WO2016125884A1 - 担癌哺乳動物モデルの作成方法 - Google Patents

担癌哺乳動物モデルの作成方法 Download PDF

Info

Publication number
WO2016125884A1
WO2016125884A1 PCT/JP2016/053467 JP2016053467W WO2016125884A1 WO 2016125884 A1 WO2016125884 A1 WO 2016125884A1 JP 2016053467 W JP2016053467 W JP 2016053467W WO 2016125884 A1 WO2016125884 A1 WO 2016125884A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
cells
medium
cell
culture
Prior art date
Application number
PCT/JP2016/053467
Other languages
English (en)
French (fr)
Inventor
北原 真樹
泰斗 西野
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2016573430A priority Critical patent/JPWO2016125884A1/ja
Publication of WO2016125884A1 publication Critical patent/WO2016125884A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0271Chimeric vertebrates, e.g. comprising exogenous cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5088Supracellular entities, e.g. tissue, organisms of vertebrates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/12Animals modified by administration of exogenous cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0331Animal model for proliferative diseases

Definitions

  • the present invention relates to a method for producing a cancer-bearing mammal. More specifically, the present invention relates to a method for producing a cancer-bearing mammal, which comprises transferring tumor cells suspended in a specific medium composition to a non-human mammal.
  • the mouse tumor-bearing model has characteristics such as in vivo drug efficacy evaluation of anticancer drugs, cancer cells isolated from cancer tissue, or cancer cells created by genetic manipulation, etc. It is an experimental system in an important position for evaluation.
  • establishment of a new human cancer cell line is performed by subculturing primary cancer cells prepared from patient cancer tissue in a cancer-bearing model.
  • human cells are transplanted into the body of the mouse, so that the transplanted human cancer cells are subjected to mouse immune attack. Therefore, an immunodeficient mouse is used as a host mouse. Nude mice are used as the most common immunodeficient mice.
  • Non-Patent Documents 1 and 6 a cancer-bearing model was created by transplanting monolayer-cultured cancer cells in the presence of Matrigel, but the cancer tissue grew to about 100 mm 3. To administer anticancer drugs.
  • Matrigel is derived from mouse cancer tissue
  • transplantation of human cancer cells in the presence of Matrigel results in a different environment from that in actual human cancer tissue, which is satisfactory from the viewpoint of extrapolation to humans. Not a system.
  • transplanting cancer cells with a low engraftment rate into nude mice without using Matrigel in order to establish cancer-bearing mice that can be used practically for the evaluation of anticancer agents, a larger number of cells per animal and a longer period of time Therefore, there are problems in the accuracy of experimental results and the physical burden on the experimenter.
  • NOD-scid mice For new cancer cells with low immune tolerance or with unknown immunological tolerance, or cancer cells with low growth ability, more severe immunodeficient mice, such as NOD-scid mice, are used to establish tumor-bearing mice. .
  • NOD-scid mice are vulnerable to stress and infection with pathogenic bacteria and require careful attention to breeding, NOD-scid mice are less versatile as a model animal for anticancer drug evaluation.
  • cancer immunotherapy and antitumor immunity drugs have been developed, and therefore, development of a model using normal mice that are not immunodeficient is required.
  • cancer cells used for transplantation for creating a tumor-bearing model have been used after being cultured in a monolayer on a cell adhesion plate and then recovered by enzymatic treatment with trypsin.
  • Matrigel is added to a cell dispersion obtained by enzymatic treatment of cancer tissue with collagenase or the like and used for transplantation.
  • anchorage-dependent growth serves as the backbone of cell growth, and inherently the characteristics of cancer cells based on anchorage-independent growth are changed in the living body.
  • a large amount of cells and long-term breeding may be required for the growth of cancer tissue in vivo. Therefore, the conventional tumor-bearing mouse model is not satisfactory in terms of versatility as a model for anticancer drug evaluation, economic efficiency of experimental research, convenience, and extrapolation to clinical practice.
  • Patent Documents 1 and 2 The present inventors have succeeded in developing a medium composition capable of culturing cells and tissues in an anchorage-independent manner while maintaining a floating state without substantially increasing the viscosity in a liquid medium.
  • the present inventors after substantially culturing cancer cells in a medium composition capable of culturing cells and tissues while maintaining a floating state without substantially increasing the viscosity in the liquid medium, It has been found that the engraftment rate and the growth ability in a living body are improved by transplanting this to a recipient mammal. As a result, it has become possible to produce a cancer-bearing mammal having a large tumor tissue with a small number of cancer cells in a short period of time.
  • cancer cells that do not almost engraft unless transplanted with an extracellular matrix such as Matrigel, and cancer cells that do not form a tumor can be engrafted in vivo even when transplanted in the absence of extracellular matrix by subjecting them to the suspension culture. And the tumor was organized. Furthermore, by culturing in this liquid medium, it is possible to optimize the size of cell aggregates of cancer cells, and damage the cells without subjecting the cell aggregates to enzyme treatment such as trypsin. It was possible to recover the cell aggregate without transplantation, and it was possible to transplant it as a cell aggregate. Based on these findings, further studies were made and the present invention was completed.
  • the present invention is as follows:
  • a method for producing a cancer-bearing non-human mammal comprising the following steps: (1) Suspension culture of cancer cells in a medium composition containing a structure capable of culturing cells or tissues in suspension; and (2) Non-human mammals cancer cells obtained by the culture of (1) Introduce to animals. [2] The method according to [1], further comprising the following steps: (3) Breeding non-human mammals to which cancer cells have been transferred, and forming tumor tissue from the transferred cancer cells. [3] The method of [1] or [2], wherein in (2), the cancer cells suspended in the physiological aqueous composition containing the basement membrane preparation are transferred to a non-human mammal.
  • a screening method for an anticancer agent comprising the following steps: (1) administering a test compound to a cancer-bearing non-human mammal prepared by the method according to any one of [1] to [11]; (2) Measuring the size of the tumor tissue in the cancer-bearing non-human mammal obtained in (1); (3) To compare the size of the tumor tissue measured in (2) with the size of the tumor tissue of a control cancer-bearing non-human mammal not administered with the test compound.
  • a method for promoting engraftment of cancer cells in non-human mammals comprising suspension-culturing cancer cells in a medium composition containing a structure capable of culturing cells or tissues in suspension. .
  • the present invention provides a cancer-bearing mammal model that is excellent in versatility, economy, convenience, and / or clinical extrapolation. According to the present invention, since the engraftment rate and the growth ability in a living body at the time of in vivo transplantation of cancer cells are improved, a cancer-bearing mammal having a tumor tissue can be created in a shorter period of time with a smaller number of cancer cells. Is possible. In addition, cancer cells that hardly engraft unless transplanted with an extracellular matrix such as Matrigel can be engrafted in vivo under the absence of the extracellular matrix to form a tumor. It is.
  • a medium composition capable of culturing cells and tissues while maintaining a floating state without substantially increasing the viscosity in the liquid medium, and a cell aggregate cultured in the medium containing the composition are: Since it is considered to provide a culture environment that approximates the cancer tissue in an actual living body, it can be expected to reproduce a tumor tissue that approximates the actual clinical case. It is also possible to create a cancer-bearing animal model using non-immune-deficient animals. The cancer-bearing mammal model created by the method of the present invention is useful for cancer characteristic evaluation, individual cancer diagnosis, anticancer agent evaluation and the like.
  • the cancer tissue formation by the transplanted HCT116 cell is shown.
  • the vertical axis shows the tumor volume.
  • Attach-2D adhesion culture.
  • Low attach Cultured on non-cell-adhesive plates in deacylated gellan gum-free medium.
  • FP001-3D Suspension culture in a medium containing deacylated gellan gum.
  • Matrigel transplanted in the presence of Matrigel.
  • Medium transplanted in the absence of Matrigel.
  • the cancer tissue formation by the transplanted HCT116 cell is shown.
  • the vertical axis shows the tumor volume.
  • Attach-2D adhesion culture.
  • Low attach Cultured on non-cell-adhesive plates in deacylated gellan gum-free medium.
  • FP001-3D Suspension culture in a medium containing deacylated gellan gum.
  • the cancer tissue formation by the transplanted HCT116 cell is shown.
  • the vertical axis shows the tumor volume.
  • FBS transplanted using FBS-containing medium.
  • - Transplanted using FBS-free medium.
  • Two-dimensional adherent culture.
  • FP001 Suspension culture in a medium containing deacylated gellan gum.
  • the vertical axis shows tumor volume (left panel) and tumor tissue weight (right panel).
  • HCT116 cells suspended in suspension in a medium containing deacylated gellan gum were transplanted in the absence of Matrigel.
  • the vertical axis shows the tumor volume.
  • the vertical axis shows tumor volume (left panel) and tumor tissue weight (right panel).
  • 2D Adhesive culture.
  • FP001 Suspension culture in a medium containing deacylated gellan gum.
  • the vertical axis shows the tumor volume.
  • the vertical axis shows tumor volume (left panel) and tumor tissue weight (right panel). Comparison of cancer tissue formation between spheroid transplantation and single cell transplantation. SKOV3 cells suspended in suspension in a medium containing deacylated gellan gum were transplanted in the absence of Matrigel.
  • the vertical axis shows the tumor volume.
  • the vertical axis shows tumor volume (left panel) and tumor tissue weight (right panel).
  • 2D Adhesive culture.
  • FP3D suspension culture in a medium containing deacylated gellan gum.
  • the vertical axis shows the tumor volume.
  • the present invention relates to a non-cancer-bearing composition comprising suspension culture of cancer cells using a medium composition capable of culturing cells and tissues while maintaining a floating state.
  • a medium composition capable of culturing cells and tissues while maintaining a floating state.
  • the medium composition makes it possible to culture cancer cells to be evaluated and tissues containing the same while maintaining a floating state.
  • the medium composition can be prepared as described in WO2014 / 017513 A1 and US2014 / 0106348 A1.
  • the culture medium composition may be referred to as culture medium composition I.
  • a cell is the most basic unit constituting an animal, and has, as its elements, a cytoplasm and various organelles inside a cell membrane.
  • the cancer cells used in the present invention are mammalian cancer cells.
  • mammals include rodents such as mice, rats, hamsters, and guinea pigs, rabbit eyes such as rabbits, ungulates such as pigs, cows, goats, horses, and sheep, cats such as dogs and cats, and humans Primates such as monkeys, rhesus monkeys, cynomolgus monkeys, marmosets, orangutans and chimpanzees.
  • the mammal is preferably a rodent (such as a mouse) or a primate, more preferably a human.
  • cancer examples include, but are not limited to, stomach cancer, esophageal cancer, colon cancer, colon cancer, rectal cancer, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell cancer, basal cell cancer, Adenocarcinoma, bone marrow cancer, renal cell cancer, ureter cancer, liver cancer, bile duct cancer, cervical cancer, endometrial cancer, testicular cancer, small cell lung cancer, non-small cell lung cancer, bladder cancer, epithelial cancer, craniopharyngeal cancer, Laryngeal cancer, tongue cancer, fibrosarcoma, mucosal sarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, hemangiosarcoma, lymphangiosarcoma, lymphatic endothelial sarcoma, synovial, mesothelioma, Ewing tumor, smooth Myoma, rhabdomyosarcom
  • the cancer cell may be a cancer cell (primary culture) isolated from a cancer tissue collected from a cancer patient with an enzyme or the like, or may be a established cancer cell line.
  • cancer cell lines include, but are not limited to, human breast cancer cell lines HBC-4, BSY-1, BSY-2, MCF-7, MCF-7 / ADR RES, HS578T, MDA- MB-231, MDA-MB-435, MDA-N, BT-549, T47D, HeLa as human cervical cancer cell line, A549 as human lung cancer cell line, EKVX, HOP-62, HOP-92, NCI-H23, NCI-H226, NCI-H322M, NCI-H460, NCI-H522, DMS273, DMS114, Caco-2, COLO-205, HCC-2998, HCT-15, HCT-116, HT-29 as human colon cancer cell lines KM-12, SW-620, WiDr, human prostate cancer cell line DU-145, PC
  • cell lines include, but are not limited to, HEK293 (human embryonic kidney cells), MDCK, MDBK, BHK, C-33A, AE-1, 3D9, Ns0 / 1, NIH3T3, PC12, S2 , Sf9, Sf21, High® Five (registered trademark), Vero, and the like.
  • the floating of cells (or cell aggregates) and / or tissues in the present invention means a state in which cells (or cell aggregates) and / or tissues can contact the bottom surface but do not adhere to the culture vessel (non-adhesion). ). Furthermore, in the present invention, when cells (or cell aggregates) and / or tissues are grown, differentiated or maintained, external pressure or vibration to the liquid medium composition, shaking in the composition, rotation operation, etc. A state in which cells (or cell aggregates) and / or tissues are uniformly dispersed in the liquid medium composition and are in a floating state without being accompanied by “floating standing”. Cultivation) and / or tissue culture is referred to as “floating stationary culture”. In addition, the period that can be floated in “floating standing” includes 5 minutes or more, 1 hour or more, 24 hours or more, 48 hours or more, 7 days or more, etc. It is not limited to.
  • the medium composition used in the present invention is a suspension of cells (or cell aggregates) and / or tissues in at least one point in a temperature range (for example, 0 to 40 ° C.) in which cells and tissues can be maintained and cultured. Is possible.
  • the medium composition used in the present invention is preferably capable of allowing cells (or cell aggregates) and / or tissues to float in suspension at least at one point in the temperature range of 25 to 37 ° C., and most preferably at 37 ° C. .
  • Whether or not the suspension can be suspended is determined by, for example, dispersing the cells to be cultured at a concentration of 2 ⁇ 10 4 cells / ml uniformly in the medium composition to be evaluated and injecting 10 ml into a 15 ml conical tube. By standing at 37 ° C for at least 5 minutes or more (eg, 1 hour or more, 24 hours or more, 48 hours or more, 7 days or more), and observing whether or not the floating state of the cells is maintained Can be evaluated. If more than 70% of all cells are floating, it can be concluded that the floating state was maintained. Instead of cells, polystyrene beads (Size 500-600 ⁇ m, manufactured by Polysciences Inc.) may be substituted for evaluation.
  • the medium composition used in the present invention is a composition containing a structure and a medium in which cells (or cell aggregates) or tissues can be suspended and cultured (preferably capable of floating stationary culture).
  • the medium composition used in the present invention is preferably a composition capable of recovering cells (or cell aggregates) or tissues from the medium composition after replacement of the medium composition at the time of culture and after completion of the culture. More preferably, the composition does not require any temperature change, chemical treatment, enzyme treatment, or shearing force when cells (or cell aggregates) or tissues are collected from the medium composition.
  • the structure in the present invention is formed from a specific compound and exhibits the effect of uniformly floating cells (or cell aggregates) and / or tissues.
  • the structure of the present invention includes the microgel as one embodiment.
  • the film-like structure is mentioned as one aspect
  • the size of the structure in the present invention is preferably one that passes through a filter having a pore diameter of 0.2 ⁇ m to 200 ⁇ m when filtered through a filter.
  • the lower limit of the pore diameter is more preferably more than 1 ⁇ m, and more preferably more than 5 ⁇ m in consideration of stably floating cells (or cell aggregates) or tissues.
  • the upper limit of the pore diameter is more preferably 100 ⁇ m or less, and even more preferably 70 ⁇ m or less considering the size of cells (or cell aggregates) or tissue.
  • the specific compound in the present invention forms an amorphous structure when the specific compound is mixed with a liquid medium, the structure is uniformly dispersed in the liquid, and substantially increases the viscosity of the liquid. It has the effect of substantially retaining the cells and / or tissues and preventing their sedimentation.
  • Does not substantially increase the viscosity of the liquid means that the viscosity of the liquid does not exceed 8 mPa ⁇ s.
  • the viscosity of the liquid (that is, the viscosity of the medium composition used in the present invention) is 8 mPa ⁇ s or less, preferably 4 mPa ⁇ s or less, more preferably 2 mPa ⁇ s or less at 37 ° C. is there.
  • the structure is formed in a liquid medium, and the effect of causing cells (or cell aggregates) and / or tissue to float uniformly (preferably to float and stand still) without substantially increasing the viscosity of the liquid.
  • the viscosity of the liquid containing the structure can be measured, for example, by the method described in the examples described later. Specifically, E type viscometer under the condition of 37 ° C (Toki Sangyo Co., Ltd., TV-22 type viscometer, model: TVE-22L, cone rotor: standard rotor 1 ° 34 ⁇ ⁇ R24, rotation speed 100rpm) Can be measured.
  • the medium composition used in the present invention can achieve improvement in the engraftment rate and viability in the living body when transplanted to a recipient mammal by suspension culture of cancer cells in the medium composition.
  • the viscosity of the medium composition used in the present invention is substantially increased, it does not prevent the viscosity of the medium composition from being increased by the specific compound (the viscosity of the liquid exceeds 8 mPa ⁇ s). (Viscosity does not exceed 8 mPa ⁇ s).
  • the viscosity of the medium composition used in the present invention is 8 mPa ⁇ s or less, preferably 4 mPa ⁇ s or less, more preferably 2 mPa ⁇ s or less at 37 ° C.
  • Examples of the specific compound used in the present invention include, but are not particularly limited to, a polymer compound, preferably a polymer compound having an anionic functional group.
  • examples of the anionic functional group include a carboxy group, a sulfo group, a phosphate group, and salts thereof, and a carboxy group or a salt thereof is preferable.
  • the polymer compound used in the present invention one having one or more selected from the group of anionic functional groups can be used.
  • the polymer compound used in the present invention include, but are not particularly limited to, a polysaccharide obtained by polymerizing 10 or more monosaccharides (for example, triose, tetrose, pentose, hexose, heptose, etc.). More preferably, an acidic polysaccharide having an anionic functional group is used.
  • the acidic polysaccharide here is not particularly limited as long as it has an anionic functional group in its structure.
  • a polysaccharide having uronic acid for example, glucuronic acid, iduronic acid, galacturonic acid, mannuronic acid is used.
  • hyaluronic acid gellan gum, deacylated gellan gum (hereinafter sometimes referred to as DAG), rhamzan gum, diyutan gum, xanthan gum, carrageenan, xanthan gum, hexuronic acid, fucoidan, pectin, pectinic acid, pectinic acid, Examples include those composed of one or more from the group consisting of heparan sulfate, heparin, heparitin sulfate, kerato sulfate, chondroitin sulfate, dermatan sulfate, rhamnan sulfate and salts thereof.
  • the polysaccharide is preferably hyaluronic acid, DAG, Grotan gum, xanthan gum, carrageenan or a salt thereof, and can float cells or tissues with a low concentration, and facilitate recovery of the cells or tissues.
  • DAG is most preferable.
  • the salt herein include salts of alkali metals such as lithium, sodium and potassium, salts of alkaline earth metals such as calcium, barium and magnesium, and salts of aluminum, zinc, copper, iron, ammonium, organic bases and amino acids. Is mentioned.
  • the weight average molecular weight of these polymer compounds (polysaccharides and the like) is preferably 10,000 to 50,000,000, more preferably 100,000 to 20,000,000, still more preferably 1,000, 000 to 10,000,000. For example, the molecular weight can be measured in pullulan conversion by gel permeation chromatography (GPC).
  • phosphorylated DAG can be used. The phosphorylation can be performed by a known method.
  • a plurality of (preferably two) polysaccharides may be used in combination.
  • the type of combination of polysaccharides is that the above-mentioned structure is formed in a liquid medium, and the cells (or cell aggregates) and / or tissues are uniformly suspended without substantially increasing the viscosity of the liquid medium (preferably Is not particularly limited as long as it can be left floating), but preferably the combination contains at least DAG or a salt thereof.
  • suitable polysaccharide combinations include DAG or a salt thereof, and polysaccharides other than DAG or a salt thereof (eg, xanthan gum, alginic acid, carrageenan, diutan gum, methylcellulose, locust bean gum or a salt thereof).
  • polysaccharide combinations include DAG and Ramzan gum, DAG and Valtan gum, DAG and Xanthan gum, DAG and Carrageenan, DAG and Xanthan gum, DAG and locust bean gum, DAG and ⁇ -carrageenan, DAG and sodium alginate, DAG And methyl cellulose, but are not limited thereto.
  • More preferable specific examples of the specific compound used in the present invention include hyaluronic acid, deacylated gellan gum, diyutan gum, carrageenan and xanthan gum, and salts thereof. Considering the ease of tissue recovery, the most preferable example is deacylated gellan gum or a salt thereof.
  • the deacylated gellan gum in the present invention is a linear chain composed of four sugar molecules of 1-3 linked glucose, 1-4 bonded glucuronic acid, 1-4 bonded glucose and 1-4 bonded rhamnose.
  • R 1 and R 2 are both hydrogen atoms
  • n is a polysaccharide represented by an integer of 2 or more.
  • R 1 may contain a glyceryl group and R 2 may contain an acetyl group, but the content of acetyl group and glyceryl group is preferably 10% or less, more preferably 1% or less.
  • the structure in the present invention can take various forms depending on the specific compound. Deacylated gellan gum will be described in the case of deacylated gellan gum.
  • deacylated gellan gum When deacylated gellan gum is mixed with a liquid medium, metal ions (for example, calcium Ions) and form an amorphous structure via the metal ions, and the cells (or cell aggregates) and / or tissues are suspended.
  • the viscosity of the medium composition used in the present invention prepared from deacylated gellan gum is 8 mPa ⁇ s or less, preferably 4 mPa ⁇ s or less, and is easy to recover cells (or cell aggregates) or tissues. Considering this point, it is more preferably 2 mPa ⁇ s or less.
  • the specific compound in the present invention can be obtained by a chemical synthesis method, but when the compound is a natural product, it can be extracted from various plants, animals, and microorganisms containing the compound using conventional techniques. It is preferable to obtain by separation and purification. In the extraction, the compound can be extracted efficiently by using water or supercritical gas. For example, as a method for producing gellan gum, the produced microorganism is cultured in a fermentation medium, and the mucosa produced outside the cells is collected by a normal purification method, and after drying, pulverization, etc., it is powdered. Good.
  • deacylated gellan gum it may be recovered after subjecting it to alkali treatment when recovering the mucosa and deacylating the glyceryl group and acetyl group bonded to the 1-3 bonded glucose residue.
  • Purification methods include, for example, liquid-liquid extraction, fractional precipitation, crystallization, various ion exchange chromatography, gel filtration chromatography using Sephadex LH-20, etc., adsorption chromatography using activated carbon, silica gel, or thin layer It is possible to purify by removing impurities by using adsorption / desorption treatment of an active substance by chromatography or high-performance liquid chromatography using a reverse phase column alone or in combination in any order and repeatedly.
  • gellan gum producing microorganisms examples include, but are not limited to, Sphingomonas elodea and microorganisms modified from the genes of the microorganisms.
  • deacylated gellan gum commercially available products such as “KELCOGEL (registered trademark of CPE Kelco) CG-LA” manufactured by Sanki Co., Ltd., “Kelcogel (CPP) manufactured by Saneigen FFI Co., Ltd. ⁇ Registered trademark of Kelco) ”or the like.
  • Kelcogel (registered trademark of CPI Kelco) HT” manufactured by San-Ei Gen FFI Co., Ltd. can be used as native gellan gum.
  • the concentration of the specific compound in the medium depends on the type of the specific compound, and the specific compound forms the above-described structure in the liquid medium (preferably without substantially increasing the viscosity of the liquid medium). It can be set as appropriate as long as cells (or cell aggregates) and / or tissues can be floated uniformly (preferably allowed to stand still), but usually 0.0005% to 1.0% (w / v), Preferably, it may be 0.001% to 0.4% (w / v), more preferably 0.005% to 0.1% (w / v), and still more preferably 0.005% to 0.05% (w / v).
  • % (W / v) medium may be added.
  • the sum of both compounds is 0.001% to 5.0% (w / v), preferably 0.005% to 1.0% (w / v), more preferably 0.01% to 0.1%. (W / v), most preferably 0.03% to 0.05% (w / v) may be added to the medium.
  • native gellan gum it may be added in a medium of 0.05% to 1.0% (w / v), preferably 0.05% to 0.1% (w / v).
  • the concentration of the polysaccharide is such that the combination of the polysaccharide forms the above-described structure in the liquid medium (preferably, the liquid medium It can be appropriately set within a range in which cells (or cell aggregates) and / or tissues can be suspended in a uniform manner (preferably allowed to stand still) without substantially increasing the viscosity.
  • the concentration of DAG or a salt thereof is 0.005 to 0.02% (w / v), preferably 0.01 to 0.02% (w / v v) is exemplified, and the concentration of polysaccharides other than DAG or a salt thereof is 0.0001 to 0.4% (w / v), preferably 0.005 to 0.4% (w / v), more preferably 0.1 to 0.4% (w / v) is exemplified.
  • concentration of DAG or a salt thereof is 0.005 to 0.02% (w / v), preferably 0.01 to 0.02% (w / v v) is exemplified
  • the concentration of polysaccharides other than DAG or a salt thereof is 0.0001 to 0.4% (w / v), preferably 0.005 to 0.4% (w / v), more preferably 0.1 to 0.4% (w / v) is exemplified.
  • concentration ranges are examples of specific combinations of concentration ranges.
  • DAG or a salt thereof 0.005 to 0.02% (preferably 0.01 to 0.02%) (w / v)
  • Polysaccharide xanthan gum other than DAG 0.1-0.4% (w / v)
  • Sodium alginate 0.0001 to 0.4% (w / v) (preferably 0.1 to 0.4% (w / v))
  • Native gellan gum 0.0001-0.4% (w / v)
  • Locust bean gum 0.1-0.4% (w / v)
  • Methyl cellulose 0.1 to 0.4% (w / v) (preferably 0.2 to 0.4% (w / v))
  • Carrageenan 0.05-0.1% (w / v)
  • Valtan gum 0.05-0.1% (w / v)
  • the compound can be further changed into another derivative by a chemical synthesis method, and the derivative thus obtained can also be used effectively in the present invention.
  • the hydroxyl group corresponding to R 1 and / or R 2 of the compound represented by the general formula (I) is a C 1-3 alkoxy group, a C 1-3 alkylsulfonyl group, Derivatives substituted with monosaccharide residues such as glucose or fructose, oligosaccharide residues such as sucrose and lactose, and amino acid residues such as glycine and arginine can also be used in the present invention.
  • the compound can be crosslinked using a crosslinker such as 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC).
  • the specific compound or salt thereof used in the present invention can exist in any crystal form depending on the production conditions, and can exist as any hydrate. These crystal forms, hydrates, and mixtures thereof. Are also included within the scope of the present invention. Moreover, although it may exist as a solvate containing organic solvents, such as acetone, ethanol, and tetrahydrofuran, all of these forms are contained in the scope of the present invention.
  • the specific compound used in the present invention exists in the form of a tautomer, geometric isomer, tautomer or mixture of geometric isomers, or a mixture thereof formed by intra-ring or exocyclic isomerization. Also good. Regardless of whether the compound of the present invention is produced by isomerization, when it has an asymmetric center, it may exist in the form of a resolved optical isomer or a mixture containing them in an arbitrary ratio.
  • the medium composition used in the present invention may contain metal ions such as divalent metal ions (calcium ions, magnesium ions, zinc ions, iron ions, copper ions, etc.), and preferably contains calcium ions. .
  • the metal ions can be used in combination of two or more, such as calcium ions and magnesium ions, calcium ions and zinc ions, calcium ions and iron ions, calcium ions and copper ions. Those skilled in the art can appropriately determine the combination.
  • a metal ion eg, calcium ion
  • the medium composition whereby the polymer compound is aggregated via the metal ion, and the polymer compound forms a three-dimensional network
  • the structure of the present invention is formed by the polysaccharide forming a microgel via metal ions (eg, calcium ions).
  • the concentration of the metal ion is such that the specific compound forms the above-described structure in the liquid medium, and preferably (without substantially increasing the viscosity of the liquid medium) cells (or cell aggregates) and / or tissue. It can be set as appropriate as long as it can be uniformly suspended (preferably allowed to float and stand).
  • the metal ion concentration is 0.1 mM to 300 mM, preferably 0.5 mM to 100 mM, but is not limited thereto.
  • the metal ions may be mixed with the medium, or a salt solution may be separately prepared and added to the medium. Further, the medium composition used in the present invention may contain an extracellular matrix, an adhesion molecule, etc. described later.
  • the structure composed of a specific compound used in the present invention contains the structure of the specific compound when the cell (or cell aggregate) and / or tissue are cultured in vitro. It shows the effect of floating in a liquid (preferably the effect of floating and standing). Due to the floating effect, it is possible to increase the number of cells (or cell aggregates) and / or the number of tissues per fixed volume as compared with monolayer culture. In addition, when a conventional suspension culture method involves a rotation or shaking operation, a shearing force acts on cells (or cell aggregates) and / or tissues, so that the proliferation rate and recovery rate of cells and / or tissues are low, or Cell function may be impaired.
  • cells (or cell aggregates) and / or tissue can be uniformly dispersed without performing operations such as shaking.
  • Target cells (or cell aggregates) and / or tissues can be obtained easily and in large quantities without loss of cell function.
  • cells (or cell aggregates) and / or tissues are suspended and cultured in a medium containing a conventional gel substrate, it is difficult to observe or recover the cells (or cell aggregates) and / or tissues. In some cases, the function may be impaired.
  • cells (or cell aggregates) and / or tissues are cultured in suspension, and observed and recovered without losing their state and function. be able to.
  • the culture medium containing the conventional gel base material has a high viscosity, and replacement
  • the medium composition containing the structure of the specific compound of the present invention has a low viscosity, the medium can be easily replaced using a pipette, a pump, or the like.
  • a medium composition can be prepared.
  • the classification according to the composition of the medium includes a natural medium, a semi-synthetic medium, and a synthetic medium, and the classification according to the shape includes a semi-solid medium, a liquid medium, and a powder medium (hereinafter sometimes referred to as a powder medium).
  • any medium can be used as long as it is a medium used for culturing animal cells.
  • Examples of such media include Dulbecco's Modified Eagle Medium (Dulbecco's Modified Eagles's Medium; DMEM), Ham F12 Medium (Ham's Nutrient Mixture F12), DMEM / F12 Medium, McCoy's 5A medium, les' MEMs Medium (E Minimum Essential Medium (EMEM), ⁇ MEM medium (alpha Modified Eagles's Minimum Essential Medium; ⁇ MEM), MEM medium (Minimum Essential Medium), RPMI1640 medium, Iscove's modified Dulbecco's medium, Iscove's Modified Dulbecco's Medium medium; , IPL41 medium, Fischer's medium, StemPro34 (manufactured by Invitrogen), X-VIVO-10 (manufactured by Cambridge), X-VIVO-15 (manufactured by Cambridge), HPGM (manufactured by Cambridge), StemSpan-H3000 (Stem Cell Technology) ), StemSpanSFEM (manufactured by
  • the medium used for culturing cancer cells can contain a cell adhesion factor in the medium.
  • a cell adhesion factor in the medium.
  • examples thereof include matrigel, collagen gel, gelatin, poly-L-lysine, poly-D-lysine, laminin, and fibronectin. These cell adhesion factors can be added in combination of two or more.
  • thickeners such as guar gum, propylene glycol alginate, locust bean gum, gum arabic, tara gum, tamarind gum and methylcellulose can be further mixed with the medium used for culturing cancer cell spheres.
  • Components added to animal-derived cells (or cell aggregates) and / or tissue culture media include fetal bovine serum, human serum, horse serum, insulin, transferrin, lactoferrin, cholesterol, ethanolamine, sodium selenite, Monothioglycerol, 2-mercaptoethanol, bovine serum albumin, sodium pyruvate, polyethylene glycol, various vitamins, various amino acids, agar, agarose, collagen, methylcellulose, various cytokines, various hormones, various growth factors, various extracellular matrices and various Examples include cell adhesion molecules.
  • antibiotics added to the medium include sulfa drugs, penicillin, pheneticillin, methicillin, oxacillin, cloxacillin, dicloxacillin, flucloxacillin, nafcillin, ampicillin, penicillin, amoxicillin, cyclacillin, carbenicillin, ticarcillin, piperacillin, piperacillin, Mecuzurocillin, mecillinam, andinocillin, cephalosporin and its derivatives, oxophosphoric acid, amifloxacin, temafloxacin, nalidixic acid, pyromido acid, ciprofloxane, sinoxacin, norfloxacin, perfloxacin, rosoxacin, ofloxacin, enoxacin, pipexamic acid, sulbactam acid, sulbactam acid, sulbactam acid, sulbactam acid , ⁇ -bromopenicill
  • the specific compound in the present invention When the specific compound in the present invention is added to the above medium, the specific compound is first dissolved or dispersed in an appropriate solvent (this is referred to as a medium additive). Thereafter, the concentration of the specific compound in the medium, as detailed above (preferably without substantially increasing the viscosity of the liquid medium), the cells (or cell aggregates) and / or tissue are uniformly distributed. Concentration at which it can be floated (preferably suspended), for example 0.0005% to 1.0% (w / v), preferably 0.001% to 0.4% (w / v), more preferably 0.005% to 0.1% (w / v), more preferably 0.005% to 0.05% (w / v), the medium additive may be added to the medium.
  • 0.001% to 1.0% (w / v), preferably 0.003% to 0.5% (w / v), more preferably 0.005% to 0.3% (w / v), most preferably 0.01% to 0.05% (w / v) medium may be added.
  • % (W / v) medium may be added.
  • the sum of both compounds is 0.001% to 5.0% (w / v), preferably 0.005% to 1.0% (w / v), more preferably 0.01% to 0.1%. Most preferably, it may be added to a 0.03% to 0.05% (w / v) medium.
  • the total of both compounds should be added to the medium between 0.001% and 1.0% (w / v), most preferably 0.005% to 0.01% (w / v). It ’s fine.
  • the total amount of both compounds may be added to a medium of 0.001% to 1.0% (w / v), most preferably 0.005% to 0.2% (w / v). .
  • the total of both compounds should be added to the medium between 0.001% and 1.0% (w / v), most preferably between 0.01% and 0.1% (w / v). It ’s fine.
  • the total of both compounds can be added to a medium of 0.001% to 1.0% (w / v), most preferably 0.01% to 0.1% (w / v). good.
  • the total of both compounds may be added to a medium of 0.001% to 1.0% (w / v), most preferably 0.01% to 0.1% (w / v). .
  • suitable solvents used for the medium additive include aqueous solvents such as water, dimethyl sulfoxide (DMSO), various alcohols such as methanol, ethanol, butanol, propanol, glycerin, propylene glycol, and butylene glycol.
  • aqueous solvents such as water, dimethyl sulfoxide (DMSO)
  • various alcohols such as methanol, ethanol, butanol, propanol, glycerin, propylene glycol, and butylene glycol.
  • the concentration of the specific compound is 0.001% to 5.0% (w / v), preferably 0.01% to 1.0% (w / v), more preferably 0.1% to 0.6% (w / v).
  • an additive that enhances the effect of the specific compound or lowers the concentration at the time of use can be further added.
  • additives include one or more polysaccharides such as guar gum, propylene glycol alginate, locust bean gum, gum arabic, tara gum, tamarind gum, methylcellulose, carboxymethylcellulose, agarose, tamarind seed gum, pullulan, etc. be able to.
  • the specific compound can be used by immobilizing on the surface of the carrier or supporting the specific compound inside the carrier.
  • the specific compound can be in any shape at the time of provision or storage.
  • the specific compound is bound to formulated solids such as tablets, pills, capsules, granules, liquids such as solutions or suspensions dissolved in appropriate solvents and solubilizers, or substrates or single substances. It can be in the state.
  • Additives for formulation include antiseptics such as p-hydroxybenzoates; excipients such as lactose, glucose, sucrose and mannitol; lubricants such as magnesium stearate and talc; polyvinyl Examples include binders such as alcohol, hydroxypropyl cellulose, and gelatin; surfactants such as fatty acid esters; and plasticizers such as glycerin. These additives are not limited to those described above, and can be freely selected as long as they are available to those skilled in the art.
  • the specific compound in the present invention may be sterilized as necessary.
  • the sterilization method is not particularly limited, and examples thereof include radiation sterilization, ethylene oxide gas sterilization, autoclave sterilization, and filter sterilization.
  • the material of the filter part when performing filter sterilization is not particularly limited.
  • the pore size of the filter is not particularly limited, but is preferably 0.1 ⁇ m to 10 ⁇ m, more preferably 0.1 ⁇ m to 1 ⁇ m, and most preferably 0.1 ⁇ m to 0.5 ⁇ m.
  • the specific compound may be in a solid state or a solution state.
  • the structure is formed in the liquid medium, and the medium composition used in the present invention can be obtained.
  • the medium usually contains metal ions (eg, divalent metal ions such as calcium ions) at a concentration sufficient for polymer compounds to assemble via ions or to form a three-dimensional network. Therefore, the medium composition used in the present invention can be obtained only by adding the solution or dispersion of the specific compound of the present invention to the liquid medium. Alternatively, the medium may be added to a medium additive (a solution or dispersion of the specific compound).
  • the medium composition used in the present invention can also be prepared by mixing a specific compound and medium components in an aqueous solvent (for example, water containing ion-exchanged water or ultrapure water).
  • an aqueous solvent for example, water containing ion-exchanged water or ultrapure water.
  • a liquid medium and a medium additive (solution) are mixed, (2) the polymer compound (solid such as a powder) is mixed in the liquid medium, (3) a medium additive ( Examples include, but are not limited to, mixing a powder medium with (solution), (4) mixing the powder medium and the above polymer compound (solid such as powder) with an aqueous solvent, and the like.
  • the embodiment of (1) or (4) or (1) or (3) is preferable.
  • the specific compound When the specific compound is dissolved in a solvent (for example, an aqueous solvent such as water or a liquid medium), or when the specific compound and the powder medium are dissolved in the solvent, it is preferable to heat the mixed solution to promote dissolution.
  • the heating temperature includes, for example, 80 ° C. to 130 ° C., preferably 100 ° C. to 125 ° C. (eg, 121 ° C.) that is sterilized by heating. After heating, the obtained solution of the specific compound is cooled to room temperature.
  • the above metal ions eg, divalent metal ions such as calcium ions
  • the specific compound is heated (for example, 80 ° C. to 130 ° C.) when dissolved in a solvent (eg, water, an aqueous solvent such as a liquid medium) containing the above metal ions (eg, divalent metal ions such as calcium ions).
  • a solvent eg, water, an aqueous solvent such as a liquid medium
  • the above metal ions eg, divalent metal ions such as calcium ions.
  • the above structure composed of the specific compound can also be formed by cooling the resulting solution to room temperature at a temperature of 0 ° C., preferably 100 ° C. to 125 ° C. (eg, 121 ° C.).
  • a specific compound is added to ion exchange water or ultrapure water. And it stirs at the temperature (for example, 60 degreeC or more, 80 degreeC or more, 90 degreeC or more) which can melt
  • stirring for example, a homomixer
  • the method for mixing the aqueous solution and the medium is not particularly limited, and examples thereof include manual mixing such as pipetting, and mixing using equipment such as a magnetic stirrer, mechanical stirrer, homomixer, and homogenizer. Moreover, you may filter the culture medium composition used for this invention with a filter after mixing.
  • the pore size of the filter used for the filtration treatment is 5 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 70 ⁇ m, more preferably 10 ⁇ m to 70 ⁇ m.
  • the medium composition used in the present invention is prepared by mixing the powder medium and the polymer compound (solid such as powder) with an aqueous solvent and heating at the above temperature.
  • deacylated gellan gum when preparing a deacylated gellan gum, it is 0.1% to 1% (w / v), preferably 0.2% to 0.5% (w / v), more preferably 0.3% to 0.4% (w / v).
  • deacylated gellan gum is added to ion-exchanged water or ultrapure water.
  • 0.1% to 1% (w / v), preferably 0.2% to 0.8% (w / v), more preferably 0.3% to 0.6% (w / v) Add deacylated gellan gum to ion-exchanged water or ultrapure water.
  • the temperature may be any temperature at which the deacylated gellan gum can be dissolved.
  • the aqueous solution is added to the medium so as to have a desired final concentration (for example, when the final concentration is 0.015%, a 0.3% aqueous solution: The ratio of the medium is 1:19).
  • the method for mixing the aqueous solution and the medium is not particularly limited, and examples thereof include manual mixing such as pipetting, and mixing using equipment such as a magnetic stirrer, mechanical stirrer, homomixer, and homogenizer. Moreover, you may filter the culture medium composition used for this invention with a filter after mixing.
  • the pore size of the filter used for the filtration treatment is 5 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 70 ⁇ m, more preferably 10 ⁇ m to 70 ⁇ m.
  • the medium composition used in the present invention is preferably a medium composition that can be cultured by suspending cells or tissues, and the viscosity of the medium composition is 8 mPa ⁇ s or less (under 37 ° C.), And a medium composition comprising deacylated gellan gum or a salt thereof.
  • the concentration of deacylated gellan gum or salt thereof in the medium composition is 0.01-0.05% (w / v).
  • the medium composition further contains a polysaccharide other than deacylated gellan gum or a salt thereof.
  • the medium composition contains a divalent metal ion (eg, calcium ion) at a concentration sufficient to form a structure in which the deacylated gellan gum can float and culture cells or tissues.
  • concentration is, for example, 0.1 mM to 300 mM, preferably 0.5 mM to 100 mM.
  • the medium composition can be produced by mixing deacylated gellan gum or a salt thereof and a medium.
  • the medium is a liquid medium.
  • the liquid medium contains a concentration of divalent metal ions (eg, calcium ions) sufficient to form a structure in which the deacylated gellan gum can be cultured by suspending cells or tissues. The concentration is, for example, 0.1 mM to 300 mM, preferably 0.5 mM to 100 mM.
  • the medium is mixed with deacylated gellan gum or salt thereof dissolved or dispersed in a solvent.
  • the deacylated gellan gum or salt thereof dissolved or dispersed in a solvent is in a sterile state.
  • sterilization is performed by autoclave sterilization.
  • sterilization is performed by filter sterilization.
  • filter sterilization is performed by passing through a 0.1-0.5 ⁇ m filter.
  • the present invention provides a method for producing a cancer-bearing non-human mammal, comprising the following steps: (1) Suspension culture of cancer cells in medium composition I; and (2) Transfer the cancer cells obtained by the culture of (1) to a non-human mammal.
  • the present invention also includes a method for promoting the engraftment of such cancer cells in a non-human mammal.
  • the cancer cell used in the present invention is preferably a cancer cell having the ability to form a solid tumor when engrafted in vivo.
  • Cancer cells having the ability to form solid tumors include stomach cancer, esophageal cancer, colon cancer, colon cancer, rectal cancer, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell cancer, basal cell cancer, adenocarcinoma, Renal cell cancer, ureteral cancer, liver cancer, bile duct cancer, cervical cancer, endometrial cancer, testicular cancer, small cell lung cancer, non-small cell lung cancer, bladder cancer, epithelial cancer, craniopharyngeal cancer, laryngeal cancer, tongue cancer, Fibrosarcoma, mucosal sarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, lymphangiosarcoma, lymphatic endothelial sarcoma, synovial tumor, mesothelioma, Ewing tumor, leiomyosarcoma, rhabdomyosarcom
  • the cancer cells used in the present invention may be allogenic, allogenic, or xenogenic to the recipient non-human mammal to be transferred.
  • the cancer cells are allogeneic or xenogeneic with respect to the recipient non-human mammal to be transferred, more preferably Heterogeneous.
  • the cancer cell used in the present invention is a human cancer cell.
  • step (1) the cancer cells are subjected to suspension culture (preferably stationary suspension culture) in the medium composition I.
  • suspension culture preferably stationary suspension culture
  • petri dishes, flasks, plastic bags, Teflon (registered trademark) bags, dishes, petri dishes, tissue culture dishes, multi dishes, micro plates, micro cells generally used for cell culture are used. It is possible to culture using a culture apparatus such as a well plate, a multi-plate, a multi-well plate, a chamber slide, a cell culture flask, a spinner flask, a tube, a tray, a culture bag, or a roller bottle. These culture substrates are desirably low cell adhesion.
  • the surface of the culture container is not artificially treated (for example, coating treatment with an extracellular matrix or the like) for the purpose of improving the adhesion with cells,
  • a surface whose surface is artificially treated for the purpose of reducing adhesion to cells can be used.
  • the above-mentioned cancer cell culture automatically executes cell seeding, medium exchange, cell image acquisition, and culture cell recovery under closed control under mechanical control, while controlling pH, temperature, oxygen concentration, etc. It can also be carried out by a bioreactor capable of high-density culture or an automatic culture device.
  • cancer cells to be cultured can be arbitrarily selected by those skilled in the art. Specific preferred examples thereof include, but are not particularly limited to, cancer cells dispersed in medium composition I in a single cell state, cancer cells adhered on a carrier surface, cancer cells as a carrier Examples include a state of being embedded inside, and a state in which a plurality of cancer cells are aggregated to form a cell aggregate (sphere (spheroid)).
  • the cancer cells are preferably in a state of being dispersed in the medium composition I in a single cell state, or in a state in which a plurality of cells are aggregated to form a cell aggregate (sphere (spheroid)).
  • the suspension culture (preferably suspension static culture) is performed in the suspension culture.
  • a carrier for adhering or embedding cancer cells is not used.
  • the state in which cell aggregates (spheres (spheroids)) are formed is because cell-cell interactions and cell structures close to the in vivo environment have been reconstructed, and cell functions are maintained for a long time. Can be cultured as it is, and the cells can be collected relatively easily.
  • the sphere size is preferably 500 ⁇ m or less, and most preferably 50 to 100 ⁇ m, as an average value of the maximum diameter.
  • the method for forming a cell aggregate is not particularly limited and can be appropriately selected by those skilled in the art. Examples thereof include a method using a container having a cell non-adhesive surface, a hanging drop method, a swirl culture method, a three-dimensional scaffold method, a centrifugation method, a method using aggregation by an electric field or a magnetic field, and the like.
  • Spheres can also be formed using the culture composition I.
  • a sphere can be obtained by collecting target cancer cells as single cells by cell-dispersing enzyme treatment, then uniformly dispersing them in the culture composition I, and allowing them to stand for 3 to 10 days for suspension culture. Prepared.
  • the spheres prepared here can be collected by centrifugation or filtration.
  • separately prepared cancer cells may be added to the culture composition I and mixed so as to be uniformly dispersed.
  • the mixing method in that case is not particularly limited, and examples thereof include manual mixing such as pipetting, and mixing using equipment such as a stirrer, a vortex mixer, a microplate mixer, and a shaker.
  • the obtained cancer cell suspension may be cultivated by standing, or the culture solution may be rotated, shaken or stirred as necessary.
  • the number of rotations and frequency may be appropriately set according to the purpose of those skilled in the art.
  • the cancer cell and the medium composition are separated by centrifugation or filtration, and then the fresh medium composition I is added to the cells. What is necessary is just to add.
  • the fresh medium composition I may be added to the concentrate.
  • the cancer cells are collected from the subculture and dispersed into a single cell or a state close thereto.
  • the cancer cells are dispersed using an appropriate cell dissociation solution.
  • the cell dissociation solution for example, EDTA; proteolytic enzymes such as trypsin, collagenase IV, metalloprotease and the like can be used alone or in appropriate combination.
  • the dispersed adherent cancer cells are suspended in the medium composition I, and this is subjected to suspension culture (preferably suspension stationary culture). In the culture, the cancer cells grow while floating in the medium composition I in a single cell state or in a sphere state. In this culture, it is preferable to use a cell non-adhesive incubator, but this is not a limitation.
  • the culture period of the cancer cells in the medium composition I is not particularly limited as long as it is sufficient to improve the engraftment of the cancer cells in the non-human mammal, but usually 1 day or more, preferably 3 More than 6 days, more preferably more than 6 days.
  • the upper limit of the culture period is theoretically infinite, but from the viewpoint of avoiding changes in the characteristics of cancer cells, for example, it is preferably within 30 days, preferably within 10 days. .
  • the temperature at which the cancer cells are cultured is usually 25 to 39 ° C, preferably 37 ° C.
  • the CO 2 concentration is usually 4 to 10% by volume, preferably 5% by volume, in the culture atmosphere.
  • the oxygen concentration is 15 to 50% by volume, preferably 20% by volume, in the culture atmosphere.
  • cancer cells with improved engraftment in vivo can be obtained.
  • the cancer cells obtained by this culture are transferred to a non-human mammal.
  • non-human mammal is not particularly limited, but examples include rodents such as mice, rats, hamsters, guinea pigs, rabbit eyes such as rabbits, ungulates such as pigs, cows, goats, horses, sheep, and dogs. And cats such as cats, primates such as monkeys, rhesus monkeys, cynomolgus monkeys, marmosets, orangutans and chimpanzees.
  • the mammal is preferably a rodent (mouse, rat, etc.).
  • the non-human mammal is preferably immunodeficient, but not limited thereto.
  • an immunodeficient non-human mammal By using an immunodeficient non-human mammal, it is possible to avoid rejection when allogeneic or xenogeneic cancer cells are transferred and to promote cancer cell engraftment.
  • immunodeficient non-human mammals include nude mice, SCID mice, IL-2Rg KO mice, NOD / Shi mice, NOD / Shi-SCID mice, NOD / SCID mice, NOG mice, RAG2 KO mice, RAG2 IL- Examples include 2Rg dKO mice, but are not limited thereto.
  • Non-immune deficient animals include C57BL / 6J mice, C3H / HeN mice, and the like.
  • cancer cells are subjected to suspension culture in the medium composition I, so that the survival rate and growth rate of cancer cells in a living body when transferred to a non-human mammal are improved.
  • severe immunodeficient non-human animals eg, NOD / SCID
  • immunodeficient non-humans whose degree of immunodeficiency is relatively mild even for cancer cells that could not form tumor tissue in vivo.
  • Tumor tissue can be formed in vivo using animals (eg, nude mice).
  • tumor cells that had previously been modeled for tumor-bearing mice in nude mice are transplanted into normal immune non-human animals (eg, BALB / c, C57BL / 6j) to form tumor tissue in vivo. It is also possible.
  • cancer cells In transferring cancer cells into a non-human mammal, the cancer cells are usually suspended in a physiological aqueous composition, and the resulting suspension is transferred into the body of the non-human mammal.
  • Cancer cells may be treated with a protein such as trypsin or a chelating agent such as EDTA and dispersed in a single cell, then suspended in a physiological aqueous composition and transferred into the body, or physiologically in the state of spheroids. It may be suspended in an aqueous composition and transferred into the body.
  • the transfer in the spheroid state tends to enhance the formation of cancer tissue, while the transfer in the single cell state tends to be more sensitive to the anticancer agent.
  • Physiological aqueous compositions include physiological aqueous solutions and physiological aqueous gels.
  • physiological aqueous solution include phosphate buffer, carbonate buffer, citrate buffer, Tris buffer, borate buffer physiological buffer, cell culture medium, and the like.
  • aqueous gels include extracellular matrix constituents (proteoglycans such as aggrecan; glycosaminoglycans such as hyaluronic acid; protein fibers such as collagen and elastin; or a mixture thereof (eg, basement membrane preparation)), polysaccharides, etc.
  • a gel containing (agarose etc.) can be mentioned.
  • a basement membrane preparation has the function of controlling cell morphology, differentiation, proliferation, movement, functional expression, etc.
  • basement membrane preparation for example, cells having the ability to form a basement membrane that adhere to the support through the basement membrane are removed from the support using a solution or an alkaline solution having lipid-dissolving ability of the cells. Can be produced.
  • An example of a basement membrane preparation is Matrigel (Corning product).
  • cancer cells to be transplanted are suspended in a physiological aqueous composition (eg, aqueous gel) containing an extracellular matrix constituent factor.
  • a physiological aqueous composition eg, aqueous gel
  • an extracellular matrix constituent factor By using an extracellular matrix constituent factor, engraftment of the transplanted cancer cells in vivo is promoted.
  • the extracellular matrix component used in the present invention is preferably isolated.
  • isolation means that an operation to remove a target component or a factor other than cells has been performed, and the state existing in nature has been removed.
  • the purity of “isolated protein X” (percentage of the weight of protein X in the total protein weight) is usually 70% or more, preferably 80% or more, more preferably 90% or more, still more preferably 99% or more, Most preferably 100%. Therefore, the “isolated extracellular matrix constituent factor” does not include an endogenous extracellular matrix constituent factor produced from a cancer cell to be transplanted and contained in the cancer cell or suspension.
  • the invention includes providing a physiological aqueous composition (eg, aqueous gel) comprising an isolated extracellular matrix component.
  • the concentration of the extracellular matrix constituent factor in the composition is not particularly limited as long as it promotes the engraftment of cancer cells to be transplanted, but usually 1 to 10 mg / ml, preferably about 2 to 4 mg / ml.
  • Matrigel trade name, manufactured by Corning
  • it is preferably diluted to about 25 to 50% (v / v).
  • cancer cells to be transplanted are suspended in a physiological aqueous composition that is substantially free of isolated extracellular matrix components.
  • cancer cells are subjected to suspension culture in the medium composition I, so that the engraftment rate and growth rate of cancer cells in vivo when transferred to a non-human mammal are improved.
  • Cancer cells that could not form tumor tissue in vivo unless suspended and transplanted in a physiological aqueous composition containing an outer matrix constituent factor are substantially free of the extracellular matrix constituent factor.
  • Tumor tissue can be formed in vivo using the physiological aqueous composition.
  • “Substantially free of isolated extracellular matrix constituents” means that the concentration of isolated extracellular matrix constituents in a physiological aqueous composition promotes the engraftment of transplanted cancer cells Means below. More specifically, the concentration of the isolated extracellular matrix component in the “physiological aqueous composition substantially free of isolated extracellular matrix component” is usually 0.01% (w / v). Hereinafter, it is preferably 0.001% (w / v) or less, more preferably 0.0001% (w / v) or less, and most preferably 0% (w / v).
  • the “isolated physiological matrix composition substantially free of extracellular matrix constituents” includes endogenous extracellular cells produced from cancer cells to be transplanted and contained in the cancer cells and suspensions. Inclusion of matrix constituents is allowed. Further, the “isolated extracellular matrix constituent factor concentration” does not include the concentration of an endogenous extracellular matrix constituent factor produced from the cancer cell to be transplanted and contained in the cancer cell or suspension.
  • Physiological aqueous composition may or may not contain serum. From the viewpoint of forming a larger cancer tissue, it is preferable to use a physiological aqueous composition containing serum. When serum is included, the concentration is not particularly limited, but is usually 0.1 to 20 (v / v)%. On the other hand, from the viewpoint of avoiding mixing of undetermined components, it is preferable to use a physiological aqueous composition that does not contain serum.
  • cancer cells are subjected to suspension culture in the medium composition I, so that the survival rate and growth rate of cancer cells in vivo when transferred to a non-human mammal are improved. For cancer cells that could not form a sufficiently large tumor tissue in vivo unless they were suspended and transplanted in a physiological aqueous composition containing It can be used to form tumor tissue in vivo.
  • the physiological aqueous composition used in the present invention includes the following embodiments. Contains extracellular matrix constituents and serum. -Contain substantially no isolated extracellular matrix constituents and serum. Contains extracellular matrix constituents and no serum. -Substantially free of isolated extracellular matrix constituents and free of serum.
  • the cancer cell concentration in the suspension should be appropriately set within a range where tumor tissue can be formed when transferred into the recipient non-human mammal. However, it is usually about 0.01-1x10 8 cells / ml.
  • the number of cancer cells to be transferred into the recipient non-human mammal can be appropriately set within a range in which tumor tissue can be formed in the non-human mammal, but usually 0.1 to 10 ⁇ 10 6 cells / animal. Degree.
  • the engraftment rate and growth rate of cancer cells in vivo when transferred to a non-human mammal is improved.
  • Tumor tissue of the same size can be formed with a smaller number of cells than when I is not used.
  • the site of cancer cell transfer is not particularly limited as long as a tumor tissue can be formed in the recipient non-human mammal, and may be an orthotopic transplant or an ectopic transplant.
  • the site of cancer cell transfer in the case of ectopic transplantation is not particularly limited, and examples include subcutaneous, intradermal, intramuscular, intravenous, and intraperitoneal. Since the transplantation technique is simple and the formed tumor tissue can be easily observed with the naked eye, the cancer cells are preferably transferred subcutaneously.
  • the recipient non-human mammal may be bred usually under SPF or aseptic conditions as necessary.
  • breeding the recipient non-human mammal for a predetermined period a tumor tissue is formed from the transferred cancer cells. Breeding conditions are not limited, but specific examples include temperature conditions of 20 to 26 ° C., humidity conditions of 30 to 70%, feeding and water supply conditions: free intake, lighting cycle: 12-hour light / dark cycle.
  • the breeding period is not particularly limited as long as a tumor tissue can be formed from the transferred cancer cells, but it is usually preferable to breed the recipient non-human mammal for 3 days or more, preferably 3 weeks or more after transplantation.
  • the cancer-bearing non-human mammal prepared by the method of the present invention is useful for screening of anticancer agents, evaluation of pharmaceuticals for treating or preventing cancer, and the like.
  • the present invention provides a screening method for an anticancer agent comprising the following steps: (1) administering a test substance to a cancer-bearing non-human mammal prepared by the method of the present invention; (2) Measuring the size of the tumor tissue in the cancer-bearing non-human mammal obtained in (1); (3) To compare the size of the tumor tissue measured in (2) with the size of the tumor tissue of a control cancer-bearing non-human mammal not administered with the test compound.
  • the test substance may be any known compound or new compound, such as a nucleic acid, carbohydrate, lipid, protein, peptide, low molecular organic compound, compound library prepared using combinatorial chemistry technology, random peptide Examples include natural components derived from libraries, random nucleic acid libraries, microorganisms, animals and plants, marine organisms, and the like. Moreover, the artificial polymer which carry
  • the administration form of the test substance includes, but is not limited to, an aqueous solution or suspension containing a medium such as methylcellulose (MC), carboxymethylcellulose (CMC), polyethylene glycol (PEG), or ethanol (EtOH).
  • the administration route of the test substance includes oral, subcutaneous, intraperitoneal, intravenous, intraportal and the like, but is not limited thereto.
  • the period during which the test substance is administered is a period sufficient to evaluate the effect, and during this period, the cancer-bearing non-human mammal is bred based on the laboratory animal ethics regulations of each research institute.
  • the breeding period is usually 3 days or longer, preferably 10 days or longer, more preferably 21 days or longer.
  • the size of the tumor tissue in the cancer-bearing non-human mammal administered with the test substance is measured.
  • Methods for measuring tumor tissue size are well known to those skilled in the art.
  • the size of the tumor tissue in the cancer-bearing non-human mammal administered with the test substance is compared with the size of the tumor tissue in the control cancer-bearing non-human mammal not administered with the test compound.
  • the comparison of tumor tissue size can preferably be made based on the presence or absence of a statistically significant difference.
  • the size of the tumor tissue of the control cancer-bearing non-human mammal to which the test substance was not added was measured in advance with respect to the measurement of the size of the tumor tissue in the cancer-bearing non-human mammal administered with the test substance. Although it may be a thing measured simultaneously, what was measured simultaneously is preferable from the viewpoint of the precision and reproducibility of experiment.
  • a substance whose tumor tissue size has been reduced by the addition of the test substance can be selected as a candidate substance for an anticancer agent (particularly, a candidate substance for an anticancer agent effective against transferred cancer cells).
  • the medium was changed once every 3 days and cultured for 6 days.
  • the culture solution containing the cells was collected in a centrifuge tube, diluted 2-3 times with McCoy's 5A medium, and centrifuged at 1500 rpm for 5 minutes to collect 10% (v / v) cells in the lower layer.
  • This cell-containing layer is resuspended in McCoy's 5A medium containing 0.015% (w / v) deacylated gellan gum and 10% (v / v) FBS at least twice the initial amount before dilution, and the cells are not attached.
  • the cells were seeded on a culture plate or a petri dish, and the cells were subsequently subjected to suspension static culture.
  • Test Example 2 Cell Recovery after Culture The culture solution containing the HCT116 cells cultured in Test Example 1 was collected in a centrifuge tube and centrifuged at 500 rpm for 1 minute. The non-precipitated supernatant fraction was collected, diluted 2-3 times with McCoy's 5A medium or PBS, and centrifuged at 1500 rpm for 5 minutes to collect 10% (v / v) cells in the lower layer. Furthermore, it was suspended in 5 to 10 times the volume of the McCoy's 5A medium or PBS, and centrifuged again at 1500 rpm for 5 minutes to recover the precipitated cells. Cells were resuspended in a small amount of McCoy's 5A medium to obtain a sphere cell suspension.
  • the obtained cell suspension was seeded on a cell non-adherent culture plate or petri dish, and the cells were cultured in a stationary culture.
  • the medium was changed once every 3 days, and the cells were cultured for 6 days.
  • the culture medium containing the cells was collected in a centrifuge tube, diluted 2-3 times with McCoy's 5A medium, and centrifuged at 1500 rpm for 5 minutes to collect 10% (v / v) cells in the lower layer.
  • This cell-containing layer is resuspended in McCoy's 5A medium containing 0.015% (w / v) deacylated gellan gum and 15% (v / v) FBS at least twice the initial amount before dilution, and the cells are not attached.
  • the cells were seeded on a culture plate or a petri dish, and the cells were subsequently subjected to suspension static culture.
  • Test Example 4 Cell Recovery after Culture The culture solution containing SKOV3 cells cultured in Test Example 3 was collected in a centrifuge tube and centrifuged at 500 rpm for 1 minute. The non-precipitated supernatant fraction was collected, diluted 2-3 times with McCoy's 5A medium or PBS, and centrifuged at 1500 rpm for 5 minutes to collect 10% (v / v) cells in the lower layer. Furthermore, it was suspended in 5 to 10 times the volume of the McCoy's 5A medium or PBS, and centrifuged again at 1500 rpm for 5 minutes to recover the precipitated cells. Cells were resuspended in a small amount of McCoy's 5A medium to obtain a sphere cell suspension.
  • the obtained cell suspension was seeded on a culture plate or a petri dish, and the cells were subjected to suspension static culture.
  • the medium was changed once every 3 days, and the cells were cultured for 6 days.
  • the culture medium containing the cells is collected in a centrifuge tube, diluted 2-5 times with 1% NEAA-containing E-MEM medium, centrifuged at 1500 rpm for 5 minutes, and 10% (v / v) cells in the lower layer. was recovered.
  • This cell-containing layer is more than twice the initial volume before dilution, 0.015% (w / v) deacylated gellan gum, 10% (v / v) FBS, and 1% (v / v) NEAA containing E-
  • the cells were resuspended in MEM medium and seeded on a culture plate or a petri dish, and the cells were subsequently subjected to suspension static culture.
  • Test Example 6 Cell Recovery after Culture The culture solution containing MCF7 cells cultured in Test Example 5 was collected in a centrifuge tube and centrifuged at 500 rpm for 1 minute. Collect the non-precipitated supernatant fraction, dilute 2 to 3 times with 1% (v / v) NEAA-containing E-MEM medium or PBS, and centrifuge at 1500 rpm for 5 minutes to obtain 10% (v / v) of the lower layer. ) Cells were collected. Further, the cells were suspended in E-MEM medium or PBS containing 1% (v / v) NEAA containing 5 to 10 times the volume of the residue, and centrifuged again at 1500 rpm for 5 minutes to recover the precipitated cells.
  • the cells were resuspended in a small amount of E-MEM medium containing 1% NEAA to obtain a sphere cell suspension.
  • trypsin solution 1: 1 (v / v) to this cell solution, treat at 37 ° C for 5 minutes, and then add 10% (v / v) FBS-containing 1% (v / v) NEAA-containing E-MEM medium to FBS.
  • Add to a final concentration of 1% centrifuge at 1000 rpm for 3 minutes, and resuspend the precipitated cells in a small amount of 1% (v / v) NEAA-containing E-MEM medium to obtain a single cell suspension. Obtained.
  • the obtained cell suspension was seeded on a culture plate or a petri dish, and the cells were subjected to suspension static culture.
  • the medium was changed once every 3 days, and the cells were cultured for 6 days.
  • the culture medium containing the cells is collected in a centrifuge tube, diluted 2 to 5 times with 1% (v / v) NEAA-containing E-MEM medium, centrifuged at 1500 rpm for 5 minutes, and 10% (v / v) cells were collected.
  • This cell-containing layer is resuspended in E-MEM medium containing 0.015% (w / v) deacylated gellan gum, 10% (v / v) FBS, and 1% NEAA at least twice the initial volume before dilution. It became turbid and seeded on a culture plate or petri dish, and the cells were subsequently cultured in a stationary culture.
  • Test Example 8 Cell Recovery after Culture The culture solution containing the LS123 cells cultured in Test Example 7 was collected in a centrifuge tube and centrifuged at 500 rpm for 1 minute. Collect the non-precipitated supernatant fraction, dilute 2-3 times with 1% NEAA-containing E-MEM medium or PBS, and centrifuge at 1500 rpm for 5 minutes to collect 10% (v / v) cells in the lower layer did. Further, the cells were suspended in E-MEM medium or PBS containing 1% (v / v) NEAA containing 5 to 10 times the volume of the residue, and centrifuged again at 1500 rpm for 5 minutes to recover the precipitated cells.
  • the cells were resuspended in a small amount of E-MEM medium containing 1% NEAA to obtain a sphere cell suspension.
  • trypsin solution 1: 1 (v / v) to this cell solution, treat at 37 ° C for 5 minutes, and then add 10% (v / v) FBS-containing 1% (v / v) NEAA-containing E-MEM medium to FBS.
  • Test Example 9 Preparation of a tumor-bearing model
  • Each cancer cell obtained in Test Examples 2, 4, 6 and 8 is medium containing 10% FBS or not containing FBS so as to be 0.5 to 5 ⁇ 10 6 cells / animal / 150 ⁇ L (or 200 ⁇ L). It was diluted with McCoy's 5A medium or E-MEM medium containing 1% NEAA.
  • the cell concentration was doubled as described above, and the cell suspension and Matrigel were mixed 1: 1 (v: v). Seven week old female BALB / c-nu / nu (nude) mice were purchased from CLEA Japan.
  • Test Example 10 Judgment of anticancer drug effect in cancer-bearing model
  • the size of the cancer tissue of the mouse prepared in Test Example 9 was measured once every 2 to 3 days from the first week of transplantation, and the individual with a cancer tissue volume of 200 to 300 mm 3 Administration of test substance or solvent was started. Administration was continued for a period from the start of administration until sufficient growth of cancer tissue in the control group (control group) was achieved. Meanwhile, the size of the cancer tissue was measured once every 2-3 days.
  • FIG. 1 and FIG. 2 show the results of transplantation of HCT116 cells dispersed in a single cell after suspension culture in a medium containing deacylated gellan gum in the presence and absence of Matrigel.
  • non-adherent suspension cultured cells in a medium containing deacylated gellan gum were approximately 110% of non-adherent precipitated cells (cells in non-acylated gellan gum-free medium, cell-free).
  • About 210% of the cancer cells were cultured and were capable of forming cancerous tissue.
  • FIG. 3 shows the result of transplantation in the absence of Matrigel in a medium not containing FBS.
  • cells cultured in suspension in a medium containing deacylated gellan gum showed higher engraftment and cancer organization in mice than adherent monolayer cultured cells.
  • FIG. 4 shows the anticancer drug effect on cancer tissue formation when HCT116 cells dispersed in a single cell after suspension culture in a medium containing deacylated gellan gum and transplanted in the absence of Matrigel.
  • the growth of cancer tissues formed by transplanting cells cultured in suspension in a medium containing deacylated gellan gum is approximately 74% (cancer tissue volume) with the administration of paclitaxel (7 mg / kg / day, 3day / week), Trametinib ( Administration of 3 mg / kg / day, 3 day / week) suppressed about 49% (cancer tissue volume). In addition, the same suppression was observed in cancer weight.
  • FIG. 5 shows a comparison of spheroid transplantation and single cell transplantation in the absence of matrigel in HCT116 cells suspended in suspension in a medium containing deacylated gellan gum. Spheroid transplantation showed about 150% higher engraftment and cancer tissue formation than single cell transplantation with the same number of cells.
  • FIG. 6 shows the effect of an anticancer agent on cancer tissue formation when HCT116 cells suspended in suspension in a medium containing deacylated gellan gum were transplanted in the absence of Matrigel in the form of spheroids. Cancer tissue formation was suppressed by about 35% by administration of Trametinib (3mg / kg / day, 3day / week). The degree of this suppression tended to be comparable or weaker than single cell transplantation.
  • FIG. 7 shows the results of cancer tissue formation when SKOV3 cells dispersed in single cells after suspension culture in a medium containing deacylated gellan gum were transplanted in the absence of Matrigel.
  • transplantation of 6.8 ⁇ 10 5 cells in the absence of Matrigel, cancer engraftment and cancer formation were extremely low in adherent monolayer cultured cells, and evaluation was difficult even at 5 weeks.
  • the cells cultured in suspension in a medium containing deacylated gellan gum remarkable cancer tissues were confirmed from the third week of transplantation, and 685 mm 3 of cancer tissues were formed at the fifth week.
  • FIG. 8 shows the anticancer drug effect on cancer tissue formation when SKOV3 cells dispersed in a single cell after suspension culture in a medium containing deacylated gellan gum and transplanted in the absence of Matrigel.
  • Proliferation of cancer tissue formed by transplanting SKOV3 cells suspended in suspension in a medium containing deacylated gellan gum was suppressed by about 69% (cancer tissue volume) by administration of MK2206 (120 mg / kg / day, 3day / week). It was. In addition, the same suppression was observed in cancer weight.
  • FIG. 9 shows a comparison between spheroid transplantation and single cell transplantation in the absence of matrigel of SKOV3 cells suspended in suspension in a medium containing deacylated gellan gum. Spheroid transplantation showed comparable engraftment and cancer tissue formation compared to single cell transplantation of the same number of cells.
  • FIG. 10 shows the effect of an anticancer agent on cancer tissue formation when SKOV3 cells suspended in suspension in a medium containing deacylated gellan gum were transplanted in the absence of matrigel in the form of spheroids. Cancer tissue formation was suppressed by about 57% (cancer tissue volume) by the administration of MK2206 (120 mg / kg / day, 3 day / week). In addition, the same suppression was observed in cancer weight.
  • FIG. 11 shows the effect of an anticancer agent against cancer formed when MCF7 cells suspended in a deacylated gellan gum-containing medium were transplanted in a spheroid state.
  • Gefitinib 100mg / kg / day, 3day / week suppressed the enlargement of cancer tissue.
  • Test Example 11 Cell Recovery after Culture The culture solution containing the LS123 cells cultured in Test Example 7 was collected in a centrifuge tube and centrifuged at 500 rpm for 1 minute. Collect the non-precipitated supernatant fraction, dilute 2-3 times with 1% (v / v) NEAA-containing E-MEM medium or PBS, and centrifuge at 1500 rpm for 5 minutes to obtain 10% (v / v) of the lower layer. ) Cells were collected. Furthermore, it was suspended in 5% to 10 times the volume of 1% (v / v) NEAA-containing E-MEM medium or PBS, and centrifuged again at 1500 rpm for 5 minutes to recover the precipitated cells. The cells were resuspended in a small amount of 1% (v / v) NEAA-containing E-MEM medium to obtain a sphere cell suspension.
  • Test Example 12 Creation of a tumor-bearing model
  • the E-MEM medium containing 1% NEAA so that the cancer cells obtained in Test Example 11 are 6 ⁇ 10 6 cells / animal / 200 ⁇ L in 2D culture and 3 ⁇ 10 6 cells / animal / 250 ⁇ L in DAG suspension culture.
  • the cell suspension and Matrigel were mixed 1: 1 (v: v) for 2D culture and 2.5: 1 (v: v) for DAG suspension culture.
  • Seven week old female BALB / c-nu / nu (nude) mice were purchased from CLEA Japan.
  • both 2D cultured cells and DAG suspension cultured cells were observed to have tumors like cancer tissues one week after transplantation.
  • the size of DAG suspension cultured cells was almost double even though the number of cells was half that of 2D cultured cells.
  • the tumor formed in the 2D cultured cells was small and disappeared after the second week, and the formation of the tumor was not confirmed in the DAG suspension cultured cells.
  • the present invention provides a cancer-bearing mammal model that is excellent in versatility, economy, convenience, and / or clinical extrapolation.
  • the engraftment rate and the growth ability of cancer cells in vivo are improved, so that it is possible to create a cancer-bearing mammal having a large tumor tissue with a small number of cancer cells in a short period of time. It becomes.
  • a medium composition capable of culturing cells or cell aggregates or tissues while maintaining a floating state without substantially increasing the viscosity in a liquid medium, and the cells or cells obtained by the culture Aggregates are thought to provide a culture environment that approximates the cancer tissue in an actual living body. It is also possible to create a cancer-bearing animal model using non-immune-deficient animals. Therefore, it is possible to expect a tumor tissue that is more similar to an actual clinical case.
  • the cancer-bearing mammal model created by the method of the present invention is useful for cancer characteristic evaluation, individual cancer diagnosis, anticancer agent evaluation and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 本発明は、以下の工程を含む、担癌非ヒト哺乳動物の作成方法を提供する: (1)細胞または組織を浮遊させて培養できる構造体を含有する培地組成物中で、癌細胞を浮遊培養すること;及び (2)(1)の培養により得られた癌細胞を非ヒト哺乳動物に移入すること。

Description

担癌哺乳動物モデルの作成方法
 本発明は、担癌哺乳動物の作成方法に関する。より詳細には、本発明は、特定の培地組成物中で浮遊培養した腫瘍細胞を非ヒト哺乳動物に移入することを特徴とする担癌哺乳動物の作成方法に関する。
 マウス担癌モデルは、抗がん剤のin vivoでの薬効評価や、癌組織から単離した癌細胞あるいは遺伝子操作などで創出した癌細胞の生体内での成育能や転移能などの特性を評価するうえで重要な位置づけにある実験系である。また、新たなヒト癌細胞株の樹立は、患者癌組織から調製した初代癌細胞を担癌モデルにおいて継代培養することにより行われる。ヒト腫瘍のマウス担癌モデルにおいては、ヒトの細胞をマウス生体に移植するため、移植されたヒト癌細胞はマウスの免疫攻撃を受ける。そのため、ホストとなるマウスには免疫不全マウスが用いられる。最も一般的な免疫不全マウスとしてヌードマウスが用いられる。生育能の低い癌細胞では、基底膜調製物であるマトリゲル等の癌微小環境を構築する細胞外マトリックスと共にマウスへ移植することにより、生着率を上昇させる必要がある。非特許文献1、2、3、4、5、6では、単層培養癌細胞をマトリゲル存在下で移植する方法で担癌モデルを作成しているが、癌組織が100mm3程度に成長してから抗癌剤投与を行っている。A549では3x106細胞の移植で早く且つ高い癌組織形成と抗癌剤評価が可能であるが、MCF7細胞では4x106~5x106細胞の移植で4~8週、JIMT-1細胞では7.5x106細胞の移植で25日の飼育を要しており、MCF-7細胞あるいはSKOV3細胞での抗癌剤の評価では、癌組織が100mm3から500mm3(あるいは抗癌剤投与前から3~4倍)まで成長する各々25~30日(約1ヶ月)あるいは17日を要している。また、マトリゲルはマウス癌組織由来であるため、ヒト癌細胞をマトリゲル存在下で移植すると、実際のヒト癌組織内とは異なる環境となるため、ヒトへの外挿性の観点からは十分満足できる系ではない。一方、マトリゲルを使わずにヌードマウスに生着率の低い癌細胞を移植する場合、抗癌剤評価に実用上使用可能な担癌マウスを樹立するためには、1匹あたり更に大量の細胞と長期間の飼育観察が必要であることから、実験結果の精度のばらつきや実験者への物理的な負担と問題が生じる。また、免疫耐性の低い癌細胞または免疫耐性が不明な新規な癌細胞や、生育能の低い癌細胞では、よりシビアな免疫不全マウス、たとえばNOD-scidマウスが、担癌マウスの樹立に用いられる。しかし、NOD-scidマウスはストレスや病原菌感染に弱く飼育に細心の注意を要するため、抗癌剤評価のモデル動物としては汎用性が低い。また、最近では、癌免疫療法および抗腫瘍免疫薬が開発されており、そのための免疫不全でない正常マウスを用いるモデルの開発が求められている。
 従来、担癌モデル作成のための移植に用いられる癌細胞は、細胞接着性プレート上で単層に培養したのち、細胞をトリプシンで酵素処理にて回収して用いられている。また、癌組織をコラゲナーゼなどで酵素処理して得られた細胞分散液にマトリゲルを添加混合して移植に用いている。これらの方法では、足場依存性増殖が細胞増殖の基幹となり、本来、足場非依存性増殖を基本とする癌細胞の本来の生体での特性が変化してしまう。更に、生体内での癌組織の生育に多量の細胞や長期間の飼育が必要となる場合がある。そのため、従来の担癌マウスモデルは、抗癌剤評価のモデルとしての汎用性、実験研究の経済性、利便性、及び臨床への外挿性において満足いくものではない。
 本発明者らは、液体培地中の粘度を実質的に高めることなく、浮遊状態を維持したまま、細胞や組織を足場非依存的に培養することが可能な培地組成物の開発に成功している(特許文献1及び2)。
WO2014/017513 A1 US2014/0106348 A1
Cancer Research, 58, 2825-2831 (1998) Clinical Cancer Research, 5, 3632-3638 (1999) Int. J. Cancer, 120, 181-188 (2006) Clinical Cancer Research, 19, 5413-5422 (2013) Mol Cancer Ther., 9, 1956-1967 (2010) Neoplasia, 14, 324-334 (2012)
 本発明の目的は、癌細胞の生着率が高く、免疫不全の有無にかかわらず汎用性の高い担癌哺乳動物の作成方法を提供することである。また、本発明の目的は、臨床への外挿性に優れた担癌哺乳動物の作成方法と抗癌剤のスクリーニング方法を提供することである。
 本発明者らは、液体培地中の粘度を実質的に高めることなく、浮遊状態を維持したまま、細胞や組織を培養することが可能な培地組成物中で癌細胞を浮遊培養した上で、これをレシピエント哺乳動物に移植することにより、生体における生着率及び生育能が向上することを見出した。その結果、少ない数の癌細胞で、大きな腫瘍組織を有する担癌哺乳動物を、短期間で作成することが可能となった。また、マトリゲル等の細胞外マトリクスと共に移植しなければほとんど生着せず、腫瘍組織化しない癌細胞も、上記浮遊培養に付すことにより、細胞外マトリクスなし条件下での移植でも、生体内に生着し、腫瘍組織化した。更に、本液体培地にて培養することで、癌細胞の細胞凝集塊の大きさを最適化することが可能であり、その細胞凝集塊をトリプシンなどの酵素処理を施すことなく細胞にダメージを与えることなく回収することができ、細胞凝集塊のまま移植することが可能となった。
 このような知見に基づき、更に検討を加え、本発明を完成した。
 すなわち、本発明は下記のとおりである:
[1]以下の工程を含む、担癌非ヒト哺乳動物の作成方法:
(1)細胞または組織を浮遊させて培養できる構造体を含有する培地組成物中で、癌細胞を浮遊培養すること;及び
(2)(1)の培養により得られた癌細胞を非ヒト哺乳動物に移入すること。
[2]更に、以下の工程を含む、[1]記載の方法:
(3)癌細胞を移入した非ヒト哺乳動物を飼育し、移入した癌細胞から腫瘍組織を形成させること。
[3](2)において、基底膜調製物を含有する生理的水性組成物中に懸濁された癌細胞が非ヒト哺乳動物に移入される、[1]又は[2]記載の方法。
[4](2)において、基底膜調製物を実質的に含有しない生理的水性組成物中に懸濁された癌細胞が非ヒト哺乳動物に移入される、[1]又は[2]記載の方法。
[5]非ヒト哺乳動物が、免疫不全非ヒト哺乳動物である、[1]~[4]のいずれか記載の方法。
[6]癌細胞が、移入する非ヒト哺乳動物に対して同種異系又は異種である、[5]記載の方法。
[7]癌細胞が、ヒト癌細胞である、[6]記載の方法。
[8]癌細胞が、固形腫瘍を形成する能力を有する、[1]~[7]のいずれか記載の方法。
[9]前記構造体が脱アシル化ジェランガムを含む、[1]~[8]のいずれか記載の方法。
[10]培地組成物中の脱アシル化ジェランガム濃度が0.005~0.3%(w/v)である、[9]記載の方法。
[11]培地組成物の37℃における粘度が、8mPa・s以下である、[1]~[10]のいずれか記載の方法。
[12]以下の工程を含む、抗癌剤のスクリーニング方法:
(1)[1]~[11]のいずれか記載の方法により作成した担癌非ヒト哺乳動物に被検化合物を投与すること;
(2)(1)で得た担癌非ヒト哺乳動物における腫瘍組織の大きさを測定すること;
(3)(2)で測定した腫瘍組織の大きさを、被検化合物を投与していないコントロール担癌非ヒト哺乳動物の腫瘍組織の大きさと比較すること。
[13]細胞または組織を浮遊させて培養できる構造体を含有する培地組成物中で、癌細胞を浮遊培養することを含む、該癌細胞の非ヒト哺乳動物内への生着を促進する方法。
 本発明により、汎用性、経済性、利便性、及び/又は臨床への外挿性に優れた担癌哺乳動物モデルが提供される。本発明により、癌細胞の生体内移植時の生体における生着率及び生育能が向上するので、より少ない数の癌細胞で、腫瘍組織を有する担癌哺乳動物を、より短期間で作成することが可能となる。また、マトリゲル等の細胞外マトリクスと共に移植しなければほとんど生着せず、腫瘍組織化しない癌細胞を、細胞外マトリクスの存在しない条件下で、生体内に生着させ、腫瘍組織化することが可能である。また、液体培地中の粘度を実質的に高めることなく、浮遊状態を維持したまま、細胞や組織を培養することが可能な培地組成物および、その組成物含有培地にて培養した細胞凝集塊は、実際の生体での癌組織内に近似した培養環境を提供すると考えられるので、実際の臨床ケースにより近似した腫瘍組織の再現が期待できる。また、非免疫不全動物を用いた担癌動物モデルの作成も可能と考えられる。本発明の方法により作成される担癌哺乳動物モデルは、癌特性評価、癌個別診断、抗がん剤評価等に有用である。
移植したHCT116細胞による癌組織形成を示す。縦軸は腫瘍体積を示す。Attach-2D:接着培養。Low attach:脱アシル化ジェランガム不含培地中、細胞非接着性プレート上で培養。FP001-3D:脱アシル化ジェランガム含有培地中で浮遊培養。Matrigel:マトリゲル存在下で移植。Medium:マトリゲル非存在下で移植。 移植したHCT116細胞による癌組織形成を示す。縦軸は腫瘍体積を示す。Attach-2D:接着培養。Low attach:脱アシル化ジェランガム不含培地中、細胞非接着性プレート上で培養。FP001-3D:脱アシル化ジェランガム含有培地中で浮遊培養。 移植したHCT116細胞による癌組織形成を示す。縦軸は腫瘍体積を示す。(FBS):FBS含有培地を用いて移植。(-):FBS不含培地を用いて移植。二次元:接着培養。FP001:脱アシル化ジェランガム含有培地中で浮遊培養。 脱アシル化ジェランガム含有培地中で浮遊培養した後に単一細胞に分散したHCT116細胞をマトリゲル非存在下で移植した際の癌組織形成に対する抗癌剤効果。縦軸は腫瘍体積(左パネル)及び腫瘍組織重量(右パネル)を示す。 スフェロイド移植と単一細胞移植との間の癌組織形成の比較。脱アシル化ジェランガム含有培地中で浮遊培養したHCT116細胞をマトリゲル非存在下で移植した。縦軸は腫瘍体積を示す。 脱アシル化ジェランガム含有培地中で浮遊培養したHCT116細胞をスフェロイドの状態でマトリゲル非存在下移植した際の癌組織形成に対するTrametinibの効果。縦軸は腫瘍体積(左パネル)及び腫瘍組織重量(右パネル)を示す。 脱アシル化ジェランガム含有培地中で浮遊培養した後に単一細胞に分散したSKOV3細胞をマトリゲル非存在下で移植した際の癌組織形成。2D:接着培養。FP001:脱アシル化ジェランガム含有培地中で浮遊培養。縦軸は腫瘍体積を示す。 脱アシル化ジェランガム含有培地中で浮遊培養した後に単一細胞に分散したSKOV3細胞をマトリゲル非存在下で移植した際の癌組織形成に対する抗癌剤の効果。縦軸は腫瘍体積(左パネル)及び腫瘍組織重量(右パネル)を示す。 スフェロイド移植と単一細胞移植との間の癌組織形成の比較。脱アシル化ジェランガム含有培地中で浮遊培養したSKOV3細胞をマトリゲル非存在下で移植した。縦軸は腫瘍体積を示す。 脱アシル化ジェランガム含有培地中で浮遊培養したSKOV3細胞をスフェロイドの状態でマトリゲル非存在下移植した際の癌組織形成に対するMK2206の効果。縦軸は腫瘍体積(左パネル)及び腫瘍組織重量(右パネル)を示す。 脱アシル化ジェランガム含有培地中で浮遊培養したMCF7細胞をスフェロイドの状態でマトリゲル非存在下にて移植した際の癌組織形成に対するGefitinibの効果。 脱アシル化ジェランガム含有培地中で浮遊培養したLS123細胞をマトリゲルの存在下(matrigel)又はマトリゲル非存在下(-)にて移植した際の癌組織形成。2D:接着培養。FP3D:脱アシル化ジェランガム含有培地中で浮遊培養。縦軸は腫瘍体積を示す。
(1)本発明に用いる培地組成物
 本発明は、浮遊状態を維持したまま、細胞や組織を培養することが可能な培地組成物を用いて癌細胞を浮遊培養することを含む、担癌非ヒト哺乳動物の作成技術を提供する。当該培地組成物は、浮遊状態を維持したまま、評価対象の癌細胞やこれを含む組織を培養することを可能にする。当該培地組成物は、WO2014/017513 A1及びUS2014/0106348 A1の記載に従い、調製することが可能である。以下、当該培地組成物を培地組成物Iと称することがある。
 細胞とは、動物を構成する最も基本的な単位であり、その要素として細胞膜の内部に細胞質と各種の細胞小器官をもつものである。
 本発明において用いる癌細胞は、哺乳動物の癌細胞である。哺乳動物としては、例えば、マウス、ラット、ハムスター、モルモット等のげっ歯類、ウサギ等のウサギ目、ブタ、ウシ、ヤギ、ウマ、ヒツジ等の有蹄目、イヌ、ネコ等のネコ目、ヒト、サル、アカゲザル、カニクイザル、マーモセット、オランウータン、チンパンジーなどの霊長類等を挙げることが出来る。哺乳動物は、好ましくはげっ歯類(マウス等)又は霊長類であり、より好ましくはヒトである。
 癌の例としては、以下に限定されるものではないが、胃癌、食道癌、大腸癌、結腸癌、直腸癌、膵臓癌、乳癌、卵巣癌、前立腺癌、扁平上皮細胞癌、基底細胞癌、腺癌、骨髄癌、腎細胞癌、尿管癌、肝癌、胆管癌、子宮頚癌、子宮内膜癌、精巣癌、小細胞肺癌、非小細胞肺癌、膀胱癌、上皮癌、頭蓋咽頭癌、喉頭癌、舌癌、線維肉腫、粘膜肉腫、脂肪肉腫、軟骨肉腫、骨原性肉腫、脊索腫、血管肉腫、リンパ管肉腫、リンパ管内皮肉腫、滑膜腫、中皮腫、ユーイング腫瘍、平滑筋肉腫、横紋筋肉腫、精上皮腫、ウィルムス腫瘍、神経膠腫、星状細胞腫、骨髄芽種、髄膜腫、黒色腫、神経芽細胞腫、髄芽腫、網膜芽細胞腫、悪性リンパ腫、癌患者由来の血液等の組織が挙げられる。癌細胞は、癌患者から採取した癌組織から酵素などで単離した癌細胞(初代培養)であってもよいし、株化された癌細胞株であってもよい。癌細胞株の例としては、以下に限定されるものではないが、ヒト乳癌細胞株としてHBC-4、BSY-1、BSY-2、MCF-7、MCF-7/ADR RES、HS578T、MDA-MB-231、MDA-MB-435、MDA-N、BT-549、T47D、ヒト子宮頸癌細胞株としてHeLa、ヒト肺癌細胞株としてA549、EKVX、HOP-62、HOP-92、NCI-H23、NCI-H226、NCI-H322M、NCI-H460、NCI-H522、DMS273、DMS114、ヒト大腸癌細胞株としてCaco-2、COLO-205、HCC-2998、HCT-15、HCT-116、HT-29、KM-12、SW-620、WiDr、ヒト前立腺癌細胞株としてDU-145、PC-3、LNCaP、ヒト中枢神経系癌細胞株としてU251、SF-295、SF-539、SF-268、SNB-75、SNB-78、SNB-19、ヒト卵巣癌細胞株としてOVCAR-3、OVCAR-4、OVCAR-5、OVCAR-8、SK-OV-3、IGROV-1、ヒト腎癌細胞株としてRXF-631L、ACHN、UO-31、SN-12C、A498、CAKI-1、RXF-393L、786-0、TK-10、ヒト胃癌細胞株としてAGS、MKN45、MKN28、St-4、MKN-1、MKN-7、MKN-74、皮膚癌細胞株としてLOX-IMVI、LOX、MALME-3M、SK-MEL-2、SK-MEL-5、SK-MEL-28、UACC-62、UACC-257、M14、白血病細胞株としてCCRF-CRM、K562、MOLT-4、HL-60TB、RPMI8226、SR、UT7/TPO、Jurkat、ヒト上皮様癌細胞株としてA431、ヒトメラノーマ細胞株としてA375、ヒト骨肉腫細胞株としてHOS、MNMG、MNNG/HOS、ヒト膵臓癌細胞株としてBxPC3、COLO-357HPAC、MIAPaCa-2、Panc-1、ヒト結腸癌細胞株としてLS123等が挙げられる。細胞株の例としては、以下に限定されるものではないが、HEK293(ヒト胎児腎細胞)、MDCK、MDBK、BHK、C-33A、AE-1、3D9、Ns0/1、NIH3T3、PC12、S2、Sf9、Sf21、High Five(登録商標)、Vero等が含まれる。
 本発明における細胞(または細胞凝集塊)及び/又は組織の浮遊とは、培養容器に対して細胞(または細胞凝集塊)及び/又は組織が底面に対し接触はし得るが付着しない状態(非接着)であることをいう。更に、本発明において、細胞(または細胞凝集塊)及び/又は組織を増殖、分化或いは維持させる際、液体培地組成物に対する外部からの圧力や振動或いは当該組成物中での振とう、回転操作等を伴わずに細胞(または細胞凝集塊)及び/又は組織が当該液体培地組成物中で均一に分散しなおかつ浮遊状態にある状態を「浮遊静置」といい、当該状態で細胞(または細胞凝集塊)及び/又は組織を培養することを「浮遊静置培養」という。また、「浮遊静置」において浮遊させることのできる期間としては、5分以上、1時間以上、24時間以上、48時間以上、7日以上等が含まれるが、浮遊状態を保つ限りこれらの期間に限定されない。
 本発明に用いる培地組成物は、細胞や組織の維持や培養が可能な温度範囲(例えば、0~40℃)の少なくとも1点において、細胞(または細胞凝集塊)及び/又は組織の浮遊静置が可能である。本発明に用いる培地組成物は、好ましくは25~37℃の温度範囲の少なくとも1点において、最も好ましくは37℃において、細胞(または細胞凝集塊)及び/又は組織の浮遊静置が可能である。
 浮遊静置が可能か否かは、例えば、培養対象の細胞を、2×104cells/mlの濃度で、評価対象の培地組成物中に均一に分散させ、15mlコニカルチューブ中に10ml注入し、少なくとも5分以上(例、1時間以上、24時間以上、48時間以上、7日以上)、37℃にて静置し、当該細胞の浮遊状態が維持されるか否かを観察することにより、評価することができる。全細胞のうちの70%以上が浮遊状態の場合、浮遊状態が維持されたと結論できる。細胞に代えて、ポリスチレンビーズ(Size 500-600μm、Polysciences Inc.製)に代替して評価してもよい。
 本発明に用いる培地組成物は、細胞(または細胞凝集塊)または組織を浮遊させて培養できる(好ましくは浮遊静置培養できる)構造体と培地を含有する組成物である。
 本発明に用いる培地組成物は、好ましくは、培養時の培地組成物の交換処理及び培養終了後において、培地組成物からの細胞(または細胞凝集塊)または組織の回収が可能である組成物であり、より好ましくは、培地組成物からの細胞(または細胞凝集塊)または組織の回収の際に、温度変化、化学処理、酵素処理、せん断力のいずれも必要としない組成物である。
 本発明における構造体とは、特定化合物から形成されたもので、細胞(または細胞凝集塊)及び/又は組織を均一に浮遊させる効果を示すものである。より詳細には、高分子化合物がイオンを介して集合したもの、あるいは、高分子化合物が三次元のネットワークを形成したもの等が含まれる。また、多糖類が金属イオンを介してマイクロゲルを形成することは公知であり(例えば、特開2004-129596号公報)、本発明の構造体には、一態様として当該マイクロゲルも含まれる。
 また、高分子化合物がイオンを介して集合したものとしては、その一態様としてフィルム状の構造体が挙げられる。
 本発明における構造体の大きさは、フィルターで濾過した場合、孔径が0.2μm乃至200μmのフィルターを通過するものが好ましい。当該孔径の下限としては、より好ましくは、1μmを超えるものであり、安定に細胞(または細胞凝集塊)または組織を浮遊させることを考慮すると、更に好ましくは5μmを超えるものである。当該孔径の上限としては、より好ましくは、100μm以下のもの、細胞(または細胞凝集塊)または組織の大きさを考慮すると、更に好ましくは70μm以下のものである。
 本発明における特定化合物とは、特定化合物を液体培地と混合した際、不定形な構造体を形成し、当該構造体が当該液体中で均一に分散し、当該液体の粘度を実質的に高めること無く細胞及び/又は組織を実質的に保持し、その沈降を防ぐ効果を有するものである。「液体の粘度を実質的に高めない」とは、液体の粘度が8mPa・sを上回らないことを意味する。この際の当該液体の粘度(すなわち、本発明に用いる培地組成物の粘度)は、37℃において、8mPa・s以下であり、好ましくは4mPa・s以下であり、より好ましくは2mPa・s以下である。更に、当該構造体を液体培地中に形成し、当該液体の粘度を実質的に高めること無く細胞(または細胞凝集塊)及び/又は組織を均一に浮遊させる(好ましくは浮遊静置させる)効果を示すものであれば、特定化合物の化学構造、分子量、物性等は何ら制限されない。
 構造体を含む液体の粘度は、例えば後述の実施例に記載の方法で測定することができる。具体的には37℃条件下でE型粘度計(東機産業株式会社製、TV-22型粘度計、機種:TVE-22L、コーンロータ:標準ロータ 1°34´×R24、回転数100rpm)を用いて測定することができる。
 本発明に用いる培地組成物は、当該培地組成物中で癌細胞を浮遊培養することにより、これをレシピエント哺乳動物に移植した際の、生体における生着率及び生育能の向上を達成し得る限り、特定化合物によりその粘度が高められている(液体の粘度が8mPa・sを上回る)ことを妨げるものではないが、好ましくは、本発明に用いる培地組成物の粘度は、実質的に高められていない(粘度が8mPa・sを上回らない)。本発明に用いる培地組成物の粘度は、37℃において、8mPa・s以下であり、好ましくは4mPa・s以下であり、より好ましくは2mPa・s以下である。
 本発明に用いる特定化合物の例としては、特に制限されるものではないが、高分子化合物が挙げられ、好ましくはアニオン性の官能基を有する高分子化合物が挙げられる。
 アニオン性の官能基としては、カルボキシ基、スルホ基、リン酸基及びそれらの塩が挙げられ、カルボキシ基またはその塩が好ましい。
 本発明に用いる高分子化合物は、前記アニオン性の官能基の群より選択される1種又は2種以上を有するものを使用できる。
 本発明に用いる高分子化合物の好ましい具体例としては、特に制限されるものではないが、単糖類(例えば、トリオース、テトロース、ペントース、ヘキソース、ヘプトース等)が10個以上重合した多糖類が挙げられ、より好ましくは、アニオン性の官能基を有する酸性多糖類が挙げられる。ここにいう酸性多糖類とは、その構造中にアニオン性の官能基を有すれば特に制限されないが、例えば、ウロン酸(例えば、グルクロン酸、イズロン酸、ガラクツロン酸、マンヌロン酸)を有する多糖類、構造中の一部に硫酸基又はリン酸基を有する多糖類、或いはその両方の構造を持つ多糖類であって、天然から得られる多糖類のみならず、微生物により産生された多糖類、遺伝子工学的に産生された多糖類、或いは酵素を用いて人工的に合成された多糖類も含まれる。より具体的には、ヒアルロン酸、ジェランガム、脱アシル化ジェランガム(以下、DAGという場合もある)、ラムザンガム、ダイユータンガム、キサンタンガム、カラギーナン、ザンタンガム、ヘキスロン酸、フコイダン、ペクチン、ペクチン酸、ペクチニン酸、ヘパラン硫酸、ヘパリン、ヘパリチン硫酸、ケラト硫酸、コンドロイチン硫酸、デルマタン硫酸、ラムナン硫酸及びそれらの塩からなる群より1種又は2種以上から構成されるものが例示される。多糖類は、好ましくは、ヒアルロン酸、DAG、ダイユータンガム、キサンタンガム、カラギーナン又はそれらの塩であり、低濃度の使用で細胞又は組織を浮遊させることができ、かつ細胞又は組織の回収のし易さを考慮すると、最も好ましくは、DAGである。
 ここでいう塩とは、例えば、リチウム、ナトリウム、カリウムといったアルカリ金属の塩、カルシウム、バリウム、マグネシウムといったアルカリ土類金属の塩又はアルミニウム、亜鉛、銅、鉄、アンモニウム、有機塩基及びアミノ酸等の塩が挙げられる。
 これらの高分子化合物(多糖類等)の重量平均分子量は、好ましくは10,000乃至50,000,000であり、より好ましくは100,000乃至20,000,000、更に好ましくは1,000,000乃至10,000,000である。例えば、当該分子量は、ゲル浸透クロマトグラフィー(GPC)によるプルラン換算で測定できる。
 更に、DAGはリン酸化したものを使用することもできる。当該リン酸化は公知の手法で行うことができる。
 本発明においては、上記多糖類を複数種(好ましくは2種)組み合わせて使用することができる。多糖類の組み合わせの種類は、上述の構造体を液体培地中に形成し、当該液体培地の粘度を実質的に高めること無く細胞(または細胞凝集塊)及び/又は組織を均一に浮遊させる(好ましくは浮遊静置させる)ことのできるものあれば特に限定されないが、好ましくは、当該組合せは少なくともDAG又はその塩を含む。即ち、好適な多糖類の組合せには、DAG又はその塩、及びDAG又はその塩以外の多糖類(例、キサンタンガム、アルギン酸、カラギーナン、ダイユータンガム、メチルセルロース、ローカストビーンガム又はそれらの塩)が含まれる。具体的な多糖類の組み合わせとしては、DAGとラムザンガム、DAGとダイユータンガム、DAGとキサンタンガム、DAGとカラギーナン、DAGとザンタンガム、DAGとローカストビーンガム、DAGとκ-カラギーナン、DAGとアルギン酸ナトリウム、DAGとメチルセルロース等が挙げられるが、これらに限定されない。
 本発明に用いる特定化合物の更に好ましい具体例としては、ヒアルロン酸、脱アシル化ジェランガム、ダイユータンガム、カラギーナン及びキサンタンガム、並びにそれらの塩が挙げられ、培地組成物の粘度を低くできる点と細胞または組織の回収のし易さの点を考慮すると、最も好ましい例としては脱アシル化ジェランガムまたはその塩が挙げられる。
 本発明における脱アシル化ジェランガムとは、1-3結合したグルコース、1-4結合したグルクロン酸、1-4結合したグルコース及び1―4結合したラムノースの4分子の糖を構成単位とする直鎖状の高分子多糖類であり、以下の一般式(I)において、R1、R2が共に水素原子であり、nは2以上の整数で表わされる多糖類である。ただし、R1がグリセリル基を、R2がアセチル基を含んでいてもよいが、アセチル基及びグリセリル基の含有量は、好ましくは10%以下であり、より好ましくは1%以下である。
 本発明における構造体は特定化合物により様々な形態となるが、脱アシル化ジェランガムの場合について記載すると、脱アシル化ジェランガムは、液体培地と混合した際に、液体培地中の金属イオン(例えば、カルシウムイオン)を取り込み、当該金属イオンを介した不定形な構造体を形成し、細胞(または細胞凝集塊)及び/又は組織を浮遊させる。脱アシル化ジェランガムから調製される本発明に用いる培地組成物の粘度は、8mPa・s以下であり、好ましくは4mPa・s以下であり、細胞(または細胞凝集塊)または組織の回収のし易さの点を考慮すると、より好ましくは2mPa・s以下である。
Figure JPOXMLDOC01-appb-C000001
 本発明における特定化合物は、化学合成法でも得ることができるが、当該化合物が天然物である場合は、当該化合物を含有している各種植物、各種動物、各種微生物から慣用技術を用いて抽出及び分離精製することにより得るのが好適である。その抽出においては、水や超臨界ガスを用いると当該化合物を効率よく抽出できる。例えば、ジェランガムの製造方法としては、発酵培地で生産微生物を培養し、菌体外に生産された粘膜物を通常の精製方法にて回収し、乾燥、粉砕等の工程後、粉末状にすればよい。また、脱アシル化ジェランガムの場合は、粘膜物を回収する際にアルカリ処理を施し、1-3結合したグルコース残基に結合したグリセリル基とアセチル基を脱アシル化した後に回収すればよい。精製方法としては、例えば、液-液抽出、分別沈澱、結晶化、各種のイオン交換クロマトグラフィー、セファデックスLH-20等を用いたゲル濾過クロマトグラフィー、活性炭、シリカゲル等による吸着クロマトグラフィーもしくは薄層クロマトグラフィーによる活性物質の吸脱着処理、あるいは逆相カラムを用いた高速液体クロマトグラフィー等を単独あるいは任意の順序に組み合わせ、また反復して用いることにより、不純物を除き精製することができる。ジェランガムの生産微生物の例としては、これに限定されるものではないが、スフィンゴモナス・エロディア(Sphingomonas elodea)及び当該微生物の遺伝子を改変した微生物が挙げられる。
 そして、脱アシル化ジェランガムの場合、市販のもの、例えば、三晶株式会社製「KELCOGEL(シーピー・ケルコ社の登録商標)CG-LA」、三栄源エフ・エフ・アイ株式会社製「ケルコゲル(シーピー・ケルコ社の登録商標)」等を使用することができる。また、ネイティブ型ジェランガムとして、三栄源エフ・エフ・アイ株式会社製「ケルコゲル(シーピー・ケルコ社の登録商標)HT」等を使用することができる。
 培地中での特定化合物の濃度は、特定化合物の種類に依存し、特定化合物が上述の構造体を液体培地中に形成し、(好ましくは、当該液体培地の粘度を実質的に高めること無く)細胞(または細胞凝集塊)及び/又は組織を均一に浮遊させる(好ましくは浮遊静置させる)ことのできる範囲で、適宜設定することができるが、通常0.0005%乃至1.0%(w/v)、好ましくは0.001%乃至0.4%(w/v)、より好ましくは0.005%乃至0.1%(w/v)、更に好ましくは0.005%乃至0.05%(w/v)となるようにすれば良い。例えば、脱アシル化ジェランガムの場合、0.001%乃至1.0%(w/v)、好ましくは0.003%乃至0.5%(w/v)、より好ましくは0.005%乃至0.3%(w/v)、更に好ましくは0.01%乃至0.05%(w/v)、最も好ましくは、0.01%乃至0.03%(w/v)培地中に添加すれば良い。キサンタンガムの場合、0.001%乃至5.0%(w/v)、好ましくは0.01%乃至1.0%(w/v)、より好ましくは0.05%乃至0.5%(w/v)、最も好ましくは、0.1%乃至0.2%(w/v)培地中に添加すれば良い。κ-カラギーナンおよびローカストビーンガム混合系の場合、両化合物の総和として、0.001%乃至5.0%(w/v)、好ましくは0.005%乃至1.0%(w/v)、より好ましくは0.01%乃至0.1%(w/v)、最も好ましくは、0.03%乃至0.05%(w/v)培地中に添加すれば良い。ネイティブ型ジェランガムの場合、0.05%乃至1.0%(w/v)、好ましくは、0.05%乃至0.1%(w/v)培地中に添加すれば良い。
 上記多糖類を複数種(好ましくは2種)組み合わせて使用する場合、当該多糖類の濃度は、当該多糖類の組み合わせが上述の構造体を液体培地中に形成し、(好ましくは、当該液体培地の粘度を実質的に高めること無く)細胞(または細胞凝集塊)及び/又は組織を均一に浮遊させる(好ましくは浮遊静置させる)ことのできる範囲で、適宜設定することができる。例えば、DAG又はその塩と、DAG又はその塩以外の多糖類との組合せを用いる場合、DAG又はその塩の濃度としては0.005~0.02%(w/v)、好ましくは0.01~0.02%(w/v)が例示され、DAG又はその塩以外の多糖類の濃度としては、0.0001~0.4%(w/v)、好ましくは0.005~0.4%(w/v)、より好ましくは0.1~0.4%(w/v)が例示される。具体的な濃度範囲の組合せとしては、以下が例示される。
DAG又はその塩:0.005~0.02%(好ましくは0.01~0.02%)(w/v)
DAG以外の多糖類
キサンタンガム:0.1~0.4%(w/v)
アルギン酸ナトリウム:0.0001~0.4%(w/v)(好ましくは、0.1~0.4%(w/v))
ネイティブジェランガム:0.0001~0.4%(w/v)
ローカストビーンガム:0.1~0.4%(w/v)
メチルセルロース:0.1~0.4%(w/v)(好ましくは0.2~0.4%(w/v))
カラギーナン:0.05~0.1%(w/v)
ダイユータンガム:0.05~0.1%(w/v)
 なお該濃度は、以下の式で算出できる。
 濃度[%(w/v)]=特定化合物の重量(g)/培地組成物の容量(ml)×100
 前記化合物は、化学合成法によって更に別の誘導体に変えることもでき、そのようにして得た当該誘導体も、本発明において有効に使用できる。具体的には、脱アシル化ジェランガムの場合、その一般式(I)で表される化合物のR1及び/又はR2に当たる水酸基を、C1-3アルコキシ基、C1-3アルキルスルホニル基、グルコースあるいはフルクトースなどの単糖残基、スクロース、ラクトースなどのオリゴ糖残基、グリシン、アルギニンなどのアミノ酸残基などに置換した誘導体も本発明に使用できる。また、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDC)等のクロスリンカーを用いて当該化合物を架橋することもできる。
 本発明に使用される特定化合物或いはその塩は製造条件により任意の結晶形として存在することができ、任意の水和物として存在することができるが、これら結晶形や水和物及びそれらの混合物も本発明の範囲に含有される。また、アセトン、エタノール、テトラヒドロフランなどの有機溶媒を含む溶媒和物として存在することもあるが、これらの形態はいずれも本発明の範囲に含有される。
 本発明に使用される特定化合物は、環内或いは環外異性化により生成する互変異性体、幾何異性体、互変異性体若しくは幾何異性体の混合物、又はそれらの混合物の形で存在してもよい。本発明の化合物は、異性化により生じるか否かに拘わらず、不斉中心を有する場合は、分割された光学異性体或いはそれらを任意の比率で含む混合物の形で存在してよい。
 本発明に用いる培地組成物には、金属イオン、例えば2価の金属イオン(カルシウムイオン、マグネシウムイオン、亜鉛イオン、鉄イオンおよび銅イオン等)が存在してもよく、好ましくはカルシウムイオンを含有する。当該金属イオンは、例えばカルシウムイオンとマグネシウムイオン、カルシウムイオンと亜鉛イオン、カルシウムイオンと鉄イオン、カルシウムイオンと銅イオンのように、2種類以上を組み合わせて使用することができる。当業者は適宜その組み合わせを決定することができる。一態様において、培地組成物に金属イオン(例、カルシウムイオン)が含まれることにより、高分子化合物が当該金属イオンを介して集合し、高分子化合物が三次元ネットワークを形成することにより(例えば、多糖類が金属イオン(例、カルシウムイオン)を介してマイクロゲルを形成することにより)本発明の構造体が形成される。金属イオンの濃度は、特定化合物が上述の構造体を液体培地中に形成し、(好ましくは、当該液体培地の粘度を実質的に高めること無く)細胞(または細胞凝集塊)及び/又は組織を均一に浮遊させる(好ましくは浮遊静置させる)ことのできる範囲で、適宜設定することができる。金属イオン濃度は0.1mM乃至300mMで、好ましくは、0.5mM乃至100mMであるが、これらに限定されない。当該金属イオンは、培地と共に混合する、あるいは、塩溶液を別途調製しておき、培地に添加してもよい。また本発明に用いる培地組成物には、後述の細胞外マトリックス、接着分子等を含んでもよい。
 本発明で用いる特定化合物から構成された構造体は、細胞及び/又は組織を生体外で培養した時に、当該細胞(または細胞凝集塊)及び/又は組織を、当該特定化合物の構造体を含有する液体中で浮遊させる効果(好ましくは浮遊静置させる効果)を示すものである。当該浮遊効果により、単層培養に比べて、一定体積あたりの細胞(または細胞凝集塊)数及び/又は組織数を増やして培養することが可能である。また、従来の浮遊培養方法において回転や振とう操作を伴う場合、細胞(または細胞凝集塊)及び/又は組織に対するせん断力が働くため、細胞及び/又は組織の増殖率や回収率が低い、或いは細胞の機能が損なわれてしまう場合がある。しかし、本発明の特定化合物の構造体を含有する培地組成物を用いることにより振とう等の操作を行わずに細胞(または細胞凝集塊)及び/又は組織を均一に分散することができるため、目的とする細胞(または細胞凝集塊)及び/又は組織を細胞機能の損失無く容易かつ大量に取得することができる。また、従来のゲル基材を含む培地において細胞(または細胞凝集塊)及び/又は組織を浮遊培養する際、細胞(または細胞凝集塊)及び/又は組織の観察や回収が困難であったり、回収の際にその機能を損なったりする場合がある。しかし、本発明の特定化合物の構造体を含有する培地組成物を用いることにより、細胞(または細胞凝集塊)及び/又は組織を浮遊培養し、その状態、機能を損なうこと無く観察し、回収することができる。また、従来のゲル基材を含む培地は、粘度が高く培地の交換が困難である場合がある。しかし、本発明の特定化合物の構造体を含有する培地組成物は、低粘度であるためピペットやポンプ等を用いて容易に培地を交換することができる。
 本発明における特定化合物を用いて細胞(または細胞凝集塊)及び/又は組織を培養する際には、細胞(または細胞凝集塊)及び/又は組織を培養する際に用いられる培地と特定化合物を混合して培地組成物を調製することができる。このような培地の組成による分類では天然培地、半合成培地、合成培地、また、形状による分類では半固形培地、液体培地、粉末培地(以下、粉培地という場合もある)などが挙げられる。細胞(または細胞凝集塊)及び/又は組織が動物由来である場合、動物細胞の培養に用いられる培地であればいずれも用いることができる。このような培地としては、例えばダルベッコ改変イーグル培地(Dulbecco’s Modified Eagles’s Medium;DMEM)、ハムF12培地(Ham’s Nutrient Mixture F12)、DMEM/F12培地、マッコイ5A培地(McCoy’s 5A medium)、イーグルMEM培地(Eagles’s Minimum Essential Medium;EMEM)、αMEM培地(alpha Modified Eagles’s Minimum Essential Medium;αMEM)、MEM培地(Minimum Essential Medium)、RPMI1640培地、イスコフ改変ダルベッコ培地(Iscove’s Modified Dulbecco’s Medium;IMDM)、MCDB131培地、ウィリアム培地E、IPL41培地、Fischer’s培地、StemPro34(インビトロジェン社製)、X-VIVO 10(ケンブレックス社製)、X-VIVO 15(ケンブレックス社製)、HPGM(ケンブレックス社製)、StemSpan H3000(ステムセルテクノロジー社製)、StemSpanSFEM(ステムセルテクノロジー社製)、StemlineII(シグマアルドリッチ社製)、QBSF-60(クオリティバイオロジカル社製)、StemProhESCSFM(インビトロジェン社製)、Essential8(登録商標)培地(ギブコ社製)、mTeSR1或いは2培地(ステムセルテクノロジー社製)、リプロFF或いはリプロFF2(リプロセル社製)、PSGro hESC/iPSC培地(システムバイオサイエンス社製)、NutriStem(登録商標)培地(バイオロジカルインダストリーズ社製)、CSTI-7培地(細胞科学研究所社製)、MesenPRO RS培地(ギブコ社製)、MF-Medium(登録商標)間葉系幹細胞増殖培地(東洋紡株式会社製)、Sf-900II(インビトロジェン社製)、Opti-Pro(インビトロジェン社製)、などが挙げられる。
 癌細胞の培養に用いられる培地には、上記培地に、細胞接着因子を含むことが可能できる。その例としては、マトリゲル、コラーゲンゲル、ゼラチン、ポリ-L-リジン、ポリ-D-リジン、ラミニン、フィブロネクチンが挙げられる。これらの細胞接着因子は、2種類以上を組み合わせて添加することもできる。また更に、癌細胞スフェアの培養に用いられる培地に対してグァーガム、アルギン酸プロピレングリコールエステル、ローカストビーンガム、アラビアガム、タラガム、タマリンドガム、メチルセルロース等の増粘剤を更に混合することができる。
 上記の培地には、ナトリウム、カリウム、カルシウム、マグネシウム、リン、塩素、各種アミノ酸、各種ビタミン、抗生物質、血清、脂肪酸、糖などを当業者は目的に応じて自由に添加してもよい。動物由来の細胞(または細胞凝集塊)及び/又は組織培養の際には、当業者は目的に応じてその他の化学成分あるいは生体成分を一種類以上組み合わせて添加することもできる。
 動物由来の細胞(または細胞凝集塊)及び/又は組織の培地に添加される成分としては、ウシ胎児血清、ヒト血清、ウマ血清、インシュリン、トランスフェリン、ラクトフェリン、コレステロール、エタノールアミン、亜セレン酸ナトリウム、モノチオグリセロール、2-メルカプトエタノール、ウシ血清アルブミン、ピルビン酸ナトリウム、ポリエチレングリコール、各種ビタミン、各種アミノ酸、寒天、アガロース、コラーゲン、メチルセルロース、各種サイトカイン、各種ホルモン、各種増殖因子、各種細胞外マトリックスや各種細胞接着分子などが挙げられる。
 培地に添加される抗生物質の例としては、サルファ製剤、ペニシリン、フェネチシリン、メチシリン、オキサシリン、クロキサシリン、ジクロキサシリン、フルクロキサシリン、ナフシリン、アンピシリン、ペニシリン、アモキシシリン、シクラシリン、カルベニシリン、チカルシリン、ピペラシリン、アズロシリン、メクズロシリン、メシリナム、アンジノシリン、セファロスポリン及びその誘導体、オキソリン酸、アミフロキサシン、テマフロキサシン、ナリジクス酸、ピロミド酸、シプロフロキサン、シノキサシン、ノルフロキサシン、パーフロキサシン、ロザキサシン、オフロキサシン、エノキサシン、ピペミド酸、スルバクタム、クラブリン酸、β-ブロモペニシラン酸、β-クロロペニシラン酸、6-アセチルメチレン-ペニシラン酸、セフォキサゾール、スルタンピシリン、アディノシリン及びスルバクタムのホルムアルデヒド・フードラートエステル、タゾバクタム、アズトレオナム、スルファゼチン、イソスルファゼチン、ノカルディシン、m-カルボキシフェニル、フェニルアセトアミドホスホン酸メチル、クロルテトラサイクリン、オキシテトラサイクリン、テトラサイクリン、デメクロサイクリン、ドキシサイクリン、メタサイクリン、並びにミノサイクリンが挙げられる。
 本発明における特定化合物を上記の培地に添加する場合には、まず適切な溶媒にて当該特定化合物を用時溶解または分散させる(これを、培地添加剤とする。)。その後、培地中での特定化合物濃度として、上に詳述したように、(好ましくは、当該液体培地の粘度を実質的に高めること無く)細胞(または細胞凝集塊)及び/又は組織を均一に浮遊させる(好ましくは浮遊静置させる)ことのできる濃度、例えば0.0005%乃至1.0%(w/v)、好ましくは0.001%乃至0.4%(w/v)、より好ましくは0.005%乃至0.1%(w/v)、更に好ましくは0.005%乃至0.05%(w/v)となるように、当該培地添加剤を培地中に添加すれば良い。例えば、脱アシル化ジェランガムの場合、0.001%乃至1.0%(w/v)、好ましくは0.003%乃至0.5%(w/v)、より好ましくは0.005%乃至0.3%(w/v)、最も好ましくは、0.01%乃至0.05%(w/v)培地中に添加すれば良い。キサンタンガムの場合、0.001%乃至5.0%(w/v)、好ましくは0.01%乃至1.0%(w/v)、より好ましくは0.05%乃至0.5%(w/v)、最も好ましくは、0.1%乃至0.2%(w/v)培地中に添加すれば良い。κ-カラギーナンおよびローカストビーンガム混合系の場合、両化合物の総和として、0.001%乃至5.0%(w/v)、好ましくは0.005%乃至1.0%(w/v)、より好ましくは0.01%乃至0.1%、最も好ましくは、0.03%乃至0.05%(w/v)培地中に添加すれば良い。脱アシル化ジェランガムとダイユータンガムの混合系の場合、両化合物の総和として、0.001%乃至1.0%(w/v)、最も好ましくは、0.005%乃至0.01%(w/v)培地中に添加すれば良い。脱アシル化ジェランガムとメチルセルロースの混合系の場合、両化合物の総和として、0.001%乃至1.0%(w/v)、最も好ましくは、0.005%乃至0.2%(w/v)培地中に添加すれば良い。脱アシル化ジェランガムとローカストビーンガムの混合系の場合、両化合物の総和として、0.001%乃至1.0%(w/v)、最も好ましくは、0.01%乃至0.1%(w/v)培地中に添加すれば良い。脱アシル化ジェランガムとアルギン酸ナトリウムの混合系の場合、両化合物の総和として、0.001%乃至1.0%(w/v)、最も好ましくは、0.01%乃至0.1%(w/v)培地中に添加すれば良い。脱アシル化ジェランガムとキサンタンガムの混合系の場合、両化合物の総和として、0.001%乃至1.0%(w/v)、最も好ましくは、0.01%乃至0.1%(w/v)培地中に添加すれば良い。脱アシル化ジェランガムとκ-カラギーナンの混合系の場合、両化合物の総和として、0.001%乃至1.0%(w/v)、最も好ましくは、0.01%乃至0.1%(w/v)培地中に添加すれば良い。なお該濃度は、以下の式で算出できる。
 濃度[%(w/v)]=特定化合物の重量(g)/培地組成物の容量(ml)×100
 ここで、培地添加剤に用いる適切な溶媒の例としては、水、ジメチルスルホキシド(DMSO)、メタノール、エタノール、ブタノール、プロパノール、グリセリン、プロピレングリコール、ブチレングリコール等の各種アルコールなどの水性溶媒が挙げられるが、これらに限られるわけではない。この際、特定化合物濃度は0.001%乃至5.0%(w/v)、好ましくは0.01%乃至1.0%(w/v)、より好ましくは0.1%乃至0.6%(w/v)とすることが望ましい。その際、当該特定化合物の効果を高めたり、使用する際の濃度を下げたりするような添加物を更に添加することもできる。この様な添加剤の例として、グァーガム、アルギン酸プロピレングリコールエステル、ローカストビーンガム、アラビアガム、タラガム、タマリンドガム、メチルセルロース、カルボキシメチルセルロース、アガロース、タマリンドシードガム、プルラン等の多糖類を1種以上添加することができる。また、当該特定化合物を培養の際に担体表面上に固定化或いは、担体内部に担持して使用することもできる。当該特定化合物は、提供時あるいは保存時に任意の形状であり得る。当該特定化合物は、錠剤、丸剤、カプセル剤、顆粒剤のような製剤化された固体、適切な溶媒並びに溶解剤で溶解した溶液あるいは懸濁液のような液体、又は基板や単体に結合させた状態であり得る。製剤化される際の添加物としては、p-ヒドロキシ安息香酸エステル類等の防腐剤;乳糖、ブドウ糖、ショ糖、マンニット等の賦形剤;ステアリン酸マグネシウム、タルク等の滑沢剤;ポリビニルアルコール、ヒドロキシプロピルセルロース、ゼラチン等の結合剤;脂肪酸エステル等の界面活性剤;グリセリン等の可塑剤等が挙げられる。これらの添加物は上記のものに限定されることはなく、当業者が利用可能であれば自由に選択することができる。また、本発明における特定化合物は、必要に応じて滅菌処理を施してもよい。滅菌方法は特に制限はなく、例えば、放射線滅菌、エチレンオキサイドガス滅菌、オートクレーブ滅菌、フィルター滅菌等が挙げられる。フィルター滅菌(以下、ろ過滅菌という場合もある)を行う際のフィルター部分の材質は特に制限されないが、例えば、グラスファイバー、ナイロン、PES(ポリエーテルスルホン)、親水性PVDF(ポリフッ化ビニリデン)、セルロース混合エステル、セルロースアセテート、ポリテトラフルオロエチレン等が挙げられる。フィルターの細孔の大きさは特に制限されないが、好ましくは、0.1μm乃至10μm、より好ましくは、0.1μm乃至1μm、最も好ましくは、0.1μm乃至0.5μmである。これらの滅菌処理は、特定化合物が固形でも溶液の状態でもよい。
 上記調製により特定化合物の溶液又は分散液を液体培地に添加することにより、液体培地中に上記構造体が形成され、本発明に用いる培地組成物を得ることができる。培地には通常、高分子化合物がイオンを介して集合、あるいは、高分子化合物が三次元のネットワークを形成するのに十分な濃度の金属イオン(例、カルシウムイオン等の2価金属イオン)が含まれるので、本発明の特定化合物の溶液又は分散液を液体培地に添加するのみで、本発明に用いる培地組成物を得ることができる。あるいは、培地添加剤(特定化合物の溶液又は分散液)に培地を添加してもよい。更に、本発明に用いる培地組成物は、特定化合物と培地成分とを、水性溶媒(例えばイオン交換水や超純水等を含む水)中で混合して調製することもできる。混合の態様としては、(1)液体培地と培地添加剤(溶液)とを混合する、(2)液体培地に上記高分子化合物(粉末等の固体)を混合する、(3)培地添加剤(溶液)に粉末培地を混合する、(4)粉末培地及び上記高分子化合物(粉末等の固体)を水性溶媒と混合する、等が挙げられるが、これらに限定されない。本発明に用いる培地組成物における特定化合物の分布が不均一になるのを防ぐために、(1)若しくは(4)又は(1)若しくは(3)の態様が好ましい。
 特定化合物を溶媒(例、水、液体培地等の水性溶媒)へ溶解する、または、特定化合物及び粉末培地を溶媒へ溶解する際、溶解促進のため、当該混合液を加熱するのが好ましい。加熱する温度としては、例えば80℃~130℃、好ましくは加熱滅菌されるような100℃~125℃(例、121℃)が挙げられる。加熱後、得られた特定化合物の溶液を室温まで冷却する。当該溶液に、上述の金属イオン(例、カルシウムイオン等の2価金属イオン)を添加することにより(例えば、当該溶液を液体培地へ添加することにより)、当該特定化合物から構成された上記構造体が形成される。或いは、特定化合物を、上述の金属イオン(例、カルシウムイオン等の2価金属イオン)を含む溶媒(例、水、液体培地等の水性溶媒)へ溶解する際に、加熱(例えば80℃~130℃、好ましくは100℃~125℃(例、121℃))し、得られた溶液を室温まで冷却することによっても、当該特定化合物から構成された上記構造体が形成される。
 本発明に用いる培地組成物の調製方法を例示するが、本発明はこれによって限定されるものではない。特定化合物をイオン交換水あるいは超純水に添加する。そして、当該特定化合物を溶解できる温度(例えば、60℃以上、80℃以上、90℃以上)にて撹拌して透明な状態になるまで溶解させる。溶解後、攪拌しながら放冷し、滅菌(例えば、121℃にて20分でのオートクレーブ滅菌)を行う。室温に戻した後、静置培養に使用する任意の培地を攪拌(例えば、ホモミキサー等)しながら、当該培地に前記滅菌後の水溶液を添加し、当該培地と均一になるように混合する。本水溶液と培地の混合方法は特に制限はなく、例えばピペッティング等の手動での混合、マグネチックスターラーやメカニカルスターラー、ホモミキサー、ホモジナイザー等の機器を用いた混合が挙げられる。また、混合後に本発明に用いる培地組成物をフィルターにてろ過してもよい。ろ過処理をする際に用いるフィルターの細孔の大きさは、5μm乃至100μm、好ましくは5μm乃至70μm、より好ましくは10μm乃至70μmである。
 あるいは、粉末培地及び上記高分子化合物(粉末等の固体)を水性溶媒と混合し、上記温度で加熱することで本発明に用いる培地組成物を調製する。
 例えば、脱アシル化ジェランガムを調製する場合、0.1%乃至1%(w/v)、好ましくは0.2%乃至0.5%(w/v)、より好ましくは0.3%乃至0.4%(w/v)となるようにイオン交換水あるいは超純水に脱アシル化ジェランガムを添加する。また、別の局面では、脱アシル化ジェランガムを調製する場合、0.1%乃至1%(w/v)、好ましくは0.2%乃至0.8%(w/v)、より好ましくは0.3%乃至0.6%(w/v)となるようにイオン交換水あるいは超純水に脱アシル化ジェランガムを添加する。
 そして、前記脱アシル化ジェランガムを溶解できる温度であればよいが、例えば60℃以上、好ましくは80℃以上、より好ましくは90℃以上(例、80~130℃)にて撹拌することにより透明な状態になるまで溶解させる。溶解後、撹拌しながら放冷し、例えば121℃にて20分間オートクレーブ滅菌を行う。室温に戻した後に、例えばDMEM/F12培地をホモミキサー等で攪拌しながら、当該培地に本水溶液を所望の最終濃度となるように添加し(例えば終濃度が0.015%の場合は0.3%水溶液:培地の比率は1:19)、均一に混合させる。本水溶液と培地の混合方法は特に制限はなく、例えばピペッティング等の手動での混合、マグネチックスターラーやメカニカルスターラー、ホモミキサー、ホモジナイザー等の機器を用いた混合が挙げられる。また、混合後に本発明に用いる培地組成物をフィルターにてろ過してもよい。ろ過処理をする際に用いるフィルターの細孔の大きさは、5μm乃至100μm、好ましくは5μm乃至70μm、より好ましくは10μm乃至70μmである。
 本発明に用いる培地組成物及びその製造方法の好適な態様を以下に記載する。
 本発明に用いる培地組成物は、好適には、細胞または組織を浮遊させて培養できる培地組成物であって、前記培地組成物の粘度が、8mPa・s以下(37℃条件下)であり、且つ脱アシル化ジェランガムまたはその塩を含有することを特徴とする、培地組成物である。一態様において、培地組成物中の脱アシル化ジェランガムまたはその塩の濃度が、0.01~0.05%(w/v)である。一態様において、当該培地組成物は、更に、脱アシル化ジェランガムまたはその塩以外の多糖類を含有する。一態様において、当該培地組成物には、脱アシル化ジェランガムが細胞または組織を浮遊させて培養できる構造体を形成するのに十分な濃度の2価金属イオン(例、カルシウムイオン)を含有する。該濃度は、例えば、0.1mM及至300mM、好ましくは、0.5mM及至100mMである。
 当該培地組成物は、脱アシル化ジェランガムまたはその塩と培地とを混合することにより製造することが出来る。一態様において、当該培地は液体培地である。一態様において、当該液体培地には、脱アシル化ジェランガムが細胞または組織を浮遊させて培養できる構造体を形成するのに十分な濃度の2価金属イオン(例、カルシウムイオン)を含有する。該濃度は、例えば、0.1mM及至300mM、好ましくは、0.5mM及至100mMである。一態様において、溶媒中に溶解または分散した脱アシル化ジェランガムまたはその塩と、培地とを混合する。一態様において、溶媒中に溶解または分散した脱アシル化ジェランガムまたはその塩は、滅菌された状態である。一態様において、滅菌はオートクレーブ滅菌により行われる。別の態様において、滅菌はろ過滅菌により行われる。一態様において、ろ過滅菌は0.1~0.5μmのフィルターを通過させることにより実施する。
(2)担癌非ヒト哺乳動物の作成方法
 本発明は、以下の工程を含む、担癌非ヒト哺乳動物の作成方法を提供する:
(1)培地組成物I中で、癌細胞を浮遊培養すること;及び
(2)(1)の培養により得られた癌細胞を非ヒト哺乳動物に移入すること。
 癌細胞を培地組成物I中で浮遊培養に付すことにより、非ヒト哺乳動物へ移入した際の生体内における癌細胞の生着率や生育率が向上する。本発明は、このような癌細胞の非ヒト哺乳動物への生着を促進する方法をも包含する。
 本発明に用いる癌細胞は、好ましくは、生体内において生着した際に、固形腫瘍を形成する能力を有する癌細胞である。
 固形腫瘍を形成する能力を有する癌細胞としては、胃癌、食道癌、大腸癌、結腸癌、直腸癌、膵臓癌、乳癌、卵巣癌、前立腺癌、扁平上皮細胞癌、基底細胞癌、腺癌、腎細胞癌、尿管癌、肝癌、胆管癌、子宮頚癌、子宮内膜癌、精巣癌、小細胞肺癌、非小細胞肺癌、膀胱癌、上皮癌、頭蓋咽頭癌、喉頭癌、舌癌、線維肉腫、粘膜肉腫、脂肪肉腫、軟骨肉腫、骨原性肉腫、脊索腫、血管肉腫、リンパ管肉腫、リンパ管内皮肉腫、滑膜腫、中皮腫、ユーイング腫瘍、平滑筋肉腫、横紋筋肉腫、精上皮腫、ウィルムス腫瘍、神経膠腫、星状細胞腫、髄膜腫、黒色腫、神経芽細胞腫、髄芽腫、網膜芽細胞腫等の細胞が挙げられるが、これらに限定されない。固形腫瘍を形成する能力を有する癌細胞は、好ましくは、上皮細胞由来の悪性腫瘍、即ち癌腫(カルシノーマ)細胞(例、大腸癌腫、乳癌腫、卵巣癌腫、結腸癌腫)である。
 本発明に用いる癌細胞は、移入するレシピエント非ヒト哺乳動物に対して同種同系(syngenic)、同種異系(allogenic)、異種(xenogenic)のいずれであっても良い。生体内において生着しにくい癌細胞の生着率を向上させる本発明の効果に鑑みると、癌細胞は、移入するレシピエント非ヒト哺乳動物に対して同種異系又は異種であり、より好ましくは異種である。一態様において、本発明に用いる癌細胞は、ヒト癌細胞である。
 工程(1)においては、癌細胞を、上記培地組成物I中で、浮遊培養(好ましくは、静置浮遊培養)する。
 癌細胞を浮遊培養する際には、細胞の培養に一般的に用いられるシャーレ、フラスコ、プラスチックバック、テフロン(登録商標)バック、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウエルプレート、マルチプレート、マルチウエルプレート、チャンバースライド、細胞培養フラスコ、スピナーフラスコ、チューブ、トレイ、培養バック、ローラーボトル等の培養器材を用いて培養することが可能である。これらの培養基材は細胞低接着性であることが望ましい。細胞非接着性の培養容器としては、培養容器の表面が、細胞との接着性を向上させる目的で人工的に処理(例えば、細胞外マトリクス等によるコーティング処理)されていないもの、あるいは培養容器の表面が、細胞との接着性を低減させる目的で人工的に処理されているものを使用できる。
 上記癌細胞の培養は、機械的な制御下のもと閉鎖環境下で細胞播種、培地交換、細胞画像取得、培養細胞回収を自動で実行し、pH、温度、酸素濃度などを制御しながら、高密度での培養が可能なバイオリアクターや自動培養装置によって行うこともできる。
 培養する癌細胞の形態や状態は、当業者が任意に選択することができる。その好ましい具体例としては、特に制限されるものではないが、癌細胞が単一細胞の状態で培地組成物I中に分散した状態、癌細胞が担体表面上に接着した状態、癌細胞が担体内部に包埋した状態、複数個の癌細胞が集合し細胞凝集塊(スフェア(スフェロイド))を形成した状態等が挙げられる。癌細胞は、好ましくは、単一細胞の状態で培地組成物I中に分散した状態、又は複数個の細胞が集合し細胞凝集塊(スフェア(スフェロイド))を形成した状態で、培地組成物I中で浮遊培養(好ましくは、浮遊静置培養)される。即ち、好ましくは、癌細胞を接着や包埋するための担体を用いない。これらの状態の内、細胞凝集塊(スフェア(スフェロイド))を形成した状態は、生体内環境に近い細胞-細胞間相互作用及び細胞構造体が再構築されており、細胞機能を長期的に維持したまま培養でき、また細胞の回収が比較的容易であるため、好ましい。また、スフェアの大きさは最大径の平均値として、500μm以下であることが好ましく、50~100μmが最も好ましい。
 細胞凝集塊(スフェア(スフェロイド))を形成させる方法は、特に制限は無く、当業者が適宜選択することができる。その例としては、細胞非接着表面を有する容器を用いた方法、ハンギングドロップ法、旋回培養法、3次元スキャフォールド法、遠心法、電場や磁場による凝集を用いた方法等が挙げられる。
 培養組成物Iを用いてスフェアを形成させることもできる。例えば、スフェアは、目的とする癌細胞を細胞分散用酵素処理により単一細胞として回収したのち、培養組成物I中に均一に分散させ、3日間乃至10日間静置して浮遊培養することにより調製される。ここで調製されたスフェアは、遠心やろ過処理を行うことにより、回収することができる。
 癌細胞を培養する際には、上記培養組成物Iに対して別途調製した癌細胞を添加し、均一に分散される様に混合すればよい。その際の混合方法は特に制限はなく、例えばピペッティング等の手動での混合、スターラー、ヴォルテックスミキサー、マイクロプレートミキサー、振とう機等の機器を用いた混合が挙げられる。混合後は、得られた癌細胞懸濁液を静置で培養してもよいし、必要に応じて培養液を回転、振とう或いは撹拌してもよい。その回転数と頻度は、当業者の目的に合わせて適宜設定すればよい。また、静置培養の期間において培地組成物の交換が必要となった際には、遠心やろ過処理を行うことにより癌細胞と培地組成物を分離した後、新鮮な培地組成物Iを細胞に添加すればよい。或いは、遠心やろ過処理を行うことにより癌細胞を適宜濃縮した後、新鮮な上記培地組成物Iをこの濃縮液に添加すればよい。
 一態様において、接着性の癌細胞の浮遊培養に際して、例えば、当該癌細胞を継代培養から回収し、これを、単一細胞、又はこれに近い状態にまで分散する。癌細胞の分散は、適切な細胞解離液を用いて行われる。細胞解離液としては、例えば、EDTA;トリプシン、コラゲナーゼIV、メタロプロテアーゼ等のタンパク分解酵素等を単独で又は適宜組み合わせて用いることができる。分散された接着性の癌細胞を、培地組成物I中に懸濁し、これを浮遊培養(好ましくは、浮遊静置培養)する。培養物中、癌細胞は、単一細胞の状態で、又はスフェアの状態で、培地組成物I中に浮遊しながら、増殖する。この培養においては、細胞非接着性培養器を用いることが好ましいが、その限りではない。
 培地組成物I中での癌細胞の培養期間は、該癌細胞の非ヒト哺乳動物内への生着を向上させるのに十分であれば、特に限定されないが、通常1日以上、好ましくは3日以上、より好ましくは6日以上である。培養期間の上限は、理論的には無限であるが、癌細胞の形質が変化してしまうのを避ける観点からは、例えば30日以内程度、好ましくは10日以内程度に留めておくことが好ましい。
 癌細胞を培養する際の温度は、通常25乃至39℃、好ましくは37℃である。CO2濃度は、通常、培養の雰囲気中、4乃至10体積%であり、好ましくは5体積%である。酸素濃度は、培養の雰囲気中、15~50体積%であり、好ましくは20体積%である。
 このような培養操作により、生体内における生着が向上した癌細胞を得ることができる。
 次に、この培養により得られた癌細胞を非ヒト哺乳動物に移入する。
 非ヒト哺乳動物の種類は、特に限定されないが、例えば、マウス、ラット、ハムスター、モルモット等のげっ歯類、ウサギ等のウサギ目、ブタ、ウシ、ヤギ、ウマ、ヒツジ等の有蹄目、イヌ、ネコ等のネコ目、サル、アカゲザル、カニクイザル、マーモセット、オランウータン、チンパンジーなどの霊長類等を挙げることが出来る。哺乳動物は、好ましくはげっ歯類(マウス、ラット等)である。
 一態様において、非ヒト哺乳動物は、免疫不全であることが望ましいが、その限りではない。免疫不全非ヒト哺乳動物を用いることにより、同種異系又は異種の癌細胞を移入した際の拒絶反応を回避し、癌細胞の生着を促進することが出来る。免疫不全非ヒト哺乳動物としては、例えば、ヌードマウス、SCIDマウス、IL-2Rg KOマウス、NOD/Shiマウス、NOD/Shi-SCIDマウス、NOD/SCIDマウス、NOGマウス、RAG2 KOマウス、RAG2 IL-2Rg dKOマウス等を挙げることができるが、これらに限定されない。非免疫不全動物としては、C57BL/6Jマウス、C3H/HeNマウス等があげられる。
 本発明においては、癌細胞を培地組成物I中で浮遊培養に付すことにより、非ヒト哺乳動物へ移入した際の生体内における癌細胞の生着率や生育率が向上するので、従来、重篤な免疫不全非ヒト動物(例、NOD/SCID)を用いなければ、生体内において腫瘍組織を形成することが出来なかった癌細胞についても、免疫不全の程度が比較的緩やかな免疫不全非ヒト動物(例、ヌードマウス)を用いて、生体内に腫瘍組織を形成することが出来る。また、従来、ヌードマウスで担癌マウスモデルが作成されていた癌細胞を、正常免疫非ヒト動物(例、BALB/c、C57BL/6j)に移植することにより、生体内に腫瘍組織を形成することも可能である。
 癌細胞の非ヒト哺乳動物への移入は、通常、癌細胞を生理的水性組成物中に懸濁し、得られた懸濁物を、非ヒト哺乳動物の体内へ移入する。癌細胞を、トリプシン等のタンパク質やEDTA等のキレート剤で処理して単一細胞に分散した後に生理的水性組成物中に懸濁し、体内へ移入してもよいし、スフェロイドの状態で生理的水性組成物中に懸濁し、体内へ移入してもよい。スフェロイドの状態で移入する方が、癌組織形成がより亢進する傾向がある一方、単一細胞の状態で移入する方が癌細胞の抗癌剤への感受性が高い傾向がある。生理的水性組成物には、生理的水溶液、及び生理的な水性ゲルが包含される。生理的水溶液としては、リン酸緩衝液、炭酸塩緩衝液、クエン酸緩衝液、Tris緩衝液、ホウ酸塩緩衝液の生理的な緩衝液や、細胞培養用の培地等が挙げられる。水性ゲルとしては、細胞外マトリクス構成因子(アグリカン等のプロテオグリカン;ヒアルロン酸等のグリコサミノグリカン;コラーゲン、エラスチン等のタンパク質線維;又はこれらの混合物(例、基底膜調製物)等)、多糖類(アガロース等)を含むゲルを挙げることが出来る。基底膜調製物とは、基底膜形成能を有する同種又は異種の所望の細胞をその上に播種・培養した場合に、細胞の形態、分化、増殖、運動、機能発現などを制御する機能を有する、単離された基底膜を意味する。基底膜調製物は、例えば基底膜を介して支持体上に接着している基底膜形成能を有する細胞を、該細胞の脂質溶解能を有する溶液やアルカリ溶液などを用いて支持体から除去することで作製することができる。基底膜調製物としては、マトリゲル(Corning社製品)を挙げることが出来る。水性ゲルを用いることにより、生体内における移植した癌細胞の分散を抑制することが出来る。
 一態様において、細胞外マトリクス構成因子を含む生理的水性組成物(例、水性ゲル)に移植する癌細胞を懸濁する。細胞外マトリクス構成因子を用いることにより、移植した癌細胞の生体内における生着が促進される。
 本発明に用いる細胞外マトリクス構成因子は、好ましくは単離されている。「単離」とは、目的とする成分や細胞以外の因子を除去する操作がなされ、天然に存在する状態を脱していることを意味する。「単離されたタンパク質X」の純度(総タンパク質重量に占めるタンパク質Xの重量の百分率)は、通常70%以上、好ましくは80%以上、より好ましくは90%以上、更に好ましくは99%以上、最も好ましくは100%である。従って、「単離された細胞外マトリクス構成因子」には、移植する癌細胞から産生され当該癌細胞や懸濁液中に含まれる内在性の細胞外マトリクス構成因子は包含されない。一態様において、本発明は、単離された細胞外マトリクス構成因子を含む生理的水性組成物(例、水性ゲル)を提供する工程を含む。
 細胞外マトリクス構成因子を含む生理的水性組成物を用いる場合、当該組成物中の細胞外マトリクス構成因子濃度は、移植する癌細胞の生着を促進する限り特に限定されないが、通常1~10mg/ml、好ましくは2~4mg/ml程度である。マトリゲル(商品名、コーニング社製)を細胞外マトリクスとして用いる場合、25~50%(v/v)程度に希釈して用いることが好ましい。
 一態様において、単離された細胞外マトリクス構成因子を実質的に含まない生理的水性組成物に移植する癌細胞を懸濁する。本発明においては、癌細胞を培地組成物I中で浮遊培養に付すことにより、非ヒト哺乳動物へ移入した際の生体内における癌細胞の生着率や生育率が向上するので、従来、細胞外マトリクス構成因子を含む生理的水性組成物中に懸濁して移植しなければ、生体内において腫瘍組織を形成することが出来なかった癌細胞についても、細胞外マトリクス構成因子を実質的に含まない生理的水性組成物を用いて、生体内に腫瘍組織を形成することが出来る。
 「単離された細胞外マトリクス構成因子を実質的に含まない」とは、生理的水性組成物中の単離された細胞外マトリクス構成因子濃度が、移植する癌細胞の生着を促進する濃度を下回ることを意味する。より具体的には、「単離された細胞外マトリクス構成因子を実質的に含まない生理的水性組成物」中の単離された細胞外マトリクス構成因子濃度は、通常0.01%(w/v)以下、好ましくは0.001%(w/v)以下、より好ましくは0.0001%(w/v)以下、最も好ましくは0%(w/v)である。
 尚、「単離された細胞外マトリクス構成因子を実質的に含まない生理的水性組成物」には、移植する癌細胞から産生され当該癌細胞や懸濁液中に含まれる内在性の細胞外マトリクス構成因子の含有が許容される。また、「単離された細胞外マトリクス構成因子濃度」には、移植する癌細胞から産生され当該癌細胞や懸濁液中に含まれる内在性の細胞外マトリクス構成因子の濃度は含まれない。
 生理的水性組成物は、血清を含んでいてもいなくてもよい。より大きな癌組織を形成する観点からは、血清を含む生理的水性組成物を用いる方が好ましい。血清を含む場合、その濃度は、特に限定されないが、通常、0.1~20(v/v)%である。一方、未決定の成分の混入を回避する観点からは、血清を含まない生理的水性組成物を用いる方が好ましい。本発明においては、癌細胞を培地組成物I中で浮遊培養に付すことにより、非ヒト哺乳動物へ移入した際の生体内における癌細胞の生着率や生育率が向上するので、従来、血清を含む生理的水性組成物中に懸濁して移植しなければ、生体内において十分な大きさの腫瘍組織を形成することが出来なかった癌細胞についても、血清を含まない生理的水性組成物を用いて、生体内に腫瘍組織を形成することが出来る。
 本発明において用いられる生理的水性組成物には、以下の態様が包含される。
・細胞外マトリクス構成因子及び血清を含む。
・単離された細胞外マトリクス構成因子を実質的に含まず、血清を含む。
・細胞外マトリクス構成因子を含み、血清を含まない。
・単離された細胞外マトリクス構成因子を実質的に含まず、血清も含まない。
 癌細胞を生理的水性組成物中に懸濁する際の懸濁液中の癌細胞濃度は、レシピエント非ヒト哺乳動物内へ移入した際に、腫瘍組織を形成可能な範囲で適宜設定することが可能であるが、通常、0.01~1x108 cells/ml程度である。
 レシピエント非ヒト哺乳動物内へ移入する癌細胞の個数は、当該非ヒト哺乳動物内で腫瘍組織を形成可能な範囲で適宜設定することが可能であるが、通常、0.1~10x106 cells/匹程度である。本発明においては、癌細胞を培地組成物I中で浮遊培養に付すことにより、非ヒト哺乳動物へ移入した際の生体内における癌細胞の生着率や生育率が向上するので、培地組成物Iを用いない場合よりも少ない細胞数で、同程度の大きさの腫瘍組織を形成させることができる。
 癌細胞の移入部位は、レシピエント非ヒト哺乳動物内で腫瘍組織が形成可能な限り、特に限定されず、同所性の移植であっても、異所性移植であってもよい。異所性移植の場合の癌細胞の移入部位としては、特に限定されないが、皮下、皮内、筋肉内、静脈内、腹腔内等を挙げることができる。移植手技が簡便であるため、また、形成された腫瘍組織が容易に肉眼で観察できるため、好適には癌細胞は皮下に移入される。
 癌細胞の移入後、更に必要に応じてレシピエント非ヒト哺乳動物を通常、SPF又は無菌条件下で飼育されてもよい。レシピエント非ヒト哺乳動物を所定期間飼育することにより、移入した癌細胞から腫瘍組織が形成される。飼育条件として、制限はされないが、具体的には温度条件20~26℃、湿度条件30~70%、給餌・給水条件:自由摂取、照明サイクル:12時間明暗サイクルを例示することができる。
 飼育期間は、移入した癌細胞から腫瘍組織が形成可能であれば特に制限されないが、通常、移植から3日以上、好ましくは3週間以上レシピエント非ヒト哺乳動物を飼育することが好ましい。
 本発明の方法により作成された担癌非ヒト哺乳動物は、抗癌剤のスクリーニング、癌を治療又は予防するための医薬品の評価等に有用である。
(3)抗癌剤のスクリーニング方法
 本発明は、以下の工程を含む、抗癌剤のスクリーニング方法を提供する:
(1)上記本発明の方法により作成した担癌非ヒト哺乳動物に被検物質を投与すること;
(2)(1)で得た担癌非ヒト哺乳動物における腫瘍組織の大きさを測定すること;
(3)(2)で測定した腫瘍組織の大きさを、被検化合物を投与していないコントロール担癌非ヒト哺乳動物の腫瘍組織の大きさと比較すること。
 被検物質は、いかなる公知化合物及び新規化合物であってもよく、例えば、核酸、糖質、脂質、蛋白質、ペプチド、有機低分子化合物、コンビナトリアルケミストリー技術を用いて作製された化合物ライブラリー、ランダムペプチドライブラリー、ランダム核酸ライブラリーあるいは微生物、動植物、海洋生物等由来の天然成分等が挙げられる。また、上記物質を担持した人工高分子であってもよい。
 被検物質の投与形態はメチルセルロース(MC)あるいはカルボキシメチルセルロース(CMC)またはポリエチレングリコール(PEG)あるいはエタノール(EtOH)などの媒体を含む水溶液の溶液あるいは懸濁液などがあるがこの限りではない。また、被検物質の投与経路は、経口、皮下、腹腔内、静脈内、門脈内等があるがこの限りではない。被検物質を投与する期間は、その効果を評価するのに十分な期間であり、その間、担癌非ヒト哺乳動物は、当業者各々の研究機関の実験動物倫理規定に基づいて飼育する。飼育期間は、通常3日以上、好ましくは10日以上、より好ましくは21日以上である。
 飼育後、当該被検物質を投与した担癌非ヒト哺乳動物における腫瘍組織の大きさを測定する。腫瘍組織の大きさの測定方法は、当業者に周知である。
 次に、被検物質を投与した担癌非ヒト哺乳動物における腫瘍組織の大きさを、被検化合物を投与していないコントロール担癌非ヒト哺乳動物の腫瘍組織の大きさと比較する。腫瘍組織の大きさの比較は、好ましくは、統計学的有意差の有無に基づいて行なわれ得る。なお、被検物質を添加しないコントロール担癌非ヒト哺乳動物の腫瘍組織の大きさは、被検物質を投与した担癌非ヒト哺乳動物における腫瘍組織の大きさの測定に対し、事前に測定したものであっても、同時に測定したものであってもよいが、実験の精度、再現性の観点から同時に測定されたものであることが好ましい。
 比較の結果、当該被検物質の添加により、腫瘍組織の大きさを小さくした物質を、抗癌剤の候補物質(特に、移入した癌細胞に対して有効な抗癌剤の候補物質)として選択することが出来る。
 ここで述べられた特許および特許出願明細書を含む全ての刊行物に記載された内容は、ここに引用されたことによって、その全てが明示されたと同程度に本明細書に組み込まれるものである。
 以下に本発明に用いる培地組成物の分析例、試験例を実施例として具体的に述べることで、本発明を更に詳しく説明するが、本発明はこれらによって限定されるものではない。
[参考例1]
 脱アシル化ジェランガム含有培地の製造
 WO2014/017513A1に記載の製造方法に従い、細胞の浮遊培養に用いる培地組成物を調製した。即ち、脱アシル化ジェランガム粉末を0.3%(w/v)になるように純水に溶解させた。溶解は撹拌ヒーターにて加熱撹拌しながら沸騰させることにより行い、その後、得られた脱アシル化ジェランガム水溶液を一晩室温に戻したのち、オートクレーブにて滅菌した。各細胞の推奨培地に、培地量の20分の1容量の上記0.3%(w/v)脱アシル化ジェランガム水溶液を勢いよく注入し、直ちに強く撹拌し混合分散させた。
[試験例1]
 細胞培養
 ヒト大腸癌細胞株のHCT116細胞を10%FBS含有McCoy’s 5A培地にて単層培養した。細胞をトリプシン処理後、10%FBS含有McCoy’s 5A培地に1~5x107cells/mlで懸濁した。当該細胞懸濁液を、0.015%(w/v)脱アシル化ジェランガム、及び10%(v/v)FBS含有McCoy’s 5A培地に1~5x105 cells/mlになるよう添加して均一に懸濁した。得られた細胞懸濁液を、細胞非接着培養プレートまたはシャーレに播種し、細胞を浮遊静置培養した。3日に1回培地交換し、6日間培養した。培地交換では、細胞を含む培養液を遠心チューブに回収しMcCoy’s 5A培地にて2-3倍に希釈し、1500rpmで5分遠心して下層の10%(v/v)の細胞を回収した。この細胞を含む層を、希釈前の初期量の2倍以上の0.015%(w/v)脱アシル化ジェランガム、及び10%(v/v)FBS含有McCoy’s 5A培地に再懸濁し、細胞非接着培養プレートまたはシャーレに播種し、細胞を引き続き浮遊静置培養した。
[試験例2]
 培養後の細胞回収
 試験例1にて培養したHCT116細胞を含む培養液を遠心チューブに回収し、500rpmで1分遠心した。非沈降上清画分を回収し、McCoy’s 5A培地またはPBSにて2~3倍に希釈し、1500rpmで5分遠心し、下層の10%(v/v)の細胞を回収した。更に、残渣の5~10倍容量のMcCoy’s 5A培地またはPBSに懸濁し、再度1500rpmで5分遠心し、沈降した細胞を回収した。細胞を少量のMcCoy’s 5A培地に再懸濁し、スフェア細胞懸濁液を得た。本細胞液にトリプシン溶液を1:1(v/v)添加し37℃にて5分処理した後10%(v/v)FBS含有McCoy’s 5A培地をFBS最終濃度1%(v/v)となるよう添加し、1000rpmにて3分遠心分離し、沈降した細胞を再度少量のMcCoy’s 5A培地に懸濁し単一化細胞懸濁液を得た。
[試験例3]
 細胞培養
 ヒト卵巣癌細胞株のSKOV3細胞を10%(v/v)FBS含有McCoy’s 5A培地にて単層培養した。細胞をトリプシン処理後、15%(v/v)FBS含有McCoy’s 5A培地に1~5x107cells/mlで懸濁した。細胞懸濁液を、0.015%(w/v)脱アシル化ジェランガム、及び15%(v/v)FBS含有McCoy’s 5A培地に1~5x105 cells/mlになるよう添加して均一に懸濁した。得られた細胞懸濁液を、細胞非接着培養プレートまたはシャーレに播種し、細胞を浮遊静置培養した。3日に1回培地交換し、細胞を6日間培養した。培地交換では、細胞を含む培養液を遠心チューブに回収しMcCoy’s 5A培地にて2~3倍に希釈し1500rpmで5分遠心して下層の10%(v/v)の細胞を回収した。この細胞を含む層を、希釈前の初期量の2倍以上の0.015%(w/v)脱アシル化ジェランガム、及び15%(v/v)FBS含有McCoy’s 5A培地に再懸濁し、細胞非接着培養プレートまたはシャーレに播種し、細胞を引き続き浮遊静置培養した。
[試験例4]
 培養後の細胞回収
 試験例3にて培養したSKOV3細胞を含む培養液を遠心チューブに回収し500rpmで1分遠心した。非沈降上清画分を回収し、McCoy’s 5A培地またはPBSにて2~3倍に希釈し、1500rpmで5分遠心し、下層の10%(v/v)の細胞を回収した。更に、残渣の5~10倍容量のMcCoy’s 5A培地またはPBSに懸濁し、再度1500rpmで5分遠心し、沈降した細胞を回収した。細胞を少量のMcCoy’s 5A培地に再懸濁しスフェア細胞懸濁液を得た。本細胞液にトリプシン溶液を1:1(v/v)添加し37℃にて5分処理した後10%(v/v)FBS含有McCoy’s 5A培地をFBS最終濃度1%となるよう添加し、1000rpmにて3分遠心分離し、沈降した細胞を再度少量のMcCoy’s 5A培地に懸濁し単一化細胞懸濁液を得た。
[試験例5]
 細胞培養
 ヒト乳癌細胞株のMCF7細胞を10%(v/v)FBS、1% non-essential amino acid(NEAA)含有E-MEM培地にて単層培養した。細胞をトリプシン処理後、10%(v/v)FBS含有,1%(v/v)NEAA含有E-MEM培地に1~5x107 cells/mlで懸濁した。細胞懸濁液を、0.015%(w/v)脱アシル化ジェランガム、10%(v/v)FBS、及び1%(v/v)NEAA含有E-MEM培地に1~5x105cells/mlになるよう添加して均一に懸濁した。得られた細胞懸濁液を、培養プレートまたはシャーレに播種し、細胞を浮遊静置培養した。3日に1回培地交換し、細胞を6日間培養した。培地交換では、細胞を含む培養液を遠心チューブに回収し1% NEAA含有E-MEM培地にて2~5倍に希釈し、1500rpmで5分遠心して下層の10%(v/v)の細胞を回収した。この細胞を含む層を、希釈前の初期量の2倍以上の0.015%(w/v)脱アシル化ジェランガム、10%(v/v)FBS、及び1%(v/v) NEAA含有E-MEM培地に再懸濁し、培養プレートまたはシャーレに播種し、細胞を引き続き浮遊静置培養した。
[試験例6]
 培養後の細胞回収
 試験例5にて培養したMCF7細胞を含む培養液を遠心チューブに回収し500rpmで1分遠心した。非沈降上清画分を回収し、1%(v/v) NEAA含有E-MEM培地またはPBSにて2~3倍に希釈し、1500rpmで5分遠心し、下層の10%(v/v)の細胞を回収した。更に、残渣の5~10倍容量の1%(v/v) NEAA含有E-MEM培地またはPBSに懸濁し、再度1500rpmで5分遠心し、沈降した細胞を回収した。細胞を少量の1% NEAA含有E-MEM培地に再懸濁しスフェア細胞懸濁液を得た。本細胞液にトリプシン溶液を1:1(v/v)添加し37℃にて5分処理した後10%(v/v)FBS含有1%(v/v) NEAA含有E-MEM培地をFBS最終濃度1%となるよう添加し、1000rpmにて3分遠心分離し、沈降した細胞を再度少量の1%(v/v) NEAA含有E-MEM培地に懸濁し単一化細胞懸濁液を得た。
[試験例7]
 細胞培養
 ヒト結腸癌細胞株のLS123細胞を10%(v/v)FBS、1% non-essential amino acid(NEAA)含有E-MEM培地にて単層培養した。細胞をトリプシン処理後、10%(v/v)FBS含有,1%(v/v) NEAA含有E-MEM培地に1~5x107 cells/mlで懸濁した。細胞懸濁液を、0.015%(w/v)脱アシル化ジェランガム、10%(v/v)FBS、及び1%(v/v) NEAA含有E-MEM培地に1~5x105cells/mlになるよう添加して均一に懸濁した。得られた細胞懸濁液を、培養プレートまたはシャーレに播種し、細胞を浮遊静置培養した。3日に1回培地交換し、細胞を6日間培養した。培地交換では、細胞を含む培養液を遠心チューブに回収し1%(v/v) NEAA含有E-MEM培地にて2~5倍に希釈し、1500rpmで5分遠心して下層の10%(v/v)の細胞を回収した。この細胞を含む層を、希釈前の初期量の2倍以上の0.015%(w/v)脱アシル化ジェランガム、10%(v/v)FBS、及び1% NEAA含有E-MEM培地に再懸濁し、培養プレートまたはシャーレに播種し、細胞を引き続き浮遊静置培養した。
[試験例8]
 培養後の細胞回収
 試験例7にて培養したLS123細胞を含む培養液を遠心チューブに回収し500rpmで1分遠心した。非沈降上清画分を回収し、1% NEAA含有E-MEM培地またはPBSにて2~3倍に希釈し、1500rpmで5分遠心し、下層の10%(v/v)の細胞を回収した。更に、残渣の5~10倍容量の1%(v/v) NEAA含有E-MEM培地またはPBSに懸濁し、再度1500rpmで5分遠心し、沈降した細胞を回収した。細胞を少量の1% NEAA含有E-MEM培地に再懸濁しスフェア細胞懸濁液を得た。本細胞液にトリプシン溶液を1:1(v/v)添加し37℃にて5分処理した後10%(v/v) FBS含有1% (v/v) NEAA含有E-MEM培地をFBS最終濃度1%(v/v)となるよう添加し、1000rpmにて3分遠心分離し、沈降した細胞を再度少量の1%(v/v) NEAA含有E-MEM培地に懸濁し単一化細胞懸濁液を得た。
[試験例9]
 担癌モデルの作成
 試験例2、4、6及び8で得られた各癌細胞を、0.5~5x106cells/匹/150μL(または200μL)になるように10%FBS含有またはFBS非含有培地(McCoy’s 5A培地あるいは1%NEAA含有E-MEM培地)で希釈した。マトリゲル共存移植においては、細胞の濃度が上記の2倍なるようにし、細胞懸濁液とマトリゲルを1:1(v:v)で混合した。
 7週齢の雌BALB/c-nu/nu(ヌード)マウスは日本クレアから購入した。イソフルラン麻酔下にて、動物の肩皮下に各癌細胞を注入した。細胞注入後、餌と水を自由摂取、群飼育にて4ないし5週間飼育した。週に1回癌組織を観察しその大きさ(外寸)を計測した。癌組織の体積は以下の公式により算出した。また、4ないし5週後の癌組織を摘出し重量を測定した。
  体積 V = 4π a b c /3 (a=横幅、b=縦幅、c=高さ)
[試験例10]
 担癌モデルにおける抗癌剤効果判定
 試験例9で作成したマウスの癌組織の大きさを移植1週目より2ないし3日に一回計測し、癌組織体積が200~300mm3になった個体について被検物質または溶媒の投与を開始した。投与開始後から対照群(コントロール群)での癌組織の十分生育が達成されるまでの期間投与を継続した。その間、2ないし3日に一回癌組織の大きさを計測した。
 以下に担癌モデルの作成試験および抗癌剤効果判定試験の結果を示す。
 脱アシル化ジェランガム含有培地中で浮遊培養した後に単一細胞に分散したHCT116細胞をマトリゲル存在下およびマトリゲル非存在下で移植した結果を図1および図2に示す。マトリゲル存在下移植では、脱アシル化ジェランガム含有培地中で非接着浮遊培養した細胞は、接着単層培養細胞に比べ約110%、非接着沈降培養細胞(脱アシル化ジェランガム不含培地中、細胞非接着性プレート上で培養)の約210%の高い癌細胞の生着と癌組織形成能を示した。一方、マトリゲル非存在下移植では、脱アシル化ジェランガム含有培地中で浮遊培養した細胞は、移植2週目より顕著な癌組織が確認され、4週目の癌組織の体積は接着単層培養細胞に比べ約410%、非接着沈降培養細胞の約1000%となり、高い癌細胞の生着と癌組織形成能を示した。更に、FBSを含まない培地でマトリゲル非存在下での移植の結果を図3に示した。同様に、脱アシル化ジェランガム含有培地中で浮遊培養した細胞は接着単層培養細胞に比べ高いマウスへの生着と癌組織化を示した。
 脱アシル化ジェランガム含有培地中で浮遊培養した後に単一細胞に分散したHCT116細胞をマトリゲル非存在下で移植した際の癌組織形成に対する抗癌剤効果を図4に示した。脱アシル化ジェランガム含有培地中で浮遊培養した細胞を移植して形成された癌組織の増殖はパクリタキセル(7mg/kg/day,3day/week)の投与で約74%(癌組織体積)、Trametinib(3mg/kg/day,3day/week)の投与で約49%(癌組織体積)抑制された。また、癌重量においても同等の抑制が認められた。
 脱アシル化ジェランガム含有培地中で浮遊培養したHCT116細胞のマトリゲル非存在下移植における、スフェロイド移植と単一細胞移植の比較を図5に示した。スフェロイド移植では、同細胞数の単一細胞移植にくらべ、約150%の高い生着と癌組織形成が認められた。
 脱アシル化ジェランガム含有培地中で浮遊培養したHCT116細胞をスフェロイドの状態でマトリゲル非存在下移植した際の癌組織形成に対する抗癌剤の効果を図6に示した。癌組織形成はTrametinib(3mg/kg/day,3day/week)の投与で約35%抑制された。この抑制の程度は単一細胞移植に比べ同等か、弱くなる傾向にあった。
 脱アシル化ジェランガム含有培地中で浮遊培養した後に単一細胞に分散したSKOV3細胞をマトリゲル非存在下で移植した際の癌組織形成の結果を図7に示す。6.8x105細胞の移植では、接着単層培養細胞ではマトリゲル非存在下では癌の生着および癌の形成は極めて低く5週目においても評価が困難であった。一方、脱アシル化ジェランガム含有培地中で浮遊培養した細胞では、移植3週目より顕著な癌組織が確認され、5週目では685mm3の癌組織が形成された。1x106細胞の移植では、接着単層培養細胞では4週目より顕著な癌組織の形成が認められたが、脱アシル化ジェランガム含有培地中で浮遊培養した細胞では、移植1週目より顕著な癌組織の形成が認められ、5週目での癌組織の体積は接着単層培養細胞に比べ約490%であった。
 脱アシル化ジェランガム含有培地中で浮遊培養した後に単一細胞に分散したSKOV3細胞をマトリゲル非存在下で移植した際の癌組織形成に対する抗癌剤効果を図8に示した。脱アシル化ジェランガム含有培地中で浮遊培養したSKOV3細胞を移植して形成された癌組織の増殖はMK2206(120mg/kg/day,3day/week)の投与で約69%(癌組織体積)抑制された。また、癌重量においても同等の抑制が認められた。
 脱アシル化ジェランガム含有培地中で浮遊培養したSKOV3細胞のマトリゲル非存在下移植における、スフェロイド移植と単一細胞移植の比較を図9に示した。スフェロイド移植では、同細胞数の単一細胞移植にくらべ、同等の生着と癌組織形成が認められた。
 脱アシル化ジェランガム含有培地中で浮遊培養したSKOV3細胞をスフェロイドの状態でマトリゲル非存在下移植した際の癌組織形成に対する抗癌剤の効果を図10に示した。癌組織形成はMK2206(120mg/kg/day,3day/week)の投与で約57%(癌組織体積)抑制された。また、癌重量においても同等の抑制が認められた。
 脱アシル化ジェランガム含有培地中で浮遊培養したMCF7細胞をスフェロイドの状態でマトリゲル非存在下にてヌードマウスに5x106細胞移植したとき、移植3週において18匹中6匹で333±37mm3の癌組織形成が確認された。一方、同数の単層培養細胞をマトリゲル非存在下にて移植したときは、移植3週において癌組織形成が確認された動物は6匹中0匹であった。また、脱アシル化ジェランガム含有培地中で浮遊培養したMCF7細胞をスフェロイドの状態で移植した際に形成された癌に対する抗癌剤の効果を図11に示した。Gefitinib(100mg/kg/day,3day/week)は、癌組織の肥大を抑制した。
[試験例11]
 培養後の細胞回収
 試験例7にて培養したLS123細胞を含む培養液を遠心チューブに回収し500rpmで1分遠心した。非沈降上清画分を回収し、1%(v/v)NEAA含有E-MEM培地またはPBSにて2~3倍に希釈し、1500rpmで5分遠心し、下層の10%(v/v)の細胞を回収した。さらに、残渣の5~10倍容量の1%(v/v)NEAA含有E-MEM培地またはPBSに懸濁し、再度1500rpmで5分遠心し、沈降した細胞を回収した。細胞を少量の1%(v/v)NEAA含有E-MEM培地に再懸濁しスフェア細胞懸濁液を得た。
[試験例12]
 担癌モデルの作成
 試験例11で得られた癌細胞を、2D培養では6x106個/匹/200μL、DAG浮遊培養では3x106個/匹/250μLになるように1%NEAA含有E-MEM培地で希釈した。マトリゲル共存移植においては、細胞懸濁液とマトリゲルを2D培養では1:1(v:v)、DAG浮遊培養では2.5:1(v:v)で混合した。
 7週齢の雌BALB/c-nu/nu(ヌード)マウスは日本クレアから購入した。イソフルラン麻酔下にて、動物の肩皮下に各癌細胞懸濁液を200μL(2D培養細胞:6x106個または3x106個(マトリゲル存在下))または250μL(DAG浮遊培養細胞:3x106個)または350μL(DAG浮遊培養細胞:3x106個(マトリゲル存在下))注入した。細胞注入後、餌と水を自由摂取、群飼育にて4週間飼育した。週に1回癌組織を観察しその大きさ(外寸)を計測した。癌組織の体積は試験例9に記載の公式により算出した。結果を図12に示す。
 マトリゲル非存在下移植では、2D培養細胞、DAG浮遊培養細胞ともに、移植1週後には、癌組織様の腫瘍が観察された。その大きさは、DAG浮遊培養細胞において、細胞数が2D培養細胞の半分であったにもかかわらず、ほぼ2倍であった。この腫瘍は、2週目以降では、2D培養細胞では完全に消失したが、DAG浮遊培養細胞では、縮小するものの4週目まで維持された。マトリゲル存在下移植では、マトリゲル非存在下移植に比し、2D培養細胞では形成された腫瘍は小さく2週目以降消失し、DAG浮遊培養細胞では腫瘍の形成は確認されなかった。
 本発明により、汎用性、経済性、利便性、及び/又は臨床への外挿性に優れた担癌哺乳動物モデルが提供される。本発明により、癌細胞の生体内での生体における生着率及び生育能が向上するので、少ない数の癌細胞で、大きな腫瘍組織を有する担癌哺乳動物を、短期間で作成することが可能となる。また、マトリゲル等の細胞外マトリクスと共に移植しなければほとんど生着せず、腫瘍組織化しない癌細胞を、細胞外マトリクスなし条件下で、生体内に生着させ、腫瘍組織化することが可能である。また、液体培地中の粘度を実質的に高めることなく、浮遊状態を維持したまま、細胞または細胞凝集塊や組織を培養することが可能な培地組成物および、その培養で得られた細胞または細胞凝集塊は、実際の生体での癌組織内に近似した培養環境を提供すると考えられる。また、非免疫不全動物を用いた担癌動物モデルの作成も可能と考えられる。そのため、実際の臨床ケースにより近似した腫瘍組織の再現が期待できる。本発明の方法により作成される担癌哺乳動物モデルは、癌特性評価、癌個別診断、抗がん剤評価等に有用である。
 ここで述べられた特許、特許出願明細書、科学文献を含む全ての刊行物に記載された内容は、ここに引用されたことによって、その全てが明示されたと同程度に本明細書に組み込まれるものである。
 本出願は、日本で出願された特願2015-022585(出願日:2015年2月6日)及び特願2015-067781(出願日:2015年3月28日)を基礎としており、その内容は本明細書に全て包含されるものである。

Claims (13)

  1.  以下の工程を含む、担癌非ヒト哺乳動物の作成方法:
    (1)細胞または組織を浮遊させて培養できる構造体を含有する培地組成物中で、癌細胞を浮遊培養すること;及び
    (2)(1)の培養により得られた癌細胞を非ヒト哺乳動物に移入すること。
  2.  更に、以下の工程を含む、請求項1記載の方法:
    (3)癌細胞を移入した非ヒト哺乳動物を飼育し、移入した癌細胞から腫瘍組織を形成させること。
  3.  (2)において、基底膜調製物を含有する生理的水性組成物中に懸濁された癌細胞が非ヒト哺乳動物に移入される、請求項1又は2記載の方法。
  4.  (2)において、基底膜調製物を実質的に含有しない生理的水性組成物中に懸濁された癌細胞が非ヒト哺乳動物に移入される、請求項1又は2記載の方法。
  5.  非ヒト哺乳動物が、免疫不全非ヒト哺乳動物である、請求項1~4のいずれか1項記載の方法。
  6.  癌細胞が、移入する非ヒト哺乳動物に対して同種異系又は異種である、請求項5記載の方法。
  7.  癌細胞が、ヒト癌細胞である、請求項6記載の方法。
  8.  癌細胞が、固形腫瘍を形成する能力を有する、請求項1~7のいずれか1項記載の方法。
  9.  前記構造体が脱アシル化ジェランガムを含む、請求項1~8のいずれか1項記載の方法。
  10.  培地組成物中の脱アシル化ジェランガム濃度が0.005~0.3%(w/v)である、請求項9記載の方法。
  11.  培地組成物の37℃における粘度が、8mPa・s以下である、請求項1~10のいずれか1項記載の方法。
  12.  以下の工程を含む、抗癌剤のスクリーニング方法:
    (1)請求項1~11のいずれか1項記載の方法により作成した担癌非ヒト哺乳動物に被検化合物を投与すること;
    (2)(1)で得た担癌非ヒト哺乳動物における腫瘍組織の大きさを測定すること;
    (3)(2)で測定した腫瘍組織の大きさを、被検化合物を投与していないコントロール担癌非ヒト哺乳動物の腫瘍組織の大きさと比較すること。
  13.  細胞または組織を浮遊させて培養できる構造体を含有する培地組成物中で、癌細胞を浮遊培養することを含む、該癌細胞の非ヒト哺乳動物内への生着を促進する方法。
PCT/JP2016/053467 2015-02-06 2016-02-05 担癌哺乳動物モデルの作成方法 WO2016125884A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016573430A JPWO2016125884A1 (ja) 2015-02-06 2016-02-05 担癌哺乳動物モデルの作成方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015022585 2015-02-06
JP2015-022585 2015-02-06
JP2015-067781 2015-03-28
JP2015067781 2015-03-28

Publications (1)

Publication Number Publication Date
WO2016125884A1 true WO2016125884A1 (ja) 2016-08-11

Family

ID=56564222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053467 WO2016125884A1 (ja) 2015-02-06 2016-02-05 担癌哺乳動物モデルの作成方法

Country Status (3)

Country Link
JP (1) JPWO2016125884A1 (ja)
TW (1) TW201636422A (ja)
WO (1) WO2016125884A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207714A1 (ja) * 2017-05-09 2018-11-15 公立大学法人名古屋市立大学 多能性幹細胞由来腸管オルガノイドの作製法
WO2019098310A1 (ja) 2017-11-16 2019-05-23 日産化学株式会社 ベージュおよび白色脂肪細胞への分化誘導および生産法
JP2020141617A (ja) * 2019-03-07 2020-09-10 住友ゴム工業株式会社 がん細胞の培養方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008507A1 (ja) * 2010-07-14 2012-01-19 武田薬品工業株式会社 癌の治療剤
JP2013047223A (ja) * 2011-07-28 2013-03-07 Otsuka Pharmaceut Co Ltd 医薬
WO2014017513A1 (ja) * 2012-07-24 2014-01-30 日産化学工業株式会社 培地組成物及び当該組成物を用いた細胞又は組織の培養方法
JP2014156400A (ja) * 2011-05-24 2014-08-28 Astellas Pharma Inc 腫瘍の画像診断用標識誘導体
JP2014207883A (ja) * 2013-03-27 2014-11-06 国立大学法人岡山大学 がん幹細胞及びその用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008507A1 (ja) * 2010-07-14 2012-01-19 武田薬品工業株式会社 癌の治療剤
JP2014156400A (ja) * 2011-05-24 2014-08-28 Astellas Pharma Inc 腫瘍の画像診断用標識誘導体
JP2013047223A (ja) * 2011-07-28 2013-03-07 Otsuka Pharmaceut Co Ltd 医薬
WO2014017513A1 (ja) * 2012-07-24 2014-01-30 日産化学工業株式会社 培地組成物及び当該組成物を用いた細胞又は組織の培養方法
JP2014207883A (ja) * 2013-03-27 2014-11-06 国立大学法人岡山大学 がん幹細胞及びその用途

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207714A1 (ja) * 2017-05-09 2018-11-15 公立大学法人名古屋市立大学 多能性幹細胞由来腸管オルガノイドの作製法
JPWO2018207714A1 (ja) * 2017-05-09 2020-03-12 公立大学法人名古屋市立大学 多能性幹細胞由来腸管オルガノイドの作製法
JP7174426B2 (ja) 2017-05-09 2022-11-17 公立大学法人名古屋市立大学 多能性幹細胞由来腸管オルガノイドの作製法
US11859212B2 (en) 2017-05-09 2024-01-02 Public University Corporation Nagoya City University Method for producing intestinal organoid derived from pluripotent stem cells
WO2019098310A1 (ja) 2017-11-16 2019-05-23 日産化学株式会社 ベージュおよび白色脂肪細胞への分化誘導および生産法
US11530387B2 (en) 2017-11-16 2022-12-20 Nissan Chemical Corporation Method for inducing differentiation into and producing beige and white adipocytes
JP2020141617A (ja) * 2019-03-07 2020-09-10 住友ゴム工業株式会社 がん細胞の培養方法
JP7213487B2 (ja) 2019-03-07 2023-01-27 住友ゴム工業株式会社 がん細胞の培養方法

Also Published As

Publication number Publication date
TW201636422A (zh) 2016-10-16
JPWO2016125884A1 (ja) 2017-11-16

Similar Documents

Publication Publication Date Title
JP6879517B2 (ja) 培地組成物及び当該組成物を用いた細胞又は組織の培養方法
JP7452519B2 (ja) 培地添加物及び培地組成物並びにそれらを用いた細胞又は組織の培養方法
JP2020171327A (ja) 培地組成物
WO2015111685A1 (ja) 培地組成物の製造方法
KR102562736B1 (ko) 혈관 평활근 세포의 배양 방법
JPWO2020045620A1 (ja) 接着性細胞の浮遊培養用培地組成物
WO2016125884A1 (ja) 担癌哺乳動物モデルの作成方法
WO2017057599A1 (ja) 癌細胞と癌周囲細胞を共培養する方法
JP6642439B2 (ja) 細胞回収に関する方法
JP7106525B2 (ja) 細胞培養用培地組成物
WO2016047738A1 (ja) 抗癌剤のスクリーニング方法
KR20240110803A (ko) 교반을 수반하는 접착성 세포의 부유 배양 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573430

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746715

Country of ref document: EP

Kind code of ref document: A1