WO2016120925A1 - Epoxy resin curing accelerator - Google Patents

Epoxy resin curing accelerator Download PDF

Info

Publication number
WO2016120925A1
WO2016120925A1 PCT/JP2015/005833 JP2015005833W WO2016120925A1 WO 2016120925 A1 WO2016120925 A1 WO 2016120925A1 JP 2015005833 W JP2015005833 W JP 2015005833W WO 2016120925 A1 WO2016120925 A1 WO 2016120925A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
epoxy resin
curing accelerator
carbon atoms
resin curing
Prior art date
Application number
PCT/JP2015/005833
Other languages
French (fr)
Japanese (ja)
Inventor
礼翼 陳
智幸 柴垣
Original Assignee
サンアプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンアプロ株式会社 filed Critical サンアプロ株式会社
Priority to CN201580056299.5A priority Critical patent/CN107075088B/en
Priority to KR1020177008153A priority patent/KR102378915B1/en
Priority to JP2016571497A priority patent/JP6640120B2/en
Publication of WO2016120925A1 publication Critical patent/WO2016120925A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring monocyclic with no unsaturation outside the aromatic ring
    • C07C39/08Dihydroxy benzenes; Alkylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring monocyclic with no unsaturation outside the aromatic ring
    • C07C39/10Polyhydroxy benzenes; Alkylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/30Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing six-membered aromatic rings
    • C07C57/34Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing six-membered aromatic rings containing more than one carboxyl group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/42Unsaturated compounds containing hydroxy or O-metal groups
    • C07C59/52Unsaturated compounds containing hydroxy or O-metal groups a hydroxy or O-metal group being bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4071Curing agents not provided for by the groups C08G59/42 - C08G59/66 phosphorus containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/50Phosphorus bound to carbon only

Definitions

  • the present invention relates to an epoxy resin curing accelerator. More specifically, the present invention relates to an epoxy resin curing accelerator made of a quaternary phosphonium salt, which is suitable for manufacturing an epoxy resin-based sealing material for electronic parts such as semiconductors.
  • an epoxy resin is excellent in moldability and electrical properties of a cured product, and is used, for example, as a sealing material for electronic parts such as a semiconductor sealing material.
  • a sealing material resin an epoxy resin in which a phenol novolac is used as a curing agent and a large amount of filler is blended is widely used.
  • a curing accelerator which is a component of a sealing material, is also increasing.
  • TPP-K tetraphenylborate salt of tetraphenylphosphonium
  • TPP-K has low catalytic activity as it is, curing does not proceed sufficiently if it is simply blended with an epoxy resin and a curing agent, but it is blended with phenol resin in advance and heated to convert tetraphenylborate salt to phenol resin salt. There is a problem that a small amount of toxic benzene is produced at this time.
  • a salt of TPP with an alkyl quaternized phosphonium phenol resin see Patent Documents 1 and 2 has been proposed.
  • a sealing material composition containing a high concentration of inorganic filler when a phenol resin salt of alkyl quaternized phosphonium of TPP is used as a curing accelerator, a mixture of an epoxy resin, a curing agent and a curing accelerator is heated. Since the viscosity of the melted liquid mixture increases, the so-called poor liquid flow property, in which the wiring of the semiconductor chip is swept away during mold filling, or the viscosity increases before the compound reaches every corner, resulting in unfilled parts. Cause.
  • an object of the present invention is to provide an epoxy resin curing accelerator that is excellent in fluidity at the time of mold filling and has high catalytic activity and excellent curability.
  • the present invention provides a phosphonium salt (S) comprising a quaternary phosphonium (A) represented by the general formula (1) and an anion of the organic carboxylic acid (B) represented by the general formula (2), and the general formula It is an epoxy resin hardening accelerator (Q) characterized by including the organic phenol compound (C) shown by (3).
  • R 1 to R 3 represent an aryl group having 6 to 12 carbon atoms
  • R 4 represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • R 5 to R 7 are the same or different and each represents a hydroxyl group, a carboxyl group, hydrogen, or an alkyl group having 1 to 4 carbon atoms, and R 8 represents a hydroxyl group or a carboxyl group.
  • R 9 to R 11 are the same or different and each represents a hydroxyl group, a carboxyl group, hydrogen, or an alkyl group having 1 to 4 carbon atoms. ]
  • this invention has quaternary phosphonium (A), hardening of reaction of an epoxy resin and a hardening
  • anion of organic carboxylic acid (B) and the organic phenol compound (C) have a substituent (hydroxyl group, carbonyl group) capable of hydrogen bonding at their 1,3-positions, the anion of organic carboxylic acid (B) and organic The interaction between the molecules of the phenol compound (C) acts strongly. Thereby, the acid strength of the anion of the organic carboxylic acid (B) is apparently increased, and the phosphonium salt (S) is hardly dissociated.
  • the phosphonium salt (S) is hardly dissociated, so that the curing reaction can be suppressed and the fluidity at the time of mold filling is excellent.
  • the hydrogen bond between the anion of the organic carboxylic acid (B) and the organic phenol compound (C) is weakened, and the phosphonium salt (S) is dissociated, so that the curability is excellent.
  • the epoxy resin curing accelerator (Q) of the present invention is excellent in fluidity at the time of mold filling, and has high catalytic activity and excellent curability, so it is suitable for production of epoxy resin-based sealing materials for electronic parts such as semiconductors. It is.
  • the epoxy resin curing accelerator (Q) of the present invention contains a phosphonium salt (S) composed of a cation of a quaternary phosphonium (A) and an anion of an organic carboxylic acid (B), and an organic phenol compound (C).
  • the cation of the quaternary phosphonium (A) is an essential component for promoting the reaction between the epoxy resin and the curing agent, and is represented by the following general formula (1).
  • R 1 to R 3 represent an aryl group having 6 to 12 carbon atoms
  • R 4 represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • Examples of the aryl group having 6 to 12 carbon atoms constituting R 1 to R 4 in the general formula (1) include, for example, phenyl group, naphthyl group, biphenyl group, methylphenyl group, ethylphenyl group, propylphenyl group, butyl A phenyl group, a methyl naphthyl group, an ethyl naphthyl group, etc. are mentioned.
  • Examples of the alkyl group having 1 to 8 carbon atoms constituting R 4 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, t-pentyl group, n-hexyl group, 1-methylpentyl group, 4-methyl-2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, n -Heptyl group, 1-methylhexyl group, n-octyl group, tert-octyl group, 1-methylheptyl group, 2-ethylhexyl group, 2-propylpentyl group and the like.
  • R 1 to R 3 are preferably a phenyl group, a methylphenyl group, and a naphthyl group, and more preferably a phenyl group, from the viewpoint of fluidity after melt-kneading and availability of raw materials.
  • R 4 is preferably an alkyl group having 1 to 4 carbon atoms and an aryl group having 6 to 12 carbon atoms, more preferably a methyl group, an ethyl group and phenyl group from the viewpoints of curability and ease of synthesis. Group, particularly preferably a methyl group or an ethyl group.
  • the organic carboxylic acid (B) of the present invention is an essential component for improving fluidity after melt-kneading and curing at the curing temperature after mold filling, and is represented by the following general formula (2).
  • R 5 to R 7 are the same or different and each represents a hydroxyl group, a carboxyl group, hydrogen, or an alkyl group having 1 to 4 carbon atoms, and R 8 represents a hydroxyl group or a carboxyl group.
  • Examples of the alkyl group having 1 to 4 carbon atoms constituting R 5 to R 7 in the general formula (2) include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl Group, tert-butyl group and the like.
  • R 5 and R 7 are preferably hydrogen, and R 6 has a hydroxyl group and a carboxyl group. preferable.
  • the method for synthesizing the phosphonium salt (S) is not particularly limited.
  • a salt exchange reaction between the alkyl carbonate (A1) of the quaternary phosphonium (A) and the organic carboxylic acid (B), and a quaternary phosphonium (S It can be obtained by a salt exchange reaction between the hydroxide (A2) of A) and the organic carboxylic acid (B).
  • the alkyl carbonate (A1) of the quaternary phosphonium (A) can be obtained, for example, by reacting a corresponding tertiary phosphine with a carbonic acid diester.
  • the production conditions are 10 to 200 hours in an autoclave at a temperature of 50 to 150 ° C., and a reaction solvent is preferably used in order to complete the reaction quickly and with a good yield.
  • a reaction solvent Methanol, ethanol, etc. are preferable.
  • the amount of the solvent is not particularly limited.
  • Examples of the corresponding tertiary phosphine include triphenylphosphine, tris (4-methylphenyl) phosphine, 2- (diphenylphosphino) biphenyl, and the like.
  • the carbonic acid diester is not particularly limited as long as it is a known one, and specifically, diethyl carbonate, dimethyl carbonate, dibutyl carbonate, diphenyl carbonate and the like are used.
  • the quaternary phosphonium (A) hydroxide (A2) is obtained by, for example, reacting a corresponding tertiary phosphine with a halogenated (bromine or chlorine) alkyl or halogenated (bromine or chlorine) aryl. Later, it is obtained by salt exchange with an inorganic alkali.
  • the production conditions are a temperature of 20 to 150 ° C. and a time of 1 to 20 hours, and a reaction solvent is preferably used in order to complete the reaction quickly and with a good yield. Although it does not specifically limit as a reaction solvent, Methanol, ethanol, etc. are preferable.
  • the amount of the solvent is not particularly limited.
  • Examples of the corresponding tertiary phosphine include those described above.
  • Examples of the halogenated alkyl include ethyl bromide, butyl chloride, 2-ethylhexyl bromide, 2-butylethanol, 2-chloropropanol and the like, and examples of the halogenated aryl include bromobenzene, bromonaphthalene and bromobiphenyl.
  • Examples of the inorganic alkali include sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, and aluminum hydroxide.
  • the molar ratio of the quaternary phosphonium (A) alkyl carbonate (A1) or hydroxide (A2) and the organic carboxylic acid (B) in the salt exchange reaction is as follows. Usually, it is 10/90 to 90/10, preferably 20/80 to 80/20.
  • As production conditions while reacting at a temperature of 30 to 170 ° C. for 1 to 20 hours, by-produced alcohol, water, carbon dioxide gas, and, if necessary, a reaction solvent are removed.
  • the organic phenol compound (C) is an essential component for interacting with the anion of the organic carboxylic acid (B) in the phosphonium salt (S) to suppress dissociation during melt-kneading and improve fluidity. It is represented by Formula (3).
  • R 9 to R 11 are the same or different and each represents a hydroxyl group, a carboxyl group, hydrogen, or an alkyl group having 1 to 4 carbon atoms. ]
  • Examples of the alkyl group having 1 to 4 carbon atoms constituting R 9 to R 11 in the general formula (3) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and a sec-butyl group. Group, tert-butyl group and the like.
  • R 9 to R 11 are preferably a hydroxyl group, a carboxyl group and hydrogen, more preferably R 9 and R 11 is hydrogen, R 10 is a hydroxyl group and a carboxyl group, and particularly preferably, R 9 and R 11 are hydrogen and R 10 is a hydroxyl group.
  • the molar ratio of the organic carboxylic acid (B) to the organic phenol compound (C) is usually 10/90 to 90/10, preferably from the viewpoint of easy interaction with the anion of the carboxylic acid (B), preferably 20/80 to 80/20, particularly preferably 30/70 to 70/30.
  • the epoxy resin curing accelerator (Q) is usually obtained by uniformly mixing the phosphonium salt (S) and the organic phenol compound (C) at a temperature of 50 to 200 ° C. for 1 to 20 hours.
  • a solvent may be used in order to complete the mixing quickly. After uniform mixing, the solvent and the like are removed at a temperature of 50 to 200 ° C. under reduced pressure to normal pressure.
  • the solvent is not particularly limited, but methanol, ethanol and the like are preferable.
  • the blending ratio of the phosphonium salt (S) and the organic phenol compound (C) is appropriately determined from the molar ratio of the organic carboxylic acid (B) and the organic phenol compound (C).
  • the epoxy resin curing accelerator (Q) includes a method of lowering the softening point by making a masterbatch with a low viscosity phenol resin, a method of pulverizing and powdering, etc. You can go.
  • the low viscosity phenol resin include bisphenol A, bisphenol F, phenol novolac resin, cresol novolac resin, and phenol aralkyl resin.
  • a known method can be used as a master batch method.
  • the softening point of the epoxy resin curing accelerator (Q) is usually 70 to 140 ° C, preferably 80 to 120 ° C, more preferably 90 to 100 ° C.
  • the temperature is lower than 70 ° C., it is not preferable because fusion during pulverization or block formation during storage of the powdered accelerator is likely to occur, and if it exceeds 140 ° C., the curing accelerator is melted with the epoxy resin. This is because they cannot be mixed and become non-uniform, which tends to cause curing failure.
  • a powdery curing accelerator can be obtained by pulverization with an impact pulverizer or the like.
  • the particle size of the powdery curing accelerator is preferably 100% or more (measured by an air jet sieve method or the like) 95% or more. This is because if it is less than 95%, uniform dissolution in the epoxy resin composition tends to be hindered, which causes poor curing.
  • the epoxy resin curing accelerator (Q) of the present invention is used by being added to a mixture in which other additives such as an epoxy resin, a curing agent and a filler are blended as required, and finally a cured epoxy resin is obtained.
  • the compounding amount of the epoxy resin curing accelerator (Q) is adjusted according to the reactivity of the epoxy resin and the curing agent, but is usually 1 to 25 parts by mass, preferably 2 to 20 parts by mass with respect to 100 parts by mass of the epoxy resin. It is. What is necessary is just to set the optimal compounding quantity according to the required hardening characteristic.
  • ⁇ Production Example 1> ⁇ Method for producing quaternary phosphonium base (A-Be1)>
  • 180 parts of dimethyl carbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) and 224 parts of methanol as a solvent are charged, and 262 parts of triphenylphosphine (manufactured by Tokyo Chemical Industry Co., Ltd.) are charged therein, and the reaction temperature is increased. The reaction was performed at 125 ° C. for 80 hours. Next, 120 parts of methanol was removed under reduced pressure, and 1200 parts of toluene was added to precipitate crystals. This crystal was isolated and dissolved again in methanol to obtain a solution (solid content concentration 50%) of triphenylmethylphosphonium monomethyl carbonate as a quaternary phosphonium base (A-Be1).
  • ⁇ Production Example 2> ⁇ Method for producing quaternary phosphonium base (A-Be2)> Instead of 262 parts of triphenylphosphine in Production Example 1, 304 parts of tris (4-methylphenyl) phosphine (manufactured by Tokyo Chemical Industry Co., Ltd.) and diethyl carbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) instead of dimethyl carbonate
  • the quaternary phosphonium base (A-Be2) was used as a quaternary phosphonium base (A-Be2) except that the reaction temperature was 130 ° C. and the reaction time was 150 hours. A solution (solid concentration 50%) was obtained.
  • ⁇ Comparative Production Example 1> ⁇ Method for producing quaternary phosphonium base (A-Be'1)> In a stirring autoclave, 180 parts of dimethyl carbonate and 224 parts of methanol as a solvent were added, and 202 parts of tributylphosphine was added dropwise thereto, and reacted at a reaction temperature of 125 ° C. for 20 hours to give a quaternary phosphonium base ( A solution of tributylmethylphosphonium monomethyl carbonate (solid content concentration 50%) was obtained as A-Be′1).
  • Example 1 640 parts of the quaternary phosphonium base (A-Be1) produced in Production Example 1 was placed in a glass round bottom three-necked flask equipped with a dropping funnel and a reflux tube, and trimellitic acid ( After 210 parts of Tokyo Chemical Industry Co., Ltd. were separately charged, 126 parts of 1,2,4-trihydroxybenzene (Tokyo Chemical Industry Co., Ltd.) were separately charged. Next, after adding 200 parts of phenol novolak resin (“H-4” manufactured by Meiwa Kasei Kogyo Co., Ltd.), the temperature was raised to 175 ° C. while distilling off the solvent (methanol), and then the remaining solvent was removed under reduced pressure to obtain an epoxy. A resin curing accelerator (Q-1) was obtained.
  • H-4 phenol novolak resin
  • Example 2 182 parts of 5-hydroxyisophthalic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) instead of 210 parts of trimellitic acid in Example 1, phloroglucinol (Tokyo Chemical Industry Co., Ltd.) instead of 1,2,4-trihydroxybenzene
  • An epoxy resin curing accelerator (Q-2) was obtained in the same manner as in Example 1 except that the product was changed.
  • Example 3 Instead of the quaternary phosphonium base (A-Be1) in Example 1, the quaternary phosphonium base (A-Be2) produced in Production Example 2 was used, and 1,3,5-benzenetricarboxylic acid was used instead of trimellitic acid. (Tokyo Chemical Industry Co., Ltd.), In the same manner as in Example 1, except that 70 parts of resorcinol (manufactured by Tokyo Chemical Industry Co., Ltd.) instead of 126 parts of 1,2,4-trihydroxybenzene, An epoxy resin curing accelerator (Q-3) was obtained.
  • resorcinol manufactured by Tokyo Chemical Industry Co., Ltd.
  • Example 4 Instead of 640 parts of the quaternary phosphonium base (A-Be1) in Example 1, 1200 parts of the quaternary phosphonium base (A-Be3) produced in Production Example 3, and 5-methylisophthalic acid (instead of trimellitic acid) 180 parts by Tokyo Chemical Industry Co., Ltd., in the same manner as in Example 1 except that 5-methylresorcinol (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 1,2,4-trihydroxybenzene. An epoxy resin curing accelerator (Q-4) was obtained.
  • Example 5 An epoxy resin curing accelerator (Q-5) was obtained in the same manner as in Example 1, except that phloroglucinol was used instead of 1,2,4-trihydroxybenzene in Example 1.
  • Example 6 An epoxy resin curing accelerator (Q-6) was obtained in the same manner as in Example 1, except that phloroglucinol was used instead of resorcinol in Example 3.
  • Example 5 In the same manner as in Example 4, except that 210 parts of trimellitic acid in Example 1 was changed to 420 parts of a 50% aqueous solution of 4-sulfophthalic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), an epoxy resin curing accelerator (Q '-5) was obtained.
  • Epoxy resin curing accelerators (Q-1) to (Q-6) of the present invention prepared in Examples 1 to 6 and comparative epoxy resin curing accelerators (Q'-) prepared in Comparative Examples 1 to 5 The fluidity and curability of 1) to (Q′-5) were evaluated by the following methods.
  • the flow value (unit: cm) of the spiral flow at 175 ° C. (70 kg / cm 2) was measured according to the method of EMMI 1-66 and used as an index of fluidity.
  • Curing meter V-type manufactured by Nichigo Shoji Co., Ltd., trade name
  • Curing meter V-type is used to set the curing torque for each of the above sealants under the conditions of a temperature of 175 ° C., a resin die P-200 and an amplitude angle of ⁇ 1 °.
  • the point at which the curing torque rises is the gel time (unit: seconds), and the value of the curing torque (unit: kgf ⁇ cm) 90 seconds after the start of measurement is used as an index of curability (strength and hardness at demolding). did.
  • Table 1 shows the evaluation results of the epoxy resin curing accelerator (Q) obtained in Examples 1 to 6 and Comparative Examples 1 to 5.
  • the epoxy resin curing accelerators (Q) of Examples 1 to 6 of the present invention have a high flow value of the sealant after melt-kneading and excellent fluidity, and also have a curing torque. It can be seen that it is high and excellent in curability.
  • Comparative Example 1 comprising a tetraalkylphosphonium cation, it can be seen that the flow value of the sealant after the melt mixing is very low because the stability of the phosphonium cation is low, and the moldability is poor.
  • Comparative Example 2 that does not contain an organic phenol compound (C) and in Comparative Example 3 that does not contain a group capable of hydrogen bonding at the m-position of the organic carboxylic acid (B), the organic carboxylic acid (B) and the organic phenol compound (C )) Is insufficient, the reaction during melting and kneading cannot be suppressed, and the flow value is lowered.
  • Comparative Example 4 that does not contain the organic carboxylic acid (B), it can be seen that the flow value decreases because the catalyst dissociates at the temperature of the melt kneading.
  • Comparative Example 5 in which the organic carboxylic acid compound (B) contains a sulfonic acid group that is a strong acid, it is found that the curability is insufficient because the catalyst is difficult to dissociate even at the curing temperature.
  • the epoxy resin curing accelerator (Q) of the present invention is excellent in fluidity and curability after melt-kneading, it is useful for producing an epoxy resin-based sealing material for electronic parts such as semiconductors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

Provided is an epoxy resin curing accelerator which exhibits excellent fluidity when filled into a mold, while having high catalytic activity and excellent curability. The present invention is an epoxy resin curing accelerator (Q) which is characterized by containing: a phosphonium salt (S) that is composed of a quaternary phosphonium (A) represented by general formula (1) and an anion of an organic carboxylic acid (B) represented by general formula (2); and an organic phenolic compound (C) represented by general formula (3). (In formula (1), each of R1-R3 represents an aryl group having 6-12 carbon atoms; and R4 represents an alkyl group having 1-8 carbon atoms or an aryl group having 6-12 carbon atoms. In formula (2), R5-R7 may be the same or different, and each represents a hydroxyl group, a carboxyl group, a hydrogen atom or an alkyl group having 1-4 carbon atoms; and R8 represents a hydroxyl group or a carboxyl group. In formula (3), R9-R11 may be the same or different, and each represents a hydroxyl group, a carboxyl group, a hydrogen atom or an alkyl group having 1-4 carbon atoms.)

Description

エポキシ樹脂硬化促進剤Epoxy resin curing accelerator
 本発明は、エポキシ樹脂硬化促進剤に関する。さらに詳しくは、半導体などの電子部品用のエポキシ樹脂系封止材の製造に適した、第4級ホスホニウム塩からなるエポキシ樹脂硬化促進剤に関する。 The present invention relates to an epoxy resin curing accelerator. More specifically, the present invention relates to an epoxy resin curing accelerator made of a quaternary phosphonium salt, which is suitable for manufacturing an epoxy resin-based sealing material for electronic parts such as semiconductors.
 従来より、エポキシ樹脂は成形性および硬化物の電気特性などに優れるため、例えば、半導体封止材などの電子部品の封止材用途に使用される。封止材樹脂としては、硬化剤としてフェノールノボラック類を用い多量のフィラーなどを配合したエポキシ樹脂が広く使用されている。近年、半導体の高集積化、薄型化または実装方式の改良などに伴い、封止材の成形性、および封止された半導体の信頼性の向上などが強く要望されている。この要望に対して封止材の一成分である硬化促進剤の役割も大きくなっている。
これらエポキシ樹脂の硬化促進剤として、テトラフェニルホスホニウムのテトラフェニルボレート塩(以下、TPP-Kと略する)が一般的に使用されている。
Conventionally, an epoxy resin is excellent in moldability and electrical properties of a cured product, and is used, for example, as a sealing material for electronic parts such as a semiconductor sealing material. As a sealing material resin, an epoxy resin in which a phenol novolac is used as a curing agent and a large amount of filler is blended is widely used. In recent years, there has been a strong demand for improving the moldability of a sealing material and the reliability of a sealed semiconductor, as the semiconductor is highly integrated, thinned, or improved in mounting method. In response to this demand, the role of a curing accelerator, which is a component of a sealing material, is also increasing.
As a curing accelerator for these epoxy resins, tetraphenylborate salt of tetraphenylphosphonium (hereinafter abbreviated as TPP-K) is generally used.
しかし、TPP-Kはそのままでは触媒活性が低いため、エポキシ樹脂および硬化剤に単に配合しただけでは硬化が十分に進まず、予めフェノール樹脂に配合して加熱してテトラフェニルボレート塩をフェノール樹脂塩に変換しておく必要があり、このときに毒性のあるベンゼンが微量だが生成するという問題がある。
この問題の改良として、TPPのアルキル第4級化ホスホニウムのフェノール樹脂との塩(特許文献1および2参照)が提案されている。
However, since TPP-K has low catalytic activity as it is, curing does not proceed sufficiently if it is simply blended with an epoxy resin and a curing agent, but it is blended with phenol resin in advance and heated to convert tetraphenylborate salt to phenol resin salt. There is a problem that a small amount of toxic benzene is produced at this time.
As an improvement of this problem, a salt of TPP with an alkyl quaternized phosphonium phenol resin (see Patent Documents 1 and 2) has been proposed.
しかしながら、無機充填材を高濃度に配合する封止材組成では、TPPのアルキル第4級化ホスホニウムのフェノール樹脂塩を硬化促進剤として用いる場合、エポキシ樹脂、硬化剤および硬化促進剤の混合物を加熱溶融させた配合液の粘度が高くなるため、モールド充填時に半導体チップの配線を押し流したり、配合物が隅々まで行き渡る前に粘度が上昇し、未充填部分ができたりする、いわゆる液流れ性不良の原因となる。 However, in a sealing material composition containing a high concentration of inorganic filler, when a phenol resin salt of alkyl quaternized phosphonium of TPP is used as a curing accelerator, a mixture of an epoxy resin, a curing agent and a curing accelerator is heated. Since the viscosity of the melted liquid mixture increases, the so-called poor liquid flow property, in which the wiring of the semiconductor chip is swept away during mold filling, or the viscosity increases before the compound reaches every corner, resulting in unfilled parts. Cause.
特開2004-256643号公報JP 2004-256663 A 特開2005-162944号公報JP 2005-162944 A
 そこで、モールド充填時に流動性に優れ、かつ触媒活性が高く硬化性に優れるエポキシ樹脂硬化促進剤を提供することを目的とする。 Therefore, an object of the present invention is to provide an epoxy resin curing accelerator that is excellent in fluidity at the time of mold filling and has high catalytic activity and excellent curability.
 本発明者らは、上記の目的を達成するべく検討を行った結果、本発明に到達した。
 すなわち、本発明は、一般式(1)で示される第4級ホスホニウム(A)と、一般式(2)で示される有機カルボン酸(B)のアニオンからなるホスホニウム塩(S)、および一般式(3)で示される有機フェノール化合物(C)を含むことを特徴とするエポキシ樹脂硬化促進剤(Q)である。
The inventors of the present invention have reached the present invention as a result of studies to achieve the above object.
That is, the present invention provides a phosphonium salt (S) comprising a quaternary phosphonium (A) represented by the general formula (1) and an anion of the organic carboxylic acid (B) represented by the general formula (2), and the general formula It is an epoxy resin hardening accelerator (Q) characterized by including the organic phenol compound (C) shown by (3).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
[式(1)中、R~Rは、炭素数6~12のアリール基、Rは炭素数1~8のアルキル基または炭素数6~12のアリール基を表す。] [In the formula (1), R 1 to R 3 represent an aryl group having 6 to 12 carbon atoms, and R 4 represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 12 carbon atoms. ]
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[式(2)中、R~Rは、同一または異なって、それぞれ水酸基、カルボキシル基、水素または炭素数1~4のアルキル基を表し、Rは、水酸基またはカルボキシル基を表す。] [In formula (2), R 5 to R 7 are the same or different and each represents a hydroxyl group, a carboxyl group, hydrogen, or an alkyl group having 1 to 4 carbon atoms, and R 8 represents a hydroxyl group or a carboxyl group. ]
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[式(3)中、R~R11は、同一または異なって、それぞれ水酸基、カルボキシル基、水素または炭素数1~4のアルキル基を表す。] [In Formula (3), R 9 to R 11 are the same or different and each represents a hydroxyl group, a carboxyl group, hydrogen, or an alkyl group having 1 to 4 carbon atoms. ]
 本発明は第4級ホスホニウム(A)を有するため、エポキシ樹脂と硬化剤との反応を硬化促進することができる。
また有機カルボン酸(B)のアニオンと有機フェノール化合物(C)はそれぞれの1,3位に水素結合可能な置換基(水酸基、カルボニル基)を有するため、有機カルボン酸(B)のアニオンと有機フェノール化合物(C)の分子間の相互作用が強力に作用する。これにより有機カルボン酸(B)のアニオンの酸強度が見かけ上強くなり、ホスホニウム塩(S)が解離しにくくなる。これによりエポキシ樹脂、硬化剤および硬化促進剤の混合物を加熱溶融する温度では、ホスホニウム塩(S)が解離しにくいため硬化反応を抑制でき、モールド充填時の流動性が優れる。
一方、モールド充填後の硬化温度では、有機カルボン酸(B)のアニオンと有機フェノール化合物(C)の水素結合が弱まり、ホスホニウム塩(S)が解離するため硬化性に優れる。
Since this invention has quaternary phosphonium (A), hardening of reaction of an epoxy resin and a hardening | curing agent can be accelerated | stimulated.
Moreover, since the anion of organic carboxylic acid (B) and the organic phenol compound (C) have a substituent (hydroxyl group, carbonyl group) capable of hydrogen bonding at their 1,3-positions, the anion of organic carboxylic acid (B) and organic The interaction between the molecules of the phenol compound (C) acts strongly. Thereby, the acid strength of the anion of the organic carboxylic acid (B) is apparently increased, and the phosphonium salt (S) is hardly dissociated. Thereby, at the temperature at which the mixture of the epoxy resin, the curing agent and the curing accelerator is heated and melted, the phosphonium salt (S) is hardly dissociated, so that the curing reaction can be suppressed and the fluidity at the time of mold filling is excellent.
On the other hand, at the curing temperature after mold filling, the hydrogen bond between the anion of the organic carboxylic acid (B) and the organic phenol compound (C) is weakened, and the phosphonium salt (S) is dissociated, so that the curability is excellent.
 このため本発明のエポキシ樹脂硬化促進剤(Q)はモールド充填時に流動性に優れ、かつ触媒活性が高く硬化性に優れるため、半導体などの電子部品用のエポキシ樹脂系封止材の製造に好適である。 For this reason, the epoxy resin curing accelerator (Q) of the present invention is excellent in fluidity at the time of mold filling, and has high catalytic activity and excellent curability, so it is suitable for production of epoxy resin-based sealing materials for electronic parts such as semiconductors. It is.
本発明のエポキシ樹脂硬化促進剤(Q)は、第4級ホスホニウム(A)のカチオンと有機カルボン酸(B)のアニオンからなるホスホニウム塩(S)、および有機フェノール化合物(C)を含むことを特徴とする。 The epoxy resin curing accelerator (Q) of the present invention contains a phosphonium salt (S) composed of a cation of a quaternary phosphonium (A) and an anion of an organic carboxylic acid (B), and an organic phenol compound (C). Features.
第4級ホスホニウム(A)のカチオンは、エポキシ樹脂と硬化剤との反応を促進するための必須成分であり下記一般式(1)で表される。 The cation of the quaternary phosphonium (A) is an essential component for promoting the reaction between the epoxy resin and the curing agent, and is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[式(1)中、R~Rは、炭素数6~12のアリール基、Rは炭素数1~8のアルキル基または炭素数6~12のアリール基を表す。] [In the formula (1), R 1 to R 3 represent an aryl group having 6 to 12 carbon atoms, and R 4 represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 12 carbon atoms. ]
一般式(1)中のR~Rを構成する炭素数6~12のアリール基としては、例えば、フェニル基、ナフチル基、ビフェニル基、メチルフェニル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、メチルナフチル基、エチルナフチル基等が挙げられる。 Examples of the aryl group having 6 to 12 carbon atoms constituting R 1 to R 4 in the general formula (1) include, for example, phenyl group, naphthyl group, biphenyl group, methylphenyl group, ethylphenyl group, propylphenyl group, butyl A phenyl group, a methyl naphthyl group, an ethyl naphthyl group, etc. are mentioned.
を構成する炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、n-ヘキシル基、1-メチルペンチル基、4-メチル-2-ペンチル基、3,3-ジメチルブチル基、2-エチルブチル基、n-ヘプチル基、1-メチルヘキシル基、n-オクチル基、tert-オクチル基、1-メチルヘプチル基、2-エチルヘキシル基、および2-プロピルペンチル基等が挙げられる。 Examples of the alkyl group having 1 to 8 carbon atoms constituting R 4 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, t-pentyl group, n-hexyl group, 1-methylpentyl group, 4-methyl-2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, n -Heptyl group, 1-methylhexyl group, n-octyl group, tert-octyl group, 1-methylheptyl group, 2-ethylhexyl group, 2-propylpentyl group and the like.
 R~Rとして、溶融混練後の流動性の観点、および原料の入手のしやすさの観点から、好ましくはフェニル基、メチルフェニル基およびナフチル基、さらに好ましくはフェニル基である。
 Rとしては、硬化性の観点、および合成の容易さの観点から、好ましくは、炭素数1~4のアルキル基および炭素数6~12のアリール基、さらに好ましくはメチル基、エチル基およびフェニル基、特に好ましくはメチル基、エチル基である。
R 1 to R 3 are preferably a phenyl group, a methylphenyl group, and a naphthyl group, and more preferably a phenyl group, from the viewpoint of fluidity after melt-kneading and availability of raw materials.
R 4 is preferably an alkyl group having 1 to 4 carbon atoms and an aryl group having 6 to 12 carbon atoms, more preferably a methyl group, an ethyl group and phenyl group from the viewpoints of curability and ease of synthesis. Group, particularly preferably a methyl group or an ethyl group.
本発明の有機カルボン酸(B)は、溶融混練後の流動性を向上させ、モールド充填後の硬化温度で硬化させるための必須成分であり、下記一般式(2)で表される。
Figure JPOXMLDOC01-appb-C000005
The organic carboxylic acid (B) of the present invention is an essential component for improving fluidity after melt-kneading and curing at the curing temperature after mold filling, and is represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000005
[式(2)中、R~Rは、同一または異なって、それぞれ水酸基、カルボキシル基、水素または炭素数1~4のアルキル基を表し、Rは、水酸基またはカルボキシル基を表す。] [In formula (2), R 5 to R 7 are the same or different and each represents a hydroxyl group, a carboxyl group, hydrogen, or an alkyl group having 1 to 4 carbon atoms, and R 8 represents a hydroxyl group or a carboxyl group. ]
一般式(2)中のR~Rを構成する炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。 Examples of the alkyl group having 1 to 4 carbon atoms constituting R 5 to R 7 in the general formula (2) include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl Group, tert-butyl group and the like.
 有機カルボン酸(B)の入手のしやすさ、および有機フェノール化合物(C)との相互作用のしやすさの観点から、RおよびRは水素が好ましく、Rは水酸基およびカルボキシル基が好ましい。 From the viewpoint of easy availability of the organic carboxylic acid (B) and the ease of interaction with the organic phenol compound (C), R 5 and R 7 are preferably hydrogen, and R 6 has a hydroxyl group and a carboxyl group. preferable.
ホスホニウム塩(S)の合成方法は、特に限定されないが、例えば、第4級ホスホニウム(A)のアルキル炭酸塩(A1)と有機カルボン酸(B)との塩交換反応、および第4級ホスホニウム(A)の水酸化物(A2)と有機カルボン酸(B)との塩交換反応等により得られる。 The method for synthesizing the phosphonium salt (S) is not particularly limited. For example, a salt exchange reaction between the alkyl carbonate (A1) of the quaternary phosphonium (A) and the organic carboxylic acid (B), and a quaternary phosphonium (S It can be obtained by a salt exchange reaction between the hydroxide (A2) of A) and the organic carboxylic acid (B).
第4級ホスホニウム(A)のアルキル炭酸塩(A1)は、例えば、対応する第3級ホスフィンと炭酸ジエステル類とを反応させることで得られる。製造条件としては温度50~150℃にてオートクレーブ中10~200時間であり、反応を速やかに収率良く完結するために、反応溶媒を使用することが好ましい。反応溶媒としては特に限定されるものではないが、メタノール、エタノール等が好ましい。溶媒の量は特に限定されるものではない。 The alkyl carbonate (A1) of the quaternary phosphonium (A) can be obtained, for example, by reacting a corresponding tertiary phosphine with a carbonic acid diester. The production conditions are 10 to 200 hours in an autoclave at a temperature of 50 to 150 ° C., and a reaction solvent is preferably used in order to complete the reaction quickly and with a good yield. Although it does not specifically limit as a reaction solvent, Methanol, ethanol, etc. are preferable. The amount of the solvent is not particularly limited.
対応する第3級ホスフィンとしては、例えば、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、2-(ジフェニルホスフィノ)ビフェニル等が挙げられる。炭酸ジエステルとしては公知のものであればよく、特に限定するものではないが、具体的にはジエチルカーボネート、ジメチルカーボネート、ジブチルカーボネート、ジフェニルカーボネート等が用いられる。 Examples of the corresponding tertiary phosphine include triphenylphosphine, tris (4-methylphenyl) phosphine, 2- (diphenylphosphino) biphenyl, and the like. The carbonic acid diester is not particularly limited as long as it is a known one, and specifically, diethyl carbonate, dimethyl carbonate, dibutyl carbonate, diphenyl carbonate and the like are used.
 第4級ホスホニウム(A)の水酸化物(A2)は、例えば、対応する第3級ホスフィンとハロゲン化(臭素、または塩素)アルキル、またはハロゲン化(臭素、または塩素)アリールとを反応させた後に、無機アルカリにより塩交換することで得られる。製造条件としては温度20~150℃にて1~20時間であり、反応を速やかに収率良く完結するために、反応溶媒を使用することが好ましい。反応溶媒としては特に限定されるものではないが、メタノール、エタノール等が好ましい。溶媒の量は特に限定されるものではない。 The quaternary phosphonium (A) hydroxide (A2) is obtained by, for example, reacting a corresponding tertiary phosphine with a halogenated (bromine or chlorine) alkyl or halogenated (bromine or chlorine) aryl. Later, it is obtained by salt exchange with an inorganic alkali. The production conditions are a temperature of 20 to 150 ° C. and a time of 1 to 20 hours, and a reaction solvent is preferably used in order to complete the reaction quickly and with a good yield. Although it does not specifically limit as a reaction solvent, Methanol, ethanol, etc. are preferable. The amount of the solvent is not particularly limited.
 対応する第3級ホスフィンとしては上記と同様のものが挙げられる。ハロゲン化アルキルとしては、臭化エチル、塩化ブチル、2-エチルヘキシルブロマイド、2-ブチルエタノール、2-クロロプロパノール等が、ハロゲン化アリールとしては、ブロモベンゼン、ブロモナフタレン、ブロモビフェニル等が挙げられる。
 無機アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム、および水酸化アルミニウム等が挙げられる。
Examples of the corresponding tertiary phosphine include those described above. Examples of the halogenated alkyl include ethyl bromide, butyl chloride, 2-ethylhexyl bromide, 2-butylethanol, 2-chloropropanol and the like, and examples of the halogenated aryl include bromobenzene, bromonaphthalene and bromobiphenyl.
Examples of the inorganic alkali include sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, and aluminum hydroxide.
 第4級ホスホニウム(A)のアルキル炭酸塩(A1)、または水酸化物(A2)と、有機カルボン酸(B)を塩交換反応する際のモル比は、硬化性と流動性の観点から、通常10/90~90/10であり、好ましくは20/80~80/20である。
 製造条件としては温度30~170℃にて1~20時間反応させながら、副生成するアルコール、水、炭酸ガス、および必要に応じて反応溶媒等を除去する。
From the viewpoint of curability and fluidity, the molar ratio of the quaternary phosphonium (A) alkyl carbonate (A1) or hydroxide (A2) and the organic carboxylic acid (B) in the salt exchange reaction is as follows. Usually, it is 10/90 to 90/10, preferably 20/80 to 80/20.
As production conditions, while reacting at a temperature of 30 to 170 ° C. for 1 to 20 hours, by-produced alcohol, water, carbon dioxide gas, and, if necessary, a reaction solvent are removed.
 ホスホニウム塩(S)の合成方法として、電気信頼性を悪化させるイオン性不純物の混入防止の観点から、第4級ホスホニウム(A)のアルキル炭酸塩(A1)と有機カルボン酸(B)との塩交換反応が好ましい。 As a method for synthesizing a phosphonium salt (S), a salt of an alkyl carbonate (A1) of a quaternary phosphonium (A) and an organic carboxylic acid (B) from the viewpoint of preventing mixing of ionic impurities that deteriorate electrical reliability. Exchange reactions are preferred.
 有機フェノール化合物(C)は、ホスホニウム塩(S)中の有機カルボン酸(B)のアニオンと相互作用し、溶融混練時の解離を抑制し流動性を向上させるための必須成分であり、下記一般式(3)で表される。 The organic phenol compound (C) is an essential component for interacting with the anion of the organic carboxylic acid (B) in the phosphonium salt (S) to suppress dissociation during melt-kneading and improve fluidity. It is represented by Formula (3).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[式(3)中、R~R11は、同一または異なって、それぞれ水酸基、カルボキシル基、水素または炭素数1~4のアルキル基を表す。] [In Formula (3), R 9 to R 11 are the same or different and each represents a hydroxyl group, a carboxyl group, hydrogen, or an alkyl group having 1 to 4 carbon atoms. ]
一般式(3)中のR~R11を構成する炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。 Examples of the alkyl group having 1 to 4 carbon atoms constituting R 9 to R 11 in the general formula (3) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and a sec-butyl group. Group, tert-butyl group and the like.
有機フェノール化合物(C)は、カルボン酸(B)のアニオンとの相互作用のしやすさの観点から、好ましくはR~R11が水酸基、カルボキシル基および水素が好ましく、さらに好ましくはRおよびR11が水素、R10が水酸基およびカルボキシル基であり、特に好ましくはRおよびR11が水素、R10が水酸基である。 In the organic phenol compound (C), from the viewpoint of easy interaction with the anion of the carboxylic acid (B), preferably R 9 to R 11 are preferably a hydroxyl group, a carboxyl group and hydrogen, more preferably R 9 and R 11 is hydrogen, R 10 is a hydroxyl group and a carboxyl group, and particularly preferably, R 9 and R 11 are hydrogen and R 10 is a hydroxyl group.
 有機カルボン酸(B)と有機フェノール化合物(C)のモル比は、カルボン酸(B)のアニオンとの相互作用のしやすさの観点から、通常10/90~90/10であり、好ましくは20/80~80/20、特に好ましくは30/70~70/30である。 The molar ratio of the organic carboxylic acid (B) to the organic phenol compound (C) is usually 10/90 to 90/10, preferably from the viewpoint of easy interaction with the anion of the carboxylic acid (B), preferably 20/80 to 80/20, particularly preferably 30/70 to 70/30.
エポキシ樹脂硬化促進剤(Q)は、通常、ホスホニウム塩(S)と有機フェノール化合物(C)を、通常、温度50~200℃にて1~20時間で均一混合させることで得られる。混合を速やかに完結するために溶媒を使用しても良く、均一混合後に、温度50~200℃で減圧~常圧条件で溶媒等を除去する。溶媒としては特に限定されるものではないが、メタノ-ル、エタノ-ル等が好ましい。
 ホスホニウム塩(S)と有機フェノール化合物(C)の配合比率は、上記有機カルボン酸(B)と有機フェノール化合物(C)のモル比から適宜決定する。
The epoxy resin curing accelerator (Q) is usually obtained by uniformly mixing the phosphonium salt (S) and the organic phenol compound (C) at a temperature of 50 to 200 ° C. for 1 to 20 hours. A solvent may be used in order to complete the mixing quickly. After uniform mixing, the solvent and the like are removed at a temperature of 50 to 200 ° C. under reduced pressure to normal pressure. The solvent is not particularly limited, but methanol, ethanol and the like are preferable.
The blending ratio of the phosphonium salt (S) and the organic phenol compound (C) is appropriately determined from the molar ratio of the organic carboxylic acid (B) and the organic phenol compound (C).
エポキシ樹脂硬化促進剤(Q)は、エポキシ樹脂組成物との混合をしやすくするために、低粘度のフェノール樹脂でマスターバッチ化して軟化点を下げる方法、粉砕して粉末状にする方法等を行っても良い。
低粘度のフェノール樹脂としては、例えば、ビスフェノールA、ビスフェノールF、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂等が挙げられる。マスターバッチ化の方法としては、公知の方法が利用できる。
エポキシ樹脂硬化促進剤(Q)の軟化点は、通常70~140℃、好ましくは80~120℃、より好ましくは90~100℃である。これは、70℃よりも低いと、粉砕時の融着や粉末状にした促進剤の貯蔵中のブロック化が起こり易く好ましくなく、また、140℃を超えると、硬化促進剤がエポキシ樹脂と溶融混合できずに不均一になり、硬化不良の原因となり易いからである。
In order to facilitate mixing with the epoxy resin composition, the epoxy resin curing accelerator (Q) includes a method of lowering the softening point by making a masterbatch with a low viscosity phenol resin, a method of pulverizing and powdering, etc. You can go.
Examples of the low viscosity phenol resin include bisphenol A, bisphenol F, phenol novolac resin, cresol novolac resin, and phenol aralkyl resin. A known method can be used as a master batch method.
The softening point of the epoxy resin curing accelerator (Q) is usually 70 to 140 ° C, preferably 80 to 120 ° C, more preferably 90 to 100 ° C. If the temperature is lower than 70 ° C., it is not preferable because fusion during pulverization or block formation during storage of the powdered accelerator is likely to occur, and if it exceeds 140 ° C., the curing accelerator is melted with the epoxy resin. This is because they cannot be mixed and become non-uniform, which tends to cause curing failure.
粉砕して粉末状にする方法としては、例えば衝撃式粉砕機等で粉砕して粉末状の硬化促進剤を得ることができる。使用に際しては、この粉末状の硬化促進剤の粒径は、100メッシュパス(エアージェットシーブ法などにより測定)95%以上であることが好ましい。これは、95%未満のものではエポキシ樹脂組成物への均一溶解が妨げられ易くなり、硬化不良の原因となるからである。 As a method of pulverizing into a powder, for example, a powdery curing accelerator can be obtained by pulverization with an impact pulverizer or the like. In use, the particle size of the powdery curing accelerator is preferably 100% or more (measured by an air jet sieve method or the like) 95% or more. This is because if it is less than 95%, uniform dissolution in the epoxy resin composition tends to be hindered, which causes poor curing.
本発明のエポキシ樹脂硬化促進剤(Q)は、エポキシ樹脂、硬化剤および充填剤など必要により他の添加剤が配合された混合物中に添加して用いられ、最終的に硬化エポキシ樹脂が得られる。エポキシ樹脂硬化促進剤(Q)の配合量はエポキシ樹脂や硬化剤の反応性に応じて調整されるが、エポキシ樹脂100質量部に対して通常1~25質量部、好ましくは2~20質量部である。最適な配合量は、要求される硬化特性などに合わせて設定すればよい。 The epoxy resin curing accelerator (Q) of the present invention is used by being added to a mixture in which other additives such as an epoxy resin, a curing agent and a filler are blended as required, and finally a cured epoxy resin is obtained. . The compounding amount of the epoxy resin curing accelerator (Q) is adjusted according to the reactivity of the epoxy resin and the curing agent, but is usually 1 to 25 parts by mass, preferably 2 to 20 parts by mass with respect to 100 parts by mass of the epoxy resin. It is. What is necessary is just to set the optimal compounding quantity according to the required hardening characteristic.
 以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、%は重量%、部は重量部を示す。 Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Hereinafter, unless otherwise specified, “%” represents “% by weight” and “parts” represents “parts by weight”.
<製造例1>
<第4級ホスホニウムベース(A-Be1)の製造方法>
攪拌式のオートクレーブに、炭酸ジメチル(東京化成工業株式会社社製)180部および溶媒のメタノール224部を仕込み、この中にトリフェニルホスフィン(東京化成工業株式会社社製)262部を仕込み、反応温度125℃にて80時間反応させた。ついでメタノール120部を減圧除去した後、トルエン1200部投入し結晶を析出させた。この結晶を単離し、再度メタノールに溶解させることで、第4級ホスホニウムベース(A-Be1)としてトリフェニルメチルホスホニウムモノメチル炭酸塩の溶液(固形分濃度 50%)を得た。
<Production Example 1>
<Method for producing quaternary phosphonium base (A-Be1)>
In a stirring autoclave, 180 parts of dimethyl carbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) and 224 parts of methanol as a solvent are charged, and 262 parts of triphenylphosphine (manufactured by Tokyo Chemical Industry Co., Ltd.) are charged therein, and the reaction temperature is increased. The reaction was performed at 125 ° C. for 80 hours. Next, 120 parts of methanol was removed under reduced pressure, and 1200 parts of toluene was added to precipitate crystals. This crystal was isolated and dissolved again in methanol to obtain a solution (solid content concentration 50%) of triphenylmethylphosphonium monomethyl carbonate as a quaternary phosphonium base (A-Be1).
<製造例2>
<第4級ホスホニウムベース(A-Be2)の製造方法>
製造例1におけるトリフェニルホスフィン262部の代わりにトリス(4-メチルフェニル)ホスフィン(東京化成工業株式会社社製)304部に、炭酸ジメチルの代わりに炭酸ジエチル(東京化成工業株式会社社製)を使用し、反応温度130℃、反応時間150時間とした以外は、製造例1と同様にして、第4級ホスホニウムベース(A-Be2)としてトリ(4-メチルフェニル)エチルホスホニウムモノエチル炭酸塩の溶液(固形分濃度 50%)を得た。
<Production Example 2>
<Method for producing quaternary phosphonium base (A-Be2)>
Instead of 262 parts of triphenylphosphine in Production Example 1, 304 parts of tris (4-methylphenyl) phosphine (manufactured by Tokyo Chemical Industry Co., Ltd.) and diethyl carbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) instead of dimethyl carbonate The quaternary phosphonium base (A-Be2) was used as a quaternary phosphonium base (A-Be2) except that the reaction temperature was 130 ° C. and the reaction time was 150 hours. A solution (solid concentration 50%) was obtained.
<製造例3>
<第4級ホスホニウムベース(A-Be3)の製造方法>
 滴下ロート、および還流管を備え付けたガラス製丸底3つ口フラスコにトリフェニルホスフィン262部、イソプロピルアルコール1000部仕込み、均一溶解させた後に、ブロモベンゼン(東京化成工業株式会社社製)157部を滴下投入し60℃で2時間反応させた。ついで水酸化ナトリウム40部を投入し60℃で2時間反応させ、析出した塩を除去することで第4級ホスホニウムベース(A-Be3)として水酸化テトラフェニルホスホニウム溶液(固形分濃度 25%)を得た。
<Production Example 3>
<Method for producing quaternary phosphonium base (A-Be3)>
A glass round bottom three-necked flask equipped with a dropping funnel and a reflux tube was charged with 262 parts of triphenylphosphine and 1000 parts of isopropyl alcohol and uniformly dissolved, and then 157 parts of bromobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) The solution was added dropwise and reacted at 60 ° C. for 2 hours. Next, 40 parts of sodium hydroxide was added, reacted at 60 ° C. for 2 hours, and the precipitated salt was removed to obtain a tetraphenylphosphonium hydroxide solution (solid content concentration 25%) as a quaternary phosphonium base (A-Be3). Obtained.
<比較製造例1>
<第4級ホスホニウムベース(A-Be’1)の製造方法>
攪拌式のオートクレーブに、炭酸ジメチル180部および溶媒のメタノール224部を仕込み、この中にトリブチルホスフィン202部を滴下して仕込み、反応温度125℃にて20時間反応させて、第4級ホスホニウムベース(A-Be’1)としてトリブチルメチルホスホニウムモノメチル炭酸塩の溶液(固形分濃度 50%)を得た。
<Comparative Production Example 1>
<Method for producing quaternary phosphonium base (A-Be'1)>
In a stirring autoclave, 180 parts of dimethyl carbonate and 224 parts of methanol as a solvent were added, and 202 parts of tributylphosphine was added dropwise thereto, and reacted at a reaction temperature of 125 ° C. for 20 hours to give a quaternary phosphonium base ( A solution of tributylmethylphosphonium monomethyl carbonate (solid content concentration 50%) was obtained as A-Be′1).
<実施例1>
滴下ロート、および還流管を備え付けたガラス製丸底3つ口フラスコに製造例1で製造の第4級ホスホニウムベース(A-Be1)640部を入れ、50℃で温調しながらトリメリット酸(東京化成工業株式会社社製)210部を分割投入後、1,2,4-トリヒドロキシベンゼン(東京化成工業株式会社社製)126部を分割投入した。ついでフェノールノボラック樹脂(明和化成工業株式会社製「H-4」)200部を投入後、溶剤(メタノール)を留去しながら175℃まで昇温後、残った溶剤を減圧除去することで、エポキシ樹脂硬化促進剤(Q-1)を得た。
<Example 1>
640 parts of the quaternary phosphonium base (A-Be1) produced in Production Example 1 was placed in a glass round bottom three-necked flask equipped with a dropping funnel and a reflux tube, and trimellitic acid ( After 210 parts of Tokyo Chemical Industry Co., Ltd. were separately charged, 126 parts of 1,2,4-trihydroxybenzene (Tokyo Chemical Industry Co., Ltd.) were separately charged. Next, after adding 200 parts of phenol novolak resin (“H-4” manufactured by Meiwa Kasei Kogyo Co., Ltd.), the temperature was raised to 175 ° C. while distilling off the solvent (methanol), and then the remaining solvent was removed under reduced pressure to obtain an epoxy. A resin curing accelerator (Q-1) was obtained.
<実施例2>
実施例1におけるトリメリット酸210部の代わりに5-ヒドロキシイソフタル酸(東京化成工業株式会社社製)182部、1,2,4-トリヒドロキシベンゼンの代わりにフロログルシノール(東京化成工業株式会社社製)の変更した以外は、実施例1と同様にして、エポキシ樹脂硬化促進剤(Q-2)を得た。
<Example 2>
182 parts of 5-hydroxyisophthalic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) instead of 210 parts of trimellitic acid in Example 1, phloroglucinol (Tokyo Chemical Industry Co., Ltd.) instead of 1,2,4-trihydroxybenzene An epoxy resin curing accelerator (Q-2) was obtained in the same manner as in Example 1 except that the product was changed.
<実施例3>
実施例1における第4級ホスホニウムベース(A-Be1)の代わりに製造例2で製造の第4級ホスホニウムベース(A-Be2)を、トリメリット酸の代わりに1,3,5-ベンゼントリカルボン酸(東京化成工業株式会社社製)、1,2,4-トリヒドロキシベンゼン126部の代わりにレソルシノール(東京化成工業株式会社社製)70部に変更した以外は、実施例1と同様にして、エポキシ樹脂硬化促進剤(Q-3)を得た。
<Example 3>
Instead of the quaternary phosphonium base (A-Be1) in Example 1, the quaternary phosphonium base (A-Be2) produced in Production Example 2 was used, and 1,3,5-benzenetricarboxylic acid was used instead of trimellitic acid. (Tokyo Chemical Industry Co., Ltd.), In the same manner as in Example 1, except that 70 parts of resorcinol (manufactured by Tokyo Chemical Industry Co., Ltd.) instead of 126 parts of 1,2,4-trihydroxybenzene, An epoxy resin curing accelerator (Q-3) was obtained.
<実施例4>
実施例1における第4級ホスホニウムベース(A-Be1)640部の代わりに製造例3で製造の第4級ホスホニウムベース(A-Be3)1200部、トリメリット酸の代わりに5-メチルイソフタル酸(東京化成工業株式会社社製)180部、1,2,4-トリヒドロキシベンゼンの代わりに5-メチルレソルシノール(東京化成工業株式会社社製)に変更した以外は、実施例1と同様にして、エポキシ樹脂硬化促進剤(Q-4)を得た。
<Example 4>
Instead of 640 parts of the quaternary phosphonium base (A-Be1) in Example 1, 1200 parts of the quaternary phosphonium base (A-Be3) produced in Production Example 3, and 5-methylisophthalic acid (instead of trimellitic acid) 180 parts by Tokyo Chemical Industry Co., Ltd., in the same manner as in Example 1 except that 5-methylresorcinol (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 1,2,4-trihydroxybenzene. An epoxy resin curing accelerator (Q-4) was obtained.
<実施例5>
実施例1における1,2,4-トリヒドロキシベンゼンの代わりにフロログルシノールに変更した以外は、実施例1と同様にして、エポキシ樹脂硬化促進剤(Q-5)を得た。
<Example 5>
An epoxy resin curing accelerator (Q-5) was obtained in the same manner as in Example 1, except that phloroglucinol was used instead of 1,2,4-trihydroxybenzene in Example 1.
<実施例6>
実施例3におけるレソルシノールの代わりにフロログルシノールに変更した以外は、実施例1と同様にして、エポキシ樹脂硬化促進剤(Q-6)を得た。
<Example 6>
An epoxy resin curing accelerator (Q-6) was obtained in the same manner as in Example 1, except that phloroglucinol was used instead of resorcinol in Example 3.
<比較例1>
実施例1における第4級ホスホニウムベース(A-Be1)の代わりに比較製造例1で製造の第4級ホスホニウムベース(A-Be’1)に変更した以外は、実施例1と同様にして、エポキシ樹脂硬化促進剤(Q’-1)を得た。
<Comparative Example 1>
In the same manner as in Example 1, except that the quaternary phosphonium base (A-Be′1) produced in Comparative Production Example 1 was used instead of the quaternary phosphonium base (A-Be1) in Example 1, An epoxy resin curing accelerator (Q′-1) was obtained.
<比較例2>
実施例2におけるフロログルシノールを使用せず、フェノールノボラック樹脂200部を326部に変更した以外は、実施例2と同様にして、エポキシ樹脂硬化促進剤(Q’-2)を得た。
<Comparative example 2>
An epoxy resin curing accelerator (Q′-2) was obtained in the same manner as in Example 2, except that phloroglucinol in Example 2 was not used and 200 parts of phenol novolac resin was changed to 326 parts.
<比較例3>
実施例3における1,3,5-ベンゼントリカルボン酸の代わりにテレフタル酸(東京化成工業株式会社社製)に変更した以外は、実施例3と同様にして、エポキシ樹脂硬化促進剤(Q’-3)を得た。
<Comparative Example 3>
An epoxy resin curing accelerator (Q′-) was used in the same manner as in Example 3, except that terephthalic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 1,3,5-benzenetricarboxylic acid in Example 3. 3) was obtained.
<比較例4>
実施例4における5-メチルイソフタル酸を使用せず、フェノールノボラック樹脂200部を480部に変更した以外は、実施例4と同様にして、エポキシ樹脂硬化促進剤(Q’-4)を得た。
<Comparative example 4>
An epoxy resin curing accelerator (Q′-4) was obtained in the same manner as in Example 4 except that 5-methylisophthalic acid in Example 4 was not used and 200 parts of phenol novolac resin was changed to 480 parts. .
<比較例5>
実施例1におけるトリメリット酸210部を4-スルホフタル酸の50%水溶液(東京化成工業株式会社社製)420部に変更した以外は、実施例4と同様にして、エポキシ樹脂硬化促進剤(Q’-5)を得た。
<Comparative Example 5>
In the same manner as in Example 4, except that 210 parts of trimellitic acid in Example 1 was changed to 420 parts of a 50% aqueous solution of 4-sulfophthalic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), an epoxy resin curing accelerator (Q '-5) was obtained.
<性能評価>
実施例1~6で作成した本発明のエポキシ樹脂硬化促進剤(Q-1)~(Q-6)、及び比較例1~5で作成した比較のためのエポキシ樹脂硬化促進剤(Q’-1)~(Q’-5)の流動性、および硬化性について以下の方法で評価した。
<Performance evaluation>
Epoxy resin curing accelerators (Q-1) to (Q-6) of the present invention prepared in Examples 1 to 6 and comparative epoxy resin curing accelerators (Q'-) prepared in Comparative Examples 1 to 5 The fluidity and curability of 1) to (Q′-5) were evaluated by the following methods.
<流動性(フロー値)>
ビフェニル型エポキシ樹脂(軟化点105℃、エポキシ当量 192)100部、p-キシリレンフェノール樹脂(軟化点80℃、水酸基当量174)78重量部、1重量%のシランカップリング剤で処理した溶融シリカ粉末1000部、カルナバワックス1.5部、三酸化アンチモン4部およびカーボンブラック1部に、各例で得られたエポキシ樹脂硬化促進剤(Q)12部を均一に粉砕混合後、 110℃の熱ロールを用いて5分間溶融混練し、冷却後粉砕して封止材を得た。この封止材について、EMMI 1-66 の方法に準じて175℃(70kg/cm2)でのスパイラルフローのフロー値(単位はcm)を測定し、流動性の指標とした。
<Flowability (flow value)>
100 parts of biphenyl type epoxy resin (softening point 105 ° C., epoxy equivalent 192), 78 parts by weight of p-xylylene phenol resin (softening point 80 ° C., hydroxyl equivalent 174), fused silica treated with 1% by weight of silane coupling agent To 1000 parts of powder, 1.5 parts of carnauba wax, 4 parts of antimony trioxide and 1 part of carbon black, 12 parts of the epoxy resin curing accelerator (Q) obtained in each example was uniformly ground and mixed, and then heated at 110 ° C. The mixture was melt-kneaded for 5 minutes using a roll, cooled and pulverized to obtain a sealing material. With respect to this sealing material, the flow value (unit: cm) of the spiral flow at 175 ° C. (70 kg / cm 2) was measured according to the method of EMMI 1-66 and used as an index of fluidity.
<硬化性(硬化トルク)>
 キュラストメータV型(日合商事社製、商品名)を使用して、温度175℃、樹脂用ダイスP-200および振幅角度±1°の条件で、それぞれの上記封止剤について硬化トルクを測定し、硬化トルクの立ち上がる点をゲルタイム(単位は秒)として、測定開始から90秒後の硬化トルクの値(単位はkgf・cm)を硬化性(脱型時の強度および硬度)の指標とした。
<Curing property (curing torque)>
Curing meter V-type (manufactured by Nichigo Shoji Co., Ltd., trade name) is used to set the curing torque for each of the above sealants under the conditions of a temperature of 175 ° C., a resin die P-200 and an amplitude angle of ± 1 °. The point at which the curing torque rises is the gel time (unit: seconds), and the value of the curing torque (unit: kgf · cm) 90 seconds after the start of measurement is used as an index of curability (strength and hardness at demolding). did.
 実施例1~6および比較例1~5で得たエポキシ樹脂硬化促進剤(Q)の評価結果を表1に示す。 Table 1 shows the evaluation results of the epoxy resin curing accelerator (Q) obtained in Examples 1 to 6 and Comparative Examples 1 to 5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1から明らかなように、本発明の実施例1~6のエポキシ樹脂硬化促進剤(Q)は、溶融混練後の封止剤のフロー値が高く流動性に優れており、また硬化トルクも高く硬化性に優れていることが分かる。
一方、テトラアルキルホスホニウムカチオンからなる比較例1では、ホスホニウムカチオンの安定性が低いため溶融混連後の封止剤のフロー値が非常に低くなり、成形性に劣ることがわかる。
また有機フェノール化合物(C)を含有しない比較例2、および有機カルボン酸(B)のm位に水素結合可能な基を含有しない比較例3では、有機カルボン酸(B)と有機フェノール化合物(C)との相互作用が不十分であるため、溶融紺練時の反応を抑制できずフロー値が低くなることがわかる。
有機カルボン酸(B)を含有しない比較例4では、溶融紺練の温度で触媒が解離するため、フロー値が低くなることが分かる。
有機カルボン酸化合物(B)中に強酸であるスルホン酸基を含有する比較例5では、硬化温度でも触媒が解離しにくいため硬化性が不十分であることが分かる。
As is apparent from Table 1, the epoxy resin curing accelerators (Q) of Examples 1 to 6 of the present invention have a high flow value of the sealant after melt-kneading and excellent fluidity, and also have a curing torque. It can be seen that it is high and excellent in curability.
On the other hand, in Comparative Example 1 comprising a tetraalkylphosphonium cation, it can be seen that the flow value of the sealant after the melt mixing is very low because the stability of the phosphonium cation is low, and the moldability is poor.
In Comparative Example 2 that does not contain an organic phenol compound (C) and in Comparative Example 3 that does not contain a group capable of hydrogen bonding at the m-position of the organic carboxylic acid (B), the organic carboxylic acid (B) and the organic phenol compound (C )) Is insufficient, the reaction during melting and kneading cannot be suppressed, and the flow value is lowered.
In Comparative Example 4 that does not contain the organic carboxylic acid (B), it can be seen that the flow value decreases because the catalyst dissociates at the temperature of the melt kneading.
In Comparative Example 5 in which the organic carboxylic acid compound (B) contains a sulfonic acid group that is a strong acid, it is found that the curability is insufficient because the catalyst is difficult to dissociate even at the curing temperature.
 本発明のエポキシ樹脂硬化促進剤(Q)は、溶融紺練後の流動性、および硬化性が優れているため半導体などの電子部品用のエポキシ樹脂系封止材の製造に有用である。 Since the epoxy resin curing accelerator (Q) of the present invention is excellent in fluidity and curability after melt-kneading, it is useful for producing an epoxy resin-based sealing material for electronic parts such as semiconductors.

Claims (6)

  1.  一般式(1)で示される第4級ホスホニウム(A)と、一般式(2)で示される有機カルボン酸(B)のアニオンからなるホスホニウム塩(S)、および一般式(3)で示される有機フェノール化合物(C)を含むことを特徴とするエポキシ樹脂硬化促進剤(Q)。
    Figure JPOXMLDOC01-appb-C000007
    [式(1)中、R~Rは、炭素数6~12のアリール基、Rは炭素数1~8のアルキル基または炭素数6~12のアリール基を表す。]
    Figure JPOXMLDOC01-appb-C000008
    [式(2)中、R~Rは、同一または異なって、それぞれ水酸基、カルボキシル基、水素または炭素数1~4のアルキル基を表し、Rは、水酸基またはカルボキシル基を表す。]
    Figure JPOXMLDOC01-appb-C000009
    [式(3)中、R~R11は、同一または異なって、それぞれ水酸基、カルボキシル基、水素または炭素数1~4のアルキル基を表す。]
    A phosphonium salt (S) composed of a quaternary phosphonium (A) represented by general formula (1) and an anion of an organic carboxylic acid (B) represented by general formula (2), and represented by general formula (3) An epoxy resin curing accelerator (Q) comprising an organic phenol compound (C).
    Figure JPOXMLDOC01-appb-C000007
    [In the formula (1), R 1 to R 3 represent an aryl group having 6 to 12 carbon atoms, and R 4 represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 12 carbon atoms. ]
    Figure JPOXMLDOC01-appb-C000008
    [In formula (2), R 5 to R 7 are the same or different and each represents a hydroxyl group, a carboxyl group, hydrogen, or an alkyl group having 1 to 4 carbon atoms, and R 8 represents a hydroxyl group or a carboxyl group. ]
    Figure JPOXMLDOC01-appb-C000009
    [In Formula (3), R 9 to R 11 are the same or different and each represents a hydroxyl group, a carboxyl group, hydrogen, or an alkyl group having 1 to 4 carbon atoms. ]
  2. 一般式(3)において、R及びR11が水素、R10が水酸基またはカルボキシル基である請求項1に記載のエポキシ樹脂硬化促進剤(Q)。 The epoxy resin curing accelerator (Q) according to claim 1, wherein, in the general formula (3), R 9 and R 11 are hydrogen and R 10 is a hydroxyl group or a carboxyl group.
  3. 一般式(3)において、R及びR11が水素、R10が水酸基である請求項1に記載のエポキシ樹脂硬化促進剤(Q)。 The epoxy resin curing accelerator (Q) according to claim 1, wherein, in the general formula (3), R 9 and R 11 are hydrogen and R 10 is a hydroxyl group.
  4. 一般式(2)において、R及びRが水素、Rが水酸基またはカルボキシル基である請求項1~3のいずれかに記載のエポキシ樹脂硬化促進剤(Q)。 The epoxy resin curing accelerator (Q) according to any one of claims 1 to 3, wherein, in the general formula (2), R 5 and R 7 are hydrogen, and R 6 is a hydroxyl group or a carboxyl group.
  5. 有機カルボン酸(B)と有機フェノール化合物(C)のモル比が、80/20~20/80である請求項1~4のいずれかに記載のエポキシ樹脂硬化促進剤(Q)。 The epoxy resin curing accelerator (Q) according to any one of claims 1 to 4, wherein the molar ratio of the organic carboxylic acid (B) to the organic phenol compound (C) is 80/20 to 20/80.
  6. 第4級ホスホニウム(A)のアルキル炭酸塩と有機カルボン酸(B)の塩交換反応によりホスホニウム塩(S)を合成する請求項1~5のいずれかに記載のエポキシ樹脂硬化促進剤(Q)。 The epoxy resin curing accelerator (Q) according to any one of claims 1 to 5, wherein the phosphonium salt (S) is synthesized by a salt exchange reaction between the quaternary phosphonium (A) alkyl carbonate and the organic carboxylic acid (B). .
PCT/JP2015/005833 2015-01-30 2015-11-24 Epoxy resin curing accelerator WO2016120925A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580056299.5A CN107075088B (en) 2015-01-30 2015-11-24 Epoxy resin curing accelerator
KR1020177008153A KR102378915B1 (en) 2015-01-30 2015-11-24 Epoxy resin curing accelerator
JP2016571497A JP6640120B2 (en) 2015-01-30 2015-11-24 Epoxy resin curing accelerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015016329 2015-01-30
JP2015-016329 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016120925A1 true WO2016120925A1 (en) 2016-08-04

Family

ID=56542592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005833 WO2016120925A1 (en) 2015-01-30 2015-11-24 Epoxy resin curing accelerator

Country Status (5)

Country Link
JP (1) JP6640120B2 (en)
KR (1) KR102378915B1 (en)
CN (1) CN107075088B (en)
TW (1) TWI687449B (en)
WO (1) WO2016120925A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6197187B1 (en) * 2016-07-21 2017-09-20 パナソニックIpマネジメント株式会社 Semiconductor device
JP2018002911A (en) * 2016-07-04 2018-01-11 パナソニックIpマネジメント株式会社 Epoxy resin composition for sealing, cured product, and semiconductor device
JP2018016761A (en) * 2016-07-29 2018-02-01 パナソニックIpマネジメント株式会社 Epoxy resin composition for sealing, cured product, and semiconductor device
JP2018016760A (en) * 2016-07-29 2018-02-01 パナソニックIpマネジメント株式会社 Epoxy resin composition for sealing, and method for producing semiconductor device
WO2021210384A1 (en) * 2020-04-14 2021-10-21 サンアプロ株式会社 Epoxy resin composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112435975B (en) * 2019-02-22 2022-07-19 西安航思半导体有限公司 Heat dissipation DFN semiconductor device packaging structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320065A (en) * 1989-03-27 1991-01-29 Nitto Denko Corp Semiconductor device
JP2002179768A (en) * 2000-09-29 2002-06-26 Sumitomo Bakelite Co Ltd Thermosetting resin composition, epoxy resin molding material using the same and semiconductor device
JP2003286335A (en) * 2002-03-29 2003-10-10 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003292582A (en) * 2002-03-29 2003-10-15 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256643A (en) 2003-02-25 2004-09-16 Matsushita Electric Works Ltd Semiconductor sealing epoxy resin composition and semiconductor device
JP4317432B2 (en) 2003-12-04 2009-08-19 日東電工株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP4429768B2 (en) 2004-03-16 2010-03-10 サンアプロ株式会社 Epoxy resin composition for semiconductor encapsulation
JP2013216871A (en) 2012-03-12 2013-10-24 San Apro Kk Epoxy resin curing accelerator
KR101593731B1 (en) * 2012-12-24 2016-02-12 제일모직주식회사 Tetravalent phosphonium salt, epoxy resin composition for encapsulating semiconductor device comprising the same and semiconductor device encapsulated with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320065A (en) * 1989-03-27 1991-01-29 Nitto Denko Corp Semiconductor device
JP2002179768A (en) * 2000-09-29 2002-06-26 Sumitomo Bakelite Co Ltd Thermosetting resin composition, epoxy resin molding material using the same and semiconductor device
JP2003286335A (en) * 2002-03-29 2003-10-10 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003292582A (en) * 2002-03-29 2003-10-15 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018002911A (en) * 2016-07-04 2018-01-11 パナソニックIpマネジメント株式会社 Epoxy resin composition for sealing, cured product, and semiconductor device
JP6197187B1 (en) * 2016-07-21 2017-09-20 パナソニックIpマネジメント株式会社 Semiconductor device
WO2018015981A1 (en) * 2016-07-21 2018-01-25 パナソニックIpマネジメント株式会社 Semiconductor-sealing resin composition, cured product, and semiconductor device
JP2018016761A (en) * 2016-07-29 2018-02-01 パナソニックIpマネジメント株式会社 Epoxy resin composition for sealing, cured product, and semiconductor device
JP2018016760A (en) * 2016-07-29 2018-02-01 パナソニックIpマネジメント株式会社 Epoxy resin composition for sealing, and method for producing semiconductor device
WO2021210384A1 (en) * 2020-04-14 2021-10-21 サンアプロ株式会社 Epoxy resin composition

Also Published As

Publication number Publication date
JPWO2016120925A1 (en) 2017-11-09
TWI687449B (en) 2020-03-11
JP6640120B2 (en) 2020-02-05
CN107075088A (en) 2017-08-18
KR20170108934A (en) 2017-09-27
KR102378915B1 (en) 2022-03-24
TW201627345A (en) 2016-08-01
CN107075088B (en) 2020-08-11

Similar Documents

Publication Publication Date Title
JP6640120B2 (en) Epoxy resin curing accelerator
JP6023992B1 (en) Epoxy resin composition for sealing, cured product, and semiconductor device
WO2017150090A1 (en) Epoxy resin curing accelerator
JP3672225B2 (en) Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same
JP6917707B2 (en) Epoxy resin curing accelerator
JP5055679B2 (en) Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same
WO2013136746A1 (en) Epoxy resin curing accelerator
JP6678075B2 (en) Epoxy resin curing accelerator
JP3672224B2 (en) Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same
JP2018203916A (en) Epoxy resin composition
JP4595223B2 (en) Thermosetting resin composition, epoxy resin molding material and semiconductor device
JP6857836B2 (en) Epoxy resin composition for encapsulation, cured product, and semiconductor device
JP2003292732A (en) Thermosetting resin composition, epoxy resin molding material and semiconductor device
US6753086B2 (en) Thermosetting resin composition, epoxy resin molding material and semiconductor device
JP4622024B2 (en) Epoxy resin composition and semiconductor device
KR100971062B1 (en) Thermosetting resin composition, epoxy resin forming material and semiconductor apparatus
JP2002284854A (en) Thermosetting resin composition, epoxy resin molding material using the same, and semiconductor device
JP2002284855A (en) Thermosetting resin composition, epoxy resin molding material using the same, and semiconductor device
JP2001253933A (en) Epoxy resin molding material for sealing semiconductor and semiconductor device produced by using the material
JP4617532B2 (en) Epoxy resin composition and semiconductor device
JP2007084702A (en) Phenolic resin salt of tetraalkylphosphonium
JP2003096166A (en) Curing catalyst, resin composition for sealing semiconductor, and semiconductor device
JP2003096165A (en) Thermosetting resin composition, and epoxy resin molding material and semiconductor device made by using the same
JP2000248157A (en) Resin composition for sealing semiconductor and semiconductor device
JP2003105065A (en) Thermosetting resin composition and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177008153

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016571497

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879826

Country of ref document: EP

Kind code of ref document: A1