WO2016131322A1 - 一种导航方法、装置及设备 - Google Patents

一种导航方法、装置及设备 Download PDF

Info

Publication number
WO2016131322A1
WO2016131322A1 PCT/CN2015/095444 CN2015095444W WO2016131322A1 WO 2016131322 A1 WO2016131322 A1 WO 2016131322A1 CN 2015095444 W CN2015095444 W CN 2015095444W WO 2016131322 A1 WO2016131322 A1 WO 2016131322A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
ground
walking
determining
module
Prior art date
Application number
PCT/CN2015/095444
Other languages
English (en)
French (fr)
Inventor
沈少武
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016131322A1 publication Critical patent/WO2016131322A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C22/00Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers
    • G01C22/006Pedometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/725Cordless telephones

Definitions

  • the present invention relates to the field of communications, and in particular, to a navigation method, apparatus, and device.
  • GPS Global Positioning System
  • GPS signal navigation also depends on accurate geographic location and building signals. If the update is not timely or the map is incomplete, accurate positioning may not be possible.
  • the navigation of GPS signals also depends on the auxiliary information of the base station network. In the absence of wireless cellular network assisted positioning, the positioning time and accuracy will be greatly affected.
  • the embodiment of the invention provides a navigation method, device and device to solve at least the problem that the related art cannot navigate under the condition that the GPS signal is poor.
  • a navigation method includes: determining a contact state between a user's feet and the ground; determining a number of steps of the user to walk according to a contact state of the user's feet with the ground; The number of steps and the step size of the user determine the distance the user walks; obtain the direction in which the user is currently walking; determine whether the user deviates from the target location according to the distance traveled by the user and the direction of travel; and prompt the user when determining that the user deviates from the target location.
  • the determining the contact state between the user's feet and the ground includes: calculating a grounding resistance value of the user; determining a contact state between the user's feet and the ground according to the grounding resistance value of the user, and the contact state includes: contacting the feet with the ground One foot is in contact with the ground.
  • the method further includes: receiving the personal wear parameter set by the user and the ground road parameter before determining the contact state between the user's feet and the ground; calculating the ground resistance value of the user, including: the user and the ground according to the detection The user's ground resistance value is calculated by changing the current value in the loop, personal wear parameters, and ground road parameters.
  • the obtaining the direction in which the user is currently walking includes: determining the direction in which the user is currently walking by collecting the orientation information of the compass on the wearable device carried by the user, or collecting the phase information of the signal sent by the target terminal; determining the current walking direction of the user according to the phase information. The angle of deviation from the direction between the starting point and the target location.
  • determining whether the user deviates from the target location according to the number of walking steps of the user and the walking direction comprises: determining a walking distance of the user according to the walking step of the user and the stride of the user; and drawing an actual walking path of the user according to the walking direction of the user and the walking distance of the user; The actual walking path map of the user is compared with the road map of the pre-line planning to determine whether the user deviates from the target location.
  • the prompting to the user when determining that the user deviates from the preset path includes: a vibration signal sent by the multi-directional vibration motor disposed on the wearable device carried by the user, a temperature signal of the thermal sensing module, or a color indicating module
  • the color change signal informs the user that the current direction of travel is off the target location and/or indicates the correct direction of travel to the user.
  • the method further includes: establishing a connection with the target terminal before determining the contact state between the user's feet and the ground; determining whether the current walking direction of the user deviates from the target terminal according to the signal strength of the target terminal during the user walking process; Location; in the case of judging that the user's current walking direction deviates from the target location, the user is prompted to the current walking direction is wrong.
  • the method further includes: calculating a system impedance between the user's body, the wearable device carried by the user, and the ground before determining the distance traveled by the user according to the number of steps taken by the user and the step size of the user; according to the system impedance and the user
  • the ground resistance value calculates the overall impedance of the ground; the user's step size is calculated based on the overall ground impedance and the equivalent impedance of the ground per unit length.
  • a navigation apparatus includes: a first determining module configured to determine a contact state between a user's feet and the ground; and a second determining module configured to be based on the user's feet
  • the contact state of the ground determines the number of walking steps of the user
  • the third determining module is configured to determine the distance the user walks according to the number of steps the user walks and the step size of the user
  • the acquiring module is configured to obtain the current walking direction of the user
  • the module is configured to determine whether the user deviates from the target location according to the distance traveled by the user and the walking direction
  • the prompting module is configured to prompt the user when determining that the user deviates from the target location.
  • a navigation apparatus includes: an impedance detecting circuit configured to detect a system impedance value between a user, a navigation device, and a ground; and a microprocessor configured to be based on a user's ground resistance The value determines the contact state between the user's feet and the ground; determines the number of steps the user walks according to the contact state of the user's feet with the ground; determines the distance the user walks according to the number of steps the user walks and the step size of the user; The direction of the user determines whether the user deviates from the target location according to the distance traveled by the user and the direction of travel; the control prompt module issues a prompt to the user when determining that the user deviates from the target location; the information prompting module is set to pass the vibration signal according to the control of the microprocessor A thermal signal or a color signal prompts the user.
  • the information prompting module includes: a multi-directional vibration motor configured to prompt the user with direction information by a vibration signal sent by a motor in a specified direction; and the thermal sensing module is configured to prompt the user that the current walking direction deviates from the target location by the thermal sensing signal.
  • the embodiment of the present invention determines the number of walking steps of the user by the contact state between the user's feet and the ground; and determines whether the user deviates from the target location according to the walking distance and the walking direction of the user, and prompts the user when determining that the user deviates from the target location.
  • the solution does not need to rely on the existing GPS positioning technology to realize navigation, and only needs to provide navigation instructions according to the number of walking steps and the walking direction of the user, so that the user can navigate in various scenarios and improve the user experience.
  • FIG. 1 is a flowchart of a navigation method according to Embodiment 1 of the present invention.
  • Figure 2 is a system configuration diagram of the navigation device in the second embodiment
  • Embodiment 3 is a flowchart of a navigation method in Embodiment 2 of the present invention.
  • FIG. 4 is a block diagram showing the structure of a navigation device according to Embodiment 3 of the present invention.
  • the present invention provides a navigation method, device and device.
  • the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • FIG. 1 is a flowchart of a navigation method according to Embodiment 1 of the present invention. As shown in 1, the method includes the following steps:
  • Step 101 Determine a contact state between a user's feet and the ground
  • obtaining the contact state between the user's feet and the ground may include: calculating a user ground resistance value or a capacitance value; determining a contact state between the user's feet and the ground according to the user ground resistance value or the capacitance value, wherein the user double
  • the contact state of the foot with the ground may specifically include: the feet are in contact with the ground, the left foot, and the one foot are in contact with the ground.
  • the user's resistance to ground is related to factors such as the user's own wear of footwear and road weather.
  • the user before acquiring the contact state between the user's feet and the ground, the user also includes receiving the personal wear parameters of the user and the ground road parameters; Calculating the resistance or capacitance value between the user's feet and the ground may specifically include: calculating a change between a current value in a circuit formed by the user and the ground, a personal wear parameter, and a ground road parameter to calculate a relationship between the user's feet and the ground. Resistance or capacitance value.
  • Step 102 Determine the number of walking steps of the user according to the contact state of the user's feet with the ground; specifically, determine the number of walking steps of the user according to the number of times the user changes the resistance of the ground resistance, and whenever the measured resistance value is switched once, Indicates that the user is walking one step.
  • Step 103 Determine a walking distance of the user according to the number of walking steps of the user and the step size;
  • Step 104 Obtain a direction in which the user is currently walking
  • the operations for obtaining the direction in which the user is currently walking may include:
  • Step 105 Determine whether the user deviates from the target location according to the user walking distance and the walking direction;
  • the actual walking path map of the user is drawn according to the walking direction of the user and the walking distance of the user;
  • the actual walking path map of the user is compared with the road map of the pre-line planning to determine whether the user deviates from the target location.
  • Step 106 In the case of determining that the user deviates from the target location, prompting the user.
  • Sending a prompt to the user in the case of determining that the user deviates from the preset path may specifically include:
  • the user is informed of the current direction of travel from the target location and/or indicates the correct direction of travel by the multi-directional vibration motor, thermal module, or color change provided on the wearable device carried by the user.
  • the user may establish a connection with the target terminal at the target location, and determine whether the user's walking direction is correct according to the strength of the communication signals.
  • the method further includes: determining the user. Before the contact state between the feet and the ground, establish a connection with the target terminal; during the user's walking, determine whether the current walking direction of the user deviates from the target terminal location according to the signal strength of the target terminal; and determine that the current walking direction of the user deviates from the target location In the case of the user, the user is currently in the wrong direction.
  • the step size of the user may be set by the user, or may be measured and calculated by the portable device, specifically: before determining the distance the user walks according to the number of steps taken by the user and the step size of the user.
  • the communication device includes: User interaction module, (the user interaction module includes a wireless interconnection module and a human body to ground parameter acquisition module (not shown)), a step and step test module, a navigation lateral module, a position calculation module, and adaptive navigation
  • the user interaction module is configured to set the current configuration personal wear parameter and the ground road parameter, and send the parameter setting to the self-navigation control module to implement corresponding navigation control.
  • the UI User Interface user interface
  • the UI User Interface user interface
  • the UI User Interface user interface
  • the user sets the configuration of the navigation parameters of the current UI interface, for example, his height and weight.
  • the user can also configure the current air humidity situation, such as dry autumn and rainy summer season, the specific air humidity difference is large, so it is also necessary to collect the corresponding air humidity parameters, used to calculate the above-mentioned human body to the ground system
  • the humidity of the air can be collected by the built-in humidity sensor of the wearable device, or the real-time air humidity parameter in the database can be directly loaded.
  • the wireless interconnection module is configured to establish a connection with the corresponding target through the wireless transmitting module, and lock each other, and detect signal state and intensity change at all times.
  • the corresponding wireless interconnection mode is selected.
  • the corresponding method can be automatically detected and detected.
  • the Bluetooth wireless module interconnection can be called when the distance is relatively close, and the distance can be slightly exceeded by WIFI wireless.
  • Module interconnection distance can be interconnected by 2.4G radio frequency identification wireless module. If it is ultra long distance, you can choose to directly download GPS latitude and longitude information for fixed target point identification and interconnection.
  • the human body-to-ground parameter acquisition module is set to the human body during walking, during exercise, and to ground parameters. collection. Since the human body is an electrostatic conductor, it can be equivalent to an RC (Resistance Capacitance) model. For example, the equivalent of a 5000 ohm, 400 PF capacitor is connected in series, so there will be an equivalent resistance, because people have high and thin weight. Points, so the shape of this conductor is not regular, so you need to do differential acquisition before testing the body resistance.
  • RC Resistance Capacitance
  • the body resistance will also be affected by the footwear, the human body and the earth are not in direct contact, so different footwear materials will cause different body resistance. Therefore, before the collection test, the user's footwear material needs to be selected and configured.
  • the user can select the corresponding footwear type and footwear material to select and configure.
  • the choice is no stockings, stockings, cotton socks, etc.
  • the choice is cloth shoes, Leather shoes, sneakers, rubber shoes, etc.
  • when calculating the user's resistance to ground can call the corresponding accurate conductivity and dielectric constant.
  • the dielectric constant of the sole is 3, the dielectric constant of the sole is 4, and the dielectric constant of the sports shoe is 5. If accurate calculation is required, the user's shoe size and sole thickness parameters need to be considered, and the corresponding mathematical model is adopted. Calculate, you can get the system resistance or system capacitance value of the human body to the ground.
  • the system resistance between the human body and the ground will be affected by the ground material of the human body walking road. Users can also configure different ground materials for human walking roads, such as cement, asphalt, flooring, ceramic tiles, carpets, etc.
  • the equivalent resistance and leakage resistance are different, so the system parameters in the equivalent circuit model will be different.
  • the equivalent resistance or capacitance of the human body is also affected by the humidity of the air. For example, in the dry autumn and the rainy season, the specific air humidity is different. Therefore, it is necessary to collect the corresponding air humidity parameters to calculate the above human body.
  • the resistance or capacitance of the ground system can be accurate. It can be realized by the built-in humidity sensor of the wearable device, or it can directly load the real-time air humidity parameter in the database.
  • the step counting and step measuring module is further divided into two parts: a step test module and a step test module.
  • the step test module is set to test the grounding parameter test of the walking state of the human body, and determine the corresponding The number of steps.
  • the detection circuit can be realized by a wearable device carried by the user, for example, a hardware detecting circuit in a smart watch worn on the wrist of the user, and a soft conductive strap in contact with the skin, thereby achieving direct contact with human skin.
  • the detection circuit there is a variable resistor array as a reference resistor, and also a variable capacitor array as a reference capacitor.
  • the detection circuit performs automatic calibration and detection. After the calibration is successful, it can be formally collected and tested.
  • the system resistance value is calculated by the current change value in the circuit system loop, thereby determining the contact state between the human body and the ground, and then performing the step counting by the contact state.
  • the human body may have three states of contact with the ground, the left foot is raised, and the right foot is raised.
  • the ground resistance of the human body in the three states can be determined by collecting and measuring the ground resistance of the human body in the three states.
  • the current walking state of the human body At the same time, when the calculated resistance value is switched between the three values, it can be counted once, and it is determined that the user walks one step. If the step length of the user walking is known, the step size is multiplied by the total in a certain straight line range. By counting the number of steps, the total walking distance of the human body in this line can be obtained.
  • the step size measurement module is set to measure the specific step value during walking of the human body.
  • the closed-loop circuit is formed between the portable wearable device, the human body, the feet and the walking ground. Since the length across the ground is proportional to the equivalent resistance of the walking ground, if the equivalent impedance of the ground walking within the unit length It is known that when the overall equivalent impedance of the system is tested, the impedance of the human body is subtracted, and the impedance of the circuit is subtracted. The overall impedance of the ground is obtained. By dividing the total impedance of the ground by the equivalent impedance of the ground per unit length, the human body can be calculated. The length of the ground that spans, that is, the step size of each step during human walking.
  • the navigation direction finding module is configured to detect direction information of the user's walking direction, that is, the target orientation Real-time testing and acquisition.
  • the target walking direction can be established by collecting the reference orientation information of the compass on the portable device or the angle relationship between the smart watch or the mobile phone antenna.
  • the angle information of each straight route can be obtained by collecting the orientation information of the southeast northwest and the off-angle of the wearing device compass. If the portable device does not have a compass module, after the navigation user and the target device establish contact and lock through the wireless transmitting module and the corresponding target, it is assumed that A is the location of the navigation user, and B is the location of the target device, and the navigation user passes through during the walking process.
  • A1, A2, A3, etc. can be called Ax. If these points are not within the straight line of the AB path, then an angle will be formed between Ax and the starting point A and the ending point B, assuming AB is the reference line, AxB and The angle between the reference lines AB is a, and the phase value information of the navigation user equipment antenna signal is sent by the acquisition target device, and converted into a corresponding angle, so that the angle between the current walking direction and the correct route direction can be obtained, that is, a, when the angle is larger, indicating that the deviation from the target orientation, the smaller the angle, the closer to the target orientation.
  • the position calculation module is configured to draw the above test value into a curved path map and compare it with a predetermined path plan to make a real-time navigation guide.
  • the adaptive navigation control module is set to coordinate control of each module of the self-navigation.
  • Positioning auxiliary module set to download the target map, direction assisted test.
  • the mobile device FLASH module is set to store and store the grounding parameters of the human body, store the data of each grounding model, and store the ground equivalent resistance parameters per unit length.
  • the navigation indicating module is configured to guide the user to the direction or the wrong direction by the navigation guide information by the vibration of the multi-directional vibration motor, the temperature change of the thermal module or the color change.
  • a plurality of micro vibration motors or heat generating devices or color indicating modules may be built in a wearable device, such as a wristband or a terminal of a smart watch, to realize a somatosensory or graphic indication of a micro interface or a non-display interface, such as in a wearable device.
  • a single or four sets of vibration motors are built in different positions, and the motor vibration in each direction can indicate a position information, such as southeast and southwest or front and rear, if it is a single group
  • the motor can realize the correct direction or direction path indication reminder by different motor vibration frequency and interval time.
  • the above navigation reminder can also be realized by the heating of the heating module or the color change of the color indicating module.
  • the present embodiment provides a navigation device, which is configured to implement the navigation method provided in Embodiment 1 and Embodiment 2, and the device may include any component of the navigation device described in Embodiment 2, and FIG. 4 is A block diagram of a navigation device according to Embodiment 3 of the present invention is shown in FIG. 3, and the device 40 has the following components:
  • the first determining module 41 is configured to determine a contact state between the user's feet and the ground;
  • the second determining module 42 is configured to determine the number of walking steps of the user according to the contact state of the user's feet with the ground;
  • the third determining module 43 is configured to determine the distance the user walks according to the number of steps the user walks and the step size of the user;
  • the obtaining module 44 is configured to obtain a direction in which the user is currently walking;
  • the third determining module 45 is configured to determine whether the user deviates from the target location according to the user walking distance and the walking direction;
  • the first prompting module 46 is configured to issue a prompt to the user if it is determined that the user is off target location.
  • the first determining module 41 includes: a calculating unit configured to calculate a user grounding resistance value; and a first determining unit configured to determine a contact state between the user's feet and the ground according to the user grounding resistance value, where the contact state includes: The foot is in contact with the ground and the one foot is in contact with the ground.
  • the device 40 may further include: a receiving module, configured to receive a personal wear parameter of the user and a ground road parameter before acquiring a contact state between the user's feet and the ground; and the calculating unit is configured to: the user according to the detection Current value in the loop formed with the ground The change, personal wear parameters, and ground road parameters calculate the resistance between the user's feet and the ground.
  • a receiving module configured to receive a personal wear parameter of the user and a ground road parameter before acquiring a contact state between the user's feet and the ground
  • the calculating unit is configured to: the user according to the detection Current value in the loop formed with the ground
  • the change, personal wear parameters, and ground road parameters calculate the resistance between the user's feet and the ground.
  • the obtaining module 44 is configured to: determine the direction in which the user is currently walking by collecting the orientation information of the compass on the wearable device carried by the user, or collect the phase information of the signal sent by the target terminal; determine the current walking direction of the user according to the phase information. The angle of deviation of the direction between the starting point and the target location.
  • the third determining module 45 includes: a second determining unit, configured to determine a walking distance of the user according to the walking step of the user and the stride of the user; and the drawing unit is configured to draw the actual walking of the user according to the walking direction of the user and the walking distance of the user. a path map; the third determining unit is configured to compare the actual walking path map of the user with the path map of the pre-line planning to determine whether the user deviates from the target location.
  • the prompting module is configured to notify the user that the current walking direction deviates from the target location by using a vibration signal sent by the multi-directional vibration motor disposed on the wearable device carried by the user, a temperature signal of the thermal sensing module, or a color change signal of the color indicating module. And/or indicate to the user the correct direction of travel.
  • the device 40 may further include:
  • connection module configured to establish a connection with the target terminal before determining a contact state between the user's feet and the ground
  • the walking direction determining module is configured to determine, according to the signal strength of the target terminal, whether the current walking direction of the user deviates from the target terminal location during the user walking process;
  • the second prompting module is configured to prompt the user that the current walking direction is wrong when determining that the current walking direction of the user deviates from the target location.
  • the device 40 further includes:
  • the first calculation module is set to be determined according to the number of steps the user walks and the step size of the user Before the distance traveled by the user, calculate the system impedance between the user's body, the wearable device carried by the user, and the ground; the second calculation module is configured to calculate the overall impedance of the ground according to the system impedance and the ground resistance of the user; the third calculation module , set to calculate the user's step size based on the overall impedance of the ground and the equivalent impedance of the ground per unit length.
  • the embodiment further provides a navigation device, which may be a wearable device with a navigation function, such as a smart watch, a smart bracelet, etc., and the navigation device may further include the following description in the third embodiment.
  • a navigation device which may be a wearable device with a navigation function, such as a smart watch, a smart bracelet, etc.
  • the navigation device may further include the following description in the third embodiment. Navigation device.
  • the navigation device includes: an impedance detecting circuit configured to detect a system impedance value between the user, the navigation device, and the ground; and a microprocessor configured to determine a contact state between the user's feet and the ground according to the ground resistance value of the user; The contact state of the user's feet with the ground determines the number of steps the user walks; determines the distance the user walks according to the number of steps taken by the user and the step size of the user; obtains the direction in which the user is currently walking; determines whether the user is based on the distance traveled by the user and the direction of travel Deviating from the target location; controlling the prompting module to issue a prompt to the user in the case of determining that the user deviates from the target location; and the information prompting module is configured to issue a prompt to the user by a vibration signal, a thermal sensation signal or a color signal according to the control of the microprocessor.
  • the information prompting module may further include: a multi-directional vibration motor configured to prompt the user with the vibration signal sent by the motor in the specified direction; the thermal sensor module is configured to prompt the user that the current walking direction deviates from the target location by the thermal sensing signal. .
  • the number of walking steps of the user is determined by the contact state between the user's feet and the ground; the number of walking steps of the user is determined according to the number of times the user changes the resistance of the ground resistance, and whether the user is determined according to the number of walking steps and the walking direction of the user Deviation from the target location, in the case of determining that the user deviates from the target location, prompting the user, the scheme does not need to rely on the existing GPS positioning technology to achieve navigation, and only needs to provide navigation instructions according to the number of walking steps and the walking direction of the user. Allow users to work in a variety of scenarios Navigation improves the user experience.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the navigation method, apparatus, and device provided by the embodiments of the present invention have the following beneficial effects: no need to rely on the existing GPS positioning technology to implement navigation, and only need to provide navigation according to the number of walking steps and the walking direction of the user. Indications allow users to navigate in a variety of scenarios, improving the user experience.

Abstract

本发明提供一种导航方法、装置及设备,用以解决目前无法在GPS信号较差的情况下进行导航的问题,导航方法包括:确定用户双脚与地面之间的接触状态;根据用户双脚与地面的接触状态确定用户行走步数;根据用户的行走步数以及步长确定用户行走距离;获取用户当前行走的方向;根据用户行走距离以及行走方向确定用户是否偏离目标地点;在确定用户偏离目标地点的情况下,向用户发出提示,该方案无需依靠现有GPS导航技术,即使在GPS信号较差的情况下,也可以为用户提供导航功能,提高了用户体验。

Description

一种导航方法、装置及设备 技术领域
本发明涉及通讯领域,特别是涉及一种导航方法、装置及设备。
背景技术
随着移动终端及智能穿戴设备的普及,人们对导航设备的要求越来越高,现如今主要的导航设备依靠GPS(Global Positioning System,全球定位系统)信号实现定位功能,而在复杂的环境下,并非任何地方都存在良好的GPS信号,比如在城市密集建筑区、室内以及地下车库环境内,可能没有GPS信号或者GPS信号极其微弱。
同时,GPS信号的导航还依赖于准确的地理位置及建筑物信号,如果更新不及时或者地图库不完整,可能无法进行准确定位。GPS信号的导航还依赖于基站网络辅助信息,在没有无线蜂窝网络辅助定位的情况下,定位时间及精度都会受到很大的影响。
其次,由于智能手表、手环等穿戴设备正向着小型化方向发展,存在屏幕界面太小或无界面的情况,给用户的操作带来极大的不便,再次,人在行走或跑步运动中,如果在没有信号或者流量不足的情况下,将无法进行导航和路径规划,可见,如何通过用户自身的终端或穿戴设备来实现定位导航,路径记录及规划的问题亟待解决。
发明内容
本发明实施例提供了一种导航方法、装置及设备,以至少解决相关技术中无法在GPS信号较差的情况下进行导航的问题。
根据本发明实施例的第一个方面,提供了一种导航方法包括:确定用户双脚与地面之间的接触状态;根据用户双脚与地面的接触状态确定用户行走的步数;根据用户行走的步数以及用户的步长确定用户行走的距离;获取用户当前行走的方向;根据用户行走的距离以及行走方向确定用户是否偏离目标地点;在确定用户偏离目标地点的情况下向用户发出提示。
其中,上述确定用户双脚与地面之间的接触状态包括:计算用户的接地电阻值;根据用户的接地电阻值确定用户双脚与地面之间的接触状态,接触状态包括:双脚与地面接触、单脚与地面接触。
进一步的,上述方法还包括:在确定用户双脚与地面之间的接触状态之前,接收用户设置的个人穿戴参数以及地面道路参数;计算用户的接地电阻值,包括:根据检测得到的用户与地面构成的回路中电流值的变化、个人穿戴参数以及地面道路参数计算用户的接地电阻值。
其中,获取用户当前行走的方向包括:通过采集用户携带的穿戴设备上的指南针的方位信息确定用户当前行走的方向,或,采集目标终端发送的信号的相位信息;根据相位信息确定用户当前行走方向与起点和目标地点之间的方向的偏差角度。
其中,根据用户行走步数以及行走方向确定用户是否偏离目标地点包括:根据用户行走步数以及用户的步幅确定用户行走距离;根据用户的行走方向以及用户行走距离绘制用户实际行走路径图;将用户实际行走路径图与预线规划的路径图进行比较,确定用户是否偏离目标地点。
其中,在确定用户偏离预设路径的情况下向用户发出提示,包括:通过设置于用户携带的穿戴设备上的多向震动马达发出的振动信号、热感模块的温度信号或通过颜色指示模块的颜色变化信号告知用户当前行走方向偏离目标地点和/或向用户指示正确行走方向。
进一步的,上述方法还包括:在确定用户双脚与地面之间的接触状态之前,与目标终端建立连接;在用户行走过程中,根据与目标终端的信号强度判断用户当前行走方向是否偏离目标终端所在地;在判断用户当前行走方向偏离目标所在地的情况下,提示用户当前行走方向错误。
进一步的,上述方法还包括:在根据用户行走的步数以及用户的步长确定用户行走的距离之前,计算用户的身体、用户携带的穿戴设备以及地面之间的系统阻抗;根据系统阻抗以及用户的接地电阻值计算地面的总体阻抗;根据地面总体阻抗以及单位长度地面的等效阻抗计算用户的步长。
根据本发明实施例的第二个方面,提供了一种导航装置包括:第一确定模块,设置为确定用户双脚与地面之间的接触状态;第二确定模块,设置为根据用户双脚与地面的接触状态确定用户的行走步数;第三确定模块,设置为根据用户行走的步数以及用户的步长确定用户行走的距离;获取模块,设置为获取用户当前行走的方向;第四确定模块,设置为据用户行走的距离以及行走方向确定用户是否偏离目标地点;提示模块,设置为在确定用户偏离目标地点的情况下,向用户发出提示。
根据本发明实施例的第三个方面,提供了一种导航设备包括:阻抗检测电路,设置为检测用户、导航设备以及地面之间的系统阻抗值;微处理器,设置为根据用户的接地电阻值确定用户双脚与地面之间的接触状态;根据用户双脚与地面的接触状态确定用户行走的步数;根据用户行走的步数以及用户的步长确定用户行走的距离;获取用户当前行走的方向;根据用户行走的距离以及行走方向确定用户是否偏离目标地点;在确定用户偏离目标地点的情况下控制提示模块向用户发出提示;信息提示模块,设置为根据微处理器的控制通过振动信号、热感信号或颜色信号向用户发出提示。
其中,上述信息提示模块包括:多向振动马达,设置为通过指定方向的马达发出的振动信号向用户提示方向信息;热感模块,设置为通过热感信号提示用户当前行走方向偏离目标地点。
本发明实施例的有益效果如下:
本发明实施例通过用户双脚与地面之间的接触状态确定用户行走步数;根据根据用户行走距离以及行走方向确定用户是否偏离目标地点,在确定用户偏离目标地点的情况下,向用户发出提示,该方案无需依赖现有GPS定位技术来实现导航,仅需根据用户行走步数以及行走方向即可为其提供导航指示,使得用户可以在各种场景下进行导航,提高了用户体验。
附图说明
图1是本发明实施例1的导航方法的流程图;
图2是本实施例2中导航装置的系统结构图;
图3是本发明实施例2中的导航方法的流程图;
图4是本发明实施例3提供的导航装置的结构框图。
具体实施方式
为了解决现有技术目前无法在GPS信号较差的情况下进行导航的问题,本发明提供了一种导航方法、装置及设备,以下结合附图以及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不限定本发明。
实施例1
本实施例提供了一种导航方法,该方法通过用户携带的穿戴设备或终端来为用户实现导航,图1是本发明实施例1的导航方法的流程图,如图 1所示,该方法包括如下步骤:
步骤101:确定用户双脚与地面之间的接触状态;
具体的,获取用户双脚与地面之间的接触状态可以包括:计算用户接地电阻值或电容值;根据用户接地电阻值或电容值确定用户双脚与地面之间的接触状态,其中,用户双脚与地面的接触状态具体可以包括:双脚与地面接触、左脚以及单脚与地面接触。用户的对地电阻与用户自身穿戴鞋袜以及道路天气等因素有关系,因此,在获取用户双脚与地面之间的接触状态之前,还包括接收用户的个人穿戴参数以及地面道路参数;基于此,计算用户双脚与地面之间的电阻或电容值具体可以包括:根据检测得到的用户与地面构成的回路中电流值的变化、个人穿戴参数以及地面道路参数计算用户双脚与地面之间的电阻或电容值。
步骤102:根据用户双脚与地面的接触状态,确定用户行走步数;具体地,根据用户的对地电阻阻值的变化次数确定用户行走步数,每当测出的电阻数值切换一次,即表明用户行走一步。
步骤103:根据用户行走步数以及步长确定用户行走距离;
步骤104:获取用户当前行走的方向;
获取用户当前行走的方向的操作具体可以包括:
通过采集用户携带的穿戴设备上的指南针的方位信息确定用户当前行走的方向,或,在穿戴设备上不具备指南针的情况下,采集目标终端发送的信号的相位信息;根据相位信息确定用户当前行走方向与起点和目标地点之间的方向的偏差角度。
步骤105:根据用户行走距离以及行走方向确定用户是否偏离目标地点;
根据用户行走步数以及用户的步幅确定用户行走距离;
根据用户的行走方向以及用户行走距离绘制用户实际行走路径图;
将用户实际行走路径图与预线规划的路径图进行比较,确定用户是否偏离目标地点。
步骤106:在确定用户偏离目标地点的情况下,向用户发出提示。
在确定用户偏离预设路径的情况下向用户发出提示具体可以包括:
通过设置于用户携带的穿戴设备上的多向震动马达、热感模块或通过颜色变化告知用户当前行走方向偏离目标地点和/或向用户指示正确行走方向。
优选的,在用户与目标地点较近时,还可以与处于目标地点的目标终端建立连接,根据二者通信信号的强度来判断用户行走方向是否正确,基于此,上述方法还包括:在确定用户双脚与地面之间的接触状态之前,与目标终端建立连接;在用户行走过程中,根据与目标终端的信号强度判断用户当前行走方向是否偏离目标终端所在地;在判断用户当前行走方向偏离目标所在地的情况下,提示用户当前行走方向错误。
在本实施例中,用户的步长可以通过用户自行设定,也可以由便携设备来进行测量并计算,具体地:在根据用户行走的步数以及用户的步长确定用户行走的距离之前,计算用户的身体、用户携带的穿戴设备以及地面之间的系统阻抗;根据系统阻抗以及用户的接地电阻值计算地面的总体阻抗;根据地面总体阻抗以及单位长度地面的等效阻抗计算用户的步长。
实施例2
本实施例通过公开更多的技术细节,来对本发明提供的导航方法进行进一步解释说明:
图2是本实施例2中导航装置的系统结构图,上述实施例1中提供的导航方法既可以通过该导航装置实现,如图2所示,该通讯装置包括:用 户交互模块,(该用户交互模块包括无线互连模块以及人体对地参数采集模块(图中未示出))、计步及步长测试模块、导航侧向模块、位置计算模块、自适应导航控制模块、定位辅助模块、移动设备FLASH模块(图中未示出)、导航指示模块,其中导航指示模块具体可以包括:路径规划模块、方向指示震动模块以及错向颜色指示模块。
下面将结合图3对上述装置的各组成部分的功能以及使用该导航装置进行导航的过程做具体阐述。
其中,用户交互模块设置为设置当前配置个人穿戴参数及地面道路参数,并将参数设置下发给自导航控制模块,实现对应的导航控制。通过手机新增UI(User Interface用户界面)显示,用户设置当前UI界面的导航参数的配置,例如,自身的身高,体重。
同时,用户还可以配置当前空气湿度情况,比如干燥的秋天和雨水季节较多的夏天,具体的空气湿度相差较大,因此还需要采集对应的空气湿度参数,用来计算上述的人体对地系统电阻或电容,在本实施例中可以通过穿戴设备内置湿度传感器才采集空气湿度,也可以直接加载数据库内的实时空气湿度参数。
无线互连模块,设置为通过无线发射模块和对应目标建立联系,并锁定彼此,时刻检测信号状态及强度变化。在进行导航之初,首先要根据目标对象的距离远近选择对应的无线互联方式,这里也可以自动检测识别出对应的方式,比如距离较近可以调用蓝牙无线模块互联,距离略远可以通过WIFI无线模块互连,距离再远可以通过2.4G射频识别无线模块来互连,如果是超远距离,可以选择直接下载GPS经纬度信息进行固定目标点识别和互连。
人体对地参数采集模块设置为人体在行走,运动过程中,对地参数的 采集。由于人体是一个静电导体,可以等效为一个RC(Resistance Capacitance,电阻电容)模型,例如等效为一个5000欧姆,400PF的电容串联,所以会有一个等效电阻,由于人有高矮胖瘦之分,所以这个导体的形状不是规则的,因此再测试人体电阻前先需要做差异化采集。
同时,人体电阻还会受到鞋袜的影响,人体和大地之间不是直接接触的,因此不同的鞋袜材质会导致人体电阻不同。因此,在采集测试之前需要对用户的鞋袜材质进行选择配置,用户可以选择对应的鞋袜种类、鞋袜材质进行选择配置,如,选择是无丝袜、丝袜、棉袜等,选择是布鞋、皮鞋、球鞋、胶鞋等,在计算用户对地电阻时,才能调用对应的准确的导电率和介电常数。如布鞋底的介电常数为3、皮鞋底的介电常数为4运动鞋的介电常数为5,如果要精确计算,还需要考虑用户的鞋码大小及鞋底厚度参数,通过对应的数学模型计算,可以得到人体对地的系统电阻或系统电容值。
其次,人体和地面之间的系统电阻,会受到人体行走路面的地面材质影响,用户还可以配置人体行走路面的不同地面材质,如水泥、沥青、地板、瓷砖、地毯等,不同的地面材质对应的等效电阻及泄露电阻不同,这样在等效电路模型中的系统参数也会不一样。
人体等效电阻或电容还会受到空气湿度的影响,比如干燥的秋天和雨水季节较多的夏天,具体的空气湿度就不一样,因此还需要采集对应的空气湿度参数,用来计算上述的人体对地系统电阻或电容才能准确,这里可以通过穿戴设备内置湿度传感器实现,也可以直接加载数据库内的实时空气湿度参数。
计步及步长测量模块,又分为计步测试模块和步长测试模块两部分。
计步测试模块,设置为测试人体行走状态的接地参数测试,确定对应 的计步数。通过用户携带的穿戴设备,例如,佩戴在用户手腕上的智能手表内的硬件检测电路,以及皮肤接触的软性导电表带,即可实现和人体皮肤的直接接触,从而构成检测回路。在检测电路中有一个可变电阻阵列作为参考电阻,同时也可以是可变电容阵列作为参考电容。在正式测试前,检测电路就进行自动的校准和检测,校准成功后即可正式采集和测试。通过电路系统回路中的电流变化值来计算系统电阻值,进而判断人体和地面的接触状态,再通过接触状态来进行计步。
具体地,人体在行走过程中,会存在双脚站立、左脚抬起、右脚抬起三种与地面接触的状态,通过采集测量该三种状态下的人体的对地电阻,即可判断出人体当前的行走状态。同时,在计算出的电阻值在三个值之间切换时,即可计数一次,确定用户行走一步,假设用户行走的步长已知,则在一定的直线范围内,步长乘以总的计步数,即可得出人体在这段线路中总的行走距离。
步长测量模块,设置为人体行走过程中具体步长值的测量。当人体每行走一步过程中,便携穿戴设备、人体、双脚和所步行地面之间构成闭环回路,由于跨越地面长度和步行地面等效电阻成正比,如果单位长度内所步行地面的等效阻抗已知,当系统整体等效阻抗测试出来后,减去人体阻抗,电路损耗阻抗,得到的就是地面总体阻抗,将地面总体阻抗除以单位长度地面的等效阻抗,即可计算出人体每步跨越的地面长度,也即人体行走过程中每步的步长值。此处,需要预先把单位长度的不同地面等效阻抗值存储到穿戴设备的FLASH模型中,在实际测试前对当前地面阻抗参数值进行进一步的校准修正,修正后的结果也即为标准的参考单位长度地面等效电阻值。
导航测向模块,设置为检测用户行走方位的方向信息,即目标方位的 实时测试和采集。可以通过采集便携装置上指南针的基准方位信息或,智能手表或手机天线的夹角关系来确立目标行走方向。当穿戴设备自带指南针模块时,通过采集穿戴设备指南针的东南西北及偏角的方位信息,即可得出每段直行路线的角度信息。如果便携装置无指南针模块,在导航用户和目标设备通过无线发射模块和对应目标建立联系并锁定后,假设A为导航用户所在位置,B为目标设备所在位置,当导航用户行走过程中,会经过A1、A2、A3等点,、可以称之为Ax,如果这些点不在AB路径直线范围内,则Ax和起始点A、终点B之间会形成一个夹角,假设AB为参考线,AxB和参考线AB之间的夹角为a,通过采集目标设备发送导航用户装置天线信号相位值信息,转换为对应的角度,即可得到当前人体行走的方向与正确路线方向之间的夹角,即a,当该角度越大时,表明越偏离目标方位,当角度越小时,表明越接近目标方位。
位置计算模块,设置为将上述测试值绘制成曲线路径图,并和预定的路径规划图相比较,作出实时导航指引。
自适应导航控制模块,设置为自导航各模块的协调控制。
定位辅助模块,设置为目标地图的下载,方向辅助测试。
移动设备FLASH模块,设置为人体接地参数采集存储,各接地模型数据的储存,单位长度地面等效电阻参数的存储。
导航指示模块,设置为将导航指引信息通过多向震动马达的振动、热感模块的温度变化或颜色变化来指引用户走向或错向提示。具体的,可以在穿戴设备,例如智能手表的表带或终端上内置多组微型震动马达或发热器件或颜色指示模块,即可实现微小界面或无显示界面的体感或图形指示,如在穿戴设备的不同位置内置单组或四组震动马达,每一个方向的马达震动即可指示一个方位信息,如东南西北或前后左右,如果是单组震 动马达,可以通过不同的马达震动频率和间隔时间来实现方向正确或方向路径指示提醒。同时,也可通过发热模块发热或颜色指示模块的颜色变化来实现上述导航提醒。
实施例3
本实施例提供了一种导航装置,该装置设置为实现上述实施例1以及实施例2提供的导航方法,该装置可以包括上述实施例2中所记载的导航装置的任何组成部分,图4是本发明实施例3提供的导航装置的结构框图,如图3所示,该装置40具有如下组成部分:
第一确定模块41,设置为确定用户双脚与地面之间的接触状态;
第二确定模块42,设置为根据用户双脚与地面的接触状态确定用户行走步数;
第三确定模块43,设置为根据用户行走的步数以及用户的步长确定用户行走的距离;
获取模块44,设置为获取用户当前行走的方向;
第三确定模块45,设置为根据用户行走距离以及行走方向确定用户是否偏离目标地点;
第一提示模块46,设置为在确定用户偏离目标地点的情况下,向用户发出提示。
其中,上述第一确定模块41包括:计算单元,设置为计算用户接地电阻值;第一确定单元,设置为根据用户接地电阻值确定用户双脚与地面之间的接触状态,接触状态包括:双脚与地面接触、单脚与地面接触。
进一步的,上述装置40还可以包括:接收模块,设置为在获取用户双脚与地面之间的接触状态之前,接收用户的个人穿戴参数以及地面道路参数;计算单元设置为:根据检测得到的用户与地面构成的回路中电流值 的变化、个人穿戴参数以及地面道路参数计算用户双脚与地面之间的电阻。
其中,上述获取模块44设置为:通过采集用户携带的穿戴设备上的指南针的方位信息确定用户当前行走的方向,或,采集目标终端发送的信号的相位信息;根据相位信息确定用户当前行走方向与起点和目标地点之间的方向的偏差角度。
其中,上述第三确定模块45包括:第二确定单元,设置为根据用户行走步数以及用户的步幅确定用户行走距离;绘制单元,设置为根据用户的行走方向以及用户行走距离绘制用户实际行走路径图;第三确定单元,设置为将用户实际行走路径图与预线规划的路径图进行比较,确定用户是否偏离目标地点。
其中,上述提示模块设置为:通过设置于用户携带的穿戴设备上的多向震动马达发出的振动信号、热感模块的温度信号或通过颜色指示模块的颜色变化信号告知用户当前行走方向偏离目标地点和/或向用户指示正确行走方向。
其中,上述装置40还可以包括:
连接模块,设置为在确定用户双脚与地面之间的接触状态之前,与目标终端建立连接;
行走方向确定模块,设置为在用户行走过程中,根据与目标终端的信号强度判断用户当前行走方向是否偏离目标终端所在地;
第二提示模块,设置为在判断用户当前行走方向偏离目标所在地的情况下,提示用户当前行走方向错误。
进一步的,上述装置40还包括:
第一计算模块,设置为在根据用户行走的步数以及用户的步长确定用 户行走的距离之前,计算用户的身体、用户携带的穿戴设备以及地面之间的系统阻抗;第二计算模块,设置为根据系统阻抗以及用户的接地电阻值计算地面的总体阻抗;第三计算模块,设置为根据地面总体阻抗以及单位长度地面的等效阻抗计算用户的步长。
实施例4
此外,本实施例还提供了一种导航设备,该导航设备具体可以是具有导航功能的可穿戴设备,例如智能手表、智能手环等、该导航设备还可以包括上述实施例3中所记载的导航装置。
该导航设备包括:阻抗检测电路,设置为检测用户、导航设备以及地面之间的系统阻抗值;微处理器,设置为根据用户的接地电阻值确定用户双脚与地面之间的接触状态;根据用户双脚与地面的接触状态确定用户行走的步数;根据用户行走的步数以及用户的步长确定用户行走的距离;获取用户当前行走的方向;根据用户行走的距离以及行走方向确定用户是否偏离目标地点;在确定用户偏离目标地点的情况下控制提示模块向用户发出提示;信息提示模块,设置为根据微处理器的控制通过振动信号、热感信号或颜色信号向用户发出提示。
其中,信息提示模块具体还可以包括:多向振动马达,设置为通过指定方向的马达发出的振动信号向用户提示方向信息;热感模块,设置为通过热感信号提示用户当前行走方向偏离目标地点。本发明实施例通过用户双脚与地面之间的接触状态确定用户行走步数;根据用户的对地电阻阻值的变化次数确定用户行走步数,根据根据用户行走步数以及行走方向确定用户是否偏离目标地点,在确定用户偏离目标地点的情况下,向用户发出提示,该方案无需依赖现有GPS定位技术来实现导航,仅需根据用户行走步数以及行走方向即可为其提供导航指示,使得用户可以在各种场景下 进行导航,提高了用户体验。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种导航方法、装置及设备具有以下有益效果:无需依赖现有GPS定位技术来实现导航,仅需根据用户行走步数以及行走方向即可为其提供导航指示,使得用户可以在各种场景下进行导航,提高了用户体验。

Claims (11)

  1. 一种导航方法,包括:
    确定用户双脚与地面之间的接触状态;
    根据用户双脚与地面的接触状态确定用户行走的步数;
    根据用户行走的步数以及用户的步长确定用户行走的距离;
    获取所述用户当前行走的方向;
    根据所述用户行走的距离以及行走方向确定所述用户是否偏离目标地点;
    在确定所述用户偏离目标地点的情况下向用户发出提示。
  2. 根据权利要求1所述的方法,其中,所述确定用户双脚与地面之间的接触状态,包括:
    计算用户的接地电阻值;
    根据用户的接地电阻值确定用户双脚与地面之间的接触状态,所述接触状态包括:双脚与地面接触、单脚与地面接触。
  3. 根据权利要求2所述的方法,其中,所述方法还包括:
    在确定用户双脚与地面之间的接触状态之前,接收用户设置的个人穿戴参数以及地面道路参数;
    所述计算用户的接地电阻值,包括:
    根据检测得到的所述用户与地面构成的回路中电流值的变化、所述个人穿戴参数以及地面道路参数计算所述用户的接地电阻值。
  4. 根据权利要求1所述的方法,其中,所述获取所述用户当前行走的方向,包括:
    通过采集用户携带的穿戴设备上的指南针的方位信息确定所述用户当前行走的方向,或,
    采集目标终端发送的信号的相位信息;
    根据所述相位信息确定用户当前行走方向与起点和目标地点之间的方向的偏差角度。
  5. 根据权利要求1所述的方法,其中,根据所述用户行走步数以及行走方向确定所述用户是否偏离目标地点,包括:
    根据用户行走步数以及用户的步幅确定用户行走距离;
    根据用户的行走方向以及所述用户行走距离绘制用户实际行走路径图;
    将所述用户实际行走路径图与预线规划的路径图进行比较,确定所述用户是否偏离目标地点。
  6. 根据权利要求1至5任意一项所述的方法,其中,所述在确定所述用户偏离所述预设路径的情况下,向用户发出提示,包括:
    通过设置于用户携带的穿戴设备上的多向震动马达发出的振动信号、热感模块的温度信号或通过颜色指示模块的颜色变化信号告知所述用户当前行走方向偏离目标地点和/或向所述用户指示正确行走方向。
  7. 根据权利要求1所述的方法,其中,所述方法还包括:
    在确定用户双脚与地面之间的接触状态之前,与目标终端建立连接;
    在用户行走过程中,根据与目标终端的信号强度判断用户当前行走方向是否偏离目标终端所在地;
    在判断用户当前行走方向偏离所述目标所在地的情况下,提示用户当前行走方向错误。
  8. 根据权利要求1所述的方法,其中,所述方法还包括:
    在根据用户行走的步数以及用户的步长确定用户行走的距离之前,计算用户的身体、用户携带的穿戴设备以及地面之间的系统阻抗;
    根据所述系统阻抗以及用户的接地电阻值计算地面的总体阻抗;
    根据所述地面总体阻抗以及单位长度地面的等效阻抗计算用户的步长。
  9. 一种导航装置,包括:
    第一确定模块,设置为确定用户双脚与地面之间的接触状态;
    第二确定模块,设置为根据用户双脚与地面的接触状态确定用户的行走步数;
    第三确定模块,设置为根据用户行走的步数以及用户的步长确定用户行走的距离;
    获取模块,设置为获取所述用户当前行走的方向;
    第四确定模块,设置为据用户行走的距离以及行走方向确定用户是否偏离目标地点;
    提示模块,设置为在确定所述用户偏离目标地点的情况下,向用户发出提示。
  10. 一种导航设备,包括:
    阻抗检测电路,设置为检测用户、导航设备以及地面之间的系统阻抗值;
    微处理器,设置为根据用户的接地电阻值确定用户双脚与地面之间的接触状态;根据用户双脚与地面的接触状态确定用户行走的步数;根据用户行走的步数以及用户的步长确定用户行走的距离;获取所述用户当前行走的方向;根据所述用户行走的距离以及行走方向确定所述用户是否偏离目标地点;在确定所述用户偏离目标地点的情况下控制信息提示模块向用户发出提示;
    所述信息提示模块,设置为根据微处理器的控制通过振动信号、热感信号或颜色信号向用户发出提示。
  11. 根据权利要求10所述的导航设备,其中,所述信息提示模块,包括:
    多向振动马达,设置为通过指定方向的马达发出的振动信号向用户提示方向信息;
    热感模块,设置为通过热感信号提示用户当前行走方向偏离目标地点。
PCT/CN2015/095444 2015-09-15 2015-11-24 一种导航方法、装置及设备 WO2016131322A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510586986.XA CN106525022A (zh) 2015-09-15 2015-09-15 一种导航方法、装置及设备
CN201510586986.X 2015-09-15

Publications (1)

Publication Number Publication Date
WO2016131322A1 true WO2016131322A1 (zh) 2016-08-25

Family

ID=56689168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095444 WO2016131322A1 (zh) 2015-09-15 2015-11-24 一种导航方法、装置及设备

Country Status (2)

Country Link
CN (1) CN106525022A (zh)
WO (1) WO2016131322A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113204009A (zh) * 2021-05-12 2021-08-03 深圳康佳电子科技有限公司 跑步步长提醒方法、装置、终端及计算机可读存储介质

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108627165A (zh) * 2017-03-23 2018-10-09 刘海强 实现最优导航的方法
CN107300389A (zh) * 2017-06-28 2017-10-27 珠海市魅族科技有限公司 导航控制方法及装置、导航终端和计算机可读存储介质
CN107504979A (zh) * 2017-07-31 2017-12-22 上海斐讯数据通信技术有限公司 运动距离计算方法及装置及可穿戴设备
CN107770839A (zh) * 2017-08-25 2018-03-06 上海连尚网络科技有限公司 Wi‑Fi网络的扫描方法、装置、设备及计算机可读存储介质
CN108272186A (zh) * 2018-01-25 2018-07-13 芜湖应天光电科技有限责任公司 一种具有导航功能的智能指环及其控制方法
CN108305458A (zh) * 2018-03-10 2018-07-20 张定宇 一种引导盲人路口通行的系统及其装置
CN109445271A (zh) * 2018-12-17 2019-03-08 王振宇 一种智能手表及其提醒方法
CN111425136A (zh) * 2020-05-26 2020-07-17 北京三一智造科技有限公司 行走纠偏方法、装置、旋挖钻机和可读存储介质
CN112135026B (zh) * 2020-09-23 2022-02-25 北京一华明升科技有限公司 基于激光方向传感器和人工智能云台的识路装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564449A (zh) * 2010-11-17 2012-07-11 索尼公司 步行情况检测装置、方法和程序
CN202692998U (zh) * 2012-08-17 2013-01-23 王彦伟 一种发射单元装在鞋垫内的计步器
CN103809174A (zh) * 2014-03-13 2014-05-21 丁一 自动跟随方法
CN104469677A (zh) * 2014-11-21 2015-03-25 上海斐讯数据通信技术有限公司 基于智能终端的移动轨迹记录系统及其方法
KR20150074254A (ko) * 2013-12-23 2015-07-02 순천대학교 산학협력단 운동 모니터링 방법 및 이를 이용한 운동 모니터링 장치
CN104764461A (zh) * 2015-04-22 2015-07-08 广东欧珀移动通信有限公司 一种用于医院门诊的导航方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564449A (zh) * 2010-11-17 2012-07-11 索尼公司 步行情况检测装置、方法和程序
CN202692998U (zh) * 2012-08-17 2013-01-23 王彦伟 一种发射单元装在鞋垫内的计步器
KR20150074254A (ko) * 2013-12-23 2015-07-02 순천대학교 산학협력단 운동 모니터링 방법 및 이를 이용한 운동 모니터링 장치
CN103809174A (zh) * 2014-03-13 2014-05-21 丁一 自动跟随方法
CN104469677A (zh) * 2014-11-21 2015-03-25 上海斐讯数据通信技术有限公司 基于智能终端的移动轨迹记录系统及其方法
CN104764461A (zh) * 2015-04-22 2015-07-08 广东欧珀移动通信有限公司 一种用于医院门诊的导航方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113204009A (zh) * 2021-05-12 2021-08-03 深圳康佳电子科技有限公司 跑步步长提醒方法、装置、终端及计算机可读存储介质
CN113204009B (zh) * 2021-05-12 2023-12-22 深圳康佳电子科技有限公司 跑步步长提醒方法、装置、终端及计算机可读存储介质

Also Published As

Publication number Publication date
CN106525022A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2016131322A1 (zh) 一种导航方法、装置及设备
Kang et al. Improved heading estimation for smartphone-based indoor positioning systems
EP2807876B1 (en) Collecting positioning reference data
CN104535064A (zh) 一种Wi-Fi指纹辅助的室内移动终端惯性导航方法
CN106256395B (zh) 数据解析装置以及数据解析方法
JP6796410B2 (ja) 測位システム
CN107208920A (zh) 终端装置、空调设备以及可穿戴终端
KR20110121179A (ko) 단말기에서 상대적인 위치를 추정하는 장치 및 방법
WO2014113014A1 (en) Method, apparatus and computer program product for orienting a smartphone display and estimating direction of travel of a pedestrian
CN205107688U (zh) 智能鞋
CN105091878A (zh) 一种基于步态的定位方法和装置
JP2009168792A (ja) 歩幅算出装置、歩行距離特定装置、位置特定装置、コンピュータプログラム及び歩幅算出方法
Sharp et al. Sensor-based dead-reckoning for indoor positioning
CN108700428A (zh) 电子地图中道路的绘制方法及装置
CN109314837B (zh) 基于地理位置的锻炼路线的回填
CN106412808A (zh) 一种定位搜索的方法及装置
US11169280B2 (en) Systems and methods for direction estimation in indoor and outdoor locations
Vy et al. A smartphone indoor localization using inertial sensors and single Wi-Fi access point
US11029415B2 (en) Systems and methods for estimating initial heading at start-up of navigation
Basso et al. A smartphone-based indoor localization system for visually impaired people
KR102253298B1 (ko) 골프 퍼팅라인 측정장치
CN112461238B (zh) 一种动态随机布设信标的室内人员定位导航系统及方法
CN107421528A (zh) 一种区域专用实体导航指向装置及其使用方法
CN103592623A (zh) 一种基于信号强度地图的室内定位方法和装置
EP3246723A1 (en) Method for setting up a positioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882461

Country of ref document: EP

Kind code of ref document: A1