WO2016119720A1 - 一种钒渣高效氯化提钒的系统及方法 - Google Patents

一种钒渣高效氯化提钒的系统及方法 Download PDF

Info

Publication number
WO2016119720A1
WO2016119720A1 PCT/CN2016/072522 CN2016072522W WO2016119720A1 WO 2016119720 A1 WO2016119720 A1 WO 2016119720A1 CN 2016072522 W CN2016072522 W CN 2016072522W WO 2016119720 A1 WO2016119720 A1 WO 2016119720A1
Authority
WO
WIPO (PCT)
Prior art keywords
bed
vanadium
slag
gas
pipe
Prior art date
Application number
PCT/CN2016/072522
Other languages
English (en)
French (fr)
Inventor
范川林
朱庆山
杨海涛
Original Assignee
中国科学院过程工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院过程工程研究所 filed Critical 中国科学院过程工程研究所
Publication of WO2016119720A1 publication Critical patent/WO2016119720A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/22Obtaining vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the fields of chemical industry and metallurgy, and particularly relates to a system and a method for efficiently extracting vanadium from vanadium slag.
  • Vanadium-titanium magnetite is an important symbiotic resource of vanadium, titanium and iron.
  • the titanium is enriched in the smelting slag by reduction smelting, and the vanadium is reduced to molten iron and further refined to obtain vanadium slag containing V 2 O 5 10% by weight to 28% by weight, thereby effectively separating the vanadium, titanium and iron resources in the mineral. And use.
  • the industry mainly produces vanadium oxide in the vanadium slag by sodium roasting-leaching-precipitating vanadium-calcination decomposition, which has the following outstanding problems: (1) long process, high energy consumption and high production cost; The recovery rate of vanadium is low, and the recovery rate from vanadium slag to vanadium oxide products is less than 80%; (3) environmental problems are prominent, and the introduction of sodium in the sodium roasting process makes the comprehensive utilization of the extraction tailings difficult, and the leaching-sparing vanadium process produces a large amount. Ammonia-nitrogen wastewater containing various harmful metal ions and sodium sulfate has a serious impact on the ecological environment. Therefore, how to achieve efficient and clean extraction of vanadium in vanadium slag is one of the key issues to be solved in the sustainable development of vanadium industry.
  • Chinese patent application CN101709388A discloses a process for separating vanadium by vanadium slag chlorination roasting, which comprises pulverizing a carbonaceous reducing agent, a solid chlorinating agent and a vanadium slag oxidizing roasting material, and feeding it into a rotary kiln for roasting to form vanadium in the form of chloride. Volatilized to achieve the purpose of separating and extracting vanadium.
  • the vanadium slag first needs to be calcined in a strong oxidizing atmosphere at 850-950 ° C for 120-150 min, cooled, batched, granulated, and then sent to a rotary kiln for chlorination roasting.
  • This multi-stage roasting not only makes the operation complicated but also fails to make good use of it.
  • the latent heat of reaction of vanadium slag greatly increases the energy consumption of roasting, and the rotary kiln roasting has the problem of low chlorination efficiency.
  • Chinese patent application CN101845552A discloses a method for recovering valuable elements by gradient chlorination of vanadium slag.
  • Chinese patent application CN103130279A also discloses a method for preparing vanadium pentoxide by using a vanadium-containing material such as vanadium slag as a raw material, and the method comprises the following steps: 1) pressing vanadium-containing material and carbon element The mass ratio is 1: (0.05-0.25), and the mixture is uniformly added to the reactor; 2) the reactor in step 1) is heated to 300 ° C - 800 ° C under the protection of inert gas, and then reduced according to different raw materials.
  • a vanadium-containing material such as vanadium slag
  • the chlorination time is 5-150 min; or the surface tension is low and the viscosity is small.
  • One or more of the molten salt is uniformly mixed in a certain ratio, and then the reactant is added. After the temperature reaches 700-800 ° C, the chlorine gas is introduced in a gas-solid (vanadium pentoxide) ratio of 1: (1-2).
  • the chlorination time is 5-150 min; 3) passing the generated mixed gas through the dust remover; 4) purifying the gas phase mixture to collect the liquid phase chlorination product through the condensing device, and the uncondensed gas is collected, separated and removed After the treatment, return to the chlorination process for recycling; 5) separate the liquid phase mixture by distillation Obtaining high purity vanadium oxychloride and vanadium tetrachloride; 6) passing vanadium oxychloride into ultrapure aqueous solution or ultrapure ammonia aqueous solution to obtain a slurry; 7) filtering the slurry to obtain vanadium pentoxide or ammonium vanadate 8) The obtained vanadium pentoxide filter cake is dried at about 150 ° C to obtain a powder of vanadium pentoxide or a vanadic acid ammonia into a vanadium pentoxide powder.
  • the main outstanding problems of the existing vanadium extraction technology include: (1) The vanadium slag chlorination roasting is a strong exothermic process, and the heat generated by the chlorination reaction needs to pass the preheating of the solid and gaseous reaction materials.
  • the heat removal of the furnace wall can stabilize the chlorination temperature. Therefore, the solid and gas usually enter the reactor at near room temperature, and the chlorination reaction generates heat to preheat before participating in the reaction, which makes the local reaction efficiency of the chlorination reactor too low.
  • the present invention provides a system and method for efficiently extracting vanadium from vanadium slag to realize heat supply and temperature regulation of chlorination process, comprehensive treatment of chlorinated tailings and impurity chlorides, and vanadium oxychloride. Efficient preparation of vanadium pentoxide.
  • the present invention adopts the following technical solutions:
  • the vanadium slag high efficiency chlorination vanadium extraction system of the invention comprises a chlorination bed feeding device 1, a chlorinated fluidized bed 2, a distillation device 3, a hydrolyzed fluidized bed 4, an oxidizing bed feeding device 5, an oxidizing fluidized bed 6, Exhaust gas absorbing absorber 7, induced draft fan 8 and chimney 9;
  • the chlorination bed feeding device 1 comprises a vanadium slag silo 1-1, a vanadium slag spiral feeder 1-2, a coke powder silo 1-3 and a coke powder screw feeder 1-4;
  • the chlorinated fluidized bed 2 comprises a chlorination bed feeder 2-1, a chlorinated fluidized bed main body 2-2, a chlorinated bed cyclone 2-3, a flue gas heat exchanger 2-4, a flue gas.
  • the distillation apparatus 3 includes a distillation still 3-1, a mud evaporator 3-2, a mud evaporation condenser 3-3, a distillation condenser 3-4, and a vanadium oxychloride vanadium 3-5;
  • the hydrolysis fluidized bed 4 comprises a hydrolysis bed gas heater 4-1, a chloride nozzle 4-2, a hydrolyzed fluidized bed main body 4-3, a hydrochloric acid condenser 4-4, and a hydrolysis bed discharger 4-5;
  • the oxidation bed feeding device 5 comprises a chlorinated slag silo 5-1 and a chlorinated slag screw feeder 5-2;
  • the oxidizing fluidized bed 6 comprises an oxidizing bed feeder 6-1, an oxidizing fluidized bed main body 6-2, an oxidizing bed primary cyclone separator 6-3, an oxidizing bed secondary cyclone separator 6-4, and chlorine gas cooling.
  • the discharge port at the bottom of the vanadium slag silo 1-1 is connected to the feed port of the vanadium slag screw feeder 1-2; the discharge port at the bottom of the coke powder silo 1-3 and the coke
  • the feed ports of the powder auger feeders 1-4 are connected; the discharge ports of the vanadium slag screw feeder 1-2, the discharge ports of the coke powder screw feeders 1-4, and the chlorination bed
  • the feed ports of the feeder 2-1 are connected by pipes;
  • the discharge port of the chlorination bed feeder 2-1 is connected to the inlet of the upper portion of the chlorinated fluidized bed main body 2-2 through a pipe; the bottom of the chlorination bed feeder 2-1
  • the air inlet is connected to the dry air main pipe through a pipe;
  • the chlorination bed cyclone 2-3 is disposed at the top center of the enlarged section of the chlorinated fluidized bed main body 2-2;
  • the gas outlet of the top of 2-3 is connected to the hot flue gas inlet of the flue gas heat exchanger 2-4 through a pipeline; the cold flue gas outlet of the flue gas heat exchanger 2-4 passes through the pipeline and the flue gas cold
  • the gas inlets of the condenser 2-5 are connected;
  • the gas outlet of the flue gas condenser 2-5 is connected to the gas inlet of the chlorinated bed acid sealing tank 2-6 through a pipe;
  • the chlorinated bed acid seal The gas outlet of the tank 2-6 is connected to the
  • the slurry inlet of the distillation still 3-1 is connected to the slurry discharge port at the bottom of the flue gas condenser 2-5 through a pipe; the slurry discharge port at the bottom of the distillation still 3-1 passes through the pipe and the The slurry inlet of the mud evaporator 3-2 is connected; the dry slag discharge port of the mud evaporator 3-2 is connected to the inlet of the chlorinated slag silo 5-1 through a pipe; the mud is evaporated
  • the vapor outlet of the vessel 3-2 is connected to the inlet of the slurry evaporation condenser 3-3 through a pipe; the liquid outlet of the slurry evaporation condenser 3-3 and the reflux port of the distillation still 3-1 pass a pipe is connected; a vapor outlet of the distillation pot 3-1 is connected to an inlet of the distillation condenser 3-4 through a pipe; a liquid outlet of the distillation condenser 3-4 and the vanadium
  • the cold gas inlet of the hydrolysis bed gas heater 4-1 and the burner combustion air inlet are connected to the dry air manifold through a pipeline; the cold gas inlet and the clean water manifold of the hydrolysis bed gas heater 4-1 pass through the pipeline Connected; the burner fuel inlet of the hydrolysis bed gas heater 4-1 is connected to the fuel main pipe through a pipe; the hot gas outlet of the hydrolysis bed gas heater 4-1 passes through the pipe and the hydrolyzed fluidized bed main body
  • the inlet ports at the bottom of 4-3 are connected; the chloride nozzle 4-2 is disposed at a lower portion of the main body of the hydrolyzed fluidized bed 4-3; the chloride inlet of the chloride nozzle 4-2 is passed through a pipe and a pipe
  • the liquid outlet of the vanadium oxychloride vanadium storage tank 3-5 is connected; the gas inlet of the chloride nozzle 4-2 is connected to the dry air main pipe through a pipe; the upper discharge of the hydrolyzed fluidized bed main body 4-3 The
  • the discharge port at the bottom of the chlorinated slag silo 5-1 is connected to the feed port of the chlorinated slag screw feeder 5-2; the discharge port of the chlorinated slag screw feeder 5-2 passes through Pipeline with the oxidized bed feeder 6-1 The feed ports are connected; the air inlet at the bottom of the oxidizing bed feeder 6-1 is connected to the dry air main pipe through a pipe;
  • the discharge port of the oxidation bed feeder 6-1 is connected to the inlet of the upper portion of the oxidation fluidized bed main body 6-2 through a pipe; the oxidation bed primary cyclone separator 6-3 is disposed at the The top center of the enlarged section of the oxidized fluidized bed main body 6-2; the gas outlet of the top of the oxidizing bed primary cyclone 6-3 passes through the pipeline and the inlet of the oxidizing bed secondary cyclone 6-4 Connected; the gas outlet of the top of the oxidizing bed secondary cyclone 6-4 is connected to the inlet of the chlorine gas cooling liquefaction accumulator 6-5 through a pipeline; the chlorine gas cooling liquefaction enricher 6- The liquid chlorine outlet of 5 is connected to the liquid chlorine inlet of the liquid chlorine gasifier 6-6 through a pipe; the chlorine gas is cooled by the gas outlet of the liquefaction enricher 6-5 and the acid bed is sealed with the acid bed 6-7
  • the gas inlets are connected by pipes; the gas outlets of the oxidation bed acid
  • the gas outlet of the exhaust gas rinsing absorber 7 is connected to the air inlet of the draft fan 8 through a pipe; the air vent of the draft fan 8 is connected to the gas inlet at the bottom of the chimney 9 through a pipe.
  • the method for efficiently extracting vanadium from vanadium slag based on the above system according to the present invention comprises the following steps:
  • the vanadium slag powder in the vanadium slag silo 1-1 and the coke powder in the coke powder silo 1-3 are respectively passed through the vanadium slag screw feeder 1-2 and the coke powder screw feeder 1- 4 simultaneously entering the chlorination bed feeder 2-1 and then entering the chlorinated fluidized bed main body 2-2; chlorine gas from the chlorine gas source main pipe, dry air of the dry air main pipe, and the liquid chlorine gasification
  • the circulating chlorine gas of the device 6-6 is also heated into the chlorinated fluidized bed main body 2-2 after being preheated by the flue gas heat exchanger 2-4 and the chlorinated flue gas to make the vanadium slag powder and the coke powder
  • the powder material maintains fluidization and chemical reaction with it, and the vanadium slag is chlorinated; the air causes some of the coke powder to burn to provide heat to maintain the fluidized bed temperature, and the chlorine gas and the coke powder work together to make vanadium oxide in the vanadium slag and Part of the
  • the vanadium oxychloride slurry in the flue gas condenser 2-5 enters the distillation pot 3-1 for distillation operation, and the bottom slurry of the distillation pot 3-1 enters the slurry evaporator 3-2. Evaporating to obtain a dry slag powder and vanadium oxychloride vapor; the dry slag powder produced by the mud evaporator 3-2 is sent to the chlorinated slag silo 5-1, and the slurry evaporator 3-2 is produced
  • the vanadium oxychloride vapor is condensed by the slurry evaporating condenser 3-3 and circulated into the distillation still 3-1; the vanadium oxychloride vapor produced by the distillation pot 3-1 is passed through the distillation condenser 3 -4 condensation to form a vanadium pentoxide vanadium liquid into the vanadium pentoxide vanadium storage tank 3-5;
  • the vanadium pentoxide vanadium 3-5 liquid of the vanadium oxychloride vanadium storage tank 3-5 is mixed with the dry air from the dry air manifold into the hydrolyzed fluidized bed main body 4-3 through the chloride nozzle 4-2;
  • the dry air of the dry air main pipe is mixed with the clean water from the clean water main pipe, and then gasified and preheated by the hydrolyzed bed gas heater 4-1 which is heated by the fuel combustion, and then enters into the hydrolyzed fluidized bed main body 4-3.
  • the gas discharged from the exhaust gas absorbing absorber 7 is sent to the chimney 9 through the induced draft fan 8 and then emptied.
  • the vanadium slag is a vanadium-containing smelting slag powder produced by smelting semi-steel of vanadium-titanium magnetite, with a particle size of 0.01 mm to 3.0 mm, and a V 2 O 5 mass content of 10% to 28%. .
  • the second feature of the present invention is that in the chlorination process of the vanadium slag in the chlorinated fluidized bed main body (2-2), the amount of the coke powder added is 10% to 30% of the mass of the vanadium slag powder, and the vanadium slag chlorine
  • the operating temperature is 500-900 ° C, and the average residence time of the powder is 30-90 min.
  • the third feature of the present invention is that in the hydrolyzed fluidized bed main body (4-3), vanadium oxychloride directly produces vanadium pentoxide powder by gas phase hydrolysis, and the vapor phase hydrolysis process of water vapor and trichloroox
  • the mass ratio of vanadium is 1.2 to 2.0, and the gas phase hydrolysis operation temperature is 160 to 600 °C.
  • the fourth feature of the present invention resides in that, in the oxidized fluidized bed main body (6-2), chlorine gas is recovered by oxidation treatment of chlorinated residue and dry slag powder, and the chlorinated residue and dry slag powder are oxidized.
  • the temperature is 700-1000 ° C, and the average residence time of the powder is 40-80 min.
  • the present invention has the following outstanding advantages:
  • the chlorination gas is preheated while cooling the flue gas, so that the temperature distribution of the chlorination reactor is more uniform, and the chlorination efficiency of the vanadium slag is effectively improved;
  • the vanadium slag chlorination and vanadium extraction by the invention not only can effectively improve the chlorination reaction efficiency, but also realize the comprehensive treatment of the chlorinated slag and the effective circulation of the chlorine gas, and has high efficiency, low energy consumption, no pollution, good product quality, etc.
  • the utility model can effectively improve the economic and social benefits of vanadium slag chlorination and vanadium extraction.
  • FIG. 1 is a schematic view showing the configuration of a vanadium slag high efficiency chlorination vanadium extraction system of the present invention.
  • FIG. 1 is a schematic view of a system and method for a vanadium slag high efficiency chlorination vanadium extraction system of the present invention.
  • a vanadium slag high efficiency chlorination vanadium system used in the present embodiment includes a chlorination bed feeding device 1, a chlorinated fluidized bed 2, a distillation device 3, a hydrolyzed fluidized bed 4, an oxidizing bed feed.
  • Device 5 oxidation Fluidized bed 6, exhaust gas leaching absorber 7, induced draft fan 8 and chimney 9;
  • the chlorination bed feeding device 1 comprises a vanadium slag silo 1-1, a vanadium slag spiral feeder 1-2, a coke powder silo 1-3 and a coke powder screw feeder 1-4;
  • the chlorinated fluidized bed 2 comprises a chlorination bed feeder 2-1, a chlorinated fluidized bed main body 2-2, a chlorinated bed cyclone 2-3, a flue gas heat exchanger 2-4, a flue gas condenser 2-5, chlorinated bed acid sealed tank 2-6 and chlorinated bed spiral slag discharger 2-7;
  • the distillation apparatus 3 includes a distillation still 3-1, a mud evaporator 3-2, a mud evaporation condenser 3-3, a distillation condenser 3-4, and a vanadium oxychloride vanadium 3-5;
  • the hydrolyzed fluidized bed 4 comprises a hydrolysis bed gas heater 4-1, a chloride nozzle 4-2, a hydrolyzed fluidized bed main body 4-3, a hydrochloric acid condenser 4-4, and a hydrolysis bed discharger 4-5;
  • the oxidation bed feeding device 5 comprises a chlorinated slag silo 5-1 and a chlorinated slag screw feeder 5-2;
  • the oxidizing fluidized bed 6 comprises an oxidizing bed feeder 6-1, an oxidizing fluidized bed main body 6-2, an oxidizing bed primary cyclone separator 6-3, an oxidizing bed secondary cyclone separator 6-4, and a chlorine gas cooling liquefaction rich Collector 6-5, liquid chlorine gasifier 6-6, oxidation bed acid sealing tank 6-7, oxidation bed spiral slag discharger 6-8, oxidized slag storage tank 6-9 and oxidation bed gas heater 6-10;
  • the discharge port at the bottom of the vanadium slag silo 1-1 is connected with the feed port of the vanadium slag screw feeder 1-2; the discharge port at the bottom of the coke powder silo 1-3 and the coke powder screw feeder 1-4
  • the feed port is connected; the discharge port of the vanadium slag screw feeder 1-2 and the discharge port of the coke powder screw feeder 1-4 are connected to the feed port of the chlorination bed feeder 2-1 through the pipeline. ;
  • the discharge port of the chlorination bed feeder 2-1 is connected to the inlet of the upper part of the chlorination fluidized bed main body 2-2 through a pipe; the inlet of the bottom of the chlorination bed feeder 2-1 is piped and The dry air manifold is connected; the chlorination bed cyclone 2-3 is disposed at the top center of the enlarged section of the chlorination fluidized bed main body 2-2; the gas outlet of the top of the chlorination bed cyclone 2-3 passes through the pipeline and the flue gas
  • the hot flue gas inlets of the heat exchangers 2-4 are connected; the cold flue gas outlets of the flue gas heat exchangers 2-4 are connected to the gas inlets of the flue gas condensers 2-5 through pipes; the flue gas condensers 2-5
  • the gas outlet is connected to the gas inlet of the chlorinated bed acid sealing tank 2-6 through a pipe; the gas outlet of the chlorinated bed acid sealing tank 2-6 is connected to the gas inlet of the exhaust gas leaching absorber 7 through
  • the slurry inlet of the distillation still 3-1 is connected to the slurry discharge port at the bottom of the flue gas condenser 2-5 through a pipe; the slurry discharge port at the bottom of the distillation still 3-1 passes through the slurry of the pipe and the mud evaporator 3-2.
  • the feed inlets are connected; the dry slag discharge port of the mud evaporator 3-2 is connected to the feed port of the chlorinated slag silo 5-1 through a pipe; the vapor outlet of the mud evaporator 3-2 is passed through a pipe and a slurry evaporating condenser
  • the inlet ports of 3-3 are connected; the liquid outlet of the slurry evaporation condenser 3-3 is connected to the return port of the distillation still 3-1 through a pipe; the vapor outlet of the distillation still 3-1 is passed through a pipe and a distillation condenser 3-
  • the inlet ports of 4 are connected; the liquid outlet of the distillation condenser 3-4 is connected to the liquid inlet of the vanadium oxychloride vana 3-5 through a pipe;
  • the cold gas inlet of the hydrolysis bed gas heater 4-1 and the burner combustion air inlet are connected to the dry air main pipe through a pipeline; the cold gas inlet of the hydrolysis bed gas heater 4-1 is connected to the clean water main pipe through the pipeline;
  • the burner fuel inlet of the bed gas heater 4-1 is connected to the fuel manifold through a pipe; the hot gas outlet of the hydrolysis bed gas heater 4-1 is connected to the inlet of the bottom of the hydrolyzed fluidized bed main body 4-3 through a pipe.
  • a chloride nozzle 4-2 is disposed at a lower portion of the hydrolyzed fluidized bed main body 4-3; a chloride inlet of the chloride nozzle 4-2 is connected to a liquid outlet of the vanadium oxychloride vanadium 3-5 through a pipe; chloride The gas inlet of the nozzle 4-2 is connected to the dry air main pipe through a pipe; the upper discharge port of the hydrolyzed fluidized bed main body 4-3 is connected to the feed port of the hydrolysis bed discharger 4-5 through a pipe; the hydrolysis bed row The air inlet at the bottom of the hopper 4-5 is connected to the dry air main pipe through a pipe; the discharge port of the hydrolysis bed ejector 4-5 is connected to the product storage silo through a pipe; the top of the hydrolyzed fluidized bed main body 4-3 The air outlet passes through the pipeline and the inlet of the hydrochloric acid condenser 4-4 Connected; outlet 4-4 hydrochloric acid condenser is connected to the bottom of the
  • the discharge port at the bottom of the chlorinated slag silo 5-1 is connected to the feed port of the chlorinated slag screw feeder 5-2; the discharge port of the chlorinated slag screw feeder 5-2 is fed through the pipe and the oxidation bed.
  • the feed ports of the 6-1 are connected; the air inlet at the bottom of the oxidizing bed feeder 6-1 is connected to the dry air main pipe through a pipe;
  • the discharge port of the oxidation bed feeder 6-1 is connected to the inlet of the upper portion of the oxidation fluidized bed main body 6-2 through a pipe; the oxidation bed primary cyclone separator 6-3 is disposed in the oxidation fluidized bed main body 6- The top center of the enlarged section of 2; the gas outlet of the top of the oxidation bed primary cyclone 6-3 is connected to the inlet of the oxidation bed secondary cyclone 6-4 through a pipe; the oxidation bed secondary cyclone 6- 4
  • the outlet port at the top is connected to the inlet of the chlorine gas liquefaction accumulator 6-5 through a pipeline; the liquid chlorine outlet of the chlorine gas liquefaction enricher 6-5 passes through the pipeline and the liquid chlorine of the liquid chlorine gasifier 6-6
  • the inlets are connected; the gas outlet of the chlorine gas cooling liquefaction accumulator 6-5 is connected to the inlet of the oxidation bed acid sealing tank 6-7 through a pipeline; the gas outlet of the oxidation bed acid sealing tank 6-7
  • the gas outlet of the exhaust gas rinsing absorber 7 is connected to the air inlet of the draft fan 8 through a pipe; the air vent of the draft fan 8 is connected to the gas inlet at the bottom of the chimney 9 through a pipe.
  • the vanadium slag is efficiently chlorinated and vanadium is extracted by the above system, and the specific method comprises: the vanadium slag powder in the vanadium slag silo 1-1 and the coke powder of the coke powder silo 1-3 respectively pass through the vanadium slag spiral feeder 1-2 and the coke powder screw feeder 1-4 are simultaneously mixed into the chlorination bed feeder 2-1 and then enter the chlorination fluidized bed main body 2-2; the chlorine gas from the chlorine gas source main pipe and the drying air main pipe are dried.
  • the circulating chlorine gas of the air and liquid chlorine gasifier 6-6 is also heated into the chlorinated fluidized bed main body 2-2 after being preheated by the flue gas heat exchanger 2-4 and the chlorinated flue gas to make the vanadium slag powder and coke. Powder and other powder materials maintain fluidization and chemical reaction with them. Air causes some coke powder to burn to provide heat to maintain fluidized bed temperature. Chlorine gas and coke powder work together to chlorinate vanadium oxide and some impurities in vanadium slag.
  • the chlorinated residue is chlorinated through a slag discharge port at the lower portion of the chlorination fluidized bed main body 2-2, and a chlorination bed spiral slag discharge device 2-7
  • the chlorinated flue gas is removed by the chlorination bed cyclone 2-3, and then pre-cooled by the flue gas heat exchanger 2-4 and enters the flue gas condenser 2 -5 in which the vanadium oxychloride is condensed and forms a vanadium oxychloride slurry with a small amount of dust and other chloride impurities, and the remaining gas is sealed into the exhaust gas leaching absorber 7 by the chlorination bed acid sealing tank 2-6;
  • the vanadium oxychloride slurry in the flue gas condenser 2-5 enters the distillation pot 3-1 for distillation operation, and the bottom mud of the distillation pot 3-1 enters the mud evaporator 3-2 for evaporation to obtain dry slag powder and three Vanadium oxychloride vapor; the dry slag powder produced by the mud evaporator 3-2 is sent to the chlorinated slag silo 5-1, and the vanadium oxychloride vapor generated by the slurry evaporator 3-2 is passed through the slurry evaporating condenser 3-3 After condensing, it is circulated into the distillation pot 3-1; the vanadium oxychloride vapor produced by the distillation pot 3-1 is condensed by the distillation condenser 3-4 to form a vanadium oxychloride vanadium liquid, and then enters the vanadium oxychloride vanadium storage tank 3-5;
  • the vanadium pentoxide vanadium of the vanadium pentoxide storage tank 3-5 is mixed with the dry air from the dry air main pipe through the chloride nozzle 4-2 and then enters the hydrolyzed fluidized bed main body 4-3; the dry air from the dry air main pipe After being mixed with the clean water from the clean water main pipe, the hydrolyzed bed gas heater 4-1 which is heated by the fuel combustion is preheated, and then enters the hydrolyzed fluidized bed main body 4-3 to maintain the fluidization of the powder in the bed.
  • vanadium pentoxide powder in the hydrolyzed fluidized bed main body 4-3 is discharged through the discharge port and the hydrolysis bed
  • the hopper 4-5 is discharged and sent to the product storage unit;
  • the hydrolyzed flue gas is discharged from the top of the main body of the hydrolyzed fluidized bed 4-3, and then enters the hydrochloric acid condenser 4-4 to be condensed and absorbed to form a hydrochloric acid solution, and then the tail gas is sent to the exhaust gas leaching absorber 7;
  • the chlorinated residue and dry slag powder in the chlorinated slag silo 5-1 enters the oxidized fluidized bed main body 6-2 through the chlorinated slag screw feeder 5-2 and the oxidizing bed feeder 6-1;
  • the dry air of the main pipe is heated by the oxidizing bed gas heater 6-10 which is heated by the fuel to enter the oxidized fluidized bed main body 6-2, so that the chlorinated residue and the dry slag powder are maintained fluidized and oxidized to form Oxidation slag and oxidized flue gas rich in chlorine gas;
  • oxidized slag is sent to the slag storage tank 6-9 through the lower slag discharge port of the oxidation fluidized bed main body 6-2, and the oxidation bed spiral slag discharge device 6-8; oxidizing flue gas
  • the oxidized fluidized bed primary cyclone separator 6-3, the oxidized fluidized bed 6-4 secondary cyclone separator removes the dust and then enters the chlorine gas cooling liquefaction
  • the vanadium slag raw material used in the present embodiment is a vanadium slag vanadium slag, and the composition thereof is shown in Table 1.
  • the particle size ranges from 0.01 mm to 3.0 mm, and the treatment amount is 120 kg/h.
  • the vanadium slag is oxidized by coke powder, vapor phase hydrolysis, and chlorinated slag to obtain vanadium pentoxide product and oxidation slag.
  • the amount of coke powder added in the vanadium slag chlorination process is 10% of the quality of the vanadium and vanadium slag extracted from the converter, the operating temperature is 900 ° C, and the average residence time of the powder is 30 min; in the hydrolyzed fluidized bed In the main body 4-3, the vanadium oxychloride vapor phase hydrolysis operation steam has a mass ratio of 1.2 to vanadium oxychloride, the gas phase hydrolysis operation temperature is 600 ° C; in the oxidation fluidized bed main body 6-2, the chlorination residue and the dry slag powder The oxidation operation temperature of the material was 700 ° C, and the average residence time of the powder was 80 min. Under the above operating conditions, the purity of the vanadium pentoxide product is 99.1%, the extraction recovery of vanadium is 88.5%, and the chlorine content of the oxidation slag is 1.3 wt%.
  • the amount of coke powder added is 30% of the quality of vanadium and vanadium slag
  • the operating temperature is 500 °C
  • the average residence time of the powder is 90 min
  • the gas phase hydrolysis operation temperature is 160 ° C
  • the oxidation operation temperature of the chlorination residue and dry residue powder is 1000 ° C
  • the average residence time of the powder material is 40 min.
  • the purity of vanadium pentoxide product is 98.9%
  • the oxidized slag contains 1.1% by weight of chlorine.
  • the amount of coke powder added is 18% of the quality of vanadium and vanadium slag
  • the operating temperature is 600 °C
  • the average residence time of powder is 60 min.

Abstract

一种钒渣高效氯化提钒的系统及方法。通过氯化气体与氯化烟气换热实现氯化气体预热、适量配加空气使部分焦粉燃烧实现氯化过程的热量平衡供给,并通过氯化渣的高温流态化氧化处理同时实现氯化渣综合处理和氯气的循环利用,并通过氯化产物三氯氧钒的气相水解直接制备得到粉状五氧化二钒产品,提高氯化反应效率、降低氯气消耗、消除氯化渣危害和避免传统铵盐沉淀带来的污染问题。

Description

一种钒渣高效氯化提钒的系统及方法 技术领域
本发明属于化工、冶金领域,特别涉及一种钒渣高效氯化提钒的系统及方法。
背景技术
钒钛磁铁矿是一种重要的钒、钛、铁共生资源。通过还原熔炼将钛富集于熔炼渣中,钒还原至铁水后经进一步吹炼得到含V2O510wt%~28wt%的钒渣,从而可有效实现矿物中钒、钛、铁资源的分离与利用。目前,工业上主要通过钠化焙烧-浸出-沉钒-煅烧分解制备氧化钒制品实现钒渣中钒的提取,存在如下突出问题:(1)流程冗长,能耗高,生产成本高;(2)钒回收率低,从钒渣到氧化钒制品的回收率不足80%;(3)环境问题突出,钠化焙烧过程钠的大量引入使得提取尾渣综合利用困难,浸出-沉钒过程产生大量含有多种有害金属离子、硫酸钠的氨氮废水,对生态环境造成严重的影响。因此,如何实现钒渣中钒的高效清洁提取是钒工业可持续发展亟待解决的关键问题之一。
为了实现提钒尾渣的综合利用和避免大量高盐废水的产生,相关机构提出了钙化焙烧-硫酸浸出-沉钒-焙烧制备钒制品的工艺路线,如中国专利申请CN101161831A、CN103305706A、CN103305685A和CN102828019A等。钙化焙烧是将钒渣中的钒转变为酸溶性的钒酸钙等,在后续浸出工序在硫酸作用下进入溶液中,从而避免了钠的引入,利于提钒尾渣的综合处理。但酸性浸出条件下,大量杂质离子也进入浸出液,加剧了钒溶液净化工序的负担,且钒沉淀过程仍需添加氨水等,并不能有效避免氨氮废水的产生。
钒渣氯化提钒工艺因其提取效率和钒回收率高,也备受到了人们的关注。如中国专利申请CN101709388A公开了一种钒渣氯化焙烧分离钒的工艺,将碳质还原剂、固体氯化剂与钒渣氧化焙烧料压粒,送入回转窑焙烧使钒以氯化物的形式挥发出来,从而达到分离提取钒的目的。钒渣首先需要在850~950℃强氧化气氛中焙烧120~150min,冷却、配料、压粒,再送入回转窑进行氯化焙烧,这种多段焙烧不仅使得操作复杂而且因未能较好地利用钒渣的反应潜热而使焙烧能耗大幅增加,且回转窑焙烧存在氯化效率偏低的问题。中国专利申请CN101845552A公开了一种钒渣梯度氯化回收有价元素的方法,经原料配混后分别在不同条件下依次进行钒、铁、钛、铬和硅的氯化,以期达到分离富集这些元 素的目的。多段温度氯化焙烧的热量供给难度大、操作复杂、难以实现规模化应用。此外,中国专利申请CN103130279A也公开了一种以钒渣等含钒物质为原料,采用氯化法提取制备五氧化二钒的方法,该方法包括以下步骤:1)将含钒物质、碳单质按质量比1:(0.05-0.25)混合均匀后加入到反应器中;2)将步骤1)中反应器在通入惰性气体保护条件下升温至300℃-800℃后,根据原料的不同减小或者停止惰性气体的通入量并以气固(五氧化二钒)比为1:(1-2)的量通入氯气,氯化时间为5-150min;或者选用表面张力低且粘度小的熔盐的一种或几种按一定比例混合均匀后加入反应物,待温度达到700-800℃后,以气固(五氧化二钒)比为1:(1-2)的量通入氯气,并搅拌,氯化时间为5-150min;3)将生成的混合气体通过除尘器;4)净化后的气相混合物通过冷凝装置收集液相氯化产物,未冷凝的气体经收集、分离除杂处理后返回氯化工序循环使用;5)通过精馏方式分离液相混合物得到高纯三氯氧钒和四氯化钒;6)将三氯氧钒通入超纯水溶液中或超纯氨水溶液中得到浆液;7)将浆液过滤得到五氧化二钒或钒酸铵;8)将得到的五氧化二钒滤饼在150℃左右烘干得到粉剂五氧化二钒或将钒酸氨转化为五氧化二钒粉剂。
现有氯化提钒技术主要存在的突出问题包括:(1)钒渣氯化焙烧属于强放热过程,氯化反应产生的热量除了可满足固体和气体反应物料的预热外,仍需要通过炉壁散热等方式移出才能稳定氯化温度,故固体和气体通常均以近室温状态进入反应器内,被氯化反应产生热量预热后才能参与反应,这使得氯化反应器局部反应效率过低;(2)由于需要通过大量散热移出氯化反应产生的热量以维持操作温度,故操作条件和环境气候变化均易引起氯化温度波动,造成氯化选择性和效率降低,需要采用合理的热量平衡供给和温度调控方式;(3)对于钒渣氯化焙烧产生的含氯尾渣和氯化物分离除杂产生的杂质氯化物,未能提供有效的综合处理方法,极易造成环境污染;(4)由钒氯化物(三氯氧钒)制备工业钒制品五氧化二钒缺乏高效清洁的技术路线,由于钒在盐酸溶液中具有较高的溶解度,直接水解会造成钒的回收率过低,而采用铵盐沉淀虽然可提高钒的沉淀率,但是会产生大量的氨氮废水,环境问题突出;等等。这些问题均是造成现有钒渣氯化提钒工艺无法规模化应用的重要原因。
因此,通过工艺技术创新,提高氯化反应效率、实现氯化过程的温度调控、氯化尾渣和杂质氯化物的综合处理、三氯氧钒高效制备五氧化二钒,是钒渣氯化高效提钒规模化应用的关键所在。
发明内容
针对上述问题,本发明提出了一种钒渣高效氯化提钒的系统及方法,以实现氯化过程的热量供给和温度调控、氯化尾渣和杂质氯化物的综合处理、三氯氧钒高效制备五氧化二钒。为了达到这些目的,本发明采用了如下技术方案:
本发明的钒渣高效氯化提钒的系统,包括氯化床加料装置1、氯化流化床2、蒸馏装置3、水解流化床4、氧化床加料装置5、氧化流化床6、尾气淋洗吸收器7、引风机8和烟囱9;
所述氯化床加料装置1包括钒渣料仓1-1、钒渣螺旋加料器1-2、焦粉料仓1-3和焦粉螺旋加料器1-4;
所述氯化流化床2包括氯化床进料器2-1、氯化流化床主体2-2、氯化床旋风分离器2-3、烟气换热器2-4、烟气冷凝器2-5、氯化床酸封罐2-6和氯化床螺旋排渣器2-7;
所述蒸馏装置3包括蒸馏釜3-1、泥浆蒸发器3-2、泥浆蒸发冷凝器3-3、蒸馏冷凝器3-4和三氯氧钒储罐3-5;
所述水解流化床4包括水解床气体加热器4-1、氯化物喷嘴4-2、水解流化床主体4-3、盐酸冷凝器4-4和水解床排料器4-5;
所述氧化床加料装置5包括氯化渣料仓5-1和氯化渣螺旋加料器5-2;
所述氧化流化床6包括氧化床进料器6-1、氧化流化床主体6-2、氧化床一级旋风分离器6-3、氧化床二级旋风分离器6-4、氯气冷却液化富集器6-5、液氯气化器6-6、氧化床酸封罐6-7、氧化床螺旋排渣器6-8、氧化渣储罐6-9和氧化床气体加热器6-10;
所述钒渣料仓1-1底部的出料口与所述钒渣螺旋加料器1-2的进料口相连接;所述焦粉料仓1-3底部的出料口与所述焦粉螺旋加料器1-4的进料口相连接;所述钒渣螺旋加料器1-2的出料口、所述焦粉螺旋加料器1-4的出料口均与所述氯化床进料器2-1的进料口通过管道相连接;
所述氯化床进料器2-1的排料口与所述氯化流化床主体2-2上部的进料口通过管道相连接;所述氯化床进料器2-1底部的进气口通过管道与干燥空气总管相连接;所述氯化床旋风分离器2-3设置于所述氯化流化床主体2-2的扩大段顶部中心;所述氯化床旋风分离器2-3顶部的出气口通过管道与所述烟气换热器2-4的热烟气入口相连接;所述烟气换热器2-4的冷烟气出口通过管道与所述烟气冷 凝器2-5的气体入口相连接;所述烟气冷凝器2-5的气体出口通过管道与所述氯化床酸封罐2-6的气体入口相连接;所述氯化床酸封罐2-6的气体出口通过管道与所述尾气淋洗吸收器7的气体入口相连接;所述氯化流化床主体2-2下部的排渣口与所述氯化床螺旋排渣器2-7的进料口通过管道相连接;所述氯化床螺旋排渣器2-7的出料口通过管道与所述氯化渣料仓5-1的进料口相连接;所述氯化流化床主体2-2底部的进气口通过管道与所述烟气换热器2-4的热气体出口相连接;所述烟气换热器2-4的冷气体入口通过管道分别与氯气气源总管、干燥空气总管及所述液氯气化器6-6的气体出口相连接;
所述蒸馏釜3-1的浆料入口与所述烟气冷凝器2-5底部的浆料排出口通过管道相连接;所述蒸馏釜3-1底部的浆料排出口通过管道与所述泥浆蒸发器3-2的浆料入口相连接;所述泥浆蒸发器3-2的干渣排放口通过管道与所述氯化渣料仓5-1的进料口相连接;所述泥浆蒸发器3-2的蒸气出口通过管道与所述泥浆蒸发冷凝器3-3的进气口相连接;所述泥浆蒸发冷凝器3-3的液体出口与所述蒸馏釜3-1的回流口通过管道相连接;所述蒸馏釜3-1的蒸气出口通过管道与所述蒸馏冷凝器3-4的进气口相连接;所述蒸馏冷凝器3-4的液体出口与所述三氯氧钒储罐3-5的液体入口通过管道相连接;
所述水解床气体加热器4-1的冷气体入口和燃烧嘴助燃风入口均通过管道与干燥空气总管相连接;所述水解床气体加热器4-1的冷气体入口与洁净水总管通过管道相连接;所述水解床气体加热器4-1的燃烧嘴燃料入口通过管道与燃料总管相连接;所述水解床气体加热器4-1的热气体出口通过管道与所述水解流化床主体4-3底部的进气口相连接;所述氯化物喷嘴4-2设置于所述水解流化床主体4-3的下部;所述氯化物喷嘴4-2的氯化物入口通过管道与所述三氯氧钒储罐3-5的液体出口相连接;所述氯化物喷嘴4-2的气体入口通过管道与干燥空气总管相连接;所述水解流化床主体4-3的上部排料口通过管道与所述水解床排料器4-5的进料口相连接;所述水解床排料器4-5底部的进气口通过管道与干燥空气总管向连接;所述水解床排料器4-5的排料口通过管道与产品储存料仓相连接;所述水解流化床主体4-3顶部的出气口通过管道与所述盐酸冷凝器4-4的进气口相连接;所述盐酸冷凝器4-4底部的盐酸出口通过管道与盐酸储罐相连接;所述盐酸冷凝器4-4顶部的气体出口通过管道与所述尾气淋洗吸收器7的气体入口相连接;
所述氯化渣料仓5-1底部的出料口与所述氯化渣螺旋加料器5-2的进料口相连接;所述氯化渣螺旋加料器5-2的出料口通过管道与所述氧化床进料器6-1的 进料口相连接;所述氧化床进料器6-1底部的进气口通过管道与干燥空气总管相连接;
所述氧化床进料器6-1的排料口与所述氧化流化床主体6-2上部的进料口通过管道相连接;所述氧化床一级旋风分离器6-3设置于所述氧化流化床主体6-2的扩大段顶部中心;所述氧化床一级旋风分离器6-3顶部的出气口通过管道与所述氧化床二级旋风分离器6-4的进气口相连接;所述氧化床二级旋风分离器6-4顶部的出气口通过管道与所述氯气冷却液化富集器6-5的进气口相连接;所述氯气冷却液化富集器6-5的液氯出口通过管道与所述液氯气化器6-6的液氯入口相连接;所述氯气冷却液化富集器6-5的气体出口与所述氧化床酸封罐6-7的进气口通过管道相连接;所述氧化床酸封罐6-7的气体出口通过管道与所述尾气淋洗吸收器7的气体入口相连接;所述氧化流化床主体6-2下部的排渣口与所述氧化床螺旋排渣器6-8的进料口通过管道相连接;所述氧化床螺旋排渣器6-8的出料口、所述氧化床二级旋风分离器6-4底部的排料口均通过管道与所述氧化渣储罐6-9的进料口相连接;所述氧化床气体加热器6-10的冷气体入口和燃烧嘴助燃风入口均通过管道与干燥空气总管相连接;所述氧化床气体加热器6-10的热气体出口通过管道与所述氧化流化床主体6-2底部的进气口相连接;所述氧化床气体加热器6-10燃烧嘴的燃料入口通过管道与燃料总管相连接;
所述尾气淋洗吸收器7的气体出口与所述引风机8的入风口通过管道相连接;所述引风机8的排风口通过管道与所述烟囱9底部的气体入口相连接。
本发明所述的基于上述系统的钒渣高效氯化提钒方法,具体包括以下步骤:
所述钒渣料仓1-1中的钒渣粉料和所述焦粉料仓1-3的焦粉分别经所述钒渣螺旋加料器1-2和所述焦粉螺旋加料器1-4同时进入所述氯化床进料器2-1混合后进入所述氯化流化床主体2-2内;来自氯气气源总管的氯气、干燥空气总管的干燥空气及所述液氯气化器6-6的循环氯气经所述烟气换热器2-4与氯化烟气换热预热后也进入所述氯化流化床主体2-2内使钒渣粉料、焦粉等粉体物料维持流态化并与之发生化学反应,进行钒渣氯化;空气使部分焦粉发生燃烧提供热量维持流化床温度,氯气与焦粉共同作用使钒渣中的氧化钒和部分杂质发生氯化,形成氯化残渣和富含三氯氧钒的氯化烟气;氯化残渣依次经所述氯化流化床主体2-2下部的排渣口和氯化床螺旋排渣器2-7进入所述氯化渣料仓5-1中;氯化烟气经所述氯化床旋风分离器2-3脱除粉尘后,再经所述烟气换热器2-4预冷却并进入所述烟气冷凝器2-5中使其中的三氯氧钒冷凝并与少量粉尘及其他氯化物杂 质形成三氯氧钒浆料,剩余气体经所述氯化床酸封罐2-6后进入所述尾气淋洗吸收器7中;
所述烟气冷凝器2-5中的三氯氧钒浆料进入所述蒸馏釜3-1中进行蒸馏操作,所述蒸馏釜3-1的底部泥浆进入所述泥浆蒸发器3-2进行蒸发得到干渣粉料和三氯氧钒蒸气;所述泥浆蒸发器3-2产生的干渣粉料送入所述氯化渣料仓5-1中,所述泥浆蒸发器3-2产生的三氯氧钒蒸气经所述泥浆蒸发冷凝器3-3冷凝后循环进入所述蒸馏釜3-1中;所述蒸馏釜3-1产生的三氯氧钒蒸气经所述蒸馏冷凝器3-4冷凝形成三氯氧钒液体后进入所述三氯氧钒储罐3-5;
所述三氯氧钒储罐3-5的三氯氧钒液体与来自干燥空气总管的干燥空气经所述氯化物喷嘴4-2混合后进入所述水解流化床主体4-3中;来自干燥空气总管的干燥空气与来自洁净水总管的洁净水混合后经依靠燃料燃烧提供热量的所述水解床气体加热器4-1气化预热后进入所述水解流化床主体4-3中维持床内粉体的流态化、并使三氯氧钒发生气相水解,形成五氧化二钒粉体和富含氯化氢的水解烟气;所述水解流化床主体4-3中的五氧化二钒粉体依次经排料口和水解床排料器4-5排出后送往产品储存单元;水解烟气经所述水解流化床主体4-3顶部排出后进入所述盐酸冷凝器4-4冷凝吸收形成盐酸溶液后,尾气送入所述尾气淋洗吸收器7中;
所述氯化渣料仓5-1中的氯化残渣和干渣粉料经所述氯化渣螺旋加料器5-2、氧化床进料器6-1进入所述氧化流化床主体6-2;来自干燥空气总管的干燥空气经燃料燃烧提供热量的所述氧化床气体加热器6-10加热后进入所述氧化流化床主体6-2中使氯化残渣和干渣粉料维持流态化并使其发生氧化,形成氧化渣和富含氯气的氧化烟气;氧化渣依次经所述氧化流化床主体6-2下部排渣口和氧化床螺旋排渣器6-8送入所述氧化渣储罐6-9中;氧化烟气依次经所述氧化流化床一级旋风分离器6-3和氧化流化床6-4二级旋风分离器脱除粉尘后进入所述氯气冷却液化富集器6-5使其中的氯气液化富集;所述氧化床二级旋风分离器6-4底部排出的氧化渣粉尘也送入所述氧化渣储罐6-9中;所述氯气冷却液化富集器6-5产生的液氯经所述液氯气化器6-6气化、所述烟气换热器2-4预热后循环用于钒渣氯化;所述氯气冷却液化富集器6-5排出的尾气经所述氧化床酸封罐6-7后送往所述尾气淋洗吸收器7;
所述尾气淋洗吸收器7排出的气体经所述引风机8送入所述烟囱9后排空。
本发明的特征之一在于:所述钒渣为钒钛磁铁矿冶炼半钢后产生的含钒冶炼 渣粉料,粒度0.01mm~3.0mm,V2O5质量含量为10%~28%。
本发明的特征之二在于:在氯化流化床主体(2-2)内钒渣氯化过程中,所述焦粉添加量为钒渣粉料质量的10%~30%,钒渣氯化操作温度为500~900℃,粉料的平均停留时间为30~90min。
本发明的特征之三在于:在所述水解流化床主体(4-3)中,三氯氧钒直接通过气相水解生产五氧化二钒粉体,所述气相水解过程水蒸气与三氯氧钒的质量比为1.2~2.0,气相水解操作温度为160~600℃。
本发明的特征之四在于:在所述氧化流化床主体(6-2)中,通过氯化残渣和干渣粉料氧化处理回收氯气,所述氯化残渣和干渣粉料氧化的操作温度为700~1000℃,粉料的平均停留时间为40~80min。
相对于现有技术,本发明具有如下突出的优点:
(1)通过氯化气体与氯化烟气换热,在冷却烟气的同时,实现氯化气体预热,使氯化反应器温度分布更为均匀,有效提高钒渣氯化效率;
(2)通过适量配加空气使部分焦粉燃烧实现氯化过程的热量平衡供给和稳定的温度调控,稳定氯化操作温度,提高氯化反应效率和保证氯化的选择性;
(3)通过采用三氯氧钒气相水解,直接将三氯氧钒转化为五氧化二钒粉体,并得到盐酸副产品,有效地避免了传统铵盐沉淀带来的氨氮污染问题,提高了生产效率和经济性;
(4)钒渣氯化提钒产生的氯化残渣和三氯氧钒浆料蒸馏、蒸发产生的粉尘及氯化物杂质干渣,均送入氧化流化床中进行高温氧化脱氯转化为氧化渣,经处理后可返回炼铁工序,有效消除氯化渣环境危害和实现资源综合利用;
(5)氯化渣氧化产生的氯气经处理返回钒渣氯化工序循环使用,大幅度降低氯气消耗量,有效提高钒渣氯化提钒工艺的经济性。
采用本发明进行钒渣氯化提钒,不仅可有效提高氯化反应效率,而且同时实现氯化渣的综合处理和氯气的有效循环,具有效率高、能耗低、无污染、产品质量良好等优点,可有效提高钒渣氯化提钒的经济效益和社会效益。
附图说明
附图用来提供对本发明的进一步阐释,并且构成说明书的一部分,与本发明的实施列一起用于解释本发明,并不构成对本发明的限制。
图1为本发明的钒渣高效氯化提钒系统的配置示意图。
附图标记
1 氯化床加料装置
1-1 钒渣料仓    1-2 钒渣螺旋加料器    1-3 焦粉料仓
1-4 焦粉螺旋加料器
2 氯化流化床
2-1 氯化床进料器    2-2 氯化流化床主体    2-3 氯化床旋风分离器
2-4 烟气换热器      2-5 烟气冷凝器        2-6 氯化床酸封罐
2-7 氯化床螺旋排渣器
3 蒸馏装置
3-1 蒸馏釜    3-2 泥浆蒸发器   3-3 泥浆蒸发冷凝器   3-4 蒸馏冷凝器
3-5 三氯氧钒储罐
4 水解流化床
4-1 水解床气体加热器    4-2 氯化物喷嘴    4-3 水解流化床主体
4-4 盐酸冷凝器          4-5 水解床排料器
5 氧化床加料装置
5-1 氯化渣料仓    5-2 氯化渣螺旋加料器
6 氧化流化床
6-1 氧化床进料器    6-2 氧化流化床主体    6-3 氧化床一级旋风分离器
6-4 氧化床二级旋风分离器                  6-5 氯气冷却液化富集器
6-6 液氯气化器      6-7 氧化床酸封罐      6-8 氧化床螺旋排渣器
6-9 氧化渣储罐      6-10 氧化床气体加热器
7 尾气淋洗吸收器    8 引风机             9 烟囱
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。值得说明的是,实施例仅用以说明本发明的技术方案,而非对其限制。图1为本发明的一种钒渣高效氯化提钒系统的系统及方法示意图。
结合图1,本实施例所使用的一种钒渣高效氯化提钒的系统,包括氯化床加料装置1、氯化流化床2、蒸馏装置3、水解流化床4、氧化床加料装置5、氧化 流化床6、尾气淋洗吸收器7、引风机8和烟囱9;
氯化床加料装置1包括钒渣料仓1-1、钒渣螺旋加料器1-2、焦粉料仓1-3和焦粉螺旋加料器1-4;
氯化流化床2包括氯化床进料器2-1、氯化流化床主体2-2、氯化床旋风分离器2-3、烟气换热器2-4、烟气冷凝器2-5、氯化床酸封罐2-6和氯化床螺旋排渣器2-7;
蒸馏装置3包括蒸馏釜3-1、泥浆蒸发器3-2、泥浆蒸发冷凝器3-3、蒸馏冷凝器3-4和三氯氧钒储罐3-5;
水解流化床4包括水解床气体加热器4-1、氯化物喷嘴4-2、水解流化床主体4-3、盐酸冷凝器4-4和水解床排料器4-5;
氧化床加料装置5包括氯化渣料仓5-1和氯化渣螺旋加料器5-2;
氧化流化床6包括氧化床进料器6-1、氧化流化床主体6-2、氧化床一级旋风分离器6-3、氧化床二级旋风分离器6-4、氯气冷却液化富集器6-5、液氯气化器6-6、氧化床酸封罐6-7、氧化床螺旋排渣器6-8、氧化渣储罐6-9和氧化床气体加热器6-10;
钒渣料仓1-1底部的出料口与钒渣螺旋加料器1-2的进料口相连接;焦粉料仓1-3底部的出料口与焦粉螺旋加料器1-4的进料口相连接;钒渣螺旋加料器1-2的出料口、焦粉螺旋加料器1-4的出料口均与氯化床进料器2-1的进料口通过管道相连接;
氯化床进料器2-1的排料口与氯化流化床主体2-2上部的进料口通过管道相连接;氯化床进料器2-1底部的进气口通过管道与干燥空气总管相连接;氯化床旋风分离器2-3设置于氯化流化床主体2-2的扩大段顶部中心;氯化床旋风分离器2-3顶部的出气口通过管道与烟气换热器2-4的热烟气入口相连接;烟气换热器2-4的冷烟气出口通过管道与烟气冷凝器2-5的气体入口相连接;烟气冷凝器2-5的气体出口通过管道与氯化床酸封罐2-6的气体入口相连接;氯化床酸封罐2-6的气体出口通过管道与尾气淋洗吸收器7的气体入口相连接;氯化流化床主体2-2下部的排渣口与氯化床螺旋排渣器2-7的进料口通过管道相连接;氯化床螺旋排渣器2-7的出料口通过管道与氯化渣料仓5-1的进料口相连接;氯化流化床主体2-2底部的进气口通过管道与烟气换热器2-4的热气体出口相连接;烟气换热器2-4的冷气体入口通过管道分别与氯气气源总管、干燥空气总管及液氯气化器6-6的气体出口相连接;
蒸馏釜3-1的浆料入口与烟气冷凝器2-5底部的浆料排出口通过管道相连接;蒸馏釜3-1底部的浆料排出口通过管道与泥浆蒸发器3-2的浆料入口相连接;泥浆蒸发器3-2的干渣排放口通过管道与氯化渣料仓5-1的进料口相连接;泥浆蒸发器3-2的蒸气出口通过管道与泥浆蒸发冷凝器3-3的进气口相连接;泥浆蒸发冷凝器3-3的液体出口与蒸馏釜3-1的回流口通过管道相连接;蒸馏釜3-1的蒸气出口通过管道与蒸馏冷凝器3-4的进气口相连接;蒸馏冷凝器3-4的液体出口与三氯氧钒储罐3-5的液体入口通过管道相连接;
水解床气体加热器4-1的冷气体入口和燃烧嘴助燃风入口均通过管道与干燥空气总管相连接;水解床气体加热器4-1的冷气体入口与洁净水总管通过管道相连接;水解床气体加热器4-1的燃烧嘴燃料入口通过管道与燃料总管相连接;水解床气体加热器4-1的热气体出口通过管道与水解流化床主体4-3底部的进气口相连接;氯化物喷嘴4-2设置于水解流化床主体4-3的下部;氯化物喷嘴4-2的氯化物入口通过管道与三氯氧钒储罐3-5的液体出口相连接;氯化物喷嘴4-2的气体入口通过管道与干燥空气总管相连接;水解流化床主体4-3的上部排料口通过管道与水解床排料器4-5的进料口相连接;水解床排料器4-5底部的进气口通过管道与干燥空气总管向连接;水解床排料器4-5的排料口通过管道与产品储存料仓相连接;水解流化床主体4-3顶部的出气口通过管道与盐酸冷凝器4-4的进气口相连接;盐酸冷凝器4-4底部的盐酸出口通过管道与盐酸储罐相连接;盐酸冷凝器4-4顶部的气体出口通过管道与尾气淋洗吸收器7的气体入口相连接;
氯化渣料仓5-1底部的出料口与氯化渣螺旋加料器5-2的进料口相连接;氯化渣螺旋加料器5-2的出料口通过管道与氧化床进料器6-1的进料口相连接;氧化床进料器6-1底部的进气口通过管道与干燥空气总管相连接;
氧化床进料器6-1的排料口与氧化流化床主体6-2上部的进料口通过管道相连接;氧化床一级旋风分离器6-3设置于氧化流化床主体6-2的扩大段顶部中心;氧化床一级旋风分离器6-3顶部的出气口通过管道与氧化床二级旋风分离器6-4的进气口相连接;氧化床二级旋风分离器6-4顶部的出气口通过管道与氯气冷却液化富集器6-5的进气口相连接;氯气冷却液化富集器6-5的液氯出口通过管道与液氯气化器6-6的液氯入口相连接;氯气冷却液化富集器6-5的气体出口与氧化床酸封罐6-7的进气口通过管道相连接;氧化床酸封罐6-7的气体出口通过管道与尾气淋洗吸收器7的气体入口相连接;氧化流化床主体6-2下部的排渣口与氧化床螺旋排渣器6-8的进料口通过管道相连接;氧化床螺旋排渣器6-8的出料 口、氧化床二级旋风分离器6-4底部的排料口均通过管道与氧化渣储罐6-9的进料口相连接;氧化床气体加热器6-10的冷气体入口和燃烧嘴助燃风入口均通过管道与干燥空气总管相连接;氧化床气体加热器6-10的热气体出口通过管道与氧化流化床主体6-2底部的进气口相连接;氧化床气体加热器6-10燃烧嘴的燃料入口通过管道与燃料总管相连接;
尾气淋洗吸收器7的气体出口与引风机8的入风口通过管道相连接;引风机8的排风口通过管道与烟囱9底部的气体入口相连接。
本实施例利用上述系统进行钒渣高效氯化提钒,具体方法包括:钒渣料仓1-1中的钒渣粉料和焦粉料仓1-3的焦粉分别经钒渣螺旋加料器1-2和焦粉螺旋加料器1-4同时进入氯化床进料器2-1混合后进入氯化流化床主体2-2内;来自氯气气源总管的氯气、干燥空气总管的干燥空气及液氯气化器6-6的循环氯气经烟气换热器2-4与氯化烟气换热预热后也进入氯化流化床主体2-2内使钒渣粉料、焦粉等粉体物料维持流态化并与之发生化学反应,空气使部分焦粉发生燃烧提供热量维持流化床温度,氯气与焦粉共同作用使钒渣中的氧化钒和部分杂质发生氯化,形成氯化残渣和富含三氯氧钒的氯化烟气;氯化残渣经氯化流化床主体2-2下部的排渣口、氯化床螺旋排渣器2-7进入氯化渣料仓5-1中;氯化烟气经氯化床旋风分离器2-3脱除粉尘后,再经烟气换热器2-4预冷却并进入烟气冷凝器2-5中使其中的三氯氧钒冷凝并与少量粉尘及其他氯化物杂质形成三氯氧钒浆料,剩余气体经氯化床酸封罐2-6后进入尾气淋洗吸收器7中;
烟气冷凝器2-5中的三氯氧钒浆料进入蒸馏釜3-1中进行蒸馏操作,蒸馏釜3-1的底部泥浆进入泥浆蒸发器3-2进行蒸发得到干渣粉料和三氯氧钒蒸气;泥浆蒸发器3-2产生的干渣粉料送入氯化渣料仓5-1中,泥浆蒸发器3-2产生的三氯氧钒蒸气经泥浆蒸发冷凝器3-3冷凝后循环进入蒸馏釜3-1中;蒸馏釜3-1产生的三氯氧钒蒸气经蒸馏冷凝器3-4冷凝形成三氯氧钒液体后进入三氯氧钒储罐3-5;
三氯氧钒储罐3-5的三氯氧钒液体与来自干燥空气总管的干燥空气经氯化物喷嘴4-2混合后进入水解流化床主体4-3中;来自干燥空气总管的干燥空气与来自洁净水总管的洁净水混合后经依靠燃料燃烧提供热量的水解床气体加热器4-1气化预热后进入水解流化床主体4-3中维持床内粉体的流态化、并使三氯氧钒发生气相水解,形成五氧化二钒粉体和富含氯化氢的水解烟气;水解流化床主体4-3中的五氧化二钒粉体经排料口、水解床排料器4-5排出后送往产品储存单元; 水解烟气经水解流化床主体4-3顶部排出后进入盐酸冷凝器4-4冷凝吸收形成盐酸溶液后,尾气送入尾气淋洗吸收器7中;
氯化渣料仓5-1中的氯化残渣和干渣粉料经氯化渣螺旋加料器5-2、氧化床进料器6-1进入氧化流化床主体6-2;来自干燥空气总管的干燥空气经燃料燃烧提供热量的氧化床气体加热器6-10加热后进入氧化流化床主体6-2中使氯化残渣和干渣粉料维持流态化并使其发生氧化,形成氧化渣和富含氯气的氧化烟气;氧化渣经氧化流化床主体6-2下部排渣口、氧化床螺旋排渣器6-8送入氧化渣储罐6-9中;氧化烟气经氧化流化床一级旋风分离器6-3、氧化流化床6-4二级旋风分离器脱除粉尘后进入氯气冷却液化富集器6-5使其中的氯气液化富集;氧化床二级旋风分离器6-4底部排出的氧化渣粉尘也送入氧化渣储罐6-9中;氯气冷却液化富集器6-5产生的液氯经液氯气化器6-6气化、烟气换热器2-4预热后循环用于钒渣氯化;氯气冷却液化富集器6-5排出的尾气经氧化床酸封罐6-7后送往尾气淋洗吸收器7;尾气淋洗吸收器7排出的气体经引风机8送入烟囱9后排空。
本实施例中使用的钒渣原料为转炉提钒钒渣,其成分见表1所示,粒度范围为0.01mm~3.0mm,处理量为120kg/h。钒渣经配加焦粉氯化、气相水解、氯化渣氧化后得到五氧化二钒产品和氧化渣。
表1实施例使用钒渣的化学组成(wt%)
V2O5 Fe2O3 MnO Cr2O3 SiO2 TiO2 Al2O3 CaO Na2O MgO P2O5 SO3
20.99 27.60 6.66 4.49 16.13 9.83 6.63 3.04 1.58 2.70 0.02 0.18
在氯化流化床主体2-2内,钒渣氯化过程焦粉添加量为转炉提钒钒渣质量的10%,操作温度900℃,粉料平均停留时间为30min;在水解流化床主体4-3内,三氯氧钒气相水解操作水蒸气与三氯氧钒的质量比1.2,气相水解操作温度600℃;在氧化流化床主体6-2内,氯化残渣和干渣粉料的氧化操作温度700℃,粉料平均停留时间80min。在上述操作条件下,五氧化二钒产品纯度99.1%、钒的提取回收率88.5%、氧化渣含氯量1.3wt%。
在钒渣氯化过程焦粉添加量为转炉提钒钒渣质量的30%,操作温度500℃,粉料平均停留时间为90min;三氯氧钒气相水解操作水蒸气与三氯氧钒的质量比2.0,气相水解操作温度160℃;氯化残渣和干渣粉料的氧化操作温度1000℃,粉料平均停留时间40min的操作条件下,五氧化二钒产品纯度98.9%、钒的提取回收率87.8%、氧化渣含氯量1.1wt%。
在钒渣氯化过程焦粉添加量为转炉提钒钒渣质量的18%,操作温度600℃,粉料平均停留时间为60min;三氯氧钒气相水解操作水蒸气与三氯氧钒的质量比1.7,气相水解操作温度400℃;氯化残渣和干渣粉料的氧化操作温度860℃,粉料平均停留时间70min的操作条件下,五氧化二钒产品纯度99.5%、钒的提取回收率90.2%、氧化渣含氯量1.2wt%。
本发明未详细阐述部分属于本领域公知技术。
当然,本发明还可以有多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明的公开做出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明的权利要求的保护范围。

Claims (7)

  1. 一种钒渣高效氯化提钒的系统,其特征在于,所述系统包括氯化床加料装置(1)、氯化流化床(2)、蒸馏装置(3)、水解流化床(4)、氧化床加料装置(5)、氧化流化床(6)、尾气淋洗吸收器(7)、引风机(8)和烟囱(9);
    所述氯化床加料装置(1)包括钒渣料仓(1-1)、钒渣螺旋加料器(1-2)、焦粉料仓(1-3)和焦粉螺旋加料器(1-4);
    所述氯化流化床(2)包括氯化床进料器(2-1)、氯化流化床主体(2-2)、氯化床旋风分离器(2-3)、烟气换热器(2-4)、烟气冷凝器(2-5)、氯化床酸封罐(2-6)和氯化床螺旋排渣器(2-7);
    所述蒸馏装置(3)包括蒸馏釜(3-1)、泥浆蒸发器(3-2)、泥浆蒸发冷凝器(3-3)、蒸馏冷凝器(3-4)和三氯氧钒储罐(3-5);
    所述水解流化床(4)包括水解床气体加热器(4-1)、氯化物喷嘴(4-2)、水解流化床主体(4-3)、盐酸冷凝器(4-4)和水解床排料器(4-5);
    所述氧化床加料装置(5)包括氯化渣料仓(5-1)和氯化渣螺旋加料器(5-2);
    所述氧化流化床(6)包括氧化床进料器(6-1)、氧化流化床主体(6-2)、氧化床一级旋风分离器(6-3)、氧化床二级旋风分离器(6-4)、氯气冷却液化富集器(6-5)、液氯气化器(6-6)、氧化床酸封罐(6-7)、氧化床螺旋排渣器(6-8)、氧化渣储罐(6-9)和氧化床气体加热器(6-10);
    所述钒渣料仓(1-1)底部的出料口与所述钒渣螺旋加料器(1-2)的进料口相连接;所述焦粉料仓(1-3)底部的出料口与所述焦粉螺旋加料器(1-4)的进料口相连接;所述钒渣螺旋加料器(1-2)的出料口、所述焦粉螺旋加料器(1-4)的出料口均与所述氯化床进料器(2-1)的进料口通过管道相连接;
    所述氯化床进料器(2-1)的排料口与所述氯化流化床主体(2-2)上部的进料口通过管道相连接;所述氯化床进料器(2-1)底部的进气口通过管道与干燥空气总管相连接;所述氯化床旋风分离器(2-3)设置于所述氯化流化床主体(2-2)的扩大段顶部中心;所述氯化床旋风分离器(2-3)顶部的出气口通过管道与所述烟气换热器(2-4)的热烟气入口相连接;所述烟气换热器(2-4)的冷烟气出口通过管道与所述烟气冷凝器(2-5)的气体入口相连接;所述烟气冷凝器2-5的气体出口通过管道与所述氯化床酸封罐(2-6)的气体入口相连接;所述氯化床酸封罐(2-6)的气体出口通过管道与所述尾气淋洗吸收器(7)的气体入口相连接;所述氯化流化床主体(2-2)下部的排渣口与所述氯化床螺旋排渣器(2-7) 的进料口通过管道相连接;所述氯化床螺旋排渣器(2-7)的出料口通过管道与所述氯化渣料仓(5-1)的进料口相连接;所述氯化流化床主体(2-2)底部的进气口通过管道与所述烟气换热器(2-4)的热气体出口相连接;所述烟气换热器(2-4)的冷气体入口通过管道分别与氯气气源总管、干燥空气总管及所述液氯气化器(6-6)的气体出口相连接;
    所述蒸馏釜(3-1)的浆料入口与所述烟气冷凝器(2-5)底部的浆料排出口通过管道相连接;所述蒸馏釜(3-1)底部的浆料排出口通过管道与所述泥浆蒸发器(3-2)的浆料入口相连接;所述泥浆蒸发器(3-2)的干渣排放口通过管道与所述氯化渣料仓(5-1)的进料口相连接;所述泥浆蒸发器(3-2)的蒸气出口通过管道与所述泥浆蒸发冷凝器(3-3)的进气口相连接;所述泥浆蒸发冷凝器(3-3)的液体出口与所述蒸馏釜(3-1)的回流口通过管道相连接;所述蒸馏釜(3-1)的蒸气出口通过管道与所述蒸馏冷凝器(3-4)的进气口相连接;所述蒸馏冷凝器(3-4)的液体出口与所述三氯氧钒储罐(3-5)的液体入口通过管道相连接;
    所述水解床气体加热器(4-1)的冷气体入口和燃烧嘴助燃风入口均通过管道与干燥空气总管相连接;所述水解床气体加热器(4-1)的冷气体入口与洁净水总管通过管道相连接;所述水解床气体加热器(4-1)的燃烧嘴燃料入口通过管道与燃料总管相连接;所述水解床气体加热器(4-1)的热气体出口通过管道与所述水解流化床主体(4-3)底部的进气口相连接;所述氯化物喷嘴(4-2)设置于所述水解流化床主体(4-3)的下部;所述氯化物喷嘴(4-2)的氯化物入口通过管道与所述三氯氧钒储罐(3-5)的液体出口相连接;所述氯化物喷嘴(4-2)的气体入口通过管道与干燥空气总管相连接;所述水解流化床主体(4-3)的上部排料口通过管道与所述水解床排料器(4-5)的进料口相连接;所述水解床排料器(4-5)底部的进气口通过管道与干燥空气总管向连接;所述水解床排料器(4-5)的排料口通过管道与产品储存料仓相连接;所述水解流化床主体(4-3)顶部的出气口通过管道与所述盐酸冷凝器(4-4)的进气口相连接;所述盐酸冷凝器(4-4)底部的盐酸出口通过管道与盐酸储罐相连接;所述盐酸冷凝器(4-4)顶部的气体出口通过管道与所述尾气淋洗吸收器(7)的气体入口相连接;
    所述氯化渣料仓(5-1)底部的出料口与所述氯化渣螺旋加料器(5-2)的进料口相连接;所述氯化渣螺旋加料器(5-2)的出料口通过管道与所述氧化床进料器(6-1)的进料口相连接;所述氧化床进料器(6-1)底部的进气口通过管道 与干燥空气总管相连接;
    所述氧化床进料器(6-1)的排料口与所述氧化流化床主体(6-2)上部的进料口通过管道相连接;所述氧化床一级旋风分离器(6-3)设置于所述氧化流化床主体(6-2)的扩大段顶部中心;所述氧化床一级旋风分离器(6-3)顶部的出气口通过管道与所述氧化床二级旋风分离器(6-4)的进气口相连接;所述氧化床二级旋风分离器(6-4)顶部的出气口通过管道与所述氯气冷却液化富集器(6-5)的进气口相连接;所述氯气冷却液化富集器(6-5)的液氯出口通过管道与所述液氯气化器(6-6)的液氯入口相连接;所述氯气冷却液化富集器(6-5)的气体出口与所述氧化床酸封罐(6-7)的进气口通过管道相连接;所述氧化床酸封罐(6-7)的气体出口通过管道与所述尾气淋洗吸收器(7)的气体入口相连接;所述氧化流化床主体(6-2)下部的排渣口与所述氧化床螺旋排渣器(6-8)的进料口通过管道相连接;所述氧化床螺旋排渣器(6-8)的出料口、所述氧化床二级旋风分离器(6-4)底部的排料口均通过管道与所述氧化渣储罐(6-9)的进料口相连接;所述氧化床气体加热器(6-10)的冷气体入口和燃烧嘴助燃风入口均通过管道与干燥空气总管相连接;所述氧化床气体加热器(6-10)的热气体出口通过管道与所述氧化流化床主体(6-2)底部的进气口相连接;所述氧化床气体加热器(6-10)燃烧嘴的燃料入口通过管道与燃料总管相连接;
    所述尾气淋洗吸收器(7)的气体出口与所述引风机(8)的入风口通过管道相连接;所述引风机(8)的排风口通过管道与所述烟囱(9)底部的气体入口相连接。
  2. 一种基于权利要求1所述的钒渣高效氯化提钒系统的钒渣高效氯化提钒方法,包括以下步骤:
    所述钒渣料仓(1-1)中的钒渣粉料和所述焦粉料仓(1-3)的焦粉分别经所述钒渣螺旋加料器(1-2)和所述焦粉螺旋加料器(1-4)同时进入所述氯化床进料器(2-1)混合后进入所述氯化流化床主体(2-2)内;来自氯气气源总管的氯气、干燥空气总管的干燥空气及所述液氯气化器(6-6)的循环氯气经所述烟气换热器(2-4)与氯化烟气换热预热后也进入所述氯化流化床主体(2-2)内使钒渣粉料和焦粉维持流态化并与之发生化学反应,进行钒渣氯化;空气使部分焦粉发生燃烧提供热量维持流化床温度,氯气与焦粉共同作用使钒渣中的氧化钒和部分杂质发生氯化,形成氯化残渣和富含三氯氧钒的氯化烟气;氯化残渣依次经所述氯化流化床主体(2-2)下部的排渣口和氯化床螺旋排渣器(2-7)进入所述氯 化渣料仓(5-1)中;氯化烟气经所述氯化床旋风分离器(2-3)脱除粉尘后,再经所述烟气换热器(2-4)预冷却并进入所述烟气冷凝器(2-5)中使其中的三氯氧钒冷凝并与少量粉尘及其他氯化物杂质形成三氯氧钒浆料,剩余气体经所述氯化床酸封罐(2-6)后进入所述尾气淋洗吸收器(7)中;
    所述烟气冷凝器(2-5)中的三氯氧钒浆料进入所述蒸馏釜(3-1)中进行蒸馏操作,所述蒸馏釜(3-1)的底部泥浆进入所述泥浆蒸发器(3-2)进行蒸发得到干渣粉料和三氯氧钒蒸气;所述泥浆蒸发器(3-2)产生的干渣粉料送入所述氯化渣料仓(5-1)中,所述泥浆蒸发器(3-2)产生的三氯氧钒蒸气经所述泥浆蒸发冷凝器(3-3)冷凝后循环进入所述蒸馏釜(3-1)中;所述蒸馏釜(3-1)产生的三氯氧钒蒸气经所述蒸馏冷凝器(3-4)冷凝形成三氯氧钒液体后进入所述三氯氧钒储罐(3-5);
    所述三氯氧钒储罐(3-5)的三氯氧钒液体与来自干燥空气总管的干燥空气经所述氯化物喷嘴(4-2)混合后进入所述水解流化床主体(4-3)中;来自干燥空气总管的干燥空气与来自洁净水总管的洁净水混合后经依靠燃料燃烧提供热量的所述水解床气体加热器(4-1)气化预热后进入所述水解流化床主体(4-3)中维持床内粉体的流态化、并使三氯氧钒发生气相水解,形成五氧化二钒粉体和富含氯化氢的水解烟气;所述水解流化床主体(4-3)中的五氧化二钒粉体依次经排料口和水解床排料器(4-5)排出后送往产品储存单元;水解烟气经所述水解流化床主体(4-3)顶部排出后进入所述盐酸冷凝器(4-4)冷凝吸收形成盐酸溶液后,尾气送入所述尾气淋洗吸收器(7)中;
    所述氯化渣料仓(5-1)中的氯化残渣和干渣粉料依次经所述氯化渣螺旋加料器(5-2)和氧化床进料器(6-1)进入所述氧化流化床主体(6-2);来自干燥空气总管的干燥空气经燃料燃烧提供热量的所述氧化床气体加热器(6-10)加热后进入所述氧化流化床主体(6-2)中使氯化残渣和干渣粉料维持流态化并使其发生氧化,形成氧化渣和富含氯气的氧化烟气;氧化渣依次经所述氧化流化床主体(6-2)下部排渣口和氧化床螺旋排渣器(6-8)送入所述氧化渣储罐(6-9)中;氧化烟气依次经所述氧化流化床一级旋风分离器(6-3)和氧化流化床二级旋风分离器(6-4)脱除粉尘后进入所述氯气冷却液化富集器(6-5)使其中的氯气液化富集;所述氧化床二级旋风分离器(6-4)底部排出的氧化渣粉尘也送入所述氧化渣储罐(6-9)中;所述氯气冷却液化富集器(6-5)产生的液氯依次经液氯气化器(6-6)气化和烟气换热器(2-4)预热后循环用于钒渣氯化;所述氯气冷 却液化富集器(6-5)排出的尾气经所述氧化床酸封罐(6-7)后送往所述尾气淋洗吸收器(7);
    所述尾气淋洗吸收器(7)排出的气体经引风机(8)送入所述烟囱(9)后排空。
  3. 根据权利要求2所述的钒渣高效氯化提钒方法,其特征在于,所述钒渣为钒钛磁铁矿冶炼半钢后产生的含钒冶炼渣粉料,粒度0.01mm~3.0mm,V2O5质量含量为10%~28%。
  4. 根据权利要求2所述的钒渣高效氯化提钒方法,其特征在于,在氯化流化床主体(2-2)内钒渣氯化过程中,所述焦粉添加量为钒渣粉料质量的10%~30%。
  5. 根据权利要求2所述的高效氯化提钒方法,其特征在于,钒渣氯化操作温度为500~900℃,粉料的平均停留时间为30~90min。
  6. 根据权利要求2所述的钒渣高效氯化提钒方法,其特征在于,在所述水解流化床主体(4-3)中,三氯氧钒直接通过气相水解生产五氧化二钒粉体,所述气相水解过程水蒸气与三氯氧钒的质量比为1.2~2.0,气相水解操作温度为160~600℃。
  7. 根据权利要求2所述的钒渣高效氯化提钒方法,其特征在于,在所述氧化流化床主体(6-2)中,通过氯化残渣和干渣粉料氧化处理回收氯气,所述氯化残渣和干渣粉料氧化的操作温度为700~1000℃,粉料的平均停留时间为40~80min。
PCT/CN2016/072522 2015-01-30 2016-01-28 一种钒渣高效氯化提钒的系统及方法 WO2016119720A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510051609.6A CN105986126B (zh) 2015-01-30 2015-01-30 一种钒渣高效氯化提钒的系统及方法
CN201510051609.6 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016119720A1 true WO2016119720A1 (zh) 2016-08-04

Family

ID=56542447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072522 WO2016119720A1 (zh) 2015-01-30 2016-01-28 一种钒渣高效氯化提钒的系统及方法

Country Status (2)

Country Link
CN (1) CN105986126B (zh)
WO (1) WO2016119720A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109385567A (zh) * 2018-10-23 2019-02-26 四川工程职业技术学院 以钒钛磁铁矿制备扩散自润滑金属陶瓷烧结体的方法
CN109837395A (zh) * 2017-11-24 2019-06-04 中国科学院过程工程研究所 一种高值化综合利用高铬型钒渣的系统及方法
CN110372033A (zh) * 2019-08-19 2019-10-25 中国恩菲工程技术有限公司 二氧化钛合成系统
CN111378836A (zh) * 2018-12-29 2020-07-07 陕西华地矿业有限公司 五价钒萃取法生成五氧化二钒的方法
CN111892085A (zh) * 2020-07-21 2020-11-06 河北宏钛科技有限公司 一种三氧化二钒制备系统及制备方法
CN113899212A (zh) * 2021-10-29 2022-01-07 石棉鑫汇环保科技有限公司 用于提取五氧化二钒的精炼炉
CN115650290A (zh) * 2022-12-22 2023-01-31 北京科技大学 钒铬渣无碳低温氯化制备高纯三氯氧钒的方法
CN115947370A (zh) * 2022-12-13 2023-04-11 攀钢集团攀枝花钢铁研究院有限公司 一种利用含钒精制尾渣制备精三氯氧钒的方法
WO2024041037A1 (zh) * 2022-08-25 2024-02-29 攀钢集团攀枝花钢铁研究院有限公司 一种碳化渣高效沸腾氯化方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108630973B (zh) * 2017-03-17 2020-05-19 中国科学院过程工程研究所 一种高效清洁氯化法制备高纯度钒电解液的系统及方法
CN109835951B (zh) * 2017-11-24 2020-04-14 中国科学院过程工程研究所 一种氯化法生产粉钒的系统和方法
CN109835948B (zh) * 2017-11-24 2020-04-24 中国科学院过程工程研究所 一种高铬型钒渣生产液流电池用高纯储能材料的系统及方法
CN109835949B (zh) * 2017-11-24 2020-02-28 中国科学院过程工程研究所 一种钒渣清洁氯化生产高纯五氧化二钒的系统及方法
CN110683580B (zh) * 2018-07-06 2020-11-06 中国科学院过程工程研究所 一种高钙高磷钒渣低温氯化制备高纯五氧化二钒的方法
CN110172596A (zh) * 2019-07-03 2019-08-27 攀枝花学院 以氯化技术从底流渣中回收钒的方法
CN111411243B (zh) * 2020-05-29 2022-08-05 攀钢集团攀枝花钢铁研究院有限公司 高钙高磷钒渣直接氯化提钒的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845552A (zh) * 2010-04-23 2010-09-29 河北钢铁股份有限公司承德分公司 一种钒渣梯度氯化回收有价元素的方法
CN103130279A (zh) * 2011-11-29 2013-06-05 刘艳梅 一种氯化生产高纯五氧化二钒的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2563206B1 (fr) * 1984-04-24 1986-06-13 Elf Aquitaine Nouveau procede de synthese de l'oxyde de vanadium
CN100510127C (zh) * 2006-07-27 2009-07-08 张荣禄 从高钛型钒铁精矿中提取铁钛钒的方法
CN101844809B (zh) * 2010-04-28 2014-09-17 深圳中科九台资源利用研究院有限公司 一种生产三氧化二钒的系统及其方法
CN102557134B (zh) * 2011-12-23 2014-07-02 中国科学院过程工程研究所 一种生产高纯三氧化二钒的流态化还原炉及生产方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845552A (zh) * 2010-04-23 2010-09-29 河北钢铁股份有限公司承德分公司 一种钒渣梯度氯化回收有价元素的方法
CN103130279A (zh) * 2011-11-29 2013-06-05 刘艳梅 一种氯化生产高纯五氧化二钒的方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109837395A (zh) * 2017-11-24 2019-06-04 中国科学院过程工程研究所 一种高值化综合利用高铬型钒渣的系统及方法
CN109385567A (zh) * 2018-10-23 2019-02-26 四川工程职业技术学院 以钒钛磁铁矿制备扩散自润滑金属陶瓷烧结体的方法
CN109385567B (zh) * 2018-10-23 2020-06-23 四川工程职业技术学院 以钒钛磁铁矿制备扩散自润滑金属陶瓷烧结体的方法
CN111378836A (zh) * 2018-12-29 2020-07-07 陕西华地矿业有限公司 五价钒萃取法生成五氧化二钒的方法
CN110372033A (zh) * 2019-08-19 2019-10-25 中国恩菲工程技术有限公司 二氧化钛合成系统
CN111892085A (zh) * 2020-07-21 2020-11-06 河北宏钛科技有限公司 一种三氧化二钒制备系统及制备方法
CN113899212A (zh) * 2021-10-29 2022-01-07 石棉鑫汇环保科技有限公司 用于提取五氧化二钒的精炼炉
WO2024041037A1 (zh) * 2022-08-25 2024-02-29 攀钢集团攀枝花钢铁研究院有限公司 一种碳化渣高效沸腾氯化方法
CN115947370A (zh) * 2022-12-13 2023-04-11 攀钢集团攀枝花钢铁研究院有限公司 一种利用含钒精制尾渣制备精三氯氧钒的方法
CN115650290A (zh) * 2022-12-22 2023-01-31 北京科技大学 钒铬渣无碳低温氯化制备高纯三氯氧钒的方法

Also Published As

Publication number Publication date
CN105986126B (zh) 2017-10-03
CN105986126A (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
WO2016119720A1 (zh) 一种钒渣高效氯化提钒的系统及方法
WO2016119717A1 (zh) 一种生产高纯五氧化二钒粉体的系统及方法
WO2016119719A1 (zh) 一种生产高纯四氧化二钒粉体的系统及方法
WO2016119718A1 (zh) 一种提纯五氧化二钒的系统及方法
AU2016212456B2 (en) System and method for purifying and preparing high-purity vanadium pentoxide powder
AU2016212538B2 (en) System and method for preparing high-purity divanadium pentoxide powder
CN109835951B (zh) 一种氯化法生产粉钒的系统和方法
CN108622935B (zh) 一种高效清洁氯化法制备高纯低价钒氧化物的系统及方法
CN211035263U (zh) 二氧化钛合成系统
CN109835948B (zh) 一种高铬型钒渣生产液流电池用高纯储能材料的系统及方法
CN108622936B (zh) 一种高效清洁氯化法制备高纯五氧化二钒粉体的系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16742782

Country of ref document: EP

Kind code of ref document: A1