WO2016129566A1 - Frp製品の成型方法およびfrp製品の製造方法 - Google Patents
Frp製品の成型方法およびfrp製品の製造方法 Download PDFInfo
- Publication number
- WO2016129566A1 WO2016129566A1 PCT/JP2016/053711 JP2016053711W WO2016129566A1 WO 2016129566 A1 WO2016129566 A1 WO 2016129566A1 JP 2016053711 W JP2016053711 W JP 2016053711W WO 2016129566 A1 WO2016129566 A1 WO 2016129566A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mold
- molding
- frp product
- molding part
- frp
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/02—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
- B29C43/10—Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/32—Component parts, details or accessories; Auxiliary operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/32—Component parts, details or accessories; Auxiliary operations
- B29C43/36—Moulds for making articles of definite length, i.e. discrete articles
Definitions
- the present invention relates to an FRP product molding method and an FRP product manufacturing method in which a thermoplastic resin and a fiber sheet are respectively disposed in a pair of molds that open and close to each other to mold an FRP product.
- thermoplastic resin and a fiber sheet are arranged in a pair of molds that open and close each other to mold an FRP product.
- Patent Document 1 FRP product molding method in which a thermoplastic resin sheet and a fiber sheet are disposed in a pair of molds, and the thermoplastic resin sheet is melted and molded by flowing electricity through two molds and heating. Is disclosed.
- the rigidity of the wall portion extending along the opening and closing direction of the pair of molds among the parts constituting the FRP product is a parting surface of the pair of molds.
- the rigidity of the metal mold die opposing part extended along. This is because a strong pressing force is directly applied to the opposing part of the mold in the FRP product by closing the pair of molds, while the wall part in the FRP product corresponds to the clearance between the pair of molds. This is thought to be because only the pressing force applied is applied.
- the present invention has been made to cope with the above-described problems, and an object of the present invention is to provide an FRP product that can improve the rigidity of a wall portion extending along the opening and closing direction of a pair of molds among the respective portions constituting the FRP product.
- An object of the present invention is to provide a molding method and a method for manufacturing an FRP product.
- the present invention is characterized in that a first mold having a first molding part formed in a three-dimensional shape corresponding to a part of the surface of an FRP product obtained by molding a fiber reinforced resin, and an FRP product.
- a second mold having a second molding part formed in a three-dimensional shape corresponding to another part of the surface of the first mold and disposed opposite to the first mold, and the first mold and the second mold Power supply means for heating at least one of the first molding part and the second molding part by supplying electricity to at least one of them, and the FRP product between the first molding part and the second molding part.
- the fiber sheet arranging step may be executed before the filler arranging step or after the filler arranging step. Further, the fiber sheet arranging step may be executed before and after the filler arranging step. Moreover, a filler arrangement
- positioning process may be performed before an energization heating process, and may be performed after an energization insulator process. Moreover, a filler arrangement
- positioning process may be performed during execution of a formation process.
- the FRP product molding method includes applying pressure to the thermoplastic resin in a molten state via the first molding part and the second molding part. Since the pressure in the cavity, which is the molding region between the first molding part and the second molding part, is equalized by Pascal's principle, each part in the FRP product can be molded with uniform pressure. For this reason, according to the molding method of the FRP product according to the present invention, it is possible to improve the rigidity of the wall portion extending along the opening / closing direction of the pair of molds among the portions constituting the FRP product, and the filler and A high-strength FRP product can be molded by preventing a gap from being formed between the fiber sheet and the fiber sheet.
- the filler arranging step includes at least one of carbon fiber, metal fiber and glass fiber in the thermoplastic resin.
- the FRP product molding method includes a carbon fiber, a metal fiber, and a glass fiber in the thermoplastic resin disposed between the first molding part and the second molding part. Since at least 1 of these is contained, the rigidity of the part shape
- the fiber sheet arranging step arranges a resin sheet made of a thermoplastic resin adjacent to the fiber sheet.
- the FRP product molding method can impregnate the fiber sheet with a large amount of thermoplastic resin at an early stage. Can be molded.
- the fiber sheet arranging step arranges the fiber sheet so as to sandwich the filler arranged in the filler arranging step.
- the FRP molding method arranges the fiber sheet so as to sandwich the thermoplastic resin arranged by the resin arranging step, and thus heats the entire outer surface of the FRP product.
- the fiber sheet impregnated with a plastic resin, that is, a fiber reinforced resin can be used, and the rigidity of the FRP product can be improved.
- the energization heating step is located at a position close to each other through an interval where the first mold and the second mold are not electrically connected.
- electricity is supplied to at least one of the first mold and the second mold, and in the molding process, the energization by the energization heating process is stopped, and then the first mold and the second mold are closed to close the FRP product. There is in molding.
- the FRP product molding method energizes in a state where the first mold and the second mold are arranged close to each other in a range where the first mold and the second mold are not in electrical contact with each other.
- the thermoplastic resin disposed between the first molding part and the second molding part can be efficiently heated and melted, and the molding process can be interrupted due to a short circuit between the first mold and the second mold. A configuration for preventing a short circuit is unnecessary, and an FRP product can be molded efficiently.
- the first mold and the second mold are the first molding part and the second molding part in the first mold and the second mold.
- An insulating layer is formed on at least one of each of the parting surfaces of the first mold and the second mold, and the energization heating step is performed by connecting the first mold and the second mold. It is to flow electricity to at least one of the first mold and the second mold in the closed state.
- the insulating layer is formed by coating (including spraying) or impregnating an insulating material that does not conduct electricity, such as a resin material or a ceramic material, in each of the first molding part, the second molding part mold, and each parting surface. Formed on the surface.
- the FRP product molding method includes a first mold and a second mold, in which the first mold and the second mold are electrically insulated from each other. Can be heated by energizing in a closed state, the thermoplastic resin disposed between the first molding part and the second molding part can be efficiently heated and melted, resulting in FRP The product can be molded efficiently.
- the energization heating step is performed by electrically connecting the first mold and the second mold between the first mold and the second mold.
- An inter-die energization means is provided for electrical connection, and electricity is supplied from the first mold side or the second mold side to the second mold side or the first mold side via the inter-die energization means. There is to shed.
- the FRP product molding method includes an inter-mold energization means provided between the first mold and the second mold, and the first mold side Alternatively, since electricity flows from the second mold side to the second mold side or the first mold side via the inter-mold energization means, it is possible to energize with one power supply facility and simplify the apparatus configuration. FRP products can be molded efficiently.
- the inter-mold energization means is movable with respect to the first mold and the second mold so as to be disposed between the first mold and the second mold only when energization is necessary. It is good to provide.
- the first mold and the second mold are annularly opposed to each other with a gap around the first molding section and the second molding section.
- Each having a first blade molding portion and a second blade molding portion, and annularly stretched around the first blade molding portion or the second blade molding portion in one of the first mold and the second mold.
- a columnar columnar shape having a cylindrical fitting portion to be brought out and fitted into the cylindrical fitting portion around the first blade molding portion or the second blade molding portion in the other of the first mold and the second mold It has a fitting part.
- the first blade molding portion and the second blade molding portion are formed in the first mold and the second mold, respectively.
- the cylindrical fitting part is formed in one of the first mold and the second mold and the columnar fitting part is formed in the other mold, the FRP product is molded.
- the FRP product can be accurately molded by preventing leakage of the thermoplastic resin from the mold.
- the fiber sheet protruding from the columnar fitting portion can be cut and removed by the cylindrical fitting portion and the columnar fitting portion, it is possible to remove from the thermoplastic resin mold.
- the peripheral edge of the FRP product can be molded while preventing leakage of the FRP product, and the FRP product can be molded efficiently.
- the present invention can be implemented not only as a method for molding an FRP product but also as an invention for a method for producing FRP.
- the manufacturing method of the FRP product includes a first mold having a first molding part formed in a three-dimensional shape corresponding to a part of the surface of the FRP product obtained by molding a fiber reinforced resin, A second mold having a second molding part formed in a three-dimensional shape corresponding to another part of the surface and disposed opposite to the first mold, and the first mold and the second mold And a power supply means for heating at least one of the first molding part and the second molding part by supplying electricity to at least one of the first and second molding parts, and the material of the FRP product between the first molding part and the second molding part
- the thermoplastic resin material between the first molding part and the second molding part At least one of the first molding part and the second molding part is heated by flowing electricity through at least one of
- the electric heating process for melting the filler, and the first mold and the second mold are closed and pressure is applied to the melted filler by the first molding part and the second molding part to mold the FRP product. Process. Also by this, the same effect as the invention of the method for molding the FRP product can be expected.
- the present invention can also be implemented as an invention of a molding apparatus for FRP products used in the above-described FRP molding method and manufacturing method.
- the FRP product molding apparatus includes a first mold having a first molding part formed in a three-dimensional shape corresponding to a part of the surface of the FRP product obtained by molding a fiber reinforced resin, and an FRP product.
- a second mold having a second molding part formed in a three-dimensional shape corresponding to another part of the surface and disposed opposite to the first mold; and the first mold and the second mold
- An input electrode having a first electrode electrically connected to the first mold and a second electrode electrically contacted to the first mold, and the first mold and the second mold Between the molds that are disposed opposite to the input electrode via the first molding part and the second molding part to electrically connect the first mold and the second mold.
- Between the first molding part and the second molding part by supplying electricity to at least one of the first mold and the second mold via the energization means and the input electrode; In further comprising a power supply means for heating at least one.
- the FRP product molding apparatus can be energized in a state where the first mold and the second mold are arranged close to each other in a range where the first mold and the second mold are not in electrical contact with each other.
- the thermoplastic resin disposed between the molding parts can be efficiently heated and melted, and the molding process is interrupted due to a short circuit between the first mold and the second mold and a structure for preventing a short circuit is provided. It is not necessary and the FRP product can be molded efficiently.
- FIG. 1 is a cross-sectional view schematically showing the configuration of the main part of a molding apparatus 100 used in the FRP product molding method and manufacturing method according to the present invention with two molds open.
- FIG. 2 is a block diagram of a control system that controls the operation of the molding apparatus 100. Note that each drawing referred to in the present specification is schematically represented by exaggerating some of the components in order to facilitate understanding of the present invention. For this reason, the dimension, ratio, etc. between each component may differ.
- the molding apparatus 100 manufactures an FRP product PR made of FRP (fiber reinforced resin) by compression molding while heating a molding material in which a filler FM made of a thermoplastic resin material is arranged inside a fiber sheet FS. It is a processing machine.
- the FRP product PR corresponds to two- or four-wheeled motor vehicles, ships and airplanes, and various parts constituting a prime mover that is a driving source of these vehicles.
- the molding apparatus 100 includes a pair of first mold 110 and second mold 120.
- the first mold 110 is a steel mold that performs the molding process of the FRP product PR in cooperation with the second mold 120.
- the first outer peripheral portion 114 and the first hollow portion 115 are provided.
- the first molding part 111 is a part that applies heat and compression force to the material to be molded to mold a part of the surface of the FRP product PR, and has a three-dimensional shape corresponding to the shape of a part of the surface of the FRP product PR. That is, it is formed into a three-dimensional shape obtained by inverting a part of the three-dimensional shape on the surface.
- the thickness of the first molding part 111 is formed to the minimum necessary thickness within a range that can ensure the heat condition and pressure condition necessary for the molding process of the FRP product PR.
- the first molded portion 111 is formed in a concave shape with respect to the upper side in the drawing corresponding to the convex shape of the lower surface in the FRP product PR.
- molding part 111 is formed in about 20 mm in this embodiment.
- the first blade molding part 112 is a part that applies heat and compression force to the material to be molded and molds a part of the surface of the blade part W formed on the peripheral part of the FRP product PR.
- the first blade molding portion 112 is formed in a concave shape with respect to the upper side in the drawing corresponding to the convex shape of the lower surface in the blade portion W in the drawing.
- molding part 112 is formed in the required minimum thickness in the range which can ensure the thermal conditions and pressure conditions required for the shaping
- the blade part W is a flat ring-shaped part that is formed on the outer peripheral part of the FRP product PR in a flange shape, and the fiber sheet FS and the second molded part arranged on the first molded part 111 side. While being a part which bonds the fiber sheet FS arrange
- the blade portion W may constitute a part of the shape of the FRP product PR, or may be removed after molding of the FRP product PR and may not constitute a part of the shape of the FRP product PR.
- the outer side of the first blade molding portion 112 falls into an annular shape to form a columnar fitting portion 113.
- the columnar fitting portion 113 is fitted to a cylindrical fitting portion 123 described later and is an inner portion of the columnar fitting portion 113, that is, the first molding portion 111, the first blade molding portion 112, and the second molding portion 121. And a cylindrical portion for sealing the cavity Cv formed by the second blade molding portion 122.
- the outer diameter of the columnar fitting portion 113 has a slight gap with respect to the inner diameter of the cylindrical fitting portion 123 so that the cylindrical fitting portion 123 can be inserted and removed while ensuring the hermeticity in the cavity Cv. It is formed with the dimensional tolerance of the clearance fit.
- the first outer peripheral portion 114 is a portion that forms a first cavity 115 described later while supporting the first molding portion 111, the first blade molding portion 112, and the columnar fitting portion 113.
- a cylindrical shape is formed around the outside. Therefore, the first outer peripheral portion 114 is a meat that can suppress deformation of the first molding portion 111 and the first blade molding portion 112 when the first die 110 receives the pressing force from the second die 120. It is formed with a thickness. In the present embodiment, the thickness of the first outer peripheral portion 114 of the first mold 110 is formed to be about 150 mm.
- the illustrated upper surface of the first outer peripheral portion 114 is formed to be depressed with respect to the first blade molding portion 112 via the columnar fitting portion 113, and is opposed to the second outer peripheral portion 124 in the second mold 120. A dividing surface with the two molds 120 is formed. Further, the lower end portion of the first outer peripheral portion 114 shown in the figure protrudes in an annular shape to form a first cavity portion 115, and a drain hole 114a is formed inside.
- the drain hole 114a is a through-hole-like channel extending in a tubular shape for draining the cooling water accumulated in the first cavity 115 to the outside of the first mold 110, and one end of the drain hole 114a is the first cavity. 115 and the other end is formed in the first outer peripheral portion 114 of the first mold 110 so as to open.
- the drain hole 114 a is connected to a drain pipe (not shown) at the other end that opens to the first outer peripheral portion 114 of the first mold 110.
- the first hollow portion 115 is formed on each opposite side of the first molding portion 111 and the first blade molding portion 112, and defines the thickness of each of the first molding portion 111 and the first blade molding portion 112 and is the first. It is a space for supplying cooling water to the respective back side surfaces of the molding part 111 and the first blade molding part 112.
- the first cavity 115 is formed in a shape along each concave shape of the first molding portion 111 and the first blade molding portion 112 and is recessed into a concave shape by being surrounded by the first outer peripheral portion 114. Is formed.
- a first receiving plate 116 is provided on the lower surface of the first mold 110 in a state of covering the first cavity 115.
- the first receiving plate 116 is a steel plate member for supporting the first mold 110 that receives the pressing force from the second mold 120 from the back side, and a bolt (not shown) on the lower surface of the first mold 110 is not shown. It is fixedly attached via. In this case, the first receiving plate 116 is attached in a state where the first cavity 115 formed in the first mold 110 is liquid-tightly closed.
- a water supply pipe 117 is provided inside the first receiving plate 116.
- the water supply pipe 117 is a component for supplying cooling water to the respective back side surfaces of the first molding part 111 and the first blade molding part 112 in the first cavity part 115, and is constituted by a steel pipe.
- One end of the water supply pipe 117 penetrates the first receiving plate 116 and is connected to the water supply pump 131, and the other end is branched into a plurality (9 in the present embodiment).
- the first molding part 111 is opened facing the back side surface.
- the first mold 110 in which the first receiving plate 116 is integrally assembled is attached to the first mounting plate 119 via a heat insulating base 118 via bolts (not shown).
- the heat insulation base 118 is a plate-like member for performing heat insulation and electrical insulation between the first receiving plate 116 and the first mounting plate 119.
- the heat insulating insulating base 118 is configured by forming a glass fiber solidified with phosphate as a binder into a plate-like body having a shape corresponding to the first receiving plate 116.
- the first attachment plate 119 is a steel plate-like body for attaching the first mold 110 to a fixed plate (not shown) in the molding apparatus 100. That is, the first mold 110 is a so-called lower mold (fixed mold) attached on a stationary plate fixedly provided in the molding apparatus 100.
- the second mold 120 is a steel mold that performs the molding process of the FRP product PR in cooperation with the first mold 110, and includes a second molding part 121, a second blade molding part 122, and a cylindrical fitting part. 123, the 2nd outer peripheral part 124, and the 2nd cavity part 125, respectively.
- the second molding part 121 is a part that applies heat and compression force to the material to be molded to mold another part of the surface of the FRP product PR. It is formed into a three-dimensional shape corresponding to another part of the surface, that is, a three-dimensional shape obtained by inverting the other part of the surface.
- the thickness of the second molding part 121 is formed to the minimum necessary thickness within a range in which the thermal conditions and pressure conditions necessary for the molding process of the FRP product PR can be secured.
- the second molding portion 121 is formed in a concave shape with respect to the lower side in the figure corresponding to the convex shape of the upper surface in the FRP product PR.
- molding part 121 is formed in about 20 mm in this embodiment.
- the second blade molding portion 122 is a portion that applies heat and compression force to the material to be molded and molds another part of the surface of the blade portion W.
- the three-dimensional shape corresponding to the other part of the surface of the part W that is, a three-dimensional shape obtained by inverting the other part of the surface of the part W is formed.
- the second blade molding portion 122 is formed in a concave shape with respect to the illustrated lower side corresponding to the convex shape of the illustrated upper surface of the blade portion W.
- the thickness of the second blade molding portion 122 is formed to the minimum necessary thickness within a range in which the thermal conditions and pressure conditions necessary for the molding processing of the blade portion W in the FRP product PR can be secured.
- the outer side of the second blade molding part 122 projects annularly to form a cylindrical fitting part 123.
- the cylindrical fitting portion 123 is a cylindrical portion for fitting with the columnar fitting portion 113 to seal the inside portion of the cylindrical fitting portion 123, that is, the inside of the cavity Cv.
- the inner diameter of the cylindrical fitting portion 123 is set through a slight gap with respect to the inner diameter of the columnar fitting portion 113 so that the columnar fitting portion 113 can be inserted and removed while ensuring the sealing property in the cavity Cv. It is formed with a clearance tolerance.
- the second outer peripheral portion 124 forms a second cavity portion 125 described later while supporting the second molding portion 121, the second blade molding portion 122, and the cylindrical fitting portion 123, respectively. And is formed in a cylindrical shape around the outside of the cylindrical fitting portion 123. Therefore, the second outer peripheral portion 124 can suppress the deformation of the second molding portion 121 and the second blade molding portion 122 when the second die 120 receives a reaction force from the first die 110. It is formed with a thickness. In the present embodiment, the thickness of the first outer peripheral portion 123 of the second mold 120 is formed to be about 150 mm.
- the illustrated lower surface of the second outer peripheral portion 124 is formed so as to protrude from the second blade molding portion 122 via the cylindrical fitting portion 123 and is opposed to the first outer peripheral portion 114 of the first mold 110. A dividing surface with the first mold 110 is formed.
- the illustrated upper end portion of the second outer peripheral portion 124 protrudes annularly to form a second cavity portion 125, and a drain hole 124a and an intake hole 124b are formed therein, respectively.
- the drain hole 124a is a through-hole-like flow path extending in a tubular shape for draining the cooling water accumulated in the second cavity 125 to the outside of the second mold 120, like the drain hole 114a.
- the other end portion is formed in the second outer peripheral portion 124 of the second mold 120 so as to open to the second cavity portion 125.
- the drain hole 124 a is connected to a drain pipe (not shown) at the other end that opens to the second outer peripheral portion 124 of the second mold 120.
- the intake hole 124b is a through-hole for sucking air in the cavity Cv when the first mold 110 and the second mold 120 are closed and the FRP product PR is molded, and one end (the left side in the drawing) The portion opens to the wall surface of the cylindrical fitting portion 123 on the cavity Cv side, and the other end (the right side in the drawing) is connected to the vacuum device 132.
- the intake hole 124b is covered with the wall surface of the columnar fitting portion 113 at the portion that opens to the wall surface of the cylindrical fitting portion 123 when the first mold 110 and the second mold 120 are completely closed. It is formed in the position to be called.
- the second cavity 125 is formed on the opposite side of the second molding part 121 and the second blade molding part 122, and the second molding part 121 and the second blade molding part 122 are formed. This is a space for supplying cooling water to the respective back side surfaces of the second molding part 121 and the second blade molding part 122, as well as defining the thickness of each.
- the second cavity portion 125 is formed in a shape along each concave shape of the second molding portion 121 and the second blade molding portion 122 and is recessed into a concave shape by being surrounded by the second outer peripheral portion 124. Is formed.
- a second receiving plate 126 is provided on the upper surface of the second mold 120 in a state of covering the second cavity 125.
- the second receiving plate 126 is a steel plate member for supporting the second mold 120 that receives the reaction force from the second mold 120 from the back surface.
- the mold 120 is fixedly attached to the upper surface of the mold 120 via bolts (not shown). In this case, the second receiving plate 126 is attached in a state where the second cavity 125 formed in the second mold 120 is liquid-tightly closed.
- a water supply pipe 127 is provided inside the second receiving plate 126.
- the water supply pipe 127 is a component for supplying cooling water to the respective back side surfaces of the second molding part 121 and the second blade molding part 122 in the second cavity part 125, similarly to the water supply pipe 117. It is configured. One end of the water supply pipe 127 penetrates the second receiving plate 126 and is connected to the water supply pump 131, and the other end is branched into a plurality (9 in this embodiment). The second molding part 121 is opened facing the back side surface.
- the second mold 120 in which the second receiving plate 126 is integrally assembled is attached to the second mounting plate 129 via a heat insulating base 128 via bolts (not shown).
- the heat insulation base 128 is a plate-like member for performing heat insulation and electrical insulation between the second receiving plate 126 and the second mounting plate 129, similarly to the heat insulation base 118.
- the heat insulating insulating base 128 is configured by forming a glass fiber solidified with phosphate as a binder into a plate-like body having a shape corresponding to the second receiving plate 126.
- the second mounting plate 129 is a steel plate-like body for mounting the second mold 120 to a movable plate (not shown) in the molding apparatus 100, like the first mounting plate 119. That is, the second mold 120 is a so-called upper mold (movable mold) attached to a movable plate that is movably provided in the molding apparatus 100 along the vertical direction in the figure.
- the movable platen is driven by a mold driving device 133.
- the water supply pump 131 includes a first molded part 111, a first blade molded part 112, a second molded part 121, and a second blade in the first cavity 115 and the second cavity 125 through the water supply pipes 117 and 127. It is a mechanical device for supplying cooling water to each back surface of the molding unit 122, and the operation is controlled by a control device 140 described later.
- the vacuum device 132 is a mechanical device for sucking air in the cavity Cv through the intake hole 124b, and its operation is controlled by the control device 140.
- the mold driving device 133 is an electric driving device for displacing a movable plate (not shown) that holds the second mold 120 in a direction to approach or separate from the first mold 110. is there.
- the mold driving device 133 may be other than the electric type, for example, a hydraulic type.
- the molding apparatus 100 includes an input electrode 134 and an inter-mold conducting electrode 135 for supplying power to the first mold 110 and the second mold 120, respectively.
- the input electrode 134 is an electrode for allowing a current to flow through the first mold 110 and the second mold 120, and is mainly configured by the first electrode 134a, the second electrode 134b, and the insulating support 134c.
- the first electrode 134a is a copper part for supplying power to the first mold 110, and is formed in a rectangular plate size that can be brought into contact with the upper surface of the first outer peripheral portion 114 in the drawing.
- the first electrode 134a is attached to the lower surface of the insulating support 134c.
- the second electrode 134b is a copper part for supplying power to the second mold 110, and is formed in a rectangular plate size that can be brought into contact with the illustrated lower surface of the second outer peripheral portion 124.
- the second electrode 134b is attached to the upper surface of the insulating support 134c.
- the insulating support 134c supports the first electrode 134a and the second electrode 134b facing the first mold 110 and the second mold 120, respectively, and in an insulated state that is not electrically connected to each other. It is a part.
- the insulating support 134c is configured by forming an insulator such as ceramic or resin in a block shape (for example, a rectangular parallelepiped shape or a cubic shape).
- the input electrode 134 is located at a position close to each other with a minimum distance at which the first mold 110 and the second mold 120 are not directly and indirectly electrically connected via a molding material or the like. In this state, the first electrode 134a and the second electrode 134b are formed in such a thickness that they are in contact with the first mold 110 and the second mold 120 so that they can be electrically connected.
- the inter-mold conducting electrode 135 is a copper part for electrically connecting the first mold 110 and the second mold 120, and the upper surface of the first outer peripheral portion 114 and the second outer peripheral portion 124 are illustrated. It is formed in a block shape (for example, a rectangular parallelepiped shape or a cubic shape) that can be electrically contacted with the lower surface. In this case, as in the case of the input electrode 134, the first mold 110 and the second mold 120 are not directly and indirectly electrically connected via a molding material or the like in the inter-mold conducting electrode 135. The first metal mold 110 and the second metal mold 120 are formed so as to be in contact with each other so that they can be electrically connected to each other in a state where they are positioned close to each other with a minimum distance. In addition, the inter-mold conducting electrode 135 is provided at a position facing the input electrode 134 via the first molding part 111 and the second molding part 121.
- the input electrode 134 and the mold energizing electrode 135 are supported by the electrode placement device 136 in the vicinity of the first mold 110 and the second mold 120, respectively.
- the electrode placement device 136 is a mechanical device for placing or retracting the input electrode 134 and the mold energization electrode 135 relative to the first mold 110 and the second mold 120. It is composed of a hydraulic or pneumatic cylinder that movably supports the energizing electrodes 135. The operation of the electrode placement device 136 is controlled by the control device 140.
- a power feeding device 137 is connected to the input electrode 133.
- the power feeding device 137 is a power supply device for supplying a current that flows through the first mold 110 and the second mold 120.
- the power feeding device 137 is controlled by the control device 140 to supply an alternating current to the first mold 110 and the second mold 120 via the input / output electrode 134. Therefore, the power feeding device 137 includes a high-frequency inverter, a matching transformer, and the like (not shown).
- the power feeding device 137 is configured to be able to output an alternating current having a power of 100 kW and a frequency of 50 kHz to the input / output electrode 134. Note that. It is natural that the alternating current output from the power feeding device 137 is appropriately set according to the molding process conditions of the molding material WK.
- the molding apparatus 100 includes a control device 140.
- the control device 140 is configured by a microcomputer including a CPU, a ROM, a RAM, and the like, and executes a control program stored in advance in a storage device such as a ROM in accordance with an instruction from an operator via the operation panel 141.
- a control device 140 mainly controls the operations of the water supply pump 131, the vacuum device 132, the mold driving device 133, the electrode placement device 136, and the power feeding device 137, respectively.
- the operation panel 141 is a user interface that includes an input device that gives an instruction to the control device 140 that controls the operation of the molding device 100 and a display device for displaying information from the molding device 100 (the control device 140). . Further, the molding apparatus 100 includes an ejector pin (not shown) for taking out the molded product PR from the first mold 110, but since these are not directly related to the present invention, the description thereof will be omitted. Omitted.
- an operator prepares a material to be molded as a raw material for the FRP product PR as the first step. Specifically, the operator prepares a fiber sheet FS, a resin sheet PC, and a filler FM.
- the fiber sheet FS is formed by collecting a plurality of fibers such as glass fibers, carbon fibers, or metal fibers into a sheet shape.
- the thermal resin sheet PS is obtained by molding a thermoplastic resin material (for example, polyethylene resin) into a film shape or a sheet shape.
- the filler FM is a solid pellet-like or viscous clay-like thermoplastic resin material (for example, polyethylene resin), or a glass fiber, carbon fiber, metal fiber, or the like added to the thermoplastic resin material. It is a mixture of fibers.
- the operator prepares two carbon fiber sheets as the fiber sheet FS, prepares two polyethylene resin sheets as the resin sheet PS, and uses carbon fiber as a filler FM on the polyethylene resin material.
- a clay-like resin material kneaded with a kneader, that is, a so-called long fiber reinforced resin material lump is prepared.
- the operator when the resin material constituting the filler FM is melted with respect to the filler FM has a volume equal to or larger than the volume of the cavity Cv (strictly speaking, the fiber sheet FS or resin sheet disposed in the cavity Cv) The volume of the volume excluding the volume of PS) is prepared.
- the fiber sheet FS is formed to have a size that protrudes outside the first blade molding portion 112 and the second blade molding portion 122, and the resin sheet Ps is formed in the first blade molding portion 112 and the second blade molding. It is formed in a size that can be accommodated in each portion 122.
- the worker places the material to be molded on the first mold 110 as the second step.
- the worker arranges the fiber sheet FS, the resin sheet PS, and the filler FM on the first mold 110, respectively.
- the operator operates the operation panel 141 of the molding apparatus 100 to turn on the power of the molding apparatus 100, and then operates the operation panel 141 to move the second mold 120.
- the mold is opened apart from the first mold 110.
- the operator arranges one fiber sheet FS on the first molding part 111 and the first blade molding part 112 in the first mold 110, and then one sheet on the one fiber sheet FS. Place the resin sheet.
- the operator places the filler FM on the resin sheet PS on the first molding part 111 and the first blade molding part 112.
- the operator places one resin sheet PS on the filler FM on the first molding part 111 and the first blade molding part 112, and then one fiber on the one resin sheet PS.
- the sheet FS is disposed.
- the step of arranging the fiber sheet FS and the resin sheet PS on the first mold 110 in the second step corresponds to the fiber sheet arranging step according to the present invention.
- die 110 corresponds to the filler arrangement
- the worker arranges the input electrode 134 and the inter-mold conductive electrode 135 as a third step.
- the operator operates the operation panel 141 to instruct the control device 140 to dispose the input electrode 134 and the inter-mold conductive electrode 135.
- the control device 140 controls the operation of the electrode placement device 136 to place the input electrode 134 and the inter-mold conduction electrode 135 on the second outer peripheral portion 124 of the second die 120, respectively.
- the operation of the mold driving device 133 is controlled so that the second mold 120 is displaced toward the first mold 110 and is disposed close to the first mold 110 so that the input electrode 134 and the inter-mold conducting electrode 135 are disposed in the first mold 110. It is sandwiched between the first mold 110 and the second mold 120.
- the first mold 110 and the second mold 120 are electrically connected to each other only through the inter-mold conducting electrode 135.
- the operator energizes each of the first mold 110 and the second mold 120 as the fourth step.
- the operator operates the operation panel 141 to instruct the control device 140 to energize the first mold 110 and the second mold 120.
- the control device 140 controls the operation of the power feeding device 137 and starts energizing the first mold 110 and the second mold 120 via the input electrode 134.
- the current output from the power feeding device 136 is supplied into the first mold 110 (or the second mold 120) via the first electrode 134a (or the second electrode 134b), and then between the molds.
- the electric current flows through the second mold 120 (or the first mold 110) via the energizing electrode 135 and returns to the power feeding device 136 via the second electrode 134b (or the first electrode 134a).
- the first mold 110 and the second mold 120 mainly include the first molding part 111, the first blade part molding part 112, the second molding part 121 and the first cavity part 115 and the second cavity part 125.
- a high-frequency current flows through the two-blade molding part 122.
- molding part 122 start heat_generation
- the filler FM and the resin sheet PS are melted.
- control device 140 controls the energization amount so as to maintain the temperature of the first mold 110 and the second mold 120 at or above the melting point of the thermoplastic resin material (for example, about 400 °).
- the step of melting the filler FM in the third step corresponds to the energization heating step according to the present invention.
- the worker performs the FRP product PR processing as the fifth step.
- the operator operates the operation panel 141 and instructs the control device 140 to mold the FRP product PR.
- the control device 140 controls the operation of the mold driving device 133 after controlling the operation of the power feeding device 137 to stop the energization of the first mold 110 and the second mold 120.
- the operation of the electrode placement device 136 is controlled in a state where the second mold 120 is slightly separated from the first mold 110, and the input electrode 134 and the inter-mold conducting electrode 135 are connected to the first mold 110. Remove from between the second mold 120.
- control device 140 stops energization in a state where the filler FM disposed between the first mold 110 and the second mold 120 is completely melted (a state in which a portion having an initial viscosity does not remain). However, the energization may be stopped in a state in which the filler FM is not completely melted (a state in which a portion having an initial viscosity remains in part).
- the control device 140 removes the inter-mold conducting electrode 135 from between the first mold 110 and the second mold 120, and then controls the operation of the mold driving device 133.
- the second mold 120 is pressed against the first mold 110 to close the mold.
- the control device 140 controls the operation of the vacuum device 132 to close the mold while sucking air in the cavity CV.
- the filler FM and the resin sheet PS arranged between the first mold 110 and the second mold 120 are completely melted by the residual heat of the first mold 110 and the second mold 120 (the whole is the original It is possible to flow in the cavity Cv.
- the filling material FM is filled with a volume larger than the capacity of the cavity Cv, the pressure in the cavity Cv becomes uniform according to the Pascal principle.
- thermoplastic resin melted in the cavity Cv is prevented from leaking out of the cavity Cv by the first blade molding portion 112, the second blade molding portion 122, the columnar fitting portion 113, and the cylindrical fitting portion 123.
- the control device 140 controls the operation of the water supply pump 131 after the time necessary for a part of the molten thermoplastic resin to be impregnated into the fiber sheet FS and controls the operation via the water supply pipes 117 and 127.
- Water is supplied to the respective back surfaces of the first molding unit 111, the first blade molding unit 112, the second molding unit 121, and the second blade molding unit 122 to cool them to room temperature (see the broken line arrows in FIG. 5).
- the fiber sheet FS in the cavity Cv, and the molding material made of the molten filler FM and the resin sheet PS, respectively are rapidly solidified to form the FRP product PR.
- the step of molding the FRP product PR in the fifth step corresponds to the molding step according to the present invention.
- the control device 140 controls the operation of the water supply pump 131 to stop water supply to the back surfaces of the first molding unit 111, the first blade molding unit 112, the second molding unit 121, and the second blade molding unit 122.
- the operation of the mold driving device 133 is controlled to separate the second mold 120 from the first mold 110 and open the mold.
- the worker performs the work of taking out the FRP product PR as the sixth step.
- the operator operates the operation panel 141 to instruct the control device 140 to drive an ejector pin (not shown) provided on the first mold 110.
- the control device 140 drives an ejector pin provided in the first mold 110.
- the product PR in close contact with the first molding part 111 is pushed out by the ejector pin, so that the operator can take out the FRP product PR pushed out from the first mold 110.
- the operator can complete the FRP product PR by removing the blade portion Wi in the FRP product PR using cutting or the like as necessary. Note that the process from the second step to the sixth step can be completed within approximately 20 minutes.
- the worker starts the work again from the process of placing the molding material on the first mold 110.
- the operator operates the operation panel 141 to turn off the power of the molding apparatus 100. Thereby, the operator can finish the manufacturing operation of the FRP product PR by the molding apparatus 100.
- the FRP product PR is molded through the first molded part 111 and the second molded part 121 with respect to the thermoplastic resin in a molten state. Since pressure is applied to equalize the pressure in the cavity Cv, which is a molding region between the first molding part 111 and the second molding part 121, according to Pascal's principle, each part in the FRP product PR is molded with equal pressure. can do. For this reason, according to the molding method of the FRP product according to the present invention, the wall portions Wa1 and Wa2 extending along the opening / closing direction of the pair of the first mold 110 and the second mold 120 among the respective parts constituting the FRP product PR. In addition to improving the rigidity, it is possible to prevent a gap from being formed between the filler FM and the fiber sheet FS, and to mold a high-strength FRP product PR.
- the fiber sheet FS, the resin sheet PS, and the filler FM are respectively disposed on the first mold 110 as the molding material.
- the material to be molded can be composed of at least one fiber sheet FS and filler FM. Therefore, in the present invention, for example, as shown in FIG. 6, the filler FM is disposed on the first molding portion 111 in the first mold 110 and one or more fibers are placed on the filler FM.
- the FRP product PR it is also possible to form the FRP product PR by arranging the sheet FS. In this case, in the FRP product PR to be molded, a part on the first molding part 111 side is constituted by the filler FM and a part on the second molding part 121 side is constituted by the fiber sheet FS.
- the FRP product PR can be molded with the filler FM interposed therebetween.
- the FRP product PR is formed by continuously arranging a plurality of resin sheets PS on the fiber sheet FS or alternately arranging a plurality of fiber sheets FS and a plurality of resin sheets PS.
- the FRP product PR can be molded by omitting the resin sheet PS as shown in FIG.
- the fiber sheet PS a so-called prepreg obtained by impregnating the fiber sheet PS with a thermoplastic resin in advance can also be used.
- die 120 when it energizes and heats the 1st metal mold
- die 120 can also be arrange
- the molding apparatus 100 can compress the second mold 120 by pressing the material to be molded on the first mold 110 through the insulating sheet 150, the molding apparatus 100 is arranged closer to the first mold 110. It is possible to heat the filler FM and the resin sheet PS more efficiently. Then, after heating the filler FM for a predetermined time, the operator separates the second mold 120 from the first mold 110 and removes the insulating sheet 150, and immediately after removing the insulating sheet 150, the second mold The FRP product PR is molded by displacing 120 into the first mold 110 and closing the mold. Thereby, the shaping
- the insulating sheet 150 can be made of a resin material, a rubber material, a glass material, or the like. Further, the insulating sheet 150 is disposed in a state where it is not in contact with the filler FM or the resin sheet PS, for example, when it is disposed on the uppermost fiber sheet FS (facing the second mold 120 (movable side mold)). Easy to remove.
- the filler FM is arranged on the first mold 110 in a viscous semi-solid state.
- the filling material FM can be made of a solid thermoplastic resin such as pellets and disposed on the first mold 110, and the filling material FM is in a fluid state such as a liquid state. It is also possible to mold the FRP product PR by supplying it into the cavity Cv in a heated state. That is, the molding apparatus 100 can be implemented as an injection molding machine.
- a sprue 160 that forms a flow path of the filler FM having fluidity is formed at the center of the first mold 110.
- a so-called weld defect or a so-called weld defect that is a molding defect at the time of injection molding. Sink defects can be effectively prevented.
- a high melting point material such as polyether ether ketone resin can be injection molded with high accuracy.
- a movable mold in which a first mold 110 is mounted on a movable plate (not shown), and a second mold 120 is a fixed plate (not shown).
- the first mold 110 is displaced in a direction in which the first mold 110 approaches or separates from the fixed second mold 120.
- thermosetting resin such as a phenol resin, a melamine resin, a urea resin, a polyurethane resin, and an epoxy resin are used.
- an unsaturated polyester resin can also be used.
- injection molding can be performed using a mixture of these thermoplastic resins or thermosetting resins with carbon fibers, glass fibers, metal fibers, metal powders, or various mineral powders.
- the FRP product PR can be molded by the following steps 1 to 6. That is, Step 1: Step of placing fiber sheet FS on first mold 110 Step 2: Preheating step of energizing and heating first mold 110 and second mold 120 Step 3: First mold 110 and second mold 2 Clamping process step 4 for bringing the mold 120 into close contact: Injection process step 5 for injecting a filler FM made of molten resin into the cavity Cv via the sprue 160: First mold 110 and second mold Cooling step 6 for supplying cooling water to the mold 120 for cooling Step 6: Mold opening step for separating the first die 110 and the second die 120 Step 7: Driving the ejector pin to remove the FRP product PR from the first die Taking out from the mold 110
- Step 1 Step of placing the fiber sheet FS on the first mold 110
- Step 2 Clamping step of bringing the first mold 110 and the second mold 120 into close contact
- Step 3 The first mold 110 and the second mold Preheating step of energizing and heating the mold 120
- Step 4 Injection step of injecting a filler FM composed of a molten resin into the cavity Cv through the sprue 160
- Step 5 the first mold 110 and the second mold Cooling step 6 for supplying cooling water to the mold 120 for cooling
- Step 6 Mold opening step for separating the first die 110 and the second die 120
- Step 7 Driving the ejector pin to remove the FRP product PR from the first die Taking out from the mold 110
- the filler FM and the resin sheet PS are melted by energizing the first mold 110 and the second mold 120 close to each other, that is, with the mold opened. Configured. However, according to the present invention, the filling material FM and the resin sheet PS can be melted by energizing the first mold 110 and the second mold 120 in a closed state where the first mold 110 and the second mold 120 are in contact with each other.
- the first mold 110 and the second mold 120 in the first mold 110 and the second mold 120 are in contact with each other directly or indirectly through a material to be molded, specifically, An insulating layer 170 made of an insulating material is formed on the first molding part 111, the first blade molding part 112, the second molding part 121, the second blade molding part 122, and the parting surfaces outside them.
- the insulating layer 170 can be formed by a processing method such as coating (including thermal spraying) or impregnation with an insulating material that does not conduct electricity such as a resin material or a ceramic material.
- the insulating layer 170 can be formed on at least one of the first mold 110 side and the second mold 120 side.
- the molding apparatus 100 includes a first electrode 171 and a second electrode 172 for supplying power to the first mold 110 and the second mold 120, respectively, and the first mold 110 and the second mold 120.
- a first electrode 171 and a second electrode 172 for supplying power to the first mold 110 and the second mold 120, respectively, and the first mold 110 and the second mold 120.
- an inter-mold energization electrode 173 for energizing the first mold 110 or the second mold 120 is provided.
- the first mold 110 and the second mold 120 can be energized and heated with the first mold 110 and the second mold 120 closed, so that the first mold part 111 and the second mold part 121 can be heated.
- the thermoplastic resin disposed on the substrate can be efficiently heated and melted, and as a result, the FRP product can be efficiently molded.
- the first molding part 111 and the second molding part 121 are heated by energizing the first mold 110 and the second mold 120.
- energization of the first mold 110 and the second mold 120 may be at least one of the first mold 110 and the second mold 120.
- the second mold 120 can be indirectly heated by the proximity arrangement or the close arrangement via the insulator to the first mold 110 heated by the energization.
- molding part 121 are formed in thickness about 20 mm.
- the thickness of the first molding part 111 and the second molding part 121 is appropriately determined according to the type, shape, size, and processing conditions of the material to be molded and the FRP product PR.
- the power feeding device 137 is configured to supply an alternating current to the first mold 110 and the second mold 120.
- the power feeding device 136 may be configured to supply a direct current to the first mold 110 and the second mold 120.
- the amount of electricity output from the power feeding device 137 is appropriately set according to the type, size, or molding accuracy of the material to be molded or the FRP product PR, and is not limited to the above embodiment.
- thermoplastic resin material is used as the thermoplastic resin material.
- the thermoplastic resin material is appropriately selected according to the specifications of the FRP product PR, and it is natural that other thermoplastic resins may be used.
- Polyetherimide resin polyethersulfone resin, polyphenylene sulfide resin, polysulfone resin, or polyetheretherketone resin can be used.
- power feeding device 140 ... control device, 141 ... operation panel, 150 ... insulating sheet, 160 ... sprue, 170: insulating layer, 171: first electrode, 172: second electrode, 173: mold energizing electrode.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
FRP製品を構成する各部のうち一対の金型の開閉方向に沿って延びる壁部の剛性を向上させることができるFRP製品の成型方法およびFRP製品の製造方法を提供する。 FRP製品の成型方法は、成型装置100を用いて繊維強化樹脂を成型する。成型装置100は、通電加熱される第1金型110と第2金型120とを備えている。第1金型110および第2金型120は、互いに対向する面にFRP製品を成型する第1成型部111および第2成型部121が形成されている。作業者は、まず、第1成型部111上に繊維シートFS、樹脂シートPS、充填材FM、樹脂シートPSおよび繊維シートFSの順で配置する。次に、作業者は、第2金型120を第1金型に近接させた状態で通電して充填材FMおよび樹脂シートPSを溶融させる。次に、作業者は、第2金型120を第1金型110に押圧して閉じることによってFRP製品PRを成型する。
Description
本発明は、互いに開閉する一対の金型内に熱可塑性樹脂と繊維シートとをそれぞれ配置してFRP製品を成型するFRP製品の成型方法およびFRP製品の製造方法に関する。
従来から、互いに開閉する一対の金型内に熱可塑性樹脂と繊維シートとをそれぞれ配置してFRP製品を成型するFRP製品の成型方法がある。例えば、下記特許文献1には、
一対の金型内に熱可塑性樹脂製シートと繊維シートを配置して2つの金型に電気を流して加熱することによって熱可塑性樹脂製シートを溶融させてFRP製品を成型するFRP製品の成型方法が開示されている。
一対の金型内に熱可塑性樹脂製シートと繊維シートを配置して2つの金型に電気を流して加熱することによって熱可塑性樹脂製シートを溶融させてFRP製品を成型するFRP製品の成型方法が開示されている。
しかしながら、上記特許文献1に記載されたFRP製品の成型方法においては、FRP製品を構成する各部のうち一対の金型の開閉方向に沿って延びる壁部の剛性が一対の金型のパーティング面に沿って延びる金型対向部の剛性に対して低くなるという問題がある。これは、FRP製品における金型対向部には一対の金型が閉じられることによって直接的に強大な押圧力が加えられる一方で、FRP製品における壁部には一対の金型間のクリアランスに対応する押圧力しか加わらないためであると考えられる。
本発明は上記問題に対処するためなされたもので、その目的は、FRP製品を構成する各部のうち一対の金型の開閉方向に沿って延びる壁部の剛性を向上させることができるFRP製品の成型方法およびFRP製品の製造方法を提供することにある。
上記目的を達成するため、本発明の特徴は、繊維強化樹脂を成形したFRP製品の表面の一部に対応する3次元形状に形成された第1成型部を有する第1金型と、FRP製品の表面の他の一部に対応する3次元形状に形成された第2成型部を有して第1金型に対向配置される第2金型と、第1金型および第2金型のうちの少なくとも一方に電気を流して第1成型部および第2成型部のうちの少なくとも一方を加熱するための給電手段とを備え、第1成型部と第2成型部との間にFRP製品の材料を配置してFRP製品を成型するFRP製品の成型方法において、第1成型部および第2成型部のうちの少なくとも一方に繊維をシート状の集合体とした繊維シートを配置する繊維シート配置工程と、第1成型部と第2成型部との間に熱可塑性樹脂材からなる充填材を充填する充填材配置工程と、第1金型および第2金型のうちの少なくとも一方に電気を流すことにより第1成型部および第2成型部のうちの少なくとも一方を加熱して充填材を溶融する通電加熱工程と、第1金型と第2金型とを閉じて第1成型部および第2成型部によって前記溶融した充填材に圧力を加えてFRP製品に成型する成型工程とを含むことにある。
この場合、繊維シート配置工程は、充填材配置工程の前に実行してもよいし、充填材配置工程の後に実行されてもよい。また、繊維シート配置工程は、充填材配置工程の前後にそれぞれ実行されてもよい。また、充填材配置工程は、通電加熱工程の前に実行してもよいし、通電槓子工程の後に実行されてもよい。また、充填材配置工程は、成形工程の実行中に実行されてもよい。
このように構成した本発明の特徴によれば、FRP製品の成型方法は、溶融状態にある熱可塑性樹脂に対して第1成型部および第2成型部を介して圧力を加えて第1成型部と第2成型部との間の成型領域であるキャビティ内の圧力をパスカルの原理によって均等にしているため、FRP製品における各部を均等な圧力で成形することができる。このため、本発明に係るFRP製品の成型方法によれば、FRP製品を構成する各部のうち一対の金型の開閉方向に沿って延びる壁部の剛性を向上させることができるとともに、充填材と繊維シートとの間に隙間が生じることも防止して、高強度なFRP製品を成型することができる。
また、本発明の他の特徴は、前記FRP製品の成型方法において、充填材配置工程は、熱可塑性樹脂に炭素繊維、金属繊維およびガラス繊維のうちの少なくとも1つが含まれていることにある。
このように構成した本発明の他の特徴によれば、FRP製品の成型方法は、第1成型部と前記第2成型部との間に配置する熱可塑性樹脂に炭素繊維、金属繊維およびガラス繊維のうちの少なくとも1つが含まれているため、FRP製品における熱可塑性樹脂で成形される部分の剛性を高めることができる。
また、本発明の他の特徴は、前記FRP製品の成型方法において、繊維シート配置工程は、繊維シートに隣接して熱可塑性樹脂製の樹脂シートを配置することにある。
このように構成した本発明の他の特徴によれば、FRP製品の成型方法は、繊維シートに対して早期に大量の熱可塑性樹脂を含浸させることができるため、FRP製品を短時間に精度良く成型することができる。
また、本発明の他の特徴は、前記FRP製品の成型方法において、繊維シート配置工程は、充填材配置工程によって配置される充填材を挟むように繊維シートを配置することにある。
このように構成した本発明の他の特徴によれば、FRPの成型方法は、樹脂配置工程によって配置される熱可塑性樹脂を挟むように繊維シートを配置するため、FRP製品の外表面全体を熱可塑性樹脂が含浸した繊維シート、すなわち繊維強化樹脂で構成することができ、FRP製品の剛性を向上させることができる。
また、本発明の他の特徴は、前記FRP製品の成型方法において、通電加熱工程は、第1金型と第2金型とが電気的に接続されない間隔を介して互いに接近した位置に位置した状態で第1金型および第2金型のうちの少なくとも一方に電気を流し、成型工程は、通電加熱工程による通電を停止した後、第1金型と第2金型とを閉じてFRP製品に成型することにある。
このように構成した本発明の他の特徴によれば、FRP製品の成型方法は、第1金型と第2金型とが電気的に接触しない範囲で互いに近接配置した状態で通電するため、第1成型部と第2成型部との間に配置した熱可塑性樹脂を効率的に加熱して溶融させることができるとともに、第1金型と第2金型との短絡による成形工程の中断や短絡防止のための構成が不要でありFRP製品を効率的に成型することができる。
また、本発明の他の特徴は、前記FRP製品の成型方法において、第1金型および第2金型は、第1金型および第2金型における第1成型部および第2成型部のうちの少なくとも一方、および第1金型および第2金型における各パーティング面のうちの少なくとも一方にそれぞれ絶縁層が形成されており、通電加熱工程は、第1金型と第2金型とを閉じた状態で第1金型および第2金型のうちの少なくとも一方に電気を流すことにある。この場合、絶縁層は、樹脂材やセラミック材などの電気を通さない絶縁物質をコーティンング(溶射を含む)や含浸などで第1成型部、第2成型部金型および各パーティング面の各表面に形成される。
このように構成した本発明の他の特徴によれば、FRP製品の成型方法は、第1金型と第2金型とが互いに電気的に絶縁されており第1金型と第2金型とを閉じた状態で通電して加熱することができるため、第1成型部と第2成型部との間に配置した熱可塑性樹脂を効率的に加熱して溶融させることができ、結果としてFRP製品を効率的に成型することができる。
また、本発明の他の特徴は、前記FRP製品の成型方法において、通電加熱工程は、第1金型と第2金型との間に同第1金型と同第2金型とを電気的に接続するための金型間通電手段を設けておき、第1金型側または第2金型側から金型間通電手段を介して第2金型側または第1金型側に電気を流すことにある。
このように構成した本発明の他の特徴によれば、FRP製品の成型方法は、第1金型と第2金型との間に金型間通電手段を設けておき、第1金型側または第2金型側から金型間通電手段を介して第2金型側または第1金型側に電気を流すため、1つの給電設備によって通電を行うことができ装置構成を簡単化することができるとともにFRP製品を効率的に成型することができる。この場合、金型間通電手段は、通電が必要なときにのみ第1金型と第2金型との間に配置されるように第1金型および第2金型に対して可動的に設けるとよい。
また、本発明の他の特徴は、前記FRP製品の成型方法において、第1金型および第2金型は、第1成型部および第2成型部の周囲に互いに隙間を介して対向し合う環状の第1羽根成形部および第2羽根成型部をそれぞれ有し、かつ、第1金型および第2金型のうちの一方における第1羽根成形部または第2羽根成型部の周囲に環状に張り出す筒状嵌合部を有するとともに、第1金型および第2金型のうちの他方における第1羽根成形部または第2羽根成型部の周囲に筒状嵌合部内に嵌合する柱状の柱状嵌合部を有することにある。
このように構成したる本発明の他の特徴によれば、FRP製品の成型方法は、第1金型および第2金型に第1羽根成形部および第2羽根成型部がそれぞれ形成されており、かつ第1金型および第2金型のうちの一方の金型に筒状嵌合部が形成されるとともに他方の金型に柱状嵌合部が形成されているため、FRP製品の成型時における熱可塑性樹脂の金型からの漏出を防止して精度良くFRP製品を成型することができる。また、このFRP製品の成型方法によれば、柱状嵌合部からはみ出す繊維シートを筒状嵌合部と柱状嵌合部とで切断して除去することができるため、熱可塑性樹脂の金型からの漏出を防止しつつFRP製品の周縁部の成型加工を行うことができ、FRP製品を効率的に成型することができる。
また、本発明は、FRP製品の成型方法として実施できるばかりでなく、FRPの製造方法の発明としても実施できるものである。
具体的には、FRP製品の製造方法は、繊維強化樹脂を成形したFRP製品の表面の一部に対応する3次元形状に形成された第1成型部を有する第1金型と、FRP製品の表面の他の一部に対応する3次元形状に形成された第2成型部を有して第1金型に対向配置される第2金型と、第1金型および第2金型のうちの少なくとも一方に電気を流して第1成型部および第2成型部のうちの少なくとも一方を加熱するための給電手段とを備え、第1成型部と第2成型部との間にFRP製品の材料を配置してFRP製品を成型するFRP製品の製造方法において、第1成型部および第2成型部のうちの少なくとも一方に繊維をシート状の集合体とした繊維シートを配置する繊維シート配置工程と、第1成型部と第2成型部との間に熱可塑性樹脂材からなる充填材を充填する充填材配置工程と、第1金型および第2金型のうちの少なくとも一方に電気を流すことにより第1成型部および第2成型部のうちの少なくとも一方を加熱して充填材を溶融する通電加熱工程と、第1金型と第2金型とを閉じて第1成型部および第2成型部によって前記溶融した充填材に圧力を加えてFRP製品に成型する成型工程とを含むことにある。これによっても、上記FRP製品の成型方法の発明と同様の作用効果を期待することができる。
また、本発明は、上記FRPの成型方法および製造方法に用いるFRP製品の成型装置の発明としても実施することができる。具体的には、FRP製品の成型装置は、繊維強化樹脂を成形したFRP製品の表面の一部に対応する3次元形状に形成された第1成型部を有する第1金型と、FRP製品の表面の他の一部に対応する3次元形状に形成された第2成型部を有して第1金型に対向配置される第2金型と、第1金型と第2金型との間に出し入れ可能に配置されて第1金型に電気的に接触する第1電極および第2金型に電気的に接触する第2電極を有する入力電極と、第1金型と第2金型との間であって入力電極に対して第1成型部および第2成型部を介して対向配置されて同第1金型と同第2金型とを電気的に接続するための金型間通電手段と、入力電極を介して第1金型および第2金型のうちの少なくとも一方に電気を流して第1成型部および第2成型部のうちの少なくとも一方を加熱するための給電手段とを備えることにある。
これによれば、FRP製品の成型装置は、第1金型と第2金型とが電気的に接触しない範囲で互いに近接配置した状態で通電させることができるため、第1成型部と第2成型部との間に配置した熱可塑性樹脂を効率的に加熱して溶融させることができるとともに、第1金型と第2金型との短絡による成形工程の中断や短絡防止のための構成が不要でありFRP製品を効率的に成型することができる。
以下、本発明に係る成型装置の一実施形態について図面を参照しながら説明する。図1は、本発明に係るFRP製品の成型方法および製造方法に用いる成型装置100の主要部の構成の概略を2つの金型が開いた状態で模式的に示す断面図である。図2は、成型装置100の作動を制御する制御システムのブロック図である。なお、本明細書において参照する各図は、本発明の理解を容易にするために一部の構成要素を誇張して表わすなど模式的に表している。このため、各構成要素間の寸法や比率などは異なっていることがある。
この成型装置100は、繊維シートFSの内側に熱可塑性樹脂材からなる充填材FMを配置した被成型材料を加熱しながら圧縮成型することによりFRP(繊維強化樹脂)製のFRP製品PRを製造する加工機である。この場合、FRP製品PRとしては、二輪または四輪の自動車両、船舶および航空機や、これらの乗り物の駆動源となる原動機をそれぞれ構成する各種部品が相当する。
(成型装置100の構成)
成型装置100は、一対の第1金型110および第2金型120を備えている。第1金型110は、第2金型120と協働してFRP製品PRの成型加工を行う鋼製の型であり、第1成型部111、第1羽根成形部112、柱状嵌合部113、第1外周部114および第1空洞部115をそれぞれ備えて構成されている。
成型装置100は、一対の第1金型110および第2金型120を備えている。第1金型110は、第2金型120と協働してFRP製品PRの成型加工を行う鋼製の型であり、第1成型部111、第1羽根成形部112、柱状嵌合部113、第1外周部114および第1空洞部115をそれぞれ備えて構成されている。
第1成型部111は、被成型材料に熱および圧縮力を加えてFRP製品PRの表面の一部を成型加工する部分であり、FRP製品PRの表面の一部の形状に対応する3次元形状、すなわち、同表面の一部の3次元形状を反転させた3次元形状に形成されている。この場合、第1成型部111の肉厚は、FRP製品PRの成型加工に必要な熱条件および圧力条件を確保できる範囲で必要最小限の厚さに形成されている。本実施形態において第1成型部111は、FRP製品PRにおける図示下側表面の凸形状に対応して図示上側に対して凹状に凹んだ形状に形成されている。また、第1成型部111の肉厚は、本実施形態においては、約20mmに形成されている。
第1羽根成形部112は、被成型材料に熱および圧縮力を加えてFRP製品PRの周縁部に形成される羽根部Wの表面の一部を成型加工する部分であり、羽根部Wの表面の一部の形状に対応する3次元形状、すなわち、同表面の一部の3次元形状を反転させた3次元形状に形成されている。本実施形態において第1羽根成型部112は、羽根部Wにおける図示下側表面の凸形状に対応して図示上側に対して凹状に凹んだ形状に形成されている。また、第1羽根成型部112の肉厚は、FRP製品PRにおける羽根部Wの成型加工に必要な熱条件および圧力条件を確保できる範囲で必要最小限の厚さに形成されている。
ここで、羽根部Wとは、FRP製品PRの外周部にフランジ状に張り出して形成される平板リング状の部分であり、第1成型部111側に配置される繊維シートFSと第2成型部121側に配置される繊維シートFSとを貼り合わせる部分であるとともに、後述する充填材FMの漏出を防止するための部分である。この羽根部Wは、FRP製品PRの形状の一部を構成する場合や、FRP製品PRの成型後に除去されてFRP製品PRの形状の一部を構成しない場合がある。
第1羽根成型部112の外側は、環状に落ち込んで柱状嵌合部113が形成されている。柱状嵌合部113は、後述する筒状嵌合部123と嵌合して柱状嵌合部113よりも内側部分、すなわち、第1成型部111、第1羽根成型部112、第2成型部121および第2羽根成型部122によって形成されるキャビティCv内を密閉するための円柱状の部分である。この柱状嵌合部113の外径は、キャビティCv内の密閉性を確保しつつ筒状嵌合部123の抜き差しが可能なように、筒状嵌合部123の内径に対して僅かな隙間を介したすきま嵌めの寸法公差で形成されている。
第1外周部114は、第1成型部111、第1羽根成型部112および柱状嵌合部113をそれぞれ支持しつつ後述する第1空洞部115を形成する部分であり、柱状嵌合部113の外側の周囲に円筒状に形成されている。したがって、第1外周部114は、第1金型110が第2金型120からの押圧力を受ける際に、第1成型部111および第1羽根成型部112の各変形を抑えることができる肉厚で形成されている。本実施形態においては、第1金型110の第1外周部114の肉厚が約150mmに形成されている。
この第1外周部114の図示上面は、第1羽根成型部112に対して柱状嵌合部113を介して落ち込んで形成されており、第2金型120における第2外周部124に対向する第2金型120との分割面を構成している。また、第1外周部114における図示下端部は、環状に突出して第1空洞部115を形成するとともに、内部に排水孔114aが形成されている。
排水孔114aは、第1空洞部115内に溜まった冷却水を第1金型110の外部に排水するための管状に延びる貫通孔状の流路であり、一方の端部が第1空洞部115に連通するとともに、他方の端部が第1金型110の第1外周部114に開口して形成されている。この排水孔114aは、第1金型110の第1外周部114に開口する他方の端部が図示しない排水管に接続されている。
第1空洞部115は、第1成型部111および第1羽根成型部112の各反対側に形成されて、第1成型部111および第1羽根成型部112の各肉厚を規定するとともに第1成型部111および第1羽根成型部112の各裏側面に冷却水を供給するための空間である。この第1空洞部115は、第1成型部111および第1羽根成型部112の各凹形状に沿った形状に形成されるとともに第1外周部114に囲まれることによって凹形状に窪んだ形状に形成されている。
第1金型110の図示下面には、第1空洞部115を覆う状態で第1受け板116が設けられている。第1受け板116は、第2金型120からの押圧力を受ける第1金型110を背面から支持するための鋼製の板部材であり、第1金型110における図示下面に図示しないボルトを介して固定的に取り付けられている。この場合、第1受け板116は、第1金型110に形成された第1空洞部115を液密的に塞いだ状態で取り付けられる。この第1受け板116の内部には、給水管117が設けられている。
給水管117は、第1空洞部115内の第1成型部111および第1羽根成型部112の各裏側面に冷却水を供給するために部品であり、鋼管によって構成されている。この給水管117は、一方の端部が第1受け板116を貫通して給水ポンプ131に接続されているとともに、他方の端部側が複数(本実施形態においては、9つ)に分岐して第1成型部111の裏側面に対向して開口している。
第1受け板116が一体的に組み付けられた第1金型110は、断熱絶縁ベース118を介して第1取付板119に図示しないボルトを介して取り付けられている。断熱絶縁ベース118は、第1受け板116と第1取付板119との間で断熱および電気的な絶縁を行うための板状部材である。本実施形態においては、断熱絶縁ベース118は、ガラス繊維をリン酸塩をバインダーとして固めたものを第1受け板116に対応する形状の板状体に形成して構成されている。
第1取付板119は、第1金型110を成型装置100における図示しない固定盤に取り付けるための鋼製の板状体である。すなわち、第1金型110は、成型装置100に固定的に設けられた固定盤上に取り付けられた所謂下型(固定型)である。
第2金型120は、第1金型110と協働してFRP製品PRの成型加工を行う鋼製の型であり、第2成型部121、第2羽根成形部122、筒状嵌合部123、第2外周部124および第2空洞部125をそれぞれ備えて構成されている。
第2成型部121は、前記第1成型部111と同様に、被成型材料に熱および圧縮力を加えてFRP製品PRの表面の他の一部を成型加工する部分であり、FRP製品PRの表面の他の一部の形状に対応する3次元形状、すなわち、同表面の他の一部の3次元形状を反転させた3次元形状に形成されている。この場合、第2成型部121の肉厚は、FRP製品PRの成型加工に必要な熱条件および圧力条件を確保できる範囲で必要最小限の厚さに形成されている。本実施形態において第2成型部121は、FRP製品PRにおける図示上側表面の凸形状に対応して図示下側に対して凹状に凹んだ形状に形成されている。また、第2成型部121の肉厚は、本実施形態においては、約20mmに形成されている。
第2羽根成形部122は、前記第1羽根成型部112と同様に、被成型材料に熱および圧縮力を加えて前記羽根部Wの表面の他の一部を成型加工する部分であり、羽根部Wの表面の他の一部の形状に対応する3次元形状、すなわち、同表面の他の一部の3次元形状を反転させた3次元形状に形成されている。本実施形態において第2羽根成型部122は、羽根部Wにおける図示上側表面の凸形状に対応して図示下側に対して凹状に凹んだ形状に形成されている。また、第2羽根成型部122の肉厚は、FRP製品PRにおける羽根部Wの成型加工に必要な熱条件および圧力条件を確保できる範囲で必要最小限の厚さに形成されている。
第2羽根成型部122の外側は、環状に張り出して筒状嵌合部123が形成されている。筒状嵌合部123は、前記柱状嵌合部113と嵌合して筒状嵌合部123よりも内側部分、すなわち、キャビティCv内を密閉するための円筒状の部分である。この筒状嵌合部123の内径は、キャビティCv内の密閉性を確保しつつ柱状嵌合部113の抜き差しが可能なように、柱状嵌合部113の内径に対して僅かな隙間を介したすきま嵌めの寸法公差で形成されている。
第2外周部124は、前記第1外周部114と同様に、第2成型部121、第2羽根成型部122および筒状嵌合部123をそれぞれ支持しつつ後述する第2空洞部125を形成する部分であり、筒状嵌合部123の外側の周囲に円筒状に形成されている。したがって、第2外周部124は、第2金型120が第1金型110からの反力を受ける際に、第2成型部121および第2羽根成型部122の各変形を抑えることができる肉厚で形成されている。本実施形態においては、第2金型120の第1外周部123の肉厚が約150mmに形成されている。
この第2外周部124の図示下面は、第2羽根成型部122に対して筒状嵌合部123を介して張り出して形成されており、第1金型110における第1外周部114に対向する第1金型110との分割面を構成している。また、第2外周部124における図示上端部は、環状に突出して第2空洞部125を形成するとともに、内部に排水孔124aおよび吸気孔124bがそれぞれ形成されている。
排水孔124aは、前記排水孔114aと同様に、第2空洞部125内に溜まった冷却水を第2金型120の外部に排水するための管状に延びる貫通孔状の流路であり、一方の端部が第2空洞部125に連通するとともに、他方の端部が第2金型120の第2外周部124に開口して形成されている。この排水孔124aは、第2金型120の第2外周部124に開口する他方の端部が図示しない排水管に接続されている。
吸気孔124bは、第1金型110と第2金型120とを閉じてFRP製品PRを成型する際にキャビティCv内の空気を吸引するための貫通孔であり、一方(図示左側)の端部がキャビティCv側である筒状嵌合部123の壁面に開口するとともに他方(図示右側)の端部がバキューム装置132に連結されている。この場合、吸気孔124bは、第1金型110と第2金型120とが完全に閉じられた際に筒状嵌合部123の壁面に開口する部分が柱状嵌合部113の壁面で覆われる位置に形成されている。
第2空洞部125は、前記第1空洞部115と同様に、第2成型部121および第2羽根成型部122の各反対側に形成されて、第2成型部121および第2羽根成型部122の各肉厚を規定するとともに第2成型部121および第2羽根成型部122の各裏側面に冷却水を供給するための空間である。この第2空洞部125は、第2成型部121および第2羽根成型部122の各凹形状に沿った形状に形成されるとともに第2外周部124に囲まれることによって凹形状に窪んだ形状に形成されている。
第2金型120の図示上面には、第2空洞部125を覆う状態で第2受け板126が設けられている。第2受け板126は、前記第1受け板116と同様に、第2金型120からの反力を受ける第2金型120を背面から支持するための鋼製の板部材であり、第2金型120における図示上面に図示しないボルトを介して固定的に取り付けられている。この場合、第2受け板126は、第2金型120に形成された第2空洞部125を液密的に塞いだ状態で取り付けられる。この第2受け板126の内部には、給水管127が設けられている。
給水管127は、前記給水管117と同様に、第2空洞部125内の第2成型部121および第2羽根成型部122の各裏側面に冷却水を供給するために部品であり、鋼管によって構成されている。この給水管127は、一方の端部が第2受け板126を貫通して給水ポンプ131に接続されているとともに、他方の端部側が複数(本実施形態においては、9つ)に分岐して第2成型部121の裏側面に対向して開口している。
第2受け板126が一体的に組み付けられた第2金型120は、断熱絶縁ベース128を介して第2取付板129に図示しないボルトを介して取り付けられている。断熱絶縁ベース128は、前記断熱絶縁ベース118と同様に、第2受け板126と第2取付板129との間で断熱および電気的な絶縁を行うための板状部材である。本実施形態においては、断熱絶縁ベース128は、ガラス繊維をリン酸塩をバインダーとして固めたものを第2受け板126に対応する形状の板状体に形成して構成されている。
第2取付板129は、前記第1取付板119と同様に、第2金型120を成型装置100における図示しない可動盤に取り付けるための鋼製の板状体である。すなわち、第2金型120は、成型装置100に図示上下方向に沿って可動的に設けられた可動盤上に取り付けられた所謂上型(可動型)である。可動盤は、金型駆動装置133によって駆動される。
給水ポンプ131は、前記給水管117,127を介して第1空洞部115内および第2空洞部125内における第1成型部111、第1羽根成型部112、第2成型部121および第2羽根成型部122の各裏面にそれぞれ冷却水を供給するための機械装置であり、後述する制御装置140に作動が制御される。また、バキューム装置132は、吸気孔124bを介してキャビティCv内の空気を吸引するための機械装置であり、制御装置140に作動が制御される。さらに、金型駆動装置133は、前記第2金型120を保持する可動盤(図示せず)を第1金型110に対して近接または離隔させる方向に変位させるための電動式の駆動装置である。なお、金型駆動装置133は、電動式以外、例えば、油圧式などであっても良いことは当然である。
また、成型装置100は、第1金型110および第2金型120に給電するための入力電極134および金型間通電電極135をそれぞれ備えている。入力電極134は、第1金型110と第2金型120とに電流を流すための電極であり、主として第1電極134a、第2電極134bおよび絶縁支持体134cによって構成されている。
第1電極134aは、第1金型110に対して給電するための銅製の部品であり、第1外周部114の図示上面に接触させることができる大きさの方形板状に形成されている。この第1電極134aは、絶縁支持体134cの図示下面に取り付けられている。第2電極134bは、第2金型110に対して給電するための銅製の部品であり、第2外周部124の図示下面に接触させることができる大きさの方形板状に形成されている。この第2電極134bは、絶縁支持体134cの図示上面に取り付けられている。
絶縁支持体134cは、第1電極134aおよび第2電極134bをそれぞれ第1金型110および第2金型120に対向させた状態でかつ互いに電気的に接続されていない絶縁された状態で支持する部品である。この絶縁支持体134cは、セラミックや樹脂などの絶縁体をブロック状(例えば、直方体状や立方体状)に形成して構成されている。この入力電極134は、第1金型110と第2金型120とが直接的かつ被成型材料などを介して間接的に電気的に接続されない最小の間隔を介して互いに近接した位置に位置した状態で第1金型110および第2金型120に第1電極134aおよび第2電極134bがそれぞれ電気的に接続可能に接触する厚さで形成されている。
金型間通電電極135は、第1金型110と第2金型120とを電気的に接続するための銅製の部品であり、第1外周部114の図示上面および第2外周部124の図示下面にそれぞれ電気的に接触可能なブロック状(例えば、直方体状や立方体状)に形成されている。この場合、金型間通電電極135は、前記入力電極134と同様に、第1金型110と第2金型120とが直接的かつ被成型材料などを介して間接的に電気的に接続されない最小の間隔を介して互いに近接した位置に位置した状態で第1金型110および第2金型120にそれぞれ電気的に接続可能に接触する厚さで形成されている。また、金型間通電電極135は、入力電極134に対して第1成型部111および第2成型部121を介して対向した位置に設けられる。
これらの入力電極134および金型通電電極135は、第1金型110および第2金型120の近傍に電極配置装置136によってそれぞれ支持されている。電極配置装置136は、入力電極134および金型通電電極135を第1金型110および第2金型120との間に対して配置または退避させるための機械装置であり、入力電極134および金型通電電極135をそれぞれ可動的に支持する油圧または空気圧のシリンダで構成されている。この電極配置装置136は、制御装置140によって作動が制御される。
また、入力電極133には、給電装置137が接続されている。給電装置137は、第1金型110と第2金型120とに流す電流を供給するための電源装置である。この給電装置137は、制御装置140に制御されて入出力電極134を介して第1金型110および第2金型120に対して交流電流を供給する。したがって、給電装置137は、図示しない高周波インバータや整合トランスなどを備えている。本実施形態においては、給電装置137は、電力が100kWで周波数が50kHzの交流電流を入出力電極134に出力可能に構成されている。なお。この給電装置137が出力する交流電流は、被成型材料WKの成型加工条件に応じて適宜設定されるものであることは当然である。
成型装置100は、制御装置140を備えている。制御装置140は、CPU、ROM、RAMなどからなるマイクロコンピュータによって構成されており、操作パネル141を介した作業者からの指示に従って、ROMなどの記憶装置に予め記憶された制御プログラムを実行することにより、成型装置100の各種作動を制御する。具体的には、この制御装置140は、主として、給水ポンプ131、バキューム装置132、金型駆動装置133、電極配置装置136および給電装置137の各作動をそれぞれ制御する。
操作パネル141は、成型装置100の作動を制御する制御装置140に指示を与える入力装置を備えるとともに、成型装置100(制御装置140)からの情報を表示するため表示装置を備えたユーザインターフェースである。また、この成型装置100には、成型した製品PRを第1金型110から取り出すためのエジェクタピン(図示せず)など備えているが、これらに関しては本発明に直接関わらないため、その説明は省略する。
(成型装置100の作動)
次に、このように構成した成型装置100を用いたFRP製品PRの成型方法および製造方法の過程について図3に示すフローチャート参照しながら説明する。まず、作業者は、第1工程として、FRP製品PRの原料となる被成型材料を用意する。具体的には、作業者は、繊維シートFS、樹脂シートPCおよび充填材FMをそれぞれ用意する。この場合、繊維シートFSは、ガラス繊維、炭素繊維または金属繊維などの繊維を複数集めてシート状に成形したものである。また、熱樹脂シートPSは、熱可塑性樹脂材(例えば、ポリエチレン樹脂)をフィルム状やシート状に成形したものである。また、充填材FMは、固形体であるペレット状や粘性を有する粘土状の熱可塑性樹脂材(例えば、ポリエチレン樹脂)を単体でまたはこの熱可塑性樹脂材にガラス繊維、炭素繊維または金属繊維などの繊維を混ぜたものである。
次に、このように構成した成型装置100を用いたFRP製品PRの成型方法および製造方法の過程について図3に示すフローチャート参照しながら説明する。まず、作業者は、第1工程として、FRP製品PRの原料となる被成型材料を用意する。具体的には、作業者は、繊維シートFS、樹脂シートPCおよび充填材FMをそれぞれ用意する。この場合、繊維シートFSは、ガラス繊維、炭素繊維または金属繊維などの繊維を複数集めてシート状に成形したものである。また、熱樹脂シートPSは、熱可塑性樹脂材(例えば、ポリエチレン樹脂)をフィルム状やシート状に成形したものである。また、充填材FMは、固形体であるペレット状や粘性を有する粘土状の熱可塑性樹脂材(例えば、ポリエチレン樹脂)を単体でまたはこの熱可塑性樹脂材にガラス繊維、炭素繊維または金属繊維などの繊維を混ぜたものである。
本実施形態においては、作業者は、繊維シートFSとして2枚の炭素繊維シートを用意し、樹脂シートPSとして2枚のポリエチレン製の樹脂シートを用意し、充填材FMとしてポリエチレン樹脂材に炭素繊維を混ぜて混練機で練った粘土状の樹脂材、所謂長繊維強化樹脂材の塊を用意する。この場合、作業者は、充填材FMについてこの充填材FMを構成する樹脂材が溶融した場合における体積がキャビティCvの容積以上(厳密には、キャビティCv内に配置される繊維シートFSや樹脂シートPSの体積を除いた容積)となる量で用意する。また、この場合、繊維シートFSは第1羽根成型部112および第2羽根成型部122の外側にはみ出る大きさに形成されるとともに、樹脂シートPsは第1羽根成型部112内および第2羽根成型部122内にそれぞれ収まる大きさに形成される。
次に、作業者は、第2工程として、被成型材料を第1金型110上に配置する。本実施形態においては、作業者は、第1金型110上に繊維シートFS、樹脂シートPSおよび充填材FMをそれぞれ配置する。具体的には、作業者は、図1に示すように、成型装置100の操作パネル141を操作して成型装置100の電源をONした後、操作パネル141を操作して第2金型120を第1金型110に対して離隔させて金型を開く。
次いで、作業者は、第1金型110における第1成型部111上および第1羽根成型部112上に1枚の繊維シートFSを配置した後、この1枚の繊維シートFS上に1枚の樹脂シートを配置する。次いで、作業者は、第1成型部111上および第1羽根成型部112上の樹脂シートPS上に充填材FMを配置する。次いで、作業者は、第1成型部111上および第1羽根成型部112上の充填材FM上に1枚の樹脂シートPSを配置した後、この1枚の樹脂シートPS上に1枚の繊維シートFSを配置する。
この第2工程における繊維シートFSおよび樹脂シートPSをそれぞれ第1金型110上に配置する工程が、本発明に係る繊維シート配置工程に相当する。また、この第2工程における充填材FMを第1金型110上に配置する工程が、本発明に係る充填材配置工程に相当する。すなわち、本実施形態においては、充填材配置工程の前後にそれぞれ繊維シート配置工程を実行している。
次に、作業者は、第3工程として、入力電極134および金型間通電電極135の配置を行う。具体的には、作業者は、図4に示すように、操作パネル141を操作して制御装置140に対して入力電極134および金型間通電電極135の配置を指示する。この指示に応答して、制御装置140は、電極配置装置136の作動を制御して入力電極134および金型間通電電極135をそれぞれ第2金型120における第2外周部124上に配置した後、金型駆動装置133の作動を制御して第2金型120を第1金型110側に変位させて第1金型110に近接配置して入力電極134および金型間通電電極135を第1金型110と第2金型120とで挟む。これにより、第1金型110と第2金型120とは、金型間通電電極135のみを介して互いに電気的に接続された状態となる。
次に、作業者は、第4工程として、第1金型110および第2金型120にそれぞれ通電させる。具体的には、作業者は、操作パネル141を操作して制御装置140に対して第1金型110および第2金型120への通電を指示する。この指示に応答して、制御装置140は、給電装置137を作動制御して入力電極134を介して第1金型110および第2金型120に対して通電を開始する。これにより、給電装置136から出力された電流は、第1電極134a(または第2電極134b)を介して第1金型110(または第2金型120)内に供給された後、金型間通電電極135を介して第2金型120(または第1金型110)内を流れて第2電極134b(または第1電極134a)を介して給電装置136に戻る。
この場合、第1金型110および第2金型120は、第1空洞部115および第2空洞部125によって主として第1成型部111、第1羽根部成型部112、第2成型部121および第2羽根成型部122に高周波電流が流れる。これにより、第1成型部111、第1羽根部成型部112、第2成型部121および第2羽根成型部122は、通電によって発熱を開始して熱可塑性樹脂材の融点以上まで加熱されることによって充填材FMおよび樹脂シートPSを溶融させる。この場合、制御装置140は、第1金型110および第2金型120の温度を熱可塑性樹脂材の融点以上(例えば、400°程度)に維持するように通電量を制御する。この第3工程における充填材FMを溶融させる工程が、本発明に係る通電加熱工程に相当する。
次に、作業者は、第5工程として、FRP製品PRの成型加工を行う。具体的には、作業者は、操作パネル141を操作して制御装置140に対してFRP製品PRの成型加工を指示する。この指示に応答して、制御装置140は、給電装置137の作動を制御して第1金型110および第2金型120への通電を停止させた後、金型駆動装置133の作動を制御して第2金型120を第1金型110に対して僅かに離隔させた状態で電極配置装置136の作動を制御して入力電極134および金型間通電電極135を第1金型110と第2金型120との間から撤去する。この場合、制御装置140は、第1金型110および第2金型120の間に配置した充填材FMが完全に溶融した状態(当初の粘度を有する部分が残っていない状態)で通電を停止させてもよいが、充填材FMが完全に溶融しない状態(当初の粘度を有する部分が一部に残っている状態)で通電を停止するとよい。
次いで、制御装置140は、図5に示すように、金型間通電電極135を第1金型110と第2金型120との間から撤去した後、金型駆動装置133の作動を制御して第2金型120を第1金型110に押し付けて金型を閉じる。この場合、制御装置140は、バキューム装置132の作動を制御してキャビティCV内の空気を吸引しながら金型を閉じる。これにより、第1金型110および第2金型120の間に配置した充填材FMおよび樹脂シートPSは、第1金型110および第2金型120の余熱によって完全に溶融(全体が当初の粘度よりも低くなっている状態)してキャビティCv内を流動可能となる。この場合、充填材FMは、キャビティCvの容量よりも大きな体積である充填されているため、パスカルの原理によってキャビティCv内の圧力が均一となる。
これにより、溶融した熱可塑性樹脂は、その一部が繊維シートFS全体を均等な圧力で第1成型部111、第1羽根成型部112、第2成型部121および第2羽根成型部122側に押圧するとともに、他の一部が繊維シートFSの繊維間に進入する。したがって、キャビティCv内の繊維シートFSは、第1成型部111、第1羽根成型部112、第2成型部121および第2羽根成型部122の各形状に沿った形状に変形、すなわち、賦形される。この場合、キャビティCv内で溶融した熱可塑性樹脂は、第1羽根成型部112、第2羽根成型部122、柱状嵌合部113および筒状嵌合部123によってキャビティCv内からの漏出が防止される。
また、この場合、第2金型120を閉じる過程でキャビティCv内の空気を吸引しているため、繊維シートFS、および溶融した熱可塑性樹脂の各内部に気泡を生じさせることを防止することができる(図4破線矢印参照)。また、第1羽根成型部112および第2羽根成型部122よりも外側に延びた繊維シートFSは、柱状嵌合部113と筒状嵌合部123との嵌合によって切断されて第1外周部115と第2外周部125との隙間を介してキャビティCv内から除去される。
次いで、制御装置140は、溶融した熱可塑性樹脂の一部が繊維シートFS内に含浸するために必要な時間の経過後、給水ポンプ131の作動を制御して給水管117,127を介して第1成型部111、第1羽根成型部112、第2成型部121および第2羽根成型部122の各裏面に給水して常温程度まで冷却する(図5破線矢印参照)。これにより、キャビティCv内の繊維シートFS、およびそれぞれ溶融した充填材FMおよび樹脂シートPSからなる被成型材料は急激に固化してFRP製品PRが成型される。すなわち、この第5工程におけるFRP製品PRの成型加工を行う工程が、本発明に係る成型工程に相当する。次いで、制御装置140は、給水ポンプ131の作動を制御して第1成型部111、第1羽根成型部112、第2成型部121および第2羽根成型部122の各裏面への給水を停止させた後、金型駆動装置133の作動を制御して第2金型120を第1金型110から離隔させて金型を開く。
次に、作業者は、第6工程として、FRP製品PRの取り出し作業を行う。具体的には、作業者は、操作パネル141を操作することにより、制御装置140に対して第1金型110に設けられた図示しないエジェクタピンの駆動を指示する。この指示に応答して、制御装置140は、第1金型110に設けられたエジェクタピンが駆動する。これにより、第1成型部111に密着した製品PRがエジェクタピンによって押し出されるため、作業者は同押し出されたFRP製品PRを第1金型110から取り出すことができる。この場合、作業者は、FRP製品PRにおける羽根部Wiを必要に応じて切削加工などを用いて除去してFRP製品PRを完成させることができる。なお、前記第2工程からこの第6工程までは、概ね20分以内に完了することができる。
次いで、作業者は、FRP製品PRの製造を続けて行なう場合には、再度、第1金型110への被成型材料の配置工程から作業を開始する。一方、FRP製品PRの製造を終了する場合には、作業者は、操作パネル141を操作して成型装置100の電源をOFFにする。これにより、作業者は、成型装置100によるFRP製品PRの製造作業を終了することができる。
上記作動説明からも理解できるように、上記実施形態によれば、このFRP製品PRの成型方法は、溶融状態にある熱可塑性樹脂に対して第1成型部111および第2成型部121を介して圧力を加えて第1成型部111と第2成型部121との間の成型領域であるキャビティCv内の圧力をパスカルの原理によって均等にしているため、FRP製品PRにおける各部を均等な圧力で成形することができる。このため、本発明に係るFRP製品の成型方法によれば、FRP製品PRを構成する各部のうち一対の第1金型110および第2金型120の開閉方向に沿って延びる壁部Wa1,Wa2の剛性を向上させることができるとともに、充填材FMと繊維シートFSとの間に隙間が生じることも防止して、高強度なFRP製品PRを成型することができる。
さらに、本発明の実施にあたっては、上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。なお、下記各変形例を示す図6~8においては、上記実施形態における成型装置100の構成部分に対応する部分に同じ符号を付して、これらの説明は適宜省略する。
例えば、上記実施形態においては、第1金型110上に被成型材料として、繊維シートFS、樹脂シートPSおよび充填材FMをそれぞれ配置した。しかし、被成型材料は、少なくとも1枚の繊維シートFSおよび充填材FMで構成することができる。したがって、本発明においては、例えば、図6に示すように、第1金型110における第1成型部111上に充填材FMを配置するとともにこの充填材FM上に1枚または複数枚以上の繊維シートFSを配置してFRP製品PRを成型することもできる。この場合、成型されるFRP製品PRは、第1成型部111側の部分が充填材FMで構成されるとともに第2成型部121側の部分が繊維シートFSで構成される。
また、本発明においては、充填材FMを繊維シートFSで挟んで成型する場合においても、1枚の繊維シートFSを折って充填材FMを挟むことができるとともに、充填材FMに対して両側に複数枚ずつの繊維シートFSを配置することで充填材FMを挟んでFRP製品PRを成型することもできる。また、本発明においては、繊維シートFSに対して複数枚の樹脂シートPSを連続してまたは複数の繊維シートFSと複数の樹脂シートPSとを交互に隣接配置してFRP製品PRを成型することができるとともに、図6に示すように樹脂シートPSを省略してFRP製品PRを成型することもできる。なお、繊維シートPSとしては、繊維シートPSに熱可塑性樹脂を予め含浸させた所謂プリプレグを用いることもできる。
また、上記実施形態においては、第1金型110および第2金型120に通電して加熱する際に第2金型120を樹脂シートFSに接触させない位置まで第1金型110に近接させて配置した。しかし、第2金型120は、繊維シートFSを押し付ける位置まで第1金型110に近接配置することもできる。具体的には、例えば、図7に示すように、作業者は、第1金型110における第1成型部111および第1羽根成型部112上に配置した最上部(第2金型120に対向する)の繊維シートFS上に絶縁シート150を被せた後、第2金型120を第1金型110側に近接配置する。
この場合、成型装置100は、第2金型120を第1金型110上の被成型材料を絶縁シート150を介して押し付けて圧縮させることができるため、より第1金型110に近接配置することができ充填材FMや樹脂シートPSをより効率よく加熱することができる。そして、作業者は、所定時間充填材FMを加熱した後、第2金型120を第1金型110から離隔させて絶縁シート150を撤去するとともに、絶縁シート150の撤去後直ちに第2金型120を第1金型110に変位させて金型を閉じることによりFRP製品PRを成型する。これにより、成型装置100は、効率的にFRP製品PRを成型することができる。なお、絶縁シート150としては、樹脂材、ゴム材またはガラス材などで構成することができる。また、絶縁シート150は、充填材FMや樹脂シートPSに接触させない状態で配置、例えば、最上部(第2金型120(可動側の金型)に面する)の繊維シートFS上に配置すると撤去し易い。
また、上記実施形態においては、充填材FMを粘性のある半固体状で第1金型110上に配置するように構成した。しかし、本発明は、充填材FMをペレットなどの固体状の熱可塑性樹脂で構成して第1金型110上に配置することができるほか、充填材FMを液体状などの流動性のある状態(つまり、加熱した状態)でキャビティCv内に供給してFRP製品PRを成型することもできる。すなわち、成型装置100は、射出成型機としても実施できるものである。
具体的には、例えば、図8に示すように、射出成型機としての成型装置100は、第1金型110の中央部に流動性を有する充填材FMの流路を構成するスプル160が形成されている。このような成型装置100によれば、充填材FMの注入の前に第1金型110および第2金型120を予熱しておくことにより、射出成型時の成型不良である所謂ウエルド不良や所謂ヒケ不良を効果的に防止できる。また、ポリエーテルエーテルケトン樹脂のような高融点材料を精度良く射出成型加工することもできる。なお、図8に示した射出成型機としての成型装置100は、第1金型110が図示しない可動盤上に取り付けられた可動型で構成されるとともに、第2金型120が図示しない固定盤上に取り付けられた固定型で構成されており、この固定された第2金型120に対して第1金型110が近接または離隔する方向に変位する。
また、このような射出成型機で構成された成型装置100においては、充填材FMとして熱可塑性樹脂の他に、熱硬化性樹脂、例えば、フェノール樹脂、メラミン樹脂、ユリア樹脂、ポリウレタン樹脂、エポキシ樹脂または不飽和ポリエステル樹脂を用いることもできる。また、これらの熱可塑性樹脂や熱硬化性樹脂に炭素繊維、ガラス繊維、金属繊維、金属粉末または各種鉱物粉末を混ぜ合わせたものを用いて射出成型することができる。
なお、射出成型機で構成された成型装置100においては、例えば、以下の工程1~6によってFRP製品PRを成型加工することができる。すなわち、
工程1:第1金型110上に繊維シートFSを配置する工程
工程2:第1金型110および第2金型120に通電して加熱する予備加熱工程
工程3:第1金型110と第2金型120とを密着させる型締め工程
工程4:溶融した樹脂で構成される充填材FMをスプル160を介してキャビティCv内に注入する注入工程
工程5:第1金型110および第2金型120に冷却水を供給して冷却する冷却工程
工程6:第1金型110と第2金型120とを離隔させる型開き工程
工程7:エジェクタピンを駆動してFRP製品PRを第1金型110から取り出す取出し工程
工程1:第1金型110上に繊維シートFSを配置する工程
工程2:第1金型110および第2金型120に通電して加熱する予備加熱工程
工程3:第1金型110と第2金型120とを密着させる型締め工程
工程4:溶融した樹脂で構成される充填材FMをスプル160を介してキャビティCv内に注入する注入工程
工程5:第1金型110および第2金型120に冷却水を供給して冷却する冷却工程
工程6:第1金型110と第2金型120とを離隔させる型開き工程
工程7:エジェクタピンを駆動してFRP製品PRを第1金型110から取り出す取出し工程
また、第1金型110および第2金型120に後述する絶縁層170を形成しておくことで、例えば、以下の工程1~6によってFRP製品PRを成型加工することができる。すなわち、
工程1:第1金型110上に繊維シートFSを配置する工程
工程2:第1金型110と第2金型120とを密着させる型締め工程
工程3:第1金型110および第2金型120に通電して加熱する予備加熱工程
工程4:溶融した樹脂で構成される充填材FMをスプル160を介してキャビティCv内に注入する注入工程
工程5:第1金型110および第2金型120に冷却水を供給して冷却する冷却工程
工程6:第1金型110と第2金型120とを離隔させる型開き工程
工程7:エジェクタピンを駆動してFRP製品PRを第1金型110から取り出す取出し工程
工程1:第1金型110上に繊維シートFSを配置する工程
工程2:第1金型110と第2金型120とを密着させる型締め工程
工程3:第1金型110および第2金型120に通電して加熱する予備加熱工程
工程4:溶融した樹脂で構成される充填材FMをスプル160を介してキャビティCv内に注入する注入工程
工程5:第1金型110および第2金型120に冷却水を供給して冷却する冷却工程
工程6:第1金型110と第2金型120とを離隔させる型開き工程
工程7:エジェクタピンを駆動してFRP製品PRを第1金型110から取り出す取出し工程
また、上記実施形態においては、第1金型110と第2金型120とを互いに近接させた状態、すなわち、金型を開いた状態で通電させて充填材FMおよび樹脂シートPSを溶融させるように構成した。しかし、本発明は、第1金型110と第2金型120とを互いに接触させた閉じた状態で通電させて充填材FMおよび樹脂シートPSを溶融させることもできる。この場合、第1金型110および第2金型120における第1金型110と第2金型120とが互いに直接または被成型材料などを介して間接的に接触する部分、具体的には、第1成型部111、第1羽根成型部112、第2成型部121、第2羽根成型部122およびそれらの外側におけるパーティング面に絶縁材料からなる絶縁層170を形成しておく。この場合、絶縁層170としては、樹脂材やセラミック材などの電気を通さない絶縁物質をコーティンング(溶射を含む)や含浸などの加工方法で形成することができる。また、この絶縁層170は、第1金型110側および第2金型120側のうちの少なくとも一方に形成することができる。
そして、成型装置100は、第1金型110および第2金型120に対してそれぞれ給電するための第1電極171および第2電極172を備えるとともに、第1金型110と第2金型120とを絶縁層170以外の箇所で電気的に接続して第1金型110または第2金型120に通電する金型間通電電極173を備えるようにする。これによれば、本発明は、第1金型110と第2金型120とを閉じた状態で通電して加熱することができるため、第1成型部111と第2成型部121との間に配置した熱可塑性樹脂を効率的に加熱して溶融させることができ、結果としてFRP製品を効率的に成型することができる。
また、上記実施形態においては、第1金型110および第2金型120に対して通電することにより第1成型部111および第2成型部121を加熱するように構成した。しかし、第1金型110および第2金型120に対する通電は、第1金型110および第2金型120のうちの少なくとも一方でもよい。例えば、第1金型110にのみ通電した場合、第2金型120は通電により熱せられた第1金型110に近接配置または絶縁体を介した密着配置により間接的に熱することができる。
また、上記実施形態においては、第1成型部111および第2成型部121は、肉厚が約20mmに形成されている。しかし、第1成型部111および第2成型部121の肉厚は、被成型材料やFRP製品PRの種類、形状、大きさ、加工条件によって適宜決定されるものである。
また、上記実施形態においては、給電装置137は、第1金型110および第2金型120に対して交流電流を供給するように構成した。しかし、給電装置136は、第1金型110および第2金型120に対して直流電流を供給するように構成しても良い。また、給電装置137が出力する電気量は、被成型材料やFRP製品PRの種類、大きさまたは成型精度に応じて適宜設定されるものであり、上記実施形態に限定されるものではない。
また、上記実施形態においては、熱可塑性樹脂材としてポリエチレン樹脂を用いた。しかし、熱可塑性樹脂材は、FRP製品PRの仕様に応じて適宜選定されるものであり、他の熱可塑性樹脂であっても良いことは当然である。例えば、ポリプロピレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリメタクリル酸メチル樹脂、アクリロニトリル・ブタジェン・スチレン共重体(所謂ABS樹脂)、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリブチレンテフタレート樹脂、ポリアミド樹脂、ポリエーテルイミド樹脂、ポリエーテルサルフォン樹脂、ポリフェニレンサルファイド樹脂、ポリスルフォン樹脂またはポリエーテルエーテルケトン樹脂などを用いることができる。
PR…FRP製品、Wi…羽根部、Wa1,Wa2…壁部、FS…繊維シート、FM…充填材、Cv…キャビティ、
100…成型装置、
110…第1金型、111…第1成型部、112…第1羽根成型部、113…柱状嵌合部、114…第1外周部、114a…排水孔、115…第1空洞部、116…第1受け板、117…給水管、118…断熱絶縁ベース、119…第1取付板、
120…第2金型、121…第2成型部、122…第2羽根成型部、123…筒状嵌合部、124…第2外周部、124a…排水孔、124b…吸気孔、125…第2空洞部、126…第2受け板、127…給水管、128…断熱絶縁ベース、129…第2取付板、
131…給水ポンプ、132…バキューム装置、133…金型駆動手段、134…入力電極、134a…第1電極、134b…第2電極、134c…絶縁支持体、135…金型間通電電極、136…電極配置装置、137…給電装置、
140…制御装置、141…操作パネル、
150…絶縁シート、
160…スプル、
170…絶縁層、171…第1電極、172…第2電極、173…金型通電電極。
100…成型装置、
110…第1金型、111…第1成型部、112…第1羽根成型部、113…柱状嵌合部、114…第1外周部、114a…排水孔、115…第1空洞部、116…第1受け板、117…給水管、118…断熱絶縁ベース、119…第1取付板、
120…第2金型、121…第2成型部、122…第2羽根成型部、123…筒状嵌合部、124…第2外周部、124a…排水孔、124b…吸気孔、125…第2空洞部、126…第2受け板、127…給水管、128…断熱絶縁ベース、129…第2取付板、
131…給水ポンプ、132…バキューム装置、133…金型駆動手段、134…入力電極、134a…第1電極、134b…第2電極、134c…絶縁支持体、135…金型間通電電極、136…電極配置装置、137…給電装置、
140…制御装置、141…操作パネル、
150…絶縁シート、
160…スプル、
170…絶縁層、171…第1電極、172…第2電極、173…金型通電電極。
Claims (9)
- 繊維強化樹脂を成形したFRP製品の表面の一部に対応する3次元形状に形成された第1成型部を有する第1金型と、
前記FRP製品の表面の他の一部に対応する3次元形状に形成された第2成型部を有して前記第1金型に対向配置される第2金型と、
前記第1金型および前記第2金型のうちの少なくとも一方に電気を流して前記第1成型部および前記第2成型部のうちの少なくとも一方を加熱するための給電手段とを備え、
前記第1成型部と前記第2成型部との間に前記FRP製品の材料を配置して前記FRP製品を成型するFRP製品の成型方法において、
前記第1成型部および前記第2成型部のうちの少なくとも一方に繊維をシート状の集合体とした繊維シートを配置する繊維シート配置工程と、
前記第1成型部と前記第2成型部との間に熱可塑性樹脂材からなる充填材を充填する充填材配置工程と、
前記第1金型および前記第2金型のうちの少なくとも一方に電気を流すことにより前記第1成型部および前記第2成型部のうちの少なくとも一方を加熱して前記充填材を溶融する通電加熱工程と、
前記第1金型と前記第2金型とを閉じて前記第1成型部および前記第2成型部によって前記溶融した充填材に圧力を加えて前記FRP製品に成型する成型工程とを含むことを特徴とするFRP製品の成型方法。 - 請求項1に記載したFRP製品の成型方法において、
前記充填材配置工程は、
前記熱可塑性樹脂に炭素繊維、金属繊維およびガラス繊維のうちの少なくとも1つが含まれていることを特徴とするFRP製品の成型方法。 - 請求項1または請求項2に記載したFRP製品の成型方法において、
前記繊維シート配置工程は、
前記繊維シートに隣接して熱可塑性樹脂製の樹脂シートを配置することを特徴とするFRP製品の成型方法。 - 請求項1ないし請求項3のうちのいずれか1つに記載したFRP製品の成型方法において、
前記繊維シート配置工程は、
前記充填材配置工程によって配置される前記充填材を挟むように前記繊維シートを配置することを特徴とするFRP製品の成型方法。 - 請求項1ないし請求項4のうちのいずれか1つに記載したFRP製品の成型方法において、
前記通電加熱工程は、
前記第1金型と前記第2金型とが電気的に接続されない間隔を介して互いに接近した位置に位置した状態で前記第1金型および前記第2金型のうちの少なくとも一方に電気を流し、
前記成型工程は、
前記通電加熱工程による通電を停止した後、前記第1金型と前記第2金型とを閉じて前記FRP製品に成型することを特徴とするFRP製品の成型方法。 - 請求項1ないし請求項4のうちのいずれか1つに記載したFRP製品の成型方法において、
前記第1金型および前記第2金型は、
前記第1金型および前記第2金型における前記第1成型部および前記第2成型部のうちの少なくとも一方、および前記第1金型および前記第2金型における各パーティング面のうちの少なくとも一方にそれぞれ絶縁層が形成されており、
前記通電加熱工程は、
前記第1金型と前記第2金型とを閉じた状態で前記第1金型および前記第2金型のうちの少なくとも一方に電気を流すことを特徴とするFRP製品の成型方法。 - 請求項1ないし請求項6のうちのいずれか1つに記載したFRP製品の成型方法において、
前記通電加熱工程は、
前記第1金型と前記第2金型との間に同第1金型と同第2金型とを電気的に接続するための金型間通電手段を設けておき、
前記第1金型側または前記第2金型側から前記金型間通電手段を介して前記第2金型側または前記第1金型側に電気を流すことを特徴とするFRP製品の成型方法。 - 請求項1ないし請求項7のうちのいずれか1つに記載したFRP製品の成型方法において、
前記第1金型および前記第2金型は、
前記第1成型部および前記第2成型部の周囲に互いに隙間を介して対向し合う環状の第1羽根成形部および第2羽根成型部をそれぞれ有し、かつ、
前記第1金型および前記第2金型のうちの一方における前記第1羽根成形部または前記第2羽根成型部の周囲に環状に張り出す筒状嵌合部を有するとともに、前記第1金型および前記第2金型のうちの他方における前記第1羽根成形部または前記第2羽根成型部の周囲に前記筒状嵌合部内に嵌合する柱状の柱状嵌合部を有することを特徴とするFRP製品の成型方法。 - 繊維強化樹脂を成形したFRP製品の表面の一部に対応する3次元形状に形成された第1成型部を有する第1金型と、
前記FRP製品の表面の他の一部に対応する3次元形状に形成された第2成型部を有して前記第1金型に対向配置される第2金型と、
前記第1金型および前記第2金型のうちの少なくとも一方に電気を流して前記第1成型部および前記第2成型部のうちの少なくとも一方を加熱するための給電手段とを備え、
前記第1成型部と前記第2成型部との間に前記FRP製品の材料を配置して前記FRP製品を成型するFRP製品の製造方法において、
前記第1成型部および前記第2成型部のうちの少なくとも一方に繊維をシート状の集合体とした繊維シートを配置する繊維シート配置工程と、
前記第1成型部と前記第2成型部との間に熱可塑性樹脂材からなる充填材を充填する充填材配置工程と、
前記第1金型および前記第2金型のうちの少なくとも一方に電気を流すことにより前記第1成型部および前記第2成型部のうちの少なくとも一方を加熱して前記充填材を溶融する通電加熱工程と、
前記第1金型と前記第2金型とを閉じて前記第1成型部および前記第2成型部によって前記溶融した充填材に圧力を加えて前記FRP製品に成型する成型工程とを含むことを特徴とするFRP製品の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015023862A JP2016147377A (ja) | 2015-02-10 | 2015-02-10 | Frp製品の成型方法およびfrp製品の製造方法 |
JP2015-023862 | 2015-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016129566A1 true WO2016129566A1 (ja) | 2016-08-18 |
Family
ID=56615457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/053711 WO2016129566A1 (ja) | 2015-02-10 | 2016-02-08 | Frp製品の成型方法およびfrp製品の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016147377A (ja) |
WO (1) | WO2016129566A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3894197A1 (en) * | 2018-12-11 | 2021-10-20 | General Electric Company | Method for manufacturing a structural component of a blade segment for a rotor blade of a wind turbine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011098514A (ja) * | 2009-11-06 | 2011-05-19 | Mitsubishi Rayon Co Ltd | 金型及び熱可塑性樹脂系繊維強化複合材料成形品の製造方法 |
JP2011224866A (ja) * | 2010-04-20 | 2011-11-10 | Mitsubishi Rayon Co Ltd | 繊維強化熱可塑性樹脂の製造方法、該製造方法により得られた繊維強化熱可塑性樹脂およびこれを用いた成形品 |
JP2012135915A (ja) * | 2010-12-24 | 2012-07-19 | Cap Co Ltd | 成型装置および同成型装置による成型方法 |
JP2013046977A (ja) * | 2011-08-29 | 2013-03-07 | Sanko Gosei Ltd | 賦形成形方法及び繊維強化樹脂成形品 |
JP2014156012A (ja) * | 2013-02-14 | 2014-08-28 | Toray Ind Inc | 熱可塑性樹脂成形体の製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000327839A (ja) * | 1999-05-19 | 2000-11-28 | Seibu Electric & Mach Co Ltd | 生分解性材料組成物,該組成物から成る生分解性材料製容器及びその製造方法 |
-
2015
- 2015-02-10 JP JP2015023862A patent/JP2016147377A/ja active Pending
-
2016
- 2016-02-08 WO PCT/JP2016/053711 patent/WO2016129566A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011098514A (ja) * | 2009-11-06 | 2011-05-19 | Mitsubishi Rayon Co Ltd | 金型及び熱可塑性樹脂系繊維強化複合材料成形品の製造方法 |
JP2011224866A (ja) * | 2010-04-20 | 2011-11-10 | Mitsubishi Rayon Co Ltd | 繊維強化熱可塑性樹脂の製造方法、該製造方法により得られた繊維強化熱可塑性樹脂およびこれを用いた成形品 |
JP2012135915A (ja) * | 2010-12-24 | 2012-07-19 | Cap Co Ltd | 成型装置および同成型装置による成型方法 |
JP2013046977A (ja) * | 2011-08-29 | 2013-03-07 | Sanko Gosei Ltd | 賦形成形方法及び繊維強化樹脂成形品 |
JP2014156012A (ja) * | 2013-02-14 | 2014-08-28 | Toray Ind Inc | 熱可塑性樹脂成形体の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2016147377A (ja) | 2016-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5107417B2 (ja) | 成型装置および同成型装置による成型方法 | |
US8932499B2 (en) | Method for producing an SMC multi-layer component | |
CN105346101A (zh) | 纤维增强热塑性树脂基复合材料层板模压方法及模压装置 | |
WO2017010266A1 (ja) | 成型装置 | |
CN114953511B (zh) | 一种碳纤维增强热塑性复合材料-金属复合构件的快速成型方法与装置 | |
JP6384213B2 (ja) | 複合材料の製造方法、複合材料の製造装置 | |
WO2016129566A1 (ja) | Frp製品の成型方法およびfrp製品の製造方法 | |
JP2019531930A (ja) | 成型方法 | |
JP5703486B2 (ja) | 成型装置および同成型装置による成型方法 | |
US20220395885A1 (en) | Mold, apparatus, and method for producing metal-resin composite | |
CN108422644B (zh) | 用于制造车辆的多部件构件的方法 | |
JP6357984B2 (ja) | 複合材料の成形方法および成形装置 | |
JP2016147377A5 (ja) | ||
CN109843536B (zh) | 树脂成形部件的成形方法及成形系统 | |
JP6846771B2 (ja) | 成形方法および成形装置 | |
CN106182822A (zh) | 具有半封闭或封闭内腔的非金属复合材料产品模具及工艺 | |
JP5995095B2 (ja) | 成形構造体の製造方法 | |
JP2015009522A (ja) | 成形構造体の製造方法 | |
CN202911087U (zh) | 改良的热成型胶料射出机模组装置 | |
CN111086239B (zh) | 复合材料工字梁的成型方法及成型模具 | |
IT201600105326A1 (it) | Metodo ed apparato per produrre un corpo cavo chiuso in materiale composito | |
CN115071164A (zh) | 一种复合材料增压式预浸料模压成型模具及成型方法 | |
WO2017004458A2 (en) | System and method for producing a vehicle interior component | |
JP2002096355A (ja) | 固定金型及び熱硬化性樹脂のランナレス成形方法 | |
JP2024065964A (ja) | 急速加熱冷却成形用金型 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16749210 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16749210 Country of ref document: EP Kind code of ref document: A1 |