JP2011127591A - エンジンの始動方法 - Google Patents

エンジンの始動方法 Download PDF

Info

Publication number
JP2011127591A
JP2011127591A JP2010270343A JP2010270343A JP2011127591A JP 2011127591 A JP2011127591 A JP 2011127591A JP 2010270343 A JP2010270343 A JP 2010270343A JP 2010270343 A JP2010270343 A JP 2010270343A JP 2011127591 A JP2011127591 A JP 2011127591A
Authority
JP
Japan
Prior art keywords
engine
starter
cylinder
starting
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2010270343A
Other languages
English (en)
Inventor
Henry Patterson
パターソン ヘンリー
Alex O'connor Gibson
オコーナー ギブソン アレックス
David Oshinsky
オシンスキー デービッド
Joseph Norman Ulrey
ノーマン ウルレイ ジョセフ
Xiangying Liu
ソーアン リウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Publication of JP2011127591A publication Critical patent/JP2011127591A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1506Digital data processing using one central computing unit with particular means during starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0848Circuits or control means specially adapted for starting of engines with means for detecting successful engine start, e.g. to stop starter actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0851Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear
    • F02N11/0855Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear during engine shutdown or after engine stop before start command, e.g. pre-engagement of pinion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】エンジンの始動性を改善する。
【解決手段】この方法は、停止及び始動を繰り返すエンジンの始動性を改善する方法である。この方法は、エンジンのシリンダにおいて予測される最初の燃焼中にスタータを離脱させる。この方法は、スタータのワンウェイクラッチの劣化を防止することができる。さらに、この方法は、エンジン始動中の電流消費を低減することができる。
【選択図】図2

Description

本発明は、エンジンの始動を改善するためのシステムに関するものである。本方法は、特に、頻繁に停止されて再始動されるエンジンにとって有益となり得る。
自動車の製造者は、自動車のエンジンを、ある条件下で、自動的に始動及び停止させることが望ましいことを理解している。特に、自動車が、例えば交通渋滞における場合のように、長い期間停止しているときには、エンジンを停止させることによって、燃料消費を低減することができる。
しかしながら、エンジンを継続的に停止及び始動させると、スタータの劣化、電流消費、エンジンのノイズ及び振動、並びにスタータのワンウェイクラッチの劣化を増進させてしまう。
本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、エンジンの始動性を改善する方法を提供することにある。
本発明の1つの実施形態は、エンジンの始動方法であって、エンジン停止から、シリンダにおける最初の、空気及び燃料の混合気が燃焼させられる燃焼サイクルを予測することと、スタータを係合させることと、前記スタータを、前記予測された最初の燃焼サイクル中に離脱させることとを含むものである。
エンジンが停止してから、空気と燃料の混合気を燃焼させる最初のシリンダに関連する所定の位置においてスタータを離脱させることによって、エンジンの始動を改善することができる。例えば、スタータは、エンジンが始動している間、エンジンのフライホイールに係合し得る。スタータがフライホイールに係合しているときには、スタータは、エンジンのクランクシャフトを回転させ始めることができ、シリンダ内のピストンを往復運動させることができる。クランクシャフトの回転により、シリンダを流通する流れを制御するバルブが作動する。バルブの作動及びピストンの移動は、それらがエンジンシリンダのサイクルを規定又は確立するように関連付けられている。そして、シリンダサイクルは、エンジン位置(即ち、ピストン位置であり、クランクシャフトの角度位置である)と一意的に関連付けられているため、最初の燃焼がどのシリンダで実行されるかを予測することができる。特に、エンジン制御部は、エンジンが停止してからのシリンダ内での最初の燃焼事象を、エンジンの位置及びシリンダの燃料供給データに基づいて予測することができる。そのため、エンジンがいつ始動するかを予測して、エンジンの始動時にスタータを早く離脱させることができる。
本発明により、いくつかの利点がもたらされる。具体的には、この方法は、スタータの劣化、電流消費、オーバーランによるクラッチの劣化、並びにエンジンのノイズ及び振動を低減することができる。さらに、この方法は、ハードウェアを追加することなしに、これらの利点をもたらすことができる。
エンジンの概略図である。 模擬的なエンジンの始動シーケンスを例示した図である。 別のエンジンの始動シーケンスを例示した図である。 エンジン始動ルーティンのフローチャートである。
上記利点及び他の利点、並びに本発明の特徴は、以下の詳細な説明だけで、あるいは、添付の図面と共に、容易に理解されるだろう。
上記の概要は、詳細な説明でさらに説明される概念を簡単な形で抽出したものであると理解されるべきである。それは、特許請求の範囲に記載された主題の要所や本質的な特徴を特定することを意味するものではなく、発明の範囲は、詳細な説明の後に続く特許請求の範囲によって一意的に定義される。さらに、特許請求の範囲に記載された主題は、上記又はこの開示の様々な部分に記された不利な点を解決する実施形態に限定されない。
ここに開示される利点は、ここに発明を実施するための形態として例示的に説明された実施形態をそれ単独で、又は添付図面と共に読むことによって、さらに完全に理解されるだろう。
以下、本発明の実施形態を図面に基づいて詳細に説明する。
図1を参照すると、内燃エンジン10は、複数のシリンダを備え、電子的なエンジンコントローラ12によって制御される。図1には、複数のシリンダのうちの1つが示されている。エンジン10は、燃焼室30と、シリンダ壁32と、クランクシャフトに連結され、シリンダ壁32内に配置されたピストン36とを有している。燃焼室30は、それぞれ吸気マニホールド44及び排気マニホールド48と、それぞれ吸気バルブ52及び排気バルブ54を介して連通する。吸気バルブ52及び排気バルブ54はそれぞれ、吸気カム51及び排気カム53によって作動させられる。代わりに、1つ又はそれ以上の吸気及び排気バルブは、電気的に制御されるコイル及びアーマチャのバルブ組立体によって作動させられてもよい。吸気カム51の位置は、吸気カムセンサ55によって検出され得る。排気カム53の位置は、排気カムセンサ57によって検出され得る。
また、吸気マニホールド44は、エンジンシリンダに連結されている。エンジンシリンダには、燃料インジェクタ66が設けられている。燃料インジェクタ66は、コントローラ12からの信号FPWのパルス幅に比例して液体燃料を供給する。燃料は、燃料タンク、燃料ポンプ及び燃料レール(図示省略)を含む燃料システム(図示省略)によって燃料インジェクタ66へ供給される。図1のエンジン10は、燃料がエンジンシリンダ内に直接噴射されるように構成されている。すなわち、エンジン10は、当業者に知られているように、直噴タイプのエンジンである。燃料インジェクタ66は、コントローラ12に応答するドライバ68から、作動電流が供給される。それに加えて、吸気マニホールド44は、任意の電子スロットル64が設けられている。一例としては、低圧直噴システムが使用され得る。低圧直噴システムでは、燃料圧力が、およそ20〜30barまで上昇する。あるいは、さらに高い燃料圧力を発生させる高圧の二段燃料システムが使用され得る。
分配機無しの点火システム88は、コントローラ12に応答して、点火火花を点火プラグ92を介して燃焼室30へ供給する。ユニバーサル排気ガス酸素(UEGO:Universal Exhaust Gas Oxygen)センサ126が、排気マニホールド48において、触媒コンバータ70の上流に配置されている。あるいは、UEGOセンサ126の代わりに、二段排気ガス酸素センサを用いてもよい。
コンバータ70は、一例では、多数の、レンガ状の塊の触媒を含んでいる。別の例では、多数の排ガス規制装置であって、それぞれが多数のレンガ状の塊を有するものを使用することもできる。コンバータ70は、一例では、三元触媒であってもよい。
図1に示された、通常のコンピュータであるコントローラ12は、マイクロプロセッサユニット102と、入出力ポート104と、リードオンリメモリ106と、ランダムアクセスメモリ108と、キープアライブメモリ110と、通常のデータバスとを有している。コントローラ12は、エンジン10に設けられたセンサから様々な信号を受信する。それらの信号には、既に述べた信号に加えて、冷却スリーブ114に設けられた温度センサ112からのエンジン冷媒温度(ECT)と、アクセルペダル130に設けられ、足132により加えられる力を検出するための位置センサ134からの信号と、吸気マニホールド44に設けられた圧力センサ122からのエンジンのマニホールド圧力(MAP)の計測値と、クランクシャフト40の位置を検出するホール効果センサ118からのエンジン位置(即ち、クランクシャフトの角度位置)と、センサ120からの、エンジンに入ってくる空気質量の計測値と、センサ62からのスロットル位置の計測値とが含まれる。コントローラ12によるプロセスのために、気圧が検出され得る(センサは図示していない)。本実施形態の好ましい点は、エンジン位置センサ118は、クランクシャフトの一回転中に、所定の個数の等間隔のパルスを生成する。それにより、エンジンの回転速度(RPM)を求めることもできる。
いくつかの実施形態では、エンジンは、ハイブリッド自動車の電動モータ/バッテリシステムと結合されているかもしれない。ハイブリッド自動車は、パラレル式であっても、シリーズ式であっても、それらの変形又は組み合わせであってもよい。
運転中は、エンジン10内の各シリンダは、一般的には、4行程サイクルを行う。そのサイクルには、吸気行程と、圧縮行程と、膨張行程と、排気行程とが含まれる。吸気行程中は、一般に、排気バルブ54が閉じられ、吸気バルブ52が開かれる。空気が吸気マニホールド44を介して燃焼室30へ導入され、燃焼室30の容積が増加するようにピストン30がシリンダの底へ移動する。シリンダの底近傍であって吸気行程の終端となる(そのとき燃焼室30の容積が最大となる)ピストン36の位置は、一般的に当業者には下死点(BDC)と称される。圧縮行程中は、吸気バルブ52及び排気バルブ54が閉じられる。ピストン36は、燃焼室30内の空気を圧縮するようにシリンダヘッドの方へ移動する。その行程の終端であって、ピストンがシリンダヘッドに最も近接した(そのとき燃焼室30の容積が最小となる)ピストンの位置は、一般的に当業者には上死点(TDC)と称される。その後の噴射プロセスにおいては、燃料が燃焼室内に導入される。その後の点火プロセスでは、点火プラグ92のような既知の点火手段によって、噴射された燃料が点火され、その結果、燃焼が発生する。膨張行程中は、膨張するガスがピストンをBDCへ向かって押圧する。クランクシャフト40は、ピストンの動きを回転シャフトの回転トルクに変換する。最終的に排気行程において、燃焼後の空気と燃料の混合気を排気マニホールド48へ排出するために排気バルブ54が開かれて、ピストンがTDCへ戻っていく。以上は単に例示であり、正のバルブオーバーラップ(吸気及び排気バルブが共に開いている状態)や、負のバルブオーバーラップ(吸気及び排気バルブが共に閉じている状態)や、吸気バルブの閉じるタイミングを遅れさせることや、他の変形例のように、吸気及び排気バルブの開閉タイミングを変えてもよいことに留意しなければならない。
一の実施形態では、クランクの停止/始動位置センサは、ゼロ速度と双方向性の性能を有する。いくつかのアプリケーションでは双方向性のホールセンサが使用され、別のアプリケーションでは、測定対象に磁石が取り付けられ得る。磁石が測定対象に配置され、センサが信号振幅の変化を検出可能であれば(例えば、ホイールの特定の場所に強い磁石と弱い磁石とを配置する)、歯間隙間の欠損を潜在的に取り除くことができる。さらに、双方向性のホールセンサ又はその均等物を用いると、エンジン位置が停止中に維持され得るが、再始動時には、エンジンが順方向に回転するように別の戦略が使用され得る。
図2を参照すると、図4に示す方法によってシミュレーションしたエンジン始動シーケンスの例示的な図が示されている。時間は、図の左側から開始して、図の右側へ向かって増えていく。図示されたシーケンスは、特に限定されない4気筒の4サイクルエンジンの始動を表している。この例では、縦線は、気筒における各行程の上死点又は下死点を表している。そして、各縦線の間で、クランクシャフト角度が180°異なる。
図の一番上の図は、第1シリンダの位置を示している。具体的には、クランクシャフトと同じように回転に伴う第1シリンダの行程を示している。Tの左側では、エンジンは停止している。Tにおいて、エンジンクランクシャフトが、スタータモータにより供給されるトルクによって回転し始める。第1シリンダの行程は、エンジン停止時に推定されるエンジン位置に従って名前が付けられている。例えば、第1シリンダは、時間Tの以前のエンジン停止時は、吸気行程中であった。Tの後、エンジンは回転し、第1シリンダは、圧縮行程に入り、その後、膨張行程及び排気行程が続く。その後、第1シリンダのシリンダサイクルは、繰り返される。4ストロークエンジンでは、シリンダサイクルは720°の回転角を要し、エンジンの完全な1サイクルにおいては各行程ごとにクランクシャフトの回転角は等間隔となっている。星印200は、エンジンが停止してから最初の燃焼のための最初の点火を示している。星印208は、エンジンの停止後、5番目の燃焼であって、第1シリンダにおいてはエンジン停止後の2番目の燃焼を示している。点火は、点火プラグによって開始させられる。このシーケンスにおいては、第1シリンダのバルブは、シリンダに空気を供給するために、吸気行程中の少なくとも一部の期間は開かれる。燃料は、ポートを介して、又は直噴インジェクタによって、エンジンの気筒に噴射され得る。燃料及び空気の混合気は、圧縮行程中に圧縮されて点火される。シリンダ圧力のピークは、圧縮行程の上死点又は膨張行程中に発生する。
エンジン位置は、火花及び燃料が停止されたときにエンジン位置を追跡することによって、エンジンの停止時に判定され得ることに留意すべきである。一の実施形態では、エンジンが実質的に停止したときに、次のエンジン始動のために、エンジン位置が求められ、メモリに記憶される。別の実施形態では、エンジン位置は、エンジンが回転し始めた後、エンジンが始動したときに、クランクシャフト及びクランクシャフトの位置を検出することによって判定され得る。
図の上から2番目のシリンダ位置の図は、第3シリンダの位置及び行程を示している。このエンジンでの燃焼順序は、第1−第3−第4−第2シリンダの順なので、エンジン停止状態から2番目の燃焼は、星印202で開始される。星印202は、エンジンが停止した後の第3シリンダにおける最初の燃焼であって、全体ではエンジン停止状態から2番目の燃焼の開始を示している。
図の上から3番目のシリンダ位置の図は、第4シリンダの位置及び行程を示している。星印204は、エンジンが停止した後の第4シリンダにおける最初の燃焼であって、全体ではエンジン停止状態から3番目の燃焼の開始を示している。
図の上から4番目のシリンダ位置の図は、第2シリンダの位置及び行程を示している。星印206は、エンジンが停止した後の第2シリンダにおける最初の燃焼であって、全体ではエンジン停止状態から4番目の燃焼の開始を示している。
空気と燃料の混合気を燃焼させる最初のシリンダは、エンジンの停止位置及びエンジン位置の判定方法に応じて、変更され得ることに留意しなければならない。いくつかの実施形態では、エンジン位置が確認されるまで、燃料が1又は複数のエンジンシリンダに供給されない。別の実施形態では、エンジンの停止位置にかかわらず、エンジンが回転し始める前に又は、回転し始めるとすぐに燃料が供給される。
図の上から5番目の図は、スタータの係合制御を示している。スタータを係合させるときは、ソレノイドが、回転するピニオンギヤをエンジンのフライホイールから離れた位置から、該ピニオンがフライホイールに係合する位置へ移動させ、エンジンのクランクシャフトを回転させる。一の実施形態では、ピニオンは、始めは、ピニオンがフライホイールに係合するのに先立って、低速の第1速度で回転させられている。ピニオンがフライホイールに係合した後は、ピニオンの速度は増加する。ピニオンの係合は、空気及び燃料の混合気を燃焼させると予測される最初のシリンダにおいて、その予測された最初の燃焼サイクル中にクランクシャフトが所定の位置に到達するまで維持される。一例では、ピニオンは、最初の燃焼が開始される最初のシリンダサイクルの膨張行程内の所定の位置に対応するクランクシャフト角度となるまで、係合している。図示された例では、エンジンが始動してから最初の燃焼は、200において開始される。スタータのピニオンは、第1シリンダの膨張行程中の210においてフライホイールから離脱させられる。
一例では、スタータは、空気及び燃料の混合気を燃焼させる最初のシリンダの膨張行程中であって、別のシリンダへ火花が供給される前に、フライホイールから離脱させられ得る。この場合、スタータは、エンジンにおけるシリンダの数に応じて異なるクランクシャフト角度において離脱させられ得る。例えば、4気筒エンジンの各シリンダの点火進角が、クランクシャフトの角度で膨張行程の上死点前10°に合わされている場合、スタータは、空気及び燃料の混合気を燃焼させる最初のシリンダの膨張行程において、該空気及び燃料の混合気を燃焼させる最初のシリンダの膨張行程の下死点前10°となるまでに離脱させられ得る。このシーケンスでは、膨張行程の上死点からスタータが離脱させられるまでの間のクランクシャフト角度は170°である。一方、6気筒エンジンの場合は、スタータは、空気及び燃料の混合気を燃焼させる最初のシリンダの膨張行程の下死点よりもクランクシャフトの角度が70°手前となるまでに離脱させられる。なぜなら、6気筒の膨張行程の上死点は、4気筒エンジンの場合の180°と異なり、クランクシャフト角度が120°ずつ離れているからである。
再び、図2に戻ると、上から6番目の図は、エンジンが予測通りに加速できない場合におけるエンジン始動時のスタータピニオンの係合を表している。Tの前は、エンジンが停止しており、クランクシャフトが停止している。エンジン始動の要求に応答して、スタータピニオンが低速で回転し、ソレノイドがTにおいて回転するピニオンをクランクシャフトに係合させる。その後、エンジンのクランクシャフトが回転し始め、ピニオン速度がより早い第2速度まで上昇する。ピニオンは、212まで係合したままである。ピニオンは、212において離脱させられ、214において再度、係合させられる。ピニオンは、216において再び離脱させられ、218において再び係合させられる。さらに、ピニオンは、220において離脱させられ、222において再び係合させられる。スタータは、最終的に224において離脱させられる。スタータの214,218,222における各係合は、エンジンの点火順序において次に予定される燃焼の前にエンジンのフライホイールとスタータピニオンとが係合するタイミングとなっている。スタータの216,220,224における各離脱は、燃焼が発生したと予測されるシリンダの膨張行程中にスタータが離脱するタイミングとなっている。
スタータピニオンは、214〜224において何度も係合及び離脱を繰り返す。さらに、スタータピニオンは、様々な条件に応じて再度の係合が行われるかもしれない。例えば、エンジン速度が所定の閾値に達していない場合、又は、エンジン速度の変化が所定の閾値に達していない場合には、スタータピニオンは、再び係合させられ得る。
スタータピニオンは、様々な条件に応じて離脱させられるかもしれない。例えば、クランクシャフトが、燃焼が予測されるシリンダの膨張又は排気行程中の所定のクランクシャフト角度に対応する所定の位置に達したときに、スタータピニオンは、離脱させられ得る。別の例では、燃焼が予測されるシリンダの膨張又は排気行程中にエンジン速度が所定の閾値を超えたとき又はエンジン加速度が所定の閾値を超えたときに、スタータピニオンは、離脱させられ得る。
図示されていない別の例では、スタータは、係合させられており、その後、予測される燃焼が発生するだろうと予期された後に離脱させられる。特に、スタータは、エンジンが停止してから、空気及び燃料の混合気を燃焼させる最初のシリンダの膨張又は排気行程中に離脱させられ得る。エンジンが予測通りに加速しない場合は、スタータは再度係合させられ、エンジン速度がスタータのオーバーランニングクラッチをオーバーランする速度となるまで係合させられ得る。このように、この例では、スタータピニオンは、所定のクランクシャフト角度まで保持されるわけではない。むしろ、スタータピニオンは、エンジン速度が所定の閾値に達するまで、フライホイールに係合されたまま保持され得る。
ここで、図3を参照すると、図4の方法による、別のエンジンの始動シーケンスの例示的な図が示されている。図2と同様に、時間は図の左側から開始して、図の右側へ向かって増えていく。この図示されたシーケンスは、特に限定されない、4気筒の4サイクルエンジンの始動を表している。縦線は、気筒における各行程の上死点又は下死点を表している。そして、各縦線の間で、クランクシャフト角度が180°異なる。
1〜4のシリンダの図の説明は、燃焼を除いて、図2と同様である。そこで、簡潔のために、図2の説明を図3にも適用し、同様の特徴についての重複した説明は省略する。図3においては、第2シリンダが、エンジン停止状態から空気及び燃料の混合気を燃焼させる1番目のシリンダである。第2シリンダでは、300において火花により燃焼が開始される。300における燃焼は、様々な理由により、302における燃焼(図2における最初の燃焼)よりも早く発生するかもしれない。1つの例では、第2シリンダは、ガスを排気して吸気行程中に新気を吸い込んだ後にエンジンが停止し、シリンダ内に空気が取り込まれた状態で、エンジンが停止している。エンジン再始動の要求に応じて、第2シリンダの最初の圧縮行程中に、燃料が該シリンダに直接噴射され、燃焼が開始される。このように、エンジンは、より少ないクランクシャフトの回転で始動するかもしれない。
別の実施形態では、空気及び燃料の混合気がエンジン停止中にシリンダ内に閉じ込められているときには、第2シリンダは早く始動され得る。例えば、エンジンコントローラは、エンジン停止要求に応じて燃料と火花の供給を停止させ、エンジン速度が低下したときに燃料の供給を一時的に再開させ、エンジンが停止したときのシリンダ内に空気及び燃料の混合気が閉じ込められるようにする。それから、エンジン始動要求に応じて、スタータがエンジンを回転させ、300において火花が第2シリンダ内で燃焼を開始させ、第2シリンダがエンジン停止状態から空気及び燃料の混合気を燃焼させる最初のシリンダとなり得る。
上記の両方の例では、第2シリンダは、該第2シリンダにおける最初の燃焼サイクルが予測されると共に、エンジン停止状態から空気及び燃料の混合気を燃焼させる全体で最初のシリンダとして予測される。燃料の噴射タイミングを燃料が圧縮行程中に又は圧縮行程に先立ってシリンダに噴射されるように制御することによって、シリンダの最初の燃焼を予測することができる。図の例では、第2シリンダは、圧縮行程中であるため、第2シリンダが、エンジン停止後、空気及び燃料の混合気を燃焼させると予測される最初のエンジンシリンダとなる。一例では、第2シリンダの圧縮行程は、カム及びクランクシャフトの位置をTにおいて及びエンジンが回転しているときに検出することによって判定可能である。別の例では、エンジンの停止位置は、エンジンコントローラメモリに保持され得る。それにより、エンジンの再始動が要求される前にエンジン位置がわかる。
このように、図3は、第2シリンダがエンジン停止状態から空気及び燃料の混合気を燃焼させる最初のシリンダである点で図2と異なる。第1シリンダは、燃焼順序がその次であって、空気及び燃料の混合気を302において燃焼させる次のシリンダである。それから、第3シリンダが、304において、空気及び燃料の混合気を燃焼させ、第4シリンダが、306において、空気及び燃料の混合気を燃焼させ、第2シリンダが、308において、空気及び燃料の混合気を燃焼させる。こうして、この始動シーケンスにおいては、第2シリンダが、エンジン停止状態から空気及び燃料の混合気を燃焼させる最初のシリンダであり、第1シリンダがエンジン停止状態から空気及び燃料の混合気を燃焼させる2番目のシリンダであり、第3シリンダがエンジン停止状態から空気及び燃料の混合気を燃焼させる3番目のシリンダであり、第4シリンダがエンジン停止状態から空気及び燃料の混合気を燃焼させる4番目のシリンダである。300−306の燃焼は、エンジンが停止してから各シリンダにおける最初の燃焼であることに留意しなければならない。すなわち、300−306の燃焼は、各シリンダにおける、空気及び燃料の混合気を燃焼させる最初のシリンダサイクルである。
ここで、”スタータシーケンス1”として示された1つのスタータ制御シーケンスについて説明すると、このシーケンスは、上述のスタータ制御シーケンスの第1〜第4シリンダのエンジン位置に基づいている。スタータピニオンは、Tより前に、低速の第1速度で回転し始める。スタータは、エンジンのフライホイールへ移動し、第2速度まで速度を上げる。第2シリンダは、エンジン停止時には圧縮行程中であるため、エンジンの始動要求に応答して燃料が第2シリンダに噴射される。さらに、第2シリンダは、燃料及び火花の供給を受ける最初のシリンダであるため、第2シリンダがエンジン停止状態から空気及び燃料の混合気を燃焼させる最初のシリンダであると予測することができる。そして、エンジンコントローラは、第2シリンダの膨張行程中の312においてスタータピニオンを離脱させる。一例では、スタータは、所定のクランクシャフト位置において離脱させられ得る。別の例では、エンジン停止後の最初の燃焼の後の膨張行程中に、エンジン速度又はエンジンの変化率が所定の閾値を超えたときに、スタータが離脱させられ得る。
”スタータシーケンス2”として示された第2スタータ制御シーケンスは、上述のシリンダ位置に基づいている。ただし、このシーケンス中は、エンジン速度又は加速度が、スタータピニオンが326において最終的に離脱するまでは所定の閾値を超えない。スタータピニオンは、Tより前に、低速の第1速度で回転し始める。第2シリンダは、エンジン停止時には圧縮行程中であるため、エンジンの始動要求に応答して燃料が第2シリンダに噴射される。上述のように、第2シリンダは、燃料及び火花の供給を受ける最初のシリンダであるため、第2シリンダがエンジン停止状態から空気及び燃料の混合気を燃焼させる最初のシリンダであると予測することができる。エンジンコントローラは、第2シリンダの膨張行程中の314においてスタータピニオンを離脱させる。スタータは、所定のクランクシャフト位置において離脱させられ得る。スタータピニオンの速度をエンジン速度に近い速度に制御して該ピニオンをエンジンホイールへ移動させることによって、スタータが316においてフライホイールに再び係合させられる。一例では、エンジン速度又は加速度が所定の閾値未満のときに、スタータが再び係合させられる。スタータピニオンは、エンジンコントローラが第1シリンダが空気及び燃料の混合気を燃焼させる2番目のシリンダとなると予測した後であって、エンジンクランクシャフトが第1シリンダの膨張行程中の所定の位置に到達した後の318において離脱させられる。スタータピニオンの速度をエンジン速度に近い速度に制御して該ピニオンをエンジンホイールへ移動させることによって、スタータピニオンが320においてフライホイールに再び係合させられる。スタータピニオンは、エンジンコントローラが第3シリンダが空気及び燃料の混合気を燃焼させる3番目のシリンダとなると予測した後であって、エンジンクランクシャフトが第3シリンダの膨張行程中の所定の位置に到達した後の322において離脱させられる。スタータピニオンの速度をエンジン速度に近い速度に制御して該ピニオンをエンジンホイールへ移動させることによって、スタータピニオンが324においてフライホイールに再び係合させられる。最終的に、スタータピニオンは、エンジンコントローラが第4シリンダが空気及び燃料の混合気を燃焼させる4番目のシリンダとなると予測した後であって、エンジンクランクシャフトが第4シリンダの膨張行程中の所定の位置に到達した後の326において離脱させられる。この例では、ここで、エンジン速度及び加速度が所定の閾値を超える。そのため、スタータの再度の係合はない。このようにして、エンジン始動中にスタータピニオンを係合及び離脱させることができ、それにより、エンジンが予期する通りに始動しない場合にはクランクを回転させる追加のトルクを供給しつつ、スタータをスタータシーケンスにおいて早期に離脱させることができる。
ここで、図4を参照すると、エンジン始動ルーティンのフローチャートが示されている。ルーティン400では、ステップ402において、エンジンの始動要求がなされたか否かが判定される。エンジンの始動要求は、運転者、エンジンコントローラ又は別のシステム(例えば、ハイブリッドのパワートレインコントローラ)によってなされ得る。一の実施形態では、エンジンコントローラは、メモリからエンジン位置を読み出す。エンジン位置は、燃料及び火花の供給が停止された後、クランクシャフトが停止するまでの間、エンジン位置を追跡することによって、エンジン停止時に判定することができる。エンジン停止中にエンジン位置を追跡又は監視していない実施形態では、エンジン位置は、カム及びクランクシャフトの位置センサによって、始動要求の後に測定することができる。エンジンの始動要求がある場合には、ルーティン400はステップ404に進む。そうでない場合には、ルーティン400は、終了へ進む。
ルーティン400のステップ404では、スタータの早期の離脱のための条件が成立しているか否かが判定される。1つの実施形態では、周囲温度が所定の閾値未満である場合には、スタータピニオンが離脱させられる前に、スタータはエンジンによりオーバーランされる。周囲温度が該閾値よりも大きい場合には、シリンダがエンジン停止状態から空気及び燃料の混合気を最初に燃焼させるシリンダサイクル中にスタータを離脱させることができる。さらに、気圧は、スタータを制御する条件となる場合もある。例えば、気圧が所定の閾値未満である場合には、エンジンが始動され、該エンジンがスタータの速度を超えるまではスタータは離脱させられない。気圧が所定の閾値より大きい場合には、エンジン停止状態から最初の燃焼サイクルにあるシリンダのサイクル中にスタータが離脱させられ得る。スタータの早期の離脱のための条件が成立している場合には、ルーティン400は、ステップ406へ進む。そうでない場合には、ルーティン400は、ステップ426へ進む。ステップ426では、スタータは、エンジン速度がスタータ速度を超えて所定の閾値を超えるまでは、係合されたままとなる。こうして、第1状態のときは、スタータは、係合させられてエンジンを停止状態から回転させ、エンジン速度が所定の閾値を超えたときに離脱させられる。第2状態のときには、第1状態のときとは異なり、空気及び燃料の混合気が燃焼させられる最初の燃焼サイクルが予測され、該予測された最初の燃焼サイクル中にスタータが離脱させられる。
ステップ406では、スタータピニオンがエンジンのフライホイールに係合する前に、該ピニオンが低速の第1速度で回転させられる。低速の第1速度によって、スタータピニオンとフライホールの劣化が低減される。別の実施形態では、スタータは、クランキング速度で係合させられ得る。スタータピニオンの速度は、スタータの電圧又は電流を調整することによって制御され得る。スタータピニオン速度を調整した後、ルーティン400はステップ408へ進む。
ルーティン400のステップ408では、スタータピニオンがフライホイールに係合させられる。スタータピニオンは、スタータ係合ソレノイドに電圧を印加することによって、フライホイールに係合させられ得る。該係合ソレノイドに電圧を印加した後、ルーティン400はステップ410へ進む。
ルーティン400のステップ410では、スタータピニオンがエンジンのフライホイールに係合したか否かが判定される。1つの実施形態では、該係合ソレノイドの可動範囲の終端に設けられたスイッチが、ピニオンがフライホイールに完全に係合したことを示し得る。スタータが係合させられると、ルーティン400はステップ412へ進む。そうでない場合には、ルーティン400は、ステップ408へ進む。
ルーティン400のステップ412では、スタータピニオンの速度が、第2速度まで上昇させられ、エンジンを始動させる。例えば、ピニオン及びフライホイールの劣化を低減するためにスタータピニオンが第1速度で回転させられている場合、スタータピニオンの速度は、スタータが係合した後に上昇させられ、エンジンの始動性が改善される。スタータピニオンの速度に任意の調整がなされた後、ルーティン400は、ステップ412からステップ414へ進む。
ステップ414では、エンジンが回転し始める際に、エンジン位置が追跡又は監視される。エンジン停止時にエンジン位置がメモリに記録されている実施形態においては、エンジン位置は、エンジン位置センサを通過する、カム及びクランクシャフト上の位置指標によって修正される。エンジン停止時にエンジン位置がメモリに記録されていない実施形態においては、エンジンが少し回転して、カム及びクランクシャフト上の位置指標が、正確なエンジン位置を指示するまではエンジン位置を判定できない。いったん、エンジン位置が明確になると、エンジンシリンダへの燃料の供給を開始することができる。しかしながら、エンジン停止中に燃料及び空気がシリンダ内に保持される実施形態においては、空気及び燃料の混合気を燃焼させる最初のシリンダは、エンジンが停止する前に燃料が供給されたシリンダであると予測することができる。例えば、エンジン速度が低くなって、第3シリンダの圧縮行程中にエンジンが停止すると予期され、エンジンコントローラが第3シリンダへ燃料を噴射した場合には、第3シリンダが、エンジン停止後に空気及び燃料の混合気を燃焼させる最初のシリンダであると予測され得る。
エンジン停止中に空気及び燃料の混合気がシリンダ内に保持されず、燃料がシリンダへ直接噴射される実施形態においては、基礎となる火花タイミング(例えば、始動中のシリンダのための基礎となる火花タイミングは、クランクシャフト角度が、圧縮行程の上死点前10〜20°であり得る。)前に燃料噴射が完了するのであれば、圧縮行程中であると判定される最初のシリンダへ最初の燃料噴射がなされる。基礎となる火花タイミングより前に燃料噴射が完了しない場合には、燃焼順序が次のシリンダへ燃料が噴射される。燃料がシリンダのポートに噴射される別の実施形態では、燃料供給を受ける最初のシリンダは、吸気行程中であると判定されるシリンダとなる。
いったん、エンジンコントローラが、(例えば、エンジン停止中のエンジン位置を監視することによって、又は、エンジン停止後に燃料供給を最初に受けるシリンダを追跡し続けることによって)エンジン停止状態から燃料供給を最初に受けるシリンダかどのシリンダかを判定すると、該コントローラは、空気及び燃料の混合気を最初に受ける又は保持するシリンダを、空気及び燃料の混合気を燃焼させる最初のシリンダと予測する。同様に、他のシリンダ(例えば、エンジン停止から2番目に燃料供給を受けるシリンダ、エンジン停止から3番目に燃料供給を受けるシリンダ等)における、エンジン停止状態から最初及びそれに続く、空気及び燃料の混合気の燃焼を、エンジン位置及びいつシリンダへ燃料が噴射されたかに従って予測することができる。そして、最初と予測されたシリンダ又はその次に続くと予測されたシリンダがエンジンを期待通りには加速させない場合には、シリンダにおけるエンジン停止から最初の燃焼サイクルの予測は、エンジンの点火順序にしたがって、次へ進む。例えば、第1シリンダが空気及び燃料の混合気をエンジン停止後に燃焼させる最初のシリンダと予測されたが、エンジンが期待された所望の速度又は加速度に達しない場合には、第3シリンダが、最初の燃焼サイクル中であると次に予測されるシリンダとなる。同様に、エンジンのサイクルにおいてエンジンが回転していき、他のエンジンシリンダが、最初の燃焼サイクル中であると予測されたシリンダとなる。
1つの実施形態では、各シリンダの行程は、メモリに記憶され、それらは、クランクシャフト角度720°(例えば、シリンダサイクルの期間)を基準とする。例えば、4気筒エンジンの場合、第1シリンダの圧縮上死点が0°とされ、膨張行程がクランクシャフト角度1〜180°で表される。第1シリンダの排気行程は、クランクシャフト角度181〜360°となる。第1シリンダの吸気行程はクランクシャフト角度361〜540°となる。第1シリンダの圧縮行程は、541〜720(又は0)°となる。他のエンジンシリンダの行程は、同様に、メモリに記憶され、同じ0〜720°を基準とする。もちろん、他のシリンダの行程は、720°を一区切りとして、ずらして考えることもできる。例えば、第1シリンダの膨張行程におけるクランクシャフト間隔(1〜180°)は、第3シリンダの圧縮行程に、第4シリンダの吸気行程に、第2シリンダの排気行程に対応する。
こうして、始動時におけるエンジン位置が200°と始めに定められると、第1シリンダは排気行程中であり、第3シリンダは膨張行程中であり、第4シリンダは圧縮行程中であり、第2シリンダは吸気行程中であると判定され得る。そのため、第4シリンダが圧縮行程中であるため、燃料が第4シリンダに最初に噴射されると、エンジンコントローラは、第4シリンダが空気及び燃料の混合気をエンジン停止後に燃焼させる最初のシリンダであると予測する。こうして、シリンダにおいてエンジン停止から最初の、空気及び燃料の混合気が燃焼させられる燃焼サイクルが予測される。
ルーティン400のステップ416では、空気及び燃料の混合気を燃焼させると予測されたシリンダにおいてクランクシャフト角度が所定の値となったか否かが判定される。1つの実施形態では、所定のクランクシャフト角度は、空気及び燃料の混合気を燃焼させると予測されたシリンダの膨張行程における所定のクランクシャフト角度である。そして、より具体的な角度は、クランクシャフトの加速度が最大と予測される角度である。例えば、そのクランクシャフト角度は、シリンダ圧力がピークであると予測されるクランクシャフト角度又は、ピークであると予測されたクランクシャフト角度の後の角度である。
1つの実施形態では、スタータは、空気及び燃料の混合気を燃焼させると予測されたシリンダの圧縮行程中の上死点後45〜180°の間に離脱させられる。換言すると、スタータは、空気及び燃料の混合気を燃焼させると予測されたシリンダが膨張行程に突入して45〜180°の間に離脱させられる。
別の実施形態では、スタータは、最初の燃焼サイクル中であると予測されたシリンダの排気行程中に離脱させられ得る。シリンダサイクルにおいてスタータを遅く離脱させることによって、クランクシャフトがスタータが離脱する所望の位置に達するまでに他のシリンダが空気及び燃料の混合気を燃焼させるかもしれないので、エンジンが所望のエンジン速度又は加速度に達する可能性が高くなる。
ここで、他の条件又は他の条件の組み合わせをスタータピニオンをいつ離脱させるかを判定するのに適用してもよいことに留意すべきである。例えば、エンジンがスタータを離脱させる所望のクランクシャフト角度まで回転して、エンジン速度が所定の閾値未満又は予期した通りには加速されていない場合には、エンジン速度又は加速度が所定の閾値を超えると共に最初の燃焼サイクル中であると予測されたシリンダの、スタータピニオンを離脱させるクランクシャフト角度に達するまで、スタータピニオンは係合したままとされ得る。さらに、スタータを離脱させるエンジン速度は、高度が低くなるほど、又は気圧が高くなるほど、大きくなる。さらにまた、スタータを離脱させるエンジン速度は、高度が高くなるほど、又は気圧が低くなるほど、小さくなる。
1つの実施形態では、停止/始動における再始動の間、最初のシリンダの吸気は、PV=mRT、又はm=PV/(RT)の関数として計算される。ここで、Pは、MAP(Manifold Absolute Pressure)又は気圧センサによって測定し得る。MAP及びシリンダの気圧は、急速に大気圧に収束する。Tは、シリンダの空気温であり、この空気温は、エンジンの冷媒温度の関数として調整されて計算される。容積は、取り込まれた吸気の容積である。最初に点火されるシリンダが、吸気バルブが閉じられる(IVC)前の状態にあるとき、容積は、IVCからTDCまでの容積を掃引することによって求められる。吸気カムの位置を正確に測定できるVCTシステムを有する特定のエンジンの場合には、これを用いることによって最初のシリンダの燃焼トルクも推定することができる。これは、ピストンに伝達される燃焼エネルギ(例えば、燃焼力/トルク)を低減する、進角させたEVO(Exhaust Valve Opening)として排気カムの位置にも適用することができる。最初に点火されるシリンダがIVC後の状態にある場合には、最初のエンジン位置は、取り込んだ空気質量に影響を与え、ひいては、トルクに影響を与える。最初のエンジン位置は、双方向型のホール素子又はその均等物で構成されたクランク位置センサによって検出することができる。
エンジンが、最初の燃焼サイクルであると予測されたシリンダにおいて、スタータピニオンを離脱させる予定の位置まで達していない場合、又はスタータを離脱させる状態となっていない場合には、ルーティン400は、ステップ414へ進む。そうでない場合には、ルーティン400は、ステップ418へ進む。
ステップ418においては、スタータは離脱させられる。スタータは、スタータ係合ソレノイドへの電圧の印加を停止することによって離脱させられ得る。それに加えて、ピニオンモータへの電流及び電圧の印加も停止され、ピニオンは、惰性で回転し、やがて停止する。
ルーティン400のステップ420では、エンジンが始動したか否かが判定される。エンジン速度が所定の閾値よりも大きいとき又はエンジンの加速度が所定の閾値を超えたときに、エンジンが始動したと判定され得る。エンジンが始動したと判定された場合には、ルーティン400は終了へ進む。そうでなければ、ルーティン400はステップ422へ進む。
ルーティン400のステップ422では、スタータピニオンが、エンジン速度に合った速度で回転させられる。一例では、エンジン速度は、クランクシャフト位置センサから求めることができ、スタータモータは、エンジン速度と一致するスタータの回転速度に対応するレートで電流が供給される。例えば、スタータ速度の関数であってスタータモータの電流を出力する関数の指標として現在のエンジン速度が使用される。このようにして、スタータモータ電流がオープンループの形式でスタータに供給されるので、スタータモータ又はピニオン速度を監視しておく必要がない。ピニオン速度が出力された後、ルーティン400はステップ424へ進む。
ステップ424では、スタータはフライホイールに再係合させられる。一例では、所定のクランクシャフト角度においてスタータソレノイドに電圧が印加される。例えば、スタータピニオンは、エンジン停止から最初の燃焼サイクル中であると予測されたシリンダの排気行程の終わりよりも前に再係合させられ得る。別の例では、スタータピニオンは、エンジン停止から最初の燃焼サイクル中であると予測されたシリンダの膨張行程の終わりよりも前に再係合させられ得る。別の例では、スタータピニオンは、エンジンが始動していないと判定されるとすぐに係合させられ得る。
ここで、スタータが再係合させられるエンジンの位置は、エンジンによって異なる。エンジンが所定のクランクシャフト位置に到達する前にエンジン速度又は加速度が所定の閾値未満となったときには、スタータが再係合させられてもよい。例えば、空気及び燃料の混合気を燃焼させると予測されるシリンダの膨張行程の終端までにエンジン速度又は加速度が所定の閾値よりも増加しない場合には、スタータは再係合され得る。
当業者によって十分に理解されるように、図4で説明したルーティンは、イベント駆動、割り込み駆動、マルチタスク、マルチスレッド等のような1又は複数の処理戦略を表している。図示された様々なステップや機能は、図示されたシーケンスで実行されてもよいし、並行に実行されてもよいし、いくつかは省略されてもよい。同様に、処理の順序は、ここに記載された目的、特徴及び利点を達成するために必ずしも必須ではない。上記の順序とすることで、説明を簡便にすることができる。明確には説明していないが、当業者は、1又は複数の上記ステップ又は機能は、使用する特定の戦略に応じて繰り返し実行し得るとわかるだろう。
これで説明を終了する。当業者がこれを読むことによって、この説明の精神と範囲から逸脱することなく、多くの代替案や変形例を思い起こすだろう。例えば、天然ガス、ガソリン、ディーゼル又は他の燃料配置で作動するI3、I4、I5、V6、V8、V10、V12エンジンは、本説明を有利に使用することができる。
尚、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
以上説明したように、本発明は、エンジンの始動を改善するためのシステムについて有用である。
10 エンジン
12 エンジンコントローラ
40 クランクシャフト

Claims (20)

  1. エンジンの始動方法であって、
    エンジンを停止させることと、
    エンジン停止から、シリンダにおける最初の、空気及び燃料の混合気を燃焼させる燃焼サイクルを予測することと、
    スタータを係合させることと、
    前記スタータを、前記予測された最初の燃焼サイクル中に離脱させることとを含むエンジンの始動方法。
  2. 請求項1に記載のエンジンの始動方法において、
    前記シリンダは、エンジン停止から、空気及び燃料の混合気を燃焼させる最初のシリンダであるエンジンの始動方法。
  3. 請求項1に記載のエンジンの始動方法において、
    前記スタータは、膨張行程中に離脱させられ、
    前記空気及び燃料の混合気は、前記エンジン停止から最初の燃焼に用いられるエンジンの始動方法。
  4. 請求項1に記載のエンジンの始動方法において、
    前記スタータのピニオンは、前記スタータを係合させるときには第1速度で回転し、前記エンジンをクランキングするときは第2速度で回転するエンジンの始動方法。
  5. 請求項1に記載のエンジンの始動方法において、
    前記予測することは、前記スタータを係合させる前に、エンジン停止時のエンジンの位置に応じて行われるエンジンの始動方法。
  6. 請求項1に記載のエンジンの始動方法において、
    前記予測することは、前記スタータを係合させた後であって前記エンジンの回転中に行われるエンジンの始動方法。
  7. 請求項1に記載のエンジンの始動方法において、
    前記スタータを離脱させることは、前記エンジンの速度の閾値と関連しているエンジンの始動方法。
  8. 請求項7に記載のエンジンの始動方法において、
    前記速度の閾値は、高度が高くなるほど小さくなり、高度が低くなるほど大きくなるエンジンの始動方法。
  9. 請求項1に記載のエンジンの始動方法において、
    前記スタータは、前記シリンダのサイクル中の所定のクランクシャフト角度において離脱させられるエンジンの始動方法。
  10. エンジンの始動方法であって、
    エンジン停止から、シリンダにおける最初の、空気及び燃料の混合気を燃焼させる燃焼サイクルを予測することと、
    スタータを係合させることと、
    前記スタータを、前記予測された最初の燃焼サイクル中に離脱させることと、
    前記エンジンの速度が所定の閾値未満であるときに前記スタータを再係合させることとを含むエンジンの始動方法。
  11. 請求項10に記載のエンジンの始動方法において、
    前記スタータを再係合させることは、前記シリンダのサイクルの排気行程の終わりよりも前に行われるエンジンの始動方法。
  12. 請求項10に記載のエンジンの始動方法において、
    前記スタータのピニオンの速度は、前記スタータを再係合させるときにはエンジン速度と実質的に一致するように制御されるエンジンの始動方法。
  13. 請求項10に記載のエンジンの始動方法において、
    前記スタータは、膨張行程中に離脱させられるエンジンの始動方法。
  14. 請求項10に記載のエンジンの始動方法において、
    前記速度の閾値は、高度が低くなるほど大きくなり、高度が高くなるほど小さくなるエンジンの始動方法。
  15. 請求項10に記載のエンジンの始動方法において、
    前記空気及び燃料の混合気を燃焼させると予測される2番目のシリンダのサイクル中の所定のクランクシャフト角度において前記スタータを離脱させることをさらに含むエンジンの始動方法。
  16. 請求項15に記載のエンジンの始動方法において、
    前記空気及び燃料の混合気を燃焼させると予測される前記2番目のシリンダのサイクル中に前記エンジンの速度が所定の閾値未満となったときに前記スタータを再係合させることをさらに含むエンジンの始動方法。
  17. エンジンの始動方法であって、
    第1状態においては、
    スタータを係合させて、停止したエンジンを回転させることと、
    該エンジンの速度が所定の閾値を超えたときに該スタータを離脱させることとを含み、
    前記第1状態と異なる第2状態においては、
    エンジンを停止させることと、
    エンジン停止から、シリンダにおける最初の、空気及び燃料の混合気を燃焼させる燃焼サイクルを予測することと、
    スタータを係合させることと、
    該スタータを、前記予測された最初の燃焼サイクル中に離脱させることとを含むエンジンの始動方法。
  18. 請求項17に記載のエンジンの始動方法において、
    前記第1状態は、エンジンの温度が所定の閾値未満の状態であるエンジンの始動方法。
  19. 請求項17に記載のエンジンの始動方法において、
    前記第2状態は、エンジンの温度が所定の閾値よりも大きい状態であるエンジンの始動方法。
  20. 請求項17に記載のエンジンの始動方法において、
    前記スタータは、前記第2状態であって前記予測された最初の燃焼サイクルにおける膨張行程中に離脱させられるエンジンの始動方法。
JP2010270343A 2009-12-16 2010-12-03 エンジンの始動方法 Ceased JP2011127591A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/639,787 2009-12-16
US12/639,787 US7962278B1 (en) 2009-12-16 2009-12-16 Method for starting an engine

Publications (1)

Publication Number Publication Date
JP2011127591A true JP2011127591A (ja) 2011-06-30

Family

ID=44080755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010270343A Ceased JP2011127591A (ja) 2009-12-16 2010-12-03 エンジンの始動方法

Country Status (3)

Country Link
US (3) US7962278B1 (ja)
JP (1) JP2011127591A (ja)
CN (1) CN102102615B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173459A (ja) * 2013-03-07 2014-09-22 Daihatsu Motor Co Ltd アイドルストップ車の制御装置
CN104697800A (zh) * 2013-12-05 2015-06-10 现代自动车株式会社 一种检测发动机燃烧阶段的方法及装置
WO2016133129A1 (ja) * 2015-02-18 2016-08-25 株式会社デンソー エンジン始動装置
JP2019011683A (ja) * 2017-06-29 2019-01-24 株式会社Subaru クランキング制御装置

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7187947B1 (en) 2000-03-28 2007-03-06 Affinity Labs, Llc System and method for communicating selected information to an electronic device
DE102007050306B4 (de) * 2007-10-22 2018-05-09 Robert Bosch Gmbh Verfahren zum Steuern eines Startvorgangs einer Brennkraftmaschine
FR2925615B1 (fr) * 2007-12-20 2017-07-28 Renault Sas Procede de commande pour demarreur d'un moteur a combustion et son application
DE102008002666B4 (de) * 2008-06-26 2017-08-31 Robert Bosch Gmbh Verfahren und Vorrichtung zum Starten eines Verbrennungsmotors eines Hybridantriebsstranges
DE102010003524A1 (de) * 2010-03-31 2011-10-06 Robert Bosch Gmbh Schaltungsanordnung und Verfahren zur Auswertung von Signalen eines Kurbelwellensensors und eines Nockenwellensensors einer Brennkraftmaschine
US8453620B2 (en) * 2010-05-25 2013-06-04 GM Global Technology Operations LLC Systems and methods for improved engine start-stop response
US8543318B2 (en) 2010-06-01 2013-09-24 GM Global Technology Operations LLC Controlled engine shutdown system for a stop-start system and a hybrid electric vehicle
US8972150B2 (en) 2010-06-01 2015-03-03 GM Global Technology Operations LLC Selective cylinder disablement control systems and methods
US8442747B2 (en) * 2010-06-01 2013-05-14 GM Global Technology Operations LLC Cylinder air mass prediction systems for stop-start and hybrid electric vehicles
US8635987B2 (en) 2010-06-01 2014-01-28 GM Global Technology Operations LLC Engine speed control systems and methods
US8855896B2 (en) 2010-06-01 2014-10-07 GM Global Technology Operations LLC Intake manifold refill and holding control systems and methods
US8694231B2 (en) 2010-06-01 2014-04-08 GM Global Technology Operations LLC Vehicle rollback control systems and methods
US8892339B2 (en) 2010-06-01 2014-11-18 GM Global Technology Operations LLC Transmission load predicting system for a stop-start system and a hybrid electric vehicle
DE102010040562B4 (de) 2010-09-10 2022-02-03 Robert Bosch Gmbh Verfahren zum Wiederstart einer Brennkraftmaschine
DE102010050123A1 (de) * 2010-11-03 2012-05-03 Audi Ag Kraftfahrzeug mit einem Hybridantrieb und Verfahren zur Auswahl einer Elektromaschine und/oder eines Anlassers zum Anlassen eines Verbrennungsmotors
US8468989B2 (en) * 2010-11-30 2013-06-25 Delphi Technologies, Inc. Method for operating a camshaft phaser
US8464675B2 (en) * 2010-11-30 2013-06-18 Delphi Technologies, Inc. Method for operating an oil control valve
US9022001B2 (en) 2011-02-01 2015-05-05 GM Global Technology Operations LLC Starter control systems and methods for engine rockback
CN103717464B (zh) * 2011-07-28 2017-03-22 丰田自动车株式会社 混合动力车辆的发动机停止控制装置
US9605605B2 (en) * 2011-12-09 2017-03-28 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus
US9322352B2 (en) 2012-05-14 2016-04-26 GM Global Technology Operations LLC System and method for preventing misfire during engine startup
CN102767432A (zh) * 2012-07-31 2012-11-07 长城汽车股份有限公司 缸内直喷发动机停机启动控制方法
US9709014B2 (en) 2012-10-29 2017-07-18 Cummins Inc. Systems and methods for optimization and control of internal combustion engine starting
US9316195B2 (en) 2012-10-29 2016-04-19 Cummins Inc. Systems and methods for optimization and control of internal combustion engine starting
US9249750B2 (en) 2012-11-08 2016-02-02 GM Global Technology Operations LLC System and method for controlling fuel injection when an engine is automatically started to decrease an engine startup period
US9429131B2 (en) * 2013-03-18 2016-08-30 Remy Technologies, Llc Starter system and method
US9051980B2 (en) 2013-04-26 2015-06-09 Gm Global Technology Operations, Llc Direction selectable sprag
JP5839006B2 (ja) * 2013-08-27 2016-01-06 トヨタ自動車株式会社 内燃機関の自動停止制御装置
GB2517751B (en) 2013-08-30 2020-01-29 Ford Global Tech Llc A method of controlling the stopping and starting of an engine of a motor vehicle
US9045132B1 (en) * 2013-12-19 2015-06-02 Ford Global Technologies, Llc System and method for engine idle stop control with starter motor protection
US10099675B2 (en) 2014-10-27 2018-10-16 GM Global Technology Operations LLC System and method for improving fuel economy and reducing emissions when a vehicle is decelerating
WO2018026698A1 (en) * 2016-08-01 2018-02-08 Cummins Inc. Control of engine-integrated electric machine
JP6610470B2 (ja) 2016-08-30 2019-11-27 株式会社デンソー エンジン始動装置
CN111664035A (zh) * 2020-06-22 2020-09-15 潍柴动力股份有限公司 控制起动机退出的方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070699A (ja) * 2000-08-23 2002-03-08 Toyota Motor Corp 燃料消費節約型自動車
JP2005307870A (ja) * 2004-04-22 2005-11-04 Daihatsu Motor Co Ltd 内燃機関の始動方法
JP2005330813A (ja) * 2004-05-18 2005-12-02 Denso Corp エンジン自動停止再始動装置
JP2006242088A (ja) * 2005-03-02 2006-09-14 Hitachi Ltd 内燃機関の始動装置及び方法
JP2007040151A (ja) * 2005-08-02 2007-02-15 Mitsubishi Motors Corp エンジンの始動装置
JP2007239584A (ja) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd 内燃機関の始動装置及び始動方法
JP2008508460A (ja) * 2004-07-30 2008-03-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング スタート時の内燃機関制御装置及び方法
WO2009092466A1 (de) * 2008-01-22 2009-07-30 Robert Bosch Gmbh Verfahren zum start einer brennkraftmaschine mit start-stopp-funktion

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4321796B2 (ja) 2000-08-10 2009-08-26 株式会社デンソー スタータ制御方法
JP3788736B2 (ja) * 2000-12-18 2006-06-21 スズキ株式会社 エンジンの自動停止始動制御装置
JP4239425B2 (ja) 2001-04-02 2009-03-18 株式会社デンソー エンジン始動装置
JP3829684B2 (ja) 2001-10-16 2006-10-04 株式会社デンソー エンジン始動装置
JP3758626B2 (ja) * 2002-09-20 2006-03-22 トヨタ自動車株式会社 内燃機関の始動方法及び始動装置並びにそれらに用いる始動エネルギの推定方法及び装置
JP4345587B2 (ja) * 2004-06-21 2009-10-14 トヨタ自動車株式会社 内燃機関の機関始動制御システム
JP2006029247A (ja) * 2004-07-20 2006-02-02 Denso Corp エンジンの停止始動制御装置
DE102005004326A1 (de) 2004-08-17 2006-02-23 Robert Bosch Gmbh Startvorrichtung für einen Verbrennungsmotor mit separatem Einrück- und Startvorgang
JP2006070793A (ja) * 2004-09-01 2006-03-16 Toyota Motor Corp 内燃機関の制御装置
JP2006207575A (ja) * 2004-12-28 2006-08-10 Nissan Motor Co Ltd 内燃機関及びその制御方法
JP2008163818A (ja) * 2006-12-28 2008-07-17 Hitachi Ltd スタータ
EP3144520B1 (en) * 2009-01-21 2021-03-31 Denso Corporation System for restarting internal combustion engine when engine restart condition is met

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070699A (ja) * 2000-08-23 2002-03-08 Toyota Motor Corp 燃料消費節約型自動車
JP2005307870A (ja) * 2004-04-22 2005-11-04 Daihatsu Motor Co Ltd 内燃機関の始動方法
JP2005330813A (ja) * 2004-05-18 2005-12-02 Denso Corp エンジン自動停止再始動装置
JP2008508460A (ja) * 2004-07-30 2008-03-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング スタート時の内燃機関制御装置及び方法
JP2006242088A (ja) * 2005-03-02 2006-09-14 Hitachi Ltd 内燃機関の始動装置及び方法
JP2007040151A (ja) * 2005-08-02 2007-02-15 Mitsubishi Motors Corp エンジンの始動装置
JP2007239584A (ja) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd 内燃機関の始動装置及び始動方法
WO2009092466A1 (de) * 2008-01-22 2009-07-30 Robert Bosch Gmbh Verfahren zum start einer brennkraftmaschine mit start-stopp-funktion

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173459A (ja) * 2013-03-07 2014-09-22 Daihatsu Motor Co Ltd アイドルストップ車の制御装置
CN104697800A (zh) * 2013-12-05 2015-06-10 现代自动车株式会社 一种检测发动机燃烧阶段的方法及装置
JP2015108367A (ja) * 2013-12-05 2015-06-11 現代自動車株式会社 単気筒燃焼位相情報と角加速度信号を利用したエンジンの燃焼位相予測装置および方法
WO2016133129A1 (ja) * 2015-02-18 2016-08-25 株式会社デンソー エンジン始動装置
JP2019011683A (ja) * 2017-06-29 2019-01-24 株式会社Subaru クランキング制御装置

Also Published As

Publication number Publication date
CN102102615A (zh) 2011-06-22
US20110132307A1 (en) 2011-06-09
US7962278B1 (en) 2011-06-14
US8442748B2 (en) 2013-05-14
US20110232596A1 (en) 2011-09-29
CN102102615B (zh) 2015-05-06
US8195380B2 (en) 2012-06-05
US20120245831A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
JP2011127591A (ja) エンジンの始動方法
US7931002B1 (en) Method for starting an engine
US9416742B2 (en) Method for starting an engine
US8626425B2 (en) Method for fueling an engine at start
US20090037085A1 (en) Starting system and method of internal combustion engine
US8752519B2 (en) Air assist start stop methods and systems
JP2006029247A (ja) エンジンの停止始動制御装置
US10145323B2 (en) Starting control device for engine
US8788182B2 (en) Engine speed based valvetrain control systems and methods
CN105526011B (zh) 重新激活发动机汽缸的方法和系统
US20150285202A1 (en) Method and apparatus for controlling an internal combustion engine during autostop and autostart operations
CN107489550B (zh) 发动机停止位置控制系统和方法
US10465624B2 (en) Start-up control device for engine
CN113294257A (zh) 用于使内燃发动机停止的方法和系统
US8707679B2 (en) Catalyst temperature based valvetrain control systems and methods
US11390264B2 (en) Methods and system for controlling stopping of an engine
US11629659B2 (en) Methods and system to shutdown an engine
JP5929795B2 (ja) 内燃機関の制御装置
JP2014101846A (ja) 内燃機関の制御装置
JP2011157947A (ja) アイドルストップ制御装置
JP2009092017A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130626

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140723

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20150324