JP4915034B2 - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP4915034B2
JP4915034B2 JP2001193212A JP2001193212A JP4915034B2 JP 4915034 B2 JP4915034 B2 JP 4915034B2 JP 2001193212 A JP2001193212 A JP 2001193212A JP 2001193212 A JP2001193212 A JP 2001193212A JP 4915034 B2 JP4915034 B2 JP 4915034B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
general formula
semiconductor
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001193212A
Other languages
Japanese (ja)
Other versions
JP2003012771A (en
Inventor
洋史 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001193212A priority Critical patent/JP4915034B2/en
Publication of JP2003012771A publication Critical patent/JP2003012771A/en
Application granted granted Critical
Publication of JP4915034B2 publication Critical patent/JP4915034B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、保存性を向上させた半導体封止用エポキシ樹脂及び耐半田クラック性に優れた半導体装置に関するものである。
【0002】
【従来の技術】
IC、LSI等の半導体素子の封止方法としてエポキシ樹脂組成物のトランスファー成形が低コスト、大量生産に適しており、採用されて久しく、信頼性の点でもエポキシ樹脂や硬化剤であるフェノール樹脂の改良により特性の向上が図られてきた。
しかし、近年の電子機器の小型化、軽量化、高性能化の市場動向において、半導体の高集積化も年々進み、又半導体装置の表面実装化が促進されるなかで、半導体封止用エポキシ樹脂組成物への要求は益々厳しいものとなってきている。このため、従来からのエポキシ樹脂組成物では解決出来ない問題点も出てきている。
その最大の問題点は、表面実装の採用により半導体装置が半田浸漬或いは半田リフロー工程で急激に200℃以上の高温にさらされ、吸湿した水分が爆発的に気化する際の応力により、半導体装置にクラックが発生したり、半導体素子、リードフレーム、インナーリード上の各種メッキされた各接合部分とエポキシ樹脂組成物の硬化物の界面で、剥離が生じ信頼性が著しく低下する現象である。
【0003】
半田リフロー処理による信頼性低下を改善するために、エポキシ樹脂組成物中の溶融シリカ粉末の充填量を増加させることで低吸湿化、高強度化、低熱膨張化を達成し耐半田性を向上させるとともに、低溶融粘度の樹脂を使用して、成形時に低粘度で高流動性を維持させる手法が一般的となりつつある。
一方半田リフロー処理による信頼性において、エポキシ樹脂組成物の硬化物と半導体装置内部に存在する半導体素子やリードフレーム等の基材との界面の接着性は非常に重要になってきている。この界面の接着力が弱いと半田リフロー処理後の基材との界面で剥離が生じ、更にはこの剥離に起因する半導体装置のクラックが発生する。
界面の接着力向上の観点から、エポキシ樹脂やフェノール樹脂に関しても多くの構造が提案されているが、特に一般式(1)のエポキシ樹脂と一般式(2)のフェノール樹脂を硬化剤として用いたエポキシ樹脂組成物では可撓性、低吸湿性という特徴を有するため吸湿後、半田リフロー処理した際の発生応力が低くなり、優れた耐半田クラック性を有することが知られている(特開平5−343570、特開平6−80763、特開平8−143648各号公報等)。
【0004】
又電気・電子材料、特に半導体用封止材料は、近年生産効率の向上を目的とした速硬化性と、物流・保管時の取扱い性向上のため保存性の向上が求められるようになってきている。従来、電気・電子材料分野向けエポキシ樹脂には、硬化促進剤として、アミン類、イミダゾール系化合物、ジアザビシクロウンデセン等の含窒素複素環式化合物、第四級アンモニウム、ホスホニウム或いはアルソニウム化合物等の種々の化合物が使用されている。
アミン類、特にイミダゾール類等は優れた硬化性を示す反面、半導体封止材料として高温高湿度条件下において内部配線腐食が生じる原因、即ち耐湿信頼性が低下する傾向にあり、電気・電子材料分野の使用には問題があり、ホスホニウム化合物等のリン系化合物の使用が一般的となっている。
これら一般に使用される硬化促進剤は、常温等の比較的低温においても、硬化促進作用を示す場合が多く、このことはエポキシ樹脂組成物の製造時及び保存時の粘度上昇や、流動性の低下、硬化性のばらつき等によりエポキシ樹脂組成物としての品質を低下させる原因となっている。
【0005】
この問題を解決すべく、近年では低温での粘度、流動性の経時変化を抑え、成形時の加熱によってのみ、硬化反応を発現する、いわゆる潜伏性硬化促進剤の研究が盛んになされている。その手段として硬化促進剤の活性点をイオン対により保護することで、潜伏性を発現する提案がなされており、特開平8−41290号公報では、種々の有機酸とホスホニウムイオンとの塩構造を有する潜伏性硬化促進剤が開示されている。しかしこのホスホニウム塩は、特定の高次の分子構造を有さず、イオン対が比較的容易に外部環境の影響を受けるため、近年の低分子エポキシ樹脂やフェノールアラルキル樹脂のような分子の動きやすい樹脂を用いる半導体用封止材料では、保存性が低下する問題が生じている。
【0006】
【発明が解決しようとする課題】
本発明は、新規な硬化促進剤、可撓性、耐吸湿性に優れる樹脂を用いることによって、硬化性、保存性を向上させた半導体封止用エポキシ樹脂組成物及び耐半田クラック性に優れる半導体装置を提供するものである。
【0007】
【課題を解決するための手段】
本発明は、
[1](A)一般式(1)で示されるエポキシ樹脂、(B)一般式(2)で示されるフェノール樹脂、(C)溶融シリカ粉末及び(D)一般式(3)で示される分子化合物からなることを特徴とする半導体封止用エポキシ樹脂組成物、
【0008】
【化4】
(Rは水素原子、又は炭素数1から4のアルキル基から選択される基であり、互いに同一であっても、異なっていても良い。nは平均値で1から5の正数である。)
【0009】
【化5】
(Rは水素原子、又は炭素数1から4のアルキル基から選択される基であり、互いに同一であっても、異なっていても良い。nは平均値で1から5の正数である。)
【0010】
【化6】
(Pはリン原子、R1は置換又は無置換の芳香族基、アルキル基であり、互いに同一であっても、異なっていても良い。Xは炭素数1から5のアルキル基、酸素原子、硫黄原子、スルホン基から選択される基であり、Rは炭素数1から4のアルキル基から選択される基であり、互いに同一であっても、異なっていても良い。mは0≦m≦1の数を示す。)
【0011】
[2]一般式(3)で示される分子化合物のXが、スルホン基である第[1]項記載の半導体封止用エポキシ樹脂組成物、
[3]第[1]項又は[2]項記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
【0012】
【発明の実施の形態】
以下に本発明を詳細に説明する。
本発明で用いられる一般式(1)で示されるエポキシ樹脂は、1分子中にエポキシ基を2個以上有するエポキシ樹脂であり、エポキシ基間に疎水性構造を有することを特徴とする。このエポキシ樹脂とフェノール樹脂の組み合わせの硬化物は架橋密度が低く、かつ疎水性の構造を多く有することから吸湿率が低く、エポキシ樹脂組成物の成形時の熱応力或いは成形品である半導体装置の吸湿後の半田リフロー処理における発生熱応力を低減し、基材との密着性に優れる。一方エポキシ基間の疎水性構造は剛直なジフェニレン骨格であることから、架橋密度が低い割には耐熱性の低下が少ないという特徴を有している。
【0013】
一般式(1)で示されるエポキシ樹脂の具体例を以下に示すが、これらに限定されるものではない。
【化7】
【0014】
本発明で用いられる一般式(1)で示されるエポキシ樹脂の特性が損なわない範囲で、他のエポキシ樹脂と併用できる。併用できるエポキシ樹脂としては、エポキシ基を有するモノマー、オリゴマー、ポリマー全般を指し、例えばビフェニル型エポキシ樹脂、スチルベン弁型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等の結晶性エポキシ樹脂、ビスフェノールA型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ナフトール型エポキシ樹脂等が挙げられる。又これらのエポキシ樹脂は、単独もしくは混合して用いても差し支えない。特にエポキシ樹脂組成物の溶融シリカ粉末の充填量を高めるためには、室温では結晶性を示し、成形温度においては溶融粘度が著しく低下する上記結晶性エポキシ樹脂が好ましい。
【0015】
本発明で用いられる一般式(2)で示されるフェノール樹脂の特徴は、一般式(1)で示されるエポキシ樹脂の場合と全く同様であるが、更に一般式(1)のエポキシ樹脂と一般式(2)のフェノール樹脂とを組み合わせた場合に、半導体装置の低吸湿性、吸湿後半田リフロー処理での耐半田クラック性、密着性等の信頼性で最大の効果が得られる。
【0016】
一般式(1)で示されるフェノール樹脂の具体例を以下に示すが、これらに限定されるものではない。
【化8】
【0017】
本発明に用いられる一般式(2)で示されるフェノール樹脂の特性が損なわない範囲で、他のフェノール樹脂と併用できる。併用できるフェノール樹脂としては、フェノール性水酸基を有するモノマー、オリゴマー、ポリマー全般を指し、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、キシリレン変性フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、ビスフェノールA、トリフェノールメタン等が挙げられる。これらのフェノール樹脂は、単独もしくは混合して用いても差し支えない。エポキシ樹脂組成物の硬化物の低吸湿性や基材との密着性の向上のためには、特に水酸基当量が130〜210のものが好適である。
【0018】
本発明に用いられる溶融シリカ粉末としては、例えば火炎中で溶融された天然シリカ、及びテトラメトキシシラン、テトラエトキシシラン等を加水分解して得られる合成シリカ等が挙げられる。又その形状・製法により球状シリカと破砕シリカがある。
溶融シリカ粉末の配合量としては、全エポキシ樹脂組成物中に75〜93重量%が好ましい。75重量%未満だと、エポキシ樹脂組成物の硬化物の吸湿量が増大し、しかも半田処理温度での強度が低下してしまうため、半田処理時に半導体装置にクラックが発生し易くなり好ましくない。一方93重量%を越えると、エポキシ樹脂組成物の成形時の流動性が低下し、未充填や半導体素子のシフト、パッドシフトが発生し易くなり好ましくない。特に溶融シリカ粉末を高充填するためには、球状のものが好ましい。又粒度分布としては広いものが、成形時の樹脂組成物の溶融粘度を低減するために有効である。
【0019】
本発明において硬化促進剤として作用する一般式(3)で示される分子化合物は、テトラ置換ホスホニウムとフェノール化合物との分子会合体である。1個のテトラ置換ホスホニウムカチオンと、1個以上3個未満のフェノール性水酸基及び1個のフェノキシドアニオンの単位で構成され、テトラ置換ホスホニウムイオンの正電荷の周囲を1個以上3個未満のフェノール性水酸基と1個のフェノキシドアニオンが取り囲み、安定化した構造となっているものと考えられる。
【0020】
一般式(3)で示される分子化合物のR1は、置換又は無置換の芳香族基、アルキル基であり、具体的にはテトラフェニルホスホニウム、テトラトリルホスホニウム等のテトラアリール置換ホスホニウム、トリフェニルメチルホスニウム等のトリアリールホスフィンとアルキルハライドから合成されたトリアリールモノアルキルホスホニウム、テトラブチルホスホニウム等のテトラアルキル置換ホスホニウム等が例示される。
又分子化合物を形成するもう一方の成分であるフェノール化合物としては、式(4)で示されるビス(4−ヒドロキシフェニル)スルホン(ビスフェノールS)が分子化合物の安定性や硬化性、硬化物物性の点で最適である。
【0021】
【化9】
(Pはリン原子、Phはフェニル基を示す。mは0≦m≦1の数を示す。)
【0022】
分子化合物は、前述のようなフェノール化合物と最終的に脱ハロゲン化水素を助ける塩基、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物やピリジン、トリエチルアミン等の有機塩基をアルコール等の溶媒に溶解し、次いで適当な溶媒に溶解した前記テトラ置換ホスホニウムのハライドを添加し反応させて、最終的には再結晶や再沈殿等の操作により固形分として取り出す方法や、テトラ置換ホスホニウムテトラ置換ボレートとフェノール化合物を熱反応後、アルコール等の溶媒中で加熱反応させる方法で合成可能である。
【0023】
本発明に用いる分子化合物は、前述のようにホスホニウム−フェノキシド型の塩を構造に有するが、従来のホスホニウム−有機酸アニオン塩型の化合物と異なる点は、分子化合物では、フェノール性水酸基のプロトンが関与した水素結合による高次構造が、このイオン結合を取り囲んでいる点である。従来の塩では、イオン結合の強さのみにより反応性を制御していたのに対し、分子化合物では、常温では反応活性点のイオン対が高次構造により囲い込まれて活性点が保護され、一方実際の成形の段階においては、この高次構造が崩れることで活性点がむき出しになり、反応性を発現する、いわゆる潜伏性が付与されている。分子化合物の特性を損なわない範囲で、トリフェニルホスフィン、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、2−メチルイミダゾール等の硬化促進剤と併用しても何ら問題はない。
【0024】
本発明に用いられる硬化促進剤として作用する分子化合物の配合量は、全エポキシ樹脂(A)と硬化剤として作用する全フェノール樹脂(B)の合計重量を100重量部とした場合、0.5〜20重量部程度が硬化性、保存性、他特性のバランスがよく好適である。又全エポキシ樹脂(A)と全フェノール樹脂(B)の配合比率は、全エポキシ樹脂(A)のエポキシ基1モルに対し、全フェノール樹脂(B)のフェノール性水酸基と分子化合物に含まれるフェノール性水酸基との合算して0.5〜2モル、好ましくは0.8〜1.2程度のモル比となるように用いると、硬化性、耐熱性、電気特性等がより良好となる。
【0025】
本発明のエポキシ樹脂組成物は、(A)〜(D)成分の他に、必要に応じてγ−グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック等の着色剤、リン化合物等の難燃剤、シリコーンオイル、シリコーンゴム等の低応力成分、天然ワックス、合成ワックス、高級脂肪酸もしくはその金属塩類、パラフィン等の離型剤、酸化防止剤等の各種添加剤を配合することができる。
本発明のエポキシ樹脂組成物は、(A)〜(D)成分、及びその他の添加剤等をミキサー等を用いて混合後、加熱ニーダや熱ロールを用いて加熱混練し、続いて冷却、粉砕することで得られる。
本発明のエポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来の成形方法で硬化成形すればよい。
【0026】
以下、本発明を実施例で具体的に説明する。配合単位は重量部とする。
[硬化促進剤の合成]
以下、合成した分子化合物の構造確認は、NMR、元素分析及び以下の方法による中和滴定(ホスホニウムフェノキシド当量の測定)により実施した。
合成した分子化合物をメタノール/水系溶媒中で、重量既知の過剰量のシュウ酸と反応させ、残余のシュウ酸を規定度既知の水酸化ナトリウム水溶液で定量して、分子化合物の重量当たり規定度(N/g)を算出した。この値の逆数がホスホニウムフェノキシド当量となる。
【0027】
撹拌装置付きの1リットルのセパラブルフラスコに日華化学工業(株)・製BPS−N(4,4’−ビスフェノールSを主成分とする)37.5g(0.15モル)、メタノール100mlを仕込み、室温で撹拌溶解し、更に攪拌しながら水酸化ナトリウム4.0g(0.1モル)を予め、50mlのメタノールで溶解した溶液を添加した。次いで予めテトラフェニルホスホニウムブロマイド41.9g(0.1モル)を150mlのメタノールに溶解した溶液を加えた。しばらく攪拌を継続し、300mlのメタノールを追加した後、フラスコ内の溶液を大量の水に撹拌しながら滴下し、白色沈殿を得た。沈殿を濾過、乾燥し、白色結晶66.0gを得た。この化合物をC1とする。C1は、NMR、マスペクトル、元素分析の結果から、テトラフェニルホスホニウム1分子と4,4’−ビスフェノールSとが、モル比1:1.5で錯化した目的の分子化合物であることが確認された。又中和滴定の値からホスホニウムフェノキシド当量が、理論値713に近く、式(4)の構造が確認された。合成の収率は92.6%であった。これを硬化促進剤(a)とする。
【0028】
実施例1
式(5)のエポキシ樹脂(エポキシ当量274、軟化点60℃)5.9重量部
【化10】
【0029】
式(6)のフェノールアラルキル樹脂(水酸基当量203、軟化点67℃)
4.3重量部
【化11】
【0030】
硬化促進剤(a) 0.3重量部
溶融球状シリカ粉末 88.0重量部
無機イオン交換体 0.5重量部
カーボンブラック 0.3重量部
γ−グリシドキシプロピルトリメトキシシラン 0.3重量部
カルナバワックス 0.4重量部
をミキサーを用いて混合した後、表面温度が90℃と45℃の2本ロールを用いて30回混練し、得られた混練物シートを冷却後粉砕して、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を以下の方法で評価した。結果を表1に示す。
【0031】
評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用いて、金型温度175℃、注入圧力70kg/cm2、硬化時間2分で測定した。単位はcm。
吸水率:トランスファー成形機を用いて、金型温度175℃、注入圧力75kg/cm2、硬化時間2分で直径50mm、厚さ3mmの成形品を成形し、175℃、8時間で後硬化し、得られた成形品を85℃、相対湿度85%の環境下で168時間放置し、吸水前後の重量変化を測定して吸水率を計算した。単位は重量%
耐半田クラック性:100ピンTQFP(パッケージサイズは14×14mm、厚み1.4mm、シリコンチップサイズは8.0×8.0mm、リードフレームは42アロイ製)を金型温度175℃、注入圧力75kg/cm2、硬化時間2分でトランスファー成形し、175℃、8時間で後硬化させた。得られた半導体パッケージを85℃、相対湿度85%の環境下で168時間放置し、その後240℃の半田槽に10秒間浸漬した。顕微鏡で外部クラックを観察し、クラック数[(クラック発生パッケージ数)/(全パッケージ数)×100]を%で表示した。又チップと樹脂組成物の硬化物との剥離面積の割合を超音波探傷装置を用いて測定し、剥離率[(剥離面積)/(チップ面積)×100]として、5個のパッケージの平均値を求め、%で表示した。
30℃保存性:調整直後と30℃で1週間保存した後のスパイラルフローを測定し、調整直後のスパイラルフローに対する保存後の百分率として表した。単位は%。
【0032】
実施例2〜4、比較例1〜3
表1に示す割合で各成分を配合し、実施例1と同様にして樹脂組成物を得、実施例1と同様にして評価した。結果を表1に示す。なおビフェニル型エポキシ樹脂YX−4000Hは、ジャバンエポキシレジン(株)製で、融点105℃、エポキシ当量191、フェノールアラルキル樹脂XL−225は、三井化学(株)製で、軟化点75℃、水酸基当量174である。
【0033】
【表1】
【0034】
【発明の効果】
本発明では、新規の硬化促進剤を用いることによる硬化性、保存性に優れた特性を有する半導体封止用エポキシ樹脂組成物が得られ、これを用いた半導体装置は耐湿性が良好なことにより耐半田クラック性に優れている。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor sealing epoxy resin with improved storage stability and a semiconductor device excellent in solder crack resistance.
[0002]
[Prior art]
Transfer molding of an epoxy resin composition as a sealing method for semiconductor elements such as IC and LSI is suitable for mass production at low cost and has been used for a long time. Improvements have been made to improve properties.
However, due to the recent trend toward smaller, lighter, and higher performance electronic devices, semiconductors have become more highly integrated and surface mounting of semiconductor devices has been promoted. The demand for compositions has become increasingly severe. For this reason, the problem which cannot be solved with the conventional epoxy resin composition has also come out.
The biggest problem is that by adopting surface mounting, the semiconductor device is suddenly exposed to a high temperature of 200 ° C. or higher in the solder dipping or solder reflow process, and the moisture when moisture absorbed explosively vaporizes the semiconductor device. This is a phenomenon in which cracks occur or peeling occurs at the interface between various plated joints on the semiconductor element, lead frame, and inner lead and the cured product of the epoxy resin composition, and the reliability is significantly reduced.
[0003]
In order to improve the reliability degradation due to solder reflow treatment, increase the filling amount of fused silica powder in the epoxy resin composition to achieve low moisture absorption, high strength, low thermal expansion and improve solder resistance At the same time, it is becoming common to use a low melt viscosity resin to maintain a low viscosity and high fluidity during molding.
On the other hand, in the reliability by the solder reflow process, the adhesiveness at the interface between the cured product of the epoxy resin composition and the base material such as a semiconductor element or a lead frame present in the semiconductor device has become very important. If the adhesive force at the interface is weak, peeling occurs at the interface with the base material after the solder reflow process, and further cracks of the semiconductor device due to the peeling occur.
Many structures have been proposed for epoxy resins and phenolic resins from the viewpoint of improving the adhesive strength at the interface. Particularly, epoxy resins of general formula (1) and phenolic resins of general formula (2) were used as curing agents. It is known that the epoxy resin composition has the characteristics of flexibility and low hygroscopicity, so that the stress generated during solder reflow treatment after moisture absorption is low, and it has excellent solder crack resistance (Japanese Patent Laid-Open No. Hei 5). -343570, JP-A-6-80763, JP-A-8-143648, etc.).
[0004]
In recent years, electrical and electronic materials, especially sealing materials for semiconductors, have been required to improve their preservability in order to improve their production efficiency at the time of fast curing and logistics and storage. Yes. Conventionally, epoxy resins for the electric / electronic materials field include amines, imidazole compounds, nitrogen-containing heterocyclic compounds such as diazabicycloundecene, quaternary ammonium, phosphonium or arsonium compounds as curing accelerators. Various compounds have been used.
While amines, especially imidazoles, etc. show excellent curability, they cause corrosion of internal wiring under high-temperature and high-humidity conditions as semiconductor sealing materials, that is, moisture resistance reliability tends to decrease. There are problems with the use of phosphorous compounds such as phosphonium compounds.
These generally used curing accelerators often exhibit a curing accelerating action even at a relatively low temperature such as room temperature, which means that the viscosity increases during production and storage of the epoxy resin composition, and the fluidity decreases. This is a cause of deterioration in quality as an epoxy resin composition due to variations in curability and the like.
[0005]
In order to solve this problem, in recent years, researches on so-called latent curing accelerators that suppress a change in viscosity and fluidity at low temperatures with time and develop a curing reaction only by heating during molding have been actively conducted. As a means for this, a proposal has been made to express latency by protecting the active site of the curing accelerator with an ion pair. JP-A-8-41290 discloses salt structures of various organic acids and phosphonium ions. A latent cure accelerator is disclosed. However, this phosphonium salt does not have a specific high-order molecular structure, and the ion pair is relatively easily affected by the external environment. Therefore, the phosphonium salt is easily moved by molecules such as recent low-molecular epoxy resins and phenol aralkyl resins. In the sealing material for semiconductors using resin, the problem that storage property falls is produced.
[0006]
[Problems to be solved by the invention]
The present invention relates to an epoxy resin composition for semiconductor encapsulation which has improved curability and storage stability by using a novel curing accelerator, a resin having excellent flexibility and moisture absorption resistance, and a semiconductor having excellent solder crack resistance. A device is provided.
[0007]
[Means for Solving the Problems]
The present invention
[1] (A) Epoxy resin represented by general formula (1), (B) phenol resin represented by general formula (2), (C) fused silica powder, and (D) molecule represented by general formula (3) An epoxy resin composition for semiconductor encapsulation, characterized by comprising a compound,
[0008]
[Formula 4]
(R is a group selected from a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, which may be the same or different. N is a positive number of 1 to 5 on average. )
[0009]
[Chemical formula 5]
(R is a group selected from a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, which may be the same or different. N is a positive number of 1 to 5 on average. )
[0010]
[Chemical 6]
(P is a phosphorus atom, R 1 is a substituted or unsubstituted aromatic group or an alkyl group, which may be the same or different. X is an alkyl group having 1 to 5 carbon atoms, an oxygen atom, R is a group selected from a sulfur atom and a sulfone group, and R is a group selected from an alkyl group having 1 to 4 carbon atoms, which may be the same or different, and m is 0 ≦ m ≦. Indicates the number of 1.)
[0011]
[2] The epoxy resin composition for semiconductor encapsulation according to item [1], wherein X of the molecular compound represented by the general formula (3) is a sulfone group,
[3] A semiconductor device comprising a semiconductor element sealed using the epoxy resin composition for semiconductor sealing according to [1] or [2],
It is.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The epoxy resin represented by the general formula (1) used in the present invention is an epoxy resin having two or more epoxy groups in one molecule, and has a hydrophobic structure between the epoxy groups. The cured product of the combination of the epoxy resin and the phenol resin has a low crosslink density and a large hydrophobic structure. Therefore, the moisture absorption is low, and the thermal stress at the time of molding the epoxy resin composition or the semiconductor device which is a molded product. Reduces the thermal stress generated in the solder reflow treatment after moisture absorption and has excellent adhesion to the substrate. On the other hand, since the hydrophobic structure between epoxy groups is a rigid diphenylene skeleton, it has a feature that there is little decrease in heat resistance for a low crosslinking density.
[0013]
Specific examples of the epoxy resin represented by the general formula (1) are shown below, but are not limited thereto.
[Chemical 7]
[0014]
As long as the properties of the epoxy resin represented by the general formula (1) used in the present invention are not impaired, it can be used in combination with other epoxy resins. Examples of epoxy resins that can be used in combination include monomers, oligomers, and polymers having an epoxy group, such as biphenyl type epoxy resins, stilbene valve type epoxy resins, hydroquinone type epoxy resins, bisphenol F type epoxy resins and other crystalline epoxy resins, bisphenols. Examples include A-type epoxy resins, ortho-cresol novolac-type epoxy resins, dicyclopentadiene-modified phenol-type epoxy resins, triphenolmethane-type epoxy resins, and naphthol-type epoxy resins. These epoxy resins may be used alone or in combination. In particular, in order to increase the filling amount of the fused silica powder of the epoxy resin composition, the crystalline epoxy resin which exhibits crystallinity at room temperature and whose melt viscosity is remarkably reduced at the molding temperature is preferable.
[0015]
The characteristics of the phenol resin represented by the general formula (2) used in the present invention are the same as those of the epoxy resin represented by the general formula (1). When combined with the phenolic resin of (2), the maximum effect is obtained in reliability such as low moisture absorption of the semiconductor device, solder crack resistance in the solder reflow treatment after moisture absorption, and adhesion.
[0016]
Although the specific example of the phenol resin shown by General formula (1) is shown below, it is not limited to these.
[Chemical 8]
[0017]
In the range which does not impair the characteristic of the phenol resin shown by General formula (2) used for this invention, it can use together with another phenol resin. Examples of phenol resins that can be used in combination include monomers, oligomers, and polymers having phenolic hydroxyl groups, such as phenol novolac resins, cresol novolac resins, xylylene modified phenol resins, terpene modified phenol resins, dicyclopentadiene modified phenol resins, bisphenol A, Examples include triphenolmethane. These phenol resins may be used alone or in combination. In order to improve the low hygroscopicity of the cured product of the epoxy resin composition and the adhesion to the substrate, those having a hydroxyl equivalent weight of 130 to 210 are particularly suitable.
[0018]
Examples of the fused silica powder used in the present invention include natural silica melted in a flame and synthetic silica obtained by hydrolyzing tetramethoxysilane, tetraethoxysilane and the like. There are spherical silica and crushed silica depending on the shape and manufacturing method.
As a compounding quantity of a fused silica powder, 75 to 93 weight% is preferable in all the epoxy resin compositions. If it is less than 75% by weight, the moisture absorption of the cured product of the epoxy resin composition is increased, and the strength at the soldering process temperature is lowered. On the other hand, if it exceeds 93% by weight, the fluidity at the time of molding the epoxy resin composition is lowered, and unfilling, semiconductor element shift and pad shift are likely to occur, which is not preferable. In particular, in order to highly fill the fused silica powder, a spherical one is preferable. A wide particle size distribution is effective for reducing the melt viscosity of the resin composition during molding.
[0019]
The molecular compound represented by the general formula (3) that acts as a curing accelerator in the present invention is a molecular aggregate of a tetra-substituted phosphonium and a phenol compound. Consists of one tetra-substituted phosphonium cation, one or more and less than three phenolic hydroxyl groups and one phenoxide anion unit, and one or more and less than three phenolic groups around the positive charge of the tetra-substituted phosphonium ion It is considered that the hydroxyl group and one phenoxide anion surround and are a stabilized structure.
[0020]
R 1 of the molecular compound represented by the general formula (3) is a substituted or unsubstituted aromatic group or an alkyl group. Specifically, tetraaryl-substituted phosphonium such as tetraphenylphosphonium and tetratolylphosphonium, triphenylmethyl Examples thereof include triarylmonoalkylphosphonium synthesized from triarylphosphine such as phosnium and alkyl halide, and tetraalkyl-substituted phosphonium such as tetrabutylphosphonium.
Moreover, as a phenol compound which is another component which forms a molecular compound, the bis (4-hydroxyphenyl) sulfone (bisphenol S) shown by Formula (4) is the stability of a molecular compound, sclerosis | hardenability, and hardened | cured material property. Best in terms.
[0021]
[Chemical 9]
(P represents a phosphorus atom and Ph represents a phenyl group. M represents a number of 0 ≦ m ≦ 1.)
[0022]
Molecular compounds include the above-mentioned phenolic compounds and bases that ultimately help dehydrohalogenation, such as alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, organic bases such as pyridine and triethylamine, and solvents such as alcohols. Then, the tetra-substituted phosphonium halide dissolved in an appropriate solvent is added and reacted, and finally, it is taken out as a solid content by operations such as recrystallization and reprecipitation, or tetra-substituted phosphonium tetra-substituted borate And a phenol compound can be synthesized by a heat reaction in a solvent such as alcohol after a thermal reaction.
[0023]
The molecular compound used in the present invention has a phosphonium-phenoxide type salt in the structure as described above. However, the molecular compound is different from the conventional phosphonium-organic acid anion salt type compound in that the proton of the phenolic hydroxyl group is different in the molecular compound. The higher-order structure due to the hydrogen bonds involved surrounds this ionic bond. In the conventional salt, the reactivity was controlled only by the strength of the ionic bond, whereas in the molecular compound, the ion pair of the reaction active site is surrounded by a higher order structure at room temperature, and the active site is protected. On the other hand, in the actual molding stage, the higher-order structure is broken, so that the active sites are exposed, and so-called latency, which expresses reactivity, is imparted. There is no problem even if it is used in combination with a curing accelerator such as triphenylphosphine, 1,8-diazabicyclo (5,4,0) undecene-7, 2-methylimidazole, etc., as long as the properties of the molecular compound are not impaired.
[0024]
The compounding amount of the molecular compound acting as a curing accelerator used in the present invention is 0.5 when the total weight of all epoxy resins (A) and all phenol resins (B) acting as curing agents is 100 parts by weight. About 20 parts by weight is preferable because of good balance between curability, storage stability and other characteristics. Moreover, the compounding ratio of the total epoxy resin (A) and the total phenol resin (B) is the phenol contained in the phenolic hydroxyl group and the molecular compound of the total phenol resin (B) with respect to 1 mol of the epoxy group of the total epoxy resin (A). When used in a molar ratio of about 0.5 to 2 mol, preferably about 0.8 to 1.2 in total with the curable hydroxyl group, the curability, heat resistance, electrical properties, etc. are improved.
[0025]
In addition to the components (A) to (D), the epoxy resin composition of the present invention includes a coupling agent such as γ-glycidoxypropyltrimethoxysilane as necessary, a colorant such as carbon black, a phosphorus compound, and the like. Flame retardants, low stress components such as silicone oil and silicone rubber, natural wax, synthetic wax, higher fatty acids or metal salts thereof, mold release agents such as paraffin, and various additives such as antioxidants.
In the epoxy resin composition of the present invention, the components (A) to (D) and other additives are mixed using a mixer or the like, then heated and kneaded using a heating kneader or a hot roll, and then cooled and pulverized. It is obtained by doing.
In order to seal an electronic component such as a semiconductor element and produce a semiconductor device using the epoxy resin composition of the present invention, it may be cured by a conventional molding method such as a transfer mold, a compression mold, or an injection mold. .
[0026]
Hereinafter, the present invention will be specifically described with reference to Examples. The blending unit is parts by weight.
[Synthesis of curing accelerator]
Hereinafter, the structure of the synthesized molecular compound was confirmed by NMR, elemental analysis, and neutralization titration (measurement of phosphonium phenoxide equivalent) by the following method.
The synthesized molecular compound is reacted with an excess amount of oxalic acid with a known weight in a methanol / water solvent, and the remaining oxalic acid is quantified with an aqueous sodium hydroxide solution with a known normality. N / g) was calculated. The reciprocal of this value is the phosphonium phenoxide equivalent.
[0027]
In a 1-liter separable flask equipped with a stirrer, 37.5 g (0.15 mol) of BPS-N (mainly composed of 4,4′-bisphenol S) manufactured by Nikka Chemical Co., Ltd. and 100 ml of methanol The solution was charged and dissolved with stirring at room temperature, and a solution prepared by dissolving 4.0 g (0.1 mol) of sodium hydroxide in advance with 50 ml of methanol was added with further stirring. Next, a solution prepared by previously dissolving 41.9 g (0.1 mol) of tetraphenylphosphonium bromide in 150 ml of methanol was added. After stirring for a while and adding 300 ml of methanol, the solution in the flask was added dropwise to a large amount of water with stirring to obtain a white precipitate. The precipitate was filtered and dried to obtain 66.0 g of white crystals. This compound is designated as C1. C1 is a target molecular compound in which one molecule of tetraphenylphosphonium and 4,4′-bisphenol S are complexed at a molar ratio of 1: 1.5 from the results of NMR, maspectrum and elemental analysis. It was done. Further, from the value of neutralization titration, the phosphonium phenoxide equivalent was close to the theoretical value 713, and the structure of the formula (4) was confirmed. The synthesis yield was 92.6%. This is designated as a curing accelerator (a).
[0028]
Example 1
5.9 parts by weight of epoxy resin of formula (5) (epoxy equivalent 274, softening point 60 ° C.)
[0029]
Phenol aralkyl resin of formula (6) (hydroxyl equivalent: 203, softening point: 67 ° C.)
4.3 parts by weight
[0030]
Curing accelerator (a) 0.3 parts by weight fused spherical silica powder 88.0 parts by weight Inorganic ion exchanger 0.5 parts by weight carbon black 0.3 parts by weight γ-glycidoxypropyltrimethoxysilane 0.3 parts by weight After mixing 0.4 parts by weight of carnauba wax using a mixer, kneading 30 times using two rolls having surface temperatures of 90 ° C. and 45 ° C. A resin composition was obtained. The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 1.
[0031]
Evaluation Method Spiral Flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 , and a curing time of 2 minutes. The unit is cm.
Water absorption: Using a transfer molding machine, a molded product having a mold temperature of 175 ° C., an injection pressure of 75 kg / cm 2 , a curing time of 2 minutes and a diameter of 50 mm and a thickness of 3 mm is molded and post-cured at 175 ° C. for 8 hours. The molded product thus obtained was allowed to stand for 168 hours in an environment of 85 ° C. and a relative humidity of 85%, and the weight change before and after water absorption was measured to calculate the water absorption rate. Unit is% by weight
Solder crack resistance: 100-pin TQFP (package size: 14 x 14 mm, thickness: 1.4 mm, silicon chip size: 8.0 x 8.0 mm, lead frame made of 42 alloy) Mold temperature: 175 ° C, injection pressure: 75 kg / Cm 2 , transfer molding at a curing time of 2 minutes, and post-curing at 175 ° C. for 8 hours. The obtained semiconductor package was left in an environment of 85 ° C. and relative humidity 85% for 168 hours, and then immersed in a solder bath at 240 ° C. for 10 seconds. External cracks were observed with a microscope, and the number of cracks [(number of crack generating packages) / (total number of packages) × 100] was displayed in%. Further, the ratio of the peeled area between the chip and the cured resin composition was measured using an ultrasonic flaw detector, and the peel rate [(peeled area) / (chip area) × 100] was the average value of the five packages. Was expressed in%.
Storage at 30 ° C .: Spiral flow immediately after adjustment and after storage for 1 week at 30 ° C. was measured and expressed as a percentage after storage relative to the spiral flow immediately after adjustment. Units%.
[0032]
Examples 2-4, Comparative Examples 1-3
Each component was mix | blended in the ratio shown in Table 1, the resin composition was obtained like Example 1, and it evaluated similarly to Example 1. FIG. The results are shown in Table 1. The biphenyl type epoxy resin YX-4000H is manufactured by Jaban Epoxy Resin Co., Ltd., melting point 105 ° C., epoxy equivalent 191, and the phenol aralkyl resin XL-225 is manufactured by Mitsui Chemicals, Inc., softening point 75 ° C., hydroxyl group equivalent. 174.
[0033]
[Table 1]
[0034]
【Effect of the invention】
In the present invention, an epoxy resin composition for encapsulating a semiconductor having excellent curability and storability by using a novel curing accelerator is obtained, and the semiconductor device using this has good moisture resistance. Excellent solder crack resistance.

Claims (2)

(A)一般式(1)で示されるエポキシ樹脂、(B)一般式(2)で示されるフェノール樹脂、(C)溶融シリカ粉末及び(D)一般式(3)で示される分子化合物からなることを特徴とする半導体封止用エポキシ樹脂組成物において、全エポキシ樹脂中、前記(A)一般式(1)で示されるエポキシ樹脂を39/56×100重量%以上、100重量%以下含み、全フェノール樹脂中、前記(B)一般式(2)で示されるフェノール樹脂を29/42×100重量%以上、100重量%以下含み、(C)溶融シリカ粉末を全エポキシ樹脂組成物中88重量%以上93重量%以下含み、全硬化促進剤中、(D)一般式(3)で示される分子化合物を2/3×100重量%以上、100重量%含むことを特徴とする半導体封止用エポキシ樹脂組成物。
(Rは水素原子、又は炭素数1から4のアルキル基から選択される基であり、互いに同一であっても、異なっていても良い。nは平均値で1から5の正数である。)
(Rは水素原子、又は炭素数1から4のアルキル基から選択される基であり、互いに同一であっても、異なっていても良い。nは平均値で1から5の正数である。)
(Pはリン原子、R1は置換又は無置換の芳香族基、アルキル基であり、互いに同一であっても、異なっていても良い。Xはスルホン基であり、Rは炭素数1から4のアルキル基から選択される基であり、互いに同一であっても、異なっていても良い。mは0≦m≦1の数を示す。)
(A) An epoxy resin represented by general formula (1), (B) a phenol resin represented by general formula (2), (C) fused silica powder, and (D) a molecular compound represented by general formula (3). In the epoxy resin composition for semiconductor encapsulation, characterized in that the epoxy resin represented by the general formula (1) is 39/56 × 100 wt% or more and 100 wt% or less in all epoxy resins, The total phenol resin contains (B) the phenol resin represented by the general formula (2) in an amount of 29/42 × 100 wt% or more and 100 wt% or less, and (C) 88 wt% of the fused silica powder in the total epoxy resin composition. For semiconductor encapsulation, characterized in that it contains 2% × 100 wt% or more and 100 wt% of the molecular compound represented by the general formula (3) in the entire curing accelerator, Epoxy resin composition .
(R is a group selected from a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, which may be the same or different. N is a positive number of 1 to 5 on average. )
(R is a group selected from a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, which may be the same or different. N is a positive number of 1 to 5 on average. )
(P is a phosphorus atom, R 1 is a substituted or unsubstituted aromatic group or alkyl group, which may be the same or different from each other. X is a sulfone group, and R is 1 to 4 carbon atoms. And may be the same or different from each other, and m represents a number of 0 ≦ m ≦ 1.)
請求項1記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。A semiconductor device obtained by sealing a semiconductor element using the epoxy resin composition for sealing a semiconductor according to claim 1.
JP2001193212A 2001-06-26 2001-06-26 Epoxy resin composition and semiconductor device Expired - Fee Related JP4915034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001193212A JP4915034B2 (en) 2001-06-26 2001-06-26 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001193212A JP4915034B2 (en) 2001-06-26 2001-06-26 Epoxy resin composition and semiconductor device

Publications (2)

Publication Number Publication Date
JP2003012771A JP2003012771A (en) 2003-01-15
JP4915034B2 true JP4915034B2 (en) 2012-04-11

Family

ID=19031543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001193212A Expired - Fee Related JP4915034B2 (en) 2001-06-26 2001-06-26 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP4915034B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140166A (en) * 1997-11-11 1999-05-25 Shin Etsu Chem Co Ltd Epoxy resin composition for semiconductor sealing and semiconductor device
JP3388537B2 (en) * 1998-05-15 2003-03-24 信越化学工業株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP3582576B2 (en) * 1998-05-15 2004-10-27 信越化学工業株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2000007761A (en) * 1998-06-25 2000-01-11 Sumitomo Bakelite Co Ltd Thermosetting resin composition
JP3388538B2 (en) * 1998-06-29 2003-03-24 信越化学工業株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP3852540B2 (en) * 1998-07-02 2006-11-29 信越化学工業株式会社 Phosphonium borate compound, method for producing the same, curing catalyst for epoxy resin composition, and epoxy resin composition
JP3672225B2 (en) * 1999-09-30 2005-07-20 住友ベークライト株式会社 Thermosetting resin composition, epoxy resin molding material and semiconductor device using the same
JP2001122943A (en) * 1999-10-28 2001-05-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP4622030B2 (en) * 2000-04-03 2011-02-02 住友ベークライト株式会社 Epoxy resin composition and semiconductor device

Also Published As

Publication number Publication date
JP2003012771A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
KR101250033B1 (en) Epoxy resin composition, method of rendering the same latent, and semiconductor device
JP4404050B2 (en) Semiconductor sealing resin composition and semiconductor device using the same
KR101076977B1 (en) Resin composition for encapsulating semiconductor chip and semiconductor device
US9633922B2 (en) Sealing epoxy resin composition, hardened product, and semiconductor device
KR100243708B1 (en) Semiconductor encapsulating epoxy resin compositions suitable for semiconductor encapsulation, their manufacture
KR20070084338A (en) Epoxy resin composition and semiconductor device
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP4404051B2 (en) Semiconductor sealing resin composition and semiconductor device using the same
JP2008266610A (en) Resin composition for sealing semiconductor, and semiconductor device
JP2006225630A (en) Epoxy resin composition, method for forming latent of the same and semiconductor device
JP2003292582A (en) Epoxy resin composition and semiconductor device
JP2012241178A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP4915034B2 (en) Epoxy resin composition and semiconductor device
JP4491897B2 (en) Epoxy resin composition and semiconductor device
JP4568945B2 (en) Epoxy resin composition and semiconductor device
JP4622030B2 (en) Epoxy resin composition and semiconductor device
JP2010031233A (en) Semiconductor sealing epoxy resin composition, and one side sealing type semiconductor device produced by sealing semiconductor device using the same
JP4496778B2 (en) Curing accelerator, epoxy resin composition, and semiconductor device
JP4341261B2 (en) Epoxy resin curing accelerator, epoxy resin composition, and semiconductor device
JP2005162944A (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device produced by using the same
JP2003286335A (en) Epoxy resin composition and semiconductor device
JP4244662B2 (en) Thermosetting resin composition and semiconductor device using the same
JP3517961B2 (en) Epoxy resin composition and semiconductor encapsulating material
JPH08337709A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP2003292584A (en) Thermosetting resin composition and epoxy resin molding material and semiconductor device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4915034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees