JP3672225B2 - Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same - Google Patents

Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same Download PDF

Info

Publication number
JP3672225B2
JP3672225B2 JP28044799A JP28044799A JP3672225B2 JP 3672225 B2 JP3672225 B2 JP 3672225B2 JP 28044799 A JP28044799 A JP 28044799A JP 28044799 A JP28044799 A JP 28044799A JP 3672225 B2 JP3672225 B2 JP 3672225B2
Authority
JP
Japan
Prior art keywords
group
compound
molecule
molecular compound
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28044799A
Other languages
Japanese (ja)
Other versions
JP2001098053A (en
Inventor
義幸 郷
澄也 三宅
永田  寛
明子 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP28044799A priority Critical patent/JP3672225B2/en
Publication of JP2001098053A publication Critical patent/JP2001098053A/en
Application granted granted Critical
Publication of JP3672225B2 publication Critical patent/JP3672225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、硬化性と保存性が良好で、電気・電子材料分野に有用な熱硬化性樹脂組成物、および、これを用いたエポキシ樹脂成形材料、ならびにその硬化物にて封止された半導体装置に関するものである。
【0002】
【従来の技術】
電気・電子材料、特に、IC封止材料は、近年、生産効率の向上を目的とした速硬化性と、物流・保管時のハンドリング性向上のための保存性の向上とが、求められるようになってきている。
【0003】
従来、電子電気分野向けエポキシ樹脂には、硬化触媒として、アミン類、イミダゾール系化合物、ジアザビシクロウンデセンなどの含窒素複素環式化合物、第四級アンモニウム、ホスホニウムあるいはアルソニウム化合物などの種々の化合物が使用されている。
【0004】
これら一般に使用される硬化触媒は、常温などの比較的低温においても、硬化促進作用を示す場合が多い。このことは、樹脂組成物の製造および保存時の粘度上昇や、流動性の低下、硬化性のばらつきなど、製品としての品質を低下させる原因となっている。
【0005】
この問題を解決すべく、近年では、低温での粘度、流動性の経時変化を抑え、賦形、成形時の加熱によってのみ、硬化反応を起こすような、いわゆる潜伏性硬化促進剤の研究が盛んになされている。その手段として、硬化促進剤の活性点をイオン対により保護することで、潜伏性を発現する研究がなされており、特開平8−41290号公報では、種々の有機酸とホスホニウムイオンとの塩構造を有する潜伏性硬化促進剤が提示されている。しかし、このホスホニウム塩は、特定の高次の分子構造を有さず、イオン対が比較的容易に外部環境の影響を受けるため、近年の低分子エポキシ樹脂やフェノールアラルキル樹脂のような分子の動きやすい硬化剤を用いる半導体封止材料では、保存性が低下する問題が生じている。
【0006】
【発明が解決しようとする課題】
本発明は、硬化性と保存性が良好で、電気・電子材料分野に有用な熱硬化性樹脂組成物、および、これを用いたエポキシ樹脂成形材料、ならびにその硬化物にて封止された耐湿信頼性に優れる半導体装置を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明者らは、1分子内にエポキシ基を2個以上有する化合物、1分子内にフェノール性水酸基を2個以上有する化合物と共に、特定構造の分子化合物を用いることにより、優れた硬化性と保存性を有する樹脂組成物、およびエポキシ樹脂成形材料が得られ、さらには高い耐湿信頼性を有する半導体装置が得られることを見いだし、本発明を完成するに至った。
【0008】
すなわち、本発明は、1分子内にエポキシ基を2個以上有する化合物(A)、1分子内にフェノール性水酸基を2個以上有する化合物(B)、および、一般式(1)で表される分子化合物(C)を必須成分とすることを特徴とする熱硬化性樹脂組成物、
【0009】
【化5】

Figure 0003672225
【0011】
(ただし、Pはリン原子、R1、R2、R3およびR4は置換もしくは無置換の芳香族基、またはアルキル基、 1 2価の芳香族基、Bはエーテル基、スルホン基、スルフィド基、カルボニル基等から選ばれる2価の置換基を表す。)
【0012】
また、分子化合物(C)が、一般式(3)で表される分子化合物である前記の熱硬化性樹脂組成物、
【0013】
【化7】
Figure 0003672225
【0015】
(ただし、Pはリン原子、R1、R2、R3およびR4は置換もしくは無置換の芳香族基、またはアルキル基を表し、R5、R6、R7およびR8 は水素原子またはハロゲン原子または炭素原子数1〜6で構成される1価の有機基を表す。Xはエーテル基、スルホン基、スルフィド基、カルボニル基等から選ばれる2価の置換基を表す。)
【0016】
また、1分子内にエポキシ基を2個以上有する化合物(A)、1分子内にフェノール性水酸基を2個以上有する化合物(B)、一般式(1)で表される分子化合物(C)、さらには一般式(3)で表される分子化合物(C)、および無機充填材(D)を必須成分とすることを特徴とするエポキシ樹脂成形材料、ならびにその硬化物にて封止された半導体装置である。
【0017】
【発明の実施の形態】
本発明に用いる1分子内にエポキシ基を2個以上有する化合物(A)は、1分子内にエポキシ基を2個以上有するものであれば、何ら制限はなく、例えば、ビフェニル型エポキシ樹脂、ノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂など、ビフェノールなどのフェノール類やフェノール樹脂、ナフトール類などの水酸基にエピクロロヒドリンを反応させて製造するエポキシ樹脂、エポキシ化合物などが挙げられる。その他に、脂環式エポキシ樹脂のようにオレフィンを過酸を用いて酸化させエポキシ化したエポキシ樹脂や、ハイドロキノン等のジヒドロキシベンゼン類をエピクロロヒドリンでエポキシ化したものが挙げられる。
【0018】
また、1分子内にフェノール性水酸基を2個以上有する化合物(B)は、1分子内にエポキシ基を2個以上有する化合物(A)の硬化剤として作用するものである。具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、アルキル変性ノボラック樹脂(シクロアルケンの二重結合をフリーデルクラフツ型の反応でフェノール類と反応、共縮合した樹脂を含む)、フェノールアラルキル樹脂、ナフトール類とフェノール類をカルボニル基含有化合物と共縮合した樹脂などが例示されるが、1分子内で芳香族性の環に結合する水素原子が、水酸基で2個以上置換された化合物であればよい。
【0019】
本発明において硬化促進剤として機能する分子化合物(C)は、一般式(1)、さらには一般式(3)で表されるテトラ置換ホスホニウムとフェノール化合物との分子会合体である。この分子化合物は、1個のテトラ置換ホスホニウムカチオンと、3個のフェノール性水酸基および1個のフェノキシドアニオンの単位で構成され、テトラ置換ホスホニウムイオンの正電荷の周囲を3個のフェノール性水酸基と1個のフェノキシドアニオンが取り囲み、安定化した構造となっているものと考えられる。
【0020】
このような構造をとりうるホスホニウムイオンは、置換または無置換のアリール基やアルキル基を置換基にもつテトラ置換ホスホニウムイオンが、熱や、加水分解に対して安定であり好ましく、具体的には、テトラフェニルホスホニウム、テトラトリルホスホニウムなどのテトラアリール置換ホスホニウム、トリフェニルメチルホスニウムなどのトリアリールホスフィンとアルキルハライドから合成されたホスホニウムハライドに起源をもつトリアリールモノアルキルホスホニウム、テトラブチルホスホニウムなどのテトラアルキル置換ホスホニウムなどが例示される。
【0021】
また、分子化合物(C)を形成するもう一方の成分である、フェノール化合物としては、ビスフェノールS(2,2-ビス(4-ヒドロキシフェニル)スルホン)、ビス(4-ヒドロキシフェニル)メタノンなどのビスフェノール類が例示されるが、分子化合物の安定性や硬化性、硬化物物性の点で、ビスフェノールSが好適である。
【0022】
分子化合物(C)は、前述のようなフェノール化合物と、最終的に脱ハロゲン化水素を助ける塩基、例えば水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物や、ピリジン、トリエチルアミンなどの有機塩基をアルコールなどの溶媒に溶解し、続いて適当な溶媒に溶解した前記テトラ置換ホスホニウムのハライドを添加し反応させて、最終的には再結晶や再沈殿などの操作により固形分として取り出す方法や、テトラ置換ホスホニウムテトラ置換ボレートとフェノール化合物を熱反応後、アルコールなどの溶媒中で加熱反応させる方法で合成可能である。
【0023】
本発明に用いる分子化合物(C)は、前述のようにホスホニウム−フェノキシド型の塩を構造に有するが、これが従来のホスホニウム−有機酸アニオン塩型の化合物と異なる点は、分子化合物(C)では、フェノール性水酸基のプロトンが関与した水素結合による高次構造が、このイオン結合を取り囲んでいる点である。従来の塩では、イオン結合の強さのみにより反応性を制御していたのに対し、分子化合物(C)では、常温では反応活性点のイオン対が高次構造により囲い込まれて、活性点が保護され、一方、実際の賦形の段階においては、この高次構造が崩れることで活性点がむき出しになり、反応性を発現する、いわゆる潜伏性が付与される。
【0024】
本発明に用いる、硬化促進剤として機能する、分子化合物(C)の配合量は、1分子内にエポキシ基を2個以上有する化合物(A)と、硬化剤として機能する、1分子内にフェノール性水酸基を2個以上有する化合物(B)の合計重量を100重量部とした場合、0.5〜20重量部程度が硬化性、保存性、他特性のバランスがよく好適である。また、1分子内にエポキシ基を2個以上有する化合物(A)と、1分子内にフェノール性水酸基を2個以上有する化合物(B)の配合比率は、1分子内にエポキシ基を2個以上有する化合物(A)のエポキシ基1モルに対し、1分子内にフェノール性水酸基を2個以上有する化合物(B)のフェノール性水酸基と分子化合物(C)に含まれるフェノール性水酸基との合算にて0.5〜2モル、好ましくは、0.8〜1.2程度のモル比となるよう用いると、硬化性、耐熱性、電気特性等がより良好となる。
【0025】
本発明に用いる無機充填材(D)の種類については、特に制限はなく、一般に封止材料に用いられているものを使用することができる。例えば、溶融破砕シリカ粉末、溶融球状シリカ粉末、結晶シリカ粉末、2次凝集シリカ粉末、アルミナ、チタンホワイト、水酸化アルミニウム、タルク、クレー、ガラス繊維等が挙げられ、特に溶融球状シリカ粉末が好ましい。形状は限りなく真球状であることが好ましく、又、粒子の大きさの異なるものを混合することにより充填量を多くすることができる。
【0026】
この無機充填材の配合量としては、1分子内にエポキシ基を2個以上有する化合物(A)と、1分子内にフェノール性水酸基を2個以上有する化合物(B)の合計量100重量部あたり、200〜2400重量部が好ましい。200重量部未満だと、無機充填材による補強効果が充分に発現しないおそれがあり、2400重量部を越えると、樹脂組成物の流動性が低下し成形時に充填不良等が生じるおそれがあるので好ましくない。特に、無機充填材の配合量が、前記成分(A)と(B)の合計量100重量部あたり、250〜1400重量部であれば、成形材料の硬化物の吸湿率が低くなり、半田クラックの発生を防止することができ、更に溶融時の成形材料の粘度が低くなるため、半導体装置内部の金線変形を引き起こすおそれがなく、より好ましい。又、無機充填材は、予め充分混合しておくことが好ましい。
【0027】
本発明のエポキシ樹脂成形材料は、(A)〜(D)成分の他に、必要に応じてγ−グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック等の着色剤、臭素化エポキシ樹脂、酸化アンチモン、リン化合物等の難燃剤、シリコーンオイル、シリコーンゴム等の低応力成分、天然ワックス、合成ワックス、高級脂肪酸もしくはその金属塩類、パラフィン等の離型剤、酸化防止剤等の各種添加剤を配合することができ、また、本発明において硬化促進剤として機能する分子化合物(C)の特性を損なわない範囲で、トリフェニルホスフィン、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、2−メチルイミダゾール等の他の公知の触媒と併用しても何ら問題はない。
【0028】
本発明のエポキシ樹脂成形材料は、(A)〜(D)成分、及びその他の添加剤等をミキサーを用いて常温混合し、ロール、押出機等の混練機で混練し、冷却後粉砕して得られる。
【0029】
本発明のエポキシ樹脂成形材料を用いて、半導体等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で硬化成形することができる。
【0030】
本発明のエポキシ樹脂成形材料の硬化物で封止された半導体装置は、本発明の技術的範囲に含まれ、優れた耐湿性を示す。
【0031】
【実施例】
以下に、本発明の実施例を示すが、本発明は、これにより何ら制限を受けるものではない。
【0032】
[硬化促進剤の合成]
合成した分子化合物(C)の構造確認は、NMR、元素分析、および次の方法による中和滴定(ホスホニウムフェノキシド当量の測定)により実施した。
合成した分子化合物(C)をメタノール/水系溶媒中で、重量既知の過剰量のシュウ酸と反応させ、残余のシュウ酸を規定度既知の水酸化ナトリウム水溶液で定量して、分子化合物(C)の重量あたり規定度(N/g)を算出した。この値の逆数がホスホニウムフェノキシド当量となる。
【0033】
(合成例1)
撹拌装置付きの1リットルのセパラブルフラスコにビス(4−ヒドロキシフェニル)スルホン50.0g(0.2モル)、メタノール100mlを仕込み、室温で撹拌溶解し、さらに攪拌しながら水酸化ナトリウム4.0g(0.1モル)を予め、50mlのメタノールで溶解した溶液を添加した。次いで、予めテトラフェニルホスホニウムクロライド37.5g(0.1モル)を150mlのメタノールに溶解した溶液を加えた。しばらく攪拌を継続し、300mlのメタノールを追加した後、フラスコ内の溶液を大量の水に撹拌しながら滴下し、白色沈殿を得た。沈殿を濾過、乾燥し、白色結晶81.0 gを得た。この化合物をC4とする。C4は、NMR、マススペクトル、元素分析の結果から、テトラフェニルホスホニウム1分子とビス(4−ヒドロキシフェニル)スルホンとが、モル比1:2で錯化した一般式(3)で表される目的の分子化合物であることが確認された。また、中和滴定の値からホスホニウムフェノキシド当量が、理論値838に近く、前述の構造を示した。
【0035】
(比較合成例1)
撹拌装置付きの1リットルのセパラブルフラスコに、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)メタンを12.8g(0.05モル)、メタノール50mlを仕込み、室温で撹拌溶解し、さらに攪拌しながら水酸化ナトリウム4.0g(0.1モル)を、予め50mlのメタノールで溶解した溶液を添加した。次いで、予めテトラブチルホスホニウムブロマイド33.9g(0.1モル)を150mlのメタノールに溶解した溶液を加えた。しばらく攪拌を継続し、フラスコ内に純水100mlを撹拌しながら滴下し、さらに2-プロパノール100mlを加え白色沈殿を得た。沈殿を濾過、乾燥し、白色結晶を得た。この化合物をD1とする。合成例1と同様の分析を行った結果、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)メタンの2個の水酸基のプロトンが解離した各々のフェノキシドに、各1分子のテトラブチルホスホニウムが、1:2でイオン結合した化合物であった。このD1は、単なるホスホニウム塩であって、本発明に用いる分子化合物ではない。
【0036】
(比較合成例2)
撹拌装置付きの1リットルのセパラブルフラスコに、p-フェニルフェノール17.0g(0.1モル)、メタノール50mlを仕込み室温で撹拌溶解し、さらに攪拌しながら水酸化ナトリウム4.0g(0.1モル)を、予め50mlのメタノールで溶解した溶液を添加した。次いで、予めテトラフェニルホスホニウムブロミド41.9g(0.1モル)を150mlのメタノールに溶解した溶液を加えた。しばらく攪拌を継続し、フラスコ内に純水100mlを撹拌しながら滴下し、さらに2-プロパノール100mlを加え白色沈殿を得た。沈殿を濾過、乾燥し、白色結晶を得た。この化合物をD2とする。合成例1と同様の分析を行った結果、p-フェニルフェノールの水酸基のプロトンが脱離したフェノキシドに、1分子のテトラフェニルホスホニウムが、1:1でイオン結合した化合物であった。このD2は、単なるホスホニウム塩であって、本発明に用いる分子化合物ではない。
【0037】
(比較合成例3)
撹拌装置付きの1リットルセパラブルフラスコに、安息香酸12.2g(0.1モル)、メタノール50mlを仕込み室温で撹拌溶解し、さらに攪拌しながら水酸化ナトリウム4.0g(0.1モル)を、予め50mlのメタノールで溶解した溶液を添加した。次いで、予めテトラフェニルホスホニウムブロミド41.9g(0.1モル)を150mlのメタノールに溶解した溶液を加えた。しばらく攪拌を継続し、フラスコ内の溶液を100mlの水に撹拌しながら滴下し、さらに2-プロパノール100mlを加え白色沈殿を得た。沈殿を濾過、乾燥し、白色結晶を得た。この化合物をD3とする。合成例1と同様の分析を行った結果、安息香酸のカルボキシル基のプロトンが脱離したカルボキシラートに、1分子のテトラフェニルホスホニウムが、1:1でイオン結合した化合物であった。このD3は、単なるホスホニウム塩であって、本発明に用いる分子化合物ではない。
比較合成例の結果も、他の合成例と同様に表1にまとめた。
【0038】
【表1】
Figure 0003672225
【0039】
[熱硬化性樹脂組成物の評価]
まず、合成した分子化合物(C)を、1分子内にエポキシ基を2個以上有する化合物(A)と、1分子内にフェノール性水酸基を2個以上有する化合物(B)、に加えて粉砕混合し、さらに100℃で5分間、熱板上で溶融混練した後、冷却粉砕して、組成物のサンプルを調製し、評価を行った。評価方法は、下記のとおりである。
(1)硬化トルク
前記のサンプル調製方法により作製した樹脂組成物を用いて、キュラストメーター(オリエンテック社製、JSRキュラストメーターPS型)により、175℃で、45秒後のトルクを求めた。キュラストメーターにおけるトルクは、硬化性のパラメータであり、値の大きい方が、硬化性が高いことを示す。
(2)硬化発熱量残存率(保存性評価)
前記のサンプル調製方法により作製した樹脂組成物を用いて、調製直後の初期硬化発熱量、および40℃で3日間保存処理後の硬化発熱量を測定し、初期硬化発熱量(mJ/mg)に対する保存処理後の硬化発熱量(mJ/mg)の百分率を算出した。尚、硬化発熱量の測定は、昇温速度10℃/minの条件で、示差熱分析により測定した。この値が大きいほど、保存性が良好であることを示す。
【0040】
(実施例1、および比較例1〜4)
実施例1、および比較例1〜4について、表2に示した配合により、前記の方法で、組成物のサンプルを調製し評価した。比較例1では、実施例における化合物(C)にかえてトリフェニルホスフィンを、比較例2〜4では、前述比較合成例1〜3で合成された化合物D1〜D3を用いた。得られた各組成物の評価結果は、表2に示した通りであった。
【0041】
【表2】
Figure 0003672225
【0042】
実施例に示すように、本発明の熱硬化性樹脂組成物は、硬化性、保存性が良好であるのに対し、比較例1のトリフェニルホスフィンを硬化促進剤に用いた樹脂組成物は、硬化性、保存性とも悪く、比較例2〜4の本発明に用いる分子化合物ではないホスホニウム塩を用いたものは、硬化性はよいものの保存性がよくない。
【0048】
【発明の効果】
本発明の熱硬化性樹脂組成物及びエポキシ樹脂成形材料は、優れた硬化性、保存性を有し、このエポキシ樹脂成形材料の硬化物で封止された半導体装置は、耐湿信頼性に優れ有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention is a thermosetting resin composition having good curability and storage stability and useful in the field of electric and electronic materials, an epoxy resin molding material using the same, and a semiconductor sealed with the cured product It relates to the device.
[0002]
[Prior art]
In recent years, electrical and electronic materials, especially IC encapsulating materials, are required to have fast curing properties for the purpose of improving production efficiency and improved storage properties for improved handling during distribution and storage. It has become to.
[0003]
Conventionally, epoxy resins for electronic and electrical fields include various compounds such as amines, imidazole compounds, nitrogen-containing heterocyclic compounds such as diazabicycloundecene, quaternary ammonium, phosphonium or arsonium compounds as curing catalysts. Is used.
[0004]
These generally used curing catalysts often exhibit a curing accelerating action even at a relatively low temperature such as room temperature. This is a cause of lowering the quality of the product, such as an increase in viscosity during production and storage of the resin composition, a decrease in fluidity, and a variation in curability.
[0005]
In recent years, in order to solve this problem, research on so-called latent curing accelerators has been actively conducted that suppresses the change in viscosity and fluidity at low temperatures with time and causes a curing reaction only by heating during shaping and molding. Has been made. As a means for this, studies have been made to develop the latent property by protecting the active sites of the curing accelerator with ion pairs. JP-A-8-41290 discloses salt structures of various organic acids and phosphonium ions. Latent cure accelerators having the following are presented: However, this phosphonium salt does not have a specific higher-order molecular structure, and the ion pair is relatively easily affected by the external environment. Therefore, the movement of molecules such as low-molecular epoxy resins and phenol aralkyl resins in recent years In the semiconductor sealing material using the easy hardening | curing agent, the problem that storage stability falls has arisen.
[0006]
[Problems to be solved by the invention]
The present invention provides a thermosetting resin composition having good curability and storage stability and useful in the field of electrical and electronic materials, an epoxy resin molding material using the same, and a moisture resistance sealed with the cured product. An object of the present invention is to provide a semiconductor device having excellent reliability.
[0007]
[Means for Solving the Problems]
The present inventors have excellent curability and storage by using a compound having a specific structure together with a compound having two or more epoxy groups in one molecule and a compound having two or more phenolic hydroxyl groups in one molecule. The present invention has been completed by finding that a resin composition having a property and an epoxy resin molding material can be obtained, and that a semiconductor device having high moisture resistance reliability can be obtained.
[0008]
That is, the present invention is represented by a compound (A) having two or more epoxy groups in one molecule, a compound (B) having two or more phenolic hydroxyl groups in one molecule, and the general formula (1 ). A thermosetting resin composition comprising the molecular compound (C) as an essential component;
[0009]
[Chemical formula 5]
Figure 0003672225
[0011]
(Where, P is a phosphorus atom, R 1, R 2, R 3 and R 4 are a substituted or unsubstituted aromatic group or an alkyl group,, A 1 is a divalent aromatic group, B is d ether groups, sulfone It represents group, a sulfide group, a divalent substituent selected from a carbonyl group or the like.)
[0012]
Moreover, the said thermosetting resin composition whose molecular compound (C) is a molecular compound represented by General formula (3 ) ,
[0013]
[Chemical 7]
Figure 0003672225
[0015]
(Wherein P represents a phosphorus atom, R 1 , R 2 , R 3 and R 4 represent a substituted or unsubstituted aromatic group or an alkyl group, and R 5 , R 6 , R 7 and R 8 represent a hydrogen atom or .X represents a halogen atom or a monovalent organic group formed -C 1-6 represents a divalent substituent selected et ether group, a sulfone group, a sulfide group, a carbonyl group.)
[0016]
Further, a compound having two or more epoxy groups in one molecule (A), a compound having two or more phenolic hydroxyl groups in the molecule (B), the molecular compound represented by the general formula (1) (C), Furthermore, an epoxy resin molding material characterized by containing the molecular compound (C) represented by the general formula (3 ) and the inorganic filler (D) as essential components, and a semiconductor sealed with a cured product thereof Device.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The compound (A) having two or more epoxy groups in one molecule used in the present invention is not limited as long as it has two or more epoxy groups in one molecule. For example, biphenyl type epoxy resin, novolak Examples thereof include epoxy resins and epoxy compounds prepared by reacting epichlorohydrin with hydroxyl groups such as phenols such as biphenol, phenolic resins, naphthols, and the like, such as epoxy resin and naphthalene epoxy resin. In addition, an epoxy resin obtained by oxidizing an olefin with a peracid and epoxidizing it, such as an alicyclic epoxy resin, or an epoxy resin obtained by epoxidizing dihydroxybenzenes such as hydroquinone with epichlorohydrin.
[0018]
The compound (B) having two or more phenolic hydroxyl groups in one molecule acts as a curing agent for the compound (A) having two or more epoxy groups in one molecule. Specifically, phenol novolak resins, cresol novolak resins, alkyl-modified novolak resins (including resins obtained by reacting and co-condensing cycloalkene double bonds with Friedel-Crafts-type reactions), phenol aralkyl resins, naphthols Examples include resins obtained by co-condensation of phenols and phenols with carbonyl group-containing compounds, as long as two or more hydrogen atoms bonded to an aromatic ring in one molecule are substituted with hydroxyl groups. .
[0019]
The molecular compound (C) functioning as a curing accelerator in the present invention is a molecular association of a tetra-substituted phosphonium and a phenol compound represented by the general formula (1 ) and further the general formula (3 ) . This molecular compound is composed of a unit of one tetra-substituted phosphonium cation, three phenolic hydroxyl groups and one phenoxide anion, and around the positive charge of the tetra-substituted phosphonium ion, three phenolic hydroxyl groups and one The phenoxide anion is surrounded and is considered to have a stabilized structure.
[0020]
As the phosphonium ion capable of taking such a structure, a tetra-substituted phosphonium ion having a substituted or unsubstituted aryl group or alkyl group as a substituent is preferable because it is stable against heat and hydrolysis. Tetraalkylphosphonium, tetraarylphosphonium, etc. Tetraaryl-substituted phosphonium, triarylphosphine, such as triphenylmethylphosnium, and triarylphosphine synthesized from alkyl halides, triarylmonoalkylphosphonium, tetraalkyl such as tetrabutylphosphonium Examples thereof include substituted phosphonium.
[0021]
It is also the other components forming the molecular compound (C), as the phenol compound, bisphenol S (2,2-bis (4-hydroxyphenyl) sulfone), bi scan (4-hydroxyphenyl) methanone Although bisphenols such as is illustrated, stability and curability of the molecular compound, in terms of physical properties of the cured product, bisphenol S are preferable.
[0022]
The molecular compound (C) includes a phenol compound as described above and a base that finally assists dehydrohalogenation, for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, or an organic base such as pyridine or triethylamine. Is dissolved in a solvent such as alcohol, followed by addition and reaction of the tetra-substituted phosphonium halide dissolved in a suitable solvent, and finally taken out as a solid content by operations such as recrystallization and reprecipitation, It can be synthesized by a method in which a tetra-substituted phosphonium tetra-substituted borate and a phenol compound are subjected to a heat reaction and then heated in a solvent such as alcohol.
[0023]
The molecular compound (C) used in the present invention has a phosphonium-phenoxide type salt in the structure as described above, but this is different from the conventional phosphonium-organic acid anion salt type compound in the molecular compound (C). The higher-order structure by the hydrogen bond involving the proton of the phenolic hydroxyl group surrounds this ionic bond. In the conventional salt, the reactivity is controlled only by the strength of the ionic bond, whereas in the molecular compound (C), the ion pair of the reaction active site is surrounded by the higher order structure at room temperature, and the active site On the other hand, in the actual shaping stage, this higher-order structure collapses, so that the active sites are exposed, and so-called latency that expresses reactivity is imparted.
[0024]
The compounding amount of the molecular compound (C) that functions as a curing accelerator used in the present invention is a compound (A) having two or more epoxy groups in one molecule and a phenol in one molecule that functions as a curing agent. When the total weight of the compound (B) having two or more curable hydroxyl groups is 100 parts by weight, about 0.5 to 20 parts by weight is preferable because of a good balance of curability, storage stability and other characteristics. The compounding ratio of the compound (A) having two or more epoxy groups in one molecule and the compound (B) having two or more phenolic hydroxyl groups in one molecule is 2 or more epoxy groups in one molecule. The total of the phenolic hydroxyl group of the compound (B) having two or more phenolic hydroxyl groups in one molecule and the phenolic hydroxyl group contained in the molecular compound (C) per 1 mol of the epoxy group of the compound (A) having When used in a molar ratio of about 0.5 to 2 mol, preferably about 0.8 to 1.2, the curability, heat resistance, electrical characteristics, etc. are improved.
[0025]
There is no restriction | limiting in particular about the kind of inorganic filler (D) used for this invention, Generally what is used for the sealing material can be used. Examples thereof include fused crushed silica powder, fused spherical silica powder, crystalline silica powder, secondary agglomerated silica powder, alumina, titanium white, aluminum hydroxide, talc, clay, and glass fiber, with fused spherical silica powder being particularly preferred. The shape is preferably infinitely spherical, and the amount of filling can be increased by mixing particles having different particle sizes.
[0026]
The blending amount of the inorganic filler is about 100 parts by weight of the total amount of the compound (A) having two or more epoxy groups in one molecule and the compound (B) having two or more phenolic hydroxyl groups in one molecule. 200 to 2400 parts by weight are preferable. If the amount is less than 200 parts by weight, the reinforcing effect of the inorganic filler may not be sufficiently exhibited. If the amount exceeds 2400 parts by weight, the fluidity of the resin composition may be reduced, and there is a risk of poor filling during molding. Absent. In particular, if the blending amount of the inorganic filler is 250 to 1400 parts by weight per 100 parts by weight of the total amount of the components (A) and (B), the moisture absorption rate of the cured material of the molding material becomes low, and solder cracks occur. Since the viscosity of the molding material at the time of melting is lowered, there is no possibility of causing deformation of the gold wire inside the semiconductor device, which is more preferable. Moreover, it is preferable that the inorganic filler is sufficiently mixed in advance.
[0027]
In addition to the components (A) to (D), the epoxy resin molding material of the present invention includes a coupling agent such as γ-glycidoxypropyltrimethoxysilane, a colorant such as carbon black, and a brominated epoxy as necessary. Various additives such as resins, antimony oxide, flame retardants such as phosphorus compounds, low stress components such as silicone oil and silicone rubber, natural waxes, synthetic waxes, higher fatty acids or metal salts thereof, mold release agents such as paraffin, antioxidants, etc. In the present invention, triphenylphosphine, 1,8-diazabicyclo (5,4,0) undecene- is used as long as the properties of the molecular compound (C) that functions as a curing accelerator in the present invention are not impaired. There is no problem even if used in combination with other known catalysts such as 7,2-methylimidazole.
[0028]
In the epoxy resin molding material of the present invention, components (A) to (D) and other additives are mixed at room temperature using a mixer, kneaded with a kneader such as a roll or an extruder, pulverized after cooling. can get.
[0029]
In order to seal an electronic component such as a semiconductor and manufacture a semiconductor device by using the epoxy resin molding material of the present invention, it can be cured and molded by a molding method such as transfer molding, compression molding, or injection molding.
[0030]
A semiconductor device sealed with a cured product of the epoxy resin molding material of the present invention is included in the technical scope of the present invention and exhibits excellent moisture resistance.
[0031]
【Example】
Examples of the present invention will be shown below, but the present invention is not limited thereby.
[0032]
[Synthesis of curing accelerator]
The structure of the synthesized molecular compound (C) was confirmed by NMR, elemental analysis, and neutralization titration (measurement of phosphonium phenoxide equivalent) by the following method.
The synthesized molecular compound (C) is reacted with an excess amount of oxalic acid with a known weight in a methanol / water solvent, and the remaining oxalic acid is quantified with an aqueous sodium hydroxide solution with a known normality to obtain the molecular compound (C). The normality per weight (N / g) was calculated. The reciprocal of this value is the phosphonium phenoxide equivalent.
[0033]
(Synthesis Example 1)
A 1 liter separable flask equipped with a stirrer is charged with 50.0 g (0.2 mol) of bis (4-hydroxyphenyl) sulfone and 100 ml of methanol, dissolved by stirring at room temperature, and further stirred with 4.0 g of sodium hydroxide. A solution prepared by previously dissolving (0.1 mol) in 50 ml of methanol was added. Next, a solution prepared by previously dissolving 37.5 g (0.1 mol) of tetraphenylphosphonium chloride in 150 ml of methanol was added. After stirring for a while and adding 300 ml of methanol, the solution in the flask was added dropwise to a large amount of water with stirring to obtain a white precipitate. The precipitate was filtered and dried to obtain 81.0 g of white crystals. This compound is designated as C4 . C4 is an object represented by the general formula (3) in which one molecule of tetraphenylphosphonium and bis (4-hydroxyphenyl) sulfone are complexed at a molar ratio of 1: 2 from the results of NMR, mass spectrum, and elemental analysis. It was confirmed that this was a molecular compound. Further, from the value of neutralization titration, the phosphonium phenoxide equivalent was close to the theoretical value 838 , indicating the above-mentioned structure.
[0035]
(Comparative Synthesis Example 1)
A 1-liter separable flask equipped with a stirrer is charged with 12.8 g (0.05 mol) of bis (4-hydroxy-3,5-dimethylphenyl) methane and 50 ml of methanol, dissolved by stirring at room temperature, and further stirred. While adding 4.0 g (0.1 mol) of sodium hydroxide in advance with 50 ml of methanol, a solution was added. Next, a solution prepared by previously dissolving 33.9 g (0.1 mol) of tetrabutylphosphonium bromide in 150 ml of methanol was added. Stirring was continued for a while, 100 ml of pure water was dropped into the flask while stirring, and 100 ml of 2-propanol was further added to obtain a white precipitate. The precipitate was filtered and dried to obtain white crystals. This compound is designated as D1. As a result of conducting the same analysis as in Synthesis Example 1, one molecule of tetrabutylphosphonium was added to each phenoxide from which protons of two hydroxyl groups of bis (4-hydroxy-3,5-dimethylphenyl) methane were dissociated. The compound was ion-bonded at 1: 2. This D1 is merely a phosphonium salt, not a molecular compound used in the present invention.
[0036]
(Comparative Synthesis Example 2)
In a 1 liter separable flask equipped with a stirrer, 17.0 g (0.1 mol) of p-phenylphenol and 50 ml of methanol were charged and dissolved by stirring at room temperature. Mol) was previously dissolved in 50 ml of methanol. Next, a solution prepared by previously dissolving 41.9 g (0.1 mol) of tetraphenylphosphonium bromide in 150 ml of methanol was added. Stirring was continued for a while, 100 ml of pure water was dropped into the flask while stirring, and 100 ml of 2-propanol was further added to obtain a white precipitate. The precipitate was filtered and dried to obtain white crystals. This compound is designated as D2. As a result of performing the same analysis as in Synthesis Example 1, it was a compound in which one molecule of tetraphenylphosphonium was ion-bonded 1: 1 with phenoxide from which the proton of the hydroxyl group of p-phenylphenol was eliminated. This D2 is merely a phosphonium salt, not a molecular compound used in the present invention.
[0037]
(Comparative Synthesis Example 3)
In a 1 liter separable flask equipped with a stirrer, 12.2 g (0.1 mol) of benzoic acid and 50 ml of methanol were charged and dissolved by stirring at room temperature, and 4.0 g (0.1 mol) of sodium hydroxide was added while stirring. A solution previously dissolved in 50 ml of methanol was added. Next, a solution prepared by previously dissolving 41.9 g (0.1 mol) of tetraphenylphosphonium bromide in 150 ml of methanol was added. Stirring was continued for a while, and the solution in the flask was added dropwise to 100 ml of water while stirring. Further, 100 ml of 2-propanol was added to obtain a white precipitate. The precipitate was filtered and dried to obtain white crystals. This compound is designated as D3. As a result of performing the same analysis as in Synthesis Example 1, it was a compound in which one molecule of tetraphenylphosphonium was ion-bonded 1: 1 with the carboxylate from which the proton of the carboxyl group of benzoic acid was eliminated. This D3 is merely a phosphonium salt, not a molecular compound used in the present invention.
The results of the comparative synthesis examples are also summarized in Table 1 as with the other synthesis examples.
[0038]
[Table 1]
Figure 0003672225
[0039]
[Evaluation of thermosetting resin composition]
First, the synthesized molecular compound (C) is pulverized and mixed with a compound (A) having two or more epoxy groups in one molecule and a compound (B) having two or more phenolic hydroxyl groups in one molecule. Further, after melt-kneading on a hot plate at 100 ° C. for 5 minutes, the mixture was cooled and pulverized to prepare a sample of the composition for evaluation. The evaluation method is as follows.
(1) Curing torque Using the resin composition produced by the above sample preparation method, the torque after 45 seconds was obtained at 175 ° C. with a curast meter (Orientec Co., Ltd., JSR curast meter PS type). . The torque in the curast meter is a curability parameter, and a larger value indicates higher curability.
(2) Curing heat generation residual rate (preservation evaluation)
Using the resin composition produced by the above sample preparation method, the initial curing calorific value immediately after preparation and the curing calorific value after storage treatment at 40 ° C. for 3 days are measured, and the initial curing calorific value (mJ / mg) is measured. The percentage of the calorific value (mJ / mg) after the storage treatment was calculated. The amount of heat generated by curing was measured by differential thermal analysis under the condition of a temperature increase rate of 10 ° C./min. The larger this value, the better the storage stability.
[0040]
(Example 1 and Comparative Examples 1 to 4)
For Example 1, and Comparative Examples 1 to 4, the formulation shown in Table 2, in the manner described, we were prepared and evaluated samples of the composition. In Comparative Example 1, triphenylphosphine was used instead of Compound (C) in Examples, and in Comparative Examples 2 to 4, Compounds D1 to D3 synthesized in Comparative Synthesis Examples 1 to 3 were used. The evaluation results of the obtained compositions were as shown in Table 2.
[0041]
[Table 2]
Figure 0003672225
[0042]
As shown in the examples, the thermosetting resin composition of the present invention has good curability and storage stability, whereas the resin composition using the triphenylphosphine of Comparative Example 1 as a curing accelerator, Both curability and storage stability are poor, and those using phosphonium salts that are not molecular compounds used in the present invention in Comparative Examples 2 to 4 have good curability but poor storage stability.
[0048]
【The invention's effect】
The thermosetting resin composition and epoxy resin molding material of the present invention have excellent curability and storage stability, and a semiconductor device encapsulated with a cured product of this epoxy resin molding material is excellent in moisture resistance reliability and useful. It is.

Claims (5)

1分子内にエポキシ基を2個以上有する化合物(A)、1分子内にフェノール性水酸基を2個以上有する化合物(B)、および、一般式(1)で表される分子化合物(C)を必須成分とすることを特徴とする熱硬化性樹脂組成物。
Figure 0003672225
(ただし、Pはリン原子、R1、R2、R3およびR4は置換もしくは無置換の芳香族基、またはアルキル基、A1は2価の芳香族基、B1はエーテル基、スルホン基、スルフィド基、カルボニル基から選ばれる2価の置換基を表す。)
A compound (A) having two or more epoxy groups in one molecule, a compound (B) having two or more phenolic hydroxyl groups in one molecule, and a molecular compound (C) represented by the general formula (1) A thermosetting resin composition characterized by being an essential component.
Figure 0003672225
(Wherein P is a phosphorus atom, R 1 , R 2 , R 3 and R 4 are substituted or unsubstituted aromatic groups or alkyl groups, A 1 is a divalent aromatic group, B 1 is an ether group, sulfone Represents a divalent substituent selected from a group, a sulfide group, and a carbonyl group.)
分子化合物(C)が、一般式(3)で表される分子化合物である請求項1記載の熱硬化性樹脂組成物。
Figure 0003672225
(ただし、Pはリン原子、R1、R2、R3およびR4は置換もしくは無置換の芳香族基、またはアルキル基を表し、 R5、R6、R7およびR8は水素原子またはハロゲン原子または炭素原子数1〜6で構成される1価の有機基を表す。Xはエーテル基、スルホン基、スルフィド基、カルボニル基から選ばれる2価置換基を表す。)
The thermosetting resin composition according to claim 1, wherein the molecular compound (C) is a molecular compound represented by the general formula (3).
Figure 0003672225
(Wherein P represents a phosphorus atom, R 1 , R 2 , R 3 and R 4 represent a substituted or unsubstituted aromatic group or an alkyl group, and R 5 , R 6 , R 7 and R 8 represent a hydrogen atom or A halogen atom or a monovalent organic group composed of 1 to 6 carbon atoms, X represents a divalent substituent selected from an ether group, a sulfone group, a sulfide group, and a carbonyl group.
1分子内にエポキシ基を2個以上有する化合物(A)、1分子内にフェノール性水酸基を2個以上有する化合物(B)、一般式(1)で表される分子化合物(C)、および無機充填材(D)を必須成分とすることを特徴とするエポキシ樹脂成形材料。
Figure 0003672225
(ただし、Pはリン原子、R 1 、R 2 、R 3 およびR 4 は置換もしくは無置換の芳香族基、またはアルキル基、A 1 は2価の芳香族基、B 1 はエーテル基、スルホン基、スルフィド基、カルボニル基から選ばれる2価の置換基を表す。)
Compound (A) having two or more epoxy groups in one molecule, compound (B) having two or more phenolic hydroxyl groups in one molecule, molecular compound (C) represented by the general formula (1), and inorganic An epoxy resin molding material comprising the filler (D) as an essential component.
Figure 0003672225
(Wherein P is a phosphorus atom, R 1 , R 2 , R 3 and R 4 are substituted or unsubstituted aromatic groups or alkyl groups, A 1 is a divalent aromatic group, B 1 is an ether group, sulfone Represents a divalent substituent selected from a group, a sulfide group, and a carbonyl group.)
分子化合物(C)が、一般式(3)で表される分子化合物である請求項3記載のエポキシ樹脂成形材料。
Figure 0003672225
(ただし、Pはリン原子、R 1 、R 2 、R 3 およびR 4 は置換もしくは無置換の芳香族基、またはアルキル基を表し、 5 、R 6 、R 7 およびR 8 は水素原子またはハロゲン原子または炭素原子数1〜6で構成される1価の有機基を表す。Xはエーテル基、スルホン基、スルフィド基、カルボニル基から選ばれる2価置換基を表す。)
The epoxy resin molding material according to claim 3, wherein the molecular compound (C) is a molecular compound represented by the general formula (3).
Figure 0003672225
(Wherein P represents a phosphorus atom, R 1 , R 2 , R 3 and R 4 represent a substituted or unsubstituted aromatic group or an alkyl group; R 5 , R 6 , R 7 and R 8 represent a hydrogen atom, a halogen atom or a monovalent organic group composed of 1 to 6 carbon atoms. X represents a divalent substituent selected from an ether group, a sulfone group, a sulfide group, and a carbonyl group. )
請求項3または4記載のエポキシ樹脂成形材料の硬化物にて封止された半導体装置。 A semiconductor device sealed with a cured product of the epoxy resin molding material according to claim 3.
JP28044799A 1999-09-30 1999-09-30 Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same Expired - Fee Related JP3672225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28044799A JP3672225B2 (en) 1999-09-30 1999-09-30 Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28044799A JP3672225B2 (en) 1999-09-30 1999-09-30 Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2001098053A JP2001098053A (en) 2001-04-10
JP3672225B2 true JP3672225B2 (en) 2005-07-20

Family

ID=17625195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28044799A Expired - Fee Related JP3672225B2 (en) 1999-09-30 1999-09-30 Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP3672225B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595223B2 (en) * 2001-03-27 2010-12-08 住友ベークライト株式会社 Thermosetting resin composition, epoxy resin molding material and semiconductor device
JP4742435B2 (en) * 2001-03-28 2011-08-10 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
JP4915034B2 (en) * 2001-06-26 2012-04-11 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
JP2003105062A (en) * 2001-09-27 2003-04-09 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP4569076B2 (en) * 2002-06-05 2010-10-27 住友ベークライト株式会社 Curing accelerator, epoxy resin composition, and semiconductor device
SG131750A1 (en) * 2002-09-18 2007-05-28 Sumitomo Bakelite Co Thermosetting resin composition, epoxy resin molding material and semiconductor device
EP1400567B1 (en) * 2002-09-18 2006-03-08 Sumitomo Bakelite Co., Ltd. Thermosetting resin composition, epoxy resin molding material and semiconductor device
JP4152161B2 (en) * 2002-10-07 2008-09-17 住友ベークライト株式会社 Hardener composition for epoxy resin, epoxy resin composition using the hardener composition, and semiconductor device
JP4341261B2 (en) * 2003-03-05 2009-10-07 住友ベークライト株式会社 Epoxy resin curing accelerator, epoxy resin composition, and semiconductor device
JP4163162B2 (en) 2003-08-29 2008-10-08 住友ベークライト株式会社 Latency catalyst for epoxy resin, epoxy resin composition and semiconductor device
JP4496739B2 (en) * 2003-09-09 2010-07-07 住友ベークライト株式会社 Curing accelerator, epoxy resin composition, and semiconductor device
WO2006078062A1 (en) 2005-01-20 2006-07-27 Sumitomo Bakelite Co., Ltd. Epoxy resin composition, method of rendering the same latent, and semiconductor device
JP5115098B2 (en) * 2007-08-24 2013-01-09 住友ベークライト株式会社 Resin composition and semiconductor device
JP6686428B2 (en) * 2015-12-25 2020-04-22 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
JP6688992B2 (en) * 2016-07-29 2020-04-28 パナソニックIpマネジメント株式会社 Epoxy resin composition for encapsulation, cured product, and semiconductor device

Also Published As

Publication number Publication date
JP2001098053A (en) 2001-04-10

Similar Documents

Publication Publication Date Title
JP4163162B2 (en) Latency catalyst for epoxy resin, epoxy resin composition and semiconductor device
JP3672225B2 (en) Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same
JP4665616B2 (en) Epoxy resin composition and semiconductor device
TWI687449B (en) Epoxy resin hardening accelerator
JP5055679B2 (en) Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same
JP6917707B2 (en) Epoxy resin curing accelerator
JP4830543B2 (en) Method for producing latent catalyst and epoxy resin composition
JP4367046B2 (en) Curing accelerator, epoxy resin composition, and semiconductor device
WO2013136746A1 (en) Epoxy resin curing accelerator
JP2006225630A (en) Epoxy resin composition, method for forming latent of the same and semiconductor device
JP3672224B2 (en) Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same
JP4826301B2 (en) Method for producing latent catalyst and epoxy resin composition
JP4595223B2 (en) Thermosetting resin composition, epoxy resin molding material and semiconductor device
JP4341261B2 (en) Epoxy resin curing accelerator, epoxy resin composition, and semiconductor device
WO2003082976A1 (en) Thermosetting resin composition and epoxy resin molding material using the composition and semiconductor device
JP2003292732A (en) Thermosetting resin composition, epoxy resin molding material and semiconductor device
JP4244662B2 (en) Thermosetting resin composition and semiconductor device using the same
US6753086B2 (en) Thermosetting resin composition, epoxy resin molding material and semiconductor device
JP4341254B2 (en) Curing accelerator for epoxy resin composition, epoxy resin composition and semiconductor device
JP2000319359A (en) Thermosetting resin composition
JP2003292584A (en) Thermosetting resin composition and epoxy resin molding material and semiconductor device using the same
KR100971062B1 (en) Thermosetting resin composition, epoxy resin forming material and semiconductor apparatus
JP4765135B2 (en) Epoxy resin composition and semiconductor device
JPH082943B2 (en) Epoxy resin composition
JP2002284854A (en) Thermosetting resin composition, epoxy resin molding material using the same, and semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050415

R150 Certificate of patent or registration of utility model

Ref document number: 3672225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees