WO2016125402A1 - 自動変速機の制御装置 - Google Patents

自動変速機の制御装置 Download PDF

Info

Publication number
WO2016125402A1
WO2016125402A1 PCT/JP2015/085136 JP2015085136W WO2016125402A1 WO 2016125402 A1 WO2016125402 A1 WO 2016125402A1 JP 2015085136 W JP2015085136 W JP 2015085136W WO 2016125402 A1 WO2016125402 A1 WO 2016125402A1
Authority
WO
WIPO (PCT)
Prior art keywords
accelerator pedal
automatic transmission
speed
predetermined
downshift
Prior art date
Application number
PCT/JP2015/085136
Other languages
English (en)
French (fr)
Inventor
幸司 古口
翔 奥谷
真琴 小松
俊明 野田
井上 拓市郎
雄司 長瀬
田中 寛康
若山 英史
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to CN201580074821.2A priority Critical patent/CN107208791B/zh
Priority to JP2016573203A priority patent/JP6340090B2/ja
Priority to US15/547,855 priority patent/US10207715B2/en
Priority to EP15881219.8A priority patent/EP3255317A4/en
Priority to KR1020177021254A priority patent/KR101925232B1/ko
Publication of WO2016125402A1 publication Critical patent/WO2016125402A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • B60W10/024Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches including control of torque converters
    • B60W10/026Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches including control of torque converters of lock-up clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/74Inputs being a function of engine parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/16Inhibiting or initiating shift during unfavourable conditions, e.g. preventing forward reverse shift at high vehicle speed, preventing engine over speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • B60W2510/0661Torque change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/103Accelerator thresholds, e.g. kickdown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/106Rate of change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • B60W2710/024Clutch engagement state of torque converter lock-up clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H2059/147Transmission input torque, e.g. measured or estimated engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • F16H2059/183Rate of change of accelerator position, i.e. pedal or throttle change gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H2059/366Engine or motor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/141Inputs being a function of torque or torque demand of rate of change of torque or torque demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • F16H59/20Kickdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches

Definitions

  • the present invention relates to a control device for an automatic transmission.
  • Patent Document 1 As a control device for an automatic transmission, for example, the one described in Patent Document 1 is known.
  • the first friction engagement element For example, during downshifting, during a shift that increases the torque transmission capacity from the drive side to the driven side by sliding engagement of the high & low reverse clutch (hereinafter referred to as the first friction engagement element), (1) The fastening capacity of a low coast brake (hereinafter referred to as a second frictional engagement element) connected to the driven side so as to give a reaction force acting in the opposite direction to the direction in which the frictional engagement element is applied. Increases and reduces judder during shifting.
  • a low coast brake hereinafter referred to as a second frictional engagement element
  • This invention pays attention to the above-mentioned subject, and it aims at providing the control device of an automatic transmission which can avoid judder accompanying a downshift.
  • control device for an automatic transmission controls an automatic transmission provided with a shift control means for downshifting by releasing the first frictional engagement element that was engaged in the gear stage before the shift.
  • a shift control means for downshifting by releasing the first frictional engagement element that was engaged in the gear stage before the shift.
  • Engine characteristic determining means for determining whether or not, an operating state determining means for determining whether or not the accelerator pedal opening is a predetermined accelerator operation state in which the accelerator pedal opening is not less than a predetermined value and the absolute value of the accelerator pedal opening speed is not more than a predetermined value; If the engine characteristic determining means determines that the vehicle is within the predetermined area and the driving state determining means determines that the predetermined accelerator operation state is present, Downshift prohibiting means for prohibiting the shift.
  • FIG. 1 is a schematic system diagram showing a vehicle drive system and its overall control system according to a first embodiment.
  • vehicle of the first embodiment (a) is a schematic system diagram showing a drive system of the vehicle and an overall control system thereof, and (b) is incorporated in a V-belt continuously variable transmission in the drive system of the vehicle.
  • FIG. 6 is a logic diagram for engaging a clutch in the auxiliary transmission.
  • 3 is an example of a shift map stored in the transmission controller according to the first embodiment. 6 is a flowchart illustrating a kick-down prohibition control process according to the first embodiment.
  • 3 is a flowchart illustrating a kickdown torque change determination process according to the first embodiment.
  • 3 is a flowchart illustrating kickdown opening degree determination processing according to the first embodiment.
  • 3 is a flowchart illustrating area determination processing according to the first exemplary embodiment.
  • 3 is a flowchart illustrating a slow step determination process according to the first exemplary embodiment. It is a characteristic view showing an engine torque characteristic.
  • 3 is a time chart illustrating a kick-down prohibition control process according to the first embodiment.
  • FIG. 1 is a schematic system diagram showing a vehicle drive system equipped with a control device for an automatic transmission according to a first embodiment and an overall control system thereof.
  • the vehicle of FIG. 1 is equipped with an engine 1 as a power source, and the engine 1 is started by a starter motor 3.
  • the engine 1 is drive-coupled to the drive wheels 5 through a V-belt type continuously variable transmission 4 so as to be appropriately separated.
  • the variator CVT of the continuously variable transmission 4 is a V belt type continuously variable transmission mechanism including a primary pulley 6, a secondary pulley 7, and a V belt 8 (endless flexible member) spanned between these pulleys 6 and 7. is there.
  • the V belt 8 employs a configuration in which a plurality of elements are bundled by an endless belt, but may be a chain system or the like, and is not particularly limited.
  • the primary pulley 6 is coupled to the crankshaft of the engine 1 via the torque converter T / C, and the secondary pulley 7 is coupled to the drive wheel 5 via the clutch CL and the final gear set 9 in order.
  • FIG. 1 conceptually shows a power transmission path.
  • a high clutch H / C, a reverse brake R / B, and a low brake L / B provided in an auxiliary transmission 31 described later are collectively referred to as a clutch. It is described as CL.
  • the clutch CL When the clutch CL is engaged, the power from the engine 1 is input to the primary pulley 6 via the torque converter T / C having the lockup clutch L / U, and then the V belt 8, the secondary pulley 7, the clutch CL, and the final.
  • the gears 9 are sequentially transmitted to the drive wheels 5 to travel.
  • the pulley V groove width of the primary pulley 6 is reduced while the pulley V groove width of the secondary pulley 7 is increased to increase the winding arc diameter of the V belt 8 and the primary pulley 6 and at the same time Decrease the diameter of the winding arc with pulley 7.
  • the variator CVT upshifts to the high pulley ratio (high gear ratio).
  • the gear ratio is set to the maximum gear ratio.
  • the variator CVT downshifts to the low pulley ratio (low gear ratio).
  • the gear shift is set to the minimum gear ratio.
  • the variator CVT has a primary rotational speed sensor 6a for detecting the rotational speed of the primary pulley 6 and a secondary rotational speed sensor 7a for detecting the rotational speed of the secondary pulley 7, and the rotational speed detected by these both rotational speed sensors.
  • the actual gear ratio is calculated based on the above, and hydraulic control of each pulley is performed so that the actual gear ratio becomes the target gear ratio.
  • the engine controller 22 receives a signal from an accelerator pedal opening sensor 27 that detects an accelerator pedal depression amount (accelerator pedal opening) APO, and controls output of the engine 1.
  • the transmission controller 24 is based on a signal from the accelerator pedal opening sensor 27, a signal from the vehicle speed sensor 32 (see FIG. 2), a signal from the acceleration sensor 33 (see FIG. 2), and a torque signal from the engine controller 22.
  • the shift control of the variator CVT V-belt type continuously variable transmission mechanism CVT
  • the shift control of the auxiliary transmission 31 are performed.
  • the variator CVT and the auxiliary transmission 31 are controlled based on the hydraulic pressure supplied from the engine-driven mechanical oil pump O / P.
  • FIG. 2 (a) is a schematic system diagram showing the vehicle drive system and its overall control system according to the first embodiment.
  • FIG. 2 (b) shows the continuously variable transmission 4 in the vehicle drive system according to the first embodiment.
  • FIG. 3 is a fastening logic diagram of a clutch CL (specifically, H / C, R / B, L / B) in a built-in auxiliary transmission 31.
  • the auxiliary transmission 31 rotatably supports the composite sun gears 31s-1 and 31s-2, the inner pinion 31pin, the outer pinion 31pout, the ring gear 31r, the pinion 31pin, and the flange 31pout.
  • a Ravigneaux type planetary gear set comprising the carrier 31c.
  • the sun gear 31s-1 is coupled to the secondary pulley 7 so as to act as an input rotating member, and the sun gear 31s-2 is arranged coaxially with respect to the secondary pulley 7, but freely rotates. To get.
  • the inner pinion 31pin is engaged with the sun gear 31s-1, and the inner pinion 31pin and the sun gear 31s-2 are respectively engaged with the outer pinion 31pout.
  • the outer pinion 31pout meshes with the inner periphery of the ring gear 31r, and is coupled to the final gear set 9 so that the carrier 31c acts as an output rotating member.
  • the carrier 31c and the ring gear 31r can be appropriately coupled by the high clutch H / C as the clutch CL, the ring gear 31r can be appropriately fixed by the reverse brake R / B as the clutch CL, and the sun gear 31s-2 can be coupled by the clutch CL. It can be fixed as appropriate with a certain low brake L / B.
  • the auxiliary transmission 31 is engaged with the high clutch H / C, the reverse brake R / B, and the low brake L / B in the combinations indicated by the circles in FIG. 2 (b), and the others are shown in FIG. 2 (b).
  • the forward first speed, the second speed, and the reverse speed can be selected.
  • the sub-transmission 31 is in a neutral state where no power is transmitted.
  • the auxiliary transmission 31 When the transmission 31 is in the first forward speed selection (deceleration) state and the high clutch H / C is engaged, the auxiliary transmission 31 is in the second forward speed selection (direct connection) state and when the reverse brake R / B is engaged, The transmission 31 is in a reverse selection (reverse) state.
  • the continuously variable transmission 4 in FIG. 2 (a) releases all the clutches CL (H / C, R / B, L / B) and puts the sub-transmission 31 in a neutral state, so that the variator CVT (secondary The pulley 7) and the drive wheel 5 can be disconnected.
  • the continuously variable transmission 4 in FIG. 2 (a) is controlled using oil from an engine driven mechanical oil pump O / P as a working medium.
  • the transmission controller 24 includes a line pressure solenoid 35, a lockup solenoid. 36. Control of variator CVT as follows via primary pulley pressure solenoid 37-1, secondary pulley pressure solenoid 37-2, low brake pressure solenoid 38, high clutch pressure & reverse brake pressure solenoid 39 and switch valve 41 Control.
  • the transmission controller 24 receives a signal from the vehicle speed sensor 32 that detects the vehicle speed VSP and a signal from the acceleration sensor 33 that detects the vehicle acceleration / deceleration G.
  • the line pressure solenoid 35 responds to a command from the transmission controller 24 and regulates the oil from the mechanical oil pump O / P to the line pressure PL corresponding to the vehicle required driving force.
  • the lock-up solenoid 36 responds to the lock-up command from the transmission controller 24, supplies the line pressure PL to the torque converter T / C as appropriate, and controls the engagement state of the lock-up clutch L / U to Accordingly, the lockup state is established in which the input / output elements are directly connected.
  • the primary pulley pressure solenoid 37-1 adjusts the line pressure PL to the primary pulley pressure in response to the CVT gear ratio command from the transmission controller 24, and supplies this to the primary pulley 6, thereby
  • the CVT gear ratio command from the transmission controller 24 is realized by controlling the groove width and the V groove width of the secondary pulley 7 so that the CVT gear ratio matches the command from the transmission controller 24.
  • the secondary pulley pressure solenoid 37-2 adjusts the line pressure PL to the secondary pulley pressure according to the clamping force command from the transmission controller 24, and supplies the secondary pulley pressure to the secondary pulley 7. Clamp it so that it will not slip.
  • the low brake pressure solenoid 38 is engaged by supplying the line pressure PL to the low brake L / B as the low brake pressure when the transmission controller 24 issues the first speed selection command for the sub-transmission 31.
  • the first speed selection command is realized.
  • the high clutch pressure & reverse brake pressure solenoid 39 is a switch valve that uses the line pressure PL as the high clutch pressure & reverse brake pressure when the transmission controller 24 issues the second speed selection command or reverse selection command for the sub-transmission 31. Supply to 41.
  • the switch valve 41 uses the line pressure PL from the solenoid 39 as the high clutch pressure to the high clutch H / C, and by engaging this, the second speed selection command of the auxiliary transmission 31 is issued. Realize.
  • the switch valve 41 uses the line pressure PL from the solenoid 39 as the reverse brake pressure to the reverse brake R / B and fastens it, thereby realizing the reverse selection command of the auxiliary transmission 31.
  • FIG. 3 is an example of a shift map stored in the transmission controller 24 of the first embodiment.
  • the transmission controller 24 controls the continuously variable transmission 4 according to the driving state of the vehicle (vehicle speed VSP, primary rotation speed Npri, accelerator pedal opening APO in the first embodiment) while referring to this shift map.
  • the operating point of the continuously variable transmission 4 is defined by the vehicle speed VSP and the primary rotational speed Npri.
  • the slope of the line connecting the operating point of the continuously variable transmission 4 and the zero point in the lower left corner of the transmission map is the transmission ratio of the continuously variable transmission 4 (the overall ratio obtained by multiplying the transmission ratio of the variator CVT by the transmission ratio of the sub-transmission 31).
  • Speed ratio hereinafter referred to as “through speed ratio”).
  • the continuously variable transmission 4 When the continuously variable transmission 4 is in the low speed mode, the continuously variable transmission 4 sets the speed ratio of the variator CVT to the highest gear ratio and the variator CVT to the highest gear ratio. It is possible to shift between the resulting low speed mode highest line. At this time, the operating point of the continuously variable transmission 4 moves in the A region and the B region.
  • the continuously variable transmission 4 when the continuously variable transmission 4 is in the high speed mode, the continuously variable transmission 4 sets the speed ratio of the variator CVT to the maximum high speed ratio and the speed ratio of the variator CVT obtained by setting the speed ratio of the variator CVT to the lowest speed ratio It is possible to shift between the high-speed mode highest line obtained as described above. At this time, the operating point of the continuously variable transmission 4 moves in the B region and the C region.
  • the gear ratio of each gear stage of the sub-transmission 31 is such that the gear ratio corresponding to the low speed mode highest line (low speed mode highest high gear ratio) corresponds to the high speed mode lowest line (high speed mode lowest gear ratio). It is set to be smaller than that.
  • the range of the through gear ratio of the continuously variable transmission 4 that can be used in the low speed mode (“low speed mode ratio range” in the figure) and the range of the through gear ratio of the continuously variable transmission 4 that can be used in the high speed mode (in the figure).
  • “High-speed mode ratio range”) and the operating point of the continuously variable transmission 4 is in the B region sandwiched between the high-speed mode lowest line and the low-speed mode highest line. 4 can select either low-speed mode or high-speed mode.
  • the mode switching shift line for shifting the sub-transmission 31 is set so as to overlap the low speed mode highest line.
  • the through speed change ratio (hereinafter referred to as “mode change speed change ratio mRatio”) corresponding to the mode change speed change line is set to a value equal to the low speed mode maximum High speed change ratio.
  • the reason why the mode switching shift line is set in this manner is that the smaller the gear ratio of the variator CVT, the smaller the input torque to the sub-transmission 31, and the lower the shift shock when shifting the sub-transmission 31. .
  • the transmission controller 24 When the operating point of the continuously variable transmission 4 crosses the mode switching speed line, that is, when the actual value of the through speed ratio changes across the mode switching speed ratio mRatio, the transmission controller 24 is connected to the variator CVT. Both the sub-transmissions 31 perform coordinated shifting and switch between the high speed mode and the low speed mode.
  • Kickdown is, for example, when the accelerator pedal opening APO is stepped on at a predetermined opening speed threshold ⁇ APO1 or more while the auxiliary transmission 31 is traveling at the second speed, and a torque change occurs at a predetermined torque change threshold ⁇ T1 or more.
  • a downshift from 2nd to 1st In a state where the vehicle is traveling while slowly depressing the accelerator pedal 19, the accelerator pedal opening APO gradually increases, although it is not depressed enough to express the sudden acceleration intention.
  • the predetermined opening speed threshold ⁇ APO1 for performing the kickdown determination is determined based on the vehicle speed VSP and the accelerator pedal opening APO.
  • the predetermined opening speed threshold ⁇ APO1 is set to a smaller value as the accelerator pedal opening APO is higher and the vehicle speed VSP is higher. Therefore, even if the accelerator pedal opening speed ⁇ APO is not so large, there is a scene in which a kick-down request is made as the predetermined opening speed threshold value ⁇ APO1 decreases.
  • the downshift accompanying the kickdown is performed at a somewhat high accelerator pedal opening APO, so the high clutch pressure supplied to the high clutch H / C was relatively increased according to the accelerator pedal opening APO.
  • the line pressure is supplied. From this state, the high clutch pressure is reduced to the shelf pressure, and the low brake pressure of the low brake L / B is increased.
  • the engine torque TE is output relatively high, if the change of the engine torque to the increasing side is small, there may be a case where sufficient torque for proceeding with the shift cannot be obtained.
  • FIG. 9 is a characteristic diagram showing engine torque characteristics.
  • the engine torque change amount ⁇ T (b) with respect to the change of the accelerator pedal opening from 3/8 to 4/8 in the hatched region in FIG. 9 is lower than the region indicated by hatching ⁇ T ( a) or smaller than the engine torque change ⁇ T (c) with respect to the accelerator pedal opening change in the high engine rotation side region.
  • the accelerator pedal opening APO increases, a very large increase in the engine torque TE cannot be expected. This tendency is prominent in turbo engines and the like.
  • Example 1 kick-down is prohibited in a running state where judder is a concern.
  • the configuration is not limited to kickdown, and it is only necessary to have a configuration in which downshifting is prohibited in a running state where judder is a concern.
  • FIG. 4 is a flowchart illustrating the kick-down prohibition control process according to the first embodiment.
  • step S1 it is determined whether the kickdown torque change flag FKDT (hereinafter referred to as FKDT) is ON and the kickdown opening flag FKDA (hereinafter referred to as FKDA) is ON. In this case, the process proceeds to step S2, and otherwise, the process proceeds to step S3.
  • FKD a kick down flag FKD (hereinafter referred to as FKD) is set to ON.
  • FKD is set to OFF.
  • FIG. 5 is a flowchart showing a kickdown torque change determination process according to the first embodiment
  • FIG. 6 is a flowchart showing a kickdown opening degree determination process according to the first embodiment.
  • step S101 the accelerator pedal opening APO and the vehicle speed VSP are read.
  • step S102 a predetermined torque change amount threshold value ⁇ T1 is calculated. Specifically, ⁇ T1 is calculated as a smaller value as the accelerator pedal opening APO is larger and the vehicle speed VSP is higher.
  • step S103 a torque change amount ⁇ T is calculated from the difference between the previous engine torque TE and the current engine torque TE.
  • step S104 it is determined whether or not the engine torque change amount ⁇ T is equal to or greater than a predetermined torque change amount threshold value ⁇ T1. If YES, the process proceeds to step S105, and FKDT is set to ON. On the other hand, if NO, the process proceeds to step S106, and FKDT is set to OFF.
  • step S201 the accelerator pedal opening APO and the vehicle speed VSP are read.
  • step S202 a predetermined opening speed threshold value ⁇ APO1 is calculated. Specifically, ⁇ APO1 is calculated as a smaller value as the accelerator pedal opening APO is larger and the vehicle speed VSP is higher.
  • ⁇ APO1 is calculated as a smaller value as the accelerator pedal opening APO is larger and the vehicle speed VSP is higher.
  • step S203 it is determined whether or not the opening speed ⁇ APO of the accelerator pedal opening APO is equal to or greater than a predetermined opening speed threshold value ⁇ APO1, and if YES, the process proceeds to step S204 and FKDA is set to ON. On the other hand, if NO, the process proceeds to step S205 to set FKDA to OFF.
  • the opening speed ⁇ APO is a value obtained by dividing the difference between the previous accelerator pedal opening APO and the current accelerator pedal opening APO by the control cycle, but simply using the difference between the previous APO and the current APO. There is no particular limitation.
  • steps S1 to S3 normal kickdown determination processing is performed, and FKD is set to ON when there is a kickdown request, and FKD is set to OFF when there is no kickdown request.
  • step S4 it is determined whether or not the accelerator pedal opening APO is equal to or greater than a predetermined opening APO2, and if it is greater than or equal to APO2, the process proceeds to step S5. Otherwise, the process proceeds to step S9.
  • step S5 it is determined whether or not an area determination flag FEA (hereinafter referred to as FEA) is ON. If it is ON, the process proceeds to step S6, and if it is OFF, the process proceeds to step S8.
  • step S6 it is determined whether or not the slow step determination flag FSA (hereinafter referred to as FSA) is ON.
  • step S7 a kick down prohibition flag FKDP (hereinafter referred to as FKDP) is set to ON.
  • FKDP kick down prohibition flag
  • FIG. 7 is a flowchart illustrating the region determination process according to the first embodiment
  • FIG. 8 is a flowchart illustrating the slow step determination process according to the first embodiment.
  • step S301 it is determined whether or not the engine torque TE is not less than the torque lower limit value TEmin and not more than the torque upper limit value TEmax. If it is within the predetermined range, the process proceeds to step S302. Otherwise, the process proceeds to step S304.
  • step S302 it is determined whether or not the engine speed NE is not less than the engine speed lower limit value NEmin and not more than the engine speed upper limit value NEmax.
  • step S303 If it is within the predetermined range, the process proceeds to step S303, otherwise the process proceeds to step S304. That is, it is determined whether or not the current engine torque TE is within the hatching region shown in FIG. 9, and if it is within the hatching region, an increase in the engine torque TE with respect to an increase in the accelerator pedal opening APO cannot be expected. Indicates an area that is prone to cause high clutch H / C judder.
  • step S401 it is determined whether or not the accelerator pedal opening APO is equal to or greater than a predetermined value APOC representing the coasting state. If YES, the process proceeds to step S402. If NO, the process proceeds to step S410 and FSA is set to OFF. . That is, kickdown is not prohibited because there is no judder concern during coast driving.
  • step S402 it is determined whether or not the absolute value of the accelerator pedal opening speed ⁇ APO is equal to or smaller than a predetermined opening speed threshold value ⁇ APO2 indicating a slow depression. If YES, the process proceeds to step S403, and if NO, the process proceeds to step S406. That is, if the accelerator pedal opening speed ⁇ APO is small, it means that the accelerator pedal 19 is slowly depressed or slowly released.
  • step S403 a slow-down timer TSLOW (hereinafter referred to as TSLOW) is counted up.
  • TSLOW a slow-down timer TSLOW
  • step S404 it is determined whether or not TSLOW is equal to or longer than a predetermined time TSLOW1 indicating that the accelerator pedal is continuously depressed slowly. If YES, the process proceeds to step S405 and FSA is set to ON. If NO, the process proceeds to step S409 to maintain the current FSA. That is, when stepping slowly, priority is given to avoiding judder because it is easy to enter an area where judder occurs and there is no intention of acceleration.
  • step S406 a cancellation timer TOFF (hereinafter referred to as TOFF) is counted up.
  • TOFF a cancellation timer
  • step S407 it is determined whether or not TOFF is equal to or longer than a predetermined time TOFF1 indicating that the accelerator pedal is continuously depressed. If YES, the process proceeds to step S408 and FSA is set to OFF. If NO, the process proceeds to step S409 to maintain the current FSA.
  • This release scene is assumed to enter the traveling lane while firmly depressing the accelerator pedal, for example, in a highway merging scene. This is because kickdown should not be prohibited in such situations.
  • step S9 it is determined whether or not the engine speed NE is equal to or higher than a predetermined engine speed NE1. If YES, the process proceeds to step S5, and if NO, the process proceeds to step S10.
  • step S10 FKDP is set to OFF. That is, when it is determined in step S4 that the accelerator pedal opening APO is smaller than the predetermined opening APO2 and the engine speed is low, the engine torque TE is sufficiently reduced, and the accelerator pedal is depressed or increased the next time. Since the engine torque change amount ⁇ T accompanying this is expected to be large, the kick-down prohibition is canceled.
  • step S11 it is determined whether or not FKDP is ON. If ON, the process proceeds to step S17. If OFF, the process proceeds to step S12.
  • step S12 the lockup OFF flag FL / UOFF (hereinafter referred to as FL / UOFF) is set to OFF. Details of FL / UOFF will be described later.
  • step S13 the lockup clutch L / U is controlled by normal lockup control. The lockup clutch L / U is controlled to a fully engaged state, a slip lockup state, and a released state according to the traveling state.
  • step S14 it is determined whether or not FKD is ON.
  • step S15 If it is ON, there is a kickdown request, so the process proceeds to step S15 to execute kickdown. In the case of NO, since there is no kick down request, the process proceeds to step S16 to maintain the current gear position (second speed in the case of the first embodiment).
  • step S17 it is determined whether or not the road surface gradient ⁇ road is equal to or greater than a predetermined gradient ⁇ 1, and if YES, it is determined that the road is an uphill road and the load is large, and the process proceeds to step S18. If NO, the process proceeds to step S20 to maintain the FL / UOFF state.
  • the road surface gradient ⁇ road may be estimated based on the longitudinal acceleration detected by the APO, VSP, and acceleration sensor 33, or may be detected using navigation information or other sensors, and is not particularly limited.
  • the lockup OFF flag FL / UOFF is a flag for requesting full release of the lockup clutch L / U regardless of the control state of the lockup clutch L / U by the normal lockup control.
  • step S18 it is determined whether or not the accelerator pedal opening APO is equal to or greater than a predetermined value APO3 representing the driver's driving force request. If YES, the road surface has a slope and a driving force is requested. The process proceeds to step S19, and FL / UOFF is set to ON. If NO, the process proceeds to step S20, and the FL / UOFF state is maintained. That is, when FKDP is ON, kickdown is prohibited even if a kickdown request is made. At this time, even if acceleration is requested on the uphill road, it is not possible to ensure driving force by downshifting. Therefore, when it is determined that there is an acceleration request on the uphill road, the lockup clutch L / U is requested to be released, and the driving force is secured by the torque amplification action of the torque converter T / C.
  • FIG. 10 is a time chart illustrating the kick-down prohibition control process according to the first embodiment.
  • the vehicle is traveling at a second speed on an uphill road having a road surface gradient ⁇ road or higher.
  • both the engine speed NE and the engine torque TE increase.
  • the region determination flag FEA is turned ON.
  • the slow depression timer TSLOW is counted up.
  • FKDP is turned on.
  • the kickdown torque change flag FKDT is turned on at time t5
  • the kickdown opening flag FKDA is turned on and the kickdown flag FKD is turned on at time t6
  • the kickdown prohibition flag FKDP is turned on. Therefore, no kick down is performed. Thereby, judder can be suppressed.
  • the timer value of the release timer TOFF is a predetermined time. If it is less than TOFF1, the kick-down prohibition flag FKDP is not released, and an inadvertent kick-down in a situation where the engine torque TE cannot be increased can be avoided.
  • An area determination flag FEA (engine characteristic determination means) for determining whether or not, Slow pedal determination flag that determines whether the accelerator pedal opening APO is more than APOC (predetermined value) and the accelerator pedal opening speed ⁇ APO is slowly depressed (predetermined accelerator operation state) with ⁇ APO2 (predetermined value) or less FSA (operating state determination means) Kick-down when the area determination flag FEA is ON (determined as being within the predetermined area by the engine characteristic determination means) and the slow step determination flag FSA is ON (determined as the predetermined accelerator operation state by the driving state determination means) Kickdown prohibition flag FKDP (downshift prohibition means) prohibiting (downshift), Equipped with. Therefore, judder associated with the downshift can be avoided.
  • the kick-down prohibition flag FKDP is turned ON, the count value of the release timer TOFF, which is the determination duration time that the absolute value of the accelerator pedal opening speed ⁇ APO is greater than ⁇ APO2 (not in the predetermined accelerator operation state by the driving state determination means) Is less than TOFF1 (predetermined time), the kick-down prohibition flag FKDP is kept ON (the downshift prohibition is continued). Therefore, even if the driver suddenly depresses the accelerator pedal 19 while kickdown is prohibited, the kickdown is not immediately permitted and judder can be suppressed.
  • the automatic transmission has a torque converter T / C with a lock-up clutch L / U, and the road surface gradient ⁇ road is greater than or equal to a predetermined gradient ⁇ 1 and the accelerator pedal opening APO while the kickdown prohibition flag FKDP is ON.
  • the lockup clutch L / U is released. Therefore, even when kickdown is prohibited and the driving force due to the downshift cannot be secured, the driving force can be secured by releasing the lockup clutch L / U and using the torque amplification action of the torque converter T / C. .
  • Example 1 Although the example applied to the vehicle which drive

Abstract

 本発明による自動変速機の制御装置は、変速前ギヤ段にて締結されていた第1摩擦締結要素(H/C)を解放することでダウンシフトする変速制御手段(24)を備えた自動変速機の制御装置において、アクセルペダル開度変化(ΔAPO)に対するエンジントルク変化(ΔT)が他の領域に比べて小さいことを表す領域であって、エンジントルクが所定範囲内、かつ、エンジン回転数が所定範囲内となる所定領域内か否かを判定するエンジン特性判定手段(FEA)と、アクセルペダル開度(APO)が所定値(APOC)以上、かつ、アクセルペダル開速度(ΔAPO)の絶対値が所定値(ΔAPO2)以下の所定アクセル操作状態か否かを判定する運転状態判定手段(FSA)と、エンジン特性判定手段(FEA)により所定領域内と判定され、かつ、運転状態判定手段(FSA)により所定アクセル操作状態と判定された場合には、ダウンシフトを禁止するキックダウン禁止手段(FKDP)と、を備えた。

Description

自動変速機の制御装置
 本発明は、自動変速機の制御装置に関する。
 自動変速機の制御装置として、例えば特許文献1に記載のようなものが知られている。この公報には、例えばダウンシフト時等、ハイ&ローリバースクラッチ(以下、第1摩擦締結要素と記載する。)の滑り締結によりドライブ側からドリブン側へのトルク伝達容量を増大させる変速中、第1摩擦締結要素の締結力作用方向に対して反対方向に作用する反力を与えるように、ドリブン側に連結されたローコーストブレーキ(以下、第2摩擦締結要素と記載する。)の締結容量を増大させ、変速時のジャダーを低減させている。言い換えると、第1摩擦締結要素の締結力が比較的高い状態で掛け替え変速を行う際にジャダーが生じやすいことから、ドリブン側に連結された第2摩擦締結要素の締結容量を増大させて第1摩擦締結要素の分担力を低減している。
 しかしながら、第2摩擦締結要素の締結容量を増大させるとインターロック気味となるため、駆動力が落ち込むおそれがある。また、第2摩擦締結要素の締結容量を増大させるため、第2摩擦締結要素のジャダー対策も必要となるという問題があった。
特開2010-286042号公報
 本発明は上記課題に着目し、ダウンシフトに伴うジャダーを回避可能な自動変速機の制御装置を提供することを目的とする。
 この目的のため、本発明による自動変速機の制御装置は、変速前ギヤ段にて締結されていた第1摩擦締結要素を解放することでダウンシフトする変速制御手段を備えた自動変速機の制御装置において、アクセルペダル開度変化に対するエンジントルク変化が他の領域に比べて小さいことを表す領域であって、エンジントルクが所定範囲内、かつ、エンジン回転数が所定範囲内となる所定領域内か否かを判定するエンジン特性判定手段と、アクセルペダル開度が所定値以上、かつ、アクセルペダル開速度の絶対値が所定値以下の所定アクセル操作状態か否かを判定する運転状態判定手段と、前記エンジン特性判定手段により前記所定領域内と判定され、かつ、前記運転状態判定手段により前記所定アクセル操作状態と判定された場合には、ダウンシフトを禁止するダウンシフト禁止手段と、を備えた。
 よって、エンジンが所定領域内にて作動し、かつ、運転状態が所定アクセル操作状態のときは、ダウンシフトを禁止することで、ダウンシフトに伴うジャダーを回避できる。
実施例1の車両の駆動系およびその全体制御システムを示す概略系統図である。 実施例1の車両において、(a)は、当該車両の駆動系およびその全体制御システムを示す概略系統図であり、(b)は、当該車両の駆動系におけるVベルト式無段変速機に内蔵された副変速機内におけるクラッチの締結論理図である。 実施例1の変速機コントローラに格納される変速マップの一例である。 実施例1のキックダウン禁止制御処理を表すフローチャートである。 実施例1のキックダウントルク変化判定処理を表すフローチャートである。 実施例1のキックダウン開度判定処理を表すフローチャートである。 実施例1の領域判定処理を表すフローチャートである。 実施例1のゆっくり踏み判定処理を表すフローチャートである。 エンジントルク特性を表す特性図である。 実施例1のキックダウン禁止制御処理を表すタイムチャートである。
 〔実施例1〕
 図1は、実施例1の自動変速機の制御装置を備えた車両の駆動系およびその全体制御システムを示す概略系統図である。図1の車両は、エンジン1を動力源として搭載し、エンジン1は、スタータモータ3により始動する。エンジン1は、Vベルト式の無段変速機4を介して駆動輪5に適宜切り離し可能に駆動結合する。
 無段変速機4のバリエータCVTは、プライマリプーリ6と、セカンダリプーリ7と、これらプーリ6,7間に掛け渡したVベルト8(無端可撓部材)とからなるVベルト式無段変速機構である。尚、Vベルト8は複数のエレメントを無端ベルトによって束ねる構成を採用したが、チェーン方式等であってもよく特に限定しない。プライマリプーリ6はトルクコンバータT/Cを介してエンジン1のクランクシャフトに結合し、セカンダリプーリ7はクラッチCLおよびファイナルギヤ組9を順次介して駆動輪5に結合する。尚、本実施例にあっては、動力伝達経路を断接する要素(クラッチやブレーキ等)を総称してクラッチと記載する。図1は、動力伝達経路を概念的に示すものであり、後述する副変速機31内に設けられたハイクラッチH/C,リバースブレーキR/B及びローブレーキL/Bを、総称してクラッチCLと記載している。クラッチCLが締結状態のとき、エンジン1からの動力はロックアップクラッチL/Uを備えたトルクコンバータT/Cを経てプライマリプーリ6へ入力され、その後Vベルト8、セカンダリプーリ7、クラッチCLおよびファイナルギヤ組9を順次経て駆動輪5に伝達し、走行する。
 エンジン動力伝達中、プライマリプーリ6のプーリV溝幅を小さくしつつ、セカンダリプーリ7のプーリV溝幅を大きくすることで、Vベルト8とプライマリプーリ6との巻き掛け円弧径を大きくすると同時にセカンダリプーリ7との巻き掛け円弧径を小さくする。これにより、バリエータCVTはHigh側プーリ比(High側変速比)へのアップシフトを行う。High側変速比へのアップシフトを限界まで行った場合、変速比は最高変速比に設定される。
 逆にプライマリプーリ6のプーリV溝幅を大きくしつつ、セカンダリプーリ7のプーリV溝幅を小さくすることで、Vベルト8とプライマリプーリ6との巻き掛け円弧径を小さくすると同時にセカンダリプーリ7との巻き掛け円弧径を大きくする。これにより、バリエータCVTはLow側プーリ比(Low側変速比)へのダウンシフトを行う。Low側変速比へのダウンシフトを限界まで行った場合、変速は最低変速比に設定される。
 バリエータCVTは、プライマリプーリ6の回転数を検出するプライマリ回転数センサ6aと、セカンダリプーリ7の回転数を検出するセカンダリ回転数センサ7aとを有し、これら両回転数センサにより検出された回転数に基づいて実変速比を算出し、この実変速比が目標変速比となるように各プーリの油圧制御等が行われる。
 エンジンコントローラ22は、アクセルペダル踏み込み量(アクセルペダル開度)APOを検出するアクセルペダル開度センサ27からの信号が入力され、エンジン1を出力制御する。変速機コントローラ24は、アクセルペダル開度センサ27からの信号、車速センサ32からの信号(図2参照)、加速度センサ33(図2参照)からの信号及びエンジンコントローラ22からのトルク信号に基づいて、バリエータCVT(Vベルト式無段変速機構CVT)の変速制御および副変速機31の変速制御及びクラッチCLの締結、解放制御を行う。バリエータCVTや副変速機31の制御は、エンジン駆動される機械式オイルポンプO/Pから供給される油圧に基づいて制御される。
 図2(a)は、実施例1の車両の駆動系およびその全体制御システムを示す概略系統図であり、図2(b)は、実施例1の車両の駆動系における無段変速機4に内蔵された副変速機31内におけるクラッチCL(具体的には、H/C, R/B, L/B)の締結論理図である。図2(a)に示すように、副変速機31は、複合サンギヤ31s-1および31s-2と、インナピニオン31pinと、アウタピニオン31poutと、リングギヤ31rと、ピニオン31pin, 31poutを回転自在に支持したキャリア31cとからなるラビニョオ型プラネタリギヤセットで構成する。
 複合サンギヤ31s-1および31s-2のうち、サンギヤ31s-1は入力回転メンバとして作用するようセカンダリプーリ7に結合し、サンギヤ31s-2はセカンダリプーリ7に対し同軸に配置するが自由に回転し得るようにする。
 サンギヤ31s-1にインナピニオン31pinを噛合させ、このインナピニオン31pinおよびサンギヤ31s-2をそれぞれアウタピニオン31poutに噛合させる。
 アウタピニオン31poutはリングギヤ31rの内周に噛合させ、キャリア31cを出力回転メンバとして作用するようファイナルギヤ組9に結合する。
 キャリア31cとリングギヤ31rとをクラッチCLであるハイクラッチH/Cにより適宜結合可能となし、リングギヤ31rをクラッチCLであるリバースブレーキR/Bにより適宜固定可能となし、サンギヤ31s-2をクラッチCLであるローブレーキL/Bにより適宜固定可能となす。
 副変速機31は、ハイクラッチH/C、リバースブレーキR/BおよびローブレーキL/Bを、図2(b)に○印により示す組み合わせで締結させ、それ以外を図2(b)に×印で示すように解放させることにより前進第1速、第2速、後退の変速段を選択することができる。ハイクラッチH/C、リバースブレーキR/BおよびローブレーキL/Bを全て解放すると、副変速機31は動力伝達を行わない中立状態であり、この状態でローブレーキL/Bを締結すると、副変速機31は前進第1速選択(減速)状態となり、ハイクラッチH/Cを締結すると、副変速機31は前進第2速選択(直結)状態となり、リバースブレーキR/Bを締結すると、副変速機31は後退選択(逆転)状態となる。図2(a)の無段変速機4は、全てのクラッチCL(H/C, R/B, L/B)を解放して副変速機31を中立状態にすることで、バリエータCVT(セカンダリプーリ7)と駆動輪5との間を切り離すことができる。
 図2(a)の無段変速機4は、エンジン駆動される機械式オイルポンプO/Pからのオイルを作動媒体として制御されるもので、変速機コントローラ24がライン圧ソレノイド35、ロックアップソレノイド36、プライマリプーリ圧ソレノイド37-1、セカンダリプーリ圧ソレノイド37-2、ローブレーキ圧ソレノイド38、ハイクラッチ圧&リバースブレーキ圧ソレノイド39およびスイッチバルブ41を介し、バリエータCVTの当該制御を以下のように制御する。
 尚、変速機コントローラ24には、図1につき前述した信号に加えて、車速VSPを検出する車速センサ32からの信号、および車両加減速度Gを検出する加速度センサ33からの信号を入力する。
 ライン圧ソレノイド35は、変速機コントローラ24からの指令に応動し、機械式オイルポンプO/Pからのオイルを車両要求駆動力対応のライン圧PLに調圧する。
 ロックアップソレノイド36は、変速機コントローラ24からのロックアップ指令に応動し、ライン圧PLを適宜トルクコンバータT/Cに供給し、ロックアップクラッチL/Uの締結状態を制御することで、所要に応じて入出力要素間が直結されたロックアップ状態にする。
 プライマリプーリ圧ソレノイド37-1は、変速機コントローラ24からのCVT変速比指令に応動してライン圧PLをプライマリプーリ圧に調圧し、これをプライマリプーリ6へ供給することにより、プライマリプーリ6のV溝幅と、セカンダリプーリ7のV溝幅とを、CVT変速比が変速機コントローラ24からの指令に一致するよう制御して変速機コントローラ24からのCVT変速比指令を実現する。セカンダリプーリ圧ソレノイド37-2は、変速機コントローラ24からのクランプ力指令に応じてライン圧PLをセカンダリプーリ圧に調圧し、これをセカンダリプーリ7に供給することにより、セカンダリプーリ7がVベルト8をスリップしないよう挟圧する。
 ローブレーキ圧ソレノイド38は、変速機コントローラ24が副変速機31の第1速選択指令を発しているとき、ライン圧PLをローブレーキ圧としてローブレーキL/Bに供給することによりこれを締結させ、第1速選択指令を実現する。
 ハイクラッチ圧&リバースブレーキ圧ソレノイド39は、変速機コントローラ24が副変速機31の第2速選択指令または後退選択指令を発しているとき、ライン圧PLをハイクラッチ圧&リバースブレーキ圧としてスイッチバルブ41に供給する。
 第2速選択指令時はスイッチバルブ41が、ソレノイド39からのライン圧PLをハイクラッチ圧としてハイクラッチH/Cに向かわせ、これを締結することで副変速機31の第2速選択指令を実現する。
 後退選択指令時はスイッチバルブ41が、ソレノイド39からのライン圧PLをリバースブレーキ圧としてリバースブレーキR/Bに向かわせ、これを締結することで副変速機31の後退選択指令を実現する。
 〔変速制御処理について〕
 次に変速制御処理について説明する。図3は実施例1の変速機コントローラ24に格納される変速マップの一例である。変速機コントローラ24は、この変速マップを参照しながら、車両の運転状態(実施例1では車速VSP、プライマリ回転速度Npri、アクセルペダル開度APO)に応じて、無段変速機4を制御する。この変速マップでは、無段変速機4の動作点が車速VSPとプライマリ回転速度Npriとにより定義される。無段変速機4の動作点と変速マップ左下隅の零点を結ぶ線の傾きが無段変速機4の変速比(バリエータCVTの変速比に副変速機31の変速比を掛けて得られる全体の変速比、以下、「スルー変速比」という。)に対応する。
 この変速マップには、従来のベルト式無段変速機の変速マップと同様に、アクセルペダル開度APO毎に変速線が設定されており、無段変速機4の変速はアクセルペダル開度APOに応じて選択される変速線に従って行われる。なお、図3には簡単のため、全負荷線(アクセルペダル開度APO=8/8のときの変速線)、パーシャル線(アクセルペダル開度APO=4/8のときの変速線)、コースト線(アクセルペダル開度APO=0/8のときの変速線)のみが示されている。
 無段変速機4が低速モードのときは、無段変速機4はバリエータCVTの変速比を最Low変速比にして得られる低速モード最Low線とバリエータCVTの変速比を最High変速比にして得られる低速モード最High線の間で変速することができる。このとき、無段変速機4の動作点はA領域とB領域内を移動する。一方、無段変速機4が高速モードのときは、無段変速機4はバリエータCVTの変速比を最Low変速比にして得られる高速モード最Low線とバリエータCVTの変速比を最High変速比にして得られる高速モード最High線の間で変速することができる。このとき、無段変速機4の動作点はB領域とC領域内を移動する。
 副変速機31の各変速段の変速比は、低速モード最High線に対応する変速比(低速モード最High変速比)が高速モード最Low線に対応する変速比(高速モード最Low変速比)よりも小さくなるように設定される。これにより、低速モードでとりうる無段変速機4のスルー変速比の範囲(図中、「低速モードレシオ範囲」)と高速モードでとりうる無段変速機4のスルー変速比の範囲(図中、「高速モードレシオ範囲」)とが部分的に重複し、無段変速機4の動作点が高速モード最Low線と低速モード最High線で挟まれるB領域にあるときは、無段変速機4は低速モード、高速モードのいずれのモードも選択可能になっている。
 また、この変速マップ上には副変速機31の変速を行うモード切換変速線が低速モード最High線上に重なるように設定されている。モード切換変速線に対応するスルー変速比(以下、「モード切換変速比mRatio」という。)は低速モード最High変速比と等しい値に設定される。モード切換変速線をこのように設定するのは、バリエータCVTの変速比が小さいほど副変速機31への入力トルクが小さくなり、副変速機31を変速させる際の変速ショックを抑えられるからである。
 そして、無段変速機4の動作点がモード切換変速線を横切った場合、すなわち、スルー変速比の実際値がモード切換変速比mRatioを跨いで変化した場合は、変速機コントローラ24はバリエータCVTと副変速機31の両方で協調変速を行い、高速モード-低速モード間の切換えを行う。
 〔キックダウン禁止制御処理〕
 次に、キックダウン禁止制御処理について説明する。キックダウンとは、例えば、副変速機31が第2速で走行中に、アクセルペダル開度APOが所定開速度閾値ΔAPO1以上で踏み込まれ、トルク変化が所定トルク変化量閾値ΔT1以上発生するとき、第2速から第1速にダウンシフトを行うことを言う。ここで、アクセルペダル19をゆっくり踏み込みながら走行している状態では、急加速意図を表すほどには踏み込まれていないものの、アクセルペダル開度APOは徐々に増大する。キックダウン判定を行う所定開速度閾値ΔAPO1は、車速VSPとアクセルペダル開度APOに基づいて決定される。具体的には、所定開速度閾値ΔAPO1は、アクセルペダル開度APOが高いほど、また車速VSPが高いほど小さな値に設定される。よって、アクセルペダル開速度ΔAPOはさほど大きくない状態を継続していたとしても、所定開速度閾値ΔAPO1の低下に伴ってキックダウン要求が行われる場面がある。
 キックダウンに伴うダウンシフトは、ある程度高いアクセルペダル開度APOにおいて行うこととなるため、ハイクラッチH/Cに供給されているハイクラッチ圧は、アクセルペダル開度APOに応じて比較的高められたライン圧が供給された状態である。この状態から、ハイクラッチ圧を棚圧まで低下させ、ローブレーキL/Bのローブレーキ圧を上昇させる。
 このとき、エンジントルクTEは比較的高めに出力されているものの、エンジントルクの増大側への変化が少ないと、変速を進行させるためのトルクを十分に得られない場合がある。
 図9はエンジントルク特性を表す特性図である。例えば、図9のハッチングで示す領域でのアクセルペダル開度の3/8~4/8への変化に対するエンジントルク変化量ΔT(b)は、ハッチングで示す領域よりも低エンジン回転側のΔT(a)もしくは高エンジン回転側の領域でのアクセルペダル開度変化に対するエンジントルク変化量ΔT(c)よりも小さい。すなわち、アクセルペダル開度APOが増大したとしても、あまり大きなエンジントルクTEの増大は見込めない。この傾向は、ターボエンジン等で顕著に表れる。そうすると、解放側であるハイクラッチH/Cは、高いハイクラッチ圧から低下させていること(十分に下がっていない場面も想定される)、エンジントルクの増大側への変化が十分でないこと、といった環境で掛け替え変速を行うこととなり、ハイクラッチH/Cの摩擦材表面において静止摩擦力と動摩擦力とが交互に繰り返すようなトルク変動に伴う振動、いわゆるジャダーが発生するおそれがあった。そこで、実施例1では、ジャダーが懸念される走行状態では、キックダウンを禁止することとした。尚、実施例1ではキックダウンを禁止する例を示すが、キックダウンに限らず、ジャダーが懸念される走行状態では、ダウンシフトを禁止する構成とすればよいことは言うまでもない。
 図4は実施例1のキックダウン禁止制御処理を表すフローチャートである。
 (キックダウン判定処理:図4参照)
 ステップS1では、キックダウントルク変化フラグFKDT(以下、FKDTと記載する。)がON、かつ、キックダウン開度フラグFKDA(以下、FKDAと記載する。)がONか否かを判定し、共にONの場合はステップS2に進み、それ以外のときはステップS3に進む。
 ステップS2では、キックダウンフラグFKD(以下、FKDと記載する。)をONにセットする。
 ステップS3では、FKDをOFFにセットする。
 ここで、FKDT及びFKDAの設定処理について説明する。図5は実施例1のキックダウントルク変化判定処理を表すフローチャート、図6は実施例1のキックダウン開度判定処理を表すフローチャートである。
 (キックダウントルク変化フラグFKDT設定処理:図5参照)
 ステップS101では、アクセルペダル開度APOと車速VSPを読み込む。
 ステップS102では、所定トルク変化量閾値ΔT1を算出する。具体的には、アクセルペダル開度APOが大きいほど、車速VSPが高いほどΔT1は小さな値として算出される。これらは演算式を用いてもよいし、予め供えられたマップ等から算出してもよいし、各種パラメータに応じたゲインを用いて算出してもよく、特に限定しない。
 ステップS103では、前回のエンジントルクTEと今回のエンジントルクTEとの差からトルク変化量ΔTを算出する。
 ステップS104では、エンジントルク変化量ΔTが所定トルク変化量閾値ΔT1以上か否かを判定し、YESの場合はステップS105に進んでFKDTをONにセットする。一方、NOの場合はステップS106に進んでFKDTをOFFにセットする。
 (キックダウン開度フラグFKDA設定処理:図6参照)
 ステップS201では、アクセルペダル開度APOと車速VSPを読み込む。
 ステップS202では、所定開速度閾値ΔAPO1を算出する。具体的には、アクセルペダル開度APOが大きいほど、車速VSPが高いほどΔAPO1は小さな値として算出される。これらは演算式を用いてもよいし、予め供えられたマップ等から算出してもよいし、各種パラメータに応じたゲインを用いて算出してもよく、特に限定しない。
 ステップS203では、アクセルペダル開度APOの開速度ΔAPOが所定開速度閾値ΔAPO1以上か否かを判定し、YESの場合はステップS204に進んでFKDAをONにセットする。一方、NOの場合はステップS205に進んでFKDAをOFFにセットする。尚、開速度ΔAPOは、前回のアクセルペダル開度APOと今回のアクセルペダル開度APOとの差分を制御周期で除した値であるが、単に前回のAPOと今回のAPOとの差分を用いてもよく、特に限定しない。
 すなわち、ステップS1からS3では、通常のキックダウン判定処理が行われ、キックダウン要求があるときはFKDがONにセットされ、キックダウン要求がないときはFKDがOFFにセットされる。
 (キックダウン禁止フラグFKDP設定処理:図4参照)
 ステップS4では、アクセルペダル開度APOが予め設定された所定開度APO2以上か否かを判定し、APO2以上のときはステップS5に進み、それ以外のときはステップS9に進む。
 ステップS5では、領域判定フラグFEA(以下、FEAと記載する。)がONか否かを判定し、ONのときはステップS6に進み、OFFのときはステップS8に進む。
 ステップS6では、ゆっくり踏み判定フラグFSA(以下、FSAと記載する。)がONか否かを判定し、ONのときはステップS7に進み、OFFのときはステップS8に進む。
 ステップS7では、キックダウン禁止フラグFKDP(以下、FKDPと記載する。)をONに設定する。
 ステップS8では、FKDPの状態を維持する。すなわち、FKDP=ONであればONのままとし、FKDP=OFFであればOFFのままとする。
 ここで、FEA及びFSAの設定処理について説明する。図7は実施例1の領域判定処理を表すフローチャート、図8は実施例1のゆっくり踏み判定処理を表すフローチャートである。
 (領域判定フラグFEA設定処理:図7参照)
 ステップS301では、エンジントルクTEがトルク下限値TEmin以上、かつ、トルク上限値TEmax以下か否かを判定し、所定範囲内であればステップS302へ進み、それ以外はステップS304へ進む。
 ステップS302では、エンジン回転数NEが回転数下限値NEmin以上、かつ、回転数上限値NEmax以下か否かを判定し、所定範囲内であればステップS303へ進み、それ以外はステップS304へ進む。
 すなわち、現在のエンジントルクTEが図9で示すハッチング領域内にあるか否かを判定し、ハッチング領域内のときは、アクセルペダル開度APOの増加に対するエンジントルクTEの増加が見込めず、この領域がハイクラッチH/Cのジャダーを引き起こしやすい領域であることを示す。
 (ゆっくり踏み判定フラグFSA設定処理:図8参照)
 ステップS401では、アクセルペダル開度APOがコースト走行状態を表す所定値APOC以上か否かを判定し、YESの場合はステップS402に進み、NOの場合はステップS410に進んでFSAをOFFにセットする。すなわち、コースト走行時であればジャダーの懸念がないため、キックダウンを禁止しない。
 ステップS402では、アクセルペダル開速度ΔAPOの絶対値がゆっくり踏みを表す所定開速度閾値ΔAPO2以下か否かを判定し、YESの場合はステップS403に進み、NOの場合はステップS406に進む。すなわち、アクセルペダル開速度ΔAPOが小さければ、アクセルペダル19をゆっくりと踏み込んでいる、もしくはゆっくりと離している状態を表すことを意味する。
 ステップS403では、ゆっくり踏みタイマTSLOW(以下、TSLOWと記載する。)のカウントアップを行う。
 ステップS404では、TSLOWが、継続的にアクセルペダルがゆっくり踏まれていることを表す所定時間TSLOW1以上か否かを判定し、YESの場合はステップS405に進んでFSAをONにセットする。NOの場合はステップS409に進んで現在のFSAを維持する。すなわち、ゆっくり踏みのときは、ジャダーが発生する領域に入りやすく、さほど加速意図もないことからジャダーを回避することが優先される。
 ステップS406では、解除タイマTOFF(以下、TOFFと記載する。)のカウントアップを行う。
 ステップS407では、TOFFが、継続的にアクセルペダルが踏み込まれていることを表す所定時間TOFF1以上か否かを判定し、YESの場合はステップS408に進んでFSAをOFFにセットする。NOの場合はステップS409に進んで現在のFSAを維持する。この解除シーンは、例えば高速道路の合流シーン等で、アクセルペダルをしっかりと踏み込みながら走行車線に進入する場合を想定したものである。このような場面ではキックダウンを禁止すべきではないからである。
 (キックダウン禁止フラグFKDP解除処理:図4参照)
 ステップS9では、エンジン回転数NEが予め設定された所定回転数NE1以上か否かを判定し、YESのときはステップS5に進み、NOのときはステップS10に進む。
 ステップS10では、FKDPをOFFに設定する。
 すなわち、ステップS4でアクセルペダル開度APOが所定開度APO2より小さいと判定され、かつ、エンジン回転数も低い場合は、エンジントルクTEも十分低下しており、次回のアクセルペダルの踏み込みや踏み増しに伴うエンジントルク変化量ΔTが大きいと見込まれるため、キックダウン禁止を解除する。
 (キックダウン非禁止時処理)
 ステップS11では、FKDPがONか否かを判定し、ONの場合はステップS17に進み、OFFの場合はステップS12に進む。
 ステップS12では、ロックアップOFFフラグFL/UOFF(以下、FL/UOFFと記載する。)をOFFにセットする。尚、FL/UOFFの詳細については後述する。
 ステップS13では、ロックアップクラッチL/Uを通常ロックアップ制御により制御する。走行状態に応じてロックアップクラッチL/Uを完全締結状態、スリップロックアップ状態、解放状態に制御する。
 ステップS14では、FKDがONか否かを判定し、ONの場合はキックダウン要求があるため、ステップS15に進んでキックダウンを実行する。NOの場合はキックダウン要求が無いため、ステップS16に進んで現変速段(実施例1の場合は第2速)を維持する。
 (ロックアップ解放要求制御処理)
 ステップS17では、路面勾配θroadが予め設定された所定勾配θ1以上か否かを判定し、YESの場合は登坂路であり負荷が大きいと判定してステップS18に進む。NOの場合はステップS20に進んでFL/UOFFの状態を維持する。尚、路面勾配θroadは、APOやVSP及び加速度センサ33により検出された前後加速度に基づいて推定してもよいし、ナビゲーション情報や他のセンサを用いて検出してもよく特に限定しない。ロックアップOFFフラグFL/UOFFとは、通常ロックアップ制御によるロックアップクラッチL/Uの制御状態がどのような状態であってもロックアップクラッチL/Uの完全開放を要求するフラグであり、FL/UOFF=ONでロックアップクラッチL/Uを解放する。
 ステップS18では、アクセルペダル開度APOが運転者の駆動力要求を表す所定値APO3以上か否かを判定し、YESの場合は路面勾配があり、かつ、駆動力を要求しているシーンであると判断してステップS19に進み、FL/UOFFをONに設定する。NOの場合はステップS20に進み、FL/UOFFの状態を維持する。
 すなわち、FKDPがONの場合、キックダウン要求があったとしてもキックダウンが禁止された状態である。このとき、登坂路で加速を要求したとしても、ダウンシフトによる駆動力確保が望めない。そこで、登坂路で加速要求があると判断した場合には、ロックアップクラッチL/Uに解放を要求し、トルクコンバータT/Cのトルク増幅作用によって駆動力を確保する。
 (キックダウン禁止制御処理の作用)
 次に、上記キックダウン禁止制御処理の作用について説明する。図10は実施例1のキックダウン禁止制御処理を表すタイムチャートである。このタイムチャートの最初の走行シーンでは、車両が路面勾配θroad以上の登坂路を第2速で走行しているものとする。
 時刻t0において、運転者がアクセルペダル19を踏み込むと、エンジン回転数NE,エンジントルクTE共に増大する。
 時刻t1において、エンジントルクTEがTEmin以上となり、時刻t2において、エンジン回転数NEがNEmin以上となると、領域判定フラグFEAがONとなる。
 時刻t3において、アクセルペダル開速度ΔAPOがゆっくり踏みを表す所定開速度閾値ΔAPO2以下となると、ゆっくり踏みタイマTSLOWがカウントアップされ、TSLOW1が経過すると、ゆっくり踏み判定フラグFSAがONとなり、キックダウン禁止フラグFKDPがONとなる。これにより、キックダウン要求が禁止される。
 よって、時刻t5において、キックダウントルク変化フラグFKDTがONとなり、時刻t6において、キックダウン開度フラグFKDAがONとなってキックダウンフラグFKDがONになったとしても、キックダウン禁止フラグFKDPがONであるため、キックダウンは行われない。これにより、ジャダーを抑制できる。
 キックダウン禁止中の時刻t7において、アクセルペダル開度APOがAPO3以上となると、ロックアップOFFフラグFL/UOFFがONとなり、登坂路での駆動力確保のため、ロックアップクラッチL/Uの解除要求を出力する。このとき、通常ロックアップ制御でどのような制御が行われていたとしても、強制的にロックアップ解除を行う。これにより、キックダウンによるダウンシフトが禁止されたとしても、駆動力を確保できる。
 また、時刻t8において、キックダウン禁止中にアクセルペダル19を急踏みし、アクセルペダル開速度ΔAPOがゆっくり踏みを表す所定開速度閾値ΔAPO2より大きくなったとしても、解除タイマTOFFのタイマ値が所定時間TOFF1未満の場合は、キックダウン禁止フラグFKDPが解除されることはなく、エンジントルクTEの上昇が見込めない場面での不用意なキックダウンを回避できる。
 以上説明したように、実施例1にあっては下記に列挙する作用効果が得られる。
(1)第2速(変速前ギヤ段)にて締結されていたハイクラッチH/C(第1摩擦締結要素)を解放することでダウンシフトする変速機コントローラ24(変速制御手段)を備えた自動変速機の制御装置において、
 アクセルペダル開度変化ΔAPOに対するエンジントルク変化量ΔTが他の領域に比べて小さいことを表す領域であって、エンジントルクが所定範囲内、かつ、エンジン回転数が所定範囲内となる所定領域内か否かを判定する領域判定フラグFEA(エンジン特性判定手段)と、
 アクセルペダル開度APOがAPOC(所定値)以上、かつ、アクセルペダル開速度ΔAPOの絶対値がΔAPO2(所定値)以下のゆっくり踏み状態(所定アクセル操作状態)か否かを判定するゆっくり踏み判定フラグFSA(運転状態判定手段)と、
 領域判定フラグFEAがON(エンジン特性判定手段により所定領域内と判定され)、かつ、ゆっくり踏み判定フラグFSAがON(運転状態判定手段により所定アクセル操作状態と判定され)の場合には、キックダウン(ダウンシフト)を禁止するキックダウン禁止フラグFKDP(ダウンシフト禁止手段)と、
 を備えた。
 よって、ダウンシフトに伴うジャダーを回避できる。
 (2)キックダウン禁止フラグFKDPがON後、アクセルペダル開速度ΔAPOの絶対値がΔAPO2より大きい(運転状態判定手段により所定アクセル操作状態ではない)との判定継続時間である解除タイマTOFFのカウント値がTOFF1(所定時間)未満のときは、キックダウン禁止フラグFKDPをONのままとする(ダウンシフトの禁止を継続する)こととした。
 よって、キックダウン禁止中に運転者が急にアクセルペダル19を踏み込んだとしても、すぐにキックダウンを許可することがなく、ジャダーを抑制できる。
 (3)自動変速機は、ロックアップクラッチL/Uを備えたトルクコンバータT/Cを有し、キックダウン禁止フラグFKDPがON中に、路面勾配θroadが所定勾配θ1以上、アクセルペダル開度APOがAPO3以上といった所定の駆動力要求があるときは、ロックアップクラッチL/Uを解放する。
 よって、キックダウンが禁止され、ダウンシフトによる駆動力が確保できない場合であっても、ロックアップクラッチL/Uを解放し、トルクコンバータT/Cのトルク増幅作用を用いることで駆動力を確保できる。
 (他の実施例)
 実施例1では、エンジンを動力源として走行する車両に適用した例を示したが、駆動用モータ等を備えたハイブリッド車両に適用してもよい。また、実施例1では、バリエータCVTと副変速機31を備えた車両に適用した例を示したが、通常の有段式自動変速機に適用してもよい。また、実施例1では、ダウンシフトの一例としてキックダウン要求を禁止したが、他のダウンシフト要求であっても、ジャダーが懸念される場合には、変速制御に基づくダウンシフトを禁止してもよい。具体的には、ダウンシフトは、車速VSP、プライマリ回転速度Npri、アクセルペダル開度APOにより設定された変速線に基づいて制御されるため、この変速線に基づくダウンシフトを禁止すればよい。

Claims (4)

  1.  変速前ギヤ段にて締結されていた第1摩擦締結要素を解放することでダウンシフトする変速制御手段を備えた自動変速機の制御装置において、
     アクセルペダル開度変化に対するエンジントルク変化が他の領域に比べて小さいことを表す領域であって、エンジントルクが所定範囲内、かつ、エンジン回転数が所定範囲内となる所定領域内か否かを判定するエンジン特性判定手段と、
     アクセルペダル開度が所定値以上、かつ、アクセルペダル開速度の絶対値が所定値以下の所定アクセル操作状態か否かを判定する運転状態判定手段と、
     前記エンジン特性判定手段により前記所定領域内と判定され、かつ、前記運転状態判定手段により前記所定アクセル操作状態と判定された場合には、ダウンシフトを禁止するダウンシフト禁止手段と、
     を備えた自動変速機の制御装置。
  2.  請求項1に記載の自動変速機の制御装置において、
     前記ダウンシフトは、車速とプライマリ回転速度とアクセルペダル開度により設定された変速線に基づいて制御される自動変速機の制御装置。
  3.  請求項1または2に記載の自動変速機の制御装置において、
     前記ダウンシフト禁止手段によりダウンシフトを禁止後、前記運転状態判定手段により前記所定アクセル操作状態ではないとの判定継続時間が所定時間未満のときは、前記ダウンシフトの禁止を継続する自動変速機の制御装置。
  4.  請求項1ないし3いずれか一つに記載の自動変速機の制御装置において、
     前記自動変速機は、ロックアップクラッチを備えたトルクコンバータを有し、
     前記ダウンシフト禁止手段によりダウンシフト禁止中に、所定の駆動力要求があるときは、前記ロックアップクラッチを解放する自動変速機の制御装置。
PCT/JP2015/085136 2015-02-02 2015-12-16 自動変速機の制御装置 WO2016125402A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580074821.2A CN107208791B (zh) 2015-02-02 2015-12-16 自动变速器的控制装置
JP2016573203A JP6340090B2 (ja) 2015-02-02 2015-12-16 自動変速機の制御装置
US15/547,855 US10207715B2 (en) 2015-02-02 2015-12-16 Automatic transmission control device
EP15881219.8A EP3255317A4 (en) 2015-02-02 2015-12-16 Automatic transmission control device
KR1020177021254A KR101925232B1 (ko) 2015-02-02 2015-12-16 자동 변속기의 제어 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-018082 2015-02-02
JP2015018082 2015-02-02

Publications (1)

Publication Number Publication Date
WO2016125402A1 true WO2016125402A1 (ja) 2016-08-11

Family

ID=56563759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085136 WO2016125402A1 (ja) 2015-02-02 2015-12-16 自動変速機の制御装置

Country Status (6)

Country Link
US (1) US10207715B2 (ja)
EP (1) EP3255317A4 (ja)
JP (1) JP6340090B2 (ja)
KR (1) KR101925232B1 (ja)
CN (1) CN107208791B (ja)
WO (1) WO2016125402A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10513263B2 (en) * 2017-11-13 2019-12-24 Caterpillar Inc. Retarding system and lock-up clutch engagement control
JP6922757B2 (ja) * 2018-01-24 2021-08-18 トヨタ自動車株式会社 自動変速機の制御装置
JP7189745B2 (ja) * 2018-11-26 2022-12-14 株式会社Subaru 変速制御装置
US11946542B1 (en) * 2022-11-10 2024-04-02 GM Global Technology Operations LLC Electric vehicle transmission control strategy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11159609A (ja) * 1997-11-27 1999-06-15 Jatco Corp 自動変速機のダウンシフト制御装置
JP2006258125A (ja) * 2005-03-15 2006-09-28 Toyota Motor Corp 変速機の制御装置
JP2013194858A (ja) * 2012-03-21 2013-09-30 Toyota Motor Corp 車両用駆動制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6000378A (en) * 1991-02-25 1999-12-14 Hitachi, Ltd. Change gear control device using acceleration and gear ratio as parameters for automatic transmission in a motor vehicle and the method therefor
US5643133A (en) * 1991-02-25 1997-07-01 Hitachi, Ltd. Change gear control device using acceleration and gear ratio as parameters for automatic transmission in a motor vehicle and the method therefor
US5226351A (en) * 1991-06-04 1993-07-13 Toyota Jidosha Kabushiki Kaisha Vehicle transmission shift control apparatus using shift boundary lines based on vehicle speed, and engine intake air quantity or throttle or accelerator operation amount
JP2009127763A (ja) 2007-11-26 2009-06-11 Toyota Motor Corp 自動変速機の制御装置
JP2010084867A (ja) * 2008-09-30 2010-04-15 Aisin Aw Co Ltd 自動変速機の制御装置
JP2010286042A (ja) * 2009-06-11 2010-12-24 Jatco Ltd 自動変速機の制御装置
JP5741029B2 (ja) * 2011-02-04 2015-07-01 日産自動車株式会社 電動車両の踏み込みダウンシフト制御装置
JP5769615B2 (ja) * 2011-12-26 2015-08-26 ジヤトコ株式会社 無段変速機の変速制御装置
CN104641155B (zh) * 2012-09-27 2016-09-21 加特可株式会社 无级变速器及其控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11159609A (ja) * 1997-11-27 1999-06-15 Jatco Corp 自動変速機のダウンシフト制御装置
JP2006258125A (ja) * 2005-03-15 2006-09-28 Toyota Motor Corp 変速機の制御装置
JP2013194858A (ja) * 2012-03-21 2013-09-30 Toyota Motor Corp 車両用駆動制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3255317A4 *

Also Published As

Publication number Publication date
US10207715B2 (en) 2019-02-19
KR20170104515A (ko) 2017-09-15
JPWO2016125402A1 (ja) 2017-10-12
EP3255317A1 (en) 2017-12-13
EP3255317A4 (en) 2018-03-14
KR101925232B1 (ko) 2018-12-04
CN107208791A (zh) 2017-09-26
US20180015928A1 (en) 2018-01-18
CN107208791B (zh) 2019-04-05
JP6340090B2 (ja) 2018-06-06

Similar Documents

Publication Publication Date Title
JP5080627B2 (ja) 無段変速機及び変速制御方法
JP5983857B2 (ja) 変速機の制御装置および制御方法
KR101633592B1 (ko) 무단 변속기 및 그 제어 방법
JP5646941B2 (ja) コーストストップ車両
JP6340090B2 (ja) 自動変速機の制御装置
JP5911587B2 (ja) 無段変速機及びその制御方法
JP6034505B2 (ja) 副変速機付き無段変速機の制御装置
JP5379056B2 (ja) 無段変速機及びその制御方法
JP6444517B2 (ja) 車両用無段変速機構の制御装置および制御方法
WO2014021118A1 (ja) 車両用の自動変速機
JP6753018B2 (ja) 自動変速機の制御装置
JP6576275B2 (ja) 自動変速機の制御装置
JP2008267467A (ja) 無段変速機の制御装置
JP6653961B2 (ja) 自動変速機の制御装置
JP5977271B2 (ja) 無段変速機及びその制御方法
JP2019158024A (ja) 車両の運転制御装置
CN110997439B (zh) 车辆控制装置及车辆控制方法
JP2009014105A (ja) 車両用無段変速機の制御装置
WO2014061563A1 (ja) 無段変速機及びその制御方法
JP2018105443A (ja) 副変速機付無段変速機の制御装置および制御方法
JPH08105540A (ja) 車両用自動変速機のライン圧制御装置
JP2018123876A (ja) 自動変速機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881219

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573203

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177021254

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15547855

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015881219

Country of ref document: EP