WO2010009629A1 - 高效节能型冷却塔用水动冷却风机 - Google Patents

高效节能型冷却塔用水动冷却风机 Download PDF

Info

Publication number
WO2010009629A1
WO2010009629A1 PCT/CN2009/071254 CN2009071254W WO2010009629A1 WO 2010009629 A1 WO2010009629 A1 WO 2010009629A1 CN 2009071254 W CN2009071254 W CN 2009071254W WO 2010009629 A1 WO2010009629 A1 WO 2010009629A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
seat ring
runner
cooling tower
input shaft
Prior art date
Application number
PCT/CN2009/071254
Other languages
English (en)
French (fr)
Inventor
顾星康
Original Assignee
南京星飞冷却设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京星飞冷却设备有限公司 filed Critical 南京星飞冷却设备有限公司
Publication of WO2010009629A1 publication Critical patent/WO2010009629A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C1/10Arrangements for suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the invention relates to a cooling fan for a cooling tower, in particular to a cooling fan driven by the principle of a water turbine, in particular to a water-cooling fan for an energy-efficient cooling tower.
  • the object of the present invention is to design a high-efficiency and energy-saving cooling tower water-cooling fan of a vertical structure in view of the problems of low efficiency, small output and large volume of the existing cooling tower water wheel type fan.
  • An energy-efficient cooling tower water-cooling fan comprising a volute-shaped inlet runner 3, a seat ring 4, a runner 2, an input shaft 6, an input shaft 6 connected to the runner 2, and a runner 2 mounted in the seat ring 4
  • the seat ring 4 is located on the inner side of the inlet flow passage 3, and is characterized in that the tangential surface of the volute-shaped inlet water passage 3 is an elliptical or trapezoidal structure in which the area is gradually reduced, and one end thereof is discharged from the cooling tower.
  • the nozzles are connected to each other, and a water outlet communicating with the water inlet of the outer side of the seat ring 4 is disposed on the inner side of the volute inlet water passage 3, and the annular guide vane is disposed in the seat ring 4, and the inner side of the seat ring 4 and the tail of each annular guide vane
  • a water outlet for cutting water which is distributed around the blades of the runner 2, and a straight conical draft pipe 1 for collecting the water flow falling after the cutting wheel 2 for recirculation is installed at the lower portion of the runner 2
  • the input shaft 6 is connected to a speed matching device 11 , and the fan blades are mounted on the output shaft of the speed matching device 11 .
  • the speed matching device 11 includes a driving gear 7, a driven gear 8, an output shaft 9 and a pressure relief tube 5, wherein the driving gear 7 is mounted on the input shaft 6, and the driven gear 8 for deceleration is mounted on the output shaft 9.
  • the driven gear 8 meshes with the driving gear 7, and the fan blade is mounted on the output shaft 9.
  • One end of the pressure releasing pipe 5 communicates with the inner cavity of the seat ring 4 through the cover plate 10, and the other end thereof communicates with the drainage channel.
  • the cover 10 is press-fitted on the inner ring of the seat ring 4 and the volute-shaped water inlet passage 3.
  • the present invention changes the conventional circular structure by designing the cross section of the water inlet passage to be elliptical or trapezoidal, and the size of the water turbine can be greatly reduced.
  • the improved design of the water inlet channel of the invention can make the efficiency of the water turbine reach over 90%, stable operation, no noise, and superior performance.
  • the invention combines the working conditions and parameters of the cooling tower with the factors such as the mismatch of the rotating speed of the mixed flow turbine and the rotating speed of the fan, and the speed matching device is designed to connect the turbine and the fan, so that the efficiency is improved and the operation is stable.
  • the invention adopts a full elliptical cross section volute and a straight conical draft tube, and the single row of annular guide vanes can both guide and bear the axial load, so that the overall size is reduced to about half of the conventional turbine.
  • the trapezoidal volute structure of the present invention allows the draft tube to function both as a flow-through component and as a support member.
  • the invention completely replaces the motor for driving the fan in the original cooling tower, saves 100% of electric energy, and has direct significant economic efficiency and good social benefits.
  • FIG. 1 is a schematic view showing the structure of the present invention.
  • Figure 2 is a schematic plan view of the structure of Figure 1.
  • Figure 3 is a second schematic view of the structure of the present invention.
  • Figure 4 is a top plan view of Figure 3. detailed description
  • An energy-efficient cooling tower water-cooling fan comprises an inlet passage 3, a seat ring 4, a runner 2, an input shaft 6, and the inlet water passage 3 has a volute shape as shown in Fig. 2 (Fig. 2). Its tangent plane is an elliptical structure with a gradually decreasing area (as shown in Figure 1).
  • the input shaft 6 is connected to the runner 2, the runner 2 is mounted in the seat ring 4, the seat ring 4 is located inside the volute-shaped inlet flow passage 3, and one end of the volute-shaped inlet flow passage 3 communicates with the outlet of the cooling tower circulating water
  • a water outlet communicating with the water inlet of the outer side of the seat ring 4 is disposed on the inner side of the volute-shaped water inlet passage 3, and the annular guide vane is disposed in the seat ring 4, and is seated therein.
  • a water cut-off water outlet is arranged at the inner side of the ring 4 and at the tail of each annular guide vane.
  • the water outlet is distributed around the blades of the runner 2, and a water flow falling after collecting the cutting wheel 2 is installed at the lower portion of the runner 2 Straight-conical draft tube 1 for re-circulation;
  • the input shaft 6 is connected to a speed matching device 11 which is mounted on the output shaft of the speed matching device 11.
  • the speed matching device 11 includes a driving gear 7, a driven gear 8, an output shaft 9 and a pressure relief tube 5, wherein the driving gear 7 is mounted on the input shaft 6, and the driven gear 8 for deceleration is mounted on the output shaft 9, driven
  • the gear 8 is meshed with the drive gear 7, and the fan blade is mounted on the output shaft 9.
  • the cover plate 10 is press-fitted on the inner ring of the volute-shaped water inlet passage and the seat ring 4, and the rotational speed matching device 11 is integrally supported on the cover plate 10, and the input shaft 6 is connected to the rotary wheel 2 through the cover plate 10.
  • the present invention uses an ultra-small ratio of speed matching device to connect the turbine and the fan, so that the speed of the fan is at an optimal state, and at the same time
  • the pressure pipe 5 removes the harmful water pressure formed by the leakage of water between the turbine and the speed matching device, further ensuring the normal rotation of the fan blades.
  • the positive cross-sectional shape of the volute-shaped water inlet passage is a trapezoidal structure.
  • a trapezoidal volute is used, and the draft tube 1 can be used as both a flow-through component and a support member. The rest is identical to the embodiment.
  • the working principle of the invention is that water with a certain pressure and flow forms a certain amount of circulation through the volute-shaped inlet passage 3 into the seat ring 4, and enters the turbine runner 2 through the diversion of the guide vanes in the seat ring 4, and drives The runner 2 rotates, and water that loses a certain water pressure after work is discharged from the draft tube 1 and flows into the subsequent water distribution pipe.
  • the rotation of the runner 2 drives the fan blade to rotate via the component input shaft 6, the drive gear 7, the driven gear 8, and the output shaft 9.
  • the pressure relief pipe 5 removes the harmful water pressure formed by the leakage of water between the turbine and the speed matching device to ensure the safe operation of the speed matching device.

Description

说明书
高效节能型冷却塔用水动冷却风机
技术领域
本发明涉及一种冷却塔用风机, 尤其是一种利用水轮机原理驱动的冷却风机, 具体地 说是一种高效节能型冷却塔用水动冷却风机。 背景技术
目前,冷却塔冷却时所用的风机绝大部分都由电动机带动,全国数以万计的冷却塔所 配电机的电能消耗是相当惊人的, 年耗电量近 4. 5亿度。 因此, 提高工业用水的重复利用 率, 加强对冷却塔的节能改造和研究, 提高冷却塔的冷效, 降低装置能耗, 开发高性能、 节能、 环保的冷却塔装置, 对我国能源资源的利用及其可持续发展具有必要性和紧迫性。
大量的实践调査分析表明,全国大多数冷却塔内的循环冷却水,其出口一般具有一定 的富余水头(4〜15m), 这部分富余压力通常都被白白地浪费了。 中国专利 98113099公布 了一种 "冷却塔用水轮式风机", 该专利以一个冲击式水轮机作动力源, 带动风叶轮转动, 从而节约了电能, 但大量的实践表明, 该水轮机存在以下不足之处: 受安装条件的限制, 水轮机转轮全部淹没在水中, 运行效率低、 出力小, 无法完全满足冷却塔的工作要求, 此 外, 该类水轮机体积较大, 不利于对现有冷却塔进行技术改造, 同时由于体积大, 各种成 本也较高。 发明内容
本发明的目的是针对现有的冷却塔用水轮式风机存在的效率低、出力小、体积大的问 题, 设计一种立式结构的高效节能型冷却塔用水动冷却风机。
本发明的技术方案是:
一种高效节能型冷却塔用水动冷却风机, 包括蜗壳状进水流道 3、 座环 4、 转轮 2、 输入轴 6, 输入轴 6与转轮 2相连, 转轮 2安装在座环 4中, 座环 4位于进水流道 3的内 侧, 其特征是所述的蜗壳状进水流道 3的正切面呈面积逐渐缩小的椭圆状或梯形状结构, 它的一端与冷却塔循环用水的出水口相通,在蜗壳状进水流道 3的内侧设有与座环 4外侧 的进水口相通的出水口, 座环 4中设有环形导叶, 在座环 4的内侧、各环形导叶的尾部处 设有切击水出水口,该出水口分布在转轮 2的叶片周围,在转轮 2的下部安装有收集切击 转轮 2后下落的水流以供再次循环使用的直锥形尾水管 1 ;所述的输入轴 6连接有转速匹 配器 11, 风机叶片安装在转速匹配器 11的输出轴上。 所述的转速匹配器 11包括主动齿轮 7、 从动齿轮 8、 输出轴 9和卸压管 5, 其中主动 齿轮 7安装在输入轴 6上,减速用的从动齿轮 8安装在输出轴 9上,从动齿轮 8与主动齿 轮 7相啮合, 风机叶片安装在输出轴 9上; 卸压管 5的一端穿过盖板 10与座环 4的内腔 相通,它的另一端与排水通道相通,盖板 10压装在座环 4和蜗壳状进水流道 3的内圈上。
本发明的有益效果:
本发明通过将进水通道的截面设计成椭圆型或梯形,改变了传统的圆形结构,可大大 减小水轮机的尺寸。
本发明通过进水通道的改进设计可使水轮机的效率达到 90%以上, 运行稳定、 无噪 音, 性能优越。
本发明结合冷却塔的工作条件和参数结合混流式水轮机转速和风机的转速不匹配等 因素, 通过设计转速匹配器来连接水轮机和风机, 使得效率提高, 运行稳定。
本发明采用全椭圆断面蜗壳与直锥形尾水管,单列环形导叶既起导流作用又能承受轴 向荷载, 使得整体尺寸缩小至常规水轮机的一半左右。
本发明的梯形蜗壳结构, 使得尾水管既能作为过流部件又可作为支撑件。
本发明完全替换了原冷却塔中驱动风机的电机, 100 %的节省电能, 具有直接显著的 经济效率与良好的社会效益。 附图说明
图 1是本发明的结构示意图之一。
图 2是图 1的俯视结构示意图。
图 3是本发明的结构示意图之二。
图 4是图 3的俯视结构示意图。 具体实施方式
下面结合附图和实施例对本发明作进一步的说明。
如图 1、 2所示。
一种高效节能型冷却塔用水动冷却风机, 包括进水流道 3、 带座环 4、 转轮 2、 输入 轴 6, 所述的进水流道 3的整体呈蜗壳状(如图 2), 其正切面呈面积逐渐缩小的椭圆结构 (如图 1所示)。 输入轴 6与转轮 2相连, 转轮 2安装在座环 4中, 座环 4位于蜗壳状进 水流道 3的内侧,蜗壳状进水流道 3的一端与冷却塔循环用水的出水口相通,在蜗壳状进 水流道 3的内侧设有与座环 4外侧的进水口相通的出水口,座环 4中设有环形导叶,在座 环 4的内侧、各环形导叶的尾部处设有切击水出水口,该出水口分布在转轮 2的叶片周围, 在转轮 2的下部安装有收集切击转轮 2后下落的水流以供再次循环使用的直锥形尾水管 1 ;所述的输入轴 6连接有转速匹配器 11,风机叶片安装在转速匹配器 11的输出轴上。 转 速匹配器 11包括主动齿轮 7、 从动齿轮 8、 输出轴 9和卸压管 5, 其中主动齿轮 7安装在 输入轴 6上, 减速用的从动齿轮 8安装在输出轴 9上, 从动齿轮 8与主动齿轮 7相啮合, 风机叶片安装在输出轴 9上; 卸压管 5的一端穿过盖板 10与座环 4的内腔相通, 它的另 一端与排水通道相通。 盖板 10压装在蜗壳状进水通道的内圈和座环 4上, 转速匹配器 11 的总体支承在盖板 10上, 输入轴 6穿过盖板 10与转轮 2相连。 由于水轮机转速(即输入 轴的转速)很难和风机的转速相匹配, 因此本发明采用了超小传动比的转速匹配器来连接 水轮机和风机,使风机的转速处于最佳状态, 同时通过卸压管 5卸去水轮机与转速匹配器 之间泄漏水而形成的有害水压, 进一步保证了风机叶片的正常转动。
实施例二。
如图 3、 4所示。
本实施例与实施一的不同之处在于所述的蜗壳状进水流道的正截面形状为梯形结构。 本实施例采用梯形蜗壳,尾水管 1既可作为过流部件又可作为支撑件。其余与实施例完全 相同。
本发明的工作原理为:具有一定压力与流量的水通过蜗壳状进水流道 3形成一定的环 量进入座环 4, 通过座环 4中导叶的导流作用进入水轮机转轮 2, 带动转轮 2旋转, 作功 后失去一定水压的水从尾水管 1排出并流入后续的布水管。转轮 2的旋转经部件输入轴 6、 主动齿轮 7、 从动齿轮 8和输出轴 9驱动风机叶片旋转。 卸压管 5卸去水轮机与转速匹配 器之间泄漏水而形成的有害水压, 保证转速匹配器安全运行。
本发明未涉及部分均与现有技术相同或可采用现有技术加以实现。

Claims

权利要求书 、 一种高效节能型冷却塔用水动冷却风机, 包括蜗壳状进水流道 (3 ) 、 座环 (4) 、 转 轮 (2) 、 输入轴 (6) , 输入轴 (6) 与转轮 (2) 相连, 转轮 (2) 安装在座环 (4) 中, 座环 (4) 位于进水流道 (3) 的内侧, 其特征是所述的蜗壳状进水流道 (3) 的正 切面呈面积逐渐缩小的椭圆状或梯形状结构, 它的一端与冷却塔循环用水的出水口相 通, 在蜗壳状进水流道 (3 ) 的内侧设有与座环 (4) 外侧的进水口相通的出水口, 座 环 (4) 中设有环形导叶, 在座环 (4) 的内侧、 各环形导叶的尾部处设有切击水出水 口, 该出水口分布在转轮 (2) 的叶片周围, 在转轮 (2) 的下部安装有收集切击转轮
(2) 后下落的水流以供再次循环使用的直锥形尾水管 (1 ) ; 所述的输入轴 (6) 连接 有转速匹配器 (11 ) , 风机叶片安装在转速匹配器 (11 ) 的输出轴上。
、 根据权利要求 1所述的高效节能型冷却塔用水动冷却风机, 其特征是所述的转速匹配 器 (11 ) 包括主动齿轮 (7) 、 从动齿轮 (8 ) 、 输出轴 (9) 和卸压管 (5 ) , 其中主 动齿轮 (7) 安装在输入轴 (6) 上, 减速用的从动齿轮 (8 ) 安装在输出轴 (9) 上, 从动齿轮 (8) 与主动齿轮 (7) 相啮合, 风机叶片安装在输出轴 (9) 上; 卸压管 (5) 的一端穿过盖板(10)与座环 (4)的内腔相通, 它的另一端与排水通道相通, 盖板(10) 压装在座环 (4) 和蜗壳状进水流道 (3)的内圈上。
PCT/CN2009/071254 2008-07-25 2009-04-13 高效节能型冷却塔用水动冷却风机 WO2010009629A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810023030.9 2008-07-25
CNA2008100230309A CN101328899A (zh) 2008-07-25 2008-07-25 高效节能型冷却塔用水动冷却风机

Publications (1)

Publication Number Publication Date
WO2010009629A1 true WO2010009629A1 (zh) 2010-01-28

Family

ID=40204863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071254 WO2010009629A1 (zh) 2008-07-25 2009-04-13 高效节能型冷却塔用水动冷却风机

Country Status (2)

Country Link
CN (1) CN101328899A (zh)
WO (1) WO2010009629A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101328899A (zh) * 2008-07-25 2008-12-24 南京星飞冷却设备有限公司 高效节能型冷却塔用水动冷却风机
CN101586573B (zh) * 2009-05-31 2011-06-15 河南新飞纪元科技有限公司 冷却塔风机专用筒形冲动式水力驱动器
CN101865613B (zh) * 2010-06-09 2012-09-26 中国科学院电工研究所 基于动力合成器的冷却塔综合节能系统及其控制方法
CN102840079A (zh) * 2011-06-22 2012-12-26 山东森玛格德节能设备有限公司 水轮机圆柱扩散型尾水装置
CN105736408A (zh) * 2015-11-30 2016-07-06 王庆昌 水驱无电排风机
CN112828167A (zh) * 2021-02-21 2021-05-25 刘朝进 一种基于冲压模具的配套冷却装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH571160A5 (en) * 1973-11-13 1975-12-31 Vevey Atel Const Mec Construction of volume chamber for hydraulic turbine - for large scale power plants embedded in concrete uses circular cross sections
CN1447024A (zh) * 2002-03-27 2003-10-08 张飞狂 冷却塔通用水轮机
CN2874079Y (zh) * 2005-11-01 2007-02-28 西华大学 水能回收装置
CN101074677A (zh) * 2007-06-19 2007-11-21 金先培 冷却塔用水动力风机
CN101328899A (zh) * 2008-07-25 2008-12-24 南京星飞冷却设备有限公司 高效节能型冷却塔用水动冷却风机
CN201228645Y (zh) * 2008-07-25 2009-04-29 南京星飞冷却设备有限公司 高效节能型冷却塔用水动冷却风机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH571160A5 (en) * 1973-11-13 1975-12-31 Vevey Atel Const Mec Construction of volume chamber for hydraulic turbine - for large scale power plants embedded in concrete uses circular cross sections
CN1447024A (zh) * 2002-03-27 2003-10-08 张飞狂 冷却塔通用水轮机
CN2874079Y (zh) * 2005-11-01 2007-02-28 西华大学 水能回收装置
CN101074677A (zh) * 2007-06-19 2007-11-21 金先培 冷却塔用水动力风机
CN101328899A (zh) * 2008-07-25 2008-12-24 南京星飞冷却设备有限公司 高效节能型冷却塔用水动冷却风机
CN201228645Y (zh) * 2008-07-25 2009-04-29 南京星飞冷却设备有限公司 高效节能型冷却塔用水动冷却风机

Also Published As

Publication number Publication date
CN101328899A (zh) 2008-12-24

Similar Documents

Publication Publication Date Title
KR101327341B1 (ko) 수력학적 에너지 절약형 냉각탑의 직결 저속 소형 혼류식 수력 터빈용 회전 휠
CN101560940B (zh) 应用于水动节能冷却塔的直联低速小型混流式水轮机
CN106640491B (zh) 一种高效耐用的冷却塔专用水轮机
WO2010009629A1 (zh) 高效节能型冷却塔用水动冷却风机
CN101915196A (zh) 冷却塔风机驱动用双转轮超低比转速轴流式水轮机
CN102562651A (zh) 一种高效风能离心泵叶轮
CN101560937B (zh) 应用于水动节能冷却塔的直联低速小型混流式水轮机座环
CN201714558U (zh) 一种冷却塔风机驱动用双转轮超低比转速轴流式水轮机
CN201027656Y (zh) 节能型液力耦合器调速主给水泵
CN101614210A (zh) 螺旋式自控水泵
CN201228645Y (zh) 高效节能型冷却塔用水动冷却风机
WO2010036678A8 (en) Turbine with mixers and ejectors
CN201554592U (zh) 工业冷却塔混流式双蜗壳高效水轮机
CN212803449U (zh) 一种混流式与轴流式转轮组合的两级水轮机
CN213088269U (zh) 一种直向流道的湿定子潜水全贯流泵
CN211971922U (zh) 高效节能曝气机
CN110242476B (zh) 超低比转速斜流式水轮机转轮
CN103244440B (zh) 水动风力推进器及冷却塔风力系统
CN201401272Y (zh) 冷却塔用水动力机
CN201258859Y (zh) 水轮机水泵
CN201191161Y (zh) 冷却塔用节能水冷轮推动机
CN211058941U (zh) 一种水动力电辅助节能水轮机
CN203770013U (zh) 一种水动冷却塔直驱径流式水轮机
CN203214443U (zh) 换热式水轮机
CN103982362A (zh) 一种水动冷却塔直驱径流式水轮机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09799945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09799945

Country of ref document: EP

Kind code of ref document: A1