JP4317432B2 - Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same - Google Patents
Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same Download PDFInfo
- Publication number
- JP4317432B2 JP4317432B2 JP2003406215A JP2003406215A JP4317432B2 JP 4317432 B2 JP4317432 B2 JP 4317432B2 JP 2003406215 A JP2003406215 A JP 2003406215A JP 2003406215 A JP2003406215 A JP 2003406215A JP 4317432 B2 JP4317432 B2 JP 4317432B2
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- component
- resin composition
- semiconductor
- curing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
Landscapes
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Description
本発明は、成形性および硬化性に優れた半導体封止用エポキシ樹脂組成物およびそれを用いた半導体装置に関するものである。 The present invention relates to an epoxy resin composition for semiconductor encapsulation excellent in moldability and curability and a semiconductor device using the same.
従来から、トランジスタ、IC、LSI等の半導体素子は、外部環境からの保護および半導体素子のハンドリングを可能にするという観点から、プラスチックパッケージ、例えば、熱硬化性エポキシ樹脂組成物を用いて封止され半導体装置化されている。 Conventionally, semiconductor elements such as transistors, ICs, and LSIs are sealed using a plastic package, for example, a thermosetting epoxy resin composition, from the viewpoint of enabling protection from the external environment and handling of the semiconductor elements. It is made into a semiconductor device.
上記熱硬化性エポキシ樹脂組成物は、成形時における樹脂の硬化反応を速めるために、一般に硬化促進剤が配合される。上記エポキシ樹脂の硬化促進剤としては、例えば、アミン類、イミダゾール系化合物、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のような含窒素複素環式化合物、ホスフィン系化合物、第4級アンモニウム化合物、ホスホニウム化合物、アルソニウム化合物等が用いられる。 The thermosetting epoxy resin composition is generally blended with a curing accelerator in order to accelerate the curing reaction of the resin during molding. Examples of the epoxy resin curing accelerator include nitrogen-containing heterocyclic compounds such as amines, imidazole compounds, 1,8-diazabicyclo (5,4,0) undecene-7, phosphine compounds, A quaternary ammonium compound, a phosphonium compound, an arsonium compound, or the like is used.
通常、これら硬化促進剤を含有するエポキシ樹脂組成物は、成形時の高温条件下においては速やかに反応が生起し、短時間のうちに硬化が完了するように配合設計されている。このため、成形時において上記エポキシ樹脂組成物が成形金型キャビティー内に完全に充填される前に硬化反応が始まる場合があり、このような状況では、樹脂粘度の上昇や流動性の低下をもたらし、半導体素子とリードフレーム等の外部端子とを接続するボンディングワイヤーの変形や、隣り合ったボンディングワイヤー同士の接触、あるいはボンディングワイヤーの切断といった不具合、さらに樹脂の未充填といった不具合等、成形性における重大な不具合を生じる場合がある。 Usually, the epoxy resin composition containing these curing accelerators is compounded and designed so that the reaction occurs rapidly under the high temperature conditions at the time of molding and the curing is completed within a short time. For this reason, the curing reaction may start before the epoxy resin composition is completely filled into the molding die cavity during molding. In such a situation, the resin viscosity increases or the fluidity decreases. In terms of moldability, such as deformation of bonding wires connecting semiconductor elements and external terminals such as lead frames, defects such as contact between adjacent bonding wires, or cutting of bonding wires, and defects such as unfilled resin Serious malfunction may occur.
このような不具合を回避する方法としては、例えば、マイクロカプセル型硬化促進剤を用いることにより硬化反応の開始を遅らせる方法が採られている(特許文献1参照)。
しかしながら、上記のような方法では、硬化反応の進行が遅くなることによる生産性の大幅な低下や、硬化物自身の硬度および強度が不充分となるという問題があった。 However, the above-described method has a problem that the productivity is greatly lowered due to the slow progress of the curing reaction, and the hardness and strength of the cured product itself are insufficient.
本発明は、このような事情に鑑みなされたもので、成形性および硬化性に優れた半導体封止用エポキシ樹脂組成物およびそれを用いた半導体装置の提供をその目的とする。 This invention is made | formed in view of such a situation, The objective is to provide the epoxy resin composition for semiconductor sealing excellent in moldability and sclerosis | hardenability, and a semiconductor device using the same.
上記の目的を達成するため、本発明は、下記の(A)〜(D)成分を含有する半導体封止用エポキシ樹脂組成物を第1の要旨とする。
(A)エポキシ樹脂。
(B)フェノール樹脂。
(C)下記の一般式(1)で表される、軟化点が100〜200℃の範囲であるテトラ置換ホスホニウム−フェノール樹脂塩化合物。
(A) Epoxy resin.
(B) Phenolic resin.
(C) A tetra-substituted phosphonium-phenol resin salt compound represented by the following general formula (1) having a softening point in the range of 100 to 200 ° C.
そして、本発明は、上記半導体封止用エポキシ樹脂組成物を用いて半導体素子を樹脂封止してなる半導体装置を第2の要旨とする。 And this invention makes the 2nd summary the semiconductor device formed by resin-sealing a semiconductor element using the said epoxy resin composition for semiconductor sealing.
すなわち、本発明者らは、適正な硬化反応を生じ、優れた成形性を備えた封止材料となるエポキシ樹脂組成物を得るために鋭意検討を重ねた。その過程で、配合材料として用いられ硬化反応に大きく寄与する硬化促進剤自身に着目し、硬化促進剤としての作用を奏する化合物を中心に研究を重ねた。その結果、硬化促進剤として上記一般式(1)で表される、軟化点が特定範囲のテトラ置換ホスホニウム−フェノール樹脂塩化合物を用いると、適切な硬化反応に制御可能となり良好な硬化性が得られるとともに優れた流動性が得られることを見出し本発明に到達した。 That is, the present inventors have intensively studied in order to obtain an epoxy resin composition that causes an appropriate curing reaction and becomes a sealing material having excellent moldability. In the process, we focused on the curing accelerator itself, which is used as a compounding material and greatly contributes to the curing reaction, and researched mainly on compounds that act as a curing accelerator. As a result, when a tetra-substituted phosphonium-phenol resin salt compound having a softening point in a specific range represented by the general formula (1) as a curing accelerator is used, it can be controlled to an appropriate curing reaction and good curability is obtained. As a result, the present inventors have found that excellent fluidity can be obtained.
以上のように、本発明は、上記一般式(1)で表される、特定のテトラ置換ホスホニウム−フェノール樹脂塩化合物〔(C)成分〕を用いてなる半導体封止用エポキシ樹脂組成物である。このため、適切な硬化反応とともに良好な流動性が付与され優れた成形性および硬化性が得られる。したがって、本発明の半導体封止用エポキシ樹脂組成物を用いて得られる半導体装置は、パッケージ内のボンディングワイヤーの変形や切断等といった不具合もなく信頼性に優れたものである。 As described above, the present invention is an epoxy resin composition for encapsulating a semiconductor using the specific tetra-substituted phosphonium-phenol resin salt compound [(C) component] represented by the general formula (1). . For this reason, good fluidity is imparted with an appropriate curing reaction, and excellent moldability and curability are obtained. Therefore, the semiconductor device obtained using the epoxy resin composition for semiconductor encapsulation of the present invention is excellent in reliability without problems such as deformation and cutting of the bonding wire in the package.
そして、エポキシ樹脂としてビフェニル基を有するエポキシ樹脂を用いると、硬化物の低吸湿化による一層の信頼性の向上が図られる。 And if the epoxy resin which has a biphenyl group is used as an epoxy resin, the improvement of the further reliability by the moisture absorption reduction of hardened | cured material will be aimed at.
本発明の半導体封止用エポキシ樹脂組成物は、エポキシ樹脂(A成分)と、フェノール樹脂(B成分)と、特定の硬化促進剤(C成分)と、無機質充填剤(D成分)を用いて得られ、通常、粉末状もしくはこれを打錠したタブレット状になっている。 The epoxy resin composition for semiconductor encapsulation of the present invention uses an epoxy resin (A component), a phenol resin (B component), a specific curing accelerator (C component), and an inorganic filler (D component). Usually, it is in the form of a powder or a tablet obtained by tableting this.
本発明に用いるエポキシ樹脂(A成分)は、特に限定されるものではなく1分子内にエポキシ基を2個以上有する化合物が用いられる。例えば、ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂等があげられる。これらは単独でもしくは2種以上併せて用いられる。これらエポキシ樹脂の中でも、ビフェニル型エポキシ樹脂や低級アルキル基をフェニル環に付加したような低吸湿型のエポキシ樹脂を用いることが信頼性の点から好ましい。このようなエポキシ樹脂としては、エポキシ当量150〜250、軟化点もしくは融点が50〜130℃のものが好ましい。 The epoxy resin (component A) used in the present invention is not particularly limited, and a compound having two or more epoxy groups in one molecule is used. For example, bisphenol A type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin and the like can be mentioned. These may be used alone or in combination of two or more. Among these epoxy resins, it is preferable from the viewpoint of reliability to use a biphenyl type epoxy resin or a low moisture absorption type epoxy resin in which a lower alkyl group is added to the phenyl ring. Such an epoxy resin preferably has an epoxy equivalent of 150 to 250 and a softening point or melting point of 50 to 130 ° C.
上記エポキシ樹脂(A成分)とともに用いられるフェノール樹脂(B成分)は、上記エポキシ樹脂の硬化剤としての作用を奏するものであり、特に限定するものではなく1分子内に2個以上のフェノール性水酸基を有するモノマー、オリゴマー、ポリマー全般をいう。例えば、フェノールノボラック、クレゾールノボラック、ビフェニル型ノボラック、トリフェニルメタン型、ナフトールノボラック、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂等があげられ、これらは単独でもしくは2種以上併せて用いられる。なかでも、フェノールアラルキル樹脂やビフェニルアラルキル樹脂のような低吸湿性のものを用いることが信頼性の点から好ましい。 The phenol resin (component B) used together with the epoxy resin (component A) serves as a curing agent for the epoxy resin, and is not particularly limited, and two or more phenolic hydroxyl groups in one molecule. Monomers, oligomers, and polymers in general. Examples thereof include phenol novolak, cresol novolak, biphenyl type novolak, triphenylmethane type, naphthol novolak, phenol aralkyl resin, biphenyl aralkyl resin and the like, and these are used alone or in combination of two or more. Among them, it is preferable from the viewpoint of reliability to use a low hygroscopic material such as a phenol aralkyl resin or a biphenyl aralkyl resin.
上記エポキシ樹脂(A成分)とフェノール樹脂(B成分)の配合割合は、エポキシ樹脂中のエポキシ基1当量あたり、フェノール樹脂中の水酸基当量が0.5〜2.0当量となるように配合することが好ましい。より好ましくは0.8〜1.2当量である。 The blend ratio of the epoxy resin (component A) and the phenol resin (component B) is blended so that the hydroxyl group equivalent in the phenol resin is 0.5 to 2.0 equivalents per equivalent of epoxy group in the epoxy resin. It is preferable. More preferably, it is 0.8-1.2 equivalent.
上記A成分およびB成分とともに用いられる特定の硬化促進剤(C成分)は、下記の一般式(1)で表される、特定のテトラ置換ホスホニウム−フェノール樹脂塩化合物であり、この特定の硬化促進剤(C成分)を用いることにより成形性および硬化性に優れた半導体封止用エポキシ樹脂組成物が得られるようになる。 The specific curing accelerator (C component) used together with the A component and the B component is a specific tetra-substituted phosphonium-phenol resin salt compound represented by the following general formula (1). By using an agent (component C), an epoxy resin composition for semiconductor encapsulation excellent in moldability and curability can be obtained.
そして、上記一般式(1)で表されるテトラ置換ホスホニウム−フェノール樹脂塩化合物(C成分)は、上記フェノール樹脂部分の構造や分子量を調整することにより種々の軟化点を有するものが得られる。なかでも、本発明のように、軟化点が100℃以上のものは、エポキシ樹脂やフェノール樹脂への溶解性が低いために、これら樹脂との溶融混練時において、例えば、上記C成分と、A成分あるいはB成分とは分子レベルでは均一に混合されず、互いに非相溶状態となる。このため、上記溶融混練後の状態ではエポキシ樹脂組成物としての硬化反応はほとんど進行せず、成形時の高温状態において初めて硬化反応が進行する。したがって、硬化開始の時期は、通常用いられる他の触媒系(硬化促進剤)を用いた場合に比べ遅れることから、いわゆる潜在性を示すようになる。このように潜在性を示す、一般式(1)で表されるテトラ置換ホスホニウム−フェノール樹脂塩化合物(C成分)の軟化点は、100〜200℃の範囲内に設定されなければならず、好ましくは120〜170℃の範囲である。すなわち、軟化点が100℃未満では、上記溶融混練時に、上記C成分と、A成分あるいはB成分とが分子レベルで均一に相溶し、低温での硬化反応が進行しやすいからである。一方、軟化点が200℃を超えると、上記C成分と、A成分あるいはB成分との相溶性が著しく悪化し、成形時に短時間で良好な硬化性を発揮することができなくなるからである。 And the tetra substituted phosphonium-phenol resin salt compound (C component) represented by the said General formula (1) has what has various softening points by adjusting the structure and molecular weight of the said phenol resin part. Among them, as in the present invention, those having a softening point of 100 ° C. or higher have low solubility in epoxy resins and phenol resins. The component or component B is not uniformly mixed at the molecular level, and is incompatible with each other. For this reason, the curing reaction as an epoxy resin composition hardly proceeds in the state after the melt kneading, and the curing reaction proceeds only at a high temperature state at the time of molding. Therefore, since the timing of starting curing is delayed as compared with the case of using other commonly used catalyst systems (curing accelerators), so-called potential is exhibited. Thus, the softening point of the tetra-substituted phosphonium-phenol resin salt compound (C component) represented by the general formula (1) showing the potential must be set within a range of 100 to 200 ° C., preferably Is in the range of 120-170 ° C. That is, when the softening point is less than 100 ° C., the C component and the A component or the B component are uniformly mixed at the molecular level during the melt kneading, and the curing reaction at a low temperature tends to proceed. On the other hand, when the softening point exceeds 200 ° C., the compatibility between the component C and the component A or component B is remarkably deteriorated, and good curability cannot be exhibited in a short time during molding.
このように、一般式(1)で表される、特定の軟化点を有するテトラ置換ホスホニウム−フェノール樹脂塩化合物(C成分)としては、具体的には、トリフェニルメチルホスホニウムイオン−フェノールノボラック樹脂塩があげられる。 Thus, represented by the general formula (1), tetra-substituted phosphonium having a specific softening point - The phenol resin salt compound (C component), specifically, Application Benefits phenylmethyl phosphonium ions - phenol novolak resin Salt .
そして、上記一般式(1)で表される、特定の軟化点を有するテトラ置換ホスホニウム−フェノール樹脂塩化合物(C成分)は、例えば、つぎのようにして製造することができる。すなわち、テトラ置換ホスホニウムハライドとフェノールノボラック樹脂とを所定の割合で塩基性触媒存在下で反応させることによって製造することができる。 And the tetra substituted phosphonium-phenol resin salt compound (C component) which has a specific softening point represented by the said General formula (1) can be manufactured as follows, for example. That is, it can be produced by reacting a tetra-substituted phosphonium halide and a phenol novolac resin at a predetermined ratio in the presence of a basic catalyst.
上記特定の硬化促進剤(C成分)の含有量は、上記フェノール樹脂(B成分)100重量部(以下「部」と略す)に対して1〜20部の範囲に設定することが好ましく、より好ましくは2〜15部である。すなわち、1部未満では、目的とするエポキシ樹脂(A成分)とフェノール樹脂(B成分)との硬化反応が進み難いため、充分な硬化性を得ることが困難となり、20部を超えると、硬化反応が速過ぎて成形性を損なう傾向がみられるからである。 The content of the specific curing accelerator (component C) is preferably set in the range of 1 to 20 parts with respect to 100 parts by weight (hereinafter abbreviated as “part”) of the phenol resin (component B). Preferably it is 2-15 parts. That is, if it is less than 1 part, the curing reaction between the target epoxy resin (component A) and the phenol resin (component B) is difficult to proceed, so it becomes difficult to obtain sufficient curability. This is because the reaction tends to be too fast and the moldability tends to be impaired.
また、本発明においては、上記特定の硬化促進剤(C成分)とともに、従来公知の各種硬化促進剤を本発明の特性を損なわない範囲で併用してもよい。上記従来公知の各種硬化促進剤としては、例えば、トリアリールホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、2−メチルイミダゾール等のイミダゾール類、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等があげられる。これらは単独でもしくは2種以上併せて用いられる。なお、上記従来公知の各種硬化促進剤を併用する場合には、具体的には、この各種硬化促進剤の含有量を硬化促進剤成分全体の50重量%以下に設定することが好ましい。 Moreover, in this invention, you may use together conventionally well-known various hardening accelerators in the range which does not impair the characteristic of this invention with the said specific hardening accelerator (C component). Examples of the conventionally known various curing accelerators include triarylphosphines, tetraphenylphosphonium / tetraphenylborate, imidazoles such as 2-methylimidazole, 1,8-diazabicyclo (5,4,0) undecene-7. Etc. These may be used alone or in combination of two or more. In addition, when using the said conventionally well-known various hardening accelerator together, specifically, it is preferable to set content of this various hardening accelerator to 50 weight% or less of the whole hardening accelerator component.
上記A〜C成分とともに用いられる無機質充填剤(D成分)としては、特に限定するものではなく従来公知の各種充填剤が用いられる。例えば、溶融シリカ粉末や結晶性シリカ粉末等のシリカ粉末、アルミナ粉末、タルク等があげられる。これら無機質充填剤は、破砕状、球状、あるいは摩砕処理したもの等いずれのものでも使用可能である。なかでも、球状溶融シリカ粉末を用いることが好ましい。そして、これら無機質充填剤は単独でもしくは2種以上併せて用いられる。上記無機質充填剤(D成分)としては、平均粒径が5〜40μmの範囲のものを用いることが、流動性を良好にするという点から好ましい。上記平均粒径の測定は、例えば、レーザー回折散乱式粒度分布測定装置により測定することができる。 It does not specifically limit as an inorganic filler (D component) used with the said AC component, Various conventionally well-known fillers are used. Examples thereof include silica powder such as fused silica powder and crystalline silica powder, alumina powder, talc and the like. These inorganic fillers can be used in any form such as crushed, spherical, or ground. Of these, spherical fused silica powder is preferably used. And these inorganic fillers are used individually or in combination of 2 or more types. As said inorganic filler (D component), it is preferable to use a thing with the average particle diameter of the range of 5-40 micrometers from the point of making fluidity | liquidity favorable. The average particle size can be measured, for example, with a laser diffraction / scattering particle size distribution analyzer.
そして、上記無機質充填剤(D成分)の含有量は、エポキシ樹脂組成物全体の70〜95重量%の範囲に設定する必要がある。特に好ましくは85〜92重量%の範囲である。すなわち、70重量%未満では、エポキシ樹脂組成物の粘度が低くなりすぎて成形時の外観不良(ボイド)が発生し、95重量%を超えると、流動性が低下し、ワイヤー流れや未充填が発生するからである。 And it is necessary to set content of the said inorganic filler (D component) in the range of 70 to 95 weight% of the whole epoxy resin composition. Especially preferably, it is the range of 85-92 weight%. That is, if it is less than 70% by weight, the viscosity of the epoxy resin composition becomes too low, resulting in poor appearance (void) at the time of molding. This is because it occurs.
なお、本発明の半導体封止用エポキシ樹脂組成物では、上記A〜D成分に加えて、シランカップリング剤、難燃剤、難燃助剤、離型剤、イオントラップ剤、カーボンブラック等の顔料や着色料、低応力化剤、粘着付与剤等の他の添加剤を適宜配合することができる。 In the epoxy resin composition for semiconductor encapsulation of the present invention, in addition to the above components A to D, pigments such as silane coupling agents, flame retardants, flame retardant aids, mold release agents, ion trap agents, carbon black, etc. And other additives such as coloring agents, stress reducing agents, tackifiers and the like can be appropriately blended.
上記シランカップリング剤としては、特に限定するものではなく各種シランカップリング剤を用いることができ、なかでも2個以上のアルコキシ基を有するものが好適に用いられる。具体的には、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−アニリノプロピルトリメトキシシラン、ヘキサメチルジシラザン等があげられる。これらは単独でもしくは2種以上併せて用いられる。 The silane coupling agent is not particularly limited, and various silane coupling agents can be used. Among them, those having two or more alkoxy groups are preferably used. Specifically, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxy Examples thereof include silane, γ-mercaptopropylmethyldimethoxysilane, γ-anilinopropyltrimethoxysilane, and hexamethyldisilazane. These may be used alone or in combination of two or more.
上記難燃剤としては、ノボラック型ブロム化エポキシ樹脂や金属水酸化物等があげられ、さらに上記難燃助剤としては、三酸化二アンチモンや五酸化二アンチモン等が用いられる。これらは単独でもしくは2種以上併せて用いられる。 Examples of the flame retardant include novolak-type brominated epoxy resins and metal hydroxides, and examples of the flame retardant aid include diantimony trioxide and diantimony pentoxide. These may be used alone or in combination of two or more.
上記離型剤としては、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸カルシウム等の化合物があげられ、例えば、カルナバワックスやポリエチレン系ワックスが用いられ、これらは単独でもしくは2種以上併せて用いられる。 Examples of the releasing agent include compounds such as higher fatty acids, higher fatty acid esters, higher fatty acid calcium, and the like. For example, carnauba wax and polyethylene wax are used, and these are used alone or in combination of two or more.
上記イオントラップ剤としては、イオントラップ能力を有する公知の化合物全てが使用でき、例えば、ハイドロタルサイト類、水酸化ビスマス等が用いられる。 As said ion trap agent, all the well-known compounds which have ion trap ability can be used, for example, hydrotalcites, bismuth hydroxide, etc. are used.
また、上記低応力化剤としては、アクリル酸メチル−ブタジエン−スチレン共重合体、メタクリル酸メチル−ブタジエン−スチレン共重合体等のブタジエン系ゴムやシリコーン化合物があげられる。 Examples of the stress reducing agent include butadiene rubbers such as methyl acrylate-butadiene-styrene copolymer and methyl methacrylate-butadiene-styrene copolymer, and silicone compounds.
本発明の半導体封止用エポキシ樹脂組成物は、例えば、つぎのようにして製造することができる。すなわち、上記A〜D成分および必要に応じて他の添加剤を配合し混合した後、熱ロールやニーダー等の混練機にかけ加熱状態で溶融混合し、これを室温に冷却した後、公知の手段によって粉砕し、必要に応じて打錠するという一連の工程により製造することができる。 The epoxy resin composition for semiconductor encapsulation of the present invention can be produced, for example, as follows. That is, after mixing and mixing the above components A to D and other additives as required, the mixture is melted and mixed in a heated state in a kneader such as a hot roll or a kneader, cooled to room temperature, and then known means. Can be produced by a series of steps of pulverizing and tableting as necessary.
このようなエポキシ樹脂組成物を用いての半導体素子の封止は、特に制限するものではなく、通常のトランスファー成形等の公知のモールド方法により行うことができる。 The sealing of the semiconductor element using such an epoxy resin composition is not particularly limited, and can be performed by a known molding method such as normal transfer molding.
つぎに、実施例について比較例と併せて説明する。 Next, examples will be described together with comparative examples.
まず、実施例に先立って下記に示す各成分を準備した。 First, the following components were prepared prior to the examples.
〔エポキシ樹脂〕
ビフェニル型エポキシ樹脂(エポキシ当量192、融点105℃)
〔Epoxy resin〕
Biphenyl type epoxy resin (epoxy equivalent 192, melting point 105 ° C)
〔フェノール樹脂a〕
ビフェニルアラルキル型フェノール樹脂(水酸基当量203、軟化点65℃)
[Phenolic resin a]
Biphenyl aralkyl type phenolic resin (hydroxyl equivalent 203, softening point 65 ° C)
〔フェノール樹脂b〕
フェノールノボラック樹脂(水酸基当量104、軟化点60℃)
[Phenolic resin b]
Phenol novolac resin (hydroxyl equivalent 104, softening point 60 ° C)
〔硬化促進剤a〕
トリフェニルメチルホスホニウムイオン−フェノールノボラック樹脂塩(軟化点101℃)
[Curing accelerator a]
Triphenylmethylphosphonium ion-phenol novolac resin salt (softening point 101 ° C.)
〔硬化促進剤b〕
トリフェニルメチルホスホニウムイオン−フェノールノボラック樹脂塩(軟化点131℃)
[Curing accelerator b]
Triphenylmethylphosphonium ion-phenol novolak resin salt (softening point 131 ° C.)
〔硬化促進剤c〕
トリフェニルメチルホスホニウムイオン−フェノールノボラック樹脂塩(軟化点143℃)
[Curing accelerator c]
Triphenylmethylphosphonium ion-phenol novolak resin salt (softening point 143 ° C.)
〔硬化促進剤d〕
トリフェニルメチルホスホニウムイオン−フェノールノボラック樹脂塩(軟化点190℃)
[Curing accelerator d]
Triphenylmethylphosphonium ion-phenol novolak resin salt (softening point 190 ° C)
〔硬化促進剤e〕
トリフェニルメチルホスホニウムイオン−フェノールノボラック樹脂塩(軟化点90℃)
[Curing accelerator e]
Triphenylmethylphosphonium ion-phenol novolak resin salt (softening point 90 ° C)
〔硬化促進剤f〕
トリフェニルメチルホスホニウムイオン−フェノールノボラック樹脂塩(軟化点210℃)
[Curing accelerator f]
Triphenylmethylphosphonium ion-phenol novolak resin salt (softening point 210 ° C.)
〔硬化促進剤g〕
トリフェニルホスフィン
[Curing accelerator g]
Triphenylphosphine
〔硬化促進剤h〕
テトラフェニルホスホニウム・テトラフェニルボレート
[Curing accelerator h]
Tetraphenylphosphonium ・ tetraphenylborate
〔無機質充填剤〕
球状溶融シリカ粉末(平均粒径13μm)
[Inorganic filler]
Spherical fused silica powder (average particle size 13μm)
〔顔料〕
カーボンブラック
[Pigment]
Carbon black
〔難燃剤〕
水酸化マグネシウム
〔Flame retardants〕
Magnesium hydroxide
〔シランカップリング剤〕
3−メタクリロキシプロピルトリメトキシシラン
〔Silane coupling agent〕
3-Methacryloxypropyltrimethoxysilane
〔離型剤〕
酸化ポリエチレンワックス
〔Release agent〕
Oxidized polyethylene wax
〔実施例1〜8、比較例1〜4〕
下記の表1〜表2に示す各原料を同表に示す割合で配合しミキサーで充分混合した後、2軸混練機を用い100℃で2分間溶融混練した。つぎに、この溶融物を冷却した後粉砕することにより目的とする粉末状エポキシ樹脂組成物を作製した。なお、比較例2においては、硬化促進剤であるテトラフェニルホスホニウム・テトラフェニルボレートと、ビフェニルアラルキル型フェノール樹脂およびフェノールノボラック樹脂とを予め180℃×1時間で予備混合した後、この予備混合物と残りの配合成分とをミキサーで充分混合した後、2軸混練機を用い100℃で2分間溶融混練した。そして、この溶融物を冷却した後粉砕することにより目的とする粉末状エポキシ樹脂組成物を作製した。
[Examples 1-8, Comparative Examples 1-4]
The raw materials shown in Tables 1 and 2 below were blended in the proportions shown in the same table and mixed thoroughly with a mixer, and then melt kneaded at 100 ° C. for 2 minutes using a biaxial kneader. Next, the melted product was cooled and then pulverized to produce a desired powdery epoxy resin composition. In Comparative Example 2, tetraphenylphosphonium tetraphenylborate which is a curing accelerator, biphenylaralkyl type phenol resin and phenol novolac resin were preliminarily mixed at 180 ° C. for 1 hour, and then this premixed mixture and the rest Then, the blended components were sufficiently mixed with a mixer, and then melt kneaded at 100 ° C. for 2 minutes using a biaxial kneader. And after cooling this melt, the target powdery epoxy resin composition was produced by grind | pulverizing.
得られた各エポキシ樹脂組成物を用い、下記の方法にしたがって特性(ゲル化時間、硬化立ち上がり時間、熱時硬度)を測定・評価した。また、上記各エポキシ樹脂組成物を用いて半導体装置を製造し、このときの金線ワイヤー流れの状況を下記の方法にしたがって測定・評価した。これらの結果を下記の表3〜表4に示した。 Using the obtained epoxy resin compositions, characteristics (gelation time, curing rise time, hot hardness) were measured and evaluated according to the following methods. Moreover, the semiconductor device was manufactured using each said epoxy resin composition, and the condition of the gold wire flow at this time was measured and evaluated according to the following method. These results are shown in Tables 3 to 4 below.
〔ゲル化時間〕
175℃の熱板上でエポキシ樹脂組成物を溶融させ、ゲル化するまでの時間を測定した。
[Gelification time]
The time until the epoxy resin composition was melted and gelled on a hot plate at 175 ° C. was measured.
〔硬化立ち上がり時間〕
キュラストメーター(オリエンテック社製、JSRキュラストメーターIVPS型)を用い、ダイス温度175℃、振幅±1°、振動数100cpmで、トルク値が0.02N・mに到達した点を硬化の立ち上がり時間とした。
[Curing rise time]
Using a curast meter (Orientec Co., Ltd., JSR curast meter IVPS type), at the point where the torque value reached 0.02 N · m at a die temperature of 175 ° C., an amplitude of ± 1 °, and a vibration frequency of 100 cpm. It was time.
〔熱時硬度〕
金型温度175℃、硬化時間90秒で成形し、型開き10秒後にショアD硬度計を用いて測定したショアD硬度の値を熱時硬度とした。すなわち、熱時硬度の値が高いほど硬化性が良好であるといえる。
[Hardness during heating]
Molding was performed at a mold temperature of 175 ° C. and a curing time of 90 seconds, and the value of Shore D hardness measured using a Shore D hardness meter after 10 seconds of mold opening was taken as the hot hardness. That is, it can be said that the higher the value of the hardness at heat, the better the curability.
〔金線ワイヤー流れ〕
上記実施例および比較例で得られたエポキシ樹脂組成物を用い、金線ワイヤー(ワイヤー径23μm、ワイヤー長6mm)を張ったLQFP−144(大きさ:20mm×20mm×厚み1.4mm)を、TOWA社製の自動成型機(CPS−40L)により成形(条件:175℃×90秒)し、175℃×5時間で後硬化することにより半導体装置を得た。すなわち、上記半導体装置の作製時において、図1に示すように、ダイパッド1を有するLQFPのパッケージフレームに金線ワイヤー2を張り、これを用い上記エポキシ樹脂組成物により樹脂封止してパッケージを作製した。図1において、3は半導体チップ、4はリードピンである。そして、作製したパッケージを軟X線解析装置を用いて、金線ワイヤー流れ量を測定した。測定は、各パッケージから10本ずつ金線ワイヤーを選定して測定し、図2に示すように、正面方向からの金線ワイヤー2の流れ量を測定した。そして、金線ワイヤー2の流れ量の最大部分となる値をそのパッケージの金線ワイヤー流れ量の値(dmm)とし、金線流れ率〔(d/L)×100〕を算出した。なお、Lは金線ワイヤー2間の距離(mm)を示す。そして、上記金線流れ率が6%以上のものを×、6%未満のものを○として表示した。
[Gold wire flow]
Using the epoxy resin compositions obtained in the above examples and comparative examples, LQFP-144 (size: 20 mm × 20 mm × thickness 1.4 mm) with a gold wire (wire diameter 23 μm, wire length 6 mm), A semiconductor device was obtained by molding (condition: 175 ° C. × 90 seconds) with an automatic molding machine (CPS-40L) manufactured by TOWA and post-curing at 175 ° C. × 5 hours. That is, at the time of manufacturing the semiconductor device, as shown in FIG. 1, a gold wire 2 is stretched on an LQFP package frame having a die pad 1, and this is used to seal the resin with the epoxy resin composition to manufacture a package. did. In FIG. 1, 3 is a semiconductor chip and 4 is a lead pin. And the produced wire package was measured for the amount of gold wire flow using a soft X-ray analyzer. The measurement was performed by selecting 10 wire wires from each package and measuring the flow amount of the gold wire 2 from the front direction as shown in FIG. And the value which becomes the maximum part of the flow quantity of the gold wire 2 was made into the value (dmm) of the gold wire flow quantity of the package, and gold wire flow rate [(d / L) * 100] was computed. L indicates the distance (mm) between the gold wire 2. And the thing with the said gold wire flow rate of 6% or more was displayed as x, and the thing below 6% was displayed as (circle).
上記結果から、実施例品は、硬化立ち上がり時間も適当な時間であり、熱硬度も高く、金線ワイヤー流れに関しても良好な結果が得られた。このことから、実施例品は、成形性および硬化性の双方に優れたものであることがわかる。 From the above results, the product of the example had an appropriate curing rise time, high thermal hardness, and good results with respect to gold wire flow. From this, it can be seen that the example products are excellent in both moldability and curability.
これに対して、従来の硬化促進剤を配合した比較例1,2品は、ゲル化時間および硬化立ち上がり時間ともに短く、熱時硬度も低かった。さらに、金線ワイヤー流れに関しても劣る結果が得られた。また、軟化点が100〜200℃の範囲を外れた硬化促進剤e,fを用いた比較例3,4品のうち、比較例3品は、熱時硬度が高かったが、金線ワイヤー流れに劣っていた。また、比較例4品は、金線ワイヤー流れは良好であったが、熱時硬度が低く硬化性も悪かった。 On the other hand, Comparative Examples 1 and 2 blended with conventional curing accelerators had both a short gelation time and a curing rise time, and a low heat hardness. Furthermore, inferior results were obtained with respect to gold wire flow. Moreover, among the comparative examples 3 and 4 using the curing accelerators e and f whose softening point was out of the range of 100 to 200 ° C., the comparative example 3 had high heat hardness, but the wire wire flow It was inferior to. Moreover, although the comparative example 4 goods had the favorable gold | metal wire flow, the hardness at the time of heat was low and sclerosis | hardenability was also bad.
Claims (3)
(A)エポキシ樹脂。
(B)フェノール樹脂。
(C)下記の一般式(1)で表される、軟化点が100〜200℃の範囲であるテトラ置換ホスホニウム−フェノール樹脂塩化合物。
(A) Epoxy resin.
(B) Phenolic resin.
(C) A tetra-substituted phosphonium-phenol resin salt compound represented by the following general formula (1) having a softening point in the range of 100 to 200 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003406215A JP4317432B2 (en) | 2003-12-04 | 2003-12-04 | Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003406215A JP4317432B2 (en) | 2003-12-04 | 2003-12-04 | Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005162944A JP2005162944A (en) | 2005-06-23 |
JP4317432B2 true JP4317432B2 (en) | 2009-08-19 |
Family
ID=34728655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003406215A Expired - Fee Related JP4317432B2 (en) | 2003-12-04 | 2003-12-04 | Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4317432B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007084702A (en) * | 2005-09-22 | 2007-04-05 | San Apro Kk | Phenolic resin salt of tetraalkylphosphonium |
JP2013216871A (en) * | 2012-03-12 | 2013-10-24 | San Apro Kk | Epoxy resin curing accelerator |
CN107207707B (en) | 2015-01-30 | 2019-08-02 | 松下知识产权经营株式会社 | Encapsulating epoxy resin composition, solidfied material and semiconductor device |
KR102378915B1 (en) | 2015-01-30 | 2022-03-24 | 산아프로 가부시키가이샤 | Epoxy resin curing accelerator |
WO2018015981A1 (en) * | 2016-07-21 | 2018-01-25 | パナソニックIpマネジメント株式会社 | Semiconductor-sealing resin composition, cured product, and semiconductor device |
-
2003
- 2003-12-04 JP JP2003406215A patent/JP4317432B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005162944A (en) | 2005-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9633922B2 (en) | Sealing epoxy resin composition, hardened product, and semiconductor device | |
JP5742723B2 (en) | Mold for measuring fluid characteristics, method for measuring fluid characteristics, resin composition for semiconductor encapsulation, and method for manufacturing semiconductor device | |
JP5899498B2 (en) | Epoxy resin composition for semiconductor encapsulation, method for producing the same, and semiconductor device | |
KR101748888B1 (en) | Method of manufacturing semiconductor device | |
JP4404051B2 (en) | Semiconductor sealing resin composition and semiconductor device using the same | |
JP4317432B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same | |
JP2005239892A (en) | Resin composition for semiconductor encapsulation and semiconductor device using the same | |
JP2005162943A (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device produced by using the same | |
JP4452071B2 (en) | Method for producing epoxy resin composition for semiconductor encapsulation | |
JPH11116775A (en) | Epoxy resin composition for semiconductor sealing and production thereof | |
JP4105344B2 (en) | Method for producing epoxy resin composition for semiconductor encapsulation | |
JP2593503B2 (en) | Epoxy resin composition and resin-sealed semiconductor device using the same | |
JP2006249149A (en) | Manufacturing method of epoxy resin composition for sealing semiconductor, epoxy resin composition for sealing semiconductor obtained thereby and semiconductor device using it | |
JP4850599B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device obtained using the same | |
JP2003213095A (en) | Epoxy resin composition and semiconductor device | |
JP3919162B2 (en) | Epoxy resin composition and semiconductor device | |
JP2008007562A (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device obtained by using the same | |
JP4724947B2 (en) | Epoxy resin molding material manufacturing method and semiconductor device | |
JP3417283B2 (en) | Epoxy resin composition for sealing and semiconductor device sealing method | |
JP2008184544A (en) | Resin composition for sealing semiconductor and semiconductor device obtained using the same | |
JP2000248158A (en) | Production of epoxy resin composition for sealing semiconductor | |
JP2003213094A (en) | Epoxy resin composition and semiconductor device | |
JP3478380B2 (en) | Epoxy resin composition and semiconductor device | |
JP4362885B2 (en) | Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device | |
JP2002206016A (en) | Resin composition for sealing semiconductor and semiconductor device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080916 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20081028 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20081031 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090512 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090522 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4317432 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120529 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120529 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150529 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |