand, if it can be estimated that the clutch 6 has been engaged as a result of the determination in step S10 and the rotational speed of the motor 3 has decreased to a predetermined rotational speed, the control circuit 4c controls the inverter 4a to energize the motor 3. Is resumed (step S11).
  • the engine starter according to the second embodiment does not energize the motor 3 until the rotational speed of the motor 3 drops to a predetermined rotational speed, the period of occurrence of rattling noise between the pinion 5 and the ring gear 8 Can be shortened. Further, since the friction between the gears can be reduced, the durability of the pinion 5 and the ring gear 8 is improved. Furthermore, the engine starter according to the second embodiment starts energizing the motor 3 when the rotational speed of the motor 3 decreases to a predetermined rotational speed after the clutch 6 is connected. For this reason, the engine 10 can be reliably started.
  • the clutch 6 may be engaged when the rotational speed command value B decreases.
  • the first explosion means that the first combustion occurs in the cylinder by cranking of the engine 10 and fuel injection and ignition control by the engine ECU 20.
  • step S20 If it is determined that the clutch 6 cannot be estimated to be engaged (NO as a result of determination in step S20), and the start signal is turned OFF, the control circuit 4c ends the engine start process shown in FIG. On the other hand, when it is determined that it can be estimated that the clutch 6 has been engaged (YES as a result of determination in step S20), the control circuit 4c controls the inverter 4a to resume energization of the motor 3 (step S21).
  • a component for example, a sensor TS indicated by a virtual line in FIG. 1 is provided for acquiring a physical quantity correlated with the temperature of the engine 10, and the engine starter 1 is connected to the sensor TS so as to be communicable.
  • the control circuit 4c acquires a physical quantity correlated with the temperature of the engine 10 acquired by the sensor TS from the sensor TS (FIG. 7, step S30).
  • Specific examples of the physical quantity correlated with the engine 10 include the temperature of engine cooling water or the temperature of the motor 3.
  • the control circuit 4 c determines whether or not the physical quantity acquired from the sensor TS is smaller than a first threshold value set corresponding to the low temperature range of the engine 10, or is set corresponding to the high temperature range of the engine 10. It is determined whether or not the threshold value is greater than 2 (second threshold value> first threshold value) (step S31). That is, the control circuit 4c determines whether or not the physical quantity acquired from the sensor TS is out of a predetermined range corresponding to the high temperature range from the low temperature range of the engine 10 (the first threshold value or more and the second threshold value or less). (Step S31)
  • control circuit 4c When the acquired physical quantity is greater than or equal to the first threshold and less than or equal to the second threshold, that is, within the predetermined range (NO in step S31), the control circuit 4c performs the process shown in FIG. finish.
  • the control circuit 4c detects the sliding portion of the engine 10. It is determined that the viscosity of the lubricating oil increases and friction loss at the sliding portion of the engine 10 increases.
  • the temperature of engine 10 is higher than the second threshold value (YES as a result of determination in step S31)
  • control circuit 4c determines that the friction loss at the sliding portion of engine 10 increases due to thermal expansion of engine 10. . Due to this friction loss, there is a possibility that the minimum rotational speed R1 of the engine 10 may be reduced.
  • step S31 determines that the rotational speed command value of the motor 3 is the rotational speed command value B in the first embodiment, that is, the physical quantity correlated with the temperature of the engine 10. It is set lower than the command value B when it is within the predetermined range (step S32).
  • a time T from when the clutch 6 is disengaged until it is reengaged (hereinafter referred to as the disengagement time T of the clutch 6) is measured in advance by experiments or the like. Then, a predetermined time shorter than the measured time is set as a standby time in the timer TM included in the control circuit 4c.
  • the timer TM may be a timer TM configured by hardware or a timer TM configured by processing of the control circuit 4c based on software.
  • the control circuit 4c of the control device 4 activates the timer TM after step S3 in FIG. 2A instead of step S4 (see step S40 in FIG. 9). Then, the control circuit 4c determines whether or not the time measured by the timer TM has reached the standby time (step S41).
  • step S41 when it is determined that the time measured by the timer TM has not reached the standby time (NO in the determination in step S41), the control circuit 4c repeats the determination in step S41.
  • step S41 when it is determined that the time measured by the timer TM has reached the standby time (YES in the determination in step S41), the control circuit 4c controls the inverter 3a to control the motor 3
  • the process which decelerates is performed (step S42).
  • the deceleration method of the motor 3 it is the same as that of 1st Embodiment.
  • the disconnection time T of the clutch 6 varies depending on the amount of angular movement of the motor 3 from the start of energization of the motor 3 to the timing t1 when the clutch 6 is disconnected. Specifically, as shown in FIG. 10 and FIG. 11, when the value of the angular movement amount ⁇ of the motor 3 is small (for example, 85 degrees (deg), see FIG. 10), , 60 ms, see FIG. 10), when the value of the angular movement ⁇ of the motor 3 is large (for example, 180 degrees, see FIG. 11), the clutch 6 non-engagement time T (eg, 80 ms, see FIG. 11). Will be longer.
  • the standby time set when the angular movement amount of the motor 3 is large is applied to the case where the angular movement amount of the motor 3 is small as it is, the standby time becomes longer than the non-engagement time T of the clutch 6, and the clutch 6 Before the connection, the motor 3 may not be able to start decelerating.
  • control circuit 4c sets the standby time longer as the value of the angular movement amount ⁇ of the motor 3 detected by the sensor RS is larger, so that even when the angular movement amount ⁇ of the motor 3 is larger, The motor 3 can be reliably decelerated before 6 is connected.
  • the motor rotational speed ⁇ 1 when the clutch 6 is disconnected and the motor rotational speed ⁇ 2 when the clutch 6 is connected again are measured in advance by experiments or the like. Then, a rotational speed ( ⁇ 1 + ⁇ a) obtained by adding a predetermined rotational speed ⁇ a smaller than the difference ⁇ between the motor rotational speed ⁇ 2 and the motor rotational speed ⁇ 1 to ⁇ 1 is set as the standby rotational speed.
  • the control circuit 4c of the control device 4 determines that the rotation speed of the motor 3 determined based on the time change of the rotor position detected by the sensor RS after the completion of step S3 in FIG. 2A is the standby rotation speed. It is determined whether or not ( ⁇ 1 + ⁇ a) has been reached (step S50 in FIG. 12).
  • step S50 when it is determined that the rotational speed of the motor 3 has not reached the standby rotational speed ( ⁇ 1 + ⁇ a) (NO in the determination in step S50), the control circuit 4c repeats the determination in step S50. .
  • step S50 when it is determined that the rotational speed of the motor 3 has reached the standby rotational speed ( ⁇ 1 + ⁇ a) (YES in the determination in step S50), the control circuit 4c controls the inverter 4a. A process of decelerating the motor 3 is performed (step S51). About the deceleration method of the motor 3, it is the same as that of 1st Embodiment.
  • the standby rotational speed can be set larger as the angular movement amount of the motor 3 from the start of energization to the motor 3 to the timing t1 when the clutch 6 is disconnected is increased. Thereby, even when the angular movement amount of the motor 3 is large, the deceleration of the motor 3 can be reliably started before the clutch 6 is engaged.
  • the motor 3 according to the first embodiment is an AC motor whose rotational speed changes according to the frequency of the applied AC voltage, but the present invention can also use a DC motor as the motor 3.
  • the control device 4 is, for example, a converter configured by connecting a pair of switching elements (for example, the switching elements Sup and Sun) in series, and the above-described converter in the converter provided between the DC motor and the DC battery V is described above.
  • PWM control of the on / off operation of the pair of switching elements the DC voltage output from the DC battery V is converted into an arbitrary DC voltage and applied to the DC motor.
  • the rotational speed of the DC motor is varied by controlling the applied DC voltage.
  • control device 4 includes the inverter 4a
  • the control device 4 that is, the control circuit 4c may be configured separately from the inverter 4a.
  • the control device 4 may receive the operation information of the engine 10 directly from the engine 10.
  • the standby time can be set based on the power consumption of the motor 3 related to the angular movement amount of the motor 3.
  • the standby rotation speed can be set based on the power consumption of the motor 3 related to the rotation speed of the motor 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 制御装置は、エンジンのクランクシャフトに連結されるリングギヤにピニオンが噛み合った状態でモータを回転させることにより、この回転がクラッチおよび前記ピニオンを介して前記リングギヤに伝達されて当該リングギヤを回転させることで前記エンジンをクランキングし、前記クランキングが開始された後、前記クラッチが非連結であることを推定し、前記クラッチが非連結の状態においてモータの回転速度を減速させる。

Description

エンジン始動装置
 本発明は、スタータによりエンジンの始動を行うエンジン始動装置に関する。
 従来技術として、特許文献1が公知である。
 同文献1に記載された方法によれば、エンジン停止後、スタータのピニオンをエンジンのクランクシャフトのリングギヤに係合させて、エンジンのクランキングを開始する。すなわち、エンジンのクランクシャフトを回転させる。このとき、クランクシャフトの回転により生じる、シリンダにおけるエンジン停止後の最初の空気及び燃料の混合気を燃焼させる燃焼サイクルを予測し、その予測された最初の燃焼サイクル中にスタータのピニオンをエンジンのクランクシャフトのリングギヤから離脱させている。この方法によれば、エンジンの始動時にピニオンをリングギヤから早く離脱させることができるので、スタータの劣化、電流消費、オーバーランによるクラッチの劣化、エンジンのノイズ及び振動、をそれぞれ低減することが可能である。
特開2011-127591号公報
 ところが、ピニオンをリングギヤから離脱させた後、エンジンの回転速度が予測通りに加速しない場合、すなわち、エンジンにおけるクランクシャフトの回転速度が閾値未満の場合、においては、ピニオンを再度リングギヤに噛み合わせてエンジンのクランキングを行う必要がある。すなわち、エンジンの回転速度が所定の閾値を越えるまでは、リングギヤに対するピニオンの噛み合いと離脱が繰り返し行われる。このため、ピニオンがリングギヤに噛み合う時の音が増大すると共に、ピニオンの摩耗が促進されて耐久性が低下する問題がある。
 本発明の一態様は、上記の課題を解決するために成されたものであり、その目的は、エンジンのクランキング時における騒音低減およびピニオンの摩擦を低減して、エンジンの耐久性を向上できるエンジン始動装置を提供することにある。
 本発明の例示的態様に関わるエンジン始動装置は、出力軸を有するモータ、前記出力軸に取り付けられ、エンジンのクランクシャフトに連結されたリングギヤに噛合可能なピニオン、および前記出力軸に取り付けられ、前記モータから前記ピニオンの方向のみに回転力を伝達するように連結または非連結するクラッチを有しており、前記モータが回転して前記クラッチが連結することで前記モータの回転が前記ピニオンに伝達されるように構成されたスタータを備えている。
 また、エンジン始動装置は、エンジンのクランクシャフトに連結されるリングギヤに前記ピニオンが噛み合った状態で前記モータを回転させることにより、この回転が前記クラッチおよびピニオンを介して前記リングギヤに伝達されて当該リングギヤを回転させることで前記エンジンをクランキングし、前記クランキングが開始された後、前記クラッチが非連結状態であることを推定し、前記クラッチが非連結の状態において前記モータの回転速度を減速させる制御装置と、を備えている。
 本発明の例示的態様に関わるエンジン始動装置は、エンジンのクランキングが開始された後、前記クラッチが非連結な状態においてモータの回転速度を減速させるため、クラッチが連結する際に生じるリングギヤとピニオンとの歯打ち音およびギヤ同士の摩擦を低減できる。
 また、モータの回転速度を減速させる際にエンジンの燃焼サイクルを予測する必要がないため、エンジンの情報(例えばクランク角位置、燃料供給データ等)を取り入れるための信号線を増設する必要はない。このため、制御装置の処理負荷を低減するとともに、エンジン始動装置の製造コストも低減することができる。
本発明の第1の実施形態に係るエンジン始動装置の全体構成図である。 図1に示す制御装置の制御回路により実行されるエンジン始動制御の一例を概略的に示すフローチャート。 図1に示すクラッチが非連結となるタイミングでモータへの通電を停止した場合のエンジン回転数およびモータ回転数の変化の一例を示すグラフである。 通常のスタータによるエンジンクランキング時のエンジン回転数およびモータ回転数の変化の一例を示すグラフである。 (a)は、モータの回転数指令値を変更した場合のエンジン回転数およびモータ回転数の変化の一例を示すグラフであり、(b)は、モータの回転数指令値を変更した場合のモータトルクの変化の一例を示すグラフである。 第2の実施形態に関わるエンジン始動制御装置における制御装置の制御回路により実行されるエンジン始動制御の一例を概略的に示すフローチャート。 第3の実施形態に関わるエンジン始動制御装置における制御装置の制御回路により実行されるエンジン始動制御の一例を概略的に示すフローチャート。 第3の実施形態の変形例に関わるエンジン始動制御装置における制御装置の制御回路により実行される回転数指令値設定処理の一例を概略的に示すフローチャート。 第4および第5の実施形態に係るエンジン回転数変化の一例およびモータ回転数変化の一例を示すグラフである。 第4の実施形態に関わるエンジン始動制御装置における制御装置の制御回路により実行されるエンジン始動制御の一例を概略的に示すフローチャート。 第4の実施形態におけるモータの角移動量が小さいときのエンジン回転数の変化の一例を示すグラフである。 第4の実施形態におけるモータの角移動量が大きいときのエンジン回転数の変化の一例を示すグラフである。 第5の実施形態に関わるエンジン始動制御装置における制御装置の制御回路により実行されるエンジン始動制御の一例を概略的に示すフローチャート。
 以下、本発明を実施するための実施の形態を詳細に説明する。
〔第1の実施形態〕
 第1の実施形態に関わるエンジン始動装置1は、内燃機関であるエンジン10を始動させる装置である。エンジン10は、シリンダの燃焼室における混合気をピストンにより圧縮および膨張させることにより、ピストンに連結されたクランクシャフト11の回転力を得る。
 図1に示すように、モータ3を含むスタータ2と、モータ3の動作を制御する制御装置4とを備えている。スタータ2は、モータ3の回転力によってエンジン10をクランキングするようになっている。
 すなわち、スタータ2は、モータ3に加えて、ピニオン(ピニオンギヤ)5、減速機(図示せず)、クラッチ6、出力軸7、ソレノイドSなどを備える。
 モータ3は、出力軸7の第1の端部に連結されており、出力軸7を回転可能になっている。ピニオン5は、出力軸7における第1の端部と反対側の第2の端部に例えばヘリカルスプライン嵌合されており、出力軸7の軸上を移動可能に配置されている。すなわち、ピニオン5は、出力軸7上を反モータ方向(図示左方向)へ移動して、エンジン10のクランクシャフト11に連結されているリングギヤ8に噛み合うことができる。
 減速機は、例えば、遊星歯車装置によって構成され、モータ3の回転速度を所定の減速比で減速する。クラッチ6は、モータ3とピニオン5との間に配置されて、モータ3からピニオン5へトルクを伝達する際に連結し、ピニオン5がエンジン10により回された時に非連結となり、トルクのモータ3側への伝達を遮断する一方向クラッチである。
 ソレノイドSは、通電された際に電磁力を発生し、その電磁力によってピニオン5を、所定の基準位置(この基準位置ではリングギヤ8には噛合されていない)から反モータ方向へ押し出してリングギヤ8に噛合可能になっている。なお、ソレノイドSが非通電になると、図示しない戻し機構によりピニオン5は上記基準位置へ戻るように構成されている。
 モータ3は、図示しないロータ、および例えば三相(U、V、W相)のステータ巻線3aを有する交流モータである。すなわち、モータ3は、三相ステータ巻線3aに制御装置4から三相交流が印加されることにより、三相ステータ巻線3aは、回転磁界を発生し、その回転磁界によりロータを回転させ、ロータに連結された出力軸7を回転させることができる。モータ(交流モータ)3は、印加される三相交流電圧の周波数変化に応じて、その速度が変化するモータである。
 制御装置4は、直流バッテリVから出力された直流電圧を交流電圧に変換してモータ3に印加する周知のインバータ4aを備えている。
 このインバータ4aは、一対のスイッチング素子SupおよびSunが直列接続されて構成されており、U相巻線3auに接続されたU相側スイッチと、一対のスイッチング素子SvpおよびSvnが直列接続されて構成されており、V相巻線3avに接続されたV相側スイッチと、一対のスイッチング素子SwpおよびSwnが直列接続されて構成されており、W相巻線3awに接続されたW相側スイッチと、を備えている。
 各スイッチング素子Sup、Sun、Svp、Svn、Swp、およびSwnは、例えばMOSFETやIGBTにより構成されている。
 U相側スイッチ、V相側スイッチ、およびW相側スイッチは、互いに並列に接続されており、共通の正側ラインL1および共通の負側ラインL2を有している。共通の正側ラインL1は、直流バッテリVの正極に接続され、共通の負側ラインL2は、直流バッテリVの負極に接続されている。
 また、インバータ4aは、スイッチング素子Sup、Sun、Svp、Svn、Swp、およびSwnそれぞれに逆並列に接続されたダイオードDを備えている。
 制御装置4は、さらに、電流センサ4bと、制御回路4cとを備えている。電流センサ4bは、インバータ4aからモータ3に印可された交流電圧に基づく三相交流電流における少なくとも二相分(例えば、U相およびV相分)の電流の値を検出し、検出された電流値を、制御回路4cにフィードバックする。
 制御回路4cは、スイッチング素子Sup、Sun、Svp、Svn、Swp、およびSwnそれぞれのオンオフ制御端子に接続されている。制御回路4cは、電流センサ4bからフィードバックされてきた検出電流値に基づいて、スイッチング素子Sup、Sun、Svp、Svn、Swp、およびSwnのオンオフ制御を、対応するオンオフ制御端子を介して個別に実行することにより、モータ3の出力トルクや回転速度を制御するようになっている。
 すなわち、制御装置4の制御回路4cは、エンジン10の動作を制御するためのエンジンECU20より出力されるエンジン始動信号を受けて、インバータ4aを制御することにより、モータ3に対して交流電圧を印可してモータ3への通電を開始する。通電開始後、制御回路4cは、所定のタイミングでモータ3の回転速度を減速させるモータ減速制御を含むエンジン始動制御を行う。以下、「モータ3の回転速度を減速させる」を「モータ3を減速させる」と略して言う。
 特に、制御回路4cは、モータ3の回転数指令値、あるいはモータ3のトルク指令値を設定し、設定された回転数指令値またはトルク指令値に基づいてインバータ4aを制御することにより、モータ3の回転速度またはトルクを、設定された回転数指令値およびトルク指令値となるように制御している。
 以下、制御装置4によるエンジン始動制御について図2Aおよび2Bを用いて説明する。
 制御回路4cは、エンジン10の停止後、例えばエンジンECU20により出力されるエンジン始動信号を受けて、ソレノイドSを通電してピニオン5をリングギヤ8に噛み合わせる(図2A、ステップS1)。なお、ソレノイドSの通電制御については、制御装置4以外の制御装置が行ってもよい。
 次いで、制御回路4cは、インバータ4aを制御することにより、モータ3に対して交流電圧を印可してモータ3への通電を開始してモータ3を所定の方向(以下、正方向とする)に回転させる(ステップS2)。すなわち、制御回路4cは、モータ3から正方向のトルクを、クラッチ6を介してピニオン5に伝達してピニオン5を回転させる(ステップS2)。ピニオン5の回転により、ピニオン5に噛合されていたリングギヤ8およびクランクシャフト11を回転させ、この結果、エンジン10のクランキングが開始する。
 クランキングが開始されたエンジン10は、クランクシャフト11の回転に基づくピストンの往復動作により、シリンダの燃焼室における空気あるいは混合気を圧縮および膨張させることにより、クランクシャフト11の回転を増大させる。このように、空気あるいは混合気の圧縮および膨張によりクランクシャフト11を回転させているため、エンジン10の回転速度(クランクシャフト11の回転速度)は、脈動、すなわち、圧縮時に減少し、膨張時に上昇する。
 そして、制御回路4cは、エンジン10のクランキングが開始された後、クラッチ6が非連結となるタイミングt1(図2B、図4参照)を予測し(ステップS3)、そのタイミングt1で、インバータ4aを制御してモータ3を減速させる(ステップS4)。
 モータ3を減速させる具体例として、例えば、図2Bに示すように、制御回路4cは、時刻t1で、インバータ4aを制御することにより、モータ3への通電を停止して減速させる方法がある。クラッチ6が非連結状態であるため、t1の後、エンジン回転速度は脈動しながら上昇する一方、モータ3の回転数(回転速度)は、減少していく。
 あるいは、図4の(a)に示すように、制御回路4cは、クラッチ6が非連結状態となる時刻t1でモータ3の回転数指令値をAからB(但し、A>B)へ変更してモータ3を駆動する方法がある。これにより、図4の(b)に示すように、モータ3の回転方向に対し逆向きのトルク(負のトルク)が発生する。つまり、モータ3に制動トルクを生じさせることができ、モータ3の回転速度を低減させることができる。
 制御回路4cは、クラッチ6が非連結となるタイミングt1を、例えば、図4における(a)および(b)に示すように、モータ3の回転数指令値(図中Aで示す)を一定に制御している時に、同図(b)に示すように、モータ3に生じているトルクの傾きが正から負へ変化するピーク時のタイミング(図中の丸印)から予測することができる。なお、制御回路4cは、モータ3に生じているトルク変化を、例えば、電流センサ4bによりフィードバックされる検出電流値により、把握することができる。
 なお、制御回路4cは、モータ3のトルク指令値を一定に制御している時に、図4の(a)に示すように、モータ3の回転数が減少から上昇へ変化するタイミング(図中の丸印)を、クラッチ6が非連結となるタイミングt1として予測することもできる。なお、制御回路4cは、モータ3に生じている回転数変化を、例えば、モータ3のロータの位置(角度)を検出するセンサRS(図1において仮想線で示す)により検出している。
〔実施例1の作用及び効果〕
 直流バッテリVの直流電圧で駆動される通常のスタータでは、図3に示すように、エンジン10のクランキング開始後、エンジン10の膨張行程でエンジン回転数(rpm)がモータ回転数を上回ることでクラッチ6が非連結となる。その後、エンジン10の圧縮行程でエンジン回転数が低下する間にモータ回転数が上昇してエンジン回転数に追いつくことによりクラッチ6が連結する。
 その後、ピニオン5がリングギヤ8とのバックラッシュを移動し、エンジン回転数とモータ回転数との相対速度差が大きい状態で、互いに当接しているピニオン5およびリングギヤ8における互いに当接している歯のペアが、ピニオン5およびリングギヤ8における他の歯のペアに入れ替わる。このため、新たにピニオン5の歯面がリングギヤ8の歯面に当接する際の歯打ち音が大きくなり、且つ、ギヤ同士の摩擦も増大するため、ピニオン5およびリングギヤ8の耐久性が低下する。
 これに対し、第1の実施形態に関わるエンジン始動装置1は、スタータ2によりエンジン10のクランキングが開始された後、クラッチ6が非連結となるタイミングt1でモータ3を減速させる。
 以下、エンジン始動装置1がタイミングt1でモータ3への通電を停止する場合について説明する。図2Bに示すように、図中t1でクラッチ6が非連結となった後、破線で示すモータ回転数が次第に低下するため、実線で示すエンジン回転数とモータ回転数との相対速度差が小さい状態で、互いに当接しているピニオン5およびリングギヤ8における互いに当接している歯のペアが、ピニオン5およびリングギヤ8における他の歯のペアに入れ替わる。その結果、ピニオン5の破面がリングギヤ8の歯面に当接する時の衝撃が緩和されるため、通常のスタータと比較してピニオン5とリングギヤ8との歯打ち音を低減でき、且つ、ピニオン5およびギヤ8同士の摩擦も抑制できるので、ピニオン5およびリングギヤ8の耐久性も向上する。
 次に、エンジン始動装置1が、タイミングt1でモータ3に逆向きのトルクを発生させる場合について説明する。
 図4における(a)に示すように、制御装置4は、最初の圧縮行程におけるエンジン10の最小回転数R1(予め推定されている)より回転数指令値Bを低く設定することで、少なくとも最初の圧縮行程でエンジン回転数が低下した際にクラッチ6が連結することを回避している。その結果、モータ3への通電を停止する場合よりクラッチ6の連結時間を短くできるので、ピニオン5とリングギヤ8との歯打ち音の発生期間を短くでき、且つ、ピニオン5およびリングギヤ8の耐久性を更に向上できる。
 また、制御装置4は、エンジン10の燃焼サイクルを予測することなく、クラッチ6が非連結となるタイミングt1でモータ3への通電を停止する、あるいは、モータ3に逆向きのトルクを発生させている。このため、制御装置4にエンジン10のクランク角位置や燃料供給データ等の情報を与える必要がないので、余計な信号線を増設する必要がなく、その分、制御装置4の処理負荷を低減するとともに、エンジン始動装置1の製造コストも低減することができる。
 以下、本発明に係る他の実施形態について説明する。なお、第1の実施形態と共通する部品および構成を示すものは、第1の実施形態と同一の符号を付与して詳細な説明は省略する。
〔第2の実施形態〕
 第2の実施形態に関わるエンジン始動装置における制御装置4によるエンジン始動制御について図5を用いて説明する。
 制御回路4cは、第1の実施形態と同様に、ステップS4において、モータ3への通電を停止した後、クラッチ6が連結したと推定でき、かつモータ3の回転数が所定の回転数まで低下したか否かを判断する(図5、ステップS10参照)。
 例えば、制御回路4cは、電流センサ4bによりフィードバックされる検出電流値に基づいて、モータ3の回転速度の変化(減速)を把握し、減速度が急変(例えば、図2Bにおけるタイミングt2参照)した際に、クラッチ6が連結したと推定することができる。
 なお、所定の回転数とは、例えば、エンジン10が完爆可能な最低回転数、つまり、エンジン10が自力でクランクシャフト11を回転可能な最低回転数である。
 ステップS10の判断の結果、クラッチ6が連結したと推定できていないか、あるいはモータ3の回転数が所定の回転数より大きい場合、制御回路4cは、ステップS10の判断を繰り返す。
 一方、ステップS10の判断の結果、クラッチ6が連結したと推定でき、かつモータ3の回転数が所定の回転数まで低下した場合、制御回路4cは、インバータ4aを制御してモータ3への通電を再開する(ステップS11)。
 この第2の実施形態に関わるエンジン始動装置は、モータ3の回転数が所定の回転数に低下するまでモータ3への通電を行わないので、ピニオン5とリングギヤ8との歯打ち音の発生期間を短くできる。また、ギヤ同士の摩擦も低減できるので、ピニオン5およびリングギヤ8の耐久性が向上する。
 さらに、第2の実施形態に関わるエンジン始動装置は、クラッチ6が連結した後、モータ3の回転数が所定の回転数まで低下した時にモータ3への通電を開始する。このため、エンジン10の始動を確実に行うことができる。
〔第3の実施形態〕
 第3の実施形態に関わるエンジン始動装置における制御装置4によるエンジン始動制御について図6を用いて説明する。
 制御回路4cは、第1の実施形態と同様に、ステップS4において、回転数指令値をAからBに変更してモータ3に逆向きのトルクを発生させてモータ3を減速制御した後、クラッチ6が連結したと推定できるか否かを判断する(図6、ステップS20参照)。
 図4における(a)に示す時刻t1でクラッチ6が非連結となった後、エンジン10における最初の圧縮行程で初爆が起きないと、例えば、次回の圧縮行程でエンジン回転数がモータ3の回転数指令値Bまで低下してクラッチ6が連結することがある。なお、初爆とは、エンジン10のクランキングおよびエンジンECU20による燃料噴射と点火制御によりシリンダ内で最初の燃焼が起こることを意味する。
 クラッチ6が連結したと推定できないと判断し(ステップS20の判断の結果NO)、始動信号がOFFになった場合、制御回路4cは、図6に示すエンジン始動処理を終了する。
 一方、クラッチ6が連結したと推定できると判断した場合(ステップS20の判断の結果YES)、制御回路4cは、インバータ4aを制御してモータ3への通電を再開する(ステップS21)。
 この結果、モータ3が回転数指令値Bで駆動されている際に、クラッチ6が連結したと推定される場合には、再びモータ3の回転数を上昇させることができ、確実にエンジン10を始動することができる。
 なお、エンジン10の温度に相関する物理量を取得する構成要素(例えば、図1に仮想線で示すセンサTSが設けられており、エンジン始動装置1は、このセンサTSに対して通信可能に接続されている変形例が考えられる。この変形例において、制御回路4cは、センサTSにより取得されたエンジン10の温度に相関する物理量を、該センサTSから取得する(図7、ステップS30)。なお、エンジン10に相関する物理量の具体例としてエンジン冷却水の温度、あるいはモータ3の温度がある。
 次いで、制御回路4cは、センサTSから取得した物理量がエンジン10の低温域に対応して設定される第1の閾値より小さいか否か、あるいはエンジン10の高温域に対応して設定される第2の閾値(第2の閾値>第1の閾値)より大きいか否か判断する(ステップS31)。すなわち、制御回路4cは、センサTSから取得した物理量がエンジン10の低温域から高温域に対応する所定範囲(第1の閾値以上であり、第2の閾値以下)から外れているか否か判断する(ステップS31)
 取得した物理量が第1の閾値以上であり、かつ第2の閾値以下である場合、すなわち所定範囲内である場合(ステップS31の判断の結果NO)、制御回路4cは、図7に示す処理を終了する。
 一方、取得した物理量が第1の閾値より小さい場合、つまり、エンジン10の温度が第1の閾値より低い場合(ステップS31の判断の結果YES)、制御回路4cは、エンジン10の摺動部分の潤滑用のオイルの粘度が高くなり、エンジン10の摺動部分におけるフリクションロスが大きくなると判断する。一方、エンジン10の温度が第2の閾値より高い場合(ステップS31の判断の結果YES)、制御回路4cは、エンジン10の熱膨張により、エンジン10の摺動部分におけるフリクションロスが大きくなると判断する。
 このフリクションロスにより、エンジン10の最小回転数R1が低下する恐れがある。
 したがって、ステップS31の判断の結果YESの場合、制御回路4cは、モータ3の回転数指令値を、上記第1の実施形態における回転数指令値B、すなわち、エンジン10の温度に相関する物理量が所定範囲以内である場合の指令値Bよりも低く設定する(ステップS32)。
 これにより、最初の圧縮行程におけるエンジンの最小回転数R1がフリクションロスにより低下した場合でも、クラッチ6が連結することを回避できる。
〔第4の実施形態〕
 第4の実施形態に関わるエンジン始動装置における制御装置4によるエンジン始動制御について図8を用いて説明する。
 第4の実施形態に関わる制御装置4は、クラッチ6が非連結となった後、再び連結するまでの間にモータ3の減速を開始するように構成されている。
 具体的には、図8に示すように、クラッチ6が非連結となってから再び連結するまでの時間T(以下、クラッチ6の非連結時間Tと呼ぶ)を予め実験等により計測しておき、その計測した時間より短い所定の時間を待機時間として、制御回路4cが有するタイマーTMに設定する。なお、このタイマーTMは、ハードウェアにより構成されたタイマーTMでも、ソフトウェアに基づく制御回路4cの処理により構成されたタイマーTMでもよい。
 制御装置4の制御回路4cは、図2AにおけるステップS3の終了後、ステップS4の代わりに、タイマーTMを作動させる(図9、ステップS40参照)。
 そして、制御回路4cは、タイマーTMで計測された時間が待機時間に到達したか否か判断する(ステップS41)。
 ステップS41の判断の結果、タイマーTMで計測された時間が待機時間に到達していないと判断された場合(ステップS41の判断の結果NO)、制御回路4cは、ステップS41の判断を繰り返す。
 一方、ステップS41の判断の結果、タイマーTMで計測された時間が待機時間に到達したと判断された場合(ステップS41の判断の結果YES)、制御回路4cは、インバータ4aを制御してモータ3を減速させる処理を行う(ステップS42)。モータ3の減速手法については、第1の実施形態と同様である。
 これにより、クラッチ6が非連結となるタイミングt1でモータ3を減速する場合と比較して、モータ3の減速を開始するときのエンジン10の回転数が高くなるため、エンジン10の始動時間を短くすることが可能である。
 ところで、クラッチ6の非連結時間Tは、モータ3への通電開始からクラッチ6が非連結となるタイミングt1までのモータ3の角移動量によって異なる。具体的には、図10及び図11に示すように、モータ3の角移動量Δθの値が小さい場合(例えば、85度(deg)、図10参照)におけるクラッチ6の非連結時間T(例えば、60ms、図10参照)に比べて、モータ3の角移動量Δθの値が大きい場合(例えば、180度、図11参照)におけるクラッチ6の非連結時間T(例えば、80ms、図11参照)は、長くなる。このため、モータ3の角移動量が大きい時に設定される待機時間をそのままモータ3の角移動量が小さい場合に適用すると、待機時間がクラッチ6の非連結時間Tより長くなって、クラッチ6が連結する前にモータ3の減速を開始できないことがある。
 そこで、制御回路4cは、例えば、センサRSにより検出されたモータ3の角移動量Δθの値が大きい程、待機時間を長く設定することにより、モータ3の角移動量Δθが大きい場合でも、クラッチ6が連結するまでに確実にモータ3の減速を開始できる。
〔第5の実施形態〕
 第5の実施形態に関わるエンジン始動装置における制御装置4によるエンジン始動制御について図8および図12を用いて説明する
 第5の実施形態に関わる制御装置4は、クラッチ6が非連結となった後、再び連結するまでの間にモータ3の減速を開始するように構成されており、第4の実施形態の構成とは異なる構成である。
 具体的には、図8に示すように、クラッチ6が非連結となった時のモータ回転数ω1と、クラッチ6が再び連結した時のモータ回転数ω2とを予め実験等により計測しておき、モータ回転数ω2とモータ回転数ω1との差Δωより小さい所定の回転数Δωaをω1に加算した回転数(ω1+Δωa)を待機回転数として設定する。
 制御装置4の制御回路4cは、図2AにおけるステップS3の終了後、ステップS4の代わりに、センサRSにより検出されたロータ位置の時間変化に基づいて把握されたモータ3の回転数が待機回転数(ω1+Δωa)に到達したか否か判断する(図12、ステップS50)。
 ステップS50の判断の結果、モータ3の回転数が待機回転数(ω1+Δωa)に到達していないと判断された場合(ステップS50の判断の結果NO)、制御回路4cは、ステップS50の判断を繰り返す。
 一方、ステップS50の判断の結果、モータ3の回転数が待機回転数(ω1+Δωa)に到達したと判断された場合(ステップS50の判断の結果YES)、制御回路4cは、インバータ4aを制御してモータ3を減速させる処理を行う(ステップS51)。モータ3の減速手法については、第1の実施形態と同様である。
 これにより、クラッチ6が非連結となるタイミングt1でモータ3を減速させる場合と比較して、モータ3の減速を開始するときのエンジン回転数が高くなるため、エンジンの始動時間を短くすることが可能である。
 また、モータ3への通電開始からクラッチ6が非連結となるタイミングt1までのモータ3の角移動量が大きい程、待機回転数を大きく設定することもできる。これにより、モータ3の角移動量が大きい場合でも、クラッチ6が連結するまでに確実にモータ3の減速を開始できる。
〔変形例〕
 第1の実施形態に関わるモータ3は、印加される交流電圧の周波数に応じて回転速度が変化する交流モータであるが、本発明は、モータ3として、直流モータを使用することもできる。この場合、制御装置4は、例えば1対のスイッチング素子(例えば、スイッチング素子SupおよびSun)が直列接続されて構成されたコンバータであり、直流モータおよび直流バッテリVの間に設けられたコンバータにおける上記一対のスイッチング素子のオンオフ動作をPWM制御することにより、直流バッテリVから出力される直流電圧を任意の直流電圧に変換して直流モータに印可する。この印可直流電圧の制御により、直流モータの回転速度を可変する。
 第1の実施形態に関わるエンジン始動装置1では、制御装置4がインバータ4aを内蔵する事例について説明したが、制御装置4、すなわち、制御回路4cをインバータ4aとは別に構成することもできる。また、制御装置4がエンジン10から直接エンジン10の動作情報を受け取る構成でも良い。
 第4の実施形態において、モータ3の角移動量に替えて、モータ3の角移動量に関連したモータ3の消費電力を基に待機時間を設定することも可能である。同様に、第5の実施形態において、モータ3の回転数に替えて、モータ3の回転数に関連したモータ3の消費電力を基に待機回転数を設定することも可能である。また、制御装置4がエンジン10の初期クランク角度を取得できる場合は、その初期クランク角度に基づいて待機時間、待機回転数を設定することもできる。
 1 エンジン始動装置  2 スタータ
 3 モータ       4 制御装置
 5 ピニオン      6 クラッチ
 8 リングギヤ

Claims (17)

  1.  出力軸(7)を有するモータ(3)、前記出力軸に取り付けられ、エンジンのクランクシャフトに連結されたリングギヤ(8)に噛合可能なピニオン(5)、および前記出力軸に取り付けられ、前記モータから前記ピニオンの方向のみに回転力を伝達するように連結または非連結するクラッチ(6)、を有しており、前記モータが回転して前記クラッチが連結することで前記モータの回転が前記ピニオンに伝達されるように構成されたスタータ(2)と、
     前記リングギヤ(8)に前記ピニオンが噛み合った状態で前記モータを回転させることにより、この回転が前記クラッチおよびピニオンを介して前記リングギヤに伝達されて当該リングギヤを回転させることで前記エンジンをクランキングし、前記クランキングが開始された後、前記クラッチが非連結状態であることを推定し、前記クラッチが非連結の状態において前記モータの回転速度を減速させる制御装置(4)と、
    を備えたことを特徴とするエンジン始動装置。
  2.  請求項1に記載のエンジン始動装置であって、
     前記制御装置は、前記クラッチが非連結となるタイミングで前記モータの回転速度を減速させることを特徴とするエンジン始動装置。
  3.  請求項1または2に記載のエンジン始動装置であって、
     前記制御装置は、前記クラッチが非連結となるタイミング後、当該クラッチが再び連結されるタイミングの間に前記モータの回転速度を減速させることを特徴とするエンジン始動装置。
  4.  請求項1乃至3のいずれか一項に記載したエンジン始動装置において、
     前記制御装置は、前記モータの通電を停止することで前記モータの回転速度を減速させることを特徴とするエンジン始動装置。
  5.  請求項1乃至3のいずれか一項に記載したエンジン始動装置において、
     前記制御装置は、前記モータの回転方向に対して逆向きのトルクを発生させることで前記モータの回転速度を減速させることを特徴とするエンジン始動装置。
  6.  請求項1~5のいずれか一項に記載したエンジン始動装置において、
     前記制御装置は、前記モータを、そのトルクが一定の指令値になるように制御している時に、前記モータの回転数の変化から前記クラッチが非連結となるタイミングを予測することを特徴とするエンジン始動装置。
  7.  請求項1~5のいずれか一項に記載したエンジン始動装置において、
     前記制御装置は、前記モータを、その回転数が一定の指令値になるように制御している時に、前記モータのトルクの変化から前記クラッチが非連結となるタイミングを予測することを特徴とするエンジン始動装置。
  8.  請求項4に記載したエンジン始動装置において、
     前記制御装置は、前記モータへの通電を停止した後、前記クラッチが連結したと推定され、且つ、前記モータの回転数が所定の回転数まで低下した時に前記モータへの通電を再開することを特徴とするエンジン始動装置。
  9.  請求項5に記載したエンジン始動装置において、
     前記制御装置は、前記モータに、その回転方向に対して逆向きのトルクを発生させた後、前記クラッチが連結したと推定される時に前記モータへの通電を再開することを特徴とするエンジン始動装置。
  10.  請求項5に記載したエンジン始動装置において、
     前記制御装置は、前記モータに、その回転方向に対して逆向きのトルクを発生させた後、エンジンの最初の圧縮行程における最小回転数より低い所定回転数を指令値として前記モータを駆動することを特徴とするエンジン始動装置。
  11.  請求項10に記載したエンジン始動装置において、
     前記制御装置は、前記エンジンの温度と相関を持った物理量が第1の温度域に対応して設定される第1の閾値より小さい場合、あるいは前記第1の温度域よりも高い第2の温度域に対応して設定される第2の閾値より大きい場合に前記指令値を低く設定することを特徴とするエンジン始動装置。
  12.  請求項10または11に記載したエンジン始動装置において、
     前記制御装置は、前記モータが前記指令値で駆動されて前記クラッチが連結したと推定される場合に、再び前記モータの回転数を上昇させることを特徴とするエンジン始動装置。
  13.  請求項9または12に記載したエンジン始動装置において、
     前記制御装置は、前記モータの回転数の変化または前記モータのトルクの変化から前記クラッチが連結したと推定することを特徴とするエンジン始動装置。
  14.  請求項3に記載したエンジン始動装置において、
     予め計測された、前記クラッチが非連結となってから再び連結するまでの時間(T)より短い所定の時間を待機時間として設定するタイマーを備え、
     前記制御装置は、前記クラッチが非連結となるタイミングで前記タイマーを作動させ、このタイマーで計測される時間が前記待機時間に到達したか否か判断し、当該計測時間が前記待機時間に到達したと判断した際に、前記モータの回転速度を減速させることを特徴とするエンジン始動装置。
  15.  請求項14に記載したエンジン始動装置において、
     予め計測された前記クラッチが非連結となった時の前記モータの第1の回転数ω1と予め計測された前記クラッチが再び連結した時の前記モータの第2の回転数ω2とから求められた当該第2の回転数ω2と第1の回転数ω1との差Δωより小さい所定の回転数が前記第1の回転数ω1に加算されて得られた回転数が待機回転数として設定されており、
     前記制御装置は、前記クラッチが非連結となった後、前記モータの回転数が前記待機回転数に到達したか否か判断し、当該モータの回転数が前記待機回転数に到達したと判断した際に、前記モータの回転速度を減速させることを特徴とするエンジン始動装置。
  16.  請求項14に記載したエンジン始動装置において、
     前記制御装置は、前記モータへの通電開始から前記クラッチが非連結となるタイミングまでの前記モータの角移動量が大きい程、前記待機時間を長く設定することを特徴とするエンジン始動装置。
  17.  請求項14に記載したエンジン始動装置において、
     前記制御装置は、前記モータへの通電開始から前記クラッチが非連結となるタイミングまでの前記モータの角移動量が大きい程、前記待機回転数を大きく設定することを特徴とするエンジン始動装置。
PCT/JP2016/054596 2015-02-18 2016-02-17 エンジン始動装置 WO2016133129A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015029168 2015-02-18
JP2015-029168 2015-02-18
JP2015231824A JP6432492B2 (ja) 2015-02-18 2015-11-27 エンジン始動装置
JP2015-231824 2015-11-27

Publications (1)

Publication Number Publication Date
WO2016133129A1 true WO2016133129A1 (ja) 2016-08-25

Family

ID=56689017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054596 WO2016133129A1 (ja) 2015-02-18 2016-02-17 エンジン始動装置

Country Status (1)

Country Link
WO (1) WO2016133129A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319923A (ja) * 1995-05-26 1996-12-03 Nippondenso Co Ltd スタータ及びその歯面衝撃緩和方法
JP2001132594A (ja) * 1999-11-01 2001-05-15 Denso Corp エンジン自動始動装置
JP2003074448A (ja) * 2001-06-22 2003-03-12 Denso Corp エンジン始動装置
JP2003139029A (ja) * 2001-10-30 2003-05-14 Denso Corp エンジン始動システム
JP2003193947A (ja) * 2001-12-27 2003-07-09 Toyota Motor Corp エンジンのスタータ制御装置
JP2003206840A (ja) * 2001-11-08 2003-07-25 Denso Corp エンジン始動システム
JP2004044393A (ja) * 2002-07-08 2004-02-12 Toyota Motor Corp エンジン始動装置
JP2005180273A (ja) * 2003-12-18 2005-07-07 Mitsubishi Electric Corp 始動装置
JP2011127591A (ja) * 2009-12-16 2011-06-30 Ford Global Technologies Llc エンジンの始動方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319923A (ja) * 1995-05-26 1996-12-03 Nippondenso Co Ltd スタータ及びその歯面衝撃緩和方法
JP2001132594A (ja) * 1999-11-01 2001-05-15 Denso Corp エンジン自動始動装置
JP2003074448A (ja) * 2001-06-22 2003-03-12 Denso Corp エンジン始動装置
JP2003139029A (ja) * 2001-10-30 2003-05-14 Denso Corp エンジン始動システム
JP2003206840A (ja) * 2001-11-08 2003-07-25 Denso Corp エンジン始動システム
JP2003193947A (ja) * 2001-12-27 2003-07-09 Toyota Motor Corp エンジンのスタータ制御装置
JP2004044393A (ja) * 2002-07-08 2004-02-12 Toyota Motor Corp エンジン始動装置
JP2005180273A (ja) * 2003-12-18 2005-07-07 Mitsubishi Electric Corp 始動装置
JP2011127591A (ja) * 2009-12-16 2011-06-30 Ford Global Technologies Llc エンジンの始動方法

Similar Documents

Publication Publication Date Title
JP5875664B1 (ja) エンジン始動制御装置およびエンジン始動制御方法
US9267479B2 (en) Engine starting device and engine starting method
US9353692B2 (en) Start-up strategy for hybrid powertrain
US10288028B2 (en) Engine starting system
RU2668884C2 (ru) Способ управления двигателем моторного транспортного средства
US20160318519A1 (en) Control device for hybrid vehicle
JP6153147B2 (ja) モータジェネレータ、エンジン始動装置、およびエンジン始動制御方法
US20180058406A1 (en) Engine starting system
JP6195870B2 (ja) エンジン始動制御装置およびエンジン始動制御方法
US11156196B2 (en) Starting device, rotating electrical machine, and starting electric motor unit
CN104728013A (zh) 发动机起动装置
US10082120B2 (en) Engine automatic stop and start device, and engine automatic stop and start control method
JP6651975B2 (ja) 制御システム
WO2016133129A1 (ja) エンジン始動装置
CN108953028B (zh) 发动机启动装置
JP2016136015A (ja) 車両制御装置
US8706387B2 (en) Control device and control method for engine, and vehicle
JP6351803B2 (ja) エンジン始動制御装置およびエンジン始動制御方法
JP6432492B2 (ja) エンジン始動装置
JP6195871B2 (ja) エンジン始動制御装置およびエンジン始動制御方法
JP2013221417A (ja) エンジン始動装置およびエンジン始動方法
CN109790887B (zh) 用于控制机动车的驱动系的方法
CN108474341B (zh) 起动器
JP6504039B2 (ja) エンジン始動装置
JP6673259B2 (ja) エンジンの始動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16752515

Country of ref document: EP

Kind code of ref document: A1