JP4742435B2 - Epoxy resin composition and semiconductor device - Google Patents
Epoxy resin composition and semiconductor device Download PDFInfo
- Publication number
- JP4742435B2 JP4742435B2 JP2001091627A JP2001091627A JP4742435B2 JP 4742435 B2 JP4742435 B2 JP 4742435B2 JP 2001091627 A JP2001091627 A JP 2001091627A JP 2001091627 A JP2001091627 A JP 2001091627A JP 4742435 B2 JP4742435 B2 JP 4742435B2
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- group
- resin composition
- particle size
- curing accelerator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、保存性と硬化性が良好な半導体封止用エポキシ樹脂組成物及び半導体装置に関するものである。
【0002】
【従来の技術】
IC、LSI等の半導体素子を封止するエポキシ樹脂組成物には、混練時の温度では硬化が進まないが、成形時の温度では十分な硬化促進作用をする種々の潜伏性硬化促進剤の開発がなされてきている。潜伏性硬化促進剤とは、適切な温度以上で触媒活性を示すために優れた硬化性と、それ以下の温度では触媒活性を示さず、優れた安定性を有する硬化促進剤のことである。例えば特開平8−295721号公報においては、ホウ素上の置換基を特定の構造としたテトラ置換ホスホニウム・テトラ置換ボレートが、優れた硬化性と常温での保存安定性を両立することが開示されている。テトラ置換ホスホニウム・テトラ置換ボレートは、アニオン部とカチオン部のイオン結合が解離して触媒活性を示すため、結合が解離する温度を変化させることで触媒活性を示す温度を変えることができる。ホウ素上の置換基を特定の構造にすると、このイオン結合は適度な強さとなり混練温度では活性を示さず、成形温度ではイオン結合が解離し、速やかに活性を示す。これにより優れた硬化性と優れた安定性、即ち潜伏性を発現するのである。
【0003】
従来から用いられている硬化促進剤としては、イミダゾール、ジアザビシクロアルケン類、トリアリールホスフィン等があるが、これらの硬化促進剤は比較的低温でも作用するため、これらを用いたエポキシ樹脂組成物は混練時に反応が進んでしまうため、成形時の流動性の低下から充填不良が発生したり、半導体素子の金ワイヤーが断線し導通不良が発生する等の問題点が生じる。
生産性向上に対する要求が厳しくなっていることから、成形時間を短縮することによる成形サイクルの効率化が進められており、特開平8−295721号公報に記載されたテトラ置換ホスホニウム・テトラ置換ボレートがある。これは非常に高い潜伏性を有する硬化促進剤であり、常温保存特性に優れ、潜伏性故に流動性にも優れた樹脂組成物を与える硬化促進剤であるが、潜伏性が高いが故に生産性向上という観点からは若干の問題が生じる場合がある。即ち成形温度によってはイオン結合が解離し、活性を示すまでに若干の時間を要する場合があるために成形サイクルを短縮するには難点があった。
【0004】
潜伏性硬化促進剤に関する技術として、例えば特開平8−41290号公報に開示されている種々の有機酸とホスホニウムイオンとの塩構造を有するものがあり、この潜伏性硬化促進剤は、イオン対が比較的容易に外部環境の影響を受けるため、近年の低分子エポキシ樹脂やフェノールアラルキル樹脂を用いる半導体封止材料にとっては不満足であった。更に近年の無機充填材の高充填化技術に対しては、より少ない樹脂成分でエポキシ樹脂組成物を構成する必要があることから、硬化促進剤の配合量をより低減させても良好な硬化性を発現するものが求められている。
上述のように、潜伏性硬化促進剤に関して種々の検討がなされているが、エポキシ樹脂組成物の保存性に優れ、速硬化性で、かつ流動性の高いエポキシ樹脂組成物が望まれている。
【0005】
【発明が解決しようとする課題】
本発明は、無機充填材を高充填化すると樹脂成分が減少するので、従来用いられていた平均粒径の潜伏性硬化促進剤では、局所的にしか行き渡らないため、硬化促進剤の配合量を増加しないと硬化が不十分となり、硬化性と流動性のバランスが取れなくなる欠点を、硬化促進剤の平均粒径を小さくし、より少ない潜伏性硬化促進剤を均一に分散させることにより、硬化性と流動性とのバランスがとれ、かつ保存性にも優れたエポキシ樹脂組成物及び半導体装置を提供するものである。
【0006】
【課題を解決するための手段】
本発明は、
[1](A)常温で固体のエポキシ樹脂、(B)常温で固体のフェノール樹脂、(C)無機充填材及び(D)平均粒径5μm以下で粒径20μm以上が全体の5重量%以下で、かつ融点又は軟化点が100℃以上、300℃以下の潜伏性硬化促進剤を必須成分とする半導体封止用エポキシ樹脂組成物であって、潜伏性硬化促進剤が、一般式(1)又は一般式(2)で示され、かつ粉砕装置を用いて粉砕したものであり、無機充填材が、平均粒径10〜30μmの溶融球状シリカで、かつ溶融球状シリカが全樹脂組成物中85〜93重量%である半導体封止用エポキシ樹脂組成物、
【0007】
【化3】
(Pはリン原子、R1、R2、R3及びR4は、芳香環もしくは複素環を有する1価の有機基又は1価の脂肪族基であり、かつリン原子とR1、R2、R3及びR4がP−C結合を形成するものであり、それらは互いに同一であっても異なっていてもよい。A1は2価の芳香族基、B1は単結合又はエーテル基、スルホン基、スルフィド基、カルボニル基から選ばれる2価の置換基又は炭素原子数1〜13の2価の有機基を表す。mは0以上の数を示す。)
【0008】
【化4】
(Pはリン原子、R1、R2、R3及びR4は、芳香環もしくは複素環を有する1価の有機基又は1価の脂肪族基であり、かつリン原子とR1、R2、R3及びR4がP−C結合を形成するものであり、それらは互いに同一であっても異なっていてもよい。A2は2価の芳香族基を表す。mは0以上の数を示す。)
【0009】
[2]第[1]項に記載のエポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
【0010】
【発明の実施の形態】
本発明に用いるエポキシ樹脂は、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般を指し、例えばビフェニル型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂等が挙げられる。
本発明に用いるフェノール樹脂は、1分子内に2個以上のフェノール性水酸基を有するモノマー、オリゴマー、ポリマー全般を指し、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェニレン又はジフェニレン骨格を有するフェノールアラルキル樹脂、ナフトールアラルキル樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等が挙げられる。
【0011】
本発明に用いる無機充填材は、特に制限はなく、一般に封止材料に用いられているものを使用することができる。例えば溶融破砕シリカ粉末、溶融球状シリカ粉末、結晶シリカ粉末、2次凝集シリカ粉末、アルミナ、チタンホワイト、水酸化アルミニウム等が挙げられ、特に溶融球状シリカ粉末が好ましい。形状は限りなく真球状であることが好ましく、又粒子の大きさの異なるものを混合することにより充填量を多くすることができる。
【0012】
この無機充填材の配合量としては、全エポキシ樹脂組成物中70〜93重量%が好ましい。70重量%未満だと無機充填材による補強効果が充分に発現しないおそれがあり、93重量%を越えると、樹脂組成物の流動性が低下し成形時に充填不良等が生じるおそれがあるので好ましくない。特に平均粒径10〜30μmの溶融球状シリカを全エポキシ樹脂組成物中85〜93重量%含む高充填材の場合は、従来の硬化促進剤の代わりに平均粒径5μm以下で粒径20μm以上が全体の5重量%以下とした潜伏性硬化促進剤を用いることにより、硬化性、流動性及び保存性が格段に優れたエポキシ樹脂組成物を得ることができる。
【0013】
本発明に用いる潜伏性硬化促進剤は、平均粒径5μm以下で粒径20μm以上が全体の5重量%以下で、かつ融点又は軟化点が100℃以上、300℃以下という特性を有しているものである。平均粒径5μm以下でかつ粒径20μm以上が全体の5重量%を越えると、硬化促進剤の配合量を増やさなければ硬化性の向上が見られず、硬化性と流動性のバランスが悪くなる。潜伏性硬化促進剤の融点又は軟化点が100℃未満であると、混練時やエポキシ樹脂組成物の保存時に粘度上昇が起きるというように潜伏性に問題が生じる。融点又は軟化点が300℃を越えると成形時に硬化反応が進まないおそれがあり好ましくない。平均粒径5μm以下で粒径20μm以上が全体の5重量%以下にするには、発熱、融解しないような粉砕装置を用いて粉砕すればよい。融点又は軟化点は、示差走査型熱量計を用いて、昇温速度5℃/分での測定時の吸熱のピーク温度である。これらを満足させるものとしては、前記した一般式(1)、一般式(2)で示される構造のものが挙げられる。本発明での粒径は、レーザー式粒度分布計で測定した。
【0014】
一般式(1)、一般式(2)で示される潜伏性硬化促進剤は、いずれも、カチオン部は4級のホスホニウムイオンであり、R1、R2、R3及びR4は、芳香環もしくは複素環を有する1価の有機基又は1価の脂肪族基であり、かつリン原子とR1、R2、R3及びR4がP−C結合を形成するものであり、それらは互いに同一であっても異なっていてもよい。カチオン部は4級のホスホニウムイオンとしては、テトラフェニルホスホニウム、トリフェニルホスホニウム、トリアリールモノアルキルホスホニウム等が例示される。一般式(1)のアニオン部のフェノール化合物としは、ビスフェノールA(2,2−ビス(4−ヒドロキシフェニル)プロパン)、ビスフェノールF(4,4−メチレンビスフェノール)、2,4−メチレンビスフェノール、2,2−メチレンビスフェノール、ビスフェノールE、ビス(4−ヒドロキシフェニルスルホン)(ビスフェノールS)、ビス(4−ヒドロキシフェニル)メタノン等があり、一般式(2)のアニオン部のフェノール化合物としては、レゾルシノール、カテコール等が例示される。
本発明に用いる硬化硬化促進剤の特性を損なわない範囲で、トリフェニルホスフィン、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、2−メチルイミダゾール等の硬化促進剤を併用いてもよい。
【0015】
本発明に用いる潜伏性硬化促進剤の配合量は、全エポキシ樹脂組成物中0.01〜1重量%程度が硬化性、保存性、他の特性のバランスがよく好適である。エポキシ樹脂とフェノール樹脂の配合比は、全エポキシ樹脂中のエポキシ基と全フェノール樹脂中のフェノール性水酸基の当量比、即ちエポキシ基数/フェノール性水酸基=0.5〜2、硬化性、耐熱性、電気特性の点からより好ましくは0.8〜1.2である。
【0016】
本発明のエポキシ樹脂組成物は、(A)〜(D)成分の他に、必要に応じてγ−グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック等の着色剤、臭素化エポキシ樹脂、酸化アンチモン、リン化合物等の難燃剤、シリコーンオイル、シリコーンゴム等の低応力成分、天然ワックス、合成ワックス、高級脂肪酸もしくはその金属塩類、パラフィン等の離型剤、酸化防止剤等の各種添加剤を配合することができる。
本発明のエポキシ樹脂組成物は、(A)〜(D)成分及びその他の添加剤等をミキサーを用いて常温混合し、ロール、押出機等の混練機で混練し、冷却後粉砕して得られる。
本発明の樹脂組成物を用いて、半導体等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で硬化成形することができる。
【0017】
【実施例】
以下に、本発明の実施例を示す。
実施例及び比較例で用いた硬化促進剤の構造を、以下に示す。
潜伏性硬化促進剤(D−1):[下記式で示されアニオン部は、オルソ−オルソ体、オルソ−パラ体、パラ−パラ体の3種類の異性体である。平均粒径はレーザー式粒度分布計、軟化点は前記した方法により測定した(軟化点105℃)。以下(D−1)]
【化5】
潜伏性硬化促進剤(D−2):[平均粒径はレーザー式粒度分布計、融点は前記した方法により測定した(融点195℃)。以下(D−2)]
【化6】
【0018】
実施例1
エポキシ樹脂[油化シェルエポキシ(株)製、YX−4000。エポキシ当量190g/eq、融点105℃、以下A−1という] 44重量部
フェノール樹脂[三井化学(株)製、XL−225。水酸基当量165g/eq、軟化点75℃、以下B−1という] 38重量部
溶融球状シリカ(平均粒径28μm) 900重量部
潜伏性硬化促進剤(D−1)(平均粒径2μm、20μm以上は0.5重量%) 5重量部
エポキシシランカップリング剤 5重量部
カーボンブラック 3重量部
カルナバワックス 5重量部
を混合し、熱ロールを用いて、95℃で8分間混練して冷却後粉砕し、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を、以下の方法で評価した。結果を表1に示す。
【0019】
評価方法
スパイラルフローEMMI−1−66に準じたスパイラルフロー測定用の金型を用い、金型温度175℃、注入圧力70kg/cm2、硬化時間2分で測定した。スパイラルフローは、流動性のパラメータであり、数値が大きい方が流動性が良好である。単位はcm。
離型性:スパイラルフロー測定時の渦巻きの金型からの離型のしやすさで評価した。きれいに取れるものは○。折れるものは△。付着するものは×とした。
硬化性:キュラストメーター(オリエンテック(株)製、JSRキュラストメーターIVPS型
)を用い、175℃、45秒後のトルクを測定した。この値の大きい方が硬化性は良好である。単位はN・m。
フロー残存率:エポキシ樹脂組成物の調製直後と30℃で1週間保存した後のスパイラルフローを測定し、調製直後のスパイラルフローに対する保存後の百分率として表した。単位は%。
耐半田クラック性:100ピンTQFP(パッケージサイズは14×14mm、厚み1.4mm、シリコンチップのサイズは、8.0×8.0mm、リードフレームは42アロイ製)を、金型温度175℃、注入圧力70kg/cm2、硬化時間2分でトランスファー成形し、175℃、8時間で後硬化した。85℃、相対湿度85%の環境下で168時間放置し、その後240℃の半田槽に10秒間浸漬した。顕微鏡と超音波探傷装置で観察し、外部クラックと内部剥離の発生個数(10個中)で表した。
【0020】
実施例3、参考例2、4、比較例1〜7
比較例1、2、6に用いた(D−1)は、平均粒径36μm。
実施例3、参考例4に用いた(D−2)は、平均粒径2.2μmで、20μm以上が1重量%。
比較例3に用いた(D−2)は、平均粒径33μm。
実施例3、参考例2、4、及び比較例1〜7について、表1の配合に従い、実施例1と同様にして、エポキシ樹脂組成物を調製し評価した。結果を表1に示す。
実施例1、3のエポキシ樹脂組成物は、硬化性、流動性が極めて良好であり、保存性はエポキシ樹脂組成物の調整直後の特性を維持しており、このエポキシ樹脂組成物の硬化物で封止された半導体装置は、耐半田クラック性が良好であることが判る。
【0021】
【表1】
【0022】
【発明の効果】
本発明のエポキシ樹脂組成物は、保存性、硬化性及び流動性に優れ、このエポキシ樹脂組成物で封止された半導体装置は、耐半田クラック性に優れ産業上有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device that have good storage stability and curability.
[0002]
[Prior art]
Development of various latent curing accelerators for epoxy resin compositions that seal semiconductor elements such as IC and LSI, which do not progress at the temperature at the time of kneading, but have sufficient curing acceleration at the temperature at the time of molding. Has been made. The latent curing accelerator is a curing accelerator having excellent curability for exhibiting catalytic activity at an appropriate temperature or higher, and exhibiting excellent stability without exhibiting catalytic activity at a temperature lower than that. For example, JP-A-8-295721 discloses that a tetra-substituted phosphonium / tetra-substituted borate having a specific structure as a substituent on boron has both excellent curability and storage stability at room temperature. Yes. Tetra-substituted phosphonium / tetra-substituted borate exhibits catalytic activity due to dissociation of the ionic bond between the anion part and cation part. Therefore, the temperature at which the catalytic activity is exhibited can be changed by changing the temperature at which the bond dissociates. When the substituent on the boron has a specific structure, this ionic bond is moderately strong and does not show activity at the kneading temperature, and the ionic bond is dissociated at the molding temperature and shows activity quickly. Thereby, excellent curability and excellent stability, that is, latent property is developed.
[0003]
Conventionally used curing accelerators include imidazole, diazabicycloalkenes, triarylphosphine, and the like. However, since these curing accelerators function even at relatively low temperatures, an epoxy resin composition using them. Since the reaction proceeds at the time of kneading, problems such as poor filling due to lowering of fluidity at the time of molding, and poor conduction due to disconnection of the gold wire of the semiconductor element occur.
Since demands for improving productivity are becoming stricter, the efficiency of the molding cycle is being shortened by shortening the molding time. Tetra-substituted phosphonium tetrasubstituted borates described in JP-A-8-295721 is there. This is a curing accelerator with very high latency, and is a curing accelerator that gives a resin composition with excellent room temperature storage characteristics and excellent fluidity due to latency, but because of its high latency, productivity is high. Some problems may arise from the viewpoint of improvement. In other words, depending on the molding temperature, ionic bonds may be dissociated, and it may take some time to show activity, so there is a difficulty in shortening the molding cycle.
[0004]
As a technology related to the latent curing accelerator, for example, there are those having salt structures of various organic acids and phosphonium ions disclosed in JP-A-8-41290, and this latent curing accelerator has an ion pair. Since it is relatively easily affected by the external environment, it has been unsatisfactory for recent semiconductor encapsulating materials using low molecular weight epoxy resins or phenol aralkyl resins. Furthermore, for recent high-filling technology of inorganic fillers, it is necessary to configure the epoxy resin composition with fewer resin components, so even if the amount of the curing accelerator is further reduced, good curability is achieved. What expresses is required.
As described above, various investigations have been made regarding the latent curing accelerator, and an epoxy resin composition that is excellent in preservability of the epoxy resin composition, is fast-curing, and has high fluidity is desired.
[0005]
[Problems to be solved by the invention]
In the present invention, since the resin component decreases when the inorganic filler is highly filled, the latent curing accelerator having an average particle diameter that has been used in the past only spreads locally. If it does not increase, the curing becomes insufficient and the balance between curability and fluidity cannot be achieved. By reducing the average particle size of the curing accelerator and dispersing less latent curing accelerator uniformly, the curability is reduced. The present invention provides an epoxy resin composition and a semiconductor device that are well balanced with fluidity and excellent in storage stability.
[0006]
[Means for Solving the Problems]
The present invention
[1] (A) epoxy resin that is solid at room temperature , (B) phenol resin that is solid at room temperature , (C) inorganic filler, and (D) an average particle size of 5 μm or less and a particle size of 20 μm or more is 5% by weight or less. And an epoxy resin composition for encapsulating a semiconductor containing a latent curing accelerator having a melting point or softening point of 100 ° C. or higher and 300 ° C. or lower as an essential component, wherein the latent curing accelerator is represented by the general formula (1) Or it is shown by general formula (2), and it grind | pulverized using the grinder, an inorganic filler is fused spherical silica with an average particle diameter of 10-30 micrometers, and fused spherical silica is 85 in all the resin compositions. Epoxy resin composition for semiconductor encapsulation, which is -93 wt%,
[0007]
[Chemical 3]
(P is a phosphorus atom, R 1 , R 2 , R 3 and R 4 are a monovalent organic group or monovalent aliphatic group having an aromatic ring or a heterocyclic ring, and a phosphorus atom and R 1 , R 2 , R 3 and R 4 form a P—C bond, which may be the same or different from each other, A 1 is a divalent aromatic group, and B 1 is a single bond or an ether group. And a divalent substituent selected from a sulfone group, a sulfide group, and a carbonyl group, or a divalent organic group having 1 to 13 carbon atoms, m represents a number of 0 or more.)
[0008]
[Formula 4]
(P is a phosphorus atom, R 1 , R 2 , R 3 and R 4 are a monovalent organic group or monovalent aliphatic group having an aromatic ring or a heterocyclic ring, and a phosphorus atom and R 1 , R 2 , R 3 and R 4 form a P—C bond, which may be the same or different from each other, A 2 represents a divalent aromatic group, and m is a number of 0 or more. Is shown.)
[0009]
[ 2 ] A semiconductor device comprising a semiconductor element sealed with the epoxy resin composition according to item [1],
It is.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The epoxy resin used in the present invention refers to monomers, oligomers, and polymers generally having two or more epoxy groups in one molecule. For example, biphenyl type epoxy resin, orthocresol novolak type epoxy resin, dicyclopentadiene modified phenol type epoxy resin, A naphthol type epoxy resin, a triphenol methane type epoxy resin, etc. are mentioned.
The phenol resin used in the present invention refers to monomers, oligomers, and polymers in general having two or more phenolic hydroxyl groups in one molecule. Examples thereof include resins, terpene-modified phenol resins, and dicyclopentadiene-modified phenol resins.
[0011]
There is no restriction | limiting in particular in the inorganic filler used for this invention, The thing generally used for the sealing material can be used. Examples thereof include fused crushed silica powder, fused spherical silica powder, crystalline silica powder, secondary agglomerated silica powder, alumina, titanium white, and aluminum hydroxide, and fused spherical silica powder is particularly preferred. The shape is preferably infinitely spherical, and the amount of filling can be increased by mixing particles having different particle sizes.
[0012]
As a compounding quantity of this inorganic filler, 70 to 93 weight% is preferable in all the epoxy resin compositions. If it is less than 70% by weight, the reinforcing effect of the inorganic filler may not be sufficiently exhibited, and if it exceeds 93% by weight, the fluidity of the resin composition may be lowered, and filling failure may occur during molding. . In particular, in the case of a high filler containing 85 to 93% by weight of fused spherical silica having an average particle size of 10 to 30 μm in the total epoxy resin composition, an average particle size of 5 μm or less and a particle size of 20 μm or more is used instead of the conventional curing accelerator. By using a latent curing accelerator having a total content of 5% by weight or less, an epoxy resin composition having excellent curability, fluidity and storage stability can be obtained.
[0013]
The latent curing accelerator used in the present invention has the characteristics that the average particle size is 5 μm or less, the particle size is 20 μm or more and 5% by weight or less of the whole, and the melting point or softening point is 100 ° C. or more and 300 ° C. or less. Is. When the average particle size is 5 μm or less and the particle size is 20 μm or more and exceeds 5% by weight of the whole, the curing property cannot be improved unless the blending amount of the curing accelerator is increased, and the balance between curability and fluidity is deteriorated. . When the melting point or softening point of the latent curing accelerator is less than 100 ° C., there is a problem in latency such that viscosity increase occurs during kneading or storage of the epoxy resin composition. If the melting point or softening point exceeds 300 ° C, the curing reaction may not proceed during molding, which is not preferable. In order to make the average particle size 5 μm or less and the particle size 20 μm or more 5% by weight or less of the whole, it may be pulverized using a pulverizer that does not generate heat or melt. The melting point or softening point is the endothermic peak temperature during measurement at a heating rate of 5 ° C./min using a differential scanning calorimeter. As what satisfies these, the thing of the structure shown by above-mentioned General formula (1) and General formula (2) is mentioned. The particle size in the present invention was measured with a laser particle size distribution meter.
[0014]
In each of the latent curing accelerators represented by the general formula (1) and the general formula (2), the cation part is a quaternary phosphonium ion, and R 1 , R 2 , R 3 and R 4 are aromatic rings. Or a monovalent organic group or monovalent aliphatic group having a heterocyclic ring, and a phosphorus atom and R 1 , R 2 , R 3 and R 4 form a P—C bond, They may be the same or different. Examples of the quaternary phosphonium ion in the cation moiety include tetraphenylphosphonium, triphenylphosphonium, and triarylmonoalkylphosphonium. As the phenol compound of the anion part of the general formula (1), bisphenol A (2,2-bis (4-hydroxyphenyl) propane), bisphenol F (4,4-methylenebisphenol), 2,4-methylenebisphenol, 2 , 2-methylenebisphenol, bisphenol E, bis (4-hydroxyphenylsulfone) (bisphenol S), bis (4-hydroxyphenyl) methanone, etc., and the phenol compound of the anion moiety of the general formula (2) includes resorcinol, Catechol and the like are exemplified.
A curing accelerator such as triphenylphosphine, 1,8-diazabicyclo (5,4,0) undecene-7, 2-methylimidazole may be used in combination as long as the properties of the curing curing accelerator used in the present invention are not impaired. .
[0015]
The blending amount of the latent curing accelerator used in the present invention is preferably about 0.01 to 1% by weight in the total epoxy resin composition because of good balance between curability, storage stability and other characteristics. The compounding ratio of epoxy resin and phenol resin is equivalent ratio of epoxy group in all epoxy resins to phenolic hydroxyl group in all phenol resins, that is, epoxy group number / phenolic hydroxyl group = 0.5-2, curability, heat resistance, More preferably, it is 0.8-1.2 from the point of an electrical property.
[0016]
In addition to the components (A) to (D), the epoxy resin composition of the present invention includes a coupling agent such as γ-glycidoxypropyltrimethoxysilane as required, a colorant such as carbon black, and a brominated epoxy. Various additives such as resins, antimony oxide, flame retardants such as phosphorus compounds, low stress components such as silicone oil and silicone rubber, natural waxes, synthetic waxes, higher fatty acids or metal salts thereof, mold release agents such as paraffin, antioxidants, etc. An agent can be blended.
The epoxy resin composition of the present invention is obtained by mixing the components (A) to (D) and other additives at room temperature using a mixer, kneading with a kneader such as a roll or an extruder, and grinding after cooling. It is done.
In order to seal an electronic component such as a semiconductor and manufacture a semiconductor device using the resin composition of the present invention, the resin composition can be cured by a molding method such as transfer molding, compression molding, or injection molding.
[0017]
【Example】
Examples of the present invention are shown below.
The structure of the curing accelerator used in Examples and Comparative Examples is shown below.
Latency hardening accelerator (D-1): [The anion moiety represented by the following formula is an ortho-ortho body, an ortho-para body, and a para-para body. The average particle diameter was measured by a laser particle size distribution meter, and the softening point was measured by the method described above (softening point 105 ° C.). (D-1)]
[Chemical formula 5]
Latency hardening accelerator (D-2): [Average particle diameter was measured by laser particle size distribution meter, melting point was measured by the method described above (melting point 195 ° C.). (D-2)]
[Chemical 6]
[0018]
Example 1
Epoxy resin [YX-4000, manufactured by Yuka Shell Epoxy Co., Ltd. Epoxy equivalent 190 g / eq, melting point 105 ° C., hereinafter referred to as A-1] 44 parts by weight phenol resin [Mitsui Chemicals, XL-225. Hydroxyl equivalent weight 165 g / eq, softening point 75 ° C., hereinafter referred to as B-1] 38 parts by weight fused spherical silica (average particle size 28 μm) 900 parts by weight latent curing accelerator (D-1) (average particle size 2 μm, 20 μm or more) 5 parts by weight epoxy silane coupling agent 5 parts by weight carbon black 3 parts by weight carnauba wax 5 parts by weight are mixed using a hot roll at 95 ° C. for 8 minutes, cooled and pulverized. An epoxy resin composition was obtained. The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 1.
[0019]
Evaluation Method Using a mold for spiral flow measurement according to spiral flow EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 , and a curing time of 2 minutes. Spiral flow is a parameter for fluidity, and the larger the value, the better the fluidity. The unit is cm.
Releasability: Evaluated by ease of release from spiral mold during spiral flow measurement. The one that can be taken cleanly is ○. What breaks is △. What adhered was set as x.
Curability: Torque after 45 seconds at 175 ° C. was measured using a curast meter (Orientec Co., Ltd., JSR curast meter IVPS type). The larger this value, the better the curability. The unit is N · m.
Flow residual ratio: The spiral flow immediately after preparation of the epoxy resin composition and after storage at 30 ° C. for 1 week was measured and expressed as a percentage after storage with respect to the spiral flow immediately after preparation. Units%.
Solder crack resistance: 100-pin TQFP (package size is 14 × 14 mm, thickness is 1.4 mm, silicon chip size is 8.0 × 8.0 mm, lead frame is made of 42 alloy), mold temperature is 175 ° C., Transfer molding was performed at an injection pressure of 70 kg / cm 2 and a curing time of 2 minutes, and post-curing was performed at 175 ° C. for 8 hours. It was left for 168 hours in an environment of 85 ° C. and 85% relative humidity, and then immersed in a solder bath at 240 ° C. for 10 seconds. It observed with the microscope and the ultrasonic flaw detector, and represented by the generation | occurrence | production number (out of 10) of an external crack and internal peeling.
[0020]
Example 3, Reference Examples 2 , 4 and Comparative Examples 1-7
(D-1) used in Comparative Examples 1, 2, and 6 has an average particle size of 36 μm.
(D-2) used in Example 3 and Reference Example 4 has an average particle size of 2.2 μm, and 20 μm or more is 1% by weight.
(D-2) used in Comparative Example 3 has an average particle size of 33 μm.
About Example 3, Reference Examples 2 , 4 and Comparative Examples 1-7, according to the mixing | blending of Table 1, it carried out similarly to Example 1, and prepared and evaluated the epoxy resin composition. The results are shown in Table 1.
The epoxy resin compositions of Examples 1 and 3 have extremely good curability and fluidity, and the storability maintains the properties immediately after the preparation of the epoxy resin composition. It can be seen that the sealed semiconductor device has good solder crack resistance.
[0021]
[Table 1]
[0022]
【The invention's effect】
The epoxy resin composition of the present invention is excellent in storage stability, curability, and fluidity, and a semiconductor device encapsulated with this epoxy resin composition is excellent in solder crack resistance and industrially useful.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001091627A JP4742435B2 (en) | 2001-03-28 | 2001-03-28 | Epoxy resin composition and semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001091627A JP4742435B2 (en) | 2001-03-28 | 2001-03-28 | Epoxy resin composition and semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002284859A JP2002284859A (en) | 2002-10-03 |
JP4742435B2 true JP4742435B2 (en) | 2011-08-10 |
Family
ID=18946209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001091627A Expired - Fee Related JP4742435B2 (en) | 2001-03-28 | 2001-03-28 | Epoxy resin composition and semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4742435B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4152161B2 (en) * | 2002-10-07 | 2008-09-17 | 住友ベークライト株式会社 | Hardener composition for epoxy resin, epoxy resin composition using the hardener composition, and semiconductor device |
JP4341261B2 (en) * | 2003-03-05 | 2009-10-07 | 住友ベークライト株式会社 | Epoxy resin curing accelerator, epoxy resin composition, and semiconductor device |
TWI457282B (en) | 2008-06-20 | 2014-10-21 | Denki Kagaku Kogyo Kk | Amorphous siliceous powder, method for production thereof, resin composition, and semiconductor sealing material |
JP6231277B2 (en) * | 2011-01-28 | 2017-11-15 | 住友ベークライト株式会社 | Epoxy resin composition for sealing and electronic component device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000230039A (en) * | 1998-12-08 | 2000-08-22 | Nitto Denko Corp | Semiconductor sealing epoxy resin composition and semiconductor device using same |
JP2000309684A (en) * | 1999-02-25 | 2000-11-07 | Nitto Denko Corp | Resin composition for semiconductor sealing use, and semiconductor device using the same, and production of the semiconductor device |
JP2000345003A (en) * | 1999-06-02 | 2000-12-12 | Sumitomo Bakelite Co Ltd | Curing accelerator-carrying microsponge, epoxy resin composition and semiconductor equipment |
JP2001055488A (en) * | 1999-06-10 | 2001-02-27 | Shin Etsu Chem Co Ltd | Encapsulant for flip chip type semiconductor device and flip chip type semiconductor device |
JP2001064366A (en) * | 1999-08-30 | 2001-03-13 | Sumitomo Bakelite Co Ltd | Thermosetting resin composition, and epoxy resin molding material and semiconductor device prepared by using the same |
JP2001098053A (en) * | 1999-09-30 | 2001-04-10 | Sumitomo Bakelite Co Ltd | Thermosetting resin composition and epoxy resin molding material and semiconductor device using the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1147741A (en) * | 1979-05-23 | 1983-06-07 | George A. Doorakian | Phosphonium phenoxide catalysts for promoting reaction of epoxides with phenols and/or carboxylic acids |
JPS62250025A (en) * | 1986-04-23 | 1987-10-30 | Toyo Electric Mfg Co Ltd | Resin curing accelerator |
-
2001
- 2001-03-28 JP JP2001091627A patent/JP4742435B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000230039A (en) * | 1998-12-08 | 2000-08-22 | Nitto Denko Corp | Semiconductor sealing epoxy resin composition and semiconductor device using same |
JP2000309684A (en) * | 1999-02-25 | 2000-11-07 | Nitto Denko Corp | Resin composition for semiconductor sealing use, and semiconductor device using the same, and production of the semiconductor device |
JP2000345003A (en) * | 1999-06-02 | 2000-12-12 | Sumitomo Bakelite Co Ltd | Curing accelerator-carrying microsponge, epoxy resin composition and semiconductor equipment |
JP2001055488A (en) * | 1999-06-10 | 2001-02-27 | Shin Etsu Chem Co Ltd | Encapsulant for flip chip type semiconductor device and flip chip type semiconductor device |
JP2001064366A (en) * | 1999-08-30 | 2001-03-13 | Sumitomo Bakelite Co Ltd | Thermosetting resin composition, and epoxy resin molding material and semiconductor device prepared by using the same |
JP2001098053A (en) * | 1999-09-30 | 2001-04-10 | Sumitomo Bakelite Co Ltd | Thermosetting resin composition and epoxy resin molding material and semiconductor device using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2002284859A (en) | 2002-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4163162B2 (en) | Latency catalyst for epoxy resin, epoxy resin composition and semiconductor device | |
JP4404050B2 (en) | Semiconductor sealing resin composition and semiconductor device using the same | |
JP4665616B2 (en) | Epoxy resin composition and semiconductor device | |
JP4404051B2 (en) | Semiconductor sealing resin composition and semiconductor device using the same | |
JP2014133830A (en) | Epoxy resin composition for semiconductor encapsulation and single-sided encapsulation type semiconductor device | |
JP4742435B2 (en) | Epoxy resin composition and semiconductor device | |
JP6827210B2 (en) | Epoxy resin composition for encapsulation and method for manufacturing semiconductor devices | |
JP2006225630A (en) | Epoxy resin composition, method for forming latent of the same and semiconductor device | |
JP2006348283A (en) | Curing promoter for epoxy resin, epoxy resin composition and semiconductor device | |
JP3672224B2 (en) | Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same | |
JP2003105064A (en) | Epoxy resin composition for semiconductor sealing and semiconductor device | |
JP4491897B2 (en) | Epoxy resin composition and semiconductor device | |
JP5275697B2 (en) | Epoxy resin composition for sealing and method for producing the same | |
JP5038972B2 (en) | Semiconductor sealing resin composition, method for producing the same, and semiconductor device using the same | |
JP2014218594A (en) | Sealing resin composition and method for producing the same, and resin sealing type semiconductor device | |
JP3582771B2 (en) | Epoxy resin composition and semiconductor device | |
JP7571815B2 (en) | Encapsulating composition and semiconductor device | |
JP2002241581A (en) | Epoxy resin composition and semiconductor device | |
JP4586286B2 (en) | Epoxy resin composition and semiconductor device | |
JP2003292732A (en) | Thermosetting resin composition, epoxy resin molding material and semiconductor device | |
JP4595223B2 (en) | Thermosetting resin composition, epoxy resin molding material and semiconductor device | |
JP4724947B2 (en) | Epoxy resin molding material manufacturing method and semiconductor device | |
JP2005162944A (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device produced by using the same | |
JP2005225971A (en) | Epoxy resin composition and semiconductor device | |
JP7255497B2 (en) | Encapsulating composition and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080104 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100420 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100617 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100817 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110318 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110412 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110425 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140520 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4742435 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |