WO2016129694A1 - 化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、及び電子機器 - Google Patents

化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、及び電子機器 Download PDF

Info

Publication number
WO2016129694A1
WO2016129694A1 PCT/JP2016/054193 JP2016054193W WO2016129694A1 WO 2016129694 A1 WO2016129694 A1 WO 2016129694A1 JP 2016054193 W JP2016054193 W JP 2016054193W WO 2016129694 A1 WO2016129694 A1 WO 2016129694A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
formula
atom
represented
Prior art date
Application number
PCT/JP2016/054193
Other languages
English (en)
French (fr)
Inventor
池田 潔
宏典 川上
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US15/550,678 priority Critical patent/US20180026203A1/en
Priority to JP2016574873A priority patent/JPWO2016129694A1/ja
Publication of WO2016129694A1 publication Critical patent/WO2016129694A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • the present invention relates to a compound, a material for an organic electroluminescence element, an ink composition, an organic electroluminescence element, and an electronic apparatus.
  • An organic electroluminescence device that has an organic thin film layer including a light emitting layer between an anode and a cathode and that emits light from exciton energy generated by recombination of holes and electrons injected into the light emitting layer is known. ing.
  • Organic electroluminescent elements are expected as light-emitting elements that take advantage of self-luminous elements and are excellent in luminous efficiency, image quality, power consumption, and thin design.
  • Organic electroluminescent elements can be obtained in various light emitting colors by using various light emitting materials for the light emitting layer, and therefore, researches for practical application to displays and the like are active. In particular, research on light-emitting materials of the three primary colors red, green, and blue is the most active, and extensive research is being conducted with the aim of improving characteristics.
  • Two R 1 s each represent a single bond bonded to two * in formula (b), or are bonded to each other to represent a 5-membered ring, a 6-membered ring or a condensed ring, and the 5-membered ring, 6-membered ring Or two * of formula (b) couple
  • the 5-membered non-covalent ring atom is selected from a carbon atom, an oxygen atom, and a sulfur atom, and the carbon atom has two Rs.
  • the non-covalent ring atom of the non-aromatic ring is selected from a carbon atom, an oxygen atom, and a sulfur atom, and the carbon atom has two Rs.
  • the non-covalent ring atom of the aromatic ring is selected from a carbon atom and a nitrogen atom, and the carbon atom has one R.
  • the condensed ring includes a non-aromatic ring
  • the non-covalent ring atom of the non-aromatic ring is selected from a carbon atom, an oxygen atom, and a sulfur atom, and the carbon atom has two Rs.
  • the non-covalent ring atom of the aromatic ring is selected from a carbon atom and a nitrogen atom, and the carbon atom has one R.
  • a plurality of R's each independently represents a hydrogen atom, a substituent, or a single bond bonded to * 1 -LD n0, and two adjacent or adjacent R's may be bonded to each other to form a ring,
  • the ring may be substituted with one or more Rs.
  • at least one of the plurality of Rs in the formula (1) represents a single bond bonded to * 1 -LD n0 .
  • the single bond bonded to * 1 -LD n0 represented by R is, for example, a compound obtained by a single bond bonded to * 1 -LD n0 represented by R in A-R. Indicates that it is LD n0 .
  • a plurality of L's independently represent a single bond or a substituted or unsubstituted arylene group having 6 to 60 carbon atoms.
  • n0 represents 1, and L represents a substituted or unsubstituted ring.
  • n0 represents an integer of 1 to 10.
  • D represents at least one carbazole structure and represents a monovalent residue having a structure represented by the following formula (2).
  • L 1 and L 2 each independently represents a single bond or a substituted or unsubstituted arylene group having 6 to 60 ring carbon atoms.
  • Ar 1 and Ar 2 each independently represent a monovalent residue of a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 60 ring carbon atoms.
  • n1 and n2 are each independently an integer of 0 to 4.
  • Ar 1 and Ar 2 represent a monovalent residue having a structure obtained by bonding the aromatic hydrocarbon ring and the formula (d) .
  • X represents O, S, PR 15 , SiR 16 R 17 , CR 18 R 19 , or NR 20, and when a plurality of formulas (d) are bonded, the plurality of Xs may be the same or different.
  • R 11 to R 20 each independently represents a hydrogen atom or a substituent. a1, a2, and a3 each independently represents an integer of 0 to 4. ]]
  • [2] A material for an organic electroluminescence device comprising the compound according to the above [1].
  • [3] An ink composition comprising a solvent and the compound according to the above [1] dissolved in the solvent.
  • [4] In an organic electroluminescence device in which an organic thin film layer composed of one or more layers including at least a light emitting layer is sandwiched between a cathode and an anode, at least one of the organic thin film layers is described in [1] above.
  • [5] An electronic device including the organic electroluminescence element according to [1].
  • the present invention can provide an organic EL element with improved performance and an electronic device including the same. Moreover, the compound which enables it, the organic electroluminescent element material, and an ink composition can be provided.
  • the “carbon number XX to YY” in the expression “substituted or unsubstituted ZZ group having XX to YY” represents the number of carbon atoms in the case where the ZZ group is unsubstituted. The carbon number of the substituent in the case where it is present is not included.
  • “atom number XX to YY” in the expression “ZZ group of substituted or unsubstituted atoms XX to YY” represents the number of atoms when the ZZ group is unsubstituted. In the case of substitution, the number of substituent atoms is not included.
  • the number of ring-forming carbon atoms constitutes the ring itself of a compound having a structure in which atoms are bonded cyclically (for example, a monocyclic compound, a condensed ring compound, a bridged compound, a carbocyclic compound, or a heterocyclic compound). Represents the number of carbon atoms in the atom.
  • the carbon contained in the substituent is not included in the number of ring-forming carbons.
  • the “ring-forming carbon number” described below is the same unless otherwise specified.
  • the benzene ring has 6 ring carbon atoms
  • the naphthalene ring has 10 ring carbon atoms
  • the pyridinyl group has 5 ring carbon atoms
  • the furanyl group has 4 ring carbon atoms.
  • the carbon number of the alkyl group is not included in the number of ring-forming carbons.
  • the carbon number of the fluorene ring as a substituent is not included in the number of ring-forming carbons.
  • the number of ring-forming atoms refers to a compound (for example, a monocyclic compound, a condensed ring compound, a bridged compound, or a carbocyclic compound) having a structure in which atoms are bonded in a cyclic manner (for example, a single ring, a condensed ring, or a ring assembly).
  • a heterocyclic compound represents the number of atoms constituting the ring itself. Atoms that do not constitute a ring or atoms included in a substituent when the ring is substituted by a substituent are not included in the number of ring-forming atoms.
  • the “number of ring-forming atoms” described below is the same unless otherwise specified.
  • the number of ring-forming atoms in the pyridine ring is 6, the number of ring-forming atoms in the quinazoline ring is 10, and the number of ring-forming atoms in the furan ring is 5.
  • a hydrogen atom bonded to a carbon atom of a pyridine ring or a quinazoline ring or an atom constituting a substituent is not included in the number of ring-forming atoms.
  • a fluorene ring is bonded to the fluorene ring as a substituent (including a spirofluorene ring)
  • the number of atoms of the fluorene ring as a substituent is not included in the number of ring-forming atoms.
  • hydrogen atom includes isotopes having different numbers of neutrons, that is, light hydrogen (protium), deuterium (deuterium), and tritium (tritium).
  • the “heteroaryl group” and the “heteroarylene group” are groups containing at least one heteroatom as a ring-forming atom, and the heteroatom includes a nitrogen atom, an oxygen atom, and a sulfur atom. It is preferable that it is 1 or more types chosen from a silicon atom and a selenium atom, and it is more preferable that it is 1 or more types chosen from a nitrogen atom, an oxygen atom, and a sulfur atom.
  • substituents in the description of “substituent” or “substituted or unsubstituted” include those in the following group (A).
  • A an alkyl group having 1 to 50 carbon atoms (preferably 1 to 18, more preferably 1 to 8); 3 to 50 ring carbon atoms (preferably 3 to 10, more preferably 3 to 8 and even more preferably) 5 or 6) a cycloalkyl group; an aryl group having 6 to 50 ring carbon atoms (preferably 6 to 25, more preferably 6 to 18); and 6 to 50 ring carbon atoms (preferably 6 to 25, more preferably).
  • Substituted phosphoryl group alkylsulfonyloxy group; arylsulfonyloxy group; alkylcarbonyloxy group; arylcarbonyloxy group; boron-containing group; zinc-containing group; tin-containing group; silicon-containing group; Alkyl substituted or aryl substituted carbonyl group; carboxyl group; vinyl group; (meth) acryloyl group; It is preferably a group selected from the group consisting of a xy group; and an oxetanyl group.
  • These substituents may be further substituted with the above-mentioned arbitrary substituents.
  • these substituents may be bonded to each other to form a ring.
  • “unsubstituted” in the description of “substituted or unsubstituted” means that a hydrogen atom is bonded without being substituted by these substituents.
  • substituents more preferred are those of the following group (B).
  • the compound of one embodiment of the present invention will be described.
  • the compound of one embodiment of the present invention is a compound represented by the formula (1) (hereinafter, the “compound represented by the formula (1)” may be referred to as “compound (1)”).
  • Two R 1 s each represent a single bond bonded to two * in formula (b), or are bonded to each other to represent a 5-membered ring, a 6-membered ring or a condensed ring, and the 5-membered ring, 6-membered ring Or two * of formula (b) couple
  • the 5-membered non-covalent ring atom is selected from a carbon atom, an oxygen atom, and a sulfur atom, and the carbon atom has two Rs.
  • the non-covalent ring atom of the non-aromatic ring is selected from a carbon atom, an oxygen atom, and a sulfur atom, and the carbon atom has two Rs.
  • the non-covalent ring atom of the aromatic ring is selected from a carbon atom and a nitrogen atom, and the carbon atom has one R.
  • the condensed ring includes a non-aromatic ring
  • the non-covalent ring atom of the non-aromatic ring is selected from a carbon atom, an oxygen atom, and a sulfur atom
  • the carbon atom has two Rs.
  • the condensed ring includes an aromatic ring
  • the non-covalent ring atom of the aromatic ring is selected from a carbon atom and a nitrogen atom, and the carbon atom has one R.
  • the non-covalent ring atom means an atom in which the ring containing the non-covalent ring atom is not shared with other rings to be connected.
  • Y and Z in the following formulas (6) to (16) are non-covalent atoms.
  • the aromatic ring refers to a ring composed only of a ring having aromaticity (for example, benzene or pyrimidine).
  • the non-aromatic ring refers to a ring having no multiple bond such as cyclopentane.
  • the central cyclopentane ring in fluorene is also referred to as a non-aromatic ring.
  • a plurality of R's each independently represents a hydrogen atom, a substituent, or a single bond bonded to * 1 -LD n0, and two adjacent or adjacent R's may be bonded to each other to form a ring, The ring may be substituted with one or more Rs. However, at least one of the plurality of Rs in the formula (1) represents a single bond bonded to * 1 -LD n0 .
  • a cycloalkyl group having 3 to 8 a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms (more preferably 6 to 25, still more preferably 6 to 18), and an “aromatic hydrocarbon group”.
  • substituted or unsubstituted aralkyl groups having 7 to 61 carbon atoms (more preferably 7 to 25, more preferably 7 to 18), amino groups, substituted or unsubstituted carbon atoms 1 to 50 (more The alkyl group is preferably 1 to 18, more preferably 1 to 8) and the substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms (more preferably 6 to 25, still more preferably 6 to 18).
  • an unsubstituted aryl group having 5 to 60 (more preferably 5 to 30, more preferably 5 to 26) heteroaryl groups (synonymous with “heterocyclic group”, the same shall apply hereinafter), substituted or unsubstituted carbon atoms 1 to 50 (more preferably 1 to 18, more preferably 1 to 8) haloalkyl group, halogen atom, cyano group, nitro group, substituted or unsubstituted carbon number 1 to 50 (more preferably 1 to 18, more preferably Preferably 1 to 8) and a substituent selected from a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms (more preferably 6 to 25, still more preferably 6 to 18).
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group (including isomers), and hexyl.
  • cycloalkyl group examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and an adamantyl group. These may be substituted. More preferably, a cyclopentyl group and a cyclohexyl group are mentioned. These may be substituted.
  • aryl group examples include phenyl group, naphthyl group, naphthylphenyl group, biphenylyl group, terphenylyl group, quaterphenylyl group, kinkphenylyl group, acenaphthylenyl group, anthryl group, benzoanthryl group, aceanthryl group, phenanthryl group.
  • Benzophenanthryl group phenalenyl group, fluorenyl group, 9,9′-spirobifluorenyl group, benzofluorenyl group, dibenzofluorenyl group, picenyl group, pentaphenyl group, pentacenyl group, pyrenyl group, Chrysenyl group, benzocrisenyl group, s-indanyl group, as-indanyl group, fluoranthenyl group, benzofluoranthenyl group, tetracenyl group, triphenylenyl group, benzotriphenylenyl group, perylenyl group, coronyl group, dibenzoanthryl group, 9, Examples thereof include 9-dimethylfluorenyl group and 9,9-diphenylfluorenyl group.
  • the heteroaryl group contains at least 1, preferably 1 to 5 (more preferably 1 to 3, more preferably 1 to 2) heteroatoms such as a nitrogen atom, a sulfur atom, an oxygen atom, and a phosphorus atom. Including.
  • the heteroaryl group include pyrrolyl group, furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, oxazolyl group, thiazolyl group, pyrazolyl group, isoxazolyl group, isothiazolyl group.
  • aralkyl group examples include aralkyl groups having the above aryl group having 6 to 60 ring carbon atoms. These may be further substituted. More preferred is an aralkyl group having the above aryl group having 6 to 25 ring carbon atoms, and further preferred is an aralkyl group having the above aryl group having 6 to 18 ring carbon atoms. These may be further substituted.
  • Examples of the mono-substituted or di-substituted amino group include mono-substituted or di-substituted amino groups having a substituent selected from the above alkyl group having 1 to 50 carbon atoms and the above aryl group having 6 to 60 ring carbon atoms,
  • the disubstituted amino group is preferable, and a disubstituted amino group having a substituent selected from the above aryl groups is more preferable. These may be further substituted. More preferable examples include a mono-substituted or di-substituted amino group having a substituent selected from the above alkyl group having 1 to 18 carbon atoms and the above aryl group having 6 to 25 ring carbon atoms.
  • More preferable examples include mono-substituted or di-substituted amino groups having a substituent selected from the above alkyl group having 1 to 8 carbon atoms and the above aryl group having 6 to 18 ring carbon atoms. These may be further substituted.
  • alkoxy group examples include alkoxy groups having the above alkyl group having 1 to 50 carbon atoms. These may be further substituted. More preferred is an alkoxy group having the above alkyl group having 1 to 18 carbon atoms. These may be further substituted. More preferable examples include alkoxy groups having the above alkyl group having 1 to 8 carbon atoms, and for example, a methoxy group and an ethoxy group are preferable. These may be further substituted.
  • cycloalkoxy group examples include cycloalkoxy groups having the above cycloalkyl group having 3 to 50 carbon atoms. These may be further substituted.
  • aryloxy group examples include aryloxy groups having the above aryl group having 6 to 60 ring carbon atoms. These may be further substituted. More preferred is an aryloxy group having the above aryl group having 6 to 25 ring carbon atoms. These may be further substituted. More preferred are aryloxy groups having the above aryl group having 6 to 18 ring carbon atoms, and for example, a phenoxy group is preferred. These may be further substituted.
  • alkylthio group examples include alkylthio groups having the above alkyl group having 1 to 50 carbon atoms. These may be further substituted. More preferred is an alkylthio group having the above alkyl group having 1 to 18 carbon atoms. These may be further substituted. More preferred is an alkylthio group having the above alkyl group having 1 to 8 carbon atoms. These may be further substituted.
  • arylthio group examples include arylthio groups having the above aryl group having 6 to 60 ring carbon atoms. These may be further substituted. More preferred is an arylthio group having the above aryl group having 6 to 25 ring carbon atoms. These may be further substituted. More preferred is an arylthio group having the above aryl group having 6 to 18 ring carbon atoms. These may be further substituted.
  • Examples of the mono-substituted, di-substituted, or tri-substituted silyl groups include mono-substituted, di-substituted, or tri-substituted having a substituent selected from the above alkyl group having 1 to 50 carbon atoms and the above aryl group having 6 to 60 ring carbon atoms. A silyl group is mentioned. These may be further substituted. More preferred are mono-substituted, di-substituted or tri-substituted silyl groups having a substituent selected from the above alkyl group having 1 to 18 carbon atoms and the above aryl group having 6 to 25 ring carbon atoms. These may be further substituted.
  • haloalkyl group examples include those in which one or more hydrogen atoms of the alkyl group having 1 to 50 carbon atoms are substituted with a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom). These may be further substituted. More preferable examples include those in which one or more hydrogen atoms of the alkyl group having 1 to 18 carbon atoms are substituted with the halogen atom. These may be further substituted. More preferable examples include those in which one or more hydrogen atoms of the alkyl group having 1 to 8 carbon atoms are substituted with the halogen atom. These may be further substituted. Specific examples include a trifluoromethyl group, a pentafluoroethyl group, and a heptafluoropropyl group.
  • the sulfonyl group examples include a sulfonyl group having a substituent selected from the above alkyl group having 1 to 50 carbon atoms or the above aryl group having 6 to 60 ring carbon atoms. These may be further substituted. More preferable examples include a sulfonyl group having a substituent selected from the above alkyl group having 1 to 18 carbon atoms or the above aryl group having 6 to 25 ring carbon atoms. These may be further substituted. More preferred is a sulfonyl group having a substituent selected from the above alkyl group having 1 to 8 carbon atoms or the above aryl group having 6 to 18 ring carbon atoms. These may be further substituted.
  • disubstituted phosphoryl group examples include a disubstituted phosphoryl group having a substituent selected from the above alkyl group having 1 to 50 carbon atoms and the above aryl group having 6 to 60 ring carbon atoms. These may be further substituted. More preferred is a disubstituted phosphoryl group having a substituent selected from the above alkyl group having 1 to 18 carbon atoms and the above aryl group having 6 to 25 ring carbon atoms. These may be further substituted. More preferable examples include a disubstituted phosphoryl group having a substituent selected from the above alkyl group having 1 to 8 carbon atoms and the above aryl group having 6 to 18 ring carbon atoms.
  • alkylsulfonyloxy group examples include groups each having a substituent selected from the alkyl group and the aryl group. It is done.
  • each R is independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted carbon.
  • substituted or unsubstituted aryl groups having 6 to 60 ring carbon atoms substituted or unsubstituted heteroaryl groups having 5 to 60 ring atoms, substituted or unsubstituted amino groups, substituted Alternatively, it is preferably an unsubstituted aryloxy group having 6 to 60 carbon atoms, a substituted silyl group, a substituted or unsubstituted haloalkyl group having 1 to 50 carbon atoms, a halogen atom, a cyano group, or a nitro group. Specific examples of these groups are the same as described above.
  • a plurality of L's independently represent a single bond or a substituted or unsubstituted arylene group having 6 to 60 carbon atoms.
  • n0 represents 1, and L represents a substituted or unsubstituted ring.
  • n0 represents an integer of 1 to 10.
  • Specific examples of the arylene group having 6 to 60 ring carbon atoms represented by L include an arylene group in which the aryl group of the substituent represented by R is divalent.
  • n0 is preferably 1 to 2, and more preferably 1.
  • D represents at least one carbazole structure and represents a monovalent residue having a structure represented by the following formula (2).
  • L 1 and L 2 each independently represents a single bond or a substituted or unsubstituted arylene group having 6 to 60 ring carbon atoms.
  • Ar 1 and Ar 2 each independently represent a monovalent residue of a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 60 ring carbon atoms.
  • n1 and n2 are each independently an integer of 0 to 4.
  • Ar 1 and Ar 2 represent a monovalent residue having a structure obtained by bonding the aromatic hydrocarbon ring and the formula (d) .
  • X represents O, S, PR 15 , SiR 16 R 17 , CR 18 R 19 , or NR 20, and when a plurality of formulas (d) are bonded, the plurality of Xs may be the same or different.
  • R 11 to R 20 each independently represents a hydrogen atom or a substituent. Specific examples of the substituent represented by R 11 to R 20 are the same as those for R. a1, a2, and a3 each independently represents an integer of 0 to 4.
  • the compound represented by the formula (1) is preferably represented by the following formula (3) or (4).
  • a 1 represents a 5-membered ring, a 6-membered ring or a condensed ring.
  • the 5-membered non-covalent ring atom is selected from a carbon atom, an oxygen atom, and a sulfur atom, and the carbon atom has two Rs.
  • the 6-membered ring is a non-aromatic ring
  • the non-covalent ring atom of the non-aromatic ring is selected from a carbon atom, an oxygen atom, and a sulfur atom, and the carbon atom has two Rs.
  • the non-covalent ring atom of the aromatic ring is selected from a carbon atom and a nitrogen atom, and the carbon atom has one R.
  • the condensed ring includes a non-aromatic ring the non-covalent ring atom of the non-aromatic ring is selected from a carbon atom, an oxygen atom, and a sulfur atom, and the carbon atom has two Rs.
  • the condensed ring includes an aromatic ring the non-covalent ring atom of the aromatic ring is selected from a carbon atom and a nitrogen atom, and the carbon atom has one R.
  • the structure constituted by the formulas (a) and (b) is preferably represented by any of the following formulas (5) to (16).
  • the definition of R, L, and D is the same as Formula (1).
  • Y is selected from a carbon atom, an oxygen atom, and a sulfur atom, and the carbon atom has two R.
  • R, L, and D are defined by the formula (1 Is the same as
  • the structure represented by Formula (6) or (7) is preferable, and the structure represented by Formula (6) or (7) is further represented by the following Formula (6 ′) or (7 ′). It is preferable.
  • Y is selected from a carbon atom, an oxygen atom, and a sulfur atom, and the carbon atom has two R.
  • R, L, and D are defined by the formula (Same as (1).)
  • Z is selected from a carbon atom and a nitrogen atom, and the carbon atom has one R.
  • R, L, and D are the same as in the formula (1). is there.
  • the compounds represented by the formulas (11) and (12) are preferable, and one R bonded to the birimidine ring in the formulas (11) and (12) is a single bond, which is * 1 -L It preferred when bound to -D no.
  • the structure represented by the above (11) or (12) is preferably represented by the following formula (11 ′) or (12 ′).
  • Z is selected from a carbon atom and a nitrogen atom, and the carbon atom has one R.
  • R, L, and D are defined by the formula (1) and Same.
  • Z is selected from a carbon atom and a nitrogen atom, and the carbon atom has one R.
  • R, L, and D are the same as in the formula (1). is there.
  • the structure constituted by the formulas (a) and (b) is represented by any of the following formulas.
  • the definitions of R, L, and D are the same as those in the formula (1).
  • the structure represented by the formula (2) of D is preferably represented by any of the following formulas (51) to (59).
  • R 21 represents a hydrogen atom or a substituent
  • a4 represents an integer of 0 to 4.
  • a2 ′ and n1 ′ each represents an integer of 0 to 2. Specific examples of the substituent represented by R 21 are the same as those of R.
  • the structure represented by the formula (2) of the D is represented by any of the following formulas (60) or (61).
  • R 11 to R 14 , R 20 , a1 to a3, n1, n2, L 1 , L 2 and Ar 2 are the same as described above.
  • R 21 to R 24 represent a hydrogen atom or a substituent, and a4 to a6 each represents an integer of 0 to 4. Specific examples of the substituent represented by R 21 to R 24 are the same as those for R.
  • L 1 is more preferably a single bond.
  • organic electroluminescent element material (hereinafter, “organic electroluminescent element material” may be abbreviated as “organic EL element material” in some cases) of one embodiment of the present invention will be described.
  • the material for an organic EL device of one embodiment of the present invention includes the compound (1).
  • Compound (1) is useful as a material in an organic EL device.
  • the content of the compound (1) in the organic EL device material may be 1% by mass or more, preferably 10% by mass or more, more preferably 50% by mass or more, and 80% by mass or more. It is more preferable that it is 90 mass% or more.
  • the material for an organic EL element of one embodiment of the present invention can be used as, for example, a host material or a dopant material in a light emitting layer of a fluorescent light emitting unit, or a host material in a light emitting layer of a phosphorescent light emitting unit.
  • the light emitting layer contains the organic EL element material of one embodiment of the present invention and a fluorescent light emitting material or a phosphorescent light emitting material.
  • an anode-side organic thin film layer provided between the anode of the organic EL element and the light emitting layer, or a cathode provided between the cathode of the organic EL element and the light emitting layer.
  • the organic EL element of one embodiment of the present invention can be used as a material for the side organic thin film layer, that is, as a material for a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, a hole blocking layer, an electron blocking layer, Materials for use are useful.
  • the “light emitting unit” refers to a minimum unit that includes one or more organic layers, one of which is a light emitting layer, and can emit light by recombination of injected holes and electrons.
  • the ink composition of one embodiment of the present invention will be described.
  • the ink composition of one embodiment of the present invention includes a solvent and a compound (1) dissolved in the solvent.
  • the ink composition of one embodiment of the present invention can be used for forming an organic thin film layer constituting an organic EL element.
  • the ink composition of one embodiment of the present invention may contain additives such as a hole transport material, an electron transport material, a light-emitting material, an acceptor material, and a stabilizer in addition to the compound (1).
  • the ink composition of one embodiment of the present invention includes an additive for adjusting viscosity and / or surface tension, such as a thickener (such as a high molecular weight compound), a viscosity reducing agent (such as a low molecular weight compound), and a surfactant.
  • Etc. may be contained.
  • antioxidants which do not influence the performance of organic EL elements, such as a phenolic antioxidant and phosphorus antioxidant.
  • the content of the compound (1) in the ink composition is preferably 0.1 to 15% by mass, and more preferably 0.5 to 10% by mass.
  • High molecular weight compounds that can be used as thickeners include insulating resins such as polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, and cellulose, copolymers thereof, poly Examples thereof include photoconductive resins such as —N-vinylcarbazole and polysilane, and conductive resins such as polythiophene and polypyrrole.
  • the solvent is preferably an organic solvent, and examples of the organic solvent include chloroform, chlorobenzene, chlorotoluene, chloroxylene, chloroanisole, dichloromethane, dichlorobenzene, dichlorotoluene, dichloroethane, trichloroethane, trichlorobenzene, and trichloromethylbenzene.
  • Chlorine solvents such as bromobenzene, dibromobenzene, bromoanisole, ether solvents such as tetrahydrofuran, dioxane, dioxolane, oxazole, methylbenzoxazole, benzoisoxazole, furan, furazane, benzofuran, dihydrobenzofuran, ethylbenzene, diethylbenzene, tri Ethylbenzene, trimethylbenzene, trimethoxybenzene, propylbenzene, isopropylbenzene , Diisopropylbenzene, dibutylbenzene, amylbenzene, dihexylbenzene, cyclohexylbenzene, tetramethylbenzene, dodecylbenzene, benzonitrile, acetophenone, methylacetophenone, methoxyacetophenone, toluic acid ethyl
  • a viscosity adjusting agent, a surface tension adjusting agent, a crosslinking reaction initiator, and a crosslinking reaction catalyst may be added to the coating liquid (ink composition) for film formation, as necessary.
  • the viscosity modifier, surface tension modifier, crosslinking reaction initiator, and crosslinking reaction catalyst select one that does not affect the device characteristics even if it remains in the film, or in the film formation process. What can be removed from inside is desirable.
  • organic electroluminescence element An organic electroluminescence element of one embodiment of the present invention (hereinafter, “organic electroluminescence element” may be abbreviated as “organic EL element”) will be described.
  • the organic EL device of one embodiment of the present invention is an organic electroluminescence device in which an organic thin film layer composed of one or more layers including at least a light-emitting layer is sandwiched between a cathode and an anode, and at least one of the organic thin film layers Contains compound (1).
  • Examples of the organic thin film layer containing the compound (1) include an anode-side organic thin film layer (hole transport layer, hole injection layer, etc.) provided between the anode and the light emitting layer, a light emitting layer, a cathode and a light emitting layer.
  • Anode-side organic thin film layer (electron transport layer, electron injection layer, etc.), a space layer, a barrier layer, and the like provided between them, but are not limited thereto.
  • the compound (1) may be contained in any of the above layers, for example, a host material or a dopant material in the light emitting layer of the fluorescent light emitting unit, a host material in the light emitting layer of the phosphorescent light emitting unit, or a hole transport layer of the light emitting unit. It can be used as an electron transport layer or the like.
  • the organic EL element of one embodiment of the present invention may be a fluorescent or phosphorescent monochromatic light emitting element, a fluorescent / phosphorescent hybrid white light emitting element, or a simple type having a single light emitting unit. Even a tandem type having a plurality of light emitting units may be used, and among them, a phosphorescent type is preferable.
  • the “light emitting unit” refers to a minimum unit that includes one or more organic layers, one of which is a light emitting layer, and can emit light by recombination of injected holes and electrons.
  • typical element configurations of simple organic EL elements include the following element configurations.
  • Anode / light emitting unit / cathode The above light emitting unit may be a laminated type having a plurality of phosphorescent light emitting layers and fluorescent light emitting layers. In that case, the light emitting unit is generated by a phosphorescent light emitting layer between the light emitting layers. In order to prevent the excitons from diffusing into the fluorescent light emitting layer, a space layer may be provided. A typical layer structure of the light emitting unit is shown below.
  • A Hole transport layer / light emitting layer (/ electron transport layer)
  • B Hole transport layer / first phosphorescent light emitting layer / second phosphorescent light emitting layer (/ electron transport layer)
  • C Hole transport layer / phosphorescent layer / space layer / fluorescent layer (/ electron transport layer)
  • D Hole transport layer / first phosphorescent light emitting layer / second phosphorescent light emitting layer / space layer / fluorescent light emitting layer (/ electron transport layer)
  • E Hole transport layer / first phosphorescent light emitting layer / space layer / second phosphorescent light emitting layer / space layer / fluorescent light emitting layer (/ electron transport layer)
  • F Hole transport layer / phosphorescent layer / space layer / first fluorescent layer / second fluorescent layer (/ electron transport layer)
  • G Hole transport layer / electron barrier layer / light emitting layer (/ electron transport layer)
  • H Hole transport layer / light emitting layer / hole barrier layer (
  • Each phosphorescent or fluorescent light-emitting layer may have a different emission color.
  • hole transport layer / first phosphorescent light emitting layer (red light emitting) / second phosphorescent light emitting layer (green light emitting) / space layer / fluorescent light emitting layer (blue light emitting) / Examples include a layer configuration such as an electron transport layer.
  • An electron barrier layer may be appropriately provided between each light emitting layer and the hole transport layer or space layer.
  • a hole blocking layer may be appropriately provided between each light emitting layer and the electron transport layer.
  • the following element structure can be mentioned as a typical element structure of a tandem type organic EL element.
  • the intermediate layer is generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer, and has electrons in the first light emitting unit and holes in the second light emitting unit.
  • a known material structure to be supplied can be used.
  • FIG. 1 shows a schematic configuration of an example of an organic EL element of one embodiment of the present invention.
  • the organic EL element 1 includes a substrate 2, an anode 3, a cathode 4, and a light emitting unit 10 disposed between the anode 3 and the cathode 4.
  • the light emitting unit 10 includes, for example, a light emitting layer 5 including at least one phosphorescent light emitting layer including a phosphorescent host material and a phosphorescent dopant (phosphorescent material).
  • electron injection / transport layer (cathode-side organic thin film layer) 7 between the light-emitting layer 5 and the cathode 4 May be formed.
  • an electron barrier layer may be provided on the anode 3 side of the light emitting layer 5
  • a hole barrier layer may be provided on the cathode 4 side of the light emitting layer 5.
  • a host combined with a fluorescent dopant is referred to as a fluorescent host
  • a host combined with a phosphorescent dopant is referred to as a phosphorescent host.
  • the fluorescent host and the phosphorescent host are not distinguished only by the molecular structure. That is, the phosphorescent host means a material constituting a phosphorescent light emitting layer containing a phosphorescent dopant, and does not mean that it cannot be used as a material constituting a fluorescent light emitting layer. The same applies to the fluorescent host.
  • the organic EL element of one embodiment of the present invention is manufactured over a light-transmitting substrate.
  • the light-transmitting substrate is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 nm to 700 nm of 50% or more.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include those using soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz and the like as raw materials.
  • the polymer plate include those using polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like as raw materials.
  • the anode of the organic EL element plays a role of injecting holes into the hole transport layer or the light emitting layer, and it is effective to use a material having a work function of 4.5 eV or more.
  • Specific examples of the anode material include indium tin oxide alloy (ITO), tin oxide (NESA), indium zinc oxide, gold, silver, platinum, copper, and the like.
  • the anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. When light emitted from the light emitting layer is extracted from the anode, it is preferable that the transmittance of light in the visible region of the anode is greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 nm to 200 nm.
  • the cathode plays a role of injecting electrons into the electron injection layer, the electron transport layer or the light emitting layer, and is preferably formed of a material having a small work function.
  • the cathode material is not particularly limited, and specifically, indium, aluminum, magnesium, magnesium-indium alloy, magnesium-aluminum alloy, aluminum-lithium alloy, aluminum-scandium-lithium alloy, magnesium-silver alloy and the like can be used.
  • the cathode can be produced by forming a thin film by a method such as vapor deposition or sputtering. Moreover, you may take out light emission from the cathode side as needed.
  • the light emitting layer In the case of employing an organic layer having a light emitting function and employing a doping system, it includes a host material and a dopant material (a substance having a high light emitting property).
  • a dopant material for example, a fluorescent material or a phosphorescent material can be used.
  • the fluorescent light-emitting material is a compound that can emit light from a singlet excited state
  • the phosphorescent compound is a compound that can emit light from a triplet excited state.
  • the host material mainly has the function of encouraging the recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material has the function of efficiently emitting the excitons obtained by recombination.
  • the host material In the case of a phosphorescent element, the host material mainly has a function of confining excitons generated from the dopant material in the light emitting layer.
  • the light emitting layer employs a double host (also referred to as a host co-host) that adjusts the carrier balance in the light emitting layer, for example, by combining an electron transporting host material and a hole transporting host material. May be.
  • a double host also referred to as a host co-host
  • the host material, the red dopant material, and the green dopant material may be co-evaporated to form a common light emitting layer and realize yellow light emission.
  • the above light-emitting layer is a laminate in which a plurality of light-emitting layers are stacked, so that electrons and holes are accumulated at the light-emitting layer interface, and the recombination region is concentrated at the light-emitting layer interface to improve quantum efficiency. Can do.
  • the ease of injecting holes into the light emitting layer may be different from the ease of injecting electrons, and the hole transport ability and electron transport ability expressed by the mobility of holes and electrons in the light emitting layer may be different. May be different.
  • the phosphorescent dopant material (phosphorescent material) forming the light emitting layer is a compound that can emit light from the triplet excited state, and is not particularly limited as long as it emits light from the triplet excited state, but Ir, Pt, Os, Au, Cu , Re, and Ru are preferably organometallic complexes containing at least one metal and a ligand.
  • a metal complex such as an iridium complex, an osmium complex, or a platinum complex is used as a blue phosphorescent dopant material.
  • An iridium complex or the like is used as a green phosphorescent dopant material.
  • tris (2-phenylpyridinato-N, C2 ′) iridium (III) (abbreviation: Ir (ppy) 3 ), bis (2-phenylpyridinato-N, C2 ′) iridium (III ) Acetylacetonate (abbreviation: Ir (ppy) 2 (acac)), bis (1,2-diphenyl-1 H-benzimidazolato) iridium (III) acetylacetonate (abbreviation: Ir (pbi) 2 (acac)) Bis (benzo [h] quinolinato) iridium (III) acetylacetonate (abbreviation: Ir (bzq) 2 (acac)), and the like.
  • a metal complex such as an iridium complex, a platinum complex, a terbium complex, or a europium complex is used.
  • a metal complex such as an iridium complex, a platinum complex, a terbium complex, or a europium complex is used.
  • iridium complex bis [2- (2′-benzo [4,5- ⁇ ] thienyl) pyridinato-N, C3 ′] iridium (III) acetylacetonate (abbreviation: Ir (btp) 2 (acac)), Bis (1-phenylisoquinolinato-N, C2 ′) iridium (III) acetylacetonate (abbreviation: Ir (piq) 2 (acac)), (acetylacetonato) bis [2,3-bis (4-fluorophenyl) Quinoxalinato] iridium (III) (abbreviation: Ir (Fdpq
  • Tb (acac) 3 (Phen) tris (1,3-diphenyl-1,3-propandionato) (monophenanthroline) europium
  • Eu (DBM) 3 (Phen) tri
  • the ligand preferably has an ortho metal bond.
  • a metal complex containing a metal atom selected from Ir, Os and Pt is preferred in that the phosphorescent quantum yield is high and the external quantum efficiency of the light emitting device can be further improved, and an iridium complex, an osmium complex, or a platinum complex.
  • iridium complexes and platinum complexes are more preferable, and orthometalated iridium complexes are particularly preferable.
  • the content of the phosphorescent dopant material in the light emitting layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 0.1 to 70% by mass, and more preferably 1 to 30% by mass. When the content of the phosphorescent dopant material is 0.1% by mass or more, sufficient light emission is obtained, and when it is 70% by mass or less, concentration quenching can be avoided.
  • a complex represented by the following formula (X) or (Y) is preferable as the phosphorescent dopant material.
  • R 10 is a hydrogen atom or a substituent, and k is an integer of 1 to 4.
  • M is Ir, Os, or Pt.
  • substituent represented by R 10 include the same substituents as exemplified by R 0 to R 8 in the above formula (1).
  • the organic EL element may have a light emitting layer containing a fluorescent light emitting material, that is, a fluorescent light emitting layer.
  • a fluorescent light emitting layer known fluorescent light emitting materials can be used.
  • a pyrene derivative, a styrylamine derivative, a chrysene derivative, a fluoranthene derivative, a fluorene derivative, a diamine derivative, a triarylamine derivative, or the like can be used as a blue fluorescent material.
  • N, N′-bis [4- (9 H-carbazol-9-yl) phenyl] -N, N′-diphenylstilbene-4,4′-diamine (abbreviation: YGA2S), 4- ( 9H-carbazol-9-yl) -4 ′-(10-phenyl-9-anthryl) triphenylamine (abbreviation: YGAPA), 4- (10-phenyl-9-anthryl) -4 ′-(9-phenyl- 9H-carbazol-3-yl) triphenylamine (abbreviation: PCBAPA) and the like.
  • An aromatic amine derivative or the like can be used as a green fluorescent material.
  • N- (9,10-diphenyl-2-anthryl) -N, 9-diphenyl-9H-carbazol-3-amine Abbreviation: 2PCAPA
  • N- [9,10-bis (1,1′-biphenyl-2-yl) -2-anthryl] -N, 9-diphenyl-9H-carbazol-3-amine abbreviation: 2PCABPhA
  • N- (9,10-diphenyl-2-anthryl) -N, N ′, N′-triphenyl-1,4-phenylenediamine abbreviation: 2DPAPA
  • N- [9,10-bis (1,1 ′ -Biphenyl-2-yl) -2-anthryl] -N, N ′, N′-triphenyl-1,4-phenylenediamine abbreviation: 2DPABPhA
  • a tetracene derivative, a diamine derivative, or the like can be used as a red fluorescent material.
  • N, N, N ′, N′-tetrakis (4-methylphenyl) tetracene-5,11-diamine (abbreviation: p-mPhTD), 7,14-diphenyl-N, N, N ′, N′-tetrakis (4-methylphenyl) acenaphtho [1,2-a] fluoranthene-3,10-diamine (abbreviation: p-mPhAFD) Etc.
  • the fluorescent material is preferably at least one selected from anthracene derivatives, fluoranthene derivatives, styrylamine derivatives and arylamine derivatives, more preferably anthracene derivatives and arylamine derivatives.
  • the host material is preferably an anthracene derivative
  • the dopant material is preferably an arylamine derivative.
  • suitable materials described in International Publication No. 2010/134350 and International Publication No. 2010/134352 are selected.
  • the compound (1) and the organic EL device material may be used as a fluorescent light emitting material of the fluorescent light emitting layer or as a host material of the fluorescent light emitting layer.
  • the substance having high light-emitting property (dopant material) described above may be dispersed in another substance (host material).
  • host material various materials can be used, and it is preferable to use a substance having a lowest lowest orbital level (LUMO level) and a lower highest occupied orbital level (HOMO level) than the dopant material. .
  • the host material includes (1) a metal complex such as an aluminum complex, beryllium complex, or zinc complex; (2) a heterocyclic compound such as an oxadiazole derivative, a benzimidazole derivative, or a phenanthroline derivative; ) Condensed aromatic compounds such as carbazole derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, chrysene derivatives, and (4) aromatic amine compounds such as triarylamine derivatives and condensed polycyclic aromatic amine derivatives are used.
  • a metal complex such as an aluminum complex, beryllium complex, or zinc complex
  • a heterocyclic compound such as an oxadiazole derivative, a benzimidazole derivative, or a phenanthroline derivative
  • Condensed aromatic compounds such as carbazole derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, chrysene derivatives, and (4) aromatic amine compounds
  • the phosphorescent host is a compound having a function of efficiently emitting the phosphorescent dopant by efficiently confining the triplet energy of the phosphorescent dopant in the light emitting layer.
  • the compound (1) and the organic EL device material containing the compound (1) are useful as a phosphorescent host, but compounds other than the compound (1) may be appropriately selected as the phosphorescent host depending on the purpose. it can.
  • the compound (1) and the organic EL device material are not limited to application to a phosphorescent host.
  • the compound (1) and other compounds may be used in combination as a phosphorescent host material in the same light emitting layer.
  • the phosphorescent host material of one of the light emitting layers is used as the phosphorescent host material.
  • the compound (1) may be used, and a compound other than the compound (1) may be used as the phosphorescent host material of another light emitting layer.
  • the compound (1) can also be used in an organic layer other than the light emitting layer. In that case, a compound other than the compound (1) may be used as the phosphorescent host of the light emitting layer.
  • compounds other than the compound (1) and suitable as a phosphorescent host include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, Phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, Anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimide derivatives, fluorenylidenemethane derivatives Various metals typified by metal complexes of dist
  • an electron-donating dopant is preferably included in the interface region between the cathode and the light-emitting unit.
  • the electron donating dopant means a material containing a metal having a work function of 3.8 eV or less, and specific examples thereof include alkali metals, alkali metal complexes, alkali metal compounds, alkaline earth metals, alkaline earths. Examples thereof include at least one selected from metal complexes, alkaline earth metal compounds, rare earth metals, rare earth metal complexes, rare earth metal compounds, and the like.
  • alkali metal examples include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV), Cs (work function: 1.95 eV), and the like.
  • a function of 2.9 eV or less is particularly preferable. Of these, K, Rb, and Cs are preferred, Rb and Cs are more preferred, and Cs is most preferred.
  • alkaline earth metals include Ca (work function: 2.9 eV), Sr (work function: 2.0 eV to 2.5 eV), Ba (work function: 2.52 eV), and the like. The thing below 9 eV is especially preferable.
  • rare earth metals examples include Sc, Y, Ce, Tb, Yb, and the like, and those having a work function of 2.9 eV or less are particularly preferable.
  • alkali metal compound examples include alkali oxides such as Li 2 O, Cs 2 O, and K 2 O, and alkali halides such as LiF, NaF, CsF, and KF, and LiF, Li 2 O, and NaF are preferable.
  • alkaline earth metal compound examples include BaO, SrO, CaO, and Ba x Sr 1-x O (0 ⁇ x ⁇ 1), Ba x Ca 1-x O (0 ⁇ x ⁇ 1) mixed with these. BaO, SrO, and CaO are preferable.
  • the rare earth metal compound, YbF 3, ScF 3, ScO 3, Y 2 O 3, Ce 2 O 3, GdF 3, TbF 3 and the like, YbF 3, ScF 3, TbF 3 are preferable.
  • the alkali metal complex, alkaline earth metal complex, and rare earth metal complex are not particularly limited as long as each metal ion contains at least one of an alkali metal ion, an alkaline earth metal ion, and a rare earth metal ion.
  • the ligands include quinolinol, benzoquinolinol, acridinol, phenanthridinol, hydroxyphenyl oxazole, hydroxyphenyl thiazole, hydroxydiaryl thiadiazole, hydroxydiaryl thiadiazole, hydroxyphenylpyridine, hydroxyphenylbenzimidazole, hydroxybenzotriazole, Hydroxyfulborane, bipyridyl, phenanthroline, phthalocyanine, porphyrin, cyclopentadiene, ⁇ -diketones, azomethines, and derivatives thereof are preferred, but not limited thereto.
  • the electron donating dopant is preferably formed in a layered or island shape in the interface region.
  • an organic compound light emitting material or electron injecting material
  • the electron donating dopant in a layered form, it is preferable to form the organic compound (light emitting material or electron injecting material) that forms the interface region in a layered form, and then deposit the electron donating dopant alone by a resistance heating vapor deposition method. Is formed with a layer thickness of 0.1 nm to 15 nm.
  • the electron donating dopant is formed in an island shape, an organic compound (a light emitting material or an electron injection material) that forms the interface region is formed in an island shape, and then the electron donating dopant is deposited by a resistance heating vapor deposition method alone.
  • the island is formed with a thickness of 0.05 nm to 1 nm.
  • the ratio of the organic compound to the electron-donating dopant is preferably 5: 1 to 1: 5, and more preferably 2: 1 to 1: 2.
  • the electron transport layer is an organic layer formed between the light emitting layer and the cathode, and has a function of transporting electrons from the cathode to the light emitting layer.
  • an organic layer close to the cathode may be defined as an electron injection layer.
  • the electron injection layer has a function of efficiently injecting electrons from the cathode into the organic layer unit.
  • the compound (1) of one embodiment of the present invention can also be used as an electron transport material contained in the electron transport layer (second charge transport material).
  • an aromatic heterocyclic compound containing one or more heteroatoms in the molecule is preferably used, and a nitrogen-containing ring derivative is particularly preferable.
  • the nitrogen-containing ring derivative is preferably an aromatic ring having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, or a condensed aromatic ring compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton.
  • a nitrogen-containing ring metal chelate complex represented by the following formula (A) is preferable.
  • R 101 to R 106 in formula (A) are each independently a hydrogen atom, a halogen atom, an oxy group, an amino group, 1 to 40 carbon atoms (preferably 1 to 20, more preferably 1 to 10, more preferably 1). 1 to 5) hydrocarbon group, 1 to 40 carbon atoms (preferably 1 to 20, more preferably 1 to 10, more preferably 1 to 5) alkoxy group, and 6 to 50 ring carbon atoms (preferably 6 carbon atoms).
  • aryloxy group 2-40 carbon atoms (preferably 2-20, more preferably 2-10, more preferably 2-5) alkoxycarbonyl groups or ring-forming atoms 5 to 50 (preferably 5 to 30, more preferably 5 to 20) aromatic heterocyclic groups, which may be substituted.
  • Examples of the halogen atom include fluorine, chlorine, bromine, iodine and the like.
  • the amino group which may be substituted include an alkylamino group, an arylamino group and an aralkylamino group.
  • the alkylamino group and the aralkylamino group are represented as —NQ 1 Q 2 .
  • Q 1 and Q 2 each independently represents an alkyl group having 1 to 20 carbon atoms or an aralkyl group having 1 to 20 carbon atoms.
  • One of Q 1 and Q 2 may be a hydrogen atom.
  • the arylamino group is represented as —NAr 1 ′ Ar 2 ′, and Ar 1 ′ and Ar 2 ′ each independently represent a non-condensed aromatic hydrocarbon group or a condensed aromatic hydrocarbon group having 6 to 50 carbon atoms. .
  • One of Ar 1 ′ and Ar 2 ′ may be a hydrogen atom.
  • the hydrocarbon group having 1 to 40 carbon atoms includes an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, and an aralkyl group.
  • the alkoxycarbonyl group is represented as —COOY ′, and Y ′ represents an alkyl group having 1 to 20 carbon atoms.
  • M is aluminum (Al), gallium (Ga) or indium (In), and is preferably In.
  • L 100 is a group represented by the following formula (A ′) or (A ′′).
  • R 107 to R 111 are each independently a hydrogen atom or a substituted or unsubstituted carbon number of 1 to 40 (preferably 1 to 20, more preferably 1 to 10, more preferably 1). To 5), and two or more of R 107 to R 111 may combine to form a cyclic structure.
  • R 112 to R 126 are each independently a hydrogen atom or a substituted or unsubstituted carbon number of 1 to 40 (preferably 1 to 20, more preferably 1 to 10, more preferably Is a hydrocarbon group of 1 to 5), and two or more of R 112 to R 126 may be bonded to form a cyclic structure.
  • the hydrocarbon group having 1 to 40 carbon atoms represented by R 107 to R 126 in formula (A ′) and formula (A ′′) is the same as the hydrocarbon group represented by R 101 to R 106 in formula (A).
  • R 107 to R 111 when two or more of R 107 to R 111 are bonded to form a cyclic structure, and when two or more of R 112 to R 126 are bonded to form a cyclic structure, Examples of the group include tetramethylene group, pentamethylene group, hexamethylene group, diphenylmethane-2,2′-diyl group, diphenylethane-3,3′-diyl group, diphenylpropane-4,4′-diyl group and the like. Can be mentioned.
  • 8-hydroxyquinoline or a metal complex of its derivative, an oxadiazole derivative, or a nitrogen-containing heterocyclic derivative is preferable.
  • a metal chelate oxinoid compound containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline), for example, tris (8-quinolinol) aluminum is used.
  • 8-quinolinol or 8-hydroxyquinoline a metal chelate oxinoid compound containing a chelate of oxine
  • tris (8-quinolinol) aluminum is used.
  • an oxadiazole derivative the following can be mentioned.
  • Ar 17 , Ar 18 , Ar 19 , Ar 21 , Ar 22 and Ar 25 each represent a substituted or unsubstituted aromatic hydrocarbon group having 6 to 50 carbon atoms or a condensed aromatic hydrocarbon group
  • Ar 17 and Ar 18 , Ar 19 and Ar 21 , Ar 22 and Ar 25 may be the same or different.
  • the aromatic hydrocarbon group or the condensed aromatic hydrocarbon group include a phenyl group, a naphthyl group, a biphenyl group, an anthranyl group, a perylenyl group, and a pyrenyl group.
  • substituents include alkyl groups having 1 to 10 carbon atoms, alkoxy groups having 1 to 10 carbon atoms, and cyano groups.
  • Ar 20 , Ar 23 and Ar 24 each represent a substituted or unsubstituted divalent aromatic hydrocarbon group or condensed aromatic hydrocarbon group having 6 to 60 carbon atoms, and Ar 23 and Ar 24 are identical to each other. But it can be different.
  • the divalent aromatic hydrocarbon group or condensed aromatic hydrocarbon group include a phenylene group, a naphthylene group, a biphenylene group, an anthranylene group, a peryleneylene group, and a pyrenylene group.
  • substituents include alkyl groups having 1 to 10 carbon atoms, alkoxy groups having 1 to 10 carbon atoms, and cyano groups.
  • electron transfer compounds those having good thin film forming properties are preferably used.
  • Specific examples of these electron transfer compounds include the following.
  • the nitrogen-containing heterocyclic derivative as the electron transfer compound is a nitrogen-containing heterocyclic derivative composed of an organic compound having the following formula, and includes a nitrogen-containing compound that is not a metal complex. Examples thereof include a 5-membered ring or 6-membered ring containing a skeleton represented by the following formula (B) and a structure represented by the following formula (C).
  • X 1 represents a carbon atom or a nitrogen atom.
  • Z 1 and Z 2 each independently represents an atomic group capable of forming a nitrogen-containing heterocycle.
  • the nitrogen-containing heterocyclic derivative is more preferably an organic compound having a nitrogen-containing aromatic polycyclic group consisting of a 5-membered ring or a 6-membered ring. Further, in the case of such a nitrogen-containing aromatic polycyclic group having a plurality of nitrogen atoms, the nitrogen-containing compound having a skeleton in which the above formulas (B) and (C) or the above formula (B) and the following formula (D) are combined. Aromatic polycyclic organic compounds are preferred.
  • the nitrogen-containing group of the nitrogen-containing aromatic polycyclic organic compound is selected from, for example, nitrogen-containing heterocyclic groups represented by the following formulae.
  • R ′ ′′ represents an aromatic hydrocarbon group having 6 to 40 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20 and even more preferably 6 to 12) or ring carbon atoms.
  • 6 to 40 (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12) condensed aromatic hydrocarbon group, 5 to 40 ring atoms (preferably 5 to 30, more preferably 5)
  • aromatic heterocyclic groups or 5 to 40 ring atoms preferably 5 to 30, more preferably 5 to 20, more preferably 5 to 12) condensed aromatic heterocyclic rings Group, an alkyl group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 5), or an alkoxy group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 5).
  • n 1 is an integer of 0 to 5, and when n 1 is an integer of 2 or more, the plurality of R ′ ′′ may be the same or different from each other.
  • preferred specific compounds include nitrogen-containing heterocyclic derivatives represented by the following formula (D1). HAr-L 101 -Ar 101 -Ar 102 (D1)
  • HAr is a nitrogen-containing heterocyclic group having a substituted or unsubstituted ring-forming atom number of 5 to 40 (preferably 5 to 30, more preferably 5 to 20, more preferably 5 to 12).
  • L 101 is a single bond, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 40 (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12) ring-forming carbon atoms or a condensed aromatic carbon group.
  • Ar 101 is a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 40 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12), and Ar 102 Is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 40 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20 and even more preferably 6 to 14), substituted or unsubstituted ring carbon atoms 6 to 40 (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12) condensed aromatic hydrocarbon group, substituted or unsubstituted ring-forming atoms 5 to 40 (preferably 5 to 30) More preferably 5 to 20, more preferably 5 to 12) aromatic heterocyclic groups or substituted or unsubstituted ring-forming atoms of 5 to 40 (preferably 5 to 30, more preferably 5 to 20, more preferably Ku is a fused aromatic heterocyclic group having 5 to 12).
  • HAr is selected from the following group, for example.
  • L 101 is selected from the following group, for example.
  • Ar 101 is selected from, for example, groups represented by the following formulas (D2) and (D3).
  • R 201 to R 214 each independently represent a hydrogen atom, a halogen atom, or a substituted or unsubstituted carbon number of 1 to 20 (preferably 1 to 10, more preferably 1-5) alkyl group, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 5), substituted or unsubstituted ring carbon atoms 6 to 40 (preferably Is an aryloxy group having 6 to 30, more preferably 6 to 20, and more preferably 6 to 12, a substituted or unsubstituted ring-forming carbon number of 6 to 40 (preferably 6 to 30, more preferably 6 to 20, More preferably 6-12) aromatic hydrocarbon group, substituted or unsubstituted ring-forming carbon atoms of 6-40 (preferably 6-30, more preferably 6-20, still more preferably 6-12).
  • Ar 103 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 40 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20, and still more preferably 6 to 12), a substituted or unsubstituted ring.
  • a condensed aromatic hydrocarbon group having 6 to 40 carbon atoms (preferably 6 to 30, more preferably 6 to 20 and even more preferably 6 to 12), a substituted or unsubstituted ring atom number of 5 to 40 (preferably 5-30, more preferably 5-20, more preferably 5-12, aromatic heterocyclic groups or substituted or unsubstituted ring-forming atoms of 5-40 (preferably 5-30, more preferably 5-20) More preferably, it is a condensed aromatic heterocyclic group of 5 to 12).
  • Ar 102 is selected from the following group, for example.
  • the following compounds are also preferably used as the nitrogen-containing aromatic polycyclic organic compound as the electron transporting compound.
  • R 231 to R 234 are each independently a hydrogen atom, a substituted or unsubstituted aliphatic group having 1 to 20 carbon atoms, a substituted or unsubstituted aliphatic group having 3 to 20 carbon atoms.
  • X 21 and X 22 each independently represents an oxygen atom, Represents a sulfur atom or a dicyanomethylene group.
  • the following compounds are also preferably used as the electron transfer compound.
  • R 221 , R 222 , R 223 and R 224 are the same or different groups, and are an aromatic hydrocarbon group or a condensed aromatic hydrocarbon group represented by the following formula (D6). It is.
  • R 225 , R 226 , R 227 , R 228 and R 229 are the same or different from each other, and are a hydrogen atom, a saturated or unsaturated C 1-20 alkoxyl group, saturated or An unsaturated alkyl group having 1 to 20 carbon atoms, an amino group, or an alkylamino group having 1 to 20 carbon atoms. At least one of R 225 , R 226 , R 227 , R 228 and R 229 is a group other than a hydrogen atom.
  • the electron transfer compound may be a polymer compound containing the nitrogen-containing heterocyclic group or the nitrogen-containing heterocyclic derivative.
  • the electron transport layer of the organic EL device of one embodiment of the present invention particularly preferably contains at least one nitrogen-containing heterocyclic derivative represented by the following formulas (E) to (G).
  • Z 201 , Z 202, and Z 203 are each independently a nitrogen atom or a carbon atom.
  • R 301 and R 302 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12), substituted or unsubstituted An unsubstituted heteroaryl group having 5 to 50 ring atoms (preferably 5 to 30, more preferably 5 to 20 and even more preferably 5 to 12), a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, A substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • v is an integer of 0 to 5, and when v is an integer of 2 or more, the plurality of R 301 may be the same or different from each other. Further, two R 301 may be bonded to each other to form a substituted or unsubstituted hydrocarbon ring.
  • Ar 201 represents a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12), or a substituted or unsubstituted ring atom number. 5 to 50 (preferably 5 to 30, more preferably 5 to 20, and still more preferably 5 to 12) heteroaryl groups.
  • Ar 202 is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 5), a substituted or unsubstituted carbon atom having 1 to 20 carbon atoms (preferably 1 to 1 carbon atoms). 10, more preferably 1 to 5) haloalkyl group, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted ring forming carbon atoms 6 to 50 (preferably 6 to 30, more preferably 6).
  • any one of Ar 201 and Ar 202 is a substituted or unsubstituted condensed aromatic hydrocarbon ring group having 10 to 50 ring carbon atoms (preferably 10 to 30, more preferably 10 to 20), It is an unsubstituted aromatic heterocyclic group having 9 to 50 ring atoms (preferably 9 to 30, more preferably 9 to 20).
  • Ar 203 represents a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12), or a substituted or unsubstituted ring-forming atom number. 5 to 50 (preferably 5 to 30, more preferably 5 to 20, and still more preferably 5 to 12) heteroarylene groups.
  • L 201 , L 202 and L 203 are each independently a single bond or a substituted or unsubstituted ring-forming carbon number of 6 to 50 (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12). Or a divalent condensed aromatic heterocyclic group having 9 to 50 (preferably 9 to 30, more preferably 9 to 20) ring-forming atoms which are substituted or unsubstituted. )
  • aryl group having 6 to 50 ring carbon atoms examples include phenyl group, naphthyl group, anthryl group, phenanthryl group, naphthacenyl group, chrysenyl group, pyrenyl group, biphenyl group, terphenyl group, tolyl group, fluoranthenyl group, fluorenyl Group and the like.
  • heteroaryl group having 5 to 50 ring atoms examples include pyrrolyl group, furyl group, thienyl group, silolyl group, pyridyl group, quinolyl group, isoquinolyl group, benzofuryl group, imidazolyl group, pyrimidyl group, carbazolyl group, selenophenyl Group, oxadiazolyl group, triazolyl group, pyrazinyl group, pyridazinyl group, triazinyl group, quinoxalinyl group, acridinyl group, imidazo [1,2-a] pyridinyl group, imidazo [1,2-a] pyrimidinyl group and the like.
  • Examples of the alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group.
  • Examples of the haloalkyl group having 1 to 20 carbon atoms include groups obtained by substituting one or more hydrogen atoms of the alkyl group with at least one halogen atom selected from fluorine, chlorine, iodine and bromine.
  • Examples of the alkoxy group having 1 to 20 carbon atoms include groups having the above alkyl group as an alkyl moiety.
  • Examples of the arylene group having 6 to 50 ring carbon atoms include groups obtained by removing one hydrogen atom from the aryl group.
  • Examples of the divalent condensed aromatic heterocyclic group having 9 to 50 ring atoms include groups obtained by removing one hydrogen atom from the condensed aromatic heterocyclic group described as the heteroaryl group.
  • the thickness of the electron transport layer is not particularly limited, but is preferably 1 nm to 100 nm. Moreover, it is preferable to use an insulator or a semiconductor as an inorganic compound in addition to the nitrogen-containing ring derivative as a component of the electron injection layer that can be provided adjacent to the electron transport layer. If the electron injection layer is made of an insulator or a semiconductor, current leakage can be effectively prevented and the electron injection property can be improved.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferable alkali metal chalcogenides include, for example, Li 2 O, K 2 O, Na 2 S, Na 2 Se, and Na 2 O
  • preferable alkaline earth metal chalcogenides include, for example, CaO, BaO. , SrO, BeO, BaS and CaSe.
  • preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KCl, and NaCl.
  • preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
  • the inorganic compound constituting the electron injection layer is preferably a microcrystalline or amorphous insulating thin film. If the electron injection layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides.
  • the preferred thickness of the layer is about 0.1 nm to 15 nm.
  • the electron injection layer in the organic EL element of one embodiment of the present invention preferably contains the above-described electron donating dopant.
  • an organic layer close to the anode may be defined as a hole injection layer.
  • the hole injection layer has a function of efficiently injecting holes from the anode into the organic layer unit.
  • the compound (1) of one embodiment of the present invention can also be used as a hole transport material contained in the hole transport layer (first charge transport layer).
  • an aromatic amine compound for example, an aromatic amine derivative represented by the following formula (H) is preferably used.
  • Ar 211 to Ar 214 each independently represents a substituted or unsubstituted ring-forming carbon number of 6 to 50 (preferably 6 to 30, more preferably 6 to 20, more preferably 6 to 12). ) Or a substituted or unsubstituted condensed aromatic hydrocarbon group having 6 to 50 ring carbon atoms (preferably 6 to 30, more preferably 6 to 20 and even more preferably 6 to 12). Alternatively, an aromatic heterocyclic group having 5 to 50 unsubstituted ring atoms (preferably 5 to 30, more preferably 5 to 20 and even more preferably 5 to 12) or substituted or unsubstituted ring atoms having 5 to 5 atoms.
  • Ar 211 and Ar 212 , Ar 213 and Ar 214 may combine with each other to form a saturated or unsaturated ring structure.
  • L 211 represents an aromatic carbon atom having 6 to 50 (preferably 6 to 30, more preferably 6 to 20, and still more preferably 6 to 12) ring-substituted carbon atoms.
  • An aromatic amine represented by the following formula (J) is also preferably used for forming the hole transport layer.
  • the hole transport layer may be formed using a hole transport layer composition containing a hole transport material and a solvent.
  • the hole transport material may be a high molecular compound such as a polymer or a low molecular compound such as a monomer.
  • a compound having an ionization potential of 4.5 eV to 6.0 eV is preferable from the viewpoint of a charge injection barrier.
  • hole transport materials include aromatic amine derivatives, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, compounds in which a tertiary amine is linked by a fluorene group, hydrazone derivatives, silazane derivatives, silanamine derivatives Phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, carbon and the like.
  • the derivative includes, for example, an aromatic amine derivative, and includes an aromatic amine itself and a compound having an aromatic amine as a main skeleton.
  • an aromatic amine compound is preferable from the viewpoint of amorphousness and visible light transmittance, and an aromatic tertiary amine compound is particularly preferable.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine.
  • the type of the aromatic tertiary amine compound is not particularly limited, but from the viewpoint of uniform light emission due to the surface smoothing effect, a polymer compound having a weight average molecular weight of 1,000 or more and 1,000,000 or less (a polymerizable compound in which repeating units are linked) is further included. preferable.
  • a polymer compound having a weight average molecular weight of 1,000 or more and 1,000,000 or less a polymerizable compound in which repeating units are linked
  • the aromatic tertiary amine polymer compound include a polymer compound having a repeating unit represented by the following formula (I).
  • Ar 1 and Ar 2 each independently represent a substituted or unsubstituted aromatic hydrocarbon group or a substituted or unsubstituted aromatic heterocyclic group.
  • Ar 3 to Ar 5 each independently represents a substituted or unsubstituted aromatic hydrocarbon group or a substituted or unsubstituted aromatic heterocyclic group.
  • two groups bonded to the same N atom may be bonded to each other to form a ring.
  • Y represents a linking group selected from the following.
  • Ar 6 to Ar 16 each independently represents a substituted or unsubstituted aromatic hydrocarbon group or a substituted or unsubstituted aromatic heterocyclic group.
  • R 1 and R 2 each independently represents a hydrogen atom or a substituent.
  • the aromatic hydrocarbon group and aromatic heterocyclic group represented by Ar 1 to Ar 16 include a benzene ring, a naphthalene ring, a phenanthrene ring, and a thiophene from the viewpoint of the solubility, heat resistance, hole injection / transport properties of the polymer compound.
  • a group having a ring selected from a ring and a pyridine ring is preferable, and a group having a ring selected from a benzene ring and a naphthalene ring is more preferable.
  • the molecular weight of the optional substituent of the aromatic hydrocarbon group and aromatic heterocyclic group of Ar 1 to Ar 16 is usually 400 or less, and preferably about 250 or less.
  • an alkyl group, an alkenyl group, an alkoxy group, an aromatic hydrocarbon group, an aromatic heterocyclic group and the like are preferable.
  • the substituent represented by R 1 and R 2 include an alkyl group, an alkenyl group, an alkoxy group, a silyl group, a siloxy group, an aromatic hydrocarbon group, and an aromatic heterocyclic group.
  • a conductive polymer obtained by polymerizing 3,4-ethylenedioxythiophene, which is a derivative of polythiophene, in high molecular weight polystyrene sulfonic acid is also preferable. Moreover, the end of this polymer may be capped with methacrylate or the like.
  • the concentration of the hole transport material in the composition for a hole transport layer is arbitrary, but is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 0 in terms of film thickness uniformity. 0.5% by mass or more, usually 70% by mass or less, preferably 60% by mass or less, and more preferably 50% by mass or less. If it is this range, a film thickness nonuniformity will not arise or a defect will not arise in a positive hole transport layer.
  • the composition for a hole transport layer may contain an electron accepting compound.
  • the electron-accepting compound is preferably a compound having an oxidizing power and the ability to accept one electron from the above-described hole transport material, specifically, a compound having an electron affinity of 4 eV or more is preferable, and 5 eV or more. More preferred are compounds that are compounds.
  • electron-accepting compounds include triarylboron compounds, metal halides, Lewis acids, organic acids, onium salts, salts of arylamines and metal halides, and salts of arylamines and Lewis acids.
  • examples thereof include one or more compounds selected from the group. More specifically, onium salts having an organic group such as 4-isopropyl-4′-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate and triphenylsulfonium tetrafluoroborate; iron (III) chloride, ammonium peroxodisulfate, etc.
  • cyano compounds such as tetracyanoethylene
  • aromatic boron compounds such as tris (pendafluorophenyl) borane
  • fullerene derivatives iodine
  • polystyrene sulfonate ions alkylbenzene sulfonate ions, camphor sulfonate ions, etc.
  • the sulfonate ion etc. are mentioned.
  • These electron-accepting compounds can improve the conductivity of the hole transport layer by oxidizing the hole transport material.
  • the content of the electron-accepting compound in the hole transport layer composition with respect to the hole transport material is usually 0.1 mol% or more, preferably 1 mol% or more. However, it is usually 100 mol% or less, preferably 40 mol% or less.
  • other components may be further included in the composition for the hole transport layer.
  • other components include various light emitting materials, electron transporting compounds, binder resins, and coating property improving agents.
  • only 1 type may be used for another component and it may use 2 or more types together by arbitrary combinations and a ratio.
  • a hole transport material suitable for a coating method is preferably used.
  • Such hole transport materials include polyvinyl carbazole or derivatives thereof, polysilane or derivatives thereof, polysiloxane derivatives having aromatic amine residues in the side chain or main chain, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyl. Diamine derivative, polyaniline or derivative thereof, polythiophene or derivative thereof, polypyrrole or derivative thereof, polyarylamine or derivative thereof, poly (p-phenylene vinylene) or derivative thereof, polyfluorene derivative, polymer compound having aromatic amine residue And poly (2,5-thienylene vinylene) or derivatives thereof.
  • the hole transport material is preferably a polymer compound such as a polymer. This is because when the polymer compound is used, the film-forming property is improved and the light-emitting property of the organic EL element can be made uniform.
  • the number average molecular weight calibrated with standard polystyrene of such a hole transport material is 10,000 or more, preferably 3.0 ⁇ 10 4 to 5.0 ⁇ 10 5 , more preferably 6.0 ⁇ . 10 4 to 1.2 ⁇ 10 5 .
  • the weight average molecular weight of the hole transport material is 1.0 ⁇ 10 4 or more, preferably 5.0 ⁇ 10 4 to 1.0 ⁇ 10 6 , more preferably 1.0 ⁇ 10 5 to 6.0 ⁇ 10 5 .
  • the hole transport material examples include polyvinyl carbazole or derivatives thereof, polysilane or derivatives thereof, polysiloxane derivatives having an aromatic amine residue in the side chain or main chain, polyaniline or derivatives thereof, polythiophene or derivatives thereof, polyfluorene derivatives, Polymer compounds having an aromatic amine residue, poly (p-phenylene vinylene) or a derivative thereof, and polymer compounds such as poly (2,5-thienylene vinylene) or a derivative thereof are preferable, and polyvinyl carbazole or A derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine residue in the side chain or main chain, a polyfluorene derivative, and a polymer compound having an aromatic amine residue.
  • the hole transport material is a low molecule, it is preferably used by being dispersed in a polymer binder.
  • the polyvinyl carbazole or a derivative thereof can be obtained, for example, by cationic polymerization of a vinyl monomer or radical polymerization.
  • a compound having a residue of the low molecular hole transport material in the side chain or main chain is preferably used because the siloxane skeleton structure has almost no hole transport property.
  • compounds having a hole transporting aromatic amine residue in the side chain or main chain can be mentioned.
  • a polymer having a fluorenediyl unit represented by the following formula (Z) is preferable. This is because when the hole transport layer of the organic EL device is brought into contact with an organic compound having a condensed ring or a plurality of aromatic rings, the hole injection efficiency is improved and the current density during driving is increased.
  • R 1 and R 2 may be the same or different and each independently represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, or a monovalent heterocyclic group.
  • the alkyl group include groups having 1 to 10 carbon atoms.
  • the alkoxy group include groups having 1 to 10 carbon atoms.
  • the aryl group include a phenyl group and a naphthyl group.
  • monovalent heterocyclic groups include pyridyl groups.
  • the aryl group and the monovalent heterocyclic group may have a substituent.
  • the substituent include an alkyl group having 1 to 10 carbon atoms and a carbon atom from the viewpoint of improving the solubility of the polymer compound. Examples thereof include an alkoxy group having 1 to 10 atoms.
  • the aryl group and the monovalent heterocyclic group may have a crosslinkable group.
  • the crosslinking group include vinyl group, ethynyl group, butenyl group, group having acrylic structure, group having acrylate structure, group having acrylamide structure, group having methacrylic structure, group having methacrylate structure, and methacrylamide structure.
  • a group having a small ring for example, cyclopropane, cyclobutane, epoxide, oxetane, diketene, episulfide, etc.
  • a particularly preferable hole transport material is a polymer containing the fluorenediyl unit and the aromatic tertiary amine compound unit as repeating units, for example, a polyarylamine polymer.
  • aromatic tertiary amine compound unit examples include a repeating unit represented by the following formula (K).
  • Ar 1 , Ar 2 , Ar 3 and Ar 4 each independently represent an arylene group or a divalent heterocyclic group.
  • Ar 5 , Ar 6 and Ar 7 each independently represents an aryl group or a monovalent heterocyclic group. Alternatively, Ar 6 and Ar 7 may form a ring together with the nitrogen atom to which Ar 6 and Ar 7 are bonded.
  • m and n each independently represents 0 or 1.
  • Examples of the arylene group include a phenylene group.
  • Examples of the divalent heterocyclic group include a pyridinediyl group. These groups may have a substituent.
  • Examples of the aryl group include a phenyl group and a naphthyl group.
  • Examples of the monovalent heterocyclic group include a pyridyl group. These groups may have a substituent.
  • Examples of the monovalent heterocyclic group include thienyl group, furyl group, pyridyl group and the like.
  • an alkyl group, an alkoxy group, or an aryl group is preferable as the optional substituent for the arylene group, aryl group, divalent heterocyclic group, and monovalent heterocyclic group.
  • Groups are more preferred.
  • the alkyl group include groups having 1 to 10 carbon atoms.
  • the alkoxy group include groups having 1 to 10 carbon atoms.
  • the aryl group include a phenyl group and a naphthyl group.
  • the substituent may have a crosslinkable group.
  • the crosslinkable group include vinyl group, ethynyl group, butenyl group, group having acrylic structure, group having acrylate structure, group having acrylamide structure, group having methacrylic structure, group having methacrylate structure, methacrylamide structure , A group having a vinyl ether structure, a vinylamino group, a group having a silanol structure, a group having a small ring (for example, cyclopropane, cyclobutane, epoxide, oxetane, diketene, episulfide, etc.).
  • Ar 1 , Ar 2 , Ar 3 and Ar 4 are preferably arylene groups, and more preferably phenylene groups.
  • Ar 5 , Ar 6 and Ar 7 are preferably aryl groups, and more preferably phenyl groups.
  • the carbon atom in Ar 2 and the carbon atom in Ar 3 may be directly bonded, or may be bonded via a divalent group such as —O— or —S—. From the viewpoint of ease of synthesis of the monomer, m and n are preferably 0.
  • repeating unit represented by the formula (K) include a repeating unit represented by the following formula.
  • crosslinker having a crosslinkable group.
  • the crosslinking agent include vinyl group, acetyl group, butenyl group, acrylic group, acrylamide group, methacryl group, methacrylamide group, vinyl ether group, vinylamino group, silanol group, cyclopropyl group, cyclobutyl group, epoxy group, oxetane.
  • a compound having a polymerizable substituent selected from the group consisting of a group, a diketene group, an episulfide group, a lactone group, and a lactam group.
  • a polyfunctional acrylate is preferable, and examples thereof include dipentaerythritol hexaacrylate (DPHA) and trispentaerythritol octaacrylate (TPEA).
  • DPHA dipentaerythritol hexaacrylate
  • TPEA trispentaerythritol octaacrylate
  • a hole transport material having a hole transport site and having a crosslinkable group is preferably used.
  • the hole transport site include a triarylamine structure, a fluorene ring, an anthracene ring, a pyrene ring, a carbazole ring, a dibenzofuran ring, a dibenzothiophene ring, a phenoxazine ring, and a phenanthroline ring, and a thiophene ring structure.
  • aromatic heterocyclic structures such as rings and silole rings, and metal complex structures.
  • a triarylamine structure as a hole transport site in terms of improving electrochemical stability and hole transport ability.
  • it is a polymer at the point which becomes easy to become insoluble in an organic solvent by crosslinking reaction.
  • a polymer containing a repeating unit represented by the following formula (L) is preferable from the viewpoint of improving electrochemical stability and hole transport ability.
  • m represents an integer of 0 to 3
  • Ar 1 and Ar 2 each independently represent a single bond, a substituted or unsubstituted aromatic hydrocarbon group, or a substituted or unsubstituted aromatic complex.
  • Ar 3 to Ar 5 each independently represents a substituted or unsubstituted aromatic hydrocarbon group or a substituted or unsubstituted aromatic heterocyclic group.
  • Ar 1 and Ar 2 are not simultaneously a single bond.
  • aromatic hydrocarbon group examples include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, acenaphthene ring, fluoranthene ring, fluorene ring and the like.
  • Examples of the aromatic heterocyclic group include a furan ring, a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, an oxadiazole ring, an indole ring, a carbazole ring, a pyrroloimidazole ring, and a pyrrolopyrazole ring.
  • Ar 1 to Ar 5 each independently comprises a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a triphenylene ring, a pyrene ring, a thiophene ring, a pyridine ring, and a fluorene ring from the viewpoint of solubility in solvents and heat resistance
  • a monovalent group of a ring selected from the group is preferred.
  • Ar 1 to Ar 5 a group in which one or two or more rings selected from the above groups are connected by a single bond is preferable, and a biphenyl group, a biphenylene group, a terphenyl group, and a terphenylene group are more preferable.
  • Examples of the optional substituent of the aromatic hydrocarbon group and aromatic heterocyclic group include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, and a sec-butyl group.
  • arylthio group having 4 or more carbon atoms, preferably 5 or more, and 36 or less, preferably 24 or less
  • arylthio group a silyl group having 2 or more, preferably 3 or more, and 36 or less, preferably 24 or less, such as a trimethylsilyl group or a triphenylsilyl group; a carbon such as a trimethylsiloxy group or a triphenylsiloxy group
  • a siloxy group having a number of 2 or more, preferably 3 or more, 36 or less, preferably 24 or less; a cyano group; a fragrance having 6 to 36 carbon atoms, preferably 6 to 24, such as a phenyl group or a naphthyl group Group hydrocarbon ring group; and thienyl group, pyridyl group and the like having 3 or more carbon atoms, preferably 4 or more, and 36 or less, preferably 2 An aromatic heterocyclic group which is 4 or less is mentioned.
  • an alkyl group having 1 to 12 carbon atoms and an alkoxy group having 1 to 12 carbon atoms are preferable from the viewpoint of solubility.
  • each said arbitrary substituent may have a substituent further, and the example is selected from an above-described group as an arbitrary substituent.
  • Ar 1 to Ar 5 including the substituent, have 3 or more, preferably 5 or more, more preferably 6 or more, and 72 or less, preferably 48 or less. More preferably, it is 25 or less.
  • M in the formula (L) represents an integer of 0 to 3, and m is preferably 0 from the viewpoint of improving the film formability. Further, m is preferably 1 to 3 from the viewpoint of improving hole transport ability.
  • m is 2 or more, two or more Ar 4 and two or more Ar 5 may be the same or different. Further, Ar 4 and Ar 5 may be bonded to each other directly or via a linking group to form a cyclic structure.
  • a crosslinkable group refers to a group that reacts with the same or different groups of other molecules located nearby by irradiation with heat and / or active energy rays to form a new chemical bond.
  • Examples of the crosslinkable group include the following crosslinkable groups from the viewpoint of easy insolubilization.
  • R 21 to R 23 each independently represents a hydrogen atom or a substituted or unsubstituted alkyl group.
  • Ar 21 represents a substituted or unsubstituted aromatic group.
  • X 1 , X 2 and X 3 each independently represent a hydrogen atom or a halogen atom.
  • R 24 represents a hydrogen atom or a vinyl group.
  • the benzocyclobutene ring may have a substituent, and the substituents may be bonded to each other to form a ring.
  • Examples of the alkyl group of R 21 to R 23 include alkyl groups having 1 to 24 carbon atoms, preferably 1 to 12 carbon atoms, such as a methyl group and an ethyl group.
  • Examples of the aromatic group for Ar 21 include the same groups as the aromatic groups represented by Ar 1 to Ar 5 .
  • the optional substituents for R 21 to R 23 and Ar 21 are not particularly limited, and examples thereof include groups selected from the aforementioned arbitrary substituents.
  • a crosslinkable group a group that undergoes insolubilization reaction by cationic polymerization such as a cyclic ether group such as an epoxy group or an oxetane group, or a vinyl ether group is preferable in terms of high reactivity and easy insolubilization.
  • an oxetane group is particularly preferable from the viewpoint that the rate of cationic polymerization can be easily controlled, and a vinyl ether group is preferable from the viewpoint that a hydroxyl group that may cause deterioration of the device during the cationic polymerization is hardly generated.
  • a group that undergoes a cycloaddition reaction such as an arylvinylcarbonyl group such as a cinnamoyl group or a group having a benzocyclobutene ring, is preferred from the viewpoint of further improving electrochemical stability.
  • a group having a benzocyclobutene ring is particularly preferable in that the structure after insolubilization is particularly stable.
  • a group represented by the following formula (M) is preferable.
  • the benzocyclobutene ring in the formula (M) may have a substituent.
  • the substituents may be bonded to each other to form a ring.
  • the crosslinkable group may be directly bonded to a monovalent or divalent aromatic group in the molecule, or may be bonded via a divalent group.
  • the divalent group 1 to 30 groups selected from —O—, —C ( ⁇ O) —, and optionally substituted —CH 2 — are linked in any order.
  • a divalent group is preferred.
  • bonded through these bivalent groups is shown below, it is not limited to these.
  • n represents an integer from 1 to 12.
  • the hole transport material preferably contains a conductive polymer or an oligomer.
  • the conductive polymer or oligomer is usually a mixture with an electron donating compound, an electron accepting compound, or an acidic compound.
  • the mixture may be in the form of a solid or liquid, but a solution, dispersion, colloid, ink, varnish and the like suitably used in a method for forming a film by a coating method to obtain a solid film are preferable.
  • an additive may be added to the mixture for the purpose of improving the hole transporting property or improving the film forming property. Examples of conductive polymers and oligomers that can be used in one embodiment of the present invention are shown below.
  • Typical examples of the electron donating compound include aromatic amine derivatives, phthalocyanine derivatives, porphyrin derivatives, thiophene derivatives, benzylphenyl derivatives, compounds in which tertiary amines are linked by a fluorene group, hydrazone derivatives, silazane derivatives, and silanamine derivatives.
  • These derivatives may be any of low molecules having a molecular weight of less than 1000, oligomers and dendrimers having a molecular weight of 1000 to 10,000, and polymers having a molecular weight of 10,000 or more.
  • aromatic amine derivatives, polythiophene derivatives, polyaniline derivatives, and oligoaniline derivatives are preferably used.
  • the electron-accepting compound and the acidic compound include triaryl boron compounds, metal halides, Lewis acids, organic acids, onium salts, salts of arylamines and metal halides, arylamines and Lewis acids, 1 type, or 2 or more types of compounds chosen from the group which consists of these salts are mentioned. More specifically, onium salts having an organic group such as 4-isopropyl-4′-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate and triphenylsulfonium tetrafluoroborate; iron (III) chloride, ammonium peroxodisulfate, etc.
  • High valent inorganic compounds such as tetracyanoethylene; aromatic boron compounds such as tris (pentafluorophenyl) borane; fullerene derivatives; iodine; polystyrene sulfonate ions, alkylbenzene sulfonate ions, camphor sulfonate ions, etc.
  • the sulfonate ion etc. are mentioned.
  • these derivatives may be any of a low molecular weight molecular weight of less than 1000, an oligomer and a dendrimer having a molecular weight of 1000 to 10,000, and a polymer having a molecular weight of 10,000 or more.
  • These electron-accepting compounds can improve the conductivity of the hole transport layer by oxidizing the hole transport material.
  • the content of the electron-accepting compound in the hole transport layer or the composition for the hole transport layer with respect to the hole transport material is usually 0.1 mol% or more, preferably 1 mol% or more, usually 100 mol% or less, preferably Is 40 mol% or less.
  • the following are representative examples (i) to (x) of hole transport materials that can be used in one embodiment of the present invention. These can be used alone or in combination, but it is desirable to mix a relatively electron-donating material and a relatively electron-accepting material.
  • an additive for promoting charge transfer between the electron donating compound and the electron accepting compound or improving the coating film formability can be added as a third component. A plurality of third components may be used.
  • R 1 and R 1 ′ are each independently selected from a hydrogen atom and alkyl having 1 to 4 carbon atoms.
  • R 1 and R 1 ′ may be bonded to each other to represent an alkylene chain having 1 to 4 carbon atoms.
  • the alkylene chain may be optionally substituted with an alkyl group having 1 to 12 carbon atoms, an aromatic group having 6 to 12 carbon atoms, or a 1,2-cyclohexylene group.
  • n represents a number greater than about 6.
  • n is an integer of 0 to 4
  • m ⁇ 1 is an integer of 1 to 5
  • n + (m ⁇ 1) 5
  • R 1 is the same or different and each independently represents an alkyl group, alkenyl group, alkoxy group, cycloalkyl group, cycloalkenyl group, alkanoyl group, alkylthio group, aryloxy group, alkylthioalkyl group, alkylaryl group, arylalkyl Group, amino group, alkylamino group, dialkylamino group, aryl group, alkylsulfinyl group, alkoxyalkyl group, alkylsulfonyl group, arylthio group, arylsulfinyl group, alkoxycarbonyl group, arylsulfonyl group, carboxyl group, halogen atom, cyano A group or an alkyl group substituted by one or more sulfonic acid groups, carboxyl groups,
  • R 1 is independently a hydrogen atom, alkyl group, alkenyl group, alkoxy group, alkanoyl group, alkylthio group, aryloxy group, alkylthioalkyl group, alkylaryl group, arylalkyl group, amino group, alkyl Amino group, dialkylamino group, aryl group, alkylsulfinyl group, alkoxyalkyl group, alkylsulfonyl group, arylthio group, arylsulfinyl group, alkoxycarbonyl group, arylsulfonyl group, acrylic acid group, phosphoric acid group, phosphonic acid group, halogen Atoms, nitro groups, cyano groups, hydroxyl groups, epoxy groups, silyl groups, siloxane groups, alcohol groups, benzyl groups, carboxylate groups, ether groups, ether carboxylate groups, amide sulfonate groups, ether sul
  • the two R 1 groups are joined together to form an alkylene or alkenylene chain that completes a 3-membered, 4-membered, 5-membered, 6-membered or 7-membered aromatic or alicyclic ring.
  • the ring may contain one or more divalent nitrogen, sulfur or oxygen atoms.
  • R 2 is independently a hydrogen atom, alkyl group, alkenyl group, aryl group, alkanoyl group, alkylthioalkyl group, alkylaryl group, arylalkyl group, amino group, epoxy group, silyl group, siloxane group, amide sulfonate group , Alcohol groups, benzyl groups, carboxylate groups, ether groups, ether carboxylate groups, amide sulfonate groups, ether sulfonate groups, and urethane groups.
  • Q is selected from the group consisting of S, Se, and Te
  • R 1 is independently a hydrogen atom, an alkyl group, an alkenyl group, an alkoxy group, an alkanoyl group, an alkthio group, an aryloxy group, Alkylthioalkyl group, alkylaryl group, arylalkyl group, amino group, alkylamino group, dialkylamino group, aryl group, alkylsulfinyl group, alkoxyalkyl group, alkylsulfonyl group, arylthio group, arylsulfinyl group, alkoxycarbonyl group, aryl Sulfonyl group, acrylic acid group, phosphoric acid group, phosphonic acid group, halogen atom, nitro group, cyano group, hydroxyl group, epoxy group, silyl group, siloxane group, alcohol group, benzyl group, carboxylate group, ether group,
  • R 1 groups may be joined together to form an alkylene or alkenylene chain that completes a 3, 4, 5, 6, or 7 membered aromatic or alicyclic ring, wherein the ring is 1
  • One or more divalent nitrogen, selenium, tellurium, sulfur, or oxygen atoms may be included.
  • R 1 and R 2 each independently represents a hydrogen atom, a substituted or unsubstituted monovalent hydrocarbon group, a t-butoxycarbonyl group, or a benzyloxycarbonyl group
  • R 3 to R 34 are Each independently a hydrogen atom, hydroxyl group, silanol group, thiol group, carboxyl group, phosphate group, phosphate ester group, ester group, thioester group, amide group, nitro group, substituted or unsubstituted monovalent hydrocarbon group ,
  • m and n are each independently an integer of 1 or more and satisfy m + n ⁇ 20.
  • X represents O, S or NH
  • A represents a naphthalene ring or anthracene ring which may have a substituent other than X and n SO 3 H groups
  • B represents a substituted group.
  • B is a divalent or higher-valent substituted or unsubstituted hydrocarbon group containing one or more aromatic rings, divalent or trivalent 1, considering the improvement in durability and charge transportability.
  • a 3,5-triazine group, a substituted or unsubstituted divalent diphenylsulfone group is preferred, and in particular, a divalent or trivalent substituted or unsubstituted benzyl group, a divalent substituted or unsubstituted p-xylylene group, Divalent or trivalent substituted or unsubstituted naphthyl group, divalent or trivalent 1,3,5-triazine group, divalent substituted or unsubstituted diphenylsulfone group, or divalent to tetravalent perfluorobiphenyl group
  • the compound represented by the formula (vii) is particularly preferably represented by the formula (vii-3).
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, a silanol group, a thiol group, a carboxyl group, a phosphate group, a phosphate group, or an ester group.
  • a and B are each independently A divalent group represented by the formula (viii-1) or (viii-2) is shown.
  • R 4 to R 11 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, a silanol group, a thiol group, a carboxyl group, a phosphate group, a phosphate ester group, an ester group, or a thioester group.
  • m and n are each independently an integer of 1 or more and satisfy m + n ⁇ 20.
  • n represents an integer of 3 or more.
  • a phenylamine-based polymer represented by the following formula (X) can also be used as a hole transport material.
  • n represents an integer of 3 or more.
  • the hole transport layer of the organic EL device of one embodiment of the present invention may have a two-layer structure of a first hole transport layer (anode side) and a second hole transport layer (cathode side).
  • the thickness of the hole transport layer is not particularly limited, but is preferably 10 to 200 nm.
  • a layer containing an acceptor material may be bonded to the positive electrode side of the hole transport layer or the first hole transport layer. This is expected to reduce drive voltage and manufacturing costs.
  • the acceptor material a compound represented by the following formula (Y) is preferable.
  • R 311 to R 316 may be the same as or different from each other, and each independently represents a cyano group, —CONH 2 , a carboxyl group, or —COOR 317 (wherein R 317 has 1 to 20 carbon atoms) Represents an alkyl group or a cycloalkyl group having 3 to 20 carbon atoms, provided that one or more pairs of R 311 and R 312 , R 313 and R 314 , and R 315 and R 316 are taken together— A group represented by CO—O—CO— may be formed.
  • R 317 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a cyclopentyl group, and a cyclohexyl group.
  • the thickness of the layer containing the acceptor material is not particularly limited, but
  • the carrier injection ability can be adjusted by doping (n) of the donor material or doping (p) of the acceptor material.
  • n doping is a method of doping a metal such as Li or Cs into an electron transport material
  • p doping is F 4 TCNQ (2, 3, 5, 6) in a hole transport material. -Tetrafluoro-7,7,8,8-tetracyanoquinodimethane) and the like.
  • the space layer is a fluorescent layer for the purpose of adjusting the carrier balance so that excitons generated in the phosphorescent layer are not diffused into the fluorescent layer. It is a layer provided between the layer and the phosphorescent light emitting layer.
  • the space layer can be provided between the plurality of phosphorescent light emitting layers. Since the space layer is provided between the light emitting layers, a material having both electron transport properties and hole transport properties is preferable. In order to prevent diffusion of triplet energy in the adjacent phosphorescent light emitting layer, the triplet energy is preferably 2.6 eV or more. Examples of the material used for the space layer include the same materials as those used for the above-described hole transport layer.
  • the material for an organic EL element of one embodiment of the present invention can also be used.
  • the organic EL device of one embodiment of the present invention preferably has a barrier layer such as an electron barrier layer, a hole barrier layer, or a triplet barrier layer in a portion adjacent to the light emitting layer.
  • the electron barrier layer is a layer that prevents electrons from leaking from the light emitting layer to the hole transport layer
  • the hole barrier layer is a layer that prevents holes from leaking from the light emitting layer to the electron transport layer. is there.
  • the material for the hole blocking layer the material for an organic EL element of one embodiment of the present invention can also be used.
  • the triplet barrier layer prevents the triplet excitons generated in the light emitting layer from diffusing into the surrounding layers, and confins the triplet excitons in the light emitting layer, thereby transporting electrons other than the light emitting dopant of the triplet excitons. It has a function of suppressing energy deactivation on the molecules of the layer.
  • the triplet energy of the phosphorescent dopant in the light emitting layer is E T d and the triplet energy of the compound used as the triplet barrier layer is E T TB , E T d ⁇ If the energy magnitude relationship of E T TB is satisfied, the triplet exciton of the phosphorescent dopant is confined (cannot move to other molecules) and the energy deactivation path other than light emission on the dopant is interrupted. It is assumed that light can be emitted with high efficiency.
  • the energy difference ⁇ E T E T TB ⁇ E T d is small, under the environment of room temperature, which is the actual element driving environment, , endothermically triplet excitons overcame this energy difference Delta] E T by thermal energy near is considered to be possible to move to another molecule.
  • the exciton lifetime is longer than that of fluorescence emission, so that the influence of the endothermic exciton transfer process is likely to appear.
  • the energy difference ⁇ E T is preferably as large as possible relative to the thermal energy at room temperature, more preferably 0.1 eV or more, and particularly preferably 0.2 eV or more.
  • the organic EL element material of one embodiment of the present invention can also be used as the material for the triplet barrier layer.
  • the electron mobility of the material constituting the triplet barrier layer is desirably 10 ⁇ 6 cm 2 / Vs or more in the range of electric field strength of 0.04 to 0.5 MV / cm.
  • the electron mobility is determined by impedance spectroscopy.
  • the electron injection layer is desirably 10 ⁇ 6 cm 2 / Vs or more in the range of electric field strength of 0.04 to 0.5 MV / cm. This facilitates the injection of electrons from the cathode into the electron transport layer, and also promotes the injection of electrons into the adjacent barrier layer and the light emitting layer, thereby enabling driving at a lower voltage.
  • each layer of the organic EL element of one embodiment of the present invention is not particularly limited. Conventionally known methods such as vacuum deposition and spin coating can be used.
  • the organic thin film layer containing the compound (1) in the organic EL device of one embodiment of the present invention is prepared by vacuum deposition, molecular beam deposition (MBE), dipping of a solution obtained by dissolving the compound in a solvent, spin coating It can be formed by a known method such as a coating method such as a coating method, a casting method, a bar coating method, or a roll coating method.
  • each organic layer of the organic EL element of one embodiment of the present invention is not particularly limited, but generally, if the film thickness is too thin, defects such as pinholes are likely to occur. In general, the range of several nm to 1 ⁇ m is preferable.
  • a method for forming a layer (particularly, a light emitting layer) containing the compound (1) of one embodiment of the present invention for example, the above-described method for forming a film of the ink composition of one embodiment of the present invention is preferable.
  • the layer containing the compound (1) which is one embodiment of the present invention is formed by the above coating method using a solvent and a solution (ink composition) containing the compound. It is preferable to form a film.
  • the ink composition may contain other materials such as a dopant as necessary.
  • a wet film-forming method is preferably used, and a relief printing method, an intaglio printing method, a lithographic printing method, a stencil printing method, and a printing method combining these and an offset printing method, an inkjet printing method, a dispenser coating method.
  • a relief printing method, an intaglio printing method, a lithographic printing method, a stencil printing method, a printing method combining these and an offset printing method, an inkjet printing method, a dispenser coating, and the like are preferable.
  • a method of transferring the polymer onto a wiring substrate having a target electrode by laser light, heat pressing, or the like can be used. Film formation by these methods can be performed under conditions well known to those skilled in the art.
  • heating upper limit 250 ° C.
  • drying under vacuum may be performed to remove the solvent, and polymerization reaction by light or high temperature heating exceeding 250 ° C. is unnecessary. Therefore, it is possible to suppress deterioration of the performance of the element due to light or high temperature heating exceeding 250 ° C.
  • the electronic device of one embodiment of the present invention includes the organic electroluminescence element of one embodiment of the present invention.
  • the organic electroluminescent element of one embodiment of the present invention can be used for display devices such as organic EL panel modules, display devices such as televisions, mobile phones, and personal computers, and electronic devices such as light emitting devices for lighting and vehicle lamps. .
  • 6-Bromo-1-tetralone (11.25 g, 50 mmol) and 3-bromobenzaldehyde (9.25 g, 50 mmol) are dissolved in ethanol (100 mL), sodium hydroxide (0.20 g, 5 mmol) is added, and at room temperature. Stir for 8 hours. The produced powder was collected by filtration, washed with methanol until the liquid became colorless, and dried in vacuo to obtain chalcone intermediate C1 (12.84 g, yield 82%).
  • This intermediate C2 (6.26 g, 20 mmol), 3-bromobenzamidine hydrochloride (4.71 g, 20 mmol) and sodium hydroxide (0.88 g, 22 mmol) were reacted in ethanol (200 mL) with heating under reflux for 8 hours. I let you. The resulting powder was collected by filtration, washed with methanol and dried in vacuo. To this powder, 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) (9.08 g, 40 mmol) was added in orthodichlorobenzene (80 mL), and the mixture was stirred at room temperature for 1 hour and further at 120 ° C. for 5 hours.
  • DDQ 2,3-dichloro-5,6-dicyano-p-benzoquinone
  • Example 1 (Washing the substrate) A glass substrate with an ITO transparent electrode (manufactured by Geomat Co., Ltd.) having a size of 25 mm ⁇ 25 mm ⁇ thickness 1.1 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 5 minutes.
  • As a hole transport material CLEVIOUS AI4083 (trade name) manufactured by HERAEUS Co. was formed on the ITO substrate with a thickness of 30 nm by spin coating. After film formation, unnecessary portions were removed with acetone, and then baked on a hot plate at 200 ° C. in the atmosphere for 10 minutes to prepare a base substrate.
  • the compound H-1 has a mixing ratio of 90:10 by mass ratio.
  • a 1.6 mass% toluene solution was prepared. Using this toluene solution, it was applied and laminated on the base substrate by spin coating so as to have a film thickness of 50 nm. After the coating film formation, unnecessary portions were removed with toluene, and dried by heating on a hot plate at 150 ° C. to prepare a coated laminated substrate on which a light emitting layer was formed. Note that all operations for forming the light emitting layer were performed in a glove box in a nitrogen atmosphere.
  • Example 2 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that Compound H-2 obtained in Synthesis Example 2 was used as the host material. The measurement results are shown in Table 1.
  • Comparative Example 1 An organic EL device was prepared and evaluated in the same manner as in Example 1 except that the following comparative compound Ha was used as the host material. The measurement results are shown in Table 1.
  • the compound having the molecular structure of the present application has characteristics useful as a material for an organic EL device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

 性能の向上した有機EL素子及びそれを含む電子機器を提供すること、並びにそれを可能にする下記式(1)で表される化合物、有機エレクトロルミネッセンス素子用材料及びインク組成物を提供する。

Description

化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、及び電子機器
 本発明は、化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、及び電子機器に関する。
 陽極と陰極との間に発光層を含む有機薄膜層を備え、発光層に注入された正孔と電子との再結合によって生じる励起子(エキシトン)エネルギーから発光を得る有機エレクトロルミネッセンス素子が知られている。
 有機エレクトロルミネッセンス素子は、自発光型素子としての利点を活かし、発光効率、画質、消費電力さらには薄型のデザイン性に優れた発光素子として期待されている。有機エレクトロルミネッセンス素子は、発光層に種々の発光材料を用いることにより、多様な発光色を得ることが可能であることから、ディスプレイなどへの実用化研究が盛んである。特に赤色、緑色、青色の三原色の発光材料の研究が最も活発であり、特性向上を目指して鋭意研究がなされている
国際公開第2012/086170号
 本発明の一つの目的は、特性の優れた有機EL素子及びそれを含む電子機器を提供することである。また、他の目的は、特性の優れた有機EL素子及びそれを含む電子機器を可能にする化合物、有機エレクトロルミネッセンス素子用材料及びインク組成物を提供することである。
 本発明の一態様によれば、下記[1]~[5]が提供される。          
[1]下記式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000018
[式(1)において、
 2つのRはそれぞれ式(b)の2つの*に結合する単結合を表すか、又は、互いに結合して5員環、6員環又は縮合環を表し、該5員環、6員環又は縮合環が有する隣接する2つの環形成炭素原子のそれぞれに式(b)の2つの*がそれぞれ結合する。
 前記5員環の非共有環原子は炭素原子、酸素原子、及び硫黄原子から選ばれ、該炭素原子は2個のRを有する。
 前記6員環が非芳香族環である場合、該非芳香族環の非共有環原子は炭素原子、酸素原子、及び硫黄原子から選ばれ、該炭素原子は2個のRを有す。
 前記6員環が芳香族環である場合、該芳香族環の非共有環原子は炭素原子及び窒素原子から選ばれ、該炭素原子は1個のRを有する。
 前記縮合環が非芳香族環を含む場合、該非芳香族環の非共有環原子は炭素原子、酸素原子、及び硫黄原子から選ばれ、該炭素原子は2個のRを有す。
 前記縮合環が芳香族環を含む場合、該芳香族環の非共有環原子は炭素原子及び窒素原子から選ばれ、該炭素原子は1個のRを有する。
 複数のRはそれぞれ独立に水素原子、置換基又は*-L-Dn0に結合する単結合を表し、隣接又は近接する2つのRは互いに結合して環を形成していてもよく、該環は1又は複数のRで置換されていてもよい。ただし、式(1)中の複数のRの少なくとも1つは*-L-Dn0に結合する単結合を表す。
 ここで、Rが表す*-L-Dn0に結合する単結合とは、例えば、A-R中のRが表す*-L-Dn0と結合する単結合により得られる化合物はA-L-Dn0であることを示す。
 複数のLはそれぞれ独立に単結合又は置換もしくは無置換の環形成炭素数6~60のアリーレン基を表し、Lが単結合の場合、n0は1を表し、Lが置換もしくは無置換の環形成炭素数6~60のアリーレン基の場合、n0は1~10の整数を表す。
 Dは、少なくとも1つのカルバゾール構造を含み、下記式(2)で表される構造の1価の残基を表す。
Figure JPOXMLDOC01-appb-C000019
(式(2)において、
 破線は、その両端の2つの炭素原子が単結合で結合されているか、又は、該2つの炭素原子は結合されていないことを表す。
 L及びLは、それぞれ独立に、単結合又は置換もしくは無置換の環形成炭素数6~60のアリーレン基を表す。
 Ar及びArは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~60の芳香族炭化水素環の1価の残基を表す。
 n1及びn2は、それぞれ独立に0~4の整数である。
 Nに結合する2つのベンゼン環、Ar及びArが表す芳香族炭化水素環の少なくとも1つの環の隣接する2つの環形成炭素原子には式(d)が結合し、Ar及びArが表す芳香族炭化水素環に式(d)が結合する場合、Ar及びArは該芳香族炭化水素環と式(d)が結合して得られる構造の1価の残基を表す。
 XはO、S、PR15、SiR1617、CR1819、又はNR20を表し、複数個の式(d)が結合している場合、複数のXは同一でも異なっていてもよい。
 R11~R20はそれぞれ独立に水素原子又は置換基を表す。
 a1、a2、及びa3は、それぞれ独立に0~4の整数を表す。)]
[2]上記[1]に記載の化合物を含む有機エレクトロルミネッセンス素子用材料。
[3]溶媒と、該溶媒中に溶解した上記[1]に記載の化合物とを含むインク組成物。
[4]陰極と陽極の間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも1層が、上記[1]に記載の化合物を含む有機エレクトロルミネッセンス素子。
[5]上記[1]に記載の有機エレクトロルミネッセンス素子を含む電子機器。
 本発明は、性能の向上した有機EL素子及びそれを含む電子機器を提供することができる。また、それを可能にする化合物、有機エレクトロルミネッセンス素子用材料及びインク組成物を提供することができる。
本発明の一態様に係る有機EL素子の一例の概略構成を示す図である。
 本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表すものであり、置換されている場合の置換基の炭素数は含めない。
 また、本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表すものであり、置換されている場合の置換基の原子数は含めない。
 本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記される「環形成炭素数」については、特筆しない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジニル基は環形成炭素数5であり、フラニル基は環形成炭素数4である。また、ベンゼン環やナフタレン環に置換基として例えばアルキル基が置換している場合、当該アルキル基の炭素数は、環形成炭素数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の炭素数は環形成炭素数の数に含めない。
 また、本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば単環、縮合環、環集合)の化合物(例えば単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記される「環形成原子数」については、特筆しない限り同様とする。例えば、ピリジン環の環形成原子数は6であり、キナゾリン環の環形成原子数は10であり、フラン環の環形成原子数は5である。ピリジン環やキナゾリン環の炭素原子にそれぞれ結合している水素原子や置換基を構成する原子については、環形成原子数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の原子数は環形成原子数の数に含めない。
 また、本明細書において、「水素原子」とは、中性子数が異なる同位体、すなわち、軽水素(protium)、重水素(deuterium)及び三重水素(tritium)を包含する。
 本明細書中において、「ヘテロアリール基」及び「ヘテロアリーレン基」は、環形成原子として、少なくとも1つのヘテロ原子を含む基であり、該へテロ原子としては、窒素原子、酸素原子、硫黄原子、ケイ素原子及びセレン原子から選ばれる1種以上であることが好ましく、窒素原子、酸素原子、及び硫黄原子から選ばれる1種以上であることがより好ましい。
 また、本明細書において、「置換基」、又は「置換もしくは無置換」との記載における置換基としては、下記グループ(A)のものが挙げられる。
(A)炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基;環形成炭素数3~50(好ましくは3~10、より好ましくは3~8、更に好ましくは5又は6)のシクロアルキル基;環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基;環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基を有する炭素数7~51(好ましくは7~30、より好ましくは7~20)のアラルキル基;アミノ基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基及び環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基から選ばれる置換基を有するモノ置換又はジ置換アミノ基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基を有するアルコキシ基;環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基を有するアリールオキシ基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基及び環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基から選ばれる置換基を有するモノ置換、ジ置換又はトリ置換シリル基;環形成原子数5~50(好ましくは5~24、より好ましくは5~13)のヘテロアリール基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のハロアルキル基;ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子);シアノ基;ニトロ基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基及び環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基から選ばれる置換基を有するスルホニル基;炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基及び環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基から選ばれる置換基を有するジ置換ホスフォリル基;アルキルスルホニルオキシ基;アリールスルホニルオキシ基;アルキルカルボニルオキシ基;アリールカルボニルオキシ基;ホウ素含有基;亜鉛含有基;スズ含有基;ケイ素含有基;マグネシウム含有基;リチウム含有基;ヒドロキシ基;アルキル置換又はアリール置換カルボニル基;カルボキシル基;ビニル基;(メタ)アクリロイル基;エポキシ基;並びにオキセタニル基からなる群より選ばれる基であることが好ましい。
 これらの置換基は、さらに上述の任意の置換基により置換されていてもよい。また、これらの置換基は、複数の置換基が互いに結合して環を形成していてもよい。
 また、「置換もしくは無置換」との記載における「無置換」とは、これらの置換基で置換されておらず、水素原子が結合していることを意味する。
 上記置換基の中でも、より好ましくは、下記グループ(B)のものが挙げられる。
(B)炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基、環形成炭素数3~50(好ましくは3~10、より好ましくは3~8、更に好ましくは5又は6)のシクロアルキル基、環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基、炭素数1~50(好ましくは1~18、より好ましくは1~8)のアルキル基及び環形成炭素数6~50(好ましくは6~25、より好ましくは6~18)のアリール基から選ばれる置換基を有するモノ置換又はジ置換アミノ基、環形成原子数5~50(好ましくは5~24、より好ましくは5~13)のヘテロアリール基、ハロゲン原子、シアノ基である。
 本明細書中、好ましいとする規定は任意に選択することができる。
 [化合物] 
 本発明の一態様の化合物について説明する。
 本発明の一態様の化合物は、式(1)で表される化合物(以後、「式(1)で表される化合物」を「化合物(1)」と呼称することがある)である。
Figure JPOXMLDOC01-appb-C000020
 式(1)において、
 2つのRはそれぞれ式(b)の2つの*に結合する単結合を表すか、又は、互いに結合して5員環、6員環又は縮合環を表し、該5員環、6員環又は縮合環が有する隣接する2つの環形成炭素原子のそれぞれに式(b)の2つの*がそれぞれ結合する。
 前記5員環の非共有環原子は炭素原子、酸素原子、及び硫黄原子から選ばれ、該炭素原子は2個のRを有する。
 前記6員環が非芳香族環である場合、該非芳香族環の非共有環原子は炭素原子、酸素原子、及び硫黄原子から選ばれ、該炭素原子は2個のRを有す。
 前記6員環が芳香族環である場合、該芳香族環の非共有環原子は炭素原子及び窒素原子から選ばれ、該炭素原子は1個のRを有する。
 前記縮合環が非芳香族環を含む場合、該非芳香族環の非共有環原子は炭素原子、酸素原子、及び硫黄原子から選ばれ、該炭素原子は2個のRを有す。
 前記縮合環が芳香族環を含む場合、該芳香族環の非共有環原子は炭素原子及び窒素原子から選ばれ、該炭素原子は1個のRを有する。
 ここで、非共有環原子とは、該非共有環原子を含む環が、連結する他の環と共有されていない原子のことを示す。例えば、下記式(6)~(16)におけるYやZが非共有原子である。
 また、芳香族環とは、芳香族性を有する環(例えば、ベンゼンやピリミジン)のみからなる環のことを示す。非芳香族環とは、シクロペンタンのような多重結合を有さない環を示し、例えば、フルオレンにおける中心のシクロペンタン環も非芳香族環と称す。
 複数のRはそれぞれ独立に水素原子、置換基又は*-L-Dn0に結合する単結合を表し、隣接又は近接する2つのRは互いに結合して環を形成していてもよく、該環は1又は複数のRで置換されていてもよい。ただし、式(1)中の複数のRの少なくとも1つは*-L-Dn0に結合する単結合を表す。
 Rの示す置換基としては、それぞれ独立に、下記から選択されるものが好ましい。
 置換もしくは無置換の炭素数1~50(より好ましくは1~18、更に好ましくは1~8)のアルキル基、置換もしくは無置換の環形成炭素数3~50(より好ましくは3~10、更に好ましくは3~8)のシクロアルキル基、置換もしくは無置換の環形成炭素数6~60(より好ましくは6~25、更に好ましくは6~18)のアリール基(「芳香族炭化水素基」と同義、以下同様)、置換もしくは無置換の炭素数7~61(より好ましくは7~25、更に好ましくは7~18)のアラルキル基、アミノ基、置換もしくは無置換の炭素数1~50(より好ましくは1~18、更に好ましくは1~8)のアルキル基及び置換もしくは無置換の環形成炭素数6~60(より好ましくは6~25、更に好ましくは6~18)のアリール基から選ばれる置換基を有するモノ置換又はジ置換アミノ基、置換もしくは無置換の炭素数1~50(より好ましくは1~18、更に好ましくは1~8)のアルコキシ基、置換もしくは無置換の環形成炭素数3~50(より好ましくは3~10、更に好ましくは3~8)のシクロアルコキシ基、置換もしくは無置換の環形成炭素数6~60(より好ましくは6~25、更に好ましくは6~18)のアリールオキシ基、置換もしくは無置換の炭素数1~50(より好ましくは1~18、更に好ましくは1~8)のアルキルチオ基、置換もしくは無置換の環形成炭素数6~60(より好ましくは6~25、更に好ましくは6~18)のアリールチオ基、置換もしくは無置換の炭素数1~50(より好ましくは1~18、更に好ましくは1~8)のアルキル基及び置換もしくは無置換の環形成炭素数6~60(より好ましくは6~25、更に好ましくは6~18)のアリール基から選ばれる置換基を有するモノ置換、ジ置換又はトリ置換シリル基、置換もしくは無置換の環形成原子数5~60(より好ましくは5~30、更に好ましくは5~26)のヘテロアリール基(「複素環基」と同義、以下同様)、置換もしくは無置換の炭素数1~50(より好ましくは1~18、更に好ましくは1~8)のハロアルキル基、ハロゲン原子、シアノ基、ニトロ基、置換もしくは無置換の炭素数1~50(より好ましくは1~18、更に好ましくは1~8)のアルキル基及び置換もしくは無置換の環形成炭素数6~60(より好ましくは6~25、更に好ましくは6~18)のアリール基から選ばれる置換基を有するスルフォニル基、置換もしくは無置換の炭素数1~50(より好ましくは1~18、更に好ましくは1~8)のアルキル基及び置換もしくは無置換の環形成炭素数6~60(より好ましくは6~25、更に好ましくは6~18)のアリール基から選ばれる置換基を有するジ置換ホスフォリル基、アルキルスルホニルオキシ基、アリールスルホニルオキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、ホウ素含有基、亜鉛含有基、スズ含有基、ケイ素含有基、マグネシウム含有基、リチウム含有基、ヒドロキシ基、アルキル置換又はアリール置換カルボニル基、カルボキシル基、ビニル基、(メタ)アクリロイル基、エポキシ基、並びにオキセタニル基が挙げられる。
 前記アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基(異性体を含む)、ヘキシル基(異性体を含む)、ヘプチル基(異性体を含む)、オクチル基(異性体を含む)、ノニル基(異性体を含む)、デシル基(異性体を含む)、ウンデシル基(異性体を含む)、及びドデシル基(異性体を含む)、トリデシル基、テトラデシル基、オクタデシル基、テトラコサニル基、テトラコンタニル基等が挙げられる。これらは置換されていてもよい。
 より好ましくは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基(異性体を含む)、ヘキシル基(異性体を含む)、ヘプチル基(異性体を含む)、オクチル基(異性体を含む)、ノニル基(異性体を含む)、デシル基(異性体を含む)、ウンデシル基(異性体を含む)、ドデシル基(異性体を含む)、トリデシル基、テトラデシル基、及びオクタデシル基が挙げられる。これらは置換されていてもよい。
 更に好ましくは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基(異性体を含む)、ヘキシル基(異性体を含む)、ヘプチル基(異性体を含む)、及びオクチル基(異性体を含む)が挙げられる。これらは置換されていてもよい。
 前記シクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、アダマンチル基等が挙げられる。これらは置換されていてもよい。
 より好ましくは、シクロペンチル基、シクロヘキシル基が挙げられる。これらは置換されていてもよい。
 前記アリール基としては、例えば、フェニル基、ナフチル基、ナフチルフェニル基、ビフェニリル基、ターフェニリル基、クアテルフェニリル基、キンクフェニリル基、アセナフチレニル基、アントリル基、ベンゾアントリル基、アセアントリル基、フェナントリル基、ベンゾフェナントリル基、フェナレニル基、フルオレニル基、9,9’-スピロビフルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、ピセニル基、ペンタフェニル基、ペンタセニル基、ピレニル基、クリセニル基、ベンゾクリセニル基、s-インダニル基、as-インダニル基、フルオランテニル基、ベンゾフルオランテニル基、テトラセニル基、トリフェニレニル基、ベンゾトリフェニレニル基、ペリレニル基、コロニル基、ジベンゾアントリル基、9,9-ジメチルフルオレニル基、9,9-ジフェニルフルオレニル基等が挙げられる。これらは置換されていてもよい。
 より好ましくは、フェニル基、ナフチル基、ビフェニリル基、ターフェニリル基、フェナントリル基、ベンゾフェナントリル基、フルオレニル基、9,9’-スピロビフルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、クリセニル基、ベンゾクリセニル基、s-インダニル基、as-インダニル基、トリフェニレニル基、ベンゾトリフェニレニル基、アントリル基、9,9-ジメチルフルオレニル基、9,9-ジフェニルフルオレニル基が挙げられる。これらは置換されていてもよい。
 更に好ましくは、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、フェナントリル基、フルオレニル基、9,9’-スピロビフルオレニル基、クリセニル基、トリフェニレニル基、9,9-ジメチルフルオレニル基、9,9-ジフェニルフルオレニル基が挙げられる。これらは置換されていてもよい。
 前記ヘテロアリール基は少なくとも1個、好ましくは1~5個(より好ましくは1~3個、さらに好ましくは1~2個)のヘテロ原子、例えば、窒素原子、硫黄原子、酸素原子、リン原子を含む。該へテロアリール基としては、例えば、ピロリル基、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、テトラゾリル基、インドリル基、イソインドリル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾチオフェニル基、イソベンゾチオフェニル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、インダゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、ビカルバゾリル基フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、アザトリフェニレニル基、ジアザトリフェニレニル基、キサンテニル基、アザカルバゾリル基、アザジベンゾフラニル基、アザジベンゾチオフェニル基、ベンゾフラノベンゾチオフェニル基、ベンゾチエノベンゾチオフェニル基、ジベンゾフラノナフチル基、ジベンゾチエノナフチル基、及びジナフトチエノチオフェニル基、ジナフト-<2’,3’:2,3:2’,3’:6,7>-カルバゾリル基などが挙げられる。これらは置換されていてもよい。
 より好ましくは、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、インドリル基、イソインドリル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾチオフェニル基、イソベンゾチオフェニル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、キナゾリニル基、キノキサリニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、ビカルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、アザトリフェニレニル基、ジアザトリフェニレニル基、キサンテニル基、アザカルバゾリル基、アザジベンゾフラニル基、アザジベンゾチオフェニル基が挙げられる。これらは置換されていてもよい。
 更に好ましくは、ピリジル基、ピリミジニル基、トリアジニル基、ベンゾフラニル基、イソベンゾフラニル基、キノリル基、イソキノリル基、キナゾリニル基、ベンゾチオフェニル基、イソベンゾチオフェニル基、インドリジニル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、ビカルバゾリル基、アザトリフェニレニル基、ジアザトリフェニレニル基、キサンテニル基、アザカルバゾリル基、アザジベンゾフラニル基、アザジベンゾチオフェニル基が挙げられる。これらは置換されていてもよい。
 前記アラルキル基としては、環形成炭素数6~60の上記アリール基を有するアラルキル基が挙げられる。これらは更に置換されていてもよい。より好ましくは環形成炭素数6~25の上記アリール基を有するアラルキル基であり、更に好ましくは環形成炭素数6~18の上記アリール基を有するアラルキル基である。これらは更に置換されていてもよい。
 前記モノ置換又はジ置換アミノ基としては、炭素数1~50の上記アルキル基及び環形成炭素数6~60の上記アリール基から選ばれる置換基を有するモノ置換又はジ置換アミノ基が挙げられ、該ジ置換アミノ基が好ましく、上記アリール基から選ばれる置換基を有するジ置換アミノ基がさらに好ましい。これらは更に置換されていてもよい。より好ましくは、炭素数1~18の上記アルキル基及び環形成炭素数6~25の上記アリール基から選ばれる置換基を有するモノ置換又はジ置換アミノ基が挙げられる。これらは更に置換されていてもよい。更に好ましくは、炭素数1~8の上記アルキル基及び環形成炭素数6~18の上記アリール基から選ばれる置換基を有するモノ置換又はジ置換アミノ基が挙げられる。これらは更に置換されていてもよい。
 前記アルコキシ基としては、炭素数1~50の上記アルキル基を有するアルコキシ基が挙げられる。これらは更に置換されていてもよい。より好ましくは、炭素数1~18の上記アルキル基を有するアルコキシ基が挙げられる。これらは更に置換されていてもよい。更に好ましくは、炭素数1~8の上記アルキル基を有するアルコキシ基が挙げられ、例えば、メトキシ基、エトキシ基が好ましい。これらは更に置換されていてもよい。
 前記シクロアルコキシ基としては、炭素数3~50の上記シクロアルキル基を有するシクロアルコキシ基が挙げられる。これらは更に置換されていてもよい。
 前記アリールオキシ基としては、環形成炭素数6~60の上記アリール基を有するアリールオキシ基が挙げられる。これらは更に置換されていてもよい。より好ましくは、環形成炭素数6~25の上記アリール基を有するアリールオキシ基が挙げられる。これらは更に置換されていてもよい。更に好ましくは、環形成炭素数6~18の上記アリール基を有するアリールオキシ基が挙げられ、例えば、フェノキシ基等が好ましい。これらは更に置換されていてもよい。
 前記アルキルチオ基としては、炭素数1~50の上記アルキル基を有するアルキルチオ基が挙げられる。これらは更に置換されていてもよい。より好ましくは、炭素数1~18の上記アルキル基を有するアルキルチオ基が挙げられる。これらは更に置換されていてもよい。更に好ましくは、炭素数1~8の上記アルキル基を有するアルキルチオ基が挙げられる。これらは更に置換されていてもよい。
 前記アリールチオ基としては、環形成炭素数6~60の上記アリール基を有するアリールチオ基が挙げられる。これらは更に置換されていてもよい。より好ましくは、環形成炭素数6~25の上記アリール基を有するアリールチオ基が挙げられる。これらは更に置換されていてもよい。更に好ましくは、環形成炭素数6~18の上記アリール基を有するアリールチオ基が挙げられる。これらは更に置換されていてもよい。
 前記モノ置換、ジ置換又はトリ置換シリル基としては、炭素数1~50の上記アルキル基及び環形成炭素数6~60の上記アリール基から選ばれる置換基を有するモノ置換、ジ置換又はトリ置換シリル基が挙げられる。これらは更に置換されていてもよい。より好ましくは、炭素数1~18の上記アルキル基及び環形成炭素数6~25の上記アリール基から選ばれる置換基を有するモノ置換、ジ置換又はトリ置換シリル基が挙げられる。これらは更に置換されていてもよい。更に好ましくは、炭素数1~8の上記アルキル基及び環形成炭素数6~18の上記アリール基から選ばれる置換基を有するモノ置換、ジ置換又はトリ置換シリル基が挙げられる。これらは更に置換されていてもよい。例えば、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、イソプロピルジメチルシリル基、トリフェニルシリル基、フェニルジメチルシリル基、t-ブチルジフェニルシリル基、トリトリルシリル基等が挙げられる。これらは更に置換されていてもよい。
 前記ハロアルキル基としては、炭素数1~50の上記アルキル基の水素原子の1以上が、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)により置換されたものが挙げられる。これらは更に置換されていてもよい。より好ましくは、炭素数1~18の上記アルキル基の水素原子の1以上が、上記ハロゲン原子により置換されたものが挙げられる。これらは更に置換されていてもよい。更に好ましくは、炭素数1~8の上記アルキル基の水素原子の1以上が、上記ハロゲン原子により置換されたものが挙げられる。これらは更に置換されていてもよい。具体的にはトリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基が挙げられる。
 前記スルフォニル基としては、炭素数1~50の上記アルキル基又は環形成炭素数6~60の上記アリール基から選ばれる置換基を有するスルフォニル基が挙げられる。これらは更に置換されていてもよい。より好ましくは、炭素数1~18の上記アルキル基又は環形成炭素数6~25の上記アリール基から選ばれる置換基を有するスルフォニル基が挙げられる。これらは更に置換されていてもよい。更に好ましくは、炭素数1~8の上記アルキル基又は環形成炭素数6~18の上記アリール基から選ばれる置換基を有するスルフォニル基が挙げられる。これらは更に置換されていてもよい。
 前記ジ置換ホスフォリル基としては、炭素数1~50の上記アルキル基及び環形成炭素数6~60の上記アリール基から選ばれる置換基を有するジ置換ホスフォリル基が挙げられる。これらは更に置換されていても良い。より好ましくは、炭素数1~18の上記アルキル基及び環形成炭素数6~25の上記アリール基から選ばれる置換基を有するジ置換ホスフォリル基が挙げられる。これらは更に置換されていても良い。更に好ましくは、炭素数1~8の上記アルキル基及び環形成炭素数6~18の上記アリール基から選ばれる置換基を有するジ置換ホスフォリル基が挙げられる。これらは更に置換されていても良い。
 前記アルキルスルホニルオキシ基、アリールスルホニルオキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、アルキル置換又はアリール置換カルボニル基としては、それぞれ、上記アルキル基及び上記アリール基から選ばれる置換基を有する基が挙げられる。
 これらの中でもRは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の環形成炭素数6~60のアリール基、置換もしくは無置換の環形成原子数5~60のヘテロアリール基、置換もしくは無置換のアミノ基、置換もしくは無置換の環形成炭素数6~60のアリールオキシ基、置換のシリル基、置換もしくは無置換の炭素数1~50のハロアルキル基、ハロゲン原子、シアノ基、又は、ニトロ基であると好ましい。これら各基の具体例としては前記と同じである。
 複数のLはそれぞれ独立に単結合又は置換もしくは無置換の環形成炭素数6~60のアリーレン基を表し、Lが単結合の場合、n0は1を表し、Lが置換もしくは無置換の環形成炭素数6~60のアリーレン基の場合、n0は1~10の整数を表す。
 前記Lの示す環形成炭素数6~60のアリーレン基の具体例としては、上記Rで表される置換基のアリール基の例を2価としたアリーレン基が挙げられる。
 n0は、1~2であると好ましく、1であるとさらに好ましい。
 Dは、少なくとも1つのカルバゾール構造を含み、下記式(2)で表される構造の1価の残基を表す。
Figure JPOXMLDOC01-appb-C000021
 式(2)において、
 破線は、その両端の2つの炭素原子が単結合で結合されているか、又は、該2つの炭素原子は結合されていないことを表す。
 L及びLは、それぞれ独立に、単結合又は置換もしくは無置換の環形成炭素数6~60のアリーレン基を表す。
 Ar及びArは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~60の芳香族炭化水素環の1価の残基を表す。
 n1及びn2は、それぞれ独立に0~4の整数である。
 Nに結合する2つのベンゼン環、Ar及びArが表す芳香族炭化水素環の少なくとも1つの環の隣接する2つの環形成炭素原子には式(d)が結合し、Ar及びArが表す芳香族炭化水素環に式(d)が結合する場合、Ar及びArは該芳香族炭化水素環と式(d)が結合して得られる構造の1価の残基を表す。
 XはO、S、PR15、SiR1617、CR1819、又はNR20を表し、複数個の式(d)が結合している場合、複数のXは同一でも異なっていてもよい。
 R11~R20はそれぞれ独立に水素原子又は置換基を表す。R11~R20の示す置換基の具体例としては、前記Rと同じである。
 a1、a2、及びa3は、それぞれ独立に0~4の整数を表す。
 前記式(1)で表される化合物は、下記式(3)又は(4)で表されると好ましい。
Figure JPOXMLDOC01-appb-C000022
 式(3)及び(4)において、R、L、D及びn0の定義は式(1)と同じである。
 式(4)において、Aは5員環、6員環又は縮合環を表す。
 前記5員環の非共有環原子は炭素原子、酸素原子、及び硫黄原子から選ばれ、該炭素原子は2個のRを有する。
 前記6員環が非芳香族環である場合、該非芳香族環の非共有環原子は炭素原子、酸素原子、及び硫黄原子から選ばれ、該炭素原子は2個のRを有す。
 前記6員環が芳香族環である場合、該芳香族環の非共有環原子は炭素原子及び窒素原子から選ばれ、該炭素原子は1個のRを有する。
 前記縮合環が非芳香族環を含む場合、該非芳香族環の非共有環原子は炭素原子、酸素原子、及び硫黄原子から選ばれ、該炭素原子は2個のRを有す。
 前記縮合環が芳香族環を含む場合、該芳香族環の非共有環原子は炭素原子及び窒素原子から選ばれ、該炭素原子は1個のRを有する。
 式(1)において、式(a)と(b)で構成される構造が、下記式(5)~(16)のいずれかで表されると好ましい。
Figure JPOXMLDOC01-appb-C000023

(式(5)において、R、L、及びDの定義は式(1)と同じである。) 
 上記(5)で表される構造は、さらに下記式(5’)で表されると好ましい。
Figure JPOXMLDOC01-appb-C000024

(式(5’)において、R、L、及びDの定義は式(1)と同じである。) 
Figure JPOXMLDOC01-appb-C000025

(式(6)~(10)において、Yは、炭素原子、酸素原子、及び硫黄原子から選ばれ、該炭素原子は2個のRを有する。R、L、及びDの定義は式(1)と同じである。)
 これらの中でも、式(6)又は(7)で表される構造が好ましく、式(6)又は(7)で表される構造は、さらに下記式(6’)又は(7’)で表されると好ましい。
Figure JPOXMLDOC01-appb-C000026

(式(6’)及び(7’)において、Yは、炭素原子、酸素原子、及び硫黄原子から選ばれ、該炭素原子は2個のRを有する。R、L、及びDの定義は式(1)と同じである。)
Figure JPOXMLDOC01-appb-C000027

(式(11)~(14)において、Zは、炭素原子及び窒素原子から選ばれ、該炭素原子は1個のRを有する。R、L、及びDの定義は式(1)と同じである。)
 これらの中でも、式(11)、(12)で表される化合物が好ましく、式(11)、(12)におけるビリミジン環に結合する一つのRが単結合であって、それが*-L-Dnoに結合すると好ましい。
 上記(11)、(12)で表される構造は、さらに下記式(11’)又は(12’)で表されると好ましい。
Figure JPOXMLDOC01-appb-C000028

(式(11’)~(12’)において、Zは、炭素原子及び窒素原子から選ばれ、該炭素原子は1個のRを有する。R、L、及びDの定義は式(1)と同じである。)
Figure JPOXMLDOC01-appb-C000029

(式(15)~(16)において、Zは、炭素原子及び窒素原子から選ばれ、該炭素原子は1個のRを有する。R、L、及びDの定義は式(1)と同じである。)
 また、式(1)において、式(a)と(b)で構成される構造が、下記式のいずれかで表されると好ましい。式中、R、L、及びDの定義は式(1)と同じである。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
 前記Dの式(2)で表される構造が、下記式(51)~(59)のいずれかで表されると好ましい。
 式(51)~(59)において、X、R11~R14、R20、a1~a3、n1~n2、L、L、Ar、Arは、前記と同じである。R21は、水素原子又は置換基、a4は、0~4の整数を表す。a2’ 、n1’は、0~2の整数を表す。R21の示す置換基の具体例としては、前記Rと同じである。
 また、前記Dの式(2)で表される構造が、下記式(60)又は(61)のいずれかで表されると好ましい。
Figure JPOXMLDOC01-appb-C000033
 式(60)~(61)において、R11~R14、R20、a1~a3、n1、n2、L、L、Arは、前記と同じである。R21~R24は、水素原子又は置換基、a4~a6は、0~4の整数を表す。R21~R24の示す置換基の具体例としては、前記Rと同じである。
 これらの中でも、上記式(60)で表される構造が好ましく、Lが単結合であるとさらに好ましい。
 以下に、化合物(1)の具体例を記載する。ただし、化合物(1)はそれら具体例に限定されるわけではない。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
[有機エレクトロルミネッセンス素子用材料]
 本発明の一態様の有機エレクトロルミネッセンス素子用材料(以後、「有機エレクトロルミネッセンス素子用材料」を「有機EL素子用材料」と略記することがある)について説明する。
 本発明の一態様の有機EL素子用材料は、化合物(1)を含む。化合物(1)は有機EL素子における材料として有用である。
 有機EL素子用材料中の化合物(1)の含有量は、1質量%以上であればよく、10質量%以上であることが好ましく、50質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることが特に好ましい。
 本発明の一態様の有機EL素子用材料は、例えば、蛍光発光ユニットの発光層におけるホスト材料若しくはドーパント材料、又は燐光発光ユニットの発光層におけるホスト材料として用いることができる。この場合、発光層は本発明の一態様の有機EL素子用材料と蛍光発光材料又は燐光発光材料とを含有する。また、蛍光発光ユニット及び燐光発光ユニットのいずれにおいても、有機EL素子の陽極と発光層との間に設けられる陽極側有機薄膜層や、有機EL素子の陰極と発光層との間に設けられる陰極側有機薄膜層の材料、すなわち、正孔輸送層、正孔注入層、電子輸送層、電子注入層、正孔阻止層、電子阻止層等の材料としても、本発明の一態様の有機EL素子用材料は有用である。
 ここで、「発光ユニット」とは、一層以上の有機層を含み、そのうちの一層が発光層であり、注入された正孔と電子が再結合することにより発光することができる最小単位をいう。
[インク組成物]
 本発明の一態様のインク組成物について説明する。
 本発明の一態様のインク組成物は、溶媒と該溶媒中に溶解した化合物(1)とを含む。本発明の一態様のインク組成物は、有機EL素子を構成する有機薄膜層を形成するために使用することができる。
 本発明の一態様のインク組成物は、化合物(1)以外に、正孔輸送材料、電子輸送材料、発光材料、アクセプター材料、安定剤等の添加剤を含んでいてもよい。
 本発明の一態様のインク組成物は、粘度及び/又は表面張力を調節するための添加剤、例えば、増粘剤(高分子量化合物等)、粘度降下剤(低分子量化合物等)、界面活性剤等を含有していてもよい。また、保存安定性を改善するために、フェノール系酸化防止剤、リン系酸化防止剤等、有機EL素子の性能に影響しない酸化防止剤を含有していてもよい。
 インク組成物中の化合物(1)の含有量は、0.1~15質量%が好ましく、0.5~10質量%がより好ましい。
 増粘剤として使用可能な高分子量化合物としては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリウレタン、ポリスルホン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース等の絶縁性樹脂及びそれらの共重合体、ポリ-N-ビニルカルバゾール、ポリシラン等の光導電性樹脂、ポリチオフェン、ポリピロール等の導電性樹脂が挙げられる。
 前記溶媒としては、好ましくは有機溶媒であり、当該有機溶媒としては、例えばクロロホルム、クロロベンゼン、クロロトルエン、クロロキシレン、クロロアニソール、ジクロロメタン、ジクロロベンゼン、ジクロロトルエン、ジクロロエタン、トリクロロエタン、トリクロロベンゼン、トリクロロメチルベンゼン、ブロモベンゼン、ジブロモベンゼン、ブロモアニソール等の塩素系溶媒、テトラヒドロフラン、ジオキサン、ジオキソラン、オキサゾール、メチルベンゾオキサゾール、ベンゾイソオキサゾール、フラン、フラザン、ベンゾフラン、ジヒドロベンゾフラン等のエーテル系溶媒、エチルベンゼン、ジエチルベンゼン、トリエチルベンゼン、トリメチルベンゼン、トリメトキシベンゼン、プロピルベンゼン、イソプロピルベンゼン、ジイソプロピルベンゼン、ジブチルベンゼン、アミルベンゼン、ジヘキシルベンゼン、シクロヘキシルベンゼン、テトラメチルベンゼン、ドデシルベンゼン、ベンゾニトリル、アセトフェノン、メチルアセトフェノン、メトキシアセトフェノン、トルイル酸エチルエステル、トルエン、エチルトルエン、メトキシトルエン、ジメトキシトルエン、トリメトキシトルエン、イソプロピルトルエン、キシレン、ブチルキシレン、イソプロピルキシレン、アニソール、エチルアニソール、ジメチルアニソール、トリメチルアニソール、プロピルアニソール、イソプロピルアニソール、ブチルアニソール、メチルエチルアニソール、アネトールアニシルアルコール、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチル、ジフェニルエーテル、ブチルフェニルエーテル、ベンジルメチルエーテル、ベンジルエチルエーテル、メチレンジオキシベンゼン、メチルナフタレン、テトラヒドロナフタレン、アニリン、メチルアニリン、エチルアニリン、ブチルアニリン、ビフェニル、メチルビフェニル、イソプロピルビフェニル等の芳香族炭化水素系溶媒、シクロへキサン、メチルシクロへキサン、n-ペンタン、n-へキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン、テトラデカン、デカリン、イソプロピルシクロヘキサン等の脂肪族炭化水素系溶媒、アセトン、メチルエチルケトン、シクロへキサノン、アセトフェノン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセロソルブアセテート、安息香酸メチル、酢酸フェニル等のエステル系溶媒、エチレングリコール、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジメトキシエタン、プロピレングリコール、ジエトキシメタン、トリエチレングリコールモノエチルエーテル、グリセリン、1,2-へキサンジオール等の多価アルコール及びその誘導体、メタノール、エタノール、プロパノール、イソプロパノール、シクロへキサノール等のアルコール系溶媒、ジメチルスルホキシド等のスルホキシド系溶媒、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等のアミド系溶媒が例示される。また、これらの有機溶媒は、単独で、又は複数組み合わせて用いることができる。 
 上記の溶媒のうち、溶解性、成膜の均一性、粘度特性等の観点から、少なくともトルエン、キシレン、エチルベンゼン、アミルベンゼン、アニソール、4-メトキシトルエン、2-メトキシトルエン、1,2-ジメトキシベンゼン、メシチレン、テトラヒドロナフタレン、シクロヘキシルベンゼン、2,3-ジヒドロベンゾフラン、シクロへキサノン、メチルシクロヘキサノンのいずれか1種以上を含むことが好ましい。
  上記の溶媒の中でも、前記化合物と、沸点が110℃以上、且つ20℃での水への溶解度が1質量%以下である下記式(a)に記載の溶媒を用いることが、より好ましい。 
Figure JPOXMLDOC01-appb-C000042

 (式(a)中、それぞれ独立に、Raは炭素数1~20の置換基であり、naは0~6の整数を表す。) 
 前記化合物と、沸点が110℃以上、且つ20℃での水への溶解度が1質量%以下である上記式(a)に記載の溶媒を含む成膜用の塗布液(インク組成物)であることが好ましい。また、成膜用の塗布液(インク組成物)には、必要に応じて粘度の調整剤、表面張力の調整材、架橋反応の開始剤、架橋反応の触媒を添加することもできる。尚、粘度の調整剤、表面張力の調整剤、架橋反応の開始剤、架橋反応の触媒は、膜中に残留しても素子特性に影響を与えないものを選択するか、成膜工程で膜中から除去できるものが望ましい。
[有機エレクトロルミネッセンス素子]
 本発明の一態様の有機エレクトロルミネッセンス素子(以後、「有機エレクトロルミネッセンス素子」を「有機EL素子」と略記することがある)について説明する。
 本発明の一態様の有機EL素子は、陰極と陽極の間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも1層が化合物(1)を含む。
 化合物(1)が含まれる有機薄膜層の例としては、陽極と発光層との間に設けられる陽極側有機薄膜層(正孔輸送層、正孔注入層等)、発光層、陰極と発光層との間に設けられる陰極側有機薄膜層(電子輸送層、電子注入層等)、スペース層、障壁層等が挙げられるが、これらに限定されるものではない。化合物(1)は、上記いずれの層に含まれていてもよく、例えば、蛍光発光ユニットの発光層におけるホスト材料やドーパント材料、燐光発光ユニットの発光層におけるホスト材料、発光ユニットの正孔輸送層、電子輸送層等として用いることができる。
 本発明の一態様の有機EL素子は、蛍光又は燐光発光型の単色発光素子であっても、蛍光/燐光ハイブリッド型の白色発光素子であってもよいし、単独の発光ユニットを有するシンプル型であっても、複数の発光ユニットを有するタンデム型であってもよく、中でも、燐光発光型であることが好ましい。ここで、「発光ユニット」とは、一層以上の有機層を含み、そのうちの一層が発光層であり、注入された正孔と電子が再結合することにより発光することができる最小単位をいう。
 従って、シンプル型有機EL素子の代表的な素子構成としては、以下の素子構成を挙げることができる。
(1)陽極/発光ユニット/陰極
 また、上記発光ユニットは、燐光発光層や蛍光発光層を複数有する積層型であってもよく、その場合、各発光層の間に、燐光発光層で生成された励起子が蛍光発光層に拡散することを防ぐ目的で、スペース層を有していてもよい。発光ユニットの代表的な層構成を以下に示す。
(a)正孔輸送層/発光層(/電子輸送層)
(b)正孔輸送層/第一燐光発光層/第二燐光発光層(/電子輸送層)
(c)正孔輸送層/燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(d)正孔輸送層/第一燐光発光層/第二燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(e)正孔輸送層/第一燐光発光層/スペース層/第二燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(f)正孔輸送層/燐光発光層/スペース層/第一蛍光発光層/第二蛍光発光層(/電子輸送層)
(g)正孔輸送層/電子障壁層/発光層(/電子輸送層)
(h)正孔輸送層/発光層/正孔障壁層(/電子輸送層)
(i)正孔輸送層/蛍光発光層/トリプレット障壁層(/電子輸送層)
 上記各燐光又は蛍光発光層は、それぞれ互いに異なる発光色を示すものとすることができる。具体的には、上記積層発光層(d)において、正孔輸送層/第一燐光発光層(赤色発光)/第二燐光発光層(緑色発光)/スペース層/蛍光発光層(青色発光)/電子輸送層といった層構成等が挙げられる。
 なお、各発光層と正孔輸送層あるいはスペース層との間には、適宜、電子障壁層を設けてもよい。また、各発光層と電子輸送層との間には、適宜、正孔障壁層を設けてもよい。電子障壁層や正孔障壁層を設けることで、電子又は正孔を発光層内に閉じ込めて、発光層における電荷の再結合確率を高め、発光効率を向上させることができる。
 タンデム型有機EL素子の代表的な素子構成としては、以下の素子構成を挙げることができる。
(2)陽極/第一発光ユニット/中間層/第二発光ユニット/陰極
 ここで、上記第一発光ユニット及び第二発光ユニットとしては、例えば、それぞれ独立に上述の発光ユニットと同様のものを選択することができる。
 上記中間層は、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、第一発光ユニットに電子を、第二発光ユニットに正孔を供給する、公知の材料構成を用いることができる。
 図1に、本発明の一態様の有機EL素子の一例の概略構成を示す。有機EL素子1は、基板2、陽極3、陰極4、及び該陽極3と陰極4との間に配置された発光ユニット10とを有する。発光ユニット10は、例えば、燐光ホスト材料と燐光ドーパント(燐光発光材料)を含む少なくとも1つの燐光発光層を含む発光層5を有する。発光層5と陽極3との間に正孔注入・輸送層(陽極側有機薄膜層)6等、発光層5と陰極4との間に電子注入・輸送層(陰極側有機薄膜層)7等を形成してもよい。また、発光層5の陽極3側に電子障壁層を、発光層5の陰極4側に正孔障壁層を、それぞれ設けてもよい。これにより、電子や正孔を発光層5に閉じ込めて、発光層5における励起子の生成確率を高めることができる。
 なお、本明細書において、蛍光ドーパント(蛍光発光材料)と組み合わされたホストを蛍光ホストと称し、燐光ドーパントと組み合わされたホストを燐光ホストと称する。蛍光ホストと燐光ホストは分子構造のみにより区分されるものではない。すなわち、燐光ホストとは、燐光ドーパントを含有する燐光発光層を構成する材料を意味し、蛍光発光層を構成する材料として利用できないことを意味しているわけではない。蛍光ホストについても同様である。
(基板)
 本発明の一態様の有機EL素子は、透光性基板上に作製する。透光性基板は有機EL素子を支持する基板であり、400nm~700nmの可視領域の光の透過率が50%以上で平滑な基板が好ましい。具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を原料として用いてなるものを挙げられる。またポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を原料として用いてなるものを挙げることができる。
(陽極)
 有機EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する役割を担うものであり、4.5eV以上の仕事関数を有するものを用いることが効果的である。陽極材料の具体例としては、酸化インジウム錫合金(ITO)、酸化錫(NESA)、酸化インジウム亜鉛酸化物、金、銀、白金、銅等が挙げられる。陽極はこれらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。発光層からの発光を陽極から取り出す場合、陽極の可視領域の光の透過率を10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百Ω/□以下が好ましい。陽極の膜厚は、材料にもよるが、通常10nm~1μm、好ましくは10nm~200nmの範囲で選択される。
(陰極)
 陰極は電子注入層、電子輸送層又は発光層に電子を注入する役割を担うものであり、仕事関数の小さい材料により形成するのが好ましい。陰極材料は特に限定されないが、具体的にはインジウム、アルミニウム、マグネシウム、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、アルミニウム-リチウム合金、アルミニウム-スカンジウム-リチウム合金、マグネシウム-銀合金等が使用できる。陰極も、陽極と同様に、蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。また、必要に応じて、陰極側から発光を取り出してもよい。
(発光層)
 発光機能を有する有機層であって、ドーピングシステムを採用する場合、ホスト材料とドーパント材料(発光性の高い物質)を含んでいる。ドーパント材料としては、例えば、蛍光発光材料や燐光発光材料を用いることができる。蛍光発光材料は一重項励起状態から発光可能な化合物であり、燐光性化合物は三重項励起状態から発光可能な化合物である。ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。
 燐光素子の場合、ホスト材料は主にドーパント材料で生成された励起子を発光層内に閉じ込める機能を有する。
 ここで、上記発光層は、例えば、電子輸送性のホスト材料と正孔輸送性のホスト材料を組み合わせるなどして、発光層内のキャリアバランスを調整するダブルホスト(ホスト・コホストともいう)を採用してもよい。
 また、量子収率の高いドーパント材料を二種類以上入れることによって、それぞれのドーパント材料が発光するダブルドーパントを採用してもよい。具体的には、ホスト材料、赤色ドーパント材料及び緑色ドーパント材料を共蒸着することによって、発光層を共通化して黄色発光を実現する態様が挙げられる。
 上記発光層は、複数の発光層を積層した積層体とすることで、発光層界面に電子と正孔を蓄積させて、再結合領域を発光層界面に集中させて、量子効率を向上させることができる。
 発光層への正孔の注入し易さと電子の注入し易さは異なっていてもよく、また、発光層中での正孔と電子の移動度で表される正孔輸送能と電子輸送能が異なっていてもよい。
 発光層を形成する燐光ドーパント材料(燐光発光材料)は三重項励起状態から発光することのできる化合物であり、三重項励起状態から発光する限り特に限定されないが、Ir,Pt,Os,Au,Cu,Re及びRuから選択される少なくとも一つの金属と配位子とを含む有機金属錯体であることが好ましい。例えば、青色系の燐光ドーパント材料として、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体が使用される。具体的には、ビス[2-(4',6'-ジフルオロフェニル)ピリジナト-N,C2']イリジウム(III)テトラキス(1-ピラゾリル)ボラート(略称:FIr6)、ビス[2-(4',6'-ジフルオロフェニル)ピリジナト-N,C2']イリジウム(III)ピコリナート(略称:FIrpic)、ビス[2-(3',5'ビストリフルオロメチルフェニル)ピリジナト-N,C2']イリジウム(III)ピコリナ ート(略称:Ir(CF3ppy)2(pic))、ビス[2-(4',6'-ジフルオロフェニル)ピリジナト-N,C2']イリジウム(III)アセチルアセトナート(略称:FIracac)などが挙げられる。
 緑色系の燐光ドーパント材料としてイリジウム錯体等が使用される。具体的には、トリス(2-フェニルピリジナト-N,C2')イリジウム(III)(略称:Ir(ppy)3)、ビス(2-フェニルピリジナト-N,C2')イリジウム(III)アセチル アセトナート(略称:Ir(ppy)2(acac))、ビス(1,2-ジフェニル-1 H-ベンゾイミダゾラト)イリジウム(III)アセチルアセトナート(略称:Ir(pbi)2(acac))、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:Ir(bzq)2(acac))などが挙げられる。
 赤色系の燐光ドーパント材料として、イリジウム錯体、白金錯体、テルビウム錯体、ユーロピウム錯体等の金属錯体が使用される。具体的には、ビス[2-(2'-ベンゾ[4,5-α]チエニル)ピリジナト-N,C3']イリジウム(III) アセチルアセトナート(略称:Ir(btp)2(acac))、ビス(1-フェニルイ ソキノリナト-N,C2')イリジウム(III)アセチルアセトナート(略称:Ir(piq)2(acac))、(アセチルアセトナト)ビス[2,3-ビス(4-フルオロフェ ニル)キノキサリナト]イリジウム(III)(略称:Ir(Fdpq)2(acac))、2,3,7,8,12,13,17,18-オクタエチル-21H,23H-ポルフィリン白金(II)(略称:PtOEP)等の有機金属錯体が挙げられる。
 また、トリス(アセチルアセトナト)(モノフェナントロリン)テルビウム(III)( 略称:Tb(acac)3(Phen))、トリス(1,3-ジフェニル-1,3-プロ パンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:Eu(DBM)3(Phen))、トリス[1-(2-テノイル)-3,3,3-トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:Eu(TTA)3(Phen))等の希土類金属錯体は、希土類金属イオンからの発光(異なる多重度間の電子遷移)であるため、燐光性化合物として用いることができる。
 前記配位子は、オルトメタル結合を有することが好ましい。燐光量子収率が高く、発光素子の外部量子効率をより向上させることができるという点で、Ir,Os及びPtから選ばれる金属原子を含有する金属錯体が好ましく、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体、特にオルトメタル化錯体がより好ましく、イリジウム錯体及び白金錯体がさらに好ましく、オルトメタル化イリジウム錯体が特に好ましい。
 燐光ドーパント材料の発光層における含有量は特に制限はなく目的に応じて適宜選択することができるが、例えば、0.1~70質量%が好ましく、1~30質量%がより好ましい。燐光ドーパント材料の含有量が0.1質量%以上であると十分な発光が得られ、70質量%以下であると濃度消光を避けることができる。
 燐光ドーパント材料として好ましい有機金属錯体の具体例を、以下に示す。
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
 さらに、燐光ドーパント材料として、下記式(X)又は(Y)で表される錯体が好ましい。
Figure JPOXMLDOC01-appb-C000046

 式(X)、(Y)において、R10は、水素原子又は置換基であり、kは、1~4の整数である。Mは、Ir、Os、又はPtである。
 R10の示す置換基としては、上記式(1)のR~R等で例示した置換基と同様のものが挙げられる。
 本発明の一態様において、有機EL素子は蛍光発光材料を含有する発光層、つまり蛍光発光層を有していてもよい。蛍光発光層としては、公知の蛍光発光材料を使用できる。
 本発明の一態様においては、青色系の蛍光発光材料として、ピレン誘導体、スチリルアミン誘導体、クリセン誘導体、フルオランテン誘導体、フルオレン誘導体、ジアミン誘導体、トリアリールアミン誘導体等が使用できる。具体的には、N,N'-ビス[4-(9 H-カルバゾール-9-イル)フェニル]-N,N'-ジフェニルスチルベン-4,4'-ジアミン(略称:YGA2S)、4-(9H-カルバゾール-9-イル)-4'-(10 -フェニル-9-アントリル)トリフェニルアミン(略称:YGAPA)、4-(10-フェニル-9-アントリル)-4'-(9-フェニル-9H-カルバゾール-3-イル) トリフェニルアミン(略称:PCBAPA)などが挙げられる。
 緑色系の蛍光発光材料として、芳香族アミン誘導体等が使用でき、具体的には、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、N-[9,10-ビス(1,1'-ビフェニル-2-イル)-2-アントリル]-N,9-ジフェニル-9H -カルバゾール-3-アミン(略称:2PCABPhA)、N-(9,10-ジフェニル-2-アントリル)-N,N',N'-トリフェニル-1,4-フェニレンジアミン(略称:2DPAPA)、N-[9,10-ビス(1,1'-ビフェニル-2-イル)-2-ア ントリル]-N,N',N'-トリフェニル-1,4-フェニレンジアミン(略称:2DPABPhA)、N-[9,10-ビス(1,1'-ビフェニル-2-イル)]-N-[4 -(9H-カルバゾール-9-イル)フェニル]-N-フェニルアントラセン-2-アミン(略称:2YGABPhA)、N,N,9-トリフェニルアントラセン-9-アミン(略称:DPhAPhA)などが挙げられる。
 赤色系の蛍光発光材料として、テトラセン誘導体、ジアミン誘導体等が使用でき、具体的には、N,N,N',N'-テトラキス(4-メチルフェニル)テトラセン-5,11-ジアミン(略称:p-mPhTD)、7,14-ジフェニル-N,N,N',N'-テトラキス(4-メチルフェニル)アセナフト[1,2-a]フルオランテン-3,10-ジアミン(略称:p-mPhAFD)などが挙げられる。
 本発明の他の態様においては、該蛍光発光材料としては、アントラセン誘導体、フルオランテン誘導体、スチリルアミン誘導体及びアリールアミン誘導体から選択される少なくとも1種が好ましく、アントラセン誘導体、アリールアミン誘導体がより好ましい。特に、ホスト材料としてはアントラセン誘導体が好ましく、ドーパント材料としてはアリールアミン誘導体が好ましい。具体的には、国際公開第2010/134350号や国際公開第2010/134352号に記載する好適な材料が選択される。前記化合物(1)及び前記有機EL素子用材料は、蛍光発光層の蛍光発光材料として用いてもよく、蛍光発光層のホスト材料として用いてもよい。
 上述した発光性の高い物質(ドーパント材料)を他の物質(ホスト材料)に分散させてもよい。ホスト材料としては、各種のものを用いることができ、ドーパント材料よりも最低空軌道準位(LUMO準位)が高く、最高被占有軌道準位(HOMO準位)が低い物質を用いることが好ましい。
 本発明の一態様において、ホスト材料としては、(1)アルミニウム錯体、ベリリウム錯体、亜鉛錯体等の金属錯体、(2)オキサジアゾール誘導体、ベンゾイミダゾール誘導体、フェナントロリン誘導体等の複素環化合物、(3)カルバゾール誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、クリセン誘導体等の縮合芳香族化合物、(4)トリアリールアミン誘導体、縮合多環芳香族アミン誘導体等の芳香族アミン化合物が使用される。より具体的には、トリス(8-キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4-メチル-8-キノリノラト )アルミニウム(III)(略称:Almq3)、ビス(10-ヒドロキシベンゾ[h]キ ノリナト)ベリリウム(II)(略称:BeBq2)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8 -キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などの金属錯体、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール(略称:TAZ)、2,2',2''-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1 H-ベンゾイミダゾール)(略称:TPBI)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)などの複素環化合物や、9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:CzPA)、3,6-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:DPCzPA)、9,10-ビス(3,5-ジフェニルフェニル)アントラセン(略称:DPPA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、2-tert-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、9,9'-ビアントリル(略称:BANT)、9,9'-(スチルベン-3,3'-ジイル)ジフェナントレン(略称:DPNS)、9,9'-(スチルベン-4,4'-ジイル)ジフェナントレン(略称:DPNS2)、3,3',3''-(ベンゼン-1,3,5-トリイル)トリピレン(略称:TPB3)、9,10-ジフェニルアントラセン(略称:DPAnth)、6,12-ジメトキシ-5,11-ジフェニルクリセンなどの縮合芳香族化合物、N,N-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:CzA1PA)、4-(10-フェニル-9-アントリル)トリフェニルアミン(略称:DPhPA)、N,9-ジフェニル-N-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:PCAPA)、N,9-ジフェニル-N-{4-[4-(10-フェニル-9-アントリル)フェニル]フェニル}-9H-カルバゾール-3-アミン(略称:PCAPBA)、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、NPB(またはα-NPD)、TPD、DFLDPBi、BSPBなどの芳香族アミン化合物などを用いることができる。
 燐光ホストは、燐光ドーパントの三重項エネルギーを効率的に発光層内に閉じ込めることにより、燐光ドーパントを効率的に発光させる機能を有する化合物である。前記化合物(1)及び該化合物(1)を含む有機EL素子用材料は燐光ホストとして有用であるが、前記化合物(1)以外の化合物も、燐光ホストとして、目的に応じて適宜選択することができる。また、前記化合物(1)及び有機EL素子用材料は、燐光ホストへの適用に限定されない。
 前記化合物(1)とそれ以外の化合物を同一の発光層内の燐光ホスト材料として併用してもよいし、複数の発光層がある場合には、そのうちの一つの発光層の燐光ホスト材料として前記化合物(1)を用い、別の一つの発光層の燐光ホスト材料として前記化合物(1)以外の化合物を用いてもよい。また、前記化合物(1)は発光層以外の有機層にも使用しうるものであり、その場合には発光層の燐光ホストとして、前記化合物(1)以外の化合物を用いてもよい。
 前記化合物(1)以外の化合物で、燐光ホストとして好適な化合物の具体例としては、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8-キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。燐光ホストは単独で使用しても良いし、2種以上を併用しても良い。具体例としては、以下のような化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000047
(電子供与性ドーパント)
 本発明の一態様において、陰極と発光ユニットとの界面領域に電子供与性ドーパントを有することも好ましい。このような構成によれば、有機EL素子における発光輝度の向上や長寿命化が図られる。ここで、電子供与性ドーパントとは、仕事関数3.8eV以下の金属を含有するものをいい、その具体例としては、アルカリ金属、アルカリ金属錯体、アルカリ金属化合物、アルカリ土類金属、アルカリ土類金属錯体、アルカリ土類金属化合物、希土類金属、希土類金属錯体、及び希土類金属化合物等から選ばれた少なくとも一種類が挙げられる。
 アルカリ金属としては、Na(仕事関数:2.36eV)、K(仕事関数:2.28eV)、Rb(仕事関数:2.16eV)、Cs(仕事関数:1.95eV)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。これらのうち好ましくはK、Rb、Cs、さらに好ましくはRb又はCsであり、最も好ましくはCsである。アルカリ土類金属としては、Ca(仕事関数:2.9eV)、Sr(仕事関数:2.0eV~2.5eV)、Ba(仕事関数:2.52eV)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。希土類金属としては、Sc、Y、Ce、Tb、Yb等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。
 アルカリ金属化合物としては、LiO、CsO、KO等のアルカリ酸化物、LiF、NaF、CsF、KF等のアルカリハロゲン化物等が挙げられ、LiF、LiO、NaFが好ましい。アルカリ土類金属化合物としては、BaO、SrO、CaO及びこれらを混合したBaSr1-xO(0<x<1)、BaCa1-xO(0<x<1)等が挙げられ、BaO、SrO、CaOが好ましい。希土類金属化合物としては、YbF、ScF、ScO、Y、Ce、GdF、TbF等が挙げられ、YbF、ScF、TbFが好ましい。
 アルカリ金属錯体、アルカリ土類金属錯体、希土類金属錯体としては、それぞれ金属イオンとしてアルカリ金属イオン、アルカリ土類金属イオン、希土類金属イオンの少なくとも一つ含有するものであれば特に限定はない。また、配位子にはキノリノール、ベンゾキノリノール、アクリジノール、フェナントリジノール、ヒドロキシフェニルオキサゾール、ヒドロキシフェニルチアゾール、ヒドロキシジアリールオキサジアゾール、ヒドロキシジアリールチアジアゾール、ヒドロキシフェニルピリジン、ヒドロキシフェニルベンゾイミダゾール、ヒドロキシベンゾトリアゾール、ヒドロキシフルボラン、ビピリジル、フェナントロリン、フタロシアニン、ポルフィリン、シクロペンタジエン、β-ジケトン類、アゾメチン類、及びそれらの誘導体などが好ましいが、これらに限定されるものではない。
 電子供与性ドーパントは界面領域に層状又は島状に形成するのが好ましい。形成方法としては、抵抗加熱蒸着法により電子供与性ドーパントを蒸着しながら、界面領域を形成する有機化合物(発光材料や電子注入材料)を同時に蒸着させ、有機化合物に電子供与性ドーパントを分散する方法が好ましい。分散濃度はモル比で前記有機化合物:電子供与性ドーパント=100:1~1:100、好ましくは5:1~1:5である。
 電子供与性ドーパントを層状に形成する場合は、界面領域を形成する有機化合物(発光材料や電子注入材料)を層状に形成した後に、電子供与性ドーパントを単独で抵抗加熱蒸着法により蒸着し、好ましくは層の厚み0.1nm~15nmで形成する。電子供与性ドーパントを島状に形成する場合は、界面領域を形成する有機化合物(発光材料や電子注入材料)を島状に形成した後に、電子供与性ドーパントを単独で抵抗加熱蒸着法により蒸着し、好ましくは島の厚み0.05nm~1nmで形成する。
 前記有機化合物と電子供与性ドーパントの割合は、モル比で5:1~1:5であると好ましく、2:1~1:2であるとさらに好ましい。
(電子輸送層)
 電子輸送層は、発光層と陰極との間に形成される有機層であって、電子を陰極から発光層へ輸送する機能を有する。電子輸送層が複数層で構成される場合、陰極に近い有機層を電子注入層と定義することがある。電子注入層は、陰極から電子を効率的に有機層ユニットに注入する機能を有する。本発明の一態様の化合物(1)は、電子輸送層(第2の電荷輸送材料)に含有される電子輸送材料として用いることもできる。
 電子輸送層に用いる電子輸送性材料としては、分子内にヘテロ原子を1個以上含有する芳香族ヘテロ環化合物が好ましく用いられ、特に含窒素環誘導体が好ましい。また、含窒素環誘導体としては、含窒素6員環もしくは5員環骨格を有する芳香族環、又は含窒素6員環もしくは5員環骨格を有する縮合芳香族環化合物が好ましい。
 この含窒素環誘導体としては、例えば、下記式(A)で表される含窒素環金属キレート錯体が好ましい。
Figure JPOXMLDOC01-appb-C000048
 式(A)におけるR101~R106は、それぞれ独立に、水素原子、ハロゲン原子、オキシ基、アミノ基、炭素数1~40(好ましくは1~20、より好ましくは1~10、さらに好ましくは1~5)の炭化水素基、炭素数1~40(好ましくは1~20、より好ましくは1~10、さらに好ましくは1~5)のアルコキシ基、環形成炭素数6~50(好ましくは6~20、より好ましくは6~12)のアリールオキシ基、炭素数2~40(好ましくは2~20、より好ましくは2~10、さらに好ましくは2~5)のアルコキシカルボニル基又は環形成原子数5~50(好ましくは5~30、より好ましくは5~20)の芳香族複素環基であり、これらは置換されていてもよい。
 ハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素等が挙げられる。
 置換されていてもよいアミノ基の例としては、アルキルアミノ基、アリールアミノ基、アラルキルアミノ基が挙げられる。
 アルキルアミノ基及びアラルキルアミノ基は-NQと表される。Q及びQは、それぞれ独立に、炭素数1~20のアルキル基又は炭素数1~20のアラルキル基を表す。Q及びQの一方は水素原子であってもよい。
 アリールアミノ基は-NAr’Ar’と表され、Ar’及びAr’は、それぞれ独立に、炭素数6~50の非縮合芳香族炭化水素基又は縮合芳香族炭化水素基を表す。Ar’及びAr’の一方は水素原子であってもよい。
 炭素数1~40の炭化水素基はアルキル基、アルケニル基、シクロアルキル基、アリール基、及びアラルキル基を含む。
 アルコキシカルボニル基は-COOY’と表され、Y’は炭素数1~20のアルキル基を表す。
 Mは、アルミニウム(Al)、ガリウム(Ga)又はインジウム(In)であり、Inであると好ましい。
 L100は、下記式(A’)又は(A”)で表される基である。
Figure JPOXMLDOC01-appb-C000049
 式(A’)中、R107~R111は、それぞれ独立に、水素原子、又は置換もしくは無置換の炭素数1~40(好ましくは1~20、より好ましくは1~10、さらに好ましくは1~5)の炭化水素基であり、R107~R111のうちの2つ以上が結合して環状構造を形成していてもよい。また、前記式(A”)中、R112~R126は、それぞれ独立に、水素原子又は置換もしくは無置換の炭素数1~40(好ましくは1~20、より好ましくは1~10、さらに好ましくは1~5)の炭化水素基であり、R112~R126のうちの2つ以上が結合して環状構造を形成していてもよい。
 式(A’)及び式(A”)のR107~R126が示す炭素数1~40の炭化水素基は、前記式(A)中のR101~R106が示す炭化水素基と同様である。また、R107~R111のうちの2つ以上が結合して環状構造を形成した場合及びR112~R126のうちの2つ以上が結合して環状構造を形成した場合の2価の基としては、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ジフェニルメタン-2,2’-ジイル基、ジフェニルエタン-3,3’-ジイル基、ジフェニルプロパン-4,4’-ジイル基等が挙げられる。
 電子輸送層に用いられる電子伝達性化合物としては、8-ヒドロキシキノリン又はその誘導体の金属錯体、オキサジアゾール誘導体、含窒素複素環誘導体が好適である。上記8-ヒドロキシキノリン又はその誘導体の金属錯体の具体例としては、オキシン(一般に8-キノリノール又は8-ヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合物、例えばトリス(8-キノリノール)アルミニウムを用いることができる。そして、オキサジアゾール誘導体としては、下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000050
 前記式中、Ar17、Ar18、Ar19、Ar21、Ar22及びAr25は、それぞれ置換もしくは無置換の炭素数6~50の芳香族炭化水素基又は縮合芳香族炭化水素基を示し、Ar17とAr18、Ar19とAr21、Ar22とAr25は、たがいに同一でも異なっていてもよい。芳香族炭化水素基又は縮合芳香族炭化水素基としては、フェニル基、ナフチル基、ビフェニル基、アントラニル基、ペリレニル基、ピレニル基などが挙げられる。これらの置換基としては炭素数1~10のアルキル基、炭素数1~10のアルコキシ基又はシアノ基等が挙げられる。
 Ar20、Ar23及びAr24は、それぞれ置換もしくは無置換の炭素数6~60の2価の芳香族炭化水素基又は縮合芳香族炭化水素基を示し、Ar23とAr24は、たがいに同一でも異なっていてもよい。2価の芳香族炭化水素基又は縮合芳香族炭化水素基としては、フェニレン基、ナフチレン基、ビフェニレン基、アントラニレン基、ペリレニレン基、ピレニレン基などが挙げられる。これらの置換基としては炭素数1~10のアルキル基、炭素数1~10のアルコキシ基又はシアノ基等が挙げられる。
 これらの電子伝達性化合物は、薄膜形成性の良好なものが好ましく用いられる。そして、これら電子伝達性化合物の具体例としては、下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000051
 電子伝達性化合物としての含窒素複素環誘導体は、以下の式を有する有機化合物からなる含窒素複素環誘導体であって、金属錯体でない含窒素化合物が挙げられる。例えば、下記式(B)に示す骨格を含有する5員環もしくは6員環や、下記式(C)に示す構造のものが挙げられる。
Figure JPOXMLDOC01-appb-C000052
 前記式(C)中、Xは炭素原子もしくは窒素原子を表す。ZならびにZは、それぞれ独立に含窒素ヘテロ環を形成可能な原子群を表す。
 含窒素複素環誘導体は、さらに好ましくは、5員環もしくは6員環からなる含窒素芳香多環族を有する有機化合物である。さらには、このような複数窒素原子を有する含窒素芳香多環族の場合は、上記式(B)と(C)もしくは上記式(B)と下記式(D)を組み合わせた骨格を有する含窒素芳香多環有機化合物が好ましい。
Figure JPOXMLDOC01-appb-C000053
 前記の含窒素芳香多環有機化合物の含窒素基は、例えば、以下の式で表される含窒素複素環基から選択される。
Figure JPOXMLDOC01-appb-C000054
 前記各式中、R’’’は、環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基又は環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族炭化水素基、環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基又は環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)縮合芳香族複素環基、炭素数1~20(好ましくは1~10、より好ましくは1~5)のアルキル基、又は炭素数1~20(好ましくは1~10、より好ましくは1~5)のアルコキシ基である。
 nは0~5の整数であり、nが2以上の整数であるとき、複数のR’’’は互いに同一又は異なっていてもよい。
 さらに、好ましい具体的な化合物として、下記式(D1)で表される含窒素複素環誘導体が挙げられる。
HAr-L101-Ar101-Ar102  (D1)
 前記式(D1)中、HArは、置換もしくは無置換の環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の含窒素複素環基であり、
 L101は単結合、置換もしくは無置換の環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基又は縮合芳香族炭化水素基、置換もしくは無置換の環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基又は置換もしくは無置換の環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族複素環基である。
 Ar101は置換もしくは無置換の環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の2価の芳香族炭化水素基であり、Ar102は置換もしくは無置換の環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~14)の芳香族炭化水素基、置換もしくは無置換の環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族炭化水素基、置換もしくは無置換の環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基又は置換もしくは無置換の環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の縮合芳香族複素環基である。
 HArは、例えば、下記の群から選択される。
Figure JPOXMLDOC01-appb-C000055
 L101は、例えば、下記の群から選択される。
Figure JPOXMLDOC01-appb-C000056
 Ar101は、例えば、下記式(D2)、式(D3)ので表される基から選択される。
Figure JPOXMLDOC01-appb-C000057
 前記式(D2)、式(D3)中、R201~R214は、それぞれ独立して、水素原子、ハロゲン原子、置換もしくは無置換の炭素数1~20(好ましくは1~10、より好ましくは1~5)のアルキル基、置換もしくは無置換の炭素数1~20(好ましくは1~10、より好ましくは1~5)のアルコキシ基、置換もしくは無置換の環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)のアリールオキシ基、置換もしくは無置換の環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基、置換もしくは無置換の環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族炭化水素基、置換もしくは無置換の環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基又は置換もしくは無置換の環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の縮合芳香族複素環基である。
 Ar103は、置換もしくは無置換の環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基、置換もしくは無置換の環形成炭素数6~40(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族炭化水素基、置換もしくは無置換の環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基又は置換もしくは無置換の環形成原子数5~40(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の縮合芳香族複素環基である。
 Ar102は、例えば、下記の群から選択される。
Figure JPOXMLDOC01-appb-C000058
 電子伝達性化合物としての含窒素芳香多環有機化合物には、この他、下記の化合物も好適に用いられる。
Figure JPOXMLDOC01-appb-C000059
 前記式(D4)中、R231~R234は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20の脂肪族基、置換もしくは無置換の炭素数3~20の脂肪族式環基、置換もしくは無置換の炭素数6~50の芳香族環基、置換もしくは無置換の炭素数3~50の複素環基を表し、X21、X22は、それぞれ独立に、酸素原子、硫黄原子、又はジシアノメチレン基を表す。
 また、電子伝達性化合物として、下記の化合物も好適に用いられる。
Figure JPOXMLDOC01-appb-C000060
 前記式(D5)中、R221、R222、R223及びR224は互いに同一の又は異なる基であって、下記式(D6)で表される芳香族炭化水素基又は縮合芳香族炭化水素基である。
Figure JPOXMLDOC01-appb-C000061
 前記式(D6)中、R225、R226、R227、R228及びR229は互いに同一又は異なる基であって、水素原子、飽和もしくは不飽和の炭素数1~20のアルコキシル基、飽和もしくは不飽和の炭素数1~20のアルキル基、アミノ基、又は炭素数1~20のアルキルアミノ基である。R225、R226、R227、R228及びR229の少なくとも1つは水素原子以外の基である。
 さらに、電子伝達性化合物は、該含窒素複素環基又は含窒素複素環誘導体を含む高分子化合物であってもよい。
 本発明の一態様の有機EL素子の電子輸送層は、下記式(E)~(G)で表される含窒素複素環誘導体を少なくとも1種含むことが特に好ましい。
Figure JPOXMLDOC01-appb-C000062
(式(E)~式(G)中、Z201、Z202及びZ203は、それぞれ独立に、窒素原子又は炭素原子である。
 R301及びR302は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)のアリール基、置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のハロアルキル基又は置換もしくは無置換の炭素数1~20のアルコキシ基である。
 vは、0~5の整数であり、vが2以上の整数であるとき、複数のR301は互いに同一でも異なっていてもよい。また、2つのR301同士が互いに結合して、置換もしくは無置換の炭化水素環を形成していてもよい。
 Ar201は、置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)のアリール基又は置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)のヘテロアリール基である。
 Ar202は、水素原子、置換もしくは無置換の炭素数1~20(好ましくは1~10、より好ましくは1~5)のアルキル基、置換もしくは無置換の炭素数1~20(好ましくは1~10、より好ましくは1~5)のハロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)のアリール基又は置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)のヘテロアリール基である。
 但し、Ar201、Ar202のいずれか一方は、置換もしくは無置換の環形成炭素数10~50(好ましくは10~30、より好ましくは10~20)の縮合芳香族炭化水素環基又は置換もしくは無置換の環形成原子数9~50(好ましくは9~30、より好ましくは9~20)の縮合芳香族複素環基である。
 Ar203は、置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)のアリーレン基又は置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)のヘテロアリーレン基である。
 L201、L202及びL203は、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)のアリーレン基、又は置換もしくは無置換の環形成原子数9~50(好ましくは9~30、より好ましくは9~20)の2価の縮合芳香族複素環基である。)
 環形成炭素数6~50のアリール基としては、フェニル基、ナフチル基、アントリル基、フェナントリル基、ナフタセニル基、クリセニル基、ピレニル基、ビフェニル基、ターフェニル基、トリル基、フルオランテニル基、フルオレニル基などが挙げられる。
 環形成原子数5~50のヘテロアリール基としては、ピローリル基、フリル基、チエニル基、シローリル基、ピリジル基、キノリル基、イソキノリル基、べンゾフリル基、イミダゾリル基、ピリミジル基、カルバゾリル基、セレノフェニル基、オキサジアゾリル基、トリアゾーリル基、ピラジニル基、ピリダジニル基、トリアジニル基、キノキサリニル基、アクリジニル基、イミダゾ[1,2-a]ピリジニル基、イミダゾ[1,2-a]ピリミジニル基などが挙げられる。
 炭素数1~20のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、へキシル基などが挙げられる。
 炭素数1~20のハロアルキル基としては、前記アルキル基の1又は2以上の水素原子をフッ素、塩素、ヨウ素及び臭素から選ばれる少なくとも1のハロゲン原子で置換して得られる基が挙げられる。
 炭素数1~20のアルコキシ基としては、前記アルキル基をアルキル部位としては有する基が挙げられる。
 環形成炭素数6~50のアリーレン基としては、前記アリール基から水素原子1個を除去して得られる基が挙げられる。
 環形成原子数9~50の2価の縮合芳香族複素環基としては、前記ヘテロアリール基として記載した縮合芳香族複素環基から水素原子1個を除去して得られる基が挙げられる。
 電子輸送層の膜厚は、特に限定されないが、好ましくは1nm~100nmである。
 また、電子輸送層に隣接して設けることができる電子注入層の構成成分として、含窒素環誘導体の他に無機化合物として、絶縁体又は半導体を使用することが好ましい。電子注入層が絶縁体や半導体で構成されていれば、電流のリークを有効に防止して、電子注入性を向上させることができる。
 このような絶縁体としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲニド等で構成されていれば、電子注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金属カルコゲニドとしては、例えば、LiO、KO、NaS、NaSe及びNaOが挙げられ、好ましいアルカリ土類金属カルコゲニドとしては、例えば、CaO、BaO、SrO、BeO、BaS及びCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、LiCl、KCl及びNaCl等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF、BaF、SrF、MgF及びBeF等のフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
 また、半導体としては、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、Sb及びZnの少なくとも一つの元素を含む酸化物、窒化物又は酸化窒化物等の一種単独又は二種以上の組み合わせが挙げられる。また、電子注入層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜であることが好ましい。電子注入層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお、このような無機化合物としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物等が挙げられる。
 このような絶縁体又は半導体を使用する場合、その層の好ましい厚みは、0.1nm~15nm程度である。また、本発明の一態様の有機EL素子における電子注入層は、前述の電子供与性ドーパントを含有していても好ましい。
(正孔輸送層)
 発光層と陽極との間に形成される有機層であって、正孔を陽極から発光層へ輸送する機能を有する。正孔輸送層が複数層で構成される場合、陽極に近い有機層を正孔注入層と定義することがある。正孔注入層は、陽極から正孔を効率的に有機層ユニットに注入する機能を有する。本発明の一態様の化合物(1)は、正孔輸送層(第1の電荷輸送層)に含有される正孔輸送材料として用いることもできる。
 正孔輸送層を形成する他の材料としては、芳香族アミン化合物、例えば、下記式(H)で表される芳香族アミン誘導体が好適に用いられる。
Figure JPOXMLDOC01-appb-C000063
 前記式(H)において、Ar211~Ar214は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基又は置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族炭化水素基、置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基又は置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の縮合芳香族複素環基、又は、それら芳香族炭化水素基又は縮合芳香族炭化水素基と芳香族複素環基又は縮合芳香族複素環基が結合した基を表す。Ar211とAr212、Ar213とAr214は互いに結合して飽和もしくは不飽和の環構造を形成してもよい。
 また、前記式(H)において、L211は、置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の芳香族炭化水素基又は置換もしくは無置換の環形成炭素数6~50(好ましくは6~30、より好ましくは6~20、さらに好ましくは6~12)の縮合芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の芳香族複素環基又は置換もしくは無置換の環形成原子数5~50(好ましくは5~30、より好ましくは5~20、さらに好ましくは5~12)の縮合芳香族複素環基を表す。
 式(H)の化合物の具体例を以下に記す。
Figure JPOXMLDOC01-appb-C000064
 また、下記式(J)の芳香族アミンも正孔輸送層の形成に好適に用いられる。
Figure JPOXMLDOC01-appb-C000065
 前記式(J)において、Ar221~Ar223の定義は前記式(H)のAr211~Ar214の定義と同様である。以下に式(J)の化合物の具体例を記すがこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
 また、N,N,N’,N’-テトラフェニル-4,4’-ジアミノフェニル;N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-〔1,1’-ビフェニル〕-4,4’-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N’,N’-テトラ-p-トリル-4,4’-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N’-ジフェニル-N,N’-ジ(4-メトキシフェニル)-4,4’-ジアミノビフェニル;N,N,N’,N’-テトラフェニル-4,4’-ジアミノジフェニルエーテル;4,4’-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4’-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4’-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール;2個の縮合芳香族環を分子内に有するもの、例えば、4,4’-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD);トリフェニルアミンユニットが3つスターバースト型に連結された4,4’,4”-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)から選ばれる芳香族第3級アミン化合物及びスチリルアミン化合物を正孔輸送層に用いてもよい。
 本発明の一態様において、正孔輸送層は正孔輸送材料と溶剤を含有する正孔輸送層用組成物を用いて形成してもよい。
 正孔輸送材料は、重合体などの高分子化合物であっても、単量体などの低分子化合物であってもよい。また、電荷注入障壁の観点から4.5eV~6.0eVのイオン化ポテンシャルを有する化合物が好ましい。正孔輸送材料の例としては、芳香族アミン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボン等が挙げられる。
 ここで誘導体とは、例えば、芳香族アミン誘導体を例にするならば、芳香族アミンそのもの及び芳香族アミンを主骨格とする化合物を含むものであり、重合体であっても、単量体であってもよい。
 上記例示した中でも非晶質性、可視光の透過率の点から、芳香族アミン化合物が好ましく、特に芳香族三級アミン化合物が好ましい。ここで、芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。
 芳香族三級アミン化合物の種類は特に制限されないが、表面平滑化効果による均一な発光の点から、重量平均分子量が1000以上、1000000以下の高分子化合物(繰り返し単位が連なる重合型化合物)がさらに好ましい。芳香族三級アミン高分子化合物の好ましい例として、下記式(I)で表される繰り返し単位を有する高分子化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000070
 式(I)中、ArおよびArは、それぞれ独立して、置換もしくは無置換の芳香族炭化水素基または置換もしくは無置換の芳香族複素環基を表す。Ar~Arは、それぞれ独立して、置換もしくは無置換の芳香族炭化水素基または置換もしくは無置換の芳香族複素環基を表す。また、Ar~Arのうち、同一のN原子に結合する二つの基は互いに結合して環を形成してもよい。Yは、下記から選ばれる連結基を表す。
Figure JPOXMLDOC01-appb-C000071
 上記各式中、Ar~Ar16は、それぞれ独立して、置換もしくは無置換の芳香族炭化水素基または置換もしくは無置換の芳香族複素環基を表す。RおよびRは、それぞれ独立して、水素原子または置換基を表す。
 Ar~Ar16の芳香族炭化水素基および芳香族複素環基としては、高分子化合物の溶解性、耐熱性、正孔注入・輸送性の点から、ベンゼン環、ナフタレン環、フェナントレン環、チオフェン環、及びピリジン環から選ばれる環を有する基が好ましく、ベンゼン環及びナフタレン環から選ばれる環を有する基がさらに好ましい。
 Ar~Ar16の芳香族炭化水素基および芳香族複素環基の任意の置換基の分子量は、通常400以下、中でも250以下程度が好ましい。置換基としては、アルキル基、アルケニル基、アルコキシ基、芳香族炭化水素基、芳香族複素環基などが好ましい。
 RおよびRが表す置換基としては、アルキル基、アルケニル基、アルコキシ基、シリル基、シロキシ基、芳香族炭化水素基、芳香族複素環基などが挙げられる。
 正孔輸送材料としては、ポリチオフェンの誘導体である3,4-エチレンジオキシチオフェンを高分子量ポリスチレンスルホン酸中で重合してなる導電性ポリマー(PEDOT/PSS)もまた好ましい。また、このポリマーの末端をメタクリレート等でキャップしたものであってもよい。
 正孔輸送層用組成物中の正孔輸送材料の濃度は任意であるが、膜厚の均一性の点で通常0.01質量%以上、好ましくは0.1質量%以上、さらに好ましくは0.5質量%以上、また、通常70質量%以下、好ましくは60質量%以下、さらに好ましくは50質量%以下である。この範囲であれば、膜厚ムラが生じたり、正孔輸送層に欠陥が生じることが無い。
 上記正孔輸送層用組成物は、電子受容性化合物を含有しても良い。
 電子受容性化合物とは、酸化力を有し、上述の正孔輸送材料から一電子受容する能力を有する化合物が好ましく、具体的には、電子親和力が4eV以上である化合物が好ましく、5eV以上の化合物である化合物がさらに好ましい。
 このような電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種または2種以上の化合物等が挙げられる。さらに具体的には、4-イソプロピル-4’-メチルジフェニルヨードニウムテトラキス(ペンダフルオロフェニル)ボラート、トリフェニルスルホニウムテトラフルオロボラート等の有機基を有するオニウム塩;塩化鉄(III)、ペルオキソ二硫酸アンモニウム等の高原子価の無機化合物;テトラシアノエチレン等のシアノ化合物、トリス(ペンダフルオロフェニル)ボラン等の芳香族ホウ素化合物;フラーレン誘導体;ヨウ素;ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、ショウノウスルホン酸イオン等のスルホン酸イオン等が挙げられる。
 これらの電子受容性化合物は、正孔輸送材料を酸化することにより正孔輸送層の導電率を向上させることができる。
 正孔輸送層用組成物中の電子受容性化合物の正孔輸送材料に対する含有量は、通常0.1モル%以上、好ましくは1モル%以上である。但し、通常100モル%以下、好ましくは40モル%以下である。
 上述の正孔輸送材料や電子受容性化合物に加えて、さらに、その他の成分を正孔輸送層用組成物に含有させてもよい。その他の成分の例としては、各種の発光材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などが挙げられる。なお、その他の成分は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
 本発明の一態様において、塗布法に適した正孔輸送材料が好ましく用いられる。このような正孔輸送材料としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミン残基を有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、ポリフルオレン誘導体、芳香族アミン残基を有する高分子化合物、およびポリ(2,5-チエニレンビニレン)若しくはその誘導体が挙げられる。
 前記正孔輸送材料は高分子化合物、例えば重合体であることが好ましい。高分子化合物であると成膜性が向上し、有機EL素子の発光性を均一にすることができるからである。例えば、このような正孔輸送材料の標準ポリスチレンで検量した数平均分子量は、10000以上であり、好ましくは3.0×10~5.0×10であり、より好ましくは6.0×10~1.2×10である。また、正孔輸送材料の重量平均分子量は、1.0×10以上であり、好ましくは5.0×10~1.0×10であり、より好ましくは1.0×10~6.0×10である。
 前記正孔輸送材料としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミン残基を有するポリシロキサン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリフルオレン誘導体、芳香族アミン残基を有する高分子化合物、ポリ(p-フェニレンビニレン)若しくはその誘導体、およびポリ(2,5-チエニレンビニレン)若しくはその誘導体等の高分子化合物が好ましく、さらに好ましくはポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミン残基を有するポリシロキサン誘導体、ポリフルオレン誘導体、芳香族アミン残基を有する高分子化合物である。正孔輸送材料が低分子である場合には、高分子バインダーに分散させて用いることが好ましい。
 前記ポリビニルカルバゾール若しくはその誘導体は、例えばビニルモノマーをカチオン重合するか、またはラジカル重合することによって得られる。
 ポリシロキサン若しくはその誘導体としては、シロキサン骨格構造には正孔輸送性がほとんどないので、側鎖または主鎖に上記低分子正孔輸送材料の残基を有する化合物が好適に用いられる。特に正孔輸送性の芳香族アミン残基を側鎖または主鎖に有する化合物が挙げられる。
 正孔輸送材料としては、下記式(Z)で表されるフルオレンジイルユニットを有する重合体が好ましい。縮合環または複数の芳香環を有する有機化合物と接触させて有機EL素子の正孔輸送層とした場合に、正孔注入効率が向上し、駆動時の電流密度が大きくなるからである。
Figure JPOXMLDOC01-appb-C000072
 式(Z)中、R、Rは同一であっても異なっていてもよく、それぞれ独立に水素原子、アルキル基、アルコキシ基、アリール基、1価の複素環基を表す。アルキル基としては、炭素原子数が1~10の基が挙げられる。アルコキシ基としては炭素原子数が1~10の基が挙げられる。アリール基の例としてはフェニル基、ナフチル基等が挙げられる。1価の複素環基の例としてはピリジル基等が挙げられる。アリール基、1価の複素環基は置換基を有していてもよく、置換基の例としては、高分子化合物の溶解性向上の観点から、炭素原子数が1~10のアルキル基、炭素原子数が1~10のアルコキシ基等が挙げられる。
 式(Z)において、アリール基、1価の複素環基は架橋性基を有していてもよい。架橋基の例としては、ビニル基、エチニル基、ブテニル基、アクリル構造を有する基、アクリレート構造を有する基、アクリルアミド構造を有する基、メタクリル構造を有する基、メタクリレート構造を有する基、メタクリルアミド構造を有する基、ビニルエーテル構造を有する基、ビニルアミノ基、シラノール構造を有する基、小員環(例えばシクロプロパン、シクロブタン、エポキシド、オキセタン、ジケテン、エピスルフィド等)を有する基等が挙げられる。
 好ましいフルオレンジイルユニットの具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000073
 特に好ましい正孔輸送材料は、繰り返し単位として上記フルオレンジイルユニットと芳香族3級アミン化合物ユニットとを含む重合体、例えばポリアリールアミン重合体である。
 芳香族3級アミン化合物ユニットとしては、下記式(K)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000074
 式(K)中、Ar、Ar、ArおよびArは、それぞれ独立に、アリーレン基または2価の複素環基を表す。Ar、ArおよびArは、それぞれ独立に、アリール基または1価の複素環基を表す。あるいは、ArとArは、ArとArが結合する窒素原子とともに環を形成していてもよい。mおよびnは、それぞれ独立に、0または1を表す。
 アリーレン基の例としては、フェニレン基等が挙げられる。2価の複素環基の例としては、ピリジンジイル基等が挙げられる。これらの基は置換基を有していてもよい。
 アリール基の例としては、フェニル基、ナフチル基等が挙げられる。1価の複素環基の例としては、ピリジル基等が挙げられる。これらの基は置換基を有していてもよい。
 1価の複素環基の例としては、チエニル基、フリル基、ピリジル基等が挙げられる。
 アリーレン基、アリール基、2価の複素環基、1価の複素環基の任意の置換基としては、高分子化合物の溶解性の観点からは、アルキル基、アルコキシ基、アリール基が好ましく、アルキル基がより好ましい。アルキル基としては、炭素原子数が1~10の基が挙げられる。アルコキシ基としては、炭素原子数が1~10の基が挙げられる。アリール基の例としては、フェニル基、ナフチル基等が挙げられる。
 また、置換基は、架橋性基を有していてもよい。架橋性基の例としては、ビニル基、エチニル基、ブテニル基、アクリル構造を有する基、アクリレート構造を有する基、アクリルアミド構造を有する基、メタクリル構造を有する基、メタクリレート構造を有する基、メタクリルアミド構造を有する基、ビニルエーテル構造を有する基、ビニルアミノ基、シラノール構造を有する基、小員環(例えばシクロプロパン、シクロブタン、エポキシド、オキセタン、ジケテン、エピスルフィド等)を有する基等が挙げられる。
 式(K)において、Ar、Ar、ArおよびArは、アリーレン基であることが好ましく、フェニレン基であることがより好ましい。Ar、ArおよびArはアリール基であることが好ましく、フェニル基であることがより好ましい。
 さらにAr中の炭素原子とAr中の炭素原子とが直接結合するか、または-O-、-S-等の2価の基を介して結合していてもよい。
 モノマーの合成し易さの観点からは、mおよびnが0であることが好ましい。
 式(K)で表される繰り返し単位の具体例としては、下記式で表される繰り返し単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000075
 正孔輸送材料が架橋性基を有しない場合には、架橋性基を有する架橋剤を用いることが好ましい。架橋剤の例としては、ビニル基、アセチル基、ブテニル基、アクリル基、アクリルアミド基、メタクリル基、メタクリルアミド基、ビニルエーテル基、ビニルアミノ基、シラノール基、シクロプロピル基、シクロブチル基、エポキシ基、オキセタン基、ジケテン基、エピスルフィド基、ラクトン基、及びラクタム基からなる群から選ばれる重合可能な置換基を有する化合物を挙げることができる。架橋剤としては、例えば多官能アクリレートが好ましく、ジペンタエリスリトールヘキサアクリレート(DPHA)、トリスペンタエリスリトールオクタアクリレート(TPEA)などが挙げられる。
 このように架橋性基を有する材料を用いるか、または架橋剤を用いることにより、下層(正孔輸送層)上にさらに別の機能層(上層)を塗布法により形成したとしても、上層形成用の溶媒等による下層の溶解を効果的に抑制することができる。
 本発明の一態様において、正孔輸送部位を有し、架橋性基を有する正孔輸送材料が好ましく用いられる。正孔輸送部位としては、例えばトリアリールアミン構造、フルオレン環、アントラセン環、ピレン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環、フェノキサジン環、フェナントロリン環などの3環以上の芳香族環構造、チオフェン環、シロール環などの芳香族複素環構造、及び金属錯体構造が挙げられる。
 中でも、電気化学的安定性及び正孔輸送能を向上させる点で、正孔輸送部位としてトリアリールアミン構造を有することが好ましい。
 また、架橋反応によって有機溶剤に不溶になりやすい点で、重合体であることが好ましい。特に、電気化学的安定性及び正孔輸送能を向上させる点で、下記式(L)で表される繰り返し単位を含む重合体であることが好ましい。
Figure JPOXMLDOC01-appb-C000076
 式(L)中、mは0~3の整数を表し、Ar及びArは、各々独立して、単結合、置換もしくは無置換の芳香族炭化水素基又は置換もしくは無置換の芳香族複素環基を表し、Ar~Arは、各々独立に、置換もしくは無置換の芳香族炭化水素基又は置換もしくは無置換の芳香族複素環基を表す。但し、Ar及びArが同時に、単結合であることはない。
 前記芳香族炭化水素基としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環などの、6員環の単環又は2~5個の6員環を含む縮合環の一価の基が挙げられる。
 前記芳香族複素環基としては、例えばフラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環などの、5又は6員環の単環又は2~4個の5又は6員環を含む縮合環の一価の基が挙げられる。
 溶剤に対する溶解性及び耐熱性の点から、Ar~Arは、各々独立に、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、ピレン環、チオフェン環、ピリジン環、フルオレン環からなる群より選ばれる環の一価の基が好ましい。
 また、Ar~Arとしては、前記群から選ばれる1種又は2種以上の環を単結合により連結した基も好ましく、ビフェニル基、ビフェニレン基及びターフェニル基、ターフェニレン基がさらに好ましい。
 前記芳香族炭化水素基及び芳香族複素環基の任意の置換基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基、シクロヘキシル基、ドデシル基などの炭素数が1~24、好ましくは1~12である、直鎖、分岐、又は環状のアルキル基;ビニル基等の炭素数が2~24、好ましくは2~12であるアルケニル基;エチニル基等の炭素数が2~24、好ましくは2~12であるアルキニル基;メトキシ基、エトキシ基等の炭素数が1~24、好ましくは1~12であるアルコキシ基;フェノキシ基、ナフトキシ基、ピリジルオキシ基等の炭素数が4以上、好ましくは5以上であり、36以下、好ましくは24であるアリールオキシ基;メトキシカルボニル基、エトキシカルボニル基等の炭素数が2~24、好ましくは2~12であるアルコキシカルボニル基;ジメチルアミノ基、ジエチルアミノ基等の炭素数が2~24、好ましくは2~12であるジアルキルアミノ基;ジフェニルアミノ基、ジトリルアミノ基、N-カルバゾリル基等の炭素数が10以上、好ましくは12以上であり、36以下、好ましくは24以下のジアリールアミノ基;フェニルメチルアミノ基等の炭素数が7~36、好ましくは7~24であるアリールアルキルアミノ基;アセチル基、ベンゾイル基等の炭素数が2~24、好ましくは2~12であるアシル基;フッ素原子、塩素原子等のハロゲン原子;トリフルオロメチル基等の炭素数が1~12、好ましくは1~6のハロアルキル基;メチルチオ基、エチルチオ基等の炭素数が1~24、好ましくは1~12のアルキルチオ基;フェニルチオ基、ナフチルチオ基、ピリジルチオ基等の炭素数が4以上、好ましくは5以上であり、36以下、好ましくは24以下であるアリールチオ基;トリメチルシリル基、トリフェニルシリル基等の炭素数が2以上、好ましくは3以上であり、36以下、好ましくは24以下であるシリル基;トリメチルシロキシ基、トリフェニルシロキシ基等の炭素数が2以上、好ましくは3以上であり、36以下、好ましくは24以下であるシロキシ基;シアノ基;フェニル基、ナフチル基等の炭素数が6~36以下、好ましくは6~24である芳香族炭化水素環基;及びチエニル基、ピリジル基等の炭素数が3以上、好ましくは4以上であり、36以下、好ましくは24以下である芳香族複素環基が挙げられる。
 上記任意の置換基の中でも、溶解性の点から、炭素数1~12のアルキル基及び炭素数1~12のアルコキシ基が好ましい。
 また、上記各任意の置換基がさらに置換基を有していてもよく、その例としては任意の置換基として上記した基から選択される。
 正孔輸送性に優れる点から、Ar~Arは、置換基を含めて、その炭素数は3以上、好ましくは5以上、さらに好ましくは6以上であり、72以下、好ましくは48以下、さらに好ましくは25以下である。
 式(L)におけるmは、0~3の整数を表し、成膜性が高められる点で、mは0であることが好ましい。また、正孔輸送能が向上する点で、mは1~3であることが好ましい。
 なお、mが2以上である場合、2個以上のAr及び2個以上のArは、それぞれ同じでも異なっていてもよい。さらに、Ar同士、Ar同士は、それぞれ互いに直接又は連結基を介して結合して環状構造を形成していてもよい。
 正孔輸送材料が架橋性基を有すると、熱及び/又は活性エネルギー線の照射により起こる反応(不溶化反応)の前後で、溶媒に対する溶解性を大きく変化させることができる。
 架橋性基とは、熱及び/又は活性エネルギー線の照射により近傍に位置するほかの分子の同一又は異なる基と反応して、新規な化学結合を生成する基のことをいう。
 架橋性基としては、不溶化がしやすいという点で、例えば、下記の架橋性基が挙げられる。
Figure JPOXMLDOC01-appb-C000077
 上記式中、R21~R23は、各々独立に、水素原子又は置換もしくは無置換のアルキル基を示す。Ar21は置換もしくは無置換の芳香族基を示す。
 X、X及びXは、各々独立して水素原子又はハロゲン原子を示す。
 R24は水素原子又はビニル基を示す。
 ベンゾシクロブテン環は、置換基を有していてもよく、該置換基同士が、互いに結合して環を形成してもよい。
 R21~R23のアルキル基としては、例えばメチル基、エチル基等の炭素数が1~24、好ましくは1~12であるアルキル基等が挙げられる。
 Ar21の芳香族基としては、前記Ar~Arが表す芳香族基と同じ基等が挙げられる。
 なお、R21~R23、及びAr21の任意の置換基としては、特に制限はないが、例えば、前記した任意の置換基から選ばれる基が挙げられる。
 さらに、架橋性基として、エポキシ基、オキセタン基等の環状エーテル基、ビニルエーテル基などのカチオン重合によって不溶化反応する基が、反応性が高く不溶化が容易な点で好ましい。中でも、カチオン重合の速度を制御しやすい点でオキセタン基が特に好ましく、カチオン重合の際に素子の劣化をまねくおそれのあるヒドロキシル基が生成しにくい点でビニルエーテル基が好ましい。
 シンナモイル基などアリールビニルカルボニル基、ベンゾシクロブテン環を有する基などの環化付加反応する基が、電気化学的安定性をさらに向上させる点で好ましい。
 また、架橋性基の中でも、不溶化後の構造が特に安定な点で、ベンゾシクロブテン環を有する基が特に好ましい。
 具体的には、下記式(M)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000078
 式(M)中のベンゾシクロブテン環は置換基を有していてもよい。又、該置換基同士が互いに結合して環を形成してもよい。
 架橋性基は分子内の1価又は2価の芳香族基に直接結合してもよいが、2価の基を介して結合してもよい。この2価の基としては、-O-、-C(=O)-、及び置換基を有していてもよい-CH-から選ばれる基を任意の順番で1~30個連結してなる2価の基が好ましい。これら2価の基を介して結合する架橋性基の具体例を以下に示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
 上記式中、mは0~12の整数を示し、nは1~12の整数を示す。
 他の架橋性基を含む基の具体例としては、次のものが挙げられる。
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
 さらに、本発明の一態様において、正孔輸送材料は、導電性ポリマーやオリゴマーを含むことが好ましい。この導電性ポリマーやオリゴマーは、通常、電子供与性化合物、電子受容性化合物、又は酸性化合物との混合物である。混合物は固体状でも液体状でもいいが、塗布法により成膜し、固体膜を得る方法に好適に用いられる溶液、分散液、コロイド、インク、ワニス等が好ましい。また、正孔輸送性の向上のためや、成膜性を向上させることを目的に、該混合物に添加剤を加えてもよい。
 以下に本発明の一態様に用いることのできる導電性ポリマーやオリゴマーの例を示す。
 前記電子供与性化合物の代表的な例としては、芳香族アミン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、チオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、アニリン誘導体、ピロール誘導体、フェニレンビニレン誘導体、チエニレンビニレン誘導体、キノリン誘導体、キノキサリン誘導体、カーボン等が挙げられる。これらの誘導体は分子量が1000未満の低分子、分子量が1000~10000のオリゴマー及びデンドリマー、及び分子量が10000以上の高分子のいずれであってもよい。中でも芳香族アミン誘導体やポリチオフェン誘導体、ポリアニリン誘導体、オリゴアニリン誘導体が好適に用いられる。
 前記電子受容性化合物及び酸性化合物の代表的な例としては、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種又は2種以上の化合物が挙げられる。さらに具体的には、4-イソプロピル-4’-メチルジフェニルヨードニウムテトラキス(ペンダフルオロフェニル)ボラート、トリフェニルスルホニウムテトラフルオロボラート等の有機基を有するオニウム塩;塩化鉄(III)、ペルオキソ二硫酸アンモニウム等の高原子価の無機化合物;テトラシアノエチレン等のシアノ化合物;トリス(ペンタフルオロフェニル)ボラン等の芳香族ホウ素化合物;フラーレン誘導体;ヨウ素;ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、ショウノウスルホン酸イオン等のスルホン酸イオン等が挙げられる。
 電子供与性化合物の場合と同様に、これらの誘導体は分子量が1000未満の低分子、分子量が1000~10000のオリゴマー及びデンドリマー、及び分子量が10000以上のポリマーのいずれであってもよい。
 これらの電子受容性化合物は、正孔輸送材料を酸化することにより正孔輸送層の導電率を向上させることができる。正孔輸送層或いは正孔輸送層用組成物中の電子受容性化合物の正孔輸送材料に対する含有量は、通常0.1モル%以上、好ましくは1モル%以上、通常100モル%以下、好ましくは40モル%以下である。
 以下、本発明の一態様に用いることができる正孔輸送材料の代表例(i)~(x)を示す。なお、これらは単独、あるいは、混合して用いることもできるが、相対的に電子供与性のものと、相対的に電子受容性のものを混合することが望ましい。さらに、電子供与性化合物と電子受容性化合物との間での電荷移動を促進させたり、塗布成膜性を向上させるための添加剤などを第三の成分として添加することもできる。第三の成分は複数用いることもできる。
Figure JPOXMLDOC01-appb-C000083
 式中、RおよびR’は、それぞれ独立に、水素原子及び炭素数1~4のアルキルから選択される。RおよびR’は互いに結合して、炭素数1~4のアルキレン鎖を表してもよい。該アルキレン鎖は任意に炭素数1~12のアルキル基、炭素数6~12の芳香族基、または1,2-シクロヘキシレン基で置換されてもよい。nは約6よりも大きい数を表す。
 (ii)及び/又は(iii)のモノマー単位を有するポリアニリン
Figure JPOXMLDOC01-appb-C000084
 上記式中、nは、0~4の整数であり、
 m-1は、1~5の整数で、n+(m-1)=5であり、
 Rは、同一又は異なり、それぞれ独立して、アルキル基、アルケニル基、アルコキシ基、シクロアルキル基、シクロアルケニル基、アルカノイル基、アルキルチオ基、アリールオキシ基、アルキルチオアルキル基、アルキルアリール基、アリールアルキル基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アリール基、アルキルスルフィニル基、アルコキシアルキル基、アルキルスルホニル基、アリールチオ基、アリールスルフィニル基、アルコキシカルボニル基、アリールスルホニル基、カルボキシル基、ハロゲン原子、シアノ基、または1つまたは複数のスルホン酸基、カルボキシル基、ハロゲン原子、ニトロ基、シアノ基もしくはエポキシ基によって置換されたアルキル基から選択される。隣接する2つのR基が互いに結合して、1つまたは複数の二価の窒素原子、イオウ原子または酸素原子を含んでもよい3、4、5、6または7員の芳香族環もしくは脂環式環を完成するアルキレン鎖またはアルケニレン鎖を形成してもよい。
Figure JPOXMLDOC01-appb-C000085
 上記式中、Rは、独立して、水素原子、アルキル基、アルケニル基、アルコキシ基、アルカノイル基、アルキルチオ基、アリールオキシ基、アルキルチオアルキル基、アルキルアリール基、アリールアルキル基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アリール基、アルキルスルフィニル基、アルコキシアルキル基、アルキルスルホニル基、アリールチオ基、アリールスルフィニル基、アルコキシカルボニル基、アリールスルホニル基、アクリル酸基、リン酸基、ホスホン酸基、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシル基、エポキシ基、シリル基、シロキサン基、アルコール基、ベンジル基、カルボキシレート基、エーテル基、エーテルカルボキシレート基、アミドスルホネート基、エーテルスルホネート基、およびウレタン基から選択される。2つのR基は互いに結合して、3員環、4員環、5員環、6員環または7員環の芳香族環または脂環式環を完成するアルキレン鎖またはアルケニレン鎖を形成してもよく、この環は、1個または複数の二価の窒素、硫黄または酸素原子を含んでもよい。
 Rは、独立して、水素原子、アルキル基、アルケニル基、アリール基、アルカノイル基、アルキルチオアルキル基、アルキルアリール基、アリールアルキル基、アミノ基、エポキシ基、シリル基、シロキサン基、アミドスルホネート基、アルコール基、ベンジル基、カルボキシレート基、エーテル基、エーテルカルボキシレート基、アミドスルホネート基、エーテルスルホネート基、およびウレタン基から選択される基である。
Figure JPOXMLDOC01-appb-C000086
 上記式中、Qは、S、Se、およびTeからなる群から選択され、Rは、独立して、水素原子、アルキル基、アルケニル基、アルコキシ基、アルカノイル基、アルキチオ基、アリールオキシ基、アルキルチオアルキル基、アルキルアリール基、アリールアルキル基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アリール基、アルキルスルフィニル基、アルコキシアルキル基、アルキルスルホニル基、アリールチオ基、アリールスルフィニル基、アルコキシカルボニル基、アリールスルホニル基、アクリル酸基、リン酸基、ホスホン酸基、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシル基、エポキシ基、シリル基、シロキサン基、アルコール基、ベンジル基、カルボキシレート基、エーテル基、エーテルカルボキシレート基、アミドスルホネート基、エーテルスルホネート基、エステルスルホネート基、およびウレタン基から選択される。2つのR基は互いに結合して、3、4、5、6、または7員の芳香環または脂環式環を完成するアルキレン鎖またはアルケニレン鎖を形成してもよく、該環は、1つまたは複数の二価の窒素原子、セレン原子、テルル原子、硫黄原子、または酸素原子を含んでもよい。
Figure JPOXMLDOC01-appb-C000087
 上記式中、RおよびRは、それぞれ独立して、水素原子、置換もしくは無置換の一価炭化水素基、t-ブトキシカルボニル基、またはベンジルオキシカルボニル基を示し、R~R34は、それぞれ独立して水素原子、水酸基、シラノール基、チオール基、カルボキシル基、リン酸基、リン酸エステル基、エステル基、チオエステル基、アミド基、ニトロ基、置換もしくは無置換の一価炭化水素基、オルガノオキシ基、オルガノアミノ基、オルガノシリル基、オルガノチオ基、アシル基、スルホン基またはハロゲン原子を示し、mおよびnは、それぞれ独立して1以上の整数で、m+n≦20を満足する。
Figure JPOXMLDOC01-appb-C000088
 上記式中、Xは、O、SまたはNHを表し、Aは、Xおよびn個のSOH基以外の置換基を有していてもよいナフタレン環またはアントラセン環を表し、Bは、置換もしくは無置換の炭化水素基、1,3,5-トリアジン基、または、置換もしくは無置換の下記式(vii-1)もしくは(vii-2)で示される基(式中、WおよびWは、それぞれ独立して、O、S、S(O)、S(O)、または、置換もしくは無置換のN、Si、P、P(O)を示す)を表し、nは1≦n≦4を満たす整数であり、qは1≦qを満たす整数である。
Figure JPOXMLDOC01-appb-C000089
 Bとしては、耐久性向上および電荷輸送性向上を図ることを考慮すると、一つ以上の芳香環を含んでいる2価以上の置換もしくは無置換の炭化水素基、2価もしくは3価の1,3,5-トリアジン基、置換もしくは無置換の2価のジフェニルスルホン基が好ましく、特に、2価もしくは3価の置換もしくは無置換のベンジル基、2価の置換もしくは無置換のp-キシリレン基、2価もしくは3価の置換もしくは無置換のナフチル基、2価もしくは3価の1,3,5-トリアジン基、2価の置換もしくは無置換のジフェニルスルホン基、2~4価のパーフルオロビフェニル基、2価の置換もしくは無置換の2,2-ビス((ヒドロキシプロポキシ)フェニル)プロピル基、置換もしくは無置換のポリビニルベンジル基が好ましい。
 式(vii)で表される化合物は式(vii-3)表されることが特に好ましい。
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
 式中、R、RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、ヒドロキシル基、アミノ基、シラノール基、チオール基、カルボキシル基、リン酸基、リン酸エステル基、エステル基、チオエステル基、アミド基、ニトロ基、一価炭化水素基、オルガノオキシ基、オルガノアミノ基、オルガノシリル基、オルガノチオ基、アシル基またはスルホン酸基を示し、AおよびBは、それぞれ独立して、式(viii-1)または(viii-2)で表される二価の基を示す。
Figure JPOXMLDOC01-appb-C000092
 式中、R~R11は、それぞれ独立して、水素原子、ハロゲン原子、ヒドロキシル基、アミノ基、シラノール基、チオール基、カルボキシル基、リン酸基、リン酸エステル基、エステル基、チオエステル基、アミド基、ニトロ基、一価炭化水素基、オルガノオキシ基、オルガノアミノ基、オルガノシリル基、オルガノチオ基、アシル基またはスルホン酸基を示す。mおよびnは、それぞれ独立して、1以上の整数で、m+n≦20を満足する。
 下記化合物の混合物(ix)
Figure JPOXMLDOC01-appb-C000093

 nは、3以上の整数を表す。
 下記化合物の混合物(x)
Figure JPOXMLDOC01-appb-C000094
 本発明の一態様において、下記式(X)のフェニルアミン系ポリマーを正孔輸送材料として用いることもできる。
Figure JPOXMLDOC01-appb-C000095

 nは、3以上の整数を表す。
 本発明の一態様の有機EL素子の正孔輸送層は第1正孔輸送層(陽極側)と第2正孔輸送層(陰極側)の2層構造にしてもよい。
 正孔輸送層の膜厚は特に限定されないが、10~200nmであるのが好ましい。
 本発明の一態様の有機EL素子では、正孔輸送層又は第1正孔輸送層の陽極側にアクセプター材料を含有する層を接合してもよい。これにより駆動電圧の低下及び製造コストの低減が期待される。
 前記アクセプター材料としては下記式(Y)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000096
(上記式(Y)中、R311~R316は互いに同一でも異なっていてもよく、それぞれ独立にシアノ基、-CONH、カルボキシル基、又は-COOR317(R317は炭素数1~20のアルキル基又は炭素数3~20のシクロアルキル基を表す)を表す。ただし、R311及びR312、R313及びR314、並びにR315及びR316の1又は2以上の対が一緒になって-CO-O-CO-で示される基を形成してもよい。)
 R317としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 アクセプター材料を含有する層の膜厚は特に限定されないが、5~20nmであるのが好ましい。
 前記アクセプター材料として下記の材料を用いてもよい。
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
(n/pドーピング)
 上述の正孔輸送層や電子輸送層においては、ドナー性材料のドーピング(n)やアクセプター性材料のドーピング(p)により、キャリア注入能を調整することができる。
 nドーピングの代表例としては、電子輸送材料にLiやCs等の金属をドーピングする方法が挙げられ、pドーピングの代表例としては、正孔輸送材料にFTCNQ(2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane)等のアクセプター材料をドーピングする方法が挙げられる。
(スペース層)
 上記スペース層とは、例えば、蛍光発光層と燐光発光層とを積層する場合に、燐光発光層で生成する励起子を蛍光発光層に拡散させない、あるいは、キャリアバランスを調整する目的で、蛍光発光層と燐光発光層との間に設けられる層である。また、スペース層は、複数の燐光発光層の間に設けることもできる。
 スペース層は発光層間に設けられるため、電子輸送性と正孔輸送性を兼ね備える材料であることが好ましい。また、隣接する燐光発光層内の三重項エネルギーの拡散を防ぐため、三重項エネルギーが2.6eV以上であることが好ましい。スペース層に用いられる材料としては、上述の正孔輸送層に用いられるものと同様のものが挙げられる。スペース層用の材料として、本発明の一態様の有機EL素子用材料を用いることもできる。
(障壁層)
 本発明の一態様の有機EL素子は、発光層に隣接する部分に、電子障壁層、正孔障壁層、トリプレット障壁層といった障壁層を有することが好ましい。ここで、電子障壁層とは、発光層から正孔輸送層へ電子が漏れることを防ぐ層であり、正孔障壁層とは、発光層から電子輸送層へ正孔が漏れることを防ぐ層である。正孔障壁層用の材料として、本発明の一態様の有機EL素子用材料を用いることもできる。
 トリプレット障壁層は、発光層で生成する三重項励起子が、周辺の層へ拡散することを防止し、三重項励起子を発光層内に閉じ込めることによって三重項励起子の発光ドーパント以外の電子輸送層の分子上でのエネルギー失活を抑制する機能を有する。
 トリプレット障壁層を設ける場合、燐光素子においては、発光層中の燐光発光性ドーパントの三重項エネルギーをE 、トリプレット障壁層として用いる化合物の三重項エネルギーをE TBとすると、E <E TBのエネルギー大小関係であれば、エネルギー関係上、燐光発光性ドーパントの三重項励起子が閉じ込められ(他分子へ移動できなくなり)、該ドーパント上で発光する以外のエネルギー失活経路が断たれ、高効率に発光することができると推測される。ただし、E <E TBの関係が成り立つ場合であってもこのエネルギー差ΔE=E TB-E が小さい場合には、実際の素子駆動環境である室温程度の環境下では、周辺の熱エネルギーにより吸熱的にこのエネルギー差ΔEを乗り越えて三重項励起子が他分子へ移動することが可能であると考えられる。特に燐光発光の場合は蛍光発光に比べて励起子寿命が長いため、相対的に吸熱的励起子移動過程の影響が現れやすくなる。室温の熱エネルギーに対してこのエネルギー差ΔEは大きい程好ましく、0.1eV以上であるとさらに好ましく、0.2eV以上であると特に好ましい。一方、蛍光素子においては、トリプレット障壁層用の材料として、本発明の一態様の有機EL素子用材料を用いることもできる。
 また、トリプレット障壁層を構成する材料の電子移動度は、電界強度0.04~0.5MV/cmの範囲において、10-6cm/Vs以上であることが望ましい。有機材料の電子移動度の測定方法としては、Time of Flight法等幾つかの方法が知られているが、ここではインピーダンス分光法で決定される電子移動度をいう。
 電子注入層は、電界強度0.04~0.5MV/cmの範囲において、10-6cm/Vs以上であることが望ましい。これにより陰極からの電子輸送層への電子注入が促進され、ひいては隣接する障壁層、発光層への電子注入も促進し、より低電圧での駆動を可能にするためである。
 本発明の一態様の有機EL素子の各層の形成方法は特に限定されない。従来公知の真空蒸着法、スピンコーティング法等による形成方法を用いることができる。本発明の一態様の有機EL素子における化合物(1)を含有する有機薄膜層は、真空蒸着法、分子線蒸着法(MBE法)、あるいは当該化合物を溶媒に解かした溶液のディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布法による公知の方法で形成することができる。
 本発明の一態様の有機EL素子の各有機層の膜厚は特に制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常は数nmから1μmの範囲が好ましい。本発明の一態様の化合物(1)を含有する層(特に発光層)を形成する方法としては、例えば、上述した本発明の一態様のインク組成物を成膜する方法が好ましい。
 本発明の一態様である化合物(1)を含有する層(発光層、正孔輸送層、電子輸送層等)は、溶媒及び前記化合物を含む溶液(インク組成物)を用いて上記塗布法により成膜することが好ましい。該インク組成物には、必要に応じて、ドーパント等の他の材料を含有させてもよい。 
 塗布法としては、湿式成膜法が好適に用いられ、凸版印刷法、凹版印刷法、平版印刷法、孔版印刷法、及び、それらとオフセット印刷法を組み合わせた印刷法、インクジェット印刷法、ディスペンサー塗布スピンコート法、バーコート法、ディップコート法、スプレーコート法、スリットコート法、ロールコート法、キャップコート法、グラビアロールコート法、メニスカスコート法等が適用できる。特に微細なパターニングを要する場合、凸版印刷法、凹版印刷法、平版印刷法、孔版印刷法、及び、それらとオフセット印刷法を組み合わせた印刷法、インクジェット印刷法、ディスペンサー塗布等が好ましい。また、転写前駆基板へ本重合体を前記の湿式成膜法により成膜した後、レーザー光や熱プレスなどで対象とする電極を有する配線基板上へ転写する方法を用いることもできる。 これらの方法による成膜は当業者に周知の条件により行うことができる。 
 成膜後は、真空下に加熱(上限250℃)乾燥して、溶媒を除去すればよく、光や250℃を超える高温加熱による重合反応は不要である。従って、光や250℃を超える高温加熱による素子の性能劣化の抑制が可能である。
[電子機器]
 本発明の一態様の電子機器について説明する。
 本発明の一様態の電子機器は、本発明の一態様の有機エレクトロルミネッセンス素子を含む。本発明の一態様の有機エレクトロルミネッセンス素子は、有機ELパネルモジュール等の表示部品、テレビ、携帯電話及びパーソナルコンピュータ等の表示装置、並びに、照明及び車両用灯具の発光装置等の電子機器に使用できる。
 以下、実施例を用いて本発明をさらに詳細に説明するが、本発明はそれら実施例に限定されるものではない。
合成例1(化合物H-1の合成)
Figure JPOXMLDOC01-appb-C000111
 6-ブロモ-1-テトラロン(11.25g、50mmol)、3-ブロモベンズアルデヒド(9.25g、50mmol)をエタノール(100mL)に溶解し、水酸化ナトリウム(0.20g、5mmol)を加え、室温で8時間攪拌した。生成した粉末を濾取し、液の着色が無くなるまでメタノールで洗浄し、真空乾燥してカルコン中間体C1(12.84g、収率82%)を得た。
 カルコン中間体C1(6.26g、20mmol)、ベンズアミジン塩酸塩(3.13g、20mmol)、水酸化ナトリウム(0.88g、22mmol)をエタノール(100mL)中、加熱還流下8時間反応させた。生成した粉末を濾取し、メタノールで洗浄し、真空乾燥した。この粉末をオルトジクロロベンゼン(100mL)中、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)(9.08g、40mmol)を加え室温で1時間、さらに120℃で5時間反応させ、室温まで冷却した後、シリカゲルカラムクロマトグラフィーにて精製し、ベンゾキナゾリン中間体B1(7.01g、収率71%)を得た。
アルゴン雰囲気下、ビカルバゾリル中間体A1(2.57g、6.3mmol)、ベンゾキナゾリン中間体B1(2.94g、6.0mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(Pd(dba))(55mg、0.06mmol)、4,5’-ビス(ジフェニルホスフィノ)-9,9’-ジメチルキサンテン(XantPhos)(69mg、0.12mmol)、t-ブトキシナトリウム(0.86g、9.0mmol)、無水キシレン(60mL)を順次加えて12時間加熱還流した。室温まで反応液を冷却した後、不溶物を濾過して除き、有機溶媒を減圧下留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、化合物H-1(2.85g、収率83%)を得た。
 化合物H-1について、HPLC(High Performance Liquid Chromatography)及びFD-MSの分析結果を以下に示す。
 HPLC:純度99.77%
 FD-MS:calcd for C8452=1144
       found m/z=1144(M,100)
合成例2(化合物H-2の合成)
Figure JPOXMLDOC01-appb-C000112
 5-ブロモ-2-テトラロン(11.25g、50mmol)、ベンズアルデヒド(5.31g、50mmol)をトルエン(150mL)に溶解し、ピペリジン(250mg)、酢酸(250mg)、モレキュラーシーブス4A(12.5g)を加え、室温で12時間攪拌した。反応液をセライトを用いて濾過し、酢酸エチルで希釈した後、飽和亜硫酸ナトリウム水溶液で洗浄した。有機層を分離し、硫酸マグネシウムで乾燥し、溶媒を溜去した後シリカゲルクロマトグラフィーにて精製し、中間体C2(10.96g、収率70%)を得た。この中間体C2(6.26g、20mmol)、3-ブロモベンズアミジン塩酸塩(4.71g、20mmol)、水酸化ナトリウム(0.88g、22mmol)をエタノール(200mL)中、加熱還流下8時間反応させた。生成した粉末を濾取し、メタノールで洗浄し、真空乾燥した。この粉末をオルトジクロロベンゼン(80mL)中、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)(9.08g、40mmol)を加えて室温で1時間、さらに120℃で5時間反応させ、室温まで冷却した後、シリカゲルカラムクロマトグラフィーにて精製し、ベンゾキナゾリン中間体B2(6.37g、収率65%)を得た。
 アルゴン雰囲気下、ビカルバゾリル中間体A1(2.57g、6.3mmol)、ベンゾキナゾリン中間体B2(2.94g、6.0mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(Pd(dba))(55mg、0.06mmol)、4,5’-ビス(ジフェニルホスフィノ)-9,9’-ジメチルキサンテン(XantPhos)(69mg、0.12mmol)、t-ブトキシナトリウム(0.86g、9.0mmol)、無水キシレン(60mL)を順次加えて12時間加熱還流した。室温まで反応液を冷却した後、不溶物を濾過して除き、有機溶媒を減圧下留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、化合物H-2(2.75g、収率80%)を得た。
 化合物H-2について、HPLC及びFD-MSの分析結果を以下に示す。
 HPLC:純度99.67%
 FD-MS:calcd for C8452=1144
       found m/z=1144(M,100)
実施例1
(基板の洗浄)
 25mm×25mm×厚さ1.1mmのITO透明電極付きガラス基板(ジオマテック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行った後、UVオゾン洗浄を5分間行った。
(下地層の形成)
 正孔輸送材料としてHERAEUS社製CLEVIOUS AI4083(商品名)を30nmの厚さで前記のITO基板上にスピンコート法により成膜した。成膜後、アセトンにより不要部分を除去し、次いで大気中200℃のホットプレートで10分間焼成し、下地基板を作製した。
(発光層の形成)
 ホスト材料として合成実施例1で得た化合物H-1、ドーパント材料として下記化合物D-1を用い、化合物H-1:化合物D-1が質量比で90:10となるような混合比で、1.6質量%のトルエン溶液を作製した。このトルエン溶液を用い、前記下地基板上にスピンコート法により、50nmの膜厚になるように塗布積層した。塗布成膜後、不要部分をトルエンにて除去し、150℃のホットプレート上で加熱乾燥し、発光層を成膜した塗布積層基板を作製した。なお、発光層の成膜にかかる全ての操作は窒素雰囲気のグローブボックス中で実施した。
(蒸着、封止)
 塗布積層基板を蒸着チャンバー中に搬送し、電子輸送層として下記化合物ET-1を50nm蒸着した。さらに、フッ化リチウムを1nm、アルミニウムを80nm蒸着積層した。全ての蒸着工程を完了させた後、窒素雰囲気のグローブボックス中でザグリガラスによる封止を行い、有機EL素子を製造した。
 得られた有機EL素子を、直流電流駆動により発光させ、電流密度10mA/cmにおける外部量子収率(EQE)を測定した。測定結果を表1に示す。
実施例2
 ホスト材料として、合成実施例2で得た化合物H-2を用いたこと以外は、実施例1と同様の方法で有機EL素子を作製し、評価した。測定結果を表1に示す。
比較例1
 ホスト材料として、下記比較化合物H-aを用いたこと以外は、実施例1と同様の方法で有機EL素子を作製し、評価した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-T000114
 以上の実施例より、本願の分子構造を有する化合物は、有機EL素子用材料として有用な特性を有することが確認できた。
  1 有機EL素子
  2 基板
  3 陽極
  4 陰極
  5 発光層
  6 陽極側有機薄膜層
  7 陰極側有機薄膜層
 10 発光ユニット

Claims (23)

  1.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001

    [式(1)において、
     2つのRはそれぞれ式(b)の2つの*に結合する単結合を表すか、又は、互いに結合して5員環、6員環又は縮合環を表し、該5員環、6員環又は縮合環が有する隣接する2つの環形成炭素原子のそれぞれに式(b)の2つの*がそれぞれ結合する。
     前記5員環の非共有環原子は炭素原子、酸素原子、及び硫黄原子から選ばれ、該炭素原子は2個のRを有する。
     前記6員環が非芳香族環である場合、該非芳香族環の非共有環原子は炭素原子、酸素原子、及び硫黄原子から選ばれ、該炭素原子は2個のRを有す。
     前記6員環が芳香族環である場合、該芳香族環の非共有環原子は炭素原子及び窒素原子から選ばれ、該炭素原子は1個のRを有する。
     前記縮合環が非芳香族環を含む場合、該非芳香族環の非共有環原子は炭素原子、酸素原子、及び硫黄原子から選ばれ、該炭素原子は2個のRを有す。
     前記縮合環が芳香族環を含む場合、該芳香族環の非共有環原子は炭素原子及び窒素原子から選ばれ、該炭素原子は1個のRを有する。
     複数のRはそれぞれ独立に水素原子、置換基又は*-L-Dn0に結合する単結合を表し、隣接又は近接する2つのRは互いに結合して環を形成していてもよく、該環は1又は複数のRで置換されていてもよい。ただし、式(1)中の複数のRの少なくとも1つは*-L-Dn0に結合する単結合を表す。
     複数のLはそれぞれ独立に単結合又は置換もしくは無置換の環形成炭素数6~60のアリーレン基を表し、Lが単結合の場合、n0は1を表し、Lが置換もしくは無置換の環形成炭素数6~60のアリーレン基の場合、n0は1~10の整数を表す。
     Dは、少なくとも1つのカルバゾール構造を含み、下記式(2)で表される構造の1価の残基を表す。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)において、
     破線は、その両端の2つの炭素原子が単結合で結合されているか、又は、該2つの炭素原子は結合されていないことを表す。
     L及びLは、それぞれ独立に、単結合又は置換もしくは無置換の環形成炭素数6~60のアリーレン基を表す。
     Ar及びArは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~60の芳香族炭化水素環の1価の残基を表す。
     n1及びn2は、それぞれ独立に0~4の整数である。
     Nに結合する2つのベンゼン環、Ar及びArが表す芳香族炭化水素環の少なくとも1つの環の隣接する2つの環形成炭素原子には式(d)が結合し、Ar及びArが表す芳香族炭化水素環に式(d)が結合する場合、Ar及びArは該芳香族炭化水素環と式(d)が結合して得られる構造の1価の残基を表す。
     XはO、S、PR15、SiR1617、CR1819、又はNR20を表し、複数個の式(d)が結合している場合、複数のXは同一でも異なっていてもよい。
     R11~R20はそれぞれ独立に水素原子又は置換基を表す。
     a1、a2、及びa3は、それぞれ独立に0~4の整数を表す。)]
  2.  下記式(3)又は(4)で表される請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    [式(3)及び(4)において、R、L、D及びn0の定義は式(1)と同じである。
     式(4)において、Aは5員環、6員環又は縮合環を表す。
     前記5員環の非共有環原子は炭素原子、酸素原子、及び硫黄原子から選ばれ、該炭素原子は2個のRを有する。
     前記6員環が非芳香族環である場合、該非芳香族環の非共有環原子は炭素原子、酸素原子、及び硫黄原子から選ばれ、該炭素原子は2個のRを有す。
     前記6員環が芳香族環である場合、該芳香族環の非共有環原子は炭素原子及び窒素原子から選ばれ、該炭素原子は1個のRを有する。
     前記縮合環が非芳香族環を含む場合、該非芳香族環の非共有環原子は炭素原子、酸素原子、及び硫黄原子から選ばれ、該炭素原子は2個のRを有す。
     前記縮合環が芳香族環を含む場合、該芳香族環の非共有環原子は炭素原子及び窒素原子から選ばれ、該炭素原子は1個のRを有する。]
  3.  式(1)において、式(a)と(b)で構成される構造が、下記式(5)で表される請求項1又は2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004

    (式(5)において、R、L、及びDの定義は式(1)と同じである。) 
  4.  式(1)において、式(a)と(b)で構成される構造が、下記式(5’)で表される請求項1~3のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000005

    (式(5’)において、R、L、及びDの定義は式(1)と同じである。) 
  5.  式(1)において、式(a)と(b)で構成される構造が、下記式(6)~(10)のいずれかで表される請求項1又は2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000006
    (式(6)~(10)において、Yは、炭素原子、酸素原子、及び硫黄原子から選ばれ、該炭素原子は2個のRを有する。R、L、及びDの定義は式(1)と同じである。)
  6.  式(1)において、式(a)と(b)で構成される構造が、下記式(6)又は(7)で表される請求項1、2及び5のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000007
    (式(6)~(7)において、Yは、炭素原子、酸素原子、及び硫黄原子から選ばれ、該炭素原子は2個のRを有する。R、L、及びDの定義は式(1)と同じである。)
  7.  式(1)において、式(a)と(b)で構成される構造が、下記式(6’)又は(7’)で表される請求項1、2、5及び6のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000008
    (式(6’)及び(7’)において、Yは、炭素原子、酸素原子、及び硫黄原子から選ばれ、該炭素原子は2個のRを有する。R、L、及びDの定義は式(1)と同じである。)
  8.  式(1)において、式(a)と(b)で構成される構造が、下記式(11)~(14)のいずれかで表される請求項1又は2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000009

    (式(11)~(14)において、Zは、炭素原子及び窒素原子から選ばれ、該炭素原子は1個のRを有する。R、L、及びDの定義は式(1)と同じである。)
  9.  式(1)において、式(a)と(b)で構成される構造が、下記式(11)又は(12)で表される請求項1、2及び8のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000010

    (式(11)~(12)において、Zは、炭素原子及び窒素原子から選ばれ、該炭素原子は1個のRを有する。R、L、及びDの定義は式(1)と同じである。)
  10.  式(1)において、式(a)と(b)で構成される構造が、下記式(13)又は(14)で表される請求項1、2及び8のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000011

    (式(13)~(14)において、Zは、炭素原子及び窒素原子から選ばれ、該炭素原子は1個のRを有する。R、L、及びDの定義は式(1)と同じである。)
  11.  式(1)において、式(a)と(b)で構成される構造が、下記式(11’)又は(12’)で表される請求項1、2、8及び9のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000012

    (式(11’)~(12’)において、Zは、炭素原子及び窒素原子から選ばれ、該炭素原子は1個のRを有する。R、L、及びDの定義は式(1)と同じである。)
  12.  式(1)において、式(a)と(b)で構成される構造が、下記式(15)又は(16)で表される請求項1又は2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000013

    (式(15)~(16)において、Zは、炭素原子及び窒素原子から選ばれ、該炭素原子は1個のRを有する。R、L、及びDの定義は式(1)と同じである。)
  13.  式(1)において、式(a)と(b)で構成される構造が、下記式のいずれかで表される請求項1又は2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000014

    Figure JPOXMLDOC01-appb-C000015

    (式中、R、L、及びDの定義は式(1)と同じである。)
  14.  式(2)で表される構造が、下記式(51)~(59)のいずれかで表される請求項1~13のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000016
    (式(51)~(59)において、X、R11~R14、R20、a1~a3、n1~n2、L、L、Ar、Arは、前記と同じである。R21は、水素原子又は置換基、a4は、0~4の整数を表す。a2’ 、n1’は、0~2の整数を表す。)
  15.  式(2)で表される構造が、下記式(60)又は(61)で表される請求項1~13のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000017
    (式(60)~(61)において、R11~R14、R20、a1~a3、n1、n2、L、L、Arは、前記と同じである。R21~R24は、水素原子又は置換基、a4~a6は、0~4の整数を表す。)
  16.  請求項1~15のいずれかに記載の化合物を含む有機エレクトロルミネッセンス素子用材料。
  17.  溶媒と、該溶媒中に溶解した請求項1~15のいずれかに記載の化合物とを含むインク組成物。
  18.  陰極と陽極の間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも1層が、請求項1~15のいずれかに記載の化合物を含む有機エレクトロルミネッセンス素子。
  19.  前記発光層が、前記式(1)で表される化合物をホスト材料として含む、請求項18に記載の有機エレクトロルミネッセンス素子。
  20.  前記発光層が、燐光発光材料を含有する、請求項18又は19に記載の有機エレクトロルミネッセンス素子。
  21.  前記陰極と前記発光層の間に電子輸送層を有し、該電子輸送層が前記式(1)で表される化合物を含む請求項18~20のいずれかに記載の有機エレクトロルミネッセンス素子。
  22.  前記陽極と前記発光層の間に正孔輸送層を有し、該正孔輸送層が前記式(1)で表される化合物を含む請求項18~20のいずれかに記載の有機エレクトロルミネッセンス素子。
  23.  請求項18~22のいずれかに記載の有機エレクトロルミネッセンス素子を含む電子機器。
PCT/JP2016/054193 2015-02-13 2016-02-12 化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、及び電子機器 WO2016129694A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/550,678 US20180026203A1 (en) 2015-02-13 2016-02-12 Compound, material for organic electroluminescent element, ink composition, organic electroluminescent element, and electronic device
JP2016574873A JPWO2016129694A1 (ja) 2015-02-13 2016-02-12 化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、及び電子機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-026854 2015-02-13
JP2015026854 2015-02-13

Publications (1)

Publication Number Publication Date
WO2016129694A1 true WO2016129694A1 (ja) 2016-08-18

Family

ID=56614837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054193 WO2016129694A1 (ja) 2015-02-13 2016-02-12 化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、及び電子機器

Country Status (3)

Country Link
US (1) US20180026203A1 (ja)
JP (1) JPWO2016129694A1 (ja)
WO (1) WO2016129694A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017197513A (ja) * 2015-09-04 2017-11-02 株式会社半導体エネルギー研究所 化合物、発光素子、表示装置、電子機器、及び照明装置
US11498929B2 (en) 2019-06-17 2022-11-15 Hibercell, Inc. Chromenopyrimidine derivatives as phosphatidylinsitol phosphate kinase inhibitors
US11584763B2 (en) 2017-12-22 2023-02-21 Hibercell, Inc. Chromenopyridine derivatives as phosphatidylinositol phosphate kinase inhibitors

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106356463B (zh) * 2016-10-11 2017-12-29 深圳市华星光电技术有限公司 Qled显示装置的制作方法
CN111377872A (zh) * 2018-12-29 2020-07-07 广东阿格蕾雅光电材料有限公司 2-氯-4苯基苯并喹唑啉的合成方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112265A1 (ja) * 2005-04-14 2006-10-26 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2013234182A (ja) * 2012-05-04 2013-11-21 Universal Display Corp トリアリールシラン側鎖をもつ非対称ホスト
WO2015020217A1 (ja) * 2013-08-09 2015-02-12 出光興産株式会社 有機エレクトロルミネッセンス用組成物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子用材料溶液及び有機エレクトロルミネッセンス素子
WO2015050140A1 (ja) * 2013-10-03 2015-04-09 出光興産株式会社 化合物、これを用いた有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子並びに電子機器
WO2015093551A1 (ja) * 2013-12-18 2015-06-25 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、電子機器、及び化合物の製造方法
WO2015093496A1 (ja) * 2013-12-18 2015-06-25 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、及び電子機器
WO2015137471A1 (ja) * 2014-03-12 2015-09-17 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、及び電子機器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013200939A (ja) * 2010-06-08 2013-10-03 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
US9553274B2 (en) * 2013-07-16 2017-01-24 Universal Display Corporation Organic electroluminescent materials and devices
JP2015032663A (ja) * 2013-08-01 2015-02-16 株式会社東芝 固体撮像装置
KR102140006B1 (ko) * 2013-10-11 2020-07-31 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
KR101986260B1 (ko) * 2014-01-10 2019-06-05 삼성에스디아이 주식회사 축합환 화합물, 및 이를 포함한 유기 발광 소자

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112265A1 (ja) * 2005-04-14 2006-10-26 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2013234182A (ja) * 2012-05-04 2013-11-21 Universal Display Corp トリアリールシラン側鎖をもつ非対称ホスト
WO2015020217A1 (ja) * 2013-08-09 2015-02-12 出光興産株式会社 有機エレクトロルミネッセンス用組成物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子用材料溶液及び有機エレクトロルミネッセンス素子
WO2015050140A1 (ja) * 2013-10-03 2015-04-09 出光興産株式会社 化合物、これを用いた有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子並びに電子機器
WO2015093551A1 (ja) * 2013-12-18 2015-06-25 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、電子機器、及び化合物の製造方法
WO2015093496A1 (ja) * 2013-12-18 2015-06-25 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、及び電子機器
WO2015137471A1 (ja) * 2014-03-12 2015-09-17 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、及び電子機器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017197513A (ja) * 2015-09-04 2017-11-02 株式会社半導体エネルギー研究所 化合物、発光素子、表示装置、電子機器、及び照明装置
US11276824B2 (en) 2015-09-04 2022-03-15 Semiconductor Energy Laboratory Co., Ltd. Compound, light-emitting element, display device, electronic device, and lighting device
US11584763B2 (en) 2017-12-22 2023-02-21 Hibercell, Inc. Chromenopyridine derivatives as phosphatidylinositol phosphate kinase inhibitors
US11498929B2 (en) 2019-06-17 2022-11-15 Hibercell, Inc. Chromenopyrimidine derivatives as phosphatidylinsitol phosphate kinase inhibitors

Also Published As

Publication number Publication date
JPWO2016129694A1 (ja) 2017-11-24
US20180026203A1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
CN107849001B (zh) 化合物、有机电致发光元件用材料、有机电致发光元件、和电子设备
KR101453383B1 (ko) 트리아릴아민 유도체, 발광 물질, 발광 소자, 발광 장치 및 전자 기기
JP6589241B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、電子機器、及び化合物の製造方法
KR102282551B1 (ko) 카바졸 유도체, 이것을 이용한 유기 전기발광 소자용 재료, 및 이것을 이용한 유기 전기발광 소자 및 전자 기기
WO2014192950A1 (ja) 縮合フルオランテン化合物、これを含む有機エレクトロルミネッセンス素子用材料、並びにこれを用いた有機エレクトロルミネッセンス素子及び電子機器
WO2016129694A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、及び電子機器
JP6375308B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、及び電子機器
JP6492385B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、及び電子機器
CN114514221A (zh) 化合物、有机电致发光元件用材料、有机电致发光元件和电子设备
WO2015137472A1 (ja) 組成物、化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、及び電子機器
CN103570735A (zh) 新型杂环化合物及包含该杂环化合物的有机发光元件
JP2015065248A (ja) 有機エレクトロルミネッセンス素子および電子機器
CN112119066A (zh) 化合物、有机电致发光元件用材料、有机电致发光元件、和电子设备
KR102282553B1 (ko) 화합물, 이것을 이용한 유기 전기발광 소자용 재료, 및 이것을 이용한 유기 전기발광 소자 및 전자 기기
CN112334456A (zh) 化合物、有机电致发光元件用材料、有机电致发光元件和电子设备
WO2016204151A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
US10651398B2 (en) Organic electroluminescence element and electronic device
KR20230150805A (ko) 유기 전기발광 소자, 및 전자 기기
CN114423733A (zh) 化合物、有机电致发光元件用材料、有机电致发光元件和电子设备
TW201627273A (zh) 化合物、包含其之有機發光裝置以及包含有機發光裝置之平板顯示設備
WO2016163372A1 (ja) 化合物、これを用いた有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子並びに電子機器
CN114787137A (zh) 化合物、有机电致发光元件用材料、有机电致发光元件和电子设备
JP2018123083A (ja) 新規アントラセン誘導体、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子用材料溶液、有機エレクトロルミネッセンス素子及び電子機器
KR20240026285A (ko) 화합물, 유기 전기발광 소자용 재료, 유기 전기발광 소자, 및 전자 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749337

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016574873

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15550678

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16749337

Country of ref document: EP

Kind code of ref document: A1