WO2016131427A1 - 一种液压节能装置 - Google Patents

一种液压节能装置 Download PDF

Info

Publication number
WO2016131427A1
WO2016131427A1 PCT/CN2016/074074 CN2016074074W WO2016131427A1 WO 2016131427 A1 WO2016131427 A1 WO 2016131427A1 CN 2016074074 W CN2016074074 W CN 2016074074W WO 2016131427 A1 WO2016131427 A1 WO 2016131427A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
oil
hydraulic pump
motor
pump
Prior art date
Application number
PCT/CN2016/074074
Other languages
English (en)
French (fr)
Inventor
韩祥
张从可
Original Assignee
江苏金鼎汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏金鼎汽车科技有限公司 filed Critical 江苏金鼎汽车科技有限公司
Publication of WO2016131427A1 publication Critical patent/WO2016131427A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H39/00Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution
    • F16H39/04Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution with liquid motor and pump combined in one unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/042Controlling the temperature of the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps

Definitions

  • the invention relates to the field of hydraulics, and in particular to a hydraulic energy saving device.
  • the hydraulic pump is a power component of the hydraulic system, and is driven by an engine or an electric motor to suck oil from the hydraulic oil tank to form a component that is discharged to the actuator.
  • the hydraulic pump is divided into a gear pump, a plunger pump, a vane pump and a screw pump according to the structure.
  • the hydraulic motor is an actuator of the hydraulic system, which converts the liquid pressure energy provided by the hydraulic pump into the mechanical energy of the output shaft for driving heavy loads.
  • the existing equipment has low conversion efficiency, low performance and loss of intermediate links. Larger, limited drive capability requires a new type of high performance hydraulics.
  • the technical problem mainly solved by the present invention is to provide a hydraulic energy-saving device, which can solve the problem that the starting load is large and the running energy is high in the existing equipment by pushing the two pumps in cascade to push the turbine and the hydraulic motor and separating the components by using the one-way bearing.
  • the problem of inadequate energy use is to provide a hydraulic energy-saving device, which can solve the problem that the starting load is large and the running energy is high in the existing equipment by pushing the two pumps in cascade to push the turbine and the hydraulic motor and separating the components by using the one-way bearing.
  • a technical solution adopted by the present invention is to provide a hydraulic energy saving device, including:
  • Oil drain connection of the first hydraulic pump In the pressure oil pressure vessel, the oil suction port of the second hydraulic pump is disposed in the pressure oil pressure vessel, the oil discharge port of the second hydraulic pump is connected to the oil delivery port of the hydraulic motor, and the pressure oil pressure vessel is connected to the hydraulic pressure through the overflow pipe
  • the second oil delivery port of the motor is directly connected to the oil storage tank, and the oil discharge port of the hydraulic motor is connected to the oil storage tank;
  • the unit oil discharge amount of the first hydraulic pump is greater than the unit oil discharge amount of the second hydraulic pump; the first hydraulic pump will
  • the hydraulic oil is input into the pressurized oil pressure vessel to generate supercharging, so that the second hydraulic pump automatically absorbs oil to reduce the power driving load, and the second hydraulic pump outputs hydraulic oil to the hydraulic motor to drive the hydraulic motor to realize power transmission output.
  • the first hydraulic pump and the second hydraulic pump are any one of a gear pump, a plunger pump, and a vane pump.
  • the hydraulic motor can be: a vane motor, a turbine assembly, a gear motor, a wedge force motor.
  • the unit hydraulic discharge amount of the first hydraulic pump is 5%-300% higher than the unit oil discharge amount of the second hydraulic pump. More preferably, the unit hydraulic displacement of the first hydraulic pump is 50%-200% higher than the unit discharge amount of the second hydraulic pump.
  • An output shaft of the hydraulic motor is disposed coaxially with the input shafts of the first hydraulic pump and the second hydraulic pump and is coupled by the first one-way bearing.
  • the unit hydraulic discharge amount of the second hydraulic pump is 1.005-1.12 times the unit discharge amount of the hydraulic motor.
  • a hydraulic energy saving device comprising:
  • the first hydraulic pump and the second hydraulic pump are coaxially synchronously driven, and the input shafts of the first hydraulic pump and the second hydraulic pump are separately disposed from the output shafts of the hydraulic motor and the second hydraulic motor or pass through the first one-way bearing 5-1
  • the second one-way bearing 5-2 is connected with the hydraulic motor and the second hydraulic motor
  • the second hydraulic pump is disposed in the pressure hydraulic container
  • the oil suction port of the first hydraulic pump is connected to the oil storage port a tank
  • the oil discharge port of the first hydraulic pump is connected to the pressure oil pressure vessel
  • the oil suction port of the second hydraulic pump is disposed in the pressure oil pressure vessel
  • the oil discharge port of the second hydraulic pump is connected to the oil supply port of the hydraulic motor.
  • the oil discharge port of the hydraulic motor is connected to the oil storage tank; the overflow pipe of the pressure oil pressure container is connected to the oil supply port of the second hydraulic motor, and the oil discharge port of the second hydraulic motor is connected to the oil storage tank; the unit of the first hydraulic pump The oil discharge amount is greater than the unit oil discharge amount of the second hydraulic pump; the first hydraulic pump inputs the hydraulic oil into the pressurized oil pressure container to generate a pressure, so that the second hydraulic pump automatically absorbs oil, reduces the power driving load, and the second hydraulic pump The hydraulic oil is output to the hydraulic motor and the second hydraulic motor to drive the hydraulic motor and the second hydraulic motor to realize the power transmission output.
  • the first hydraulic pump and the second hydraulic pump are any one of a gear pump, a plunger pump, and a vane pump.
  • the first hydraulic motor and the second hydraulic motor may be: a vane motor, a turbine assembly, a gear motor, a wedge force motor.
  • the unit hydraulic discharge amount of the first hydraulic pump is 5%-300% higher than the unit oil discharge amount of the second hydraulic pump. More preferably, the unit hydraulic displacement of the first hydraulic pump is 50%-200% higher than the unit discharge amount of the second hydraulic pump.
  • An output shaft of the hydraulic motor is disposed coaxially with the input shafts of the first hydraulic pump and the second hydraulic pump and is coupled by the first one-way bearing.
  • the unit hydraulic discharge amount of the second hydraulic pump is 1.005-1.12 times the unit discharge amount of the hydraulic motor.
  • the hydraulic motor has a diameter of 1-5 times the diameter of the second hydraulic pump.
  • the hydraulic motor has a diameter that is twice the diameter of the second hydraulic pump.
  • the second hydraulic motor is a turbine assembly
  • the turbine assembly includes a coaxially disposed atomizing disk, a deflector disk, a first turbine, a co-directional control disk, a second turbine, a centrifugal oil collecting cover, and a turbine assembly housing, and an atomizing disk edge Symmetrical arrangement of atomizing holes, atomizing holes as turbine inlets, centrifugation
  • a plurality of oil discharge vanes are formed in the oil collecting hood in a circularly symmetric manner with respect to the output shaft.
  • the first turbine and the second turbine rotate coaxially, and the deflector, the first turbine, the co-directional control disk, and the second turbine and the turbine assembly are intermittently formed with a plurality of curved oil passages.
  • a side portion of the first turbine forms a plurality of crescent-shaped first turbine slots
  • a side portion of the same control panel forms a plurality of chevron-shaped co-directional control slots
  • a side portion of the second turbine forms a plurality of crescent-shaped second turbine slots.
  • the flow chute communicates with the first turbine slot, the co-directional control slot, and the second turbine slot to form a plurality of curved oil passages.
  • the bottom surface of the flow guiding chute, the first turbine groove, the co-directional control groove and the second turbine groove are both tapered.
  • the taper of the flow guiding chute, the first turbine groove, the co-directional control groove and the bottom surface of the second turbine groove is 1-5 degrees.
  • the taper of the flow guiding chute, the first turbine groove, the co-directional control groove, and the bottom surface of the second turbine groove is 1 degree.
  • a plurality of heat dissipating fins are disposed on the outer wall surface of the turbine assembly housing, and the heat dissipating fins are disposed in parallel along the longitudinal extension direction of the turbine assembly housing.
  • the plurality of heat dissipating fins protrude from the surface of the turbine component housing to a height of at least 1 mm.
  • the centrifugal oil collecting cover forms a circular mouth along the extending direction of the output shaft, and the oil discharging blade is tapered along the circular opening.
  • the utility model has the beneficial effects that the hydraulic energy-saving device of the invention utilizes the characteristic that the oil discharge amount of the front stage pressure pump is greater than the oil discharge quantity of the rear stage hydraulic pump, pressurizes the rear stage hydraulic pump, and promotes the rear stage hydraulic pump to improve Equipment efficiency, mitigating the load of the drive; processing the taper at the bottom of the first turbine and the herringbone deflector and the second turbine to solve the bleed problem and the sealing problem, thereby exerting power; by setting the one-way bearing, the resistance is caused by the turbine When the rotation speed is lower than the rotor of the blade motor, the one-way bearing works, and the load on the blade motor will be generated at this time. The load generated by the turbine speed is higher than the blade motor speed to reduce the load on the prime mover.
  • FIG. 1 is a schematic structural view of a hydraulic energy saving device of the present invention
  • FIG. 2 is a schematic structural view showing the installation of a double hydraulic motor of a hydraulic energy saving device of the present invention
  • FIG. 3 is a schematic structural view of a hydraulic energy saving device with a turbine assembly according to the present invention.
  • FIG. 4 is a schematic view showing the assembly structure of a turbine, a vane motor and a plunger pump according to a preferred embodiment of the hydraulic energy saving device of the present invention
  • Figure 5 is a schematic view showing the structure of a wedge force motor used in a hydraulic energy saving device of the present invention
  • a hydraulic energy saving device comprising: a storage tank 10 and a pressure oil pressure vessel 11, a first hydraulic pump 3 and a second hydraulic pump 4 driven by power, and at least one hydraulic motor 6; the first hydraulic pump 3 And the second hydraulic pump 4 is coaxially driven synchronously, and the input shafts of the first hydraulic pump 3 and the second hydraulic pump 4 are disposed separately from the output shaft of the hydraulic motor 6 or through the first one-way bearing 5-1 and the hydraulic motor 6
  • the output shaft 9 is coaxially connected, the second hydraulic pump 4 is disposed in the pressure oil pressure vessel 11, the oil suction port of the first hydraulic pump 3 is connected to the oil storage tank, and the oil discharge port of the first hydraulic pump 3 is connected to the pressure oil pressure In the container 11, the oil suction port of the second hydraulic pump 4 is disposed in the pressure oil pressure vessel 11, and the oil discharge port of the second hydraulic pump 4 is connected to the oil delivery port of the hydraulic motor 6, and the overflow of the pressure oil pressure vessel 11
  • the tube 13 is connected to the second oil delivery port of the hydraulic motor 6 or directly
  • an embodiment of the present invention includes:
  • a hydraulic energy saving device comprises: a first hydraulic pump 3, a second hydraulic pump 4 and a hydraulic motor 6 arranged coaxially, the first hydraulic pump 3 and the input shaft 2 of the second hydraulic pump 4 are coaxially connected, the first hydraulic pressure
  • the input shaft 2 of the pump 3 and the second hydraulic pump 4 is driven by the power input unit 1.
  • the power input unit 1 is selected as a motor, and the input shaft of the second hydraulic pump 4 passes through the first one-way bearing 5-1.
  • the output shaft 9 of the hydraulic motor 6 is connected.
  • the second hydraulic pump 4 is provided with a sealed pressure oil pressure vessel 11 outside.
  • the oil storage tank 10 is connected to the oil suction port of the first hydraulic pump 3 through the oil supply line 12, and the oil discharge port of the first hydraulic pump 3 is connected to the connection pressure oil pressure vessel 11, and the oil discharge port of the first hydraulic pump is connected with a single To the valve 15, the hydraulic oil is prevented from flowing back, and the oil suction port of the second hydraulic pump 4 is directly disposed in the pressure oil pressure vessel 11, so that the pressurized hydraulic oil can drive the hydraulic pump to operate, and improve the oil absorption efficiency, and the second hydraulic pump 4 is arranged.
  • the port is connected to the oil port of the hydraulic motor 6.
  • the pressure oil pressure vessel 11 is also provided with an overflow pipe 13 which is connected at one end to the second oil delivery port of the hydraulic motor 6.
  • the oil discharge port of the hydraulic motor 6 is connected to the oil storage tank 10 through the oil return pipe 14.
  • the output shaft of the hydraulic motor is coupled to a generator 16 for driving power generation.
  • the unit displacement of the first hydraulic pump 3 is greater than the unit displacement of the second hydraulic pump 4, and the unit displacement of the second hydraulic pump 4 is greater than the displacement of the hydraulic motor 6, wherein the unit row of the first hydraulic pump The amount of oil is four times that of the second hydraulic pump.
  • the unit hydraulic discharge of the first hydraulic pump is twice the unit discharge amount of the second hydraulic pump.
  • the first hydraulic pump 3 When the first hydraulic pump 3 is driven by the motor, the first hydraulic pump 3 outputs the hydraulic oil of the oil storage tank to the pressure oil pressure vessel 11 in a manner larger than the required amount of the second hydraulic pump 4, so that the pressure hydraulic pressure vessel is inside
  • the pressure is increased, and at the same time, since the input shafts of the first hydraulic pump 3 and the second hydraulic pump 4 are connected in series and are synchronously driven, when the second hydraulic pump 4 is operated,
  • the pressure in the pressure oil pressure vessel 11 acts so that the hydraulic oil can assist in driving the second hydraulic pump to operate, so that the second hydraulic pump 4 consumes only a small amount of energy when sucking oil, and performs secondary pressurization on the hydraulic oil.
  • a single-input hydraulic motor is employed. At this time, the excess hydraulic oil in the pressurized oil pressure vessel 11 flows directly back to the reservoir tank 10 through the overflow pipe 13.
  • the output shaft of the hydraulic motor 6 having a higher rotational speed can drive the input shaft 2 of the hydraulic pump to rotate, thereby reducing the power consumption for the motor. Achieve energy savings.
  • the hydraulic motor can be selected from the group consisting of a turbine motor, a gear motor, a vane motor, a plunger motor, and a wedge force motor.
  • the hydraulic pump can be selected from the group consisting of a gear pump, a plunger pump, a vane pump, and a screw pump.
  • the hydraulic motor 6 uses the illustrated wedge force motor.
  • a hydraulic energy saving device comprising: a storage tank 10 and a pressure oil pressure vessel 11, a first hydraulic pump 3 and a second hydraulic pump 4 driven by power, and a hydraulic motor 6 and a second hydraulic motor driven by hydraulic oil 8; the first hydraulic pump 3 and the second hydraulic pump 4 are coaxial synchronous driving, the input shafts of the first hydraulic pump 3 and the second hydraulic pump 4 and the output shaft of the hydraulic motor 6 and the second hydraulic motor 8 Separately disposed or coaxially connected to the output shafts of the hydraulic motor 6 and the second hydraulic motor 8 through the first one-way bearing 5-1 and the second one-way bearing 5-2, the second hydraulic pump 4 being disposed at a pressure oil pressure In the container 11, the oil suction port of the first hydraulic pump 3 is connected to the oil storage tank, the oil discharge port of the first hydraulic pump 3 is connected to the pressure oil pressure container 11, and the oil suction port of the second hydraulic pump 4 is disposed in the pressure oil pressure container 11 Inside, the second hydraulic pump 4 The oil discharge port is connected to the oil delivery port of the hydraulic motor 6, the oil discharge
  • Embodiment 2 differs in that a second hydraulic motor 8 is provided, specifically:
  • the input shaft of the first hydraulic pump 3 and the input shaft of the second hydraulic pump 4 are coaxially connected, and the first one-way bearing 5-1, the hydraulic motor 6 and the first between the input shaft of the second hydraulic pump 4 and the hydraulic motor 6 are disposed.
  • a second one-way bearing 5-2 is disposed between the two hydraulic motors 8, and the overflow pipe 13 of the pressure oil pressure vessel 11 is connected to the oil delivery port of the second hydraulic motor 8, and the oil discharge port of the second hydraulic motor 8 passes through
  • the second return oil pipe 14-1 is connected to the oil storage tank 10.
  • the unit displacement of the first hydraulic pump 3 is greater than the unit displacement of the second hydraulic pump 4, and the unit displacement of the second hydraulic pump 4 is greater than the displacement of the hydraulic motor.
  • the unit displacement of the first hydraulic pump 3 is 40 L per minute, and the unit displacement of the second hydraulic pump 4 is 20 L per minute.
  • the displacement of the second hydraulic pump 4 is rotated by one revolution, and the hydraulic motor 6 can be rotated by 1.001 turns.
  • the hydraulic motor 6 rotates at a lower speed than the second hydraulic motor 8, and the hydraulic motor 6 and the second hydraulic motor each select a vane motor.
  • the hydraulic motor can be selected from the group consisting of a turbine motor, a gear motor, a vane motor, and a plunger motor.
  • the hydraulic pump can be selected from the group consisting of a gear pump, a plunger pump, a vane pump, and a screw pump.
  • the hydraulic motor 6 uses the illustrated wedge force motor.
  • the difference in this embodiment compared to Embodiment 2 is that the second hydraulic motor 8 is a turbine assembly. Specifically:
  • a hydraulic energy-saving device comprises: a coaxial input power input unit 1, a hydraulic pump input shaft 2, a first hydraulic pump 3, a second hydraulic pump 4, a first one-way bearing 5-1, a second one-way bearing 5 - 2, a hydraulic motor 6, an atomizing disk 7, a turbine assembly, an output shaft 9, a reservoir 10, a pressure oil pressure vessel 11 and a return oil pipe 14;
  • the input shaft 2 drives the first hydraulic pump 3 and the second hydraulic pump 4 to rotate;
  • the output shaft 9 sequentially sleeves the turbine assembly and the second one-way bearing 5-2;
  • the atomizing disk 7 is coaxially disposed with the hydraulic motor 6;
  • the second hydraulic pump 4 is disposed in the pressure hydraulic container 11;
  • the first hydraulic pump 3 passes
  • the oil supply line 12 is in communication with the oil storage tank 10; wherein the oil discharge amount of the second hydraulic pump 4 is greater than the oil discharge amount of the hydraulic motor 6; the oil discharge amount when the second hydraulic pump 4 rotates one revolution and the hydraulic motor 6 rotates one
  • the input shafts of the first hydraulic pump 3 and the second hydraulic pump 4 are coaxially connected with the hydraulic motor 6 and the output shaft of the turbine assembly, the first hydraulic pump 3, the second hydraulic pump 4, the hydraulic motor 6 and the vortex
  • the oil lines of the wheel assembly are connected in series, and finally the oil storage tank 10 is returned through the oil return pipe 14.
  • the first hydraulic pump 3 is a gear pump, and the oil discharge port of the gear pump is connected with a check valve 15
  • the check valve 15 is disposed in the pressure oil pressure vessel 11.
  • the side of the pressure oil pressure vessel 11 is provided with an overflow pipe 13 connected to the side surface of the turbine assembly, and the second hydraulic pump 4 is disposed in the pressure oil pressure vessel 11, and the second hydraulic pressure is provided.
  • the pump 4 is a plunger pump, the oil discharge port of the plunger pump is connected to the oil inlet of the hydraulic motor 6, the hydraulic motor 6 is a vane motor, and the oil outlet of the vane motor is provided with an atomizing plate 7, wherein the atomizing disc 7 is provided There are two atomizing holes 71 symmetrically arranged, the atomizing hole 71 is disposed at the edge of the atomizing disk 7, and one end of the atomizing hole 71 is connected with the oil discharging port of the blade motor, and the atomizing hole 71 is positive
  • the side of the deflector 81 is formed with spaced-apart guiding chutes 812 and a closing portion 811 for rotating the first turbine 82 and the second turbine 84 of the hydraulic assembly.
  • the flow guiding chute 812 alternates with the closing portion 811 to open or close the oil passage of the hydraulic component; the atomizing hole 71 and the turbine group
  • the input port is connected, the top end of the turbine assembly is provided with a return oil pipe 14, and the hydraulic oil flows out from the oil storage tank 10, passes through the gear pump, and enters the pressure oil pressure vessel 11, one of which flows in from the side of the turbine assembly through the overflow pipe 13, and the other road
  • the plunger pump and the vane motor After atomization into the turbine assembly, the mixed hydraulic oil in the turbine assembly finally flows back to the storage tank 10 through the oil return pipe 14;
  • the hydraulic motor 6 employs a wedge force motor.
  • the input shaft of the plunger pump is coaxially connected with the input shaft of the gear pump, and the other end of the input shaft of the plunger pump is connected to the output shaft of the vane motor through the first one-way bearing 5-1, and the input shaft 2 and the first one-way bearing
  • the first one-way bearing inner surface 5-12 of 5-1 is connected, the first one-way bearing outer surface 5-11 of the first one-way bearing 5-1 is caught on the output shaft of the blade motor, and the output shaft of the blade motor is additionally
  • One end is connected to the output shaft 9 of the turbine assembly through a second one-way bearing 5-2,
  • the second one-way bearing inner surface 5-21 of the second one-way bearing 5-2 is connected to the output shaft, and the second one-way bearing outer surface 5-22 of the second one-way bearing 5-2 is stuck on the atomizing plate
  • the receiving boss inner wall surface 73 of the receiving boss 72 of the seventh, and the second one-way bearing inner surface 5-21 of the second one-way bearing 5-2 are connected to the output shaft 9
  • the turbine assembly includes a coaxially disposed deflector disk 81, a first turbine 82, a co-directional control disk 83, a second turbine 84, a centrifugal oil collection cover 86, and a turbine assembly housing 88.
  • the centrifugal oil collection cover 86 is formed in a plurality of relative to
  • the output shaft 8 is annularly symmetrically disposed with the oil discharge vanes 85.
  • the first turbine 82 and the second turbine 84 rotate coaxially, and the deflector 81, the first turbine 82, the co-directional control disc 83, the second turbine 84 and the turbine assembly housing 88 are intermittently formed with a plurality of curved oil passages.
  • the centrifugal oil collecting cover 86 forms a circular mouth portion 861 along the extending direction of the output shaft 9, and the oil discharging blade 85 is tapered along the circular opening portion 861.
  • heat dissipating fins are disposed on the surface of the turbine assembly housing 88. 881, the heat dissipation fins are arranged in parallel along the longitudinal extension direction of the turbine assembly housing 88, and the plurality of heat dissipation fins 881 protrude from the surface of the turbine assembly housing 88 by a height of 1 mm.
  • the side portion of the first turbine 82 forms a plurality of crescent-shaped first turbine slots 821, and the side portions of the same control panel 83 form a plurality of chevron-like co-directional control slots 831,
  • the side of the second turbine 84 forms a plurality of crescent-shaped second turbine slots 841 that communicate with the first turbine slot 821, the co-directional control slot 831, and the second turbine slot 841 to form a plurality of curved oil passages. .
  • the bottom surfaces of the flow guiding groove 812, the first turbine groove 821, the same direction control groove 831, and the second turbine groove 841 are each tapered at 1-5 degrees.
  • the taper of the bottom surface of the flow guiding chute 812, the first turbine groove 821, the co-directional control groove 831, and the second turbine groove 841 is 1 degree.
  • the gear pump discharges 50-110 liters per minute and the plunger pump discharges 30-90 liters per minute.
  • the displacement of the gear pump is preferably 70-90 liters per minute, and the displacement of the plunger pump is 50-70 liters per minute.
  • the diameter of the vane motor is 1-5 times the distance of the holes of the two corresponding pistons of the plunger pump, further 2-3 times.
  • the gear pump rotates synchronously with the plunger pump, the vane motor and the pressure oil pressure vessel 11 reserve the amount of liquid oil and pressure, and due to the presence of the first one-way bearing 5-1, the vane motor may not be able to Rotating, when the device is running at full speed, when the blade motor speed exceeds the drive shaft speed of the motor of the power input unit 1, the first one-way bearing 5-1 starts to work, and at this time, the blade motor 5 passes the first one-way bearing 5-1.
  • the plunger pump is rotated, the output power of the power input unit 1 is reduced, the blade motor reaches a higher rotational speed and the torque is transmitted to the output device, and the flow rate of the liquid output by the input shaft of the plunger pump rotates the blade motor by 1.01. -1.05 laps.
  • the liquid in the vane motor generates an atomized liquid through the atomizing hole, and then impinges on the first turbine groove of the first turbine 82 through the flow guiding chute 812 on the deflector 81 and the co-directional control groove 831 of the same direction control plate 83. 821 and the second turbine groove 841 of the second turbine 84, while the liquid in the pressurized oil pressure vessel 11 is input to the first turbine 81 through the overflow pipe 13, so that the first turbine 82 and the second turbine 84 rotate, when the first turbine When the rotation 82 is turned to the closing portion 811, the atomized liquid is closed by the closing portion 811 of the deflector 81, and the atomized liquid is expanded to generate a high pressure.
  • the first turbine 82 When the first turbine 82 continues to rotate, the first turbine 82 is rotated to the guiding chute.
  • the expanded liquid produces more explosive force that pushes the first turbine 82 and the second turbine 84 to rotate rapidly, causing the first turbine 82 and the second turbine 84 to generate greater torque and rotational speed.
  • the hydraulic oil that has passed through the turbine assembly is taken up by the oil discharge vane 85 along the path 87 in which the hydraulic oil is drawn out of the centrifugal oil collecting hood by the oil discharge vane, and then returned to the oil storage tank 10 through the oil return pipe 14.
  • a second one-way bearing 5-2 is disposed between the output shaft of the vane motor and the output shaft of the turbine assembly.
  • the blade motor drives the output shaft 9 of the turbine assembly to output due to the action of the second one-way bearing 5-2.
  • the first hydraulic pump 3 includes a gear pump, a plunger pump, a vane pump, and a screw pump.
  • the resistance is such that when the rotational speed of the turbine is lower than the rotor of the vane motor, the one-way rotating device works, and the load on the vane motor is generated at this time, as long as the rotational speed of the turbine is higher than the rotational speed of the vane motor.
  • the resulting load reduces the load on the prime mover.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Hydraulic Motors (AREA)

Abstract

一种液压节能装置,包括:储油箱(10)、压力油压容器(11)、第一液压泵(3)、第二液压泵(4)和至少一个液压马达(6);第一液压泵(3)和第二液压泵(4)为同轴同步驱动,第二液压泵(4)设置在压力油压容器(11)内,第一液压泵(3)的吸油口连接到储油箱(10),第一液压泵(3)的排油口连接到压力油压容器(11),第二液压泵(4)的吸油口设置在压力油压容器(11)内,第二液压泵(4)的排油口连接到液压马达(6)的输油口,液压马达(6)的排油口连接到储油箱(10);第一液压泵(3)的单位排油量大于第二液压泵(4)的单位排油量。该装置利用前级液压泵排油量大于后级液压泵排油量的特性,对后级液压泵加压,对后级液压泵产生推动,提高设备效能,减轻动力驱动负载。

Description

一种液压节能装置 技术领域
本发明涉及液压领域,特别是涉及一种液压节能装置。
背景技术
液压泵是液压系统的动力元件,是靠发动机或电动机驱动,从液压油箱中吸入油液,形成压力油排出,送到执行元件的一种元件。液压泵按结构分为齿轮泵、柱塞泵、叶片泵和螺杆泵。液压马达是液压系统的一种执行元件,它将液压泵提供的液体压力能转变为其输出轴的机械能,用于驱动重型负载,现有的设备转化效率不高,性能较低,中间环节损失较大,驱动能力有限,需要一种新型的高性能液压装置。
发明内容
本发明主要解决的技术问题是提供一种液压节能装置,通过将两泵级联推动涡轮和液压马达并利用单向轴承分离各个组件,解决现有设备中启动负荷较大,运行能耗高,能源利用不充分的问题。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种液压节能装置,包括:
设置一个储油箱和一个压力油压容器、由动力驱动的第一液压泵和第二液压泵和至少一个液压马达;第一液压泵和第二液压泵为同轴同步驱动,第一液压泵和第二液压泵的输入轴与液压马达输出轴分离设置或通过第一单向轴承与液压马达连接,第二液压泵设置在压力油压容器内,第一液压泵的吸油口连接到储油箱,第一液压泵的排油口连接 到压力油压容器内,第二液压泵的吸油口设置在压力油压容器内,第二液压泵的排油口连接到液压马达的输油口,压力油压容器通过溢流管连接到液压马达的第二输油口或直接连接到储油箱,液压马达的排油口连接到储油箱;第一液压泵的单位排油量大于第二液压泵的单位排油量;第一液压泵将液压油输入加压油压容器内,产生增压,使得第二液压泵自动吸油,减轻动力驱动负载,第二液压泵将液压油输出给液压马达,以驱动液压马达实现动力传递输出。
第一液压泵和第二液压泵为齿轮泵、柱塞泵、叶片泵中任意一种。液压马达可以是:叶片马达、涡轮组件、齿轮马达、楔形力马达。第一液压泵的单位排油量比第二液压泵的单位排油量高5%-300%。更佳的,第一液压泵的单位排油量比第二液压泵的单位排油量高50%-200%。
液压马达的输出轴与第一液压泵和第二液压泵的输入轴同轴设置并通过第一单向轴承连接。
第二液压泵的单位排油量为液压马达单位排油量的1.005-1.2倍。
一种液压节能装置,包括:
设置一个储油箱和一个压力油压容器、由动力驱动的第一液压泵和第二液压泵和被液压油驱动的液压马达和第二液压马达;
第一液压泵和第二液压泵为同轴同步驱动,第一液压泵和第二液压泵的输入轴与液压马达和第二液压马达的输出轴分离设置或通过第一单向轴承5-1和第二单向轴承5-2与液压马达和第二液压马达连接,第二液压泵设置在压力油压容器内,第一液压泵的吸油口连接到储油 箱,第一液压泵的排油口连接到压力油压容器内,第二液压泵的吸油口设置在压力油压容器内,第二液压泵的排油口连接到液压马达的输油口,液压马达的排油口连接到储油箱;压力油压容器的的溢流管连接到第二液压马达的输油口,第二液压马达的排油口连接到储油箱;第一液压泵的单位排油量大于第二液压泵的单位排油量;第一液压泵将液压油输入加压油压容器内,产生增压,使得第二液压泵自动吸油,减轻动力驱动负载,第二液压泵将液压油输出给液压马达和第二液压马达,以驱动液压马达和第二液压马达实现动力传递输出。
第一液压泵和第二液压泵为齿轮泵、柱塞泵、叶片泵中任意一种。
第一液压马达和第二液压马达可以为:叶片马达、涡轮组件、齿轮马达、楔形力马达。
第一液压泵的单位排油量比第二液压泵的单位排油量高5%-300%。更佳的,第一液压泵的单位排油量比第二液压泵的单位排油量高50%-200%。
液压马达的输出轴与第一液压泵和第二液压泵的输入轴同轴设置并通过第一单向轴承连接。
第二液压泵的单位排油量为液压马达单位排油量的1.005-1.2倍。
液压马达直径为第二液压泵直径的1-5倍。
最佳的,液压马达直径为第二液压泵直径的2倍。
第二液压马达为涡轮组件,涡轮组件包括同轴设置的雾化盘、导流盘、第一涡轮、同向控制盘、第二涡轮、离心集油罩及涡轮组件壳体,雾化盘边缘对称设置有雾化孔槽,雾化孔槽作为涡轮组件进油口,离心 集油罩内形成若干相对于输出轴环状对称设置的排油叶片。
第一涡轮与第二涡轮之间同轴转动,导流盘、第一涡轮、同向控制盘、第二涡轮与涡轮组件壳体配合间断性形成若干曲线形油路。
第一涡轮的侧部形成若干月牙形的第一涡轮槽,同向控制盘的侧部形成若干人字形的同向控制槽,第二涡轮的侧部形成若干月牙形的第二涡轮槽,导流斜槽与第一涡轮槽、同向控制槽及第二涡轮槽连通,以形成若干曲线形油路。
导流斜槽、第一涡轮槽、同向控制槽及第二涡轮槽的底面均为锥形。
导流斜槽、第一涡轮槽、同向控制槽及第二涡轮槽的底面的锥度为1-5度。
导流斜槽、第一涡轮槽、同向控制槽及第二涡轮槽的底面的锥度为1度。
涡轮组件壳体的外壁面上设置多个散热鳍片,散热鳍片沿涡轮组件壳体的纵向延伸方向平行间隔设置。
多个散热鳍片凸伸出涡轮组件壳体的表壁面的高度至少为1mm。
离心集油罩沿输出轴延伸方向形成一圆形口部,排油叶片沿圆形口部渐缩。
本发明的有益效果是:本发明一种液压节能装置利用前级压泵排油量大于后级液压泵排油量的特性,对后级液压泵加压,对后级液压泵产生推动,提高设备效能,减轻驱动器负载;在第一涡轮和人字形导流板与第二涡轮底部加工锥度,解决泄流问题和密封问题,从而发挥功率;通过设置单向轴承,使得受到阻力是,涡轮的转速低于叶片马达转子时,单向轴承工作,此时会对叶片马达产生负载,反之,只 要涡轮转速高于叶片马达转速所产生的负载对原动力减轻负载。
附图说明
为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本发明的一种液压节能装置的结构示意图;
图2是本发明的一种液压节能装置安装双液压马达的结构示意图;
图3是本发明的一种液压节能装置带涡轮组件的结构示意图;
图4是基于图3的本发明的一种液压节能装置一较佳实施例的涡轮、叶片马达和柱塞泵的组装结构示意图;
图5是本发明的一种液压节能装置所使用的楔形力马达结构示意图;
附图中各部件的标记如下:1、动力输入部,2、输入轴,3、第一液压泵,4、第二液压泵,5-1、第一单向轴承,5-11、单向轴承内表面,5-12、单向轴承外表面,5-2第二单向轴承,5-21、单向轴承内表面,5-22、单向轴承外表面,6、液压马达,7、雾化盘,71、雾化孔槽,72、收容凸台,73、收容凸台内壁面,8、第二液压马达,81、导流板,811、封闭部,812、导流斜槽,82、第一涡轮,821、第一涡轮槽,83、同向控制板,831、同向控制槽,84、第二涡轮,841、第二涡轮槽,85、排油叶片,86、离心集油罩,861、离心集油罩口,87、液压油被排油叶片甩出离心集油罩的路径,88、涡轮组件壳体,881、散热鳍片,89、液压油流向,9、输出轴,10、储油箱,11、压力油 压容器,12、供油管路,13、溢流管,14、回油管,14-1、第二回油管,15、单向阀,16、发电机。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
一种液压节能装置,包括:设置一个储油箱10和一个压力油压容器11、由动力驱动的第一液压泵3和第二液压泵4和至少一个液压马达6;所述第一液压泵3和第二液压泵4为同轴同步驱动,所述第一液压泵3和第二液压泵4的输入轴与液压马达6输出轴分离设置或通过第一单向轴承5-1与液压马达6输出轴9同轴连接,所述第二液压泵4设置在压力油压容器11内,第一液压泵3的吸油口连接到储油箱,第一液压泵3的排油口连接到压力油压容器11内,第二液压泵4的吸油口设置在压力油压容器11内,第二液压泵4的排油口连接到液压马达6的输油口,所述压力油压容器11的溢流管13连接到液压马达6的第二输油口或直接连接到储油箱10,液压马达6的排油口连接到储油箱10;第一液压泵3的单位排油量大于第二液压泵4的单位排油量;第一液压泵3将液压油输入加压油压容器内,产生增压,使得第二液压泵4自动吸油,减轻动力驱动负载,第二液压泵4将液压油输出给液压马达6,以驱动液压马达6实现动力传递输出。
实施例1
请参阅图1,本发明实施例包括:
一种液压节能装置,包括:同轴设置的第一液压泵3、第二液压泵4和液压马达6,第一液压泵3和第二液压泵4的输入轴2同轴连接,第一液压泵3和第二液压泵4的输入轴2被动力输入部1驱动,本实施例中,动力输入部1选用为电机,第二液压泵4的输入轴通过第一单向轴承5-1与液压马达6的输出轴9连接。需要注意的是,第二液压泵4外设置有密闭的压力油压容器11。
储油箱10通过供油管路12连接到第一液压泵3的吸油口,第一液压泵3的排油口连接到连接压力油压容器11内,第一液压泵的排油口连接有单向阀15,避免液压油回流,第二液压泵4的吸油口直接设置在压力油压容器11内,使得加压的液压油可推动液压泵运行,提升吸油效率,第二液压泵4的排油口连接到液压马达6的输油口。压力油压容器11还设置有溢流管13,溢流管13一端连接到液压马达6的第二输油口。液压马达6的排油口通过回油管14连接到储油箱10。液压马达的输出轴连接到发电机16,用于驱动发电。
需要注意的是,第一液压泵3的单位排量大于第二液压泵4的单位排量,第二液压泵4的单位排量大于液压马达6的排量,其中第一液压泵的单位排油量为第二液压泵单位排油量的4倍。
在本发明的一个较佳实施例中,第一液压泵的单位排油量为第二液压泵单位排油量的2倍。
当第一液压泵3被电机驱动时,第一液压泵3将储油箱的液压油以大于第二液压泵4的需求量的方式输出到压力油压容器11内,使得压力油压容器内的压力提高,同时由于第一液压泵3和第二液压泵4的输入轴串联,并被同步驱动,因此,在第二液压泵4运行时,由 于压力油压容器11内的压力作用,使得液压油可辅助推动第二液压泵运转,使得第二液压泵4在吸油时仅需消耗少量能源,并对液压油实现二次加压。同时由于第一液压泵3的单位流量大于第二液压泵4的单位流量,压力油压容器11内多出的液压油通过溢流管13通入液压马达6,提高液压马达6转速。
在另一种实施方式中,采用单输入的液压马达,此时,压力油压容器11内多出的液压油通过溢流管13直接流回储油箱10。
由于第一单向轴承5-1的存在,使得转速较高的液压马达6输出轴可带动液压泵的输入轴2旋转,降低对于电机的电力消耗。实现节能。
液压马达可选自:涡轮马达、齿轮马达、叶片马达、柱塞马达、楔形力马达。
液压泵可选自:齿轮泵、柱塞泵、叶片泵、螺杆泵。
请参阅图5,最佳的,液压马达6选用图示的楔形力马达。
一种液压节能装置,包括:设置一个储油箱10和一个压力油压容器11、由动力驱动的第一液压泵3和第二液压泵4和被液压油驱动的液压马达6和第二液压马达8;所述第一液压泵3和第二液压泵4为同轴同步驱动,所述第一液压泵3和第二液压泵4的输入轴与液压马达6和第二液压马达8的输出轴分离设置或通过第一单向轴承5-1和第二单向轴承5-2与液压马达6和第二液压马达8的输出轴同轴连接,所述第二液压泵4设置在压力油压容器11内,第一液压泵3的吸油口连接到储油箱,第一液压泵3的排油口连接到压力油压容器11内,第二液压泵4的吸油口设置在压力油压容器11内,第二液压泵4的 排油口连接到液压马达6的输油口,液压马达6的排油口连接到储油箱10;压力油压容器的11的溢流管13连接到第二液压马达8的输油口,第二液压马达8的排油口连接到储油箱10;第一液压泵3的单位排油量大于第二液压泵4的单位排油量;第一液压泵3将液压油输入加压油压容器11内,产生增压,使得第二液压泵4自动吸油,减轻动力驱动负载,第二液压泵4将液压油输出给液压马达6和第二液压马达8,以驱动液压马达6和第二液压马达8实现动力传递输出。
实施例2
如图2所示,相比于实施例1,实施例2的差异在于,设置有第二液压马达8,具体在于:
第一液压泵3的输入轴和第二液压泵4的输入轴同轴连接,第二液压泵4的输入轴与液压马达6之间设置第一单向轴承5-1,液压马达6和第二液压马达8之间设置有第二单向轴承5-2,压力油压容器11的溢流管13连接到第二液压马达8的输油口,第二液压马达8的排油口通过第二回油管14-1连接到储油箱10。
在本实施例中,第一液压泵3的单位排量大于第二液压泵4的单位排量,第二液压泵4的单位排量大于液压马达的排量。
作为一种优选方案,第一液压泵3的单位排量为每分钟40L,第二液压泵4的单位排量为每分钟20L。
第二液压泵4旋转一周的排量,可供液压马达6旋转1.001圈。
作为一种更优选的方案,液压马达6转速低于第二液压马达8转速,液压马达6和第二液压马达均选用叶片马达。
液压马达可选自:涡轮马达、齿轮马达、叶片马达、柱塞马达。
液压泵可选自:齿轮泵、柱塞泵、叶片泵、螺杆泵。
请参阅图5,最佳的,液压马达6选用图示的楔形力马达。
实施例3
请参阅图3至图4,相比于实施例2,本实施例的差异在于,第二液压马达8为涡轮组件。具体为:
一种液压节能装置,包括:同轴设置的动力输入部1、液压泵的输入轴2、第一液压泵3、第二液压泵4、第一单向轴承5-1第二单向轴承5-2、液压马达6、雾化盘7、涡轮组件、输出轴9、储油箱10、压力油压容器11及回油管14;输入轴2驱动第一液压泵3和第二液压泵4转动;输出轴9依次套接涡轮组件与第二单向轴承5-2;雾化盘7与液压马达6同轴配置;压力油压容器11内设置有第二液压泵4;第一液压泵3通过供油管路12与储油箱10连通;其中,第二液压泵4的排油量大于液压马达6的排油量;第二液压泵4旋转一圈时的排油量与液压马达6旋转一圈时的供油量之比为1.001:1~1.2:1;第一液压泵3通过单向阀组件15向压力油压容器11内注油;第一液压泵3与第二液压泵4之间所形成的差值油量通过溢流管13注入涡轮组件内,以对称地推动涡轮组件旋转;输入轴2的末端套设卡持于液压马达6一侧轴部的第一单向轴承5-1;输出轴9的起始端套设卡持于液压马达6另一侧轴部的第二单向轴承5-2;涡轮组件转速低于液压马达6转速时;液压马达6通过第二单向轴承5-2带动涡轮组件;由于第二液压泵4的排油量大于液压马达6的排油量,借由第一单向轴承5-1使得液压马达6不对输入轴2的转动形成阻力,从而通过第一单向轴承5-1辅助输入轴2实现转动。
第一液压泵3、第二液压泵4的输入轴与液压马达6和涡轮组件的输出轴同轴连接,第一液压泵3、第二液压泵4、液压马达6和涡 轮组件的油路串接,最后通过回油管14回流储油箱10。具体为:
供油管路12一端伸进储油箱10中,供油管路12另一端与第一液压泵3相连通,第一液压泵3为齿轮泵,齿轮泵的排油口连接有单向阀15,单向阀15设置在压力油压容器11内,压力油压容器11侧面设置有溢流管13与涡轮组件的侧面连接,压力油压容器11内设置有第二液压泵4,第二液压泵4为柱塞泵,柱塞泵的排油口与液压马达6的进油口连接,液压马达6为叶片马达,叶片马达的出油口设置有雾化板7,其中雾化盘7设有对称设置的两个雾化孔槽71,雾化孔槽71设置于雾化盘7的缘周处,雾化孔槽71一端与叶片马达的排油口连接,且雾化孔槽71正对于液压组件的导流盘81的导流斜槽812,导流盘81侧部形成间隔设置的导流斜槽812及封闭部811,在液压组件的第一涡轮82和第二涡轮84转动过程中,该导流斜槽812与封闭部811交替地导通或者闭合液压组件的油路;雾化孔槽71与涡轮组件的输入口连接,涡轮组件的顶端设置有回油管14,液压油从储油箱10流出,经过齿轮泵、进入压力油压容器11,其中一路经过溢流管13从涡轮组件的侧面流入,另一路经过柱塞泵和叶片马达,经雾化后进入涡轮组件,涡轮组件内的混合的液压油最终通过回油管14流回储油箱10;
需要注意的是,请参阅图5,最佳的,液压马达6采用楔形力马达。
柱塞泵的输入轴与齿轮泵的输入轴同轴连接,柱塞泵的输入轴另一端通过第一单向轴承5-1与叶片马达的输出轴连接,输入轴2与第一单向轴承5-1的第一单向轴承内表面5-12连接,第一单向轴承5-1的第一单向轴承外表面5-11卡在叶片马达的输出轴上,叶片马达的输出轴另一端通过第二单向轴承5-2与涡轮组件的输出轴9连接,其 中,第二单向轴承5-2的第二单向轴承内表面5-21与输出轴连接,第二单向轴承5-2的第二单向轴承外表面5-22卡在雾化板7的收容凸台72的收容凸台内壁面73,第二单向轴承5-2的第二单向轴承内表面5-21与涡轮组件的输出轴9连接。
涡轮组件包括同轴设置的导流盘81、第一涡轮82、同向控制盘83、第二涡轮84、离心集油罩86及涡轮组件壳体88,离心集油罩86内形成若干相对于输出轴8环状对称设置的排油叶片85。第一涡轮82与第二涡轮84之间同轴转动,导流盘81、第一涡轮82、同向控制盘83、第二涡轮84与涡轮组件壳体88配合间断性形成若干曲线形油路,离心集油罩86沿输出轴9延伸方向形成一圆形口部861,排油叶片85沿圆形口部861渐缩,为方便散热,在涡轮组件壳体88的表面设置有散热鳍片881,散热鳍片沿涡轮组件壳体88的纵向延伸方向平行间隔设置,多个散热鳍片881凸伸出涡轮组件壳体88的表壁面的高度为1mm。
需要注意的是,本发明的一个实施例中,第一涡轮82的侧部形成若干月牙形的第一涡轮槽821,同向控制盘83的侧部形成若干人字形的同向控制槽831,第二涡轮84的侧部形成若干月牙形的第二涡轮槽841,导流斜槽812与第一涡轮槽821、同向控制槽831及第二涡轮槽841连通,以形成若干曲线形油路。
导流斜槽812、第一涡轮槽821、同向控制槽831及第二涡轮槽841的底面均为1-5度的锥形。
在本实施例的一个优选方案中,导流斜槽812、第一涡轮槽821、同向控制槽831及第二涡轮槽841的底面的锥度为1度。
齿轮泵的排油量为每分钟50-110升,柱塞泵的排油量为每分钟30-90升。
齿轮泵的排油量优选为每分钟70-90升,柱塞泵的排油量为每分钟50-70升。
叶片马达的直径是柱塞泵的两个对应活塞的孔的距离的1-5倍,进一步为2-3倍。
设备低速运转时,齿轮泵与柱塞泵同步转动,叶片马达和压力油压容器11在储备液体油量和压力,且由于第一单向轴承5-1的存在,此时叶片马达不一定能够转动,当设备全速运转时,叶片马达转速会超过动力输入部1电机的驱动轴转速时,第一单向轴承5-1开始工作,此时,叶片马达5通过第一单向轴承5-1反过来带动柱塞泵转动,减轻动力输入部1的输出功率而使叶片马达达到较高的转速和扭力传递给输出装置,柱塞泵的输入轴转动一圈输出的液体流量使叶片马达转动1.01-1.05圈。
叶片马达中的液体通过雾化孔产生雾化状液体,再通过导流板81上的导流斜槽812和同向控制板83的同向控制槽831冲击第一涡轮82的第一涡轮槽821和第二涡轮84的第二涡轮槽841,同时压力油压容器11内的液体通过溢流管13输入到第一涡轮81,使得第一涡轮82和第二涡轮84转动,当第一涡轮82转动至封闭部811时,雾化状液体被导流板81的封闭部811关闭,使雾化状液体膨胀产生高压,当第一涡轮82继续转动,第一涡轮82转动至导流斜槽812相同时,膨胀的液体产生更大爆发力推动第一涡轮82和第二涡轮84快速转动,使第一涡轮82和第二涡轮84产生更大的扭力和转速。
通过涡轮组件后的液压油被排油叶片85,沿液压油被排油叶片甩出离心集油罩的路径87甩出后,经过回油管14重新回到储油箱10。
叶片马达的输出轴和涡轮组件的输出轴之间设置第二单向轴承5-2,当涡轮组件转速高于叶片马达时,仅有涡轮组件的输出轴9进行输出,当涡轮组件转速低于叶片马达时,由于第二单向轴承5-2作用,使得叶片马达带动涡轮组件的输出轴9输出。
第一液压泵3包括齿轮泵、柱塞泵、叶片泵、螺杆泵。
本发明高利用率的一种液压节能装置的有益效果是:
一、利用前级压泵排油量大于后级液压泵排油量的特性,对后级液压泵加压,对后级液压泵产生推动,提高设备效能,减轻驱动器负载;
二、在第一涡轮和人字形导流板与第二涡轮底部加工锥度,解决泄流问题和密封问题,从而发挥功率;
三、通过设置单向转动装置,使得受到阻力是,涡轮的转速低于叶片马达转子时,单向转动装置工作,此时会对叶片马达产生负载,反之,只要涡轮转速高于叶片马达转速所产生的负载对原动力减轻负载。
以上仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域。

Claims (32)

  1. 一种液压节能装置,其特征在于,包括:
    设置一个储油箱(10)和一个压力油压容器(11)、由动力驱动的第一液压泵(3)和第二液压泵(4)和至少一个液压马达(6);
    所述第一液压泵(3)和第二液压泵(4)为同轴同步驱动,所述第一液压泵(3)和第二液压泵(4)的输入轴与液压马达(6)输出轴分离设置或通过第一单向轴承(5-1)与液压马达(6)连接,所述第二液压泵(4)设置在压力油压容器(11)内,第一液压泵(3)的吸油口连接到储油箱,第一液压泵(3)的排油口连接到压力油压容器(11)内,第二液压泵(4)的吸油口设置在压力油压容器(11)内,第二液压泵(4)的排油口连接到液压马达(6)的输油口,所述压力油压容器(11)通过溢流管(13)连接到液压马达(6)的第二输油口或直接连接到储油箱(10),液压马达(6)的排油口连接到储油箱(10);所述第一液压泵(3)的单位排油量大于第二液压泵(4)的单位排油量;第一液压泵(3)将液压油输入加压油压容器内,产生增压,使得第二液压泵(4)自动吸油,减轻动力驱动负载,所述第二液压泵(4)将液压油输出给液压马达(6),以驱动液压马达(6)实现动力传递输出。
  2. 根据权利要求1所述的一种液压节能装置,其特征在于,所述第一液压泵(3)和第二液压泵(4)为齿轮泵、柱塞泵、叶片泵中任意一种。
  3. 根据权利要求1所述的一种液压节能装置,其特征在于,所述液 压马达(6)为叶片马达。
  4. 根据权利要求1所述的一种液压节能装置,其特征在于,所述液压马达(6)为涡轮组件。
  5. 根据权利要求1所述的一种液压节能装置,其特征在于,所述液压马达(6)为齿轮马达。
  6. 根据权利要求1所述的一种液压节能装置,其特征在于,所述液压马达(6)为楔形力马达。
  7. 根据权利要求1所述的一种液压节能装置,其特征在于,所述第一液压泵(3)的单位排油量比第二液压泵(4)的单位排油量高5%-300%。
  8. 根据权利要求7所述的一种液压节能装置,其特征在于,所述第一液压泵(3)的单位排油量比第二液压泵(4)的单位排油量高50%-200%。
  9. 根据权利要求1所述的一种液压节能装置,其特征在于,所述液压马达(6)的输出轴与第一液压泵(3)和第二液压泵(4)的输入轴同轴设置并通过第一单向轴承(5-1)连接。
  10. 根据权利要求1所述的一种液压节能装置,其特征在于,所述第二液压泵(4)的单位排油量为液压马达(6)单位排油量的1.005-1.2倍。
  11. 一种液压节能装置,其特征在于,包括:
    设置一个储油箱(10)和一个压力油压容器(11)、由动力驱动的第一液压泵(3)和第二液压泵(4)和被液压油驱动的液压马达(6) 和第二液压马达(8);
    所述第一液压泵(3)和第二液压泵(4)为同轴同步驱动,所述第一液压泵(3)和第二液压泵(4)的输入轴与液压马达(6)和第二液压马达(8)的输出轴分离设置或通过第一单向轴承5-1和第二单向轴承5-2与液压马达(6)和第二液压马达(8)连接,所述第二液压泵(4)设置在压力油压容器(11)内,第一液压泵(3)的吸油口连接到储油箱,第一液压泵(3)的排油口连接到压力油压容器(11)内,第二液压泵(4)的吸油口设置在压力油压容器(11)内,第二液压泵(4)的排油口连接到液压马达(6)的输油口,液压马达(6)的排油口连接到储油箱(10);压力油压容器的(11)通过溢流管(13)连接到第二液压马达(8)的输油口,第二液压马达(8)的排油口连接到储油箱(10);
    所述第一液压泵(3)的单位排油量大于第二液压泵(4)的单位排油量;第一液压泵(3)将液压油输入加压油压容器(11)内,产生增压,使得第二液压泵(4)自动吸油,减轻动力驱动负载,所述第二液压泵(4)将液压油输出给液压马达(6)和第二液压马达(8),以驱动液压马达(6)和第二液压马达(8)实现动力传递输出。
  12. 根据权利要求11所述的一种液压节能装置,其特征在于,所述第一液压泵(3)和第二液压泵(4)为齿轮泵、柱塞泵、叶片泵中任意一种。
  13. 根据权利要求11所述的一种液压节能装置,其特征在于,所述液压马达(6)和第二液压马达(8)为叶片马达。
  14. 根据权利要求11所述的一种液压节能装置,其特征在于,所述液压马达(6)和第二液压马达(8)为齿轮马达。
  15. 根据权利要求11所述的一种液压节能装置,其特征在于,所述液压马达(6)和第二液压马达(8)为涡轮组件。
  16. 根据权利要求11所述的一种液压节能装置,其特征在于,所述液压马达(6)和第二液压马达(8)为楔形力马达。
  17. 根据权利要求11所述的一种液压节能装置,其特征在于,所述第一液压泵(3)的单位排油量比第二液压泵(4)的单位排油量高5%-300%。
  18. 根据权利要求17所述的一种液压节能装置,其特征在于,所述第一液压泵(3)的单位排油量比第二液压泵(4)的单位排油量高50%-200%。
  19. 根据权利要求11所述的一种液压节能装置,其特征在于,所述液压马达(6)的输出轴与第一液压泵(3)和第二液压泵(4)的输入轴同轴设置并通过第一单向轴承(5-1)连接,所述液压马达(6)的输出轴另一端通过第二单向轴承(5-2)与第二液压马达(8)的输出轴连接。
  20. 根据权利要求11所述的一种液压节能装置,其特征在于,所述第二液压泵(4)的单位排油量为液压马达(6)单位排油量的1.005-1.2倍。
  21. 根据权利要求11所述的一种液压节能装置,其特征在于,所述液压马达(6)直径为第二液压泵直径的1-5倍。
  22. 根据权利要求21所述的一种液压节能装置,其特征在于,所述液压马达(6)直径为第二液压泵直径的2倍。
  23. 根据权利要求15所述的一种液压节能装置,其特征在于,所述第二液压马达(8)为涡轮组件,所述涡轮组件包括同轴设置的雾化盘(7)、导流盘(81)、第一涡轮(82)、同向控制盘(83)、第二涡轮(84)、离心集油罩(86)及涡轮组件壳体(88),所述雾化盘(7)边缘对称设置有雾化孔槽(71),雾化孔槽作为所述涡轮组件进油口,所述离心集油罩(86)内形成若干相对于输出轴(8)环状对称设置的排油叶片(85)。
  24. 根据权利要求23所述的一种液压节能装置,其特征在于,第一涡轮(82)与第二涡轮(84)之间同轴转动,导流盘(81)、第一涡轮(82)、同向控制盘(83)、第二涡轮(84)与涡轮组件壳体(88)配合间断性形成若干曲线形油路。
  25. 根据权利要求24所述的一种液压节能装置,其特征在于,所述第一涡轮(82)的侧部形成若干月牙形的第一涡轮槽(821),所述同向控制盘(83)的侧部形成若干人字形的同向控制槽(831),所述第二涡轮(84)的侧部形成若干月牙形的第二涡轮槽(841),所述导流斜槽(812)与第一涡轮槽(821)、同向控制槽(831)及第二涡轮槽(841)连通,以形成所述若干曲线形油路。
  26. 根据权利要求25所述的一种液压节能装置,其特征在于,所述导流斜槽(812)、第一涡轮槽(821)、同向控制槽(831)及第二涡轮槽(841)的底面均为锥形。
  27. 根据权利要求26所述的一种液压节能装置,其特征在于,所述导流斜槽(812)、第一涡轮槽(821)、同向控制槽(831)及第二涡轮槽(841)的底面的锥度为1-5度。
  28. 根据权利要求27所述的一种液压节能装置,其特征在于,所述导流斜槽(812)、第一涡轮槽(821)、同向控制槽(831)及第二涡轮槽(841)的底面的锥度为1度。
  29. 根据权利要求23所述的一种液压节能装置,其特征在于,所述离心集油罩(86)沿输出轴(9)延伸方向形成一圆形口部(861),所述排油叶片(85)沿圆形口部(861)渐缩。
  30. 根据权利要求23所述的一种液压节能装置,其特征在于,所述涡轮组件壳体(88)的外壁面上设置多个散热鳍片(881)。
  31. 根据权利要求30所述的一种液压节能装置,其特征在于,散热鳍片(881)沿所述涡轮组件壳体(88)的纵向延伸方向平行间隔设置。
  32. 根据权利要求31所述的一种液压节能装置,其特征在于,所述多个散热鳍片(881)凸伸出涡轮组件壳体(88)的表壁面的高度至少为1mm。
PCT/CN2016/074074 2015-02-19 2016-02-18 一种液压节能装置 WO2016131427A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510092040.8 2015-02-19
CN201510092040 2015-02-19

Publications (1)

Publication Number Publication Date
WO2016131427A1 true WO2016131427A1 (zh) 2016-08-25

Family

ID=56691988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074074 WO2016131427A1 (zh) 2015-02-19 2016-02-18 一种液压节能装置

Country Status (2)

Country Link
CN (1) CN105909573A (zh)
WO (1) WO2016131427A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109890675B (zh) * 2016-09-02 2022-07-12 斯泰克波尔国际工程产品有限公司 双输入泵和系统
CN108317043B (zh) * 2017-01-18 2020-02-21 杰能动力工业股份有限公司 风力光电驱动装置
CN107575439A (zh) * 2017-10-10 2018-01-12 哈尔滨理工大学 一种新型高速节能液压油过滤装置
CN111463682B (zh) * 2020-04-10 2021-11-05 安徽佑赛科技股份有限公司 一种智能配变终端用水冷散热装置
CN113431757B (zh) * 2021-06-25 2022-02-22 江苏可奈力机械制造有限公司 高效高速微小型液压泵

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6209675B1 (en) * 1998-01-12 2001-04-03 Komatsu Ltd. Travel drive apparatus for hydraulic drive work vehicle and control method therefor
CN101230586A (zh) * 2007-01-23 2008-07-30 浙江工业大学 一种用于均衡内燃机输出扭矩的液压装置
JP2011080587A (ja) * 2009-09-08 2011-04-21 Cosmo Oil Lubricants Co Ltd 作動油の省電力効果評価装置及びこれを用いた省電力効果評価方法
CN202765256U (zh) * 2012-07-30 2013-03-06 天津港轮驳有限公司 全回转拖轮旋转机应急操控装置
CN102966634A (zh) * 2012-11-16 2013-03-13 无锡汇虹机械制造有限公司 一种可适应于负载压力的液压泵站节能方法
CN103206334A (zh) * 2013-04-03 2013-07-17 浙江大学 一种低速直驱液压型海流发电装置及其控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10238614A1 (de) * 2002-08-17 2004-02-26 Claas Selbstfahrende Erntemaschinen Gmbh Ölvolumenausgleich im Ölkreislauf des hydraulischen Fahrantriebes einer selbstfahrenden Arbeitsmaschine
JP2005188674A (ja) * 2003-12-26 2005-07-14 Hitachi Constr Mach Co Ltd 建設機械のポンプ制御装置
DE102009029840A1 (de) * 2009-06-22 2011-01-27 Liebherr-Werk Nenzing Gmbh Hydrauliksystem
CN102434540A (zh) * 2011-11-29 2012-05-02 兴化市开源船舶机械有限公司 船用液压油泵站装置
CN205991039U (zh) * 2015-02-19 2017-03-01 江苏金鼎汽车科技有限公司 一种液压节能装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6209675B1 (en) * 1998-01-12 2001-04-03 Komatsu Ltd. Travel drive apparatus for hydraulic drive work vehicle and control method therefor
CN101230586A (zh) * 2007-01-23 2008-07-30 浙江工业大学 一种用于均衡内燃机输出扭矩的液压装置
JP2011080587A (ja) * 2009-09-08 2011-04-21 Cosmo Oil Lubricants Co Ltd 作動油の省電力効果評価装置及びこれを用いた省電力効果評価方法
CN202765256U (zh) * 2012-07-30 2013-03-06 天津港轮驳有限公司 全回转拖轮旋转机应急操控装置
CN102966634A (zh) * 2012-11-16 2013-03-13 无锡汇虹机械制造有限公司 一种可适应于负载压力的液压泵站节能方法
CN103206334A (zh) * 2013-04-03 2013-07-17 浙江大学 一种低速直驱液压型海流发电装置及其控制方法

Also Published As

Publication number Publication date
CN105909573A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
WO2016131427A1 (zh) 一种液压节能装置
CN205243867U (zh) 一种旋流泵
CN205991039U (zh) 一种液压节能装置
CN207944997U (zh) 一种发动机油气分离装置及发动机
WO2010009629A1 (zh) 高效节能型冷却塔用水动冷却风机
CN206071889U (zh) 一种低噪音自吸复合泵
CN2547916Y (zh) 农用自吸式离心泵
CN114233684B (zh) 一种高速高压离心泵
CN205779850U (zh) 一种带自吸储水功能的水泵
CN210565120U (zh) 一种具有二级泵的泵体
CN209539573U (zh) 一种高效双级离心再生泵
CN206917866U (zh) 一种外置射流装置的大流量自吸喷灌泵
WO2020037644A1 (zh) 半开式导流增压叶轮
CN206157410U (zh) 一种用于洗衣机的洗涤剂抽取装置
CN209483429U (zh) 流体螺旋动力装置
CN102777389A (zh) 安全可靠强自吸离心泵
CN203655644U (zh) 喷射式自吸粉碎离心泵
CN207131596U (zh) 一种化工用流量泵
CN214145911U (zh) 一种高扬程单级离心泵及叶轮结构
CN213478669U (zh) 一种高效节能水泵节能装置
CN117570018B (zh) 一种多功能高速燃油泵
CN206830532U (zh) 一种油烟机专用循环水泵
CN212151595U (zh) 一种双向手摇可变速增压式桶装水抽水装置
CN202746294U (zh) 强自吸离心泵
CN2931868Y (zh) 一种离心式水泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16751958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16751958

Country of ref document: EP

Kind code of ref document: A1