WO2016125400A1 - 信号処理装置、レーダ装置、及び信号処理方法 - Google Patents

信号処理装置、レーダ装置、及び信号処理方法 Download PDF

Info

Publication number
WO2016125400A1
WO2016125400A1 PCT/JP2015/085008 JP2015085008W WO2016125400A1 WO 2016125400 A1 WO2016125400 A1 WO 2016125400A1 JP 2015085008 W JP2015085008 W JP 2015085008W WO 2016125400 A1 WO2016125400 A1 WO 2016125400A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
instantaneous frequency
distress signal
radar
distress
Prior art date
Application number
PCT/JP2015/085008
Other languages
English (en)
French (fr)
Inventor
文弥 中谷
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Priority to US15/546,530 priority Critical patent/US10677912B2/en
Priority to JP2016573201A priority patent/JP6343356B2/ja
Priority to CN201580075465.6A priority patent/CN107209260B/zh
Priority to EP15881217.2A priority patent/EP3255454B1/en
Publication of WO2016125400A1 publication Critical patent/WO2016125400A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/04Display arrangements
    • G01S7/06Cathode-ray tube displays or other two dimensional or three-dimensional displays
    • G01S7/10Providing two-dimensional and co-ordinated display of distance and direction
    • G01S7/12Plan-position indicators, i.e. P.P.I.
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/767Responders; Transponders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/30Systems for measuring distance only using transmission of interrupted, pulse modulated waves using more than one pulse per radar period
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft

Definitions

  • the present invention relates to a signal processing device, a radar device, and a signal processing method.
  • SART Search And Rescue Transponder
  • SART distress signal a distress signal in the same 9 GHz band immediately after receiving a 9 GHz band radar radio wave from a ship or an aircraft.
  • This SART distress signal is a pulse-like response signal swept in a sawtooth frequency. Since the receiving bandwidth of the marine radar is set so that the frequency sweep band of the distress signal crosses, the radar apparatus can receive the distress signal as pulses at regular intervals, and the SART distress signal is displayed in the radar image. It appears as a plurality of short points in the distance direction starting from the position.
  • a radar apparatus for detecting the SART distress signal as described above for example, a radar apparatus disclosed in Patent Document 1 is known.
  • the presence or absence of a SART distress signal is determined by cross-correlating a signal having a constant period substantially equal to the SART distress signal and the detection data detected by the radar apparatus.
  • the SART distress signal is detected by the radar apparatus described above, when some of the plural (specifically, 12) pulses constituting the SART distress signal are masked by another echo signal, the SART distress signal is detected. There is a risk that the signal cannot be accurately detected.
  • correlation calculation between waveform signals having a certain length (about the reception period of the SART distress signal) is required, so that the signal processing load becomes relatively large.
  • the present invention is for solving the above-mentioned problems, and an object of the present invention is to accurately detect a distress signal from a search and rescue radar transponder and to reduce a calculation load for the detection.
  • a signal processing device is a signal processing device that detects a distress signal from a search and rescue radar transponder, and is received by a receiving unit. Stores values based on the instantaneous frequency change rate calculation unit that calculates the instantaneous frequency change rate that is the change rate of the instantaneous frequency of the complex received signal generated from the wave, and the reference frequency sweep rate that is the frequency sweep rate of the distress signal.
  • the search unit based on a comparison result between the storage unit, the instantaneous frequency change rate calculated by the instantaneous frequency change rate calculation unit, and a value based on the reference frequency sweep rate stored in the storage unit
  • a distress signal determination unit that determines the presence or absence of the distress signal from the rescue radar transponder.
  • the signal processing device further includes an instantaneous frequency calculation unit that calculates the instantaneous frequency by time-differentiating the phase of the complex reception signal, and the instantaneous frequency change rate calculation unit includes the instantaneous frequency The instantaneous frequency change rate is calculated by time-differentiating the instantaneous frequency calculated by the calculation unit.
  • the storage unit stores an upper limit threshold having a value equal to or higher than the reference frequency sweep speed and a lower limit threshold having a value equal to or lower than the reference frequency sweep speed, and the distress signal determination unit It is determined that the distress signal is included in the complex reception signal on the condition that the instantaneous frequency change rate is not more than the upper threshold and not less than the lower threshold.
  • the instantaneous frequency change rate calculating unit calculates the instantaneous frequency change rate at a plurality of timings, and the distress signal determining unit is not more than the upper limit threshold and not less than the lower limit threshold. It is determined that the distress signal is included in the complex reception signal on condition that the change rate appears continuously for a predetermined number or more.
  • a radar apparatus includes a reception unit that receives a reception wave, and a complex reception that is generated from the reception wave received by the reception unit.
  • One of the signal processing devices described above that detects a distress signal from a search and rescue radar transponder and generates a radar image in a detection area by processing the signal, and the distress detected by the signal processing device A display for displaying information on the signal and the radar image.
  • the signal processing apparatus transmits a transmission wave in an area where the distress signal is not detected in the first area.
  • the radar image is generated by subjecting the complex reception signal obtained from the reflected wave of the frequency modulation pulse to pulse compression processing. In the region where the distress signal is detected in the first region, the frequency non-modulation as a transmission wave is generated. The radar image is generated using the complex reception signal obtained from the reflected wave of the pulse.
  • a signal processing method for detecting a distress signal from a search and rescue radar transponder, which is received by a receiving unit.
  • the distress signal from the search / rescue radar transponder can be accurately detected, and the calculation load for the detection can be reduced.
  • FIG. 1 is a block diagram of a radar apparatus according to an embodiment of the present invention. It is a figure which shows the transmission timing of the radar apparatus shown in FIG. It is a radar image block diagram of the radar apparatus shown in FIG. It is a figure which shows the timing of a SART distress signal and a radar received signal. It is a radar image block diagram of a SART distress signal.
  • FIG. 2 is a block diagram of a transponder response wave detection unit shown in FIG. 1. It is a flowchart which shows operation
  • the present invention can be widely applied as a signal processing device, a radar device, and a signal processing method for processing a reception signal generated from a reception wave.
  • the radar device 1 is constituted by a pulse compression radar device which is one of solidification radar devices.
  • the radar apparatus 1 detects a distress signal (SART distress signal) that is a response signal of a transponder (in the case of the present embodiment, a search and rescue radar transponder), and generates a radar image.
  • a distress signal SART distress signal
  • transponder in the case of the present embodiment, a search and rescue radar transponder
  • FIG. 1 is a block diagram of the radar device 1.
  • the radar apparatus 1 includes a transmission timing control unit 2a, a transmission waveform generation unit 2b, and a transmitter 3 as components of the transmission side system.
  • the radar apparatus 1 includes a receiver 6, a non-modulated echo signal processing unit 7, a modulation echo signal processing unit 8, a pulse synthesis unit 9, and a transponder response wave detection unit 10 as components of the reception side system.
  • the radar apparatus 1 further includes a circulator 4, a radar antenna 5, a radar image drawing unit 11, and a display 13.
  • transmission timing control unit 2a transmission waveform generation unit 2b, transmitter 3, circulator 4, receiver 6, unmodulated echo signal processing unit 7, modulation echo signal processing unit 8, pulse synthesis unit 9, transponder response wave detection unit 10 and the radar image drawing unit 11 constitute a signal processing device 15.
  • the transmission timing control unit 2a outputs a transmission trigger for controlling the output timing of the radar pulse output from the transmission waveform generation unit 2b.
  • the transmission timing control unit 2a controls the transmission / reception period of the modulation pulse and the transmission / reception period of the non-modulation pulse by a transmission trigger.
  • the transmission / reception timing is controlled so as to extend the transmission / reception period of the unmodulated pulse to the end point of the appearance area of the distress signal.
  • the transmission waveform generator 2 outputs a radar pulse based on the transmission trigger output from the transmission timing controller 2a.
  • This pulse compression radar apparatus is configured to transmit a non-modulated pulse that is not frequency-modulated and a modulated pulse that is frequency-modulated while switching as a radar pulse.
  • the unmodulated pulse is generated to have a short pulse width of, for example, about 0.1 ⁇ s to 1 ⁇ s
  • the modulated pulse is generated to have a long pulse width of, for example, about several ⁇ s to several tens of ⁇ s.
  • the transmission waveform generation unit 2b alternately transmits a non-modulation pulse and a modulation pulse as transmission pulses in a time division manner in synchronization with the transmission trigger.
  • the transmitter 3 upconverts the radar pulse output from the transmission waveform generation unit 2b to a predetermined band and outputs it after power amplification.
  • the generated radar pulse is supplied to the radar antenna 5 via the circulator 4.
  • the radar antenna 5 is a transmission / reception antenna (receiver) that is used for both transmission and reception.
  • the radar antenna 5 rotates with beam directivity.
  • the receiver 6 includes an amplifier that amplifies the received signal, a mixer that down-converts a signal in a desired frequency band included in the received signal, and various filters that output a complex signal (complex received signal) by orthogonally detecting the down-converted signal. (LPF) and an AD converter.
  • LPF complex signal
  • AD converter an AD converter
  • the unmodulated echo signal processing unit 7 is configured by a filter or the like (for example, LPF or BPF) having a pass band having a frequency width corresponding to the reciprocal of the pulse width of the unmodulated pulse signal.
  • the non-modulated echo signal processing unit 7 takes in the received signal during the transmission / reception period of the non-modulated pulse, receives the received echo, and extracts the received echo data in the short-distance region (second region).
  • the modulation echo signal processing unit 8 includes a matched filter in which a coefficient having a high correlation with the modulation pulse signal that is a frequency-modulated transmission pulse is set.
  • the modulation echo signal processing unit 8 takes in the reception signal during the modulation pulse transmission / reception period, compresses the reception echo, and extracts the reception echo data in the long-distance region which is the first region. Since the received echo that is pulse-compressed is a reflected wave of the modulated pulse signal, the matched filter shows a peak with respect to the received echo of the modulated pulse signal. That is, a reception echo having a long pulse width corresponding to the pulse width of the modulated pulse signal is converted into one peak waveform that is pulse-compressed. The pulse-compressed peak waveform shows a peak level corresponding to the pulse width of the modulated pulse signal. Since the modulated pulse signal has a longer pulse width than the non-modulated pulse, the S / N ratio is improved.
  • the pulse synthesizer 9 synthesizes the received echo of the unmodulated pulse output from the unmodulated echo signal processor 7 and the received echo of the modulated pulse output from the modulated echo signal processor 8. Since the reception echo of the unmodulated pulse output from the unmodulated echo signal processing unit 7 represents a short-range reception echo, and the reception echo of the modulation pulse output from the modulation echo signal processing unit 8 represents a long-range reception echo. By combining these two received echoes, a wide range of received echoes from a short distance to a long distance can be obtained. The short-range dead zone in the transmission / reception period of the modulated pulse is compensated by the image of the reception echo of the non-modulated pulse.
  • the radar image drawing unit 11 transfers the received signal (radar echo) of the R ⁇ coordinate system output from the pulse synthesizing unit 9 to the display unit 13 while converting it into the XY coordinate system.
  • the pulse synthesizing unit 9 and the radar image drawing unit 11 constitute a radar image generating unit 12 that generates a radar image.
  • the radar image generation unit 12 generates a radar image by combining the short-range received echo data and the long-distance received echo data, and a transponder response wave appears based on the detection result of the transponder response wave detection unit 10. In the area, a radar image is formed without using a pulse-compressed received signal.
  • the display 13 displays the radar image input from the radar image generator 12.
  • a reception echo obtained by time-division transmission of an unmodulated pulse and a modulated pulse will be described.
  • transmission and reception are performed by a single radar antenna 5.
  • the transmission wave goes directly to the receiver 6 during the transmission period. Since this wraparound radio wave is extremely strong against the received echo, the received echo is masked. Therefore, the distance range corresponding to the pulse width of the transmission pulse is a dead zone.
  • a modulation pulse having a relatively long pulse width is transmitted in order to improve the S / N ratio after the pulse compression processing. As a result, the dead zone becomes wider. For example, when the pulse width of the modulation pulse is 10 ⁇ s, a range of about 1500 m from the ship radar is a dead zone.
  • the pulse compression radar is configured to compensate for the dead zone of radar detection by the modulated pulse by transmitting and receiving the unmodulated pulse. That is, the transmission / reception of a modulated pulse that performs pulse compression processing at the time of echo reception and the transmission / reception of a non-modulated pulse that does not perform pulse compression processing are performed in a time-sharing manner, and then combined to generate a radar image.
  • FIG. 3 is a schematic diagram of a radar image formed by synthesizing a reception echo obtained by time-division transmission of an unmodulated pulse and a modulated pulse. In the figure, the cross mark at the center is the position of the pulse compression radar apparatus.
  • a short distance range (second region) centered on the position of the pulse compression radar apparatus is a video display region based on a received echo detected during transmission / reception of an unmodulated pulse.
  • the long-distance range (first region) formed outside the short-distance range is a video display region based on the received echo detected when the modulated pulse is transmitted and received. Note that a pulse compression gain (S / N improvement) cannot be obtained during the transmission / reception period of the non-modulated pulse. However, if the applicable distance range of the unmodulated pulse is limited to the vicinity of the ship as much as possible (about the pulse width of the modulated pulse), there is no practical problem.
  • the transponder response wave detection unit 10 has a function of detecting a SART distress signal from received signals in a pulse compression radar. The operations of the transmission timing control unit 2a and the pulse synthesis unit 9 are controlled according to the detection result by the transponder response wave detection unit 10.
  • SART is assumed as a transponder.
  • the transponder response wave in this case is a SART distress signal.
  • the SART distress signal is a pulse whose frequency is swept in a saw-like manner and is defined as shown in Table 1.
  • FIG. 4 shows a schematic timing chart from when a SART receives a radar radio wave and transmits a SART distress signal until a radar reception signal is obtained by the radar device.
  • the SART receives a radar radio wave (FIG. 4A)
  • it transmits a SART distress signal for a transmission period of 100 ⁇ s (FIG. 4B).
  • the frequency sweep band of the SART distress signal is 9200-9500 MHz, and twelve pulses swept in a sawtooth manner are continuously transmitted in one transmission operation (FIG. 4C).
  • the reception bandwidth of a general marine radar is, for example, about 1 to 40 MHz with 9400 MHz as the center frequency.
  • the radar apparatus receives the SART distress signal as a pulse when the SART distress signal crosses the radar reception band in the downstream frequency sweep process (FIG. 4D).
  • the SART distress signal is received when the SART distress signal crosses the radar reception band even in the upward frequency sweep process.
  • the up frequency sweep has a steeper slope than the down frequency sweep. It is not detected as a pulse or the signal level becomes very small.
  • FIG. 4D shows the SART distress signal received as a radar reception signal when the SART distress signal is received in the downstream frequency sweep process.
  • the radar image displayed on the display 13 appears as 12 short points in the distance direction starting from the SART position. The radar operator can immediately know the presence of the ship from this characteristic pattern, and can report to a predetermined management station and go to rescue.
  • the transponder response wave detection unit 10 detects the SART distress signal from the received signal. A specific configuration example of the transponder response wave detection unit 10 will be described below.
  • FIG. 6 is a diagram showing functional blocks of the transponder response wave detection unit 10.
  • the transponder response wave detection unit 10 includes an instantaneous frequency calculation unit 20, an instantaneous frequency change rate calculation unit 21, a storage unit 22, a first comparison determination unit 23, a reception level calculation unit 24, a second comparison determination unit 25, and a logical product calculation unit. 26, a counter unit 27, and a distress signal determination unit 28.
  • the instantaneous frequency calculation unit 20 outputs an instantaneous frequency f (t) of the complex reception signal output from the receiver 6. Is calculated. Specifically, the instantaneous frequency calculation unit 20 calculates the instantaneous frequency f (t) by time-differentiating the phase of the complex reception signal. The instantaneous frequency calculation unit 20 calculates the instantaneous frequency f (t) at each timing at regular intervals, and sequentially outputs the calculated instantaneous frequency f (t) at each timing to the instantaneous frequency change rate calculation unit 21. .
  • the instantaneous frequency change rate calculation unit 21 calculates the change rate of the instantaneous frequency f (t) (instantaneous frequency change rate ⁇ f (t)) based on the instantaneous frequency f (t) calculated by the instantaneous frequency calculation unit 20. . Specifically, the instantaneous frequency change speed calculation unit 21 calculates the instantaneous frequency change speed ⁇ f (t) by differentiating the instantaneous frequency f (t) with respect to time.
  • the instantaneous frequency change rate calculating unit 21 sequentially calculates an instantaneous frequency change rate ⁇ f (t) for each of the instantaneous frequencies f (t) output from the instantaneous frequency calculating unit 20 and outputs the calculated instantaneous frequency change rate ⁇ f (t). Sequentially output to 23.
  • the storage unit 22 upper threshold Th_ HiGH, lower threshold Th_ LOW, and the first threshold value Th1 are stored.
  • the upper limit threshold Th_ HiGH slightly higher values are set than the frequency sweep rate of the SART distress signal which is defined by the standard (reference frequency sweep rate).
  • the lower threshold Th_ LOW slightly lower values are set than the reference frequency sweep rate described above.
  • the first threshold Th1 a value corresponding to the signal strength of the SART distress signal is set.
  • the value of the first threshold Th1 is preferably lower than the signal strength of the SART distress signal and higher than the signal strength of noise and small echo.
  • the first threshold Th1 is preferably a curve that gradually decreases from a short distance to a long distance. This first threshold value Th1 is used to exclude noise and small echoes from the detection target.
  • the first comparison / determination unit 23 sequentially sets 1 or 0 as the flag 1 to the logical product calculation unit 26 according to the value of the instantaneous frequency change rate ⁇ f (t) sequentially output from the instantaneous frequency change rate calculation unit 21. Output. More specifically, the first comparison determination part 23, when the instantaneous frequency change rate Delta] f (t) is less than the lower limit threshold Th_ LOW or more and the upper limit threshold Th_ HiGH is one of a flag 1 to the logical product operation unit 26 Output.
  • the first comparison determination part 23 instantaneous frequency change rate Delta] f (t) is the case more than the lower limit threshold Th_ LOW or less than the upper threshold Th_ HiGH outputs 0 as the flag 1 to the logical product operation unit 26. That is, the first comparison determination unit 23 outputs 1 when the instantaneous frequency change rate ⁇ f (t) from the instantaneous frequency change rate calculation unit 21 is substantially the same as the frequency sweep rate of the SART distress signal, When the instantaneous frequency change speed ⁇ f (t) is significantly different from the frequency sweep speed of the SART distress signal, 0 is output.
  • the reception level calculation unit 24 calculates the level of the complex reception signal output from the receiver 6 (reception signal level L (t)). The reception level calculation unit 24 calculates the reception signal level L (t) of the complex reception signal output at each timing sequentially from the receiver 6.
  • the second comparison / determination unit 25 sequentially outputs 1 or 0 as the flag 2 to the logical product operation unit 26 according to the value of the reception signal level L (t) output from the reception level calculation unit 24 sequentially. Specifically, the second comparison determination unit 25 outputs 1 as the flag 2 to the logical product calculation unit 26 when the value of the reception signal level L (t) is equal to or higher than the first threshold Th1. On the other hand, when the value of the reception signal level L (t) is less than the first threshold value Th1, the second comparison / determination unit 25 outputs 0 as the flag 1 to the AND operation unit 26.
  • the second comparison determination unit 25 outputs 1 when the value of the reception signal level L (t) is relatively large and the reception signal is likely to be a SART distress signal, while the reception signal When the value of the level L (t) is relatively small and the possibility that the received signal is a SART distress signal is low, 0 is output.
  • the AND operation unit 26 calculates the logical value of the value of the flag 1 (0 or 1) output from the first comparison determination unit 23 and the value of the flag 2 (0 or 1) output from the second comparison determination unit 25. The product is calculated, and the calculation result is output to the counter unit 27 as the flag 3. In other words, the AND operation unit 26 outputs 1 as the flag 3 to the counter unit 27 when the value of the flag 1 is 1 and the value of the flag 2 corresponding to the flag 1 is 1. In other cases, 0 as the flag 3 is output to the counter unit 27. That is, the AND operation unit 26 determines that the flag 3 is used when certain sample data is highly likely to be a SART distress signal in terms of the instantaneous frequency change rate ⁇ f (t) and the received signal level L (t).
  • the AND operation unit 26 responds to the value of the flag 1 sequentially output from the first comparison determination unit 23 and the value of the flag 2 corresponding to the flag 1 sequentially output from the second comparison determination unit 25.
  • the flag 3 is sequentially output to the counter unit 27.
  • the counter unit 27 adds 1 to the count value stored in the counter unit 27.
  • the counter unit 27 resets the count value stored in the counter unit 27 to 0. That is, the count value stored in the counter unit 27 is the number of consecutive 1 values as the flag 3 output from the AND operation unit 26, and the 1 value as the flag 3 at that time. This is the value stored when is continuous.
  • the distress signal determination unit 28 determines that a SART distress signal is included in the complex reception signal when the counter value stored in the counter unit 27 is equal to or greater than a predetermined threshold (second threshold Th2).
  • the transmission timing control unit 2a and the pulse synthesizing unit 9 do not reflect the received signal of the modulated pulse in the radar image in the reception period determined as the SART distress signal. Performs transmission timing control and pulse synthesis.
  • FIG. 7 is a flowchart showing the operation of the transponder response wave detection unit 10. Incidentally, before the operation in the transponder response wave detection unit 10 is started, for example, during the manufacture of the radar apparatus 1, the storage unit 22, upper threshold Th_ HiGH, lower threshold Th_ LOW, and the first threshold value Th1 are stored (Step S1).
  • step S2 the instantaneous frequency calculation unit 20 uses a sample at a predetermined position in the range direction as a target sample, and calculates the instantaneous frequency f (t) of the complex reception signal of the target sample. Specifically, in step S2, the instantaneous frequency f (t) of the complex reception signal is calculated by calculating the time derivative of the phase of the complex reception signal.
  • step S3 the instantaneous frequency change rate calculation unit 21 calculates the change rate of the instantaneous frequency f (t) calculated in step S2 (instantaneous frequency change rate ⁇ f (t)). Specifically, in step S3, the instantaneous frequency change speed ⁇ f (t) is calculated by calculating the time derivative of the instantaneous frequency f (t).
  • step S4 the first comparison determination unit 23 causes the instantaneous frequency change rate ⁇ f (t ) Is equal to or less than the lower limit threshold Th_ LOW or more and the upper limit threshold Th_ HiGH is determined. If the instantaneous frequency change rate Delta] f (t) is below the lower threshold Th_ LOW or more and the upper limit threshold Th_ HiGH (Yes in step S4), and the first comparison determination part 23, the first as a flag 1 to the logical product operation unit 26 Output (step S5).
  • the instantaneous frequency change rate Delta] f (t) is, if it exceeds the lower limit threshold Th_ LOW or less than the upper threshold Th_ HiGH (No in step S4), and the first comparison determination part 23, 0 AND operation portion as flag 1 26 (step S6).
  • step S7 to step S10 described in detail below is performed in parallel with the process from step S2 to step S6 described above or before or after the process from step S2 to step S6 described above. .
  • the reception level calculation unit 24 sets a sample at a predetermined position in the range direction (the same sample as the target sample in step S2 described above) as a target sample, and receives a reception signal level L (t of the complex reception signal of the target sample. ) Is calculated.
  • step S8 the second comparison / determination unit 25 determines whether or not the received signal level L (t) is equal to or higher than the first threshold Th1.
  • the second comparison / determination unit 25 outputs 1 as the flag 2 to the logical product operation unit 26 (Step S9).
  • the second comparison / determination unit 25 outputs 0 as the flag 2 to the AND operation unit 26 (step S10). ).
  • step S11 the logical product operation unit 26 calculates the logical product of the flag 1 and the flag 2.
  • the process proceeds to step S14.
  • the process proceeds to step S12.
  • step S11 If the logical product of the flag 1 and the flag 2 is 0 in step S11, the counter value stored in the counter unit 27 is reset to 0 in step S12.
  • step S13 the target sample for which the instantaneous frequency f (t) and the received signal level L (t) are to be calculated is shifted in the range direction (specifically, on the far side from the ship in the range direction). It is. Then, returning to step S2 and step S7, the instantaneous frequency f (t) and the received signal level L (t) are calculated for the newly set complex received signal of the target sample.
  • step S11 when the logical product of the flag 1 and the flag 2 is 1 in step S11, 1 is added to the counter value stored in the counter unit 27 in step S14.
  • step S15 the distress signal determination unit 28 determines the presence or absence of a distress signal. Specifically, in step S15, when the counter value stored in the counter unit 27 is less than the second threshold Th2 (No in step S15), the distress signal determination unit 28 does not detect the distress signal. Then, after the target sample is shifted in the range direction in step S13, the instantaneous frequency f (t) and the received signal level L (t) are calculated for the complex reception signal of the newly set target sample. (Step S2 and Step S7). On the other hand, when the counter value is equal to or greater than the second threshold Th2 (Yes in Step S15), the distress signal determination unit 28 detects the distress signal, assuming that the distress signal is included in the complex reception signal (Step S16).
  • the SART distress signal is detected by the distress signal determination unit 28. Since the SART distress signal is likely to be continuously received for a predetermined time (for example, 100 ⁇ s) from the time when it was first detected, the SART distress signal does not shift to the transmission / reception period of the modulation pulse during that time, and the transmission / reception period of the non-modulation pulse Maintained. That is, the next transmission trigger is delayed so that the transmission / reception period of the non-modulated pulse is extended until the SART distress signal appearance region ends.
  • the pulse synthesizing unit 9 generates a composite signal using the received signal of the non-modulated pulse until the end point of the SART distress signal, and using the received signal of the modulated pulse thereafter.
  • FIG. 8 shows the transmission when the SART distress signal is not detected during the transmission / reception period of the unmodulated pulse (FIG. 8A), and when the SART distress signal is detected during the transmission / reception period of the unmodulated pulse (FIG. 8B) Each timing is shown.
  • the shift to the transmission / reception period of the modulation pulse is not performed until the appearance area of the SART distress signal is completed.
  • FIG. 9 shows a configuration example of a radar image drawn when a SART distress signal is detected during the transmission / reception period of an unmodulated pulse.
  • the transmission / reception period of the unmodulated pulse is maintained during the reception period of the SART distress signal.
  • a radar image is drawn by a SART distress signal.
  • the SART distress signal Since the radar antenna 5 rotates with beam directivity, the SART distress signal does not appear in the display area where the SART position deviates from the transmission pulse radiation range.
  • the transmission / reception period of the non-modulation / modulation pulse is returned to the initial state.
  • the radar image by the echo of the modulated pulse is drawn outside the image display area by the echo of the unmodulated pulse.
  • FIG. 10 shows a video display example of the SART distress signal subjected to the pulse compression processing.
  • the 12 short dot patterns extend in the distance direction by the pulse compression process, and the respective short points are completely connected to each other. This eliminates the 12 short points, and the radar operator cannot recognize the SART distress signal.
  • the short points extend to the near distance side. As a result, the distance to the ship is lost.
  • the presence of the target can be recognized by displaying an echo in the gap of the short point, but if the gap is filled by pulse compression processing, The echo is completely masked by the distress signal.
  • a radar image is generated in a region (azimuth / distance range) where the SART distress signal appears without using a received signal of a modulated pulse with pulse compression processing.
  • the SART distress signal can be displayed as 12 short-point patterns, and the inconvenience that the echo is completely masked by the distress signal is avoided.
  • pulse synthesis is performed without using the post-pulse compression processing data (output of the modulation echo signal processing unit 8) corresponding to the determined SART distress signal reception period.
  • the video data of the reception period determined as the reception period of the SART distress signal is replaced with the data after the pulse compression processing obtained in the previous transmission / reception period (transmission / reception period in which the SART distress signal was not detected).
  • the SART distress signal no longer appears in any of the above cases.
  • the transmission / reception period of the non-modulation / modulation pulse is returned to the initial state.
  • the pulse compression radar apparatus detects the SART distress signal from the received signal, and in the region (azimuth / distance range) where the SART distress signal appears when the SART distress signal is detected, pulse compression is performed.
  • a radar image is generated without using a received signal of a modulated pulse with processing.
  • a radar image is generated without using a received signal of a modulated pulse with pulse compression processing in a region (azimuth / distance range) where the SART distress signal appears.
  • the pulse compression processing may be performed after subtracting only the SART distress signal component from the received signal based on the level of the detected SART distress signal.
  • a radar image may be generated only by transmission / reception of unmodulated pulses over the entire radar detection range until no SART distress signal appears without transmitting any modulation pulses.
  • the presence or absence of a SART distress signal is determined by performing cross-correlation processing between a signal having a constant period substantially equal to the SART distress signal and detection data detected by the radar device. Yes.
  • the SART distress signal may not be detected accurately. Arise.
  • the conventionally known radar apparatus needs to perform correlation calculation between waveform signals having a certain length (about the reception period of the SART distress signal), so that the signal processing load becomes relatively large. .
  • the presence or absence of a distress signal from the transponder is determined. In this way, even if some of the plurality of pulses constituting the SART distress signal are masked, deterioration in detection accuracy can be suppressed.
  • the presence / absence of the distress signal from the search / rescue radar transponder is determined based on the comparison between the instantaneous frequency change speed obtained from the complex received signal and the frequency sweep speed of the SART distress signal.
  • the signal processing load can be reduced as compared with the prior art.
  • the distress signal from the search and rescue radar transponder can be accurately detected, and the calculation load for the detection can be reduced.
  • the signal processing device 15 calculates the instantaneous frequency f (t) by time differentiation of the phase of the complex reception signal, and further time-differentiates the instantaneous frequency f (t) to obtain the instantaneous frequency change rate ⁇ f (t). Calculated. That is, since the radar apparatus 1 calculates the instantaneous frequency change rate ⁇ f (t) by second-order time differentiation of the phase of the complex reception signal, the processing load when calculating the instantaneous frequency change rate ⁇ f (t) is increased. Can be relatively small.
  • the signal processing unit 15, the instantaneous frequency change rate Delta] f (t) is the upper threshold Th_ HiGH having a reference frequency sweep rate or more values, between the lower threshold Th_ LOW having a reference frequency sweep rate following values
  • a SART distress signal is detected on the condition that it is included.
  • the SART distress signal can be detected on condition that the instantaneous frequency change rate ⁇ f (t) substantially matches the frequency sweep speed of the SART distress signal determined by the standard. it can.
  • the signal processing device 15 on condition that the at the upper threshold Th_ HiGH less and the lower limit threshold Th_ LOW or instantaneous frequency change rate Delta] f (t) appears consecutively more than a predetermined number, among the received complex signal Is determined to include the distress signal. Accordingly, since the accidental upper threshold Th_ HiGH less and the lower limit threshold Th_ LOW or more and since the instantaneous frequency change rate Delta] f (t) can be eliminated, can be detected more accurately SART distress signal.
  • the radar apparatus 1 it is possible to configure a radar apparatus including the signal processing apparatus 15 that can accurately detect a distress signal and has a small calculation load for the detection.
  • the radar image is generated without performing the pulse compression processing in the region where the distress signal is detected among the detection regions detected by the radar device.
  • the problem (see FIG. 10) of extending the SART distress signal in the distance direction in the device 13 can be solved.
  • the video of the SART distress signal (12 short points) is displayed in the radar image as the information related to the distress signal.
  • the present invention is not limited to this.
  • the position of the rescue target (distress ship or the like) estimated based on the detected SART distress signal may be displayed on the radar image with an icon or the like.
  • the position (latitude, longitude, etc.) of the rescue target estimated based on the detected SART distress signal may be displayed on a portion other than the portion where the radar image is displayed on the display of the display.
  • the distress signal determination unit 28 continuously displays a plurality of instantaneous frequency change rates ⁇ f (t) calculated by the instantaneous frequency change rate calculation unit 21 (second threshold Th2 or more).
  • the distress signal was detected on the condition, it is not restricted to this.
  • the instantaneous frequency change rate ⁇ f (t) calculated by the instantaneous frequency change rate calculating unit 21 is a predetermined cycle (specifically, 7.5 ⁇ which is the cycle of the SART distress signal).
  • a distress signal may be detected on the condition that it appears (with a period of 1 ⁇ s).
  • Radar device 5 Radar antenna (receiver) DESCRIPTION OF SYMBOLS 15 Signal processing apparatus 21 Instantaneous frequency change speed calculation part 22 Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】捜索救助用レーダトランスポンダからの遭難信号を正確に検出するとともに、その検出のための演算負荷を小さくする。 【解決手段】捜索救助用レーダトランスポンダからの遭難信号を検出する信号処理装置であって、受波部で受波された受信波から生成される複素受信信号、の瞬時周波数の変化速度である瞬時周波数変化速度を算出する瞬時周波数変化速度算出部21と、遭難信号の周波数掃引速度である基準周波数掃引速度、に基づく値を記憶する記憶部22と、瞬時周波数変化速度算出部21で算出された瞬時周波数変化速度と、記憶部22で記憶されている基準周波数掃引速度に基づく値と、の比較結果に基づいて、捜索救助用レーダトランスポンダからの遭難信号の有無を判定する遭難信号判定部28と、を備えた信号処理装置を構成する。

Description

信号処理装置、レーダ装置、及び信号処理方法
 本発明は、信号処理装置、レーダ装置、及び信号処理方法に関する。
 従来より、船舶や救命ボートには捜索救助用レーダトランスポンダ(SART:Search And Rescue Transponder)が装備される。SARTは遭難時に電源が入れられると、船舶や航空機からの9GHz帯レーダ電波を受信した直後に、同じ9GHz帯で遭難信号(SART遭難信号)を発信する。このSART遭難信号はのこぎり状に周波数掃引されたパルス状の応答信号である。船舶用レーダの受信帯域幅を遭難信号の周波数掃引帯域が横切るように設定されているため、レーダ装置は遭難信号を一定間隔のパルスとして受信することができ、レーダ映像にはSART遭難信号がSART位置を始点として距離方向に複数個の短点として現れる。
 上述のようなSART遭難信号を検出するレーダ装置としては、例えば特許文献1に開示されるレーダ装置が知られている。このレーダ装置では、SART遭難信号と略等しい一定周期の信号と、レーダ装置により探知された探知データとを相互相関処理することにより、SART遭難信号の有無を判定している。
特開2001-141817号公報
 ところで、上述したレーダ装置でSART遭難信号を検出する場合、SART遭難信号を構成する複数個(具体的には、12個)のパルスのいくつかが他のエコー信号によってマスクされた場合、SART遭難信号を正確に検出できなくなる虞が生じる。しかも、上述したレーダ装置では、ある程度の長さ(SART遭難信号の受信期間程度)を有する波形信号同士の相関演算が必要となるため、信号の処理負荷が比較的大きくなってしまう。
 本発明は、上記課題を解決するためのものであり、その目的は、捜索救助用レーダトランスポンダからの遭難信号を正確に検出するとともに、その検出のための演算負荷を小さくすることである。
 (1)上記課題を解決するため、本発明のある局面に係る信号処理装置は、捜索救助用レーダトランスポンダからの遭難信号を検出する信号処理装置であって、受波部で受波された受信波から生成される複素受信信号、の瞬時周波数の変化速度である瞬時周波数変化速度を算出する瞬時周波数変化速度算出部と、遭難信号の周波数掃引速度である基準周波数掃引速度、に基づく値を記憶する記憶部と、前記瞬時周波数変化速度算出部で算出された前記瞬時周波数変化速度と、前記記憶部で記憶されている前記基準周波数掃引速度に基づく値と、の比較結果に基づいて、前記捜索救助用レーダトランスポンダからの前記遭難信号の有無を判定する遭難信号判定部と、を備えている。
 (2)好ましくは、前記信号処理装置は、前記複素受信信号の位相を時間微分することにより前記瞬時周波数を算出する瞬時周波数算出部を更に備え、前記瞬時周波数変化速度算出部は、前記瞬時周波数算出部によって算出された前記瞬時周波数を時間微分すること
により前記瞬時周波数変化速度を算出する。
 (3)好ましくは、前記記憶部は、前記基準周波数掃引速度以上の値を有する上限閾値と、前記基準周波数掃引速度以下の値を有する下限閾値とを記憶し、前記遭難信号判定部は、前記瞬時周波数変化速度が前記上限閾値以下且つ前記下限閾値以上であることを条件として、前記複素受信信号の中に前記遭難信号が含まれていると判定する。
 (4)更に好ましくは、前記瞬時周波数変化速度算出部は、複数のタイミングで前記瞬時周波数変化速度を算出し、前記遭難信号判定部は、前記上限閾値以下且つ前記下限閾値以上である前記瞬時周波数変化速度が所定数以上連続して出現することを条件として、前記複素受信信号の中に前記遭難信号が含まれていると判定する。
 (5)上記課題を解決するため、本発明のある局面に係るレーダ装置は、受信波を受波する受波部と、前記受波部で受波された前記受信波から生成される複素受信信号を処理することにより、捜索救助用レーダトランスポンダからの遭難信号を検出するとともに探知領域内のレーダ映像を生成する、上述したいずれかの信号処理装置と、前記信号処理装置で検出された前記遭難信号に関する情報、及び前記レーダ映像を表示する表示器と、を備えている。
 (6)好ましくは、前記信号処理装置は、前記探知領域内における少なくとも一部の領域としての第1領域について、当該第1領域内において前記遭難信号が検出されなかった領域では、送信波としての周波数変調パルスの反射波から得られる前記複素受信信号をパルス圧縮処理することにより前記レーダ映像を生成し、前記第1領域内において前記遭難信号が検出された領域では、送信波としての周波数無変調パルスの反射波から得られる前記複素受信信号を用いて前記レーダ映像を生成する。
 (7)上記課題を解決するため、本発明のある局面に係る信号処理方法は、捜索救助用レーダトランスポンダからの遭難信号を検出する信号処理方法であって、受波部で受波された受信波から生成される複素受信信号、の瞬時周波数の変化速度である瞬時周波数変化速度を算出するステップと、遭難信号の周波数変化速度である基準周波数掃引速度、に基づく値を記憶するステップと、前記瞬時周波数変化速度を算出するステップで算出された前記瞬時周波数変化速度と、前記記憶するステップで記憶された前記基準周波数掃引速度に基づく値と、の比較結果に基づいて、前記捜索救助用レーダトランスポンダからの前記遭難信号の有無を判定するステップと、を含む。
 本発明によれば、捜索救助用レーダトランスポンダからの遭難信号を正確に検出するとともに、その検出のための演算負荷を小さくできる。
本発明の実施形態に係るレーダ装置のブロック図である。 図1に示すレーダ装置の送信タイミングを示す図である。 図1に示すレーダ装置のレーダ映像構成図である。 SART遭難信号とレーダ受信信号のタイミングを示す図である。 SART遭難信号のレーダ映像構成図である。 図1に示すトランスポンダ応答波検出部のブロック図である。 図6に示すトランスポンダ応答波検出部の動作を示すフローチャートである。 無変調パルスの送受信期間の延長動作を説明するための図である。 無変調パルスの送受信期間の延長した場合のレーダ映像構成図である。 パルス圧縮処理されたSART遭難信号の映像表示例を示す図である。
 以下、本発明の実施形態に係るレーダ装置1について図面を参照しつつ説明する。本発明は、信号処理装置、レーダ装置、及び受信波から生成される受信信号を処理する信号処理方法として広く適用することができる。
 レーダ装置1は、固体化レーダ装置の1つであるパルス圧縮レーダ装置によって構成されている。レーダ装置1は、トランスポンダ(本実施形態の場合、捜索救助用レーダトランスポンダ)の応答信号である遭難信号(SART遭難信号)を検出してレーダ映像を生成する。
 図1は、レーダ装置1のブロック図である。レーダ装置1は、送信側システムの構成要素として、送信タイミング制御部2a、送信波形生成部2b及び送信機3を備えている。また、レーダ装置1は、受信側システムの構成要素として、受信機6、無変調エコー信号処理部7、変調エコー信号処理部8、パルス合成部9及びトランスポンダ応答波検出部10を備えている。また、レーダ装置1は、その他に、サーキュレータ4、レーダアンテナ5、レーダ映像描画部11、及び表示器13を備えている。上述した送信タイミング制御部2a、送信波形生成部2b、送信機3、サーキュレータ4、受信機6、無変調エコー信号処理部7、変調エコー信号処理部8、パルス合成部9、トランスポンダ応答波検出部10、及びレーダ映像描画部11によって、信号処理装置15が構成される。
 送信タイミング制御部2aは、送信波形生成部2bが出力するレーダパルスの出力タイミングを制御するための送信トリガを出力する。送信タイミング制御部2aは、送信トリガによって変調パルスの送受信期間と無変調パルスの送受信期間とを制御する。無変調パルスの送受信期間に遭難信号を検出した場合は、無変調パルスの送受信期間を遭難信号の出現領域の終了点まで延長するように送受信タイミングを制御する。
 送信波形生成部2は、送信タイミング制御部2aが出力する送信トリガに基づいて、レーダパルスを出力する。このパルス圧縮レーダ装置は、周波数変調されていない無変調パルスと、周波数変調されている変調パルスとをレーダパルスとして切り替えながら送信できるように構成されている。無変調パルスは、例えば0.1μ秒から1μ秒程度の短いパルス幅を有するように生成され、変調パルスは、例えば数μ秒から数十μ秒程度の長いパルス幅を有するように生成される。送信波形生成部2bは、図2に示すように、送信トリガに同期して、無変調パルスと変調パルスとを送信パルスとして時分割で交互に送信する。
 送信機3は、送信波形生成部2bが出力するレーダパルスを所定帯域までアップコンバートすると共にパワー増幅して出力する。生成されたレーダパルスはサーキュレータ4を介してレーダアンテナ5へ供給される。レーダアンテナ5は、送信と受信とで兼用される送受信アンテナ(受波部)である。レーダアンテナ5は、ビーム指向性を持って回転する。
 受信機6は、受信信号を増幅するアンプ、受信信号に含まれる所望周波数帯域の信号をダウンコンバートするミキサ、ダウンコンバートされた信号を直交検波して複素信号(複素受信信号)を出力する各種フィルタ(LPF)及びAD変換器等で構成される。レーダアンテナ5から放射されたレーダパルス(無変調パルス又は変調パルス)を受信したSARTが応答信号(遭難信号)を発信した場合、受信機6へ入力される受信信号に遭難信号が含まれる。
 無変調エコー信号処理部7は、無変調パルス信号のパルス幅の逆数程度に相当する周波数幅の通過帯域を有するフィルタ等(例えば、LPF又はBPF)で構成される。無変調エコー信号処理部7は、無変調パルスの送受信期間に受信信号を取り込んで受信エコーを受信処理して近距離領域(第2領域)の受信エコーデータを抽出する。
 変調エコー信号処理部8は、周波数変調された送信パルスとなる変調パルス信号と相関の高い係数が設定されたマッチドフィルタを備えて構成される。変調エコー信号処理部8は、変調パルスの送受信期間に受信信号を取り込んで受信エコーをパルス圧縮し、第1領域となる遠距離領域の受信エコーデータを抽出する。パルス圧縮される受信エコーは変調パルス信号の反射波であるので、マッチドフィルタによって変調パルス信号の受信エコーに対してピークを示す。すなわち、変調パルス信号のパルス幅に相当する長いパルス幅を有する受信エコーがパルス圧縮された1つのピーク波形に変換される。パルス圧縮されたピーク波形は、変調パルス信号のパルス幅に応じたピークレベルを示す。変調パルス信号は無変調パルスに比べてパルス幅が長いので、S/N比が改善される。
 パルス合成部9は、無変調エコー信号処理部7から出力される無変調パルスの受信エコーと変調エコー信号処理部8から出力される変調パルスの受信エコーとを合成する。無変調エコー信号処理部7から出力される無変調パルスの受信エコーが近距離の受信エコーを表し、変調エコー信号処理部8から出力される変調パルスの受信エコーが遠距離の受信エコーを表すので、この2つの受信エコーを合成することにより、近距離から遠距離までの広範囲の受信エコーが得られる。変調パルスの送受信期間における近距離の不感地帯が無変調パルスの受信エコーの映像によって補われる。レーダ映像描画部11は、パルス合成部9から出力されるRθ座標系の受信信号(レーダエコー)をXY座標系に変換しながら表示器13へ転送する。パルス合成部9及びレーダ映像描画部11がレーダ映像を生成するレーダ映像生成部12を構成する。レーダ映像生成部12は、近距離の受信エコーデータと遠距離の受信エコーデータとを合成してレーダ映像を生成し、トランスポンダ応答波検出部10の検出結果に基づいて、トランスポンダ応答波が出現する領域では、パルス圧縮処理された受信信号を用いずにレーダ映像を構成する。表示器13はレーダ映像生成部12から入力されるレーダ映像を表示する。
 ここで、無変調パルスと変調パルスを時分割送信することによって得られる受信エコーについて説明する。通常、船舶用レーダでは1つのレーダアンテナ5で送信と受信を行う。このため、送信期間中は送信波が直接受信機6に回り込む。この回り込み電波は受信エコーに対して極めて強いため受信エコーはマスクされてしまう。したがって、送信パルスのパルス幅に相当する距離範囲は不感地帯となる。パルス圧縮レーダでは、パルス圧縮処理後のS/N比を向上させるために比較的パルス幅の長い変調パルスを送信する。この結果、不感地帯も広くなってしまう。例えば、変調パルスのパルス幅が10μ秒であれば、船舶レーダから約1500mの範囲が不感地帯となる。
 そこで、パルス圧縮レーダでは、変調パルスによるレーダ探知の不感地帯を、無変調パルスの送受信で補うように構成される。すなわち、エコー受信時にパルス圧縮処理を実施する変調パルスの送受信と、パルス圧縮処理を実施しない無変調パルスの送受信を時分割で行い、後に合成することでレーダ映像を生成する。図3は無変調パルスと変調パルスを時分割送信することによって得られる受信エコーを合成することで形成されるレーダ映像の模式図である。同図において中心のバツ印はパルス圧縮レーダ装置の位置である。パルス圧縮レーダ装置の位置を中心とした近距離範囲(第2領域)は無変調パルスの送受信時に検出された受信エコーに基づいた映像表示領域である。近距離範囲の外側に形成される遠距離範囲(第1領域)は変調パルスの送受信時に検出された受信エコーに基づいた映像表示領域である。なお、無変調パルスの送受信期間ではパルス圧縮利得(S/N向上)が得られない。しかし、無変調パルスの適用距離範囲をできるだけ自船近傍(変調パルスの
パルス幅程度)に制限すれば、実用上問題にはならない。
 トランスポンダ応答波検出部10は、パルス圧縮レーダにおいて、受信信号の中からSART遭難信号を検出する機能を備える。トランスポンダ応答波検出部10による検出結果に応じて送信タイミング制御部2a及びパルス合成部9の動作が制御される。
 本実施形態では、トランスポンダとしてSARTを想定している。この場合のトランスポンダ応答波はSART遭難信号である。SART遭難信号は、のこぎり状に周波数掃引されたパルスであり、表1のように規定されている。
Figure JPOXMLDOC01-appb-T000001
 図4に、SARTがレーダ電波を受けてSART遭難信号を発信してから、レーダ装置でレーダ受信信号が得られるまでの模式的なタイミングチャートが示されている。SARTは、レーダ電波を受けると(図4A)、100μ秒の送信期間のSART遭難信号を発信する(図4B)。SART遭難信号の周波数掃引帯域は9200~9500MHzであり、1回の送信動作ではのこぎり状に周波数掃引された12個のパルスが連続送信される(図4C)。一般的な船舶用レーダの受信帯域幅は例えば9400MHzを中心周波数として1~40MHz程度である。したがって、レーダ装置は、SART遭難信号が下りの周波数掃引過程でレーダ受信帯域を横切る際に、SART遭難信号をパルスとして受信する(図4D)。SART遭難信号が上りの周波数掃引過程でもレーダ受信帯域を横切る際にSART遭難信号を受信するが、図4Cに示すように上りの周波数掃引は下りの周波数掃引に比べて傾きが急峻であるので、パルスとして検出されないか又は非常に信号レベルが小さくなる。図4DにはSART遭難信号が下りの周波数掃引過程で受信されたSART遭難信号がレーダ受信信号として示されている。表示器13に表示されるレーダ映像には、図5に示すように、SART位置を始点として距離方向に12個の短点として現れる。レーダ操作者は、この特徴的なパターンから直ちに遭難船の存在を知ることができ、所定の管理局へ通報、救助に向かうことができる。
 [トランスポンダ応答波検出部の構成]
 トランスポンダ応答波検出部10は、受信信号の中からSART遭難信号を検出する。以下にトランスポンダ応答波検出部10の具体的な構成例について説明する。
 図6は、トランスポンダ応答波検出部10の機能ブロックを示す図である。トランスポンダ応答波検出部10は、瞬時周波数算出部20、瞬時周波数変化速度算出部21、記憶部22、第1比較判定部23、受信レベル算出部24、第2比較判定部25、論理積演算部26、カウンタ部27、遭難信号判定部28、を備えている。
 瞬時周波数算出部20は、受信機6から出力された複素受信信号の瞬時周波数f(t)
を算出する。具体的には、瞬時周波数算出部20は、複素受信信号の位相を時間微分することにより、瞬時周波数f(t)を算出する。瞬時周波数算出部20は、一定の間隔で、各タイミングにおける瞬時周波数f(t)を算出し、算出した各タイミングにおける瞬時周波数f(t)を、瞬時周波数変化速度算出部21へ順次、出力する。
 瞬時周波数変化速度算出部21は、瞬時周波数算出部20で算出された瞬時周波数f(t)に基づいて、瞬時周波数f(t)の変化速度(瞬時周波数変化速度Δf(t))を算出する。具体的には、瞬時周波数変化速度算出部21は、瞬時周波数f(t)を時間微分することにより、瞬時周波数変化速度Δf(t)を算出する。瞬時周波数変化速度算出部21は、瞬時周波数算出部20から順次、出力される瞬時周波数f(t)のそれぞれに対して瞬時周波数変化速度Δf(t)を算出し、それを第1比較判定部23へ順次、出力する。
 記憶部22には、上限閾値Th_HiGH、下限閾値Th_LOW、及び第1閾値Th1が記憶されている。上限閾値Th_HiGHとしては、規格によって定められているSART遭難信号の周波数掃引速度(基準周波数掃引速度)よりもやや高い値が設定される。一方、下限閾値Th_LOWとしては、上述した基準周波数掃引速度よりもやや低い値が設定される。また、第1閾値Th1としては、SART遭難信号の信号強度に応じた値が設定される。具体的には、第1閾値Th1の値としては、SART遭難信号の信号強度より低く、ノイズ、小エコーの信号強度より高い値が好ましい。また、自船位置とSARTとの距離が離れるほどSART遭難信号の信号強度は減衰するため、第1閾値Th1は、近距離から遠距離にかけて徐々に減衰するカーブであることが好ましい。この第1閾値Th1は、ノイズ、小エコーを検出対象から除外するために用いられる。
 第1比較判定部23は、瞬時周波数変化速度算出部21から順次、出力される瞬時周波数変化速度Δf(t)の値に応じて、フラグ1としての1又は0を、論理積演算部26に出力する。具体的には、第1比較判定部23は、瞬時周波数変化速度Δf(t)が下限閾値Th_LOW以上且つ上限閾値Th_HiGH以下の場合には、フラグ1としての1を論理積演算部26に出力する。一方、第1比較判定部23は、瞬時周波数変化速度Δf(t)が下限閾値Th_LOW未満又は上限閾値Th_HiGHを超える場合には、フラグ1としての0を論理積演算部26に出力する。すなわち、第1比較判定部23は、瞬時周波数変化速度算出部21からの瞬時周波数変化速度Δf(t)が、SART遭難信号の周波数掃引速度と概ね同じである場合には1を出力する一方、瞬時周波数変化速度Δf(t)がSART遭難信号の周波数掃引速度と大きく異なる場合には0を出力する。
 受信レベル算出部24は、受信機6から出力される複素受信信号のレベル(受信信号レベルL(t))を算出する。受信レベル算出部24は、受信機6から順次、出力される各タイミングでの複素受信信号の受信信号レベルL(t)を算出する。
 第2比較判定部25は、受信レベル算出部24から順次、出力される受信信号レベルL(t)の値に応じて、フラグ2としての1又は0を、論理積演算部26に出力する。具体的には、第2比較判定部25は、上記受信信号レベルL(t)の値が第1閾値Th1以上の場合には、フラグ2としての1を論理積演算部26に出力する。一方、第2比較判定部25は、上記受信信号レベルL(t)の値が第1閾値Th1未満の場合には、フラグ1としての0を論理積演算部26に出力する。すなわち、第2比較判定部25は、上記受信信号レベルL(t)の値が比較的大きく、当該受信信号がSART遭難信号である可能性が高い場合には1を出力する一方、上記受信信号レベルL(t)の値が比較的小さく、当該受信信号がSART遭難信号である可能性が低い場合には0を出力する。
 論理積演算部26は、第1比較判定部23から出力されるフラグ1の値(0又は1)と
、第2比較判定部25から出力されるフラグ2の値(0又は1)との論理積を算出し、その算出結果をフラグ3としてカウンタ部27へ出力する。言い換えれば、論理積演算部26は、フラグ1の値が1であり、且つ当該フラグ1と対応するフラグ2の値が1である場合に、フラグ3としての1をカウンタ部27へ出力し、それ以外の場合には、フラグ3としての0をカウンタ部27へ出力する。すなわち、論理積演算部26は、あるサンプルデータが、瞬時周波数変化速度Δf(t)及び受信信号レベルL(t)の値の観点においてSART遭難信号である可能性が高い場合には、フラグ3として1を出力し、そうでない場合には、フラグ3として0を出力する。論理積演算部26は、第1比較判定部23から順次、出力されるフラグ1の値と、第2比較判定部25から順次、出力される、フラグ1に対応するフラグ2の値とに応じて、順次、フラグ3をカウンタ部27へ出力する。
 カウンタ部27は、論理積演算部26から出力されるフラグ3の値が1の場合、当該カウンタ部27で記憶しているカウント値に1を追加する。一方、カウンタ部27は、論理積演算部26から出力されるフラグ3の値が0の場合、当該カウンタ部27で記憶しているカウント値をリセットして0にする。すなわち、カウンタ部27で記憶されるカウント値は、論理積演算部26から出力されたフラグ3としての1の値が連続して出現した数であって、その時点でフラグ3としての1の値が連続している場合に記憶されている値である。
 遭難信号判定部28は、カウンタ部27で記憶されるカウンタ値が所定の閾値(第2閾値Th2)以上となった場合に、その複素受信信号にSART遭難信号が含まれていると判定する。
 そして、送信タイミング制御部2a及びパルス合成部9は、上述のようにSART遭難信号が検出されたら、SART遭難信号と判定した受信期間では、変調パルスの受信信号をレーダ映像に反映しないように、送信タイミング制御およびパルス合成を行う。
 [レーダ装置の動作]
 次に、以上のように構成された本実施形態に係るレーダ装置1の動作について具体的に説明する。以下では、まず、トランスポンダ応答波検出部10におけるSART遭難信号の検出動作について、図7を用いて説明する。そして次に、無変調パルスの送受信期間にSART遭難信号が検出された場合、変調パルスの送受信期間にSART遭難信号が検出された場合、の動作について説明する。
 図7は、トランスポンダ応答波検出部10の動作を示すフローチャートである。なお、トランスポンダ応答波検出部10での動作が開始される前、例えばレーダ装置1の製造時において、記憶部22に、上限閾値Th_HiGH、下限閾値Th_LOW、及び第1閾値Th1が記憶される(ステップS1)。
 次に、ステップS2では、瞬時周波数算出部20が、レンジ方向における所定の位置のサンプルを対象サンプルとし、当該対象サンプルの複素受信信号の瞬時周波数f(t)を算出する。具体的には、ステップS2では、上記複素受信信号の位相の時間微分が算出されることにより、該複素受信信号の瞬時周波数f(t)が算出される。
 次に、ステップS3では、瞬時周波数変化速度算出部21が、ステップS2で算出された瞬時周波数f(t)の変化速度(瞬時周波数変化速度Δf(t))を算出する。具体的には、ステップS3では、瞬時周波数f(t)の時間微分が算出されることにより、瞬時周波数変化速度Δf(t)が算出される。
 次に、ステップS4では、第1比較判定部23によって、瞬時周波数変化速度Δf(t
)が下限閾値Th_LOW以上且つ上限閾値Th_HiGH以下であるか否かが判定される。瞬時周波数変化速度Δf(t)が下限閾値Th_LOW以上且つ上限閾値Th_HiGH以下である場合(ステップS4のYes)、第1比較判定部23は、フラグ1としての1を論理積演算部26へ出力する(ステップS5)。一方、瞬時周波数変化速度Δf(t)が、下限閾値Th_LOW未満又は上限閾値Th_HiGHを超える場合(ステップS4のNo)、第1比較判定部23は、フラグ1としての0を論理積演算部26へ出力する(ステップS6)。
 一方、以下で詳しく説明するステップS7からステップS10までの工程は、上述したステップS2からステップS6までの工程と並行して、或いは上述したステップS2からステップS6までの工程の前又は後に、行われる。
 ステップS7では、受信レベル算出部24が、レンジ方向における所定の位置のサンプル(上述したステップS2における対象サンプルと同じサンプル)を対象サンプルとし、当該対象サンプルの複素受信信号の受信信号レベルL(t)を算出する。
 次に、ステップS8では、第2比較判定部25によって、受信信号レベルL(t)が第1閾値Th1以上であるか否かが判定される。受信信号レベルL(t)が第1閾値Th1以上である場合(ステップS8のYes)、第2比較判定部25は、フラグ2としての1を論理積演算部26へ出力する(ステップS9)。一方、受信信号レベルL(t)が第1閾値Th1未満である場合(ステップS8のNo)、第2比較判定部25は、フラグ2としての0を論理積演算部26へ出力する(ステップS10)。
 次に、ステップS11では、論理積演算部26が、フラグ1及びフラグ2の論理積を演算する。フラグ1及びフラグ2の論理積が1である場合(ステップS11のYes)、ステップS14に進む。一方、フラグ1及びフラグ2の論理積が0である場合(ステップS11のNo)、ステップS12に進む。
 ステップS11においてフラグ1及びフラグ2の論理積が0である場合、ステップS12では、カウンタ部27で記憶されているカウンタ値がリセットされて0になる。
 次に、ステップS13では、瞬時周波数f(t)及び受信信号レベルL(t)の算出対象となる対象サンプルが、レンジ方向に(具体的には、レンジ方向における自船から遠い側に)ずらされる。そして、ステップS2及びステップS7に戻り、新たに設定された対象サンプルの複素受信信号に対して、瞬時周波数f(t)及び受信信号レベルL(t)が算出される。
 一方、ステップS11においてフラグ1及びフラグ2の論理積が1である場合、ステップS14では、カウンタ部27で記憶されているカウンタ値に1が加算される。
 次に、ステップS15では、遭難信号判定部28が、遭難信号の有無を判定する。具体的には、ステップS15では、カウンタ部27で記憶されているカウンタ値が第2閾値Th2未満の場合(ステップS15のNo)、遭難信号判定部28は遭難信号を検出しない。そして、次に、ステップS13において対象サンプルがレンジ方向にずらされた後、新たに設定された対象サンプルの複素受信信号に対して、瞬時周波数f(t)及び受信信号レベルL(t)が算出される(ステップS2及びステップS7)。一方、カウンタ値が第2閾値Th2以上の場合(ステップS15のYes)、遭難信号判定部28は、複素受信信号に遭難信号が含まれているとして、遭難信号を検出する(ステップS16)。
 次に、無変調パルスの送受信期間にSART遭難信号が検出された場合の動作について
説明する。上記したように、遭難信号判定部28によってSART遭難信号が検出される。SART遭難信号は、最初に検出された時刻から所定時間(例えば100μs)は継続して受信される可能性が高いため、その間は変調パルスの送受信期間に移行せず、無変調パルスの送受信期間が維持される。すなわち、SART遭難信号の出現領域が終了するまで無変調パルスの送受信期間が延長されるように、次の送信トリガが遅らせられる。パルス合成部9は、SART遭難信号の終了点までは無変調パルスの受信信号を用いて、それ以降では変調パルスの受信信号を用いて合成信号を生成する。
 図8に無変調パルスの送受信期間でSART遭難信号を検出しなかった場合(図8(A))、無変調パルスの送受信期間でSART遭難信号を検出した場合(図8(B))の送信タイミングをそれぞれ示す。無変調パルスの送受信期間にSART遭難信号が検出された場合、SART遭難信号の出現領域が終了するまでは、変調パルスの送受信期間へは移行されない。
 図9に無変調パルスの送受信期間でSART遭難信号を検出した場合に描画されるレーダ映像構成例を示す。無変調パルスの送受信期間にSART遭難信号が検出された場合、SART遭難信号の受信期間は無変調パルスの送受信期間が維持されるので、パルス圧縮処理されない無変調エコー信号処理部7の出力信号(SART遭難信号)によってレーダ映像が描画される。この結果、本来は変調パルスによる映像表示領域であっても、無変調パルスの送受信期間がSART遭難信号の出現領域の終了点まで延長され、SART遭難信号が出現する領域では無変調パルスのエコーでレーダ映像が描画される。
 レーダアンテナ5はビーム指向性を持って回転しているため、SART位置が送信パルスの放射範囲から外れる表示領域では、SART遭難信号は現れなくなる。そして、SART遭難信号が検出されなくなったら、無変調・変調パルスの送受信期間を初期状態に戻す。これにより、図9に示すように、SART遭難信号が検出されなくなる方位では、無変調パルスのエコーによる映像表示領域の外側に、変調パルスのエコーによるレーダ映像が描画される。
 図10にパルス圧縮処理されたSART遭難信号の映像表示例を示す。同図に示すように、12個の短点パターンは、パルス圧縮処理によって距離方向に延びてしまい、各短点同士が完全につながってしまう。これでは、12個の短点ではなくなるため、レーダ操作者はSART遭難信号であると認識できなくなる。また、本来のSART遭難信号の映像からは12個の短点の始点位置付近に遭難船がいると認識できるが、SART遭難信号をパルス圧縮処理した場合、手前距離側にも短点が伸びてしまうため、遭難船までの距離が分からなくなる。さらに、SART遭難信号上に物標がいた場合は、短点の隙間にエコーが表示されることでその物標の存在を認識することができるが、パルス圧縮処理によって隙間が埋まってしまうと、エコーが遭難信号によって完全にマスクされる。
 本実施の形態では、SART遭難信号を検出したらSART遭難信号が出現する領域(方位・距離範囲)では、パルス圧縮処理をともなう変調パルスの受信信号を使わずに、レーダ映像を生成するので、図9に示すようにSART遭難信号は12個の短点パターンとして表示でき、エコーが遭難信号によって完全にマスクされる不都合も回避される。
 次に、変調パルスの送受信期間にSART遭難信号が検出された場合の動作について説明する。
 遭難信号判定部28によってSART遭難信号が検出されたら、判定したSART遭難信号の受信期間に対応するパルス圧縮処理後データ(変調エコー信号処理部8の出力)は使わずに、パルス合成する。このときSART遭難信号の受信期間として判定した受信期
間の映像データには、例えば前回の送受信期間(SART遭難信号を検出しなかった送受信期間)で得たパルス圧縮処理後データで代用する。
 また、続く送受信周期においても同様の距離範囲にわたってSART遭難信号が出現する可能性が高い。上記のようにSART遭難信号を検出する前のデータで代用し続けると、その方位に真に存在するエコーを把握できない。そこで、変調パルスの送受信期間にSART遭難信号を検出した場合は、続く無変調パルスの送受信期間を、判定したSART遭難信号の受信期間の終了点まで延長するように送受信タイミング制御を行う。こうすることで、SART遭難信号が出現する領域では、無変調パルスエコーでレーダ映像を描画可能となる。
 レーダアンテナ5はビーム指向性を持って回転しているため、上記いずれの場合でも、いずれSART遭難信号は現れなくなる。SART遭難信号が検出されなくなったら、無変調・変調パルスの送受信期間を初期状態に戻す。
 このように本実施の形態に係るパルス圧縮レーダ装置は、受信信号の中からSART遭難信号を検出し、SART遭難信号を検出したらSART遭難信号が出現する領域(方位・距離範囲)では、パルス圧縮処理をともなう変調パルスの受信信号を使わずに、レーダ映像を生成する。これにより、従来技術ではSART遭難信号をパルス圧縮処理しレーダ映像に表示した場合には、レーダ操作者がSART遭難信号の特徴である12個の短点を正常に認識できなくなる、という問題を解決できる。また、SART遭難信号がパルス圧縮により距離方向に伸びてしまうためにSARTまでの距離を正確に把握できなくなる、他のエコーをマスクしてしまうという問題をも解決できる。
 なお、本実施の形態では、SART遭難信号を検出したらSART遭難信号が出現する領域(方位・距離範囲)ではパルス圧縮処理をともなう変調パルスの受信信号を使わずに、レーダ映像を生成するように構成したが、次のような変形も可能である。
 すなわち、SART遭難信号を検出したら、検出したSART遭難信号のレベルに基づいて、受信信号からSART遭難信号成分のみを減算してからパルス圧縮処理する、という構成にしてもよい。
 または、SART遭難信号を検出したら、変調パルスの送信を一切行わずに、SART遭難信号が現れなくなるまで、全レーダ探知距離範囲にわたって無変調パルスの送受信のみでレーダ映像を生成する構成としてもよい。
 ところで、従来から知られているレーダ装置では、SART遭難信号と略等しい一定周期の信号と、レーダ装置により探知された探知データとを相互相関処理することにより、SART遭難信号の有無を判定している。しかし、この手法では、SART遭難信号を構成する複数個(具体的には、12個)のパルスのいくつかが他のエコー信号によってマスクされた場合、SART遭難信号を正確に検出できなくなる虞が生じる。しかも、従来から知られているレーダ装置では、ある程度の長さ(SART遭難信号の受信期間程度)を有する波形信号同士の相関演算が必要となるため、信号の処理負荷が比較的大きくなってしまう。
 これに対して、本実施形態に係る本実施形態に係るレーダ装置1では、レーダアンテナ5で受波された受信波から生成された複素受信信号から得られる瞬時周波数変化速度Δf(t)と、規格により定められたSART遭難信号の周波数掃引速度(基準周波数掃引速度)に基づく値(本実施形態の場合、上限閾値Th_HiGH及び下限閾値Th_LOW)との比較結果に基づいて、捜索救助用レーダトランスポンダからの遭難信号の有無が判定
されている。こうすると、SART遭難信号を構成する複数個のパルスのうちのいくつかがマスクされた場合であっても、検出精度の劣化を抑制することができる。しかも、レーダ装置1によれば、複素受信信号から得られる瞬時周波数変化速度と、SART遭難信号の周波数掃引速度との比較に基づいて捜索救助用レーダトランスポンダからの遭難信号の有無が判定されるため、信号の処理負荷を従来と比べて小さくできる。
 [効果]
 以上のように、本実施形態の信号処理装置15では、瞬時周波数変化速度Δf(t)と上限閾値Th_HiGH及び下限閾値Th_LOWとの比較結果に基づいて、捜索救助用レーダトランスポンダからの遭難信号の有無が判定されている。こうすると、従来の場合と比べて、SART遭難信号を構成する複数個のパルスのうちのいくつかがマスクされた場合であっても、検出精度の劣化を抑制することができるとともに、信号の処理負荷を従来と比べて小さくできる。
 従って、信号処理装置15によれば、捜索救助用レーダトランスポンダからの遭難信号を正確に検出するとともに、その検出のための演算負荷を小さくできる。
 また、信号処理装置15では、複素受信信号の位相を時間微分して瞬時周波数f(t)を算出し、更にその瞬時周波数f(t)を時間微分して瞬時周波数変化速度Δf(t)を算出している。すなわち、レーダ装置1では、複素受信信号の位相を二階時間微分して瞬時周波数変化速度Δf(t)を算出しているため、当該瞬時周波数変化速度Δf(t)の算出の際の処理負荷を比較的小さくできる。
 また、信号処理装置15では、瞬時周波数変化速度Δf(t)が、基準周波数掃引速度以上の値を有する上限閾値Th_HiGHと、基準周波数掃引速度以下の値を有する下限閾値Th_LOWとの間に含まれることを条件として、SART遭難信号が検出される。これにより、瞬時周波数変化速度Δf(t)が、規格によって定められたSART遭難信号の周波数掃引速度と概ね一致していることを条件としてSART遭難信号を検出できるため、SART遭難信号を適切に検出できる。
 また、信号処理装置15では、上限閾値Th_HiGH以下且つ前記下限閾値Th_LOW以上である前記瞬時周波数変化速度Δf(t)が所定数以上連続して出現することを条件として、複素受信信号の中に前記遭難信号が含まれていることが判定される。これにより、偶発的に上限閾値Th_HiGH以下且つ前記下限閾値Th_LOW以上となった瞬時周波数変化速度Δf(t)を排除することができるため、より正確にSART遭難信号を検出できる。
 また、本実施形態に係るレーダ装置1によれば、遭難信号を正確に検出でき且つその検出のための演算負荷が小さい信号処理装置15を備えたレーダ装置を構成することができる。
 また、本実施形態に係るレーダ装置1によれば、レーダ装置で探知される探知領域のうち遭難信号が検出された領域については、パルス圧縮処理を行うことなくレーダ映像が生成されるため、表示器13においてSART遭難信号を距離方向に伸びてしまう不具合(図10参照)を解消することができる。
 [変形例]
 以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
 (1)上述した実施形態では、遭難信号に関する情報として、SART遭難信号の映像(12個の短点)をレーダ映像内に表示したが、これに限らない。具体的には、検出したSART遭難信号に基づいて推測される救助対象(遭難船等)の位置を、レーダ映像上にアイコン等で表示してもよい。更には、検出したSART遭難信号に基づいて推測される救助対象の位置(緯度及び経度等)を、表示器のディスプレイにおけるレーダ画像が表示されている部分以外の部分に表示してもよい。
 (2)上述した実施形態では、遭難信号判定部28は、瞬時周波数変化速度算出部21によって算出された瞬時周波数変化速度Δf(t)が連続して複数以上(第2閾値Th2以上)出現することを条件として遭難信号を検出したが、これに限らない。具体的には、例えば一例として、瞬時周波数変化速度算出部21によって算出された瞬時周波数変化速度Δf(t)が所定の周期で(具体的には、SART遭難信号の周期である7.5±1μsの周期で)出現することを条件として、遭難信号を検出してもよい。
 1           レーダ装置
 5           レーダアンテナ(受波部)
 15          信号処理装置
 21          瞬時周波数変化速度算出部
 22          記憶部
 28          遭難信号判定部

Claims (7)

  1.  捜索救助用レーダトランスポンダからの遭難信号を検出する信号処理装置であって、
     受波部で受波された受信波から生成される複素受信信号、の瞬時周波数の変化速度である瞬時周波数変化速度を算出する瞬時周波数変化速度算出部と、
     遭難信号の周波数掃引速度である基準周波数掃引速度、に基づく値を記憶する記憶部と、
     前記瞬時周波数変化速度算出部で算出された前記瞬時周波数変化速度と、前記記憶部で記憶されている前記基準周波数掃引速度に基づく値と、の比較結果に基づいて、前記捜索救助用レーダトランスポンダからの前記遭難信号の有無を判定する遭難信号判定部と、
     を備えていることを特徴とする、信号処理装置。
  2.  請求項1に記載の信号処理装置において、
     前記複素受信信号の位相を時間微分することにより前記瞬時周波数を算出する瞬時周波数算出部を更に備え、
     前記瞬時周波数変化速度算出部は、前記瞬時周波数算出部によって算出された前記瞬時周波数を時間微分することにより前記瞬時周波数変化速度を算出することを特徴とする、信号処理装置。
  3.  請求項1又は請求項2に記載の信号処理装置において、
     前記記憶部は、前記基準周波数掃引速度以上の値を有する上限閾値と、前記基準周波数掃引速度以下の値を有する下限閾値とを記憶し、
     前記遭難信号判定部は、前記瞬時周波数変化速度が前記上限閾値以下且つ前記下限閾値以上であることを条件として、前記複素受信信号の中に前記遭難信号が含まれていると判定することを特徴とする、信号処理装置。
  4.  請求項3に記載の信号処理装置において、
     前記瞬時周波数変化速度算出部は、複数のタイミングで前記瞬時周波数変化速度を算出し、
     前記遭難信号判定部は、前記上限閾値以下且つ前記下限閾値以上である前記瞬時周波数変化速度が所定数以上連続して出現することを条件として、前記複素受信信号の中に前記遭難信号が含まれていると判定することを特徴とする、信号処理装置。
  5.  受信波を受波する受波部と、
     前記受波部で受波された前記受信波から生成される複素受信信号を処理することにより、捜索救助用レーダトランスポンダからの遭難信号を検出するとともに探知領域内のレーダ映像を生成する、請求項1から請求項4のいずれか1項に記載の信号処理装置と、
     前記信号処理装置で検出された前記遭難信号に関する情報、及び前記レーダ映像を表示する表示器と、
     を備えていることを特徴とする、レーダ装置。
  6.  請求項5に記載のレーダ装置において、
     前記信号処理装置は、前記探知領域内における少なくとも一部の領域としての第1領域について、当該第1領域内において前記遭難信号が検出されなかった領域では、送信波としての周波数変調パルスの反射波から得られる前記複素受信信号をパルス圧縮処理することにより前記レーダ映像を生成し、前記第1領域内において前記遭難信号が検出された領域では、送信波としての周波数無変調パルスの反射波から得られる前記複素受信信号を用いて前記レーダ映像を生成することを特徴とする、レーダ装置。
  7.  捜索救助用レーダトランスポンダからの遭難信号を検出する信号処理方法であって、
     受波部で受波された受信波から生成される複素受信信号、の瞬時周波数の変化速度である瞬時周波数変化速度を算出するステップと、
     遭難信号の周波数変化速度である基準周波数掃引速度、に基づく値を記憶するステップと、
     前記瞬時周波数変化速度を算出するステップで算出された前記瞬時周波数変化速度と、前記記憶するステップで記憶された前記基準周波数掃引速度に基づく値と、の比較結果に基づいて、前記捜索救助用レーダトランスポンダからの前記遭難信号の有無を判定するステップと、
     を含むことを特徴とする、信号処理方法。
PCT/JP2015/085008 2015-02-04 2015-12-15 信号処理装置、レーダ装置、及び信号処理方法 WO2016125400A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/546,530 US10677912B2 (en) 2015-02-04 2015-12-15 Signal processing device, radar apparatus and method of processing signal
JP2016573201A JP6343356B2 (ja) 2015-02-04 2015-12-15 信号処理装置、レーダ装置、及び信号処理方法
CN201580075465.6A CN107209260B (zh) 2015-02-04 2015-12-15 信号处理装置、雷达装置及信号处理方法
EP15881217.2A EP3255454B1 (en) 2015-02-04 2015-12-15 Signal-processing device, radar device, and signal-processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015020087 2015-02-04
JP2015-020087 2015-02-04

Publications (1)

Publication Number Publication Date
WO2016125400A1 true WO2016125400A1 (ja) 2016-08-11

Family

ID=56563757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085008 WO2016125400A1 (ja) 2015-02-04 2015-12-15 信号処理装置、レーダ装置、及び信号処理方法

Country Status (5)

Country Link
US (1) US10677912B2 (ja)
EP (1) EP3255454B1 (ja)
JP (1) JP6343356B2 (ja)
CN (1) CN107209260B (ja)
WO (1) WO2016125400A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041969A (ja) * 2018-09-13 2020-03-19 株式会社東芝 レーダ装置
WO2021100402A1 (ja) * 2019-11-21 2021-05-27 古野電気株式会社 固体化レーダ装置
CN114545338A (zh) * 2022-04-21 2022-05-27 南京信息工程大学 基于工程实现的瞬时宽带多频复合雷达信号产生方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081274B (zh) * 2020-01-03 2022-03-25 西安电子科技大学 基于瞬时频率的带静默间断信号的端点识别方法及应用
CN111337920B (zh) * 2020-03-03 2022-07-15 成都金宇防务科技有限公司 一种防止云雾干扰的弹载雷达对地探测方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201569A (ja) * 2000-01-20 2001-07-27 Mitsubishi Electric Corp レーダトランスポンダ
JP2002328165A (ja) * 2001-05-01 2002-11-15 Mitsubishi Electric Corp レーダ装置
US20090237290A1 (en) * 2007-12-19 2009-09-24 Michael Kishinevsky Radar transponder
WO2014042134A1 (ja) * 2012-09-13 2014-03-20 古野電気株式会社 レーダ装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08110379A (ja) * 1994-10-11 1996-04-30 Mitsubishi Electric Corp 中継器
US5848108A (en) * 1996-11-29 1998-12-08 Northern Telecom Limited Selective filtering for co-channel interference reduction
US5953159A (en) * 1997-02-21 1999-09-14 Pathfinder Technology Electromagnetic signaling reflector
JP2001141817A (ja) * 1999-09-03 2001-05-25 Furuno Electric Co Ltd レーダ装置
GB0212076D0 (en) 2002-05-25 2002-07-03 Univ Birmingham Radar transponder
US7116272B2 (en) 2003-06-09 2006-10-03 Wolf Edward A Direction and distance finder for locating distress signals
US7245899B2 (en) * 2004-12-13 2007-07-17 Fredrik Carle Portable rescue device and a method for locating such a device
CN102749619A (zh) * 2011-04-20 2012-10-24 成都天奥电子股份有限公司 海上搜救寻位雷达应答器
JP5993441B2 (ja) * 2012-03-02 2016-09-14 東京計器株式会社 レーダ装置及びレーダ信号処理方法
JP6061588B2 (ja) * 2012-09-26 2017-01-18 古野電気株式会社 レーダ受信装置、及びこれを備えたレーダ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201569A (ja) * 2000-01-20 2001-07-27 Mitsubishi Electric Corp レーダトランスポンダ
JP2002328165A (ja) * 2001-05-01 2002-11-15 Mitsubishi Electric Corp レーダ装置
US20090237290A1 (en) * 2007-12-19 2009-09-24 Michael Kishinevsky Radar transponder
WO2014042134A1 (ja) * 2012-09-13 2014-03-20 古野電気株式会社 レーダ装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041969A (ja) * 2018-09-13 2020-03-19 株式会社東芝 レーダ装置
JP7132047B2 (ja) 2018-09-13 2022-09-06 株式会社東芝 レーダ装置
WO2021100402A1 (ja) * 2019-11-21 2021-05-27 古野電気株式会社 固体化レーダ装置
JPWO2021100402A1 (ja) * 2019-11-21 2021-05-27
JP7270060B2 (ja) 2019-11-21 2023-05-09 古野電気株式会社 固体化レーダ装置
CN114545338A (zh) * 2022-04-21 2022-05-27 南京信息工程大学 基于工程实现的瞬时宽带多频复合雷达信号产生方法及系统
CN114545338B (zh) * 2022-04-21 2022-07-15 南京信息工程大学 基于工程实现的瞬时宽带多频复合雷达信号产生方法及系统

Also Published As

Publication number Publication date
EP3255454B1 (en) 2020-02-05
EP3255454A4 (en) 2018-09-05
JP6343356B2 (ja) 2018-06-13
US20180284255A1 (en) 2018-10-04
CN107209260A (zh) 2017-09-26
EP3255454A1 (en) 2017-12-13
US10677912B2 (en) 2020-06-09
CN107209260B (zh) 2021-03-30
JPWO2016125400A1 (ja) 2017-11-09

Similar Documents

Publication Publication Date Title
JP6343356B2 (ja) 信号処理装置、レーダ装置、及び信号処理方法
KR102241929B1 (ko) 위상을 보정하는 레이더 감지
KR101135982B1 (ko) 주파수 변조 연속파 레이다에서 간섭 제거를 위한 시스템 간 동기화 방법
JP4462060B2 (ja) Fmcwレーダ装置
US7460058B2 (en) Radar
AU2006248845B2 (en) Marine radar apparatus
US8981988B2 (en) Radar system, transponder device, method for radar processing and computer readable media
EP2677342B1 (en) Radar device and method of processing reflection signal
JP6088492B2 (ja) パルス信号設定装置、レーダ装置、パルス信号設定方法及びパルス信号設定プログラム
KR20130099310A (ko) 적응형 스케줄러를 이용한 fmcw 레이더 시스템
CN114296141A (zh) 多目标生命征象侦测器及其侦测方法
WO2014042134A1 (ja) レーダ装置
KR101419733B1 (ko) 레이더 및 그의 신호처리방법
JP2020165810A (ja) レーダ装置およびレーダ装置の干渉推定方法
KR20190135267A (ko) Cw 레이더 및 cw 레이더를 이용한 거리 측정 방법
JP5465148B2 (ja) レーダ装置
JP4378265B2 (ja) Fm−cwレーダ装置
KR100643939B1 (ko) 레이더 장치 및 레이더의 거리측정 방법
JP2013217853A (ja) レーダ装置
KR101249823B1 (ko) 지표면 및 해수면 반사 특성 측정 레이더 장치 및 이를 이용한 측정 방법
JPH10206535A (ja) レーダ遮蔽域支援装置
US11231495B2 (en) Signal processing device and signal processing method
KR20200109648A (ko) Fmcw 레이다의 상호간섭 저감 방법 및 장치
JPH07134173A (ja) 測距装置
RU216187U1 (ru) Радиолокационная станция пространственного кодирования MIMO

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573201

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15546530

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015881217

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE