WO2016119717A1 - 一种生产高纯五氧化二钒粉体的系统及方法 - Google Patents

一种生产高纯五氧化二钒粉体的系统及方法 Download PDF

Info

Publication number
WO2016119717A1
WO2016119717A1 PCT/CN2016/072518 CN2016072518W WO2016119717A1 WO 2016119717 A1 WO2016119717 A1 WO 2016119717A1 CN 2016072518 W CN2016072518 W CN 2016072518W WO 2016119717 A1 WO2016119717 A1 WO 2016119717A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
vanadium
bed
pipe
fluidized bed
Prior art date
Application number
PCT/CN2016/072518
Other languages
English (en)
French (fr)
Inventor
范川林
朱庆山
牟文恒
刘吉斌
王存虎
班琦勋
Original Assignee
中国科学院过程工程研究所
北京中凯宏德科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院过程工程研究所, 北京中凯宏德科技有限公司 filed Critical 中国科学院过程工程研究所
Priority to JP2017558608A priority Critical patent/JP6404498B2/ja
Priority to NZ733919A priority patent/NZ733919A/en
Priority to EP16742779.8A priority patent/EP3252012B1/en
Priority to RU2017130369A priority patent/RU2670866C9/ru
Priority to US15/547,075 priority patent/US10099939B2/en
Priority to CA2973499A priority patent/CA2973499C/en
Priority to BR112017015803-5A priority patent/BR112017015803A2/zh
Priority to AU2016212451A priority patent/AU2016212451B2/en
Publication of WO2016119717A1 publication Critical patent/WO2016119717A1/zh
Priority to ZA2017/04630A priority patent/ZA201704630B/en
Priority to PH12017550058A priority patent/PH12017550058A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7173Feed mechanisms characterised by the means for feeding the components to the mixer using gravity, e.g. from a hopper
    • B01F35/71731Feed mechanisms characterised by the means for feeding the components to the mixer using gravity, e.g. from a hopper using a hopper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71775Feed mechanisms characterised by the means for feeding the components to the mixer using helical screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • B01J6/004Calcining using hot gas streams in which the material is moved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L5/00Gas handling apparatus
    • B01L5/04Gas washing apparatus, e.g. by bubbling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/061Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of metal oxides with water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/035Preparation of hydrogen chloride from chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/04Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • B01J2219/00166Controlling or regulating processes controlling the flow controlling the residence time inside the reactor vessel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the invention belongs to the field of chemical industry and material, and particularly relates to a system and a method for producing high-purity vanadium pentoxide powder.
  • Vanadium pentoxide is one of the important industrial vanadium products, widely used in the production of alloy additives such as vanadium iron and vanadium nitride, as well as catalysts, colorants, and hard alloy additives. With the continuous development of new energy technologies, the battery industry is increasingly demanding high-purity vanadium pentoxide (purity of more than 3N5), including all-vanadium flow batteries (VRB) with good large-scale energy storage performance and vanadium for electric vehicles.
  • the acid salt is a lithium ion battery or the like.
  • the vanadium solution is usually obtained by leaching a vanadium solution or a vanadium-rich material (such as ammonium polyvanadate, ammonium metavanadate, industrial grade vanadium pentoxide, etc.), and is purified by chemical precipitation or (and) solvent extraction/ion.
  • a vanadium-rich material such as ammonium polyvanadate, ammonium metavanadate, industrial grade vanadium pentoxide, etc.
  • the impurity removal process parameters are closely related to the impurity content of the raw materials, so the adaptability to the raw materials is poor; the calcium salt, magnesium salt purifying agent or extractant used in the purification process, the acid-base reagent, and the ammonium salt for vanadium precipitation are also It is easy to introduce impurities.
  • it is generally required to use an expensive reagent with a high purity, so that the cost is too high, the scale cannot be produced, and the purity of the product is difficult to be stabilized at 3N5 or more.
  • the related institution also proposes to adopt the repeated precipitation method to purify and remove the vanadium solution, that is, to utilize the ammonium salt precipitation property of the vanadium-containing solution to selectively select vanadium.
  • the raw material chlorination-rectification purification-subsequent treatment is a common preparation process for high-purity materials, such as high purity. Silicon (polysilicon), high purity silica, and the like.
  • vanadium chloride vanadium oxychloride vanadium has a large difference from the boiling points of common impurities such as iron, calcium, magnesium, aluminum, sodium, potassium, etc., it is easy to obtain high purity vanadium oxychloride by rectification, and from high purity three High-purity vanadium pentoxide can be prepared by hydrolysis of vanadium oxychloride by hydrolysis and precipitation of ammonium salts, followed by calcination. Therefore, the preparation of high-purity vanadium pentoxide by the chlorination method has a great advantage in principle.
  • the patent has the following deficiencies: (1) Similar to the aforementioned Iowa State University study, the patent actually only gives the principle of chlorination, lacking specific operational solutions, such as chlorination including both boiling chlorine And include molten salt chlorination, and molten salt chlorination and boiling chlorination are completely different chlorination methods; for example, for chlorination reactors, "rotary kiln, fluidized furnace, boiling furnace, shaft furnace, Reactors such as multi-hearth furnaces actually cover almost all common mainstream reactors in the metallurgical industry, but different reactors have very different requirements for raw materials. Shaft furnaces can only handle "coarse" particles larger than 8 mm.
  • fine particles need to be treated with pellets and pre-sintering, while boiling chlorination is generally suitable for processing fine particles, so for a specific vanadium raw material, it cannot be directly applied to rotary kiln, fluidized furnace, boiling furnace, shaft furnace, and more.
  • the reactor such as a crucible furnace; and the "fluidizer” and the “boiling furnace” are essentially the same, but the name is different; thus, it can be seen that the operation modes and conditions of these reactors are very different.
  • vanadium raw material chlorination technology still has the following two problems: (1) vanadium raw material chlorination roasting is a strong exothermic process, and the heat generated by the chlorination reaction can satisfy the solid and gas. In addition to the preheating of the reaction material, it is still necessary to remove the heat through the furnace wall to stabilize the chlorination temperature. Therefore, the solid and the gas usually enter the reactor at a near room temperature, and the chlorination reaction generates heat to preheat before participating in the reaction.
  • the local reaction efficiency of the chlorination reactor is too low; (2) due to the need to remove the heat generated by the chlorination reaction by a large amount of heat dissipation to maintain the operating temperature, the operating conditions and environmental climate changes are liable to cause chlorination temperature fluctuations, resulting in chlorination selection. Reduced sex and efficiency require a reasonable heat balance supply and temperature regulation. Therefore, it is necessary to provide a reasonable heat supply and temperature control to effectively increase the chlorination efficiency and obtain a stable chlorination temperature to ensure the selectivity of chlorination to effectively suppress the chlorination of impurities.
  • the temperature regulation of the chlorination process the improvement of the direct yield of vanadium, the avoidance of ammonia nitrogen emission pollution and the reduction of production energy consumption are the key to improving the economical efficiency of the preparation of high-purity vanadium pentoxide by chlorination. .
  • the present invention provides a system and method for producing high-purity vanadium pentoxide powder to ensure good selectivity of low-temperature chlorination, avoid generation of a large amount of polluted wastewater, and reduce production energy of high-purity vanadium pentoxide. Consumption and operating costs.
  • the present invention adopts the following technical solutions:
  • the system for producing high-purity vanadium pentoxide powder of the present invention comprising a feeding device 1, a low-temperature chlorination fluidized bed 2, a rectification purification device 3, a gas-phase hydrolysis fluidized bed 4, a calcination fluidized bed 5, Exhaust gas absorbing absorber 6, induced draft fan 7 and chimney 8;
  • the feeding device 1 comprises an industrial grade vanadium pentoxide silo 1-1, an industrial grade vanadium pentoxide screw feeder 1-2, a carbon powder silo 1-3 and a carbon powder screw feeder 1-4;
  • the low temperature chlorination fluidized bed 2 comprises a chlorination bed feeder 2-1, a chlorinated fluidized bed body 2-2, chlorination Bed cyclone separator 2-3, flue gas heat exchanger 2-4, flue gas condenser 2-5, chlorinated bed acid sealing tank 2-6 and chlorination bed spiral slag discharger 2-7;
  • the rectification and purification device 3 includes a distillation still 3-1, a rectification column 3-2, a distillate condenser 3-3, a reflux liquid collection tank 3-4, a silicon-containing vanadium oxychloride vanadium storage tank 3-5, Distillation section acid sealing tank 3-6, high purity vanadium oxychloride vanadium condenser 3-7 and high purity vanadium oxychloride vanadium storage tank 3-8;
  • the gas phase hydrolysis fluidized bed 4 comprises a hydrolysis bed air purifier 4-1, a hydrolysis bed gas heater 4-2, a vanadium oxychloride vanadium nozzle 4-3, a gas phase hydrolysis fluidized bed main body 4-4, a hydrochloric acid tail gas absorber 4-5 and hydrolysis bed discharger 4-6;
  • the calcined fluidized bed 5 comprises a calcined bed air purifier 5-1, a calcined bed gas heater 5-2 and a calcined fluidized bed main body 5-3;
  • the outlet of the bottom of the industrial grade vanadium pentoxide silo 1-1 is connected to the inlet of the industrial grade vanadium pentoxide screw feeder 1-2; the bottom of the carbon powder silo 1-3
  • the discharge port is connected to the feed port of the carbon powder screw feeder 1-4; the discharge port of the industrial grade vanadium pentoxide screw feeder 1-2, the carbon powder screw feeder 1-
  • the discharge ports of 4 are connected to the feed port of the chlorination bed feeder 2-1 through a pipe;
  • the discharge port of the chlorination bed feeder 2-1 is connected to the inlet of the upper portion of the chlorinated fluidized bed main body 2-2 through a pipe; the bottom of the chlorination bed feeder 2-1
  • the inlet port is connected to the nitrogen gas source manifold through a pipe;
  • the chlorination bed cyclone separator 2-3 is disposed at the top center of the enlarged section of the chlorination fluidized bed main body 2-2;
  • the chlorination bed cyclone separation The gas outlet at the top of the 2-3 is connected to the hot flue gas inlet of the flue gas heat exchanger 2-4 through a pipe; the cold flue gas outlet of the flue gas heat exchanger 2-4 passes through the pipe and the smoke a gas inlet of the gas condenser 2-5 is connected;
  • a gas outlet of the flue gas condenser 2-5 is connected to a gas inlet of the chlorinated bed acid sealing tank 2-6 through a pipe;
  • the chlorinated bed acid The gas outlet of the sealing tank 2-6 is connected
  • the liquid outlet at the bottom of the flue gas condenser 2-5 is connected to the feed port of the rectification column 3-2 through a pipe; the vapor outlet of the distillation still 3-1 passes through the pipe and the rectification column 3 a vapor inlet of -2 is connected; a reflux port of the distillation pot 3-1 is connected to a liquid reflux outlet at the bottom of the rectification column 3-2 through a pipe; a gas outlet at the top of the rectification column 3-2 is passed The gas inlet of the pipe and the distillate condenser 3-3 Connecting; the liquid outlet of the distillate condenser 3-3 is connected to the liquid inlet of the reflux liquid collection tank 3-4 through a pipe; the reflux liquid outlet of the reflux liquid collection tank 3-4 is passed through a pipe and a The reflux liquid inlet at the top of the rectification column 3-2 is connected; the discharge port of the reflux liquid collection tank 3-4 is connected to the inlet of the silicon-containing vanadium oxychloride vanadium storage tank 3-5 through
  • the air inlet of the hydrolysis bed air purifier 4-1 is connected to the compressed air manifold through a pipeline; the gas outlet of the hydrolysis bed air purifier 4-1 is respectively connected to the hydrolysis bed gas heater 4-2 through a pipeline a gas inlet of the gas inlet, the vanadium oxychloride nozzle 4-3, and an inlet of the bottom of the hydrolysis bed discharger 4-6; the combustion air inlet of the combustion bed gas heater 4-2 burner and The fuel inlets are respectively connected to the compressed air manifold and the fuel main pipe through pipes; the inlet ports of the hydrolysis bed gas heaters 4-2 are connected to the ultrapure water main pipe through pipes; the hydrolysis bed gas heaters 4-2 The air outlet is connected to the air inlet of the bottom of the gas phase hydrolysis fluidized bed main body 4-4 through a pipeline; the liquid outlet of the high purity vanadium oxychloride vanadium storage tank 3-8 passes through the pipeline and the vanadium oxychloride nozzle a vanadium oxychloride inlet of
  • the intake port of the calcining bed air purifier 5-1 is connected to the compressed air manifold through a pipe; the gas outlet of the calcining bed air purifier 5-1 passes through the pipe and the calcined bed gas heater 5-2
  • the intake ports are connected; the combustion air inlet and the fuel inlet of the burner of the calcining bed gas heater 5-2 are respectively connected to the compressed air main pipe and the fuel main pipe through a pipe; the calcining bed gas heater 5-2 is discharged
  • the gas port is connected to the inlet of the bottom of the calcined fluidized bed main body 5-3 through a pipe; the gas outlet of the top of the calcined fluidized bed main body 5-3 passes through the pipe and the gas phase hydrolyzed fluidized bed main body 4-4
  • the bottom air inlets are connected; the discharge port of the lower portion of the calcined fluidized bed main body 5-3 is connected to the high-purity vanadium pentoxide product silo through a pipeline;
  • the gas outlet of the exhaust gas absorbing absorber 6 is connected to the gas inlet of the induced draft fan 7 through a pipe
  • the gas outlet of the induced draft fan 7 is connected to the gas inlet at the bottom of the chimney 8 through a pipe.
  • the method for producing high-purity vanadium pentoxide powder based on the above system of the present invention comprises the following steps:
  • the industrial grade vanadium pentoxide powder in the industrial grade vanadium pentoxide silo 1-1 and the carbon powder of the carbon powder silo 1-3 are respectively passed through the industrial grade vanadium pentoxide spiral feeder 1 -2 and the carbon powder screw feeder 1-4 simultaneously enter the chlorination bed feeder 2-1 and then enter the chlorination fluidized bed main body 2-2; chlorine gas and nitrogen gas from the chlorine gas source main pipe
  • the nitrogen of the gas source main pipe and the air of the compressed air main pipe are preheated by heat exchange between the flue gas heat exchanger 2-4 and the chlorinated flue gas, and then enter the chlorinated fluidized bed main body 2-2 to make vanadium pentoxide.
  • the powder material such as carbon powder maintains fluidization and chemical reaction with it.
  • the air causes some of the carbon powder to burn to provide heat to maintain the fluidized bed temperature.
  • the chlorine gas and the carbon powder work together to chlorinate vanadium pentoxide and a small amount of impurities.
  • the crude vanadium oxychloride vapor formed by the flue gas condenser 2-5 enters the rectification column 3-2 and the distillation still 3-1, and is subjected to a rectification operation to obtain a vanadium-rich scrap rich in high-boiling impurities.
  • the high-purity vanadium oxychloride in the high-purity vanadium oxychloride vanadium storage tank 3-8 is introduced into the purified air from the hydrolysis bed air purifier 4-1 through the vanadium oxychloride vanadium nozzle 4-3.
  • the gas phase hydrolysis fluidized bed main body 4-4 In the gas phase hydrolysis fluidized bed main body 4-4; after the ultrapure water and the purified air are preheated by the hydrolysis bed gas heater 4-2, together with the calcined flue gas from the calcined fluidized bed main body 5-3 Feeding into the gas phase hydrolysis fluidized bed main body 4-4 to maintain fluidization of the powder material, and hydrolyzing vanadium oxychloride to form vanadium pentoxide powder and hydrogen chloride-rich hydrolyzed flue gas; The divana powder is discharged into the calcined fluidized bed main body 5-3 through the hydrolysis bed discharger 4-6; the hydrolyzed flue gas is removed by the enlarged section of the gas phase hydrolysis fluidized bed main body 4-4 Thereafter, entering the hydrochloric acid exhaust gas absorber 4-5 for absorption treatment to form a by-product of the hydrochloric acid solution, and absorbing the exhaust gas into the tail gas eluting absorber 6 for treatment;
  • the compressed air is sequentially preheated by the calcining bed air purifier 5-1 and the calcined bed gas heater 5-2, and then enters into the calcined fluidized bed main body 5-3 to maintain the fluidization of the vanadium pentoxide powder.
  • the gas phase hydrolysis gasification bed main body 4-4 is used for the fluidized gas phase hydrolysis heating and fluidization of vanadium oxychloride; the exhaust gas leaching absorber 6 is absorbed by the alkali solution. The exhausted gas is sent to the chimney 8 via the induced draft fan 7 and then emptied.
  • One of the features of the present invention is that in the chlorinated fluidized bed main body 2-2, the amount of carbon powder added in the low-temperature chlorination process is 10% to 20% of the mass of the industrial grade vanadium pentoxide powder, and chlorine
  • the operating temperature is 300-500 ° C, and the average residence time of the powder is 30-80 min.
  • the second feature of the present invention is that, in the rectification column 3-2, the number of trays in the rectification operation rectification section is 5 to 10, and the number of trays in the stripping section is 10 to 20; During the rectification operation, the reflux ratio (ie, the ratio of the top flow to the discharge amount) is 15 to 40.
  • the third feature of the present invention is that: in the gas phase hydrolysis fluidized bed main body 4-4, vanadium pentoxide powder is directly prepared by vapor phase hydrolysis of high-purity vanadium oxychloride, the gas phase hydrolysis process is introduced into water vapor and three The mass ratio of vanadium oxychloride is 1.2 to 2.0, and the gas phase hydrolysis operation temperature is 160 to 600 °C.
  • the fourth feature of the present invention is that, in the calcined fluidized bed main body 5-3, the vapor phase hydrolyzed vanadium pentoxide powder is further subjected to fluidization calcination treatment to obtain high-purity vanadium pentoxide powder, and the calcination
  • the operating temperature is 400-620 ° C, and the average residence time of the powder is 30-240 min.
  • the purity of the high-purity vanadium pentoxide powder produced by the invention is above 4N.
  • the present invention has the following outstanding advantages:
  • the chlorination gas is preheated while cooling the flue gas, so that the temperature distribution of the chlorination reactor is more uniform, and the low-temperature chlorination efficiency of the vanadium raw material is effectively improved;
  • a part of the carbon powder is burned by appropriate amount of air to achieve heat balance supply and temperature regulation of the chlorination process, stabilize the chlorination operation temperature, improve the chlorination reaction efficiency and ensure good selectivity of chlorination, and avoid the formation of tetrachlorination.
  • side reactions such as vanadium;
  • the vanadium pentoxide powder produced by hydrolysis can be further calcined to obtain high-purity vanadium pentoxide powder.
  • the body product, the generated hot flue gas is sent to the gas phase hydrolysis fluidized bed for heating and fluidization, improving heat utilization efficiency and production efficiency;
  • the invention has the advantages of strong adaptability of raw materials, good selectivity of low-temperature chlorination, non-polluting wastewater discharge, low production energy consumption and low operating cost, stable product quality, and the like, and is suitable for large-scale high-purity vanadium pentoxide powder of 4N or more.
  • Industrial production has good economic and social benefits.
  • Figure 1 is a schematic view showing the configuration of a high purity vanadium pentoxide powder system of the present invention.
  • FIG. 1 is a schematic view of a system and method for producing high purity vanadium pentoxide powder according to the present invention.
  • the system for producing high-purity vanadium pentoxide powder used in the present embodiment includes a feeding device 1, a low-temperature chlorination fluidized bed 2, a rectification purification device 3, a vapor-phase hydrolyzed fluidized bed 4, and a calcination flow. a chemical bed 5, an exhaust gas absorbing absorber 6, an induced draft fan 7 and a chimney 8;
  • the feeding device 1 comprises an industrial grade vanadium pentoxide silo 1-1, an industrial grade vanadium pentoxide spiral feeder 1-2, a carbon powder silo 1-3 and a carbon powder screw feeder 1-4;
  • the low temperature chlorination fluidized bed 2 comprises a chlorination bed feeder 2-1, a chlorinated fluidized bed main body 2-2, a chlorinated bed cyclone 2-3, a flue gas heat exchanger 2-4, a flue gas condensation 2-5, chlorinated bed acid sealed tank 2-6 and chlorinated bed spiral slag remover 2-7;
  • the rectification and purification device 3 includes a distillation still 3-1, a rectification column 3-2, a distillate condenser 3-3, a reflux liquid collection tank 3-4, a silicon-containing vanadium oxychloride vanadium storage tank 3-5, and a rectification Segment acid sealing tank 3-6, high purity vanadium oxychloride vanadium condenser 3-7 and high purity vanadium oxychloride vanadium storage tank 3-8;
  • the gas phase hydrolysis fluidized bed 4 comprises a hydrolysis bed air purifier 4-1, a hydrolysis bed gas heater 4-2, a vanadium oxychloride vanadium nozzle 4-3, a gas phase hydrolysis fluidized bed main body 4-4, a hydrochloric acid tail gas absorber 4- 5 and hydrolysis bed discharger 4-6;
  • the calcined fluidized bed 5 comprises a calcined bed air purifier 5-1, a calcined bed gas heater 5-2 and a calcined fluidized bed main body 5-3;
  • the outlet of the bottom of the industrial grade vanadium pentoxide silo 1-1 is connected with the inlet of the industrial grade vanadium pentoxide screw feeder 1-2; the outlet of the carbon powder silo 1-3 and the charcoal
  • the feed ports of the powder auger feeders 1-4 are connected; the discharge ports of the industrial grade vanadium pentoxide screw feeder 1-2, the discharge ports of the carbon powder screw feeders 1-4 are all fed with the chlorination bed
  • the feed ports of the 2-1 are connected by pipes;
  • the discharge port of the chlorination bed feeder 2-1 is connected to the inlet of the upper part of the chlorination fluidized bed main body 2-2 through a pipe; the inlet of the bottom of the chlorination bed feeder 2-1 is piped and The nitrogen gas source manifold is connected; the chlorination bed cyclone separator 2-3 is disposed at the top center of the enlarged section of the chlorination fluidized bed main body 2-2; the gas outlet of the chlorinated bed cyclone separator 2-3 passes through the pipeline and the smoke
  • the hot flue gas inlets of the gas heat exchangers 2-4 are connected; the cold flue gas outlets of the flue gas heat exchangers 2-4 are connected to the gas inlets of the flue gas condensers 2-5 through pipes; the flue gas condensers 2 -
  • the gas outlet of 5 is connected to the gas inlet of the chlorinated bed acid sealing tank 2-6 through a pipe; the chlorinated bed acid sealing tank The gas outlet of 2-6 is connected to the gas inlet of the exhaust gas leaching absorb
  • the liquid outlet at the bottom of the flue gas condenser 2-5 is connected to the feed port of the rectification column 3-2 through a pipe; the vapor outlet of the distillation still 3-1 is connected to the vapor inlet of the rectification column 3-2 through a pipe; The reflux port of the still 3-1 is connected to the liquid reflux outlet at the bottom of the rectification column 3-2 through a pipe; the gas outlet at the top of the rectification column 3-2 is passed through the gas inlet of the distillate condenser 3-3 through the pipe.
  • the liquid outlet of the distillate condenser 3-3 is connected to the liquid inlet of the reflux liquid collection tank 3-4 through a pipe; the reflux liquid outlet of the reflux liquid collection tank 3-4 is passed through the pipe and the top of the rectification column 3-2
  • the reflux liquid inlet is connected;
  • the discharge port of the reflux liquid collection tank 3-4 is connected to the inlet of the silicon-containing vanadium oxychloride vanadium storage tank 3-5 through the pipeline;
  • the silicon-containing vanadium oxychloride vanadium storage tank 3-5 is lacking
  • the gas outlet is connected to the gas inlet of the acid sealing tank 3-6 of the rectifying section through a pipeline;
  • the gas outlet of the rectifying acid sealing tank 3-6 is connected to the gas inlet of the exhaust gas eluting absorber 6 through a pipeline;
  • the rectification tower 3 -2 of the distillate outlet is connected to the gas inlet of the high purity vanadium oxychloride condenser 3-7 through a pipe;
  • the air inlet of the hydrolysis bed air purifier 4-1 is connected to the compressed air main pipe through a pipeline; the air outlet of the hydrolysis bed air purifier 4-1 is respectively connected to the air inlet of the hydrolysis bed gas heater 4-2 through the pipeline, and three The gas inlet of the vanadium oxychloride nozzle 4-3 and the inlet of the bottom of the hydrolysis bed discharger 4-6 are connected; the combustion air inlet and the fuel inlet of the hydrolysis bed gas heater 4-2 are respectively passed through the pipeline and the compressed air
  • the main pipe is connected with the fuel main pipe; the gas inlet of the hydrolysis bed gas heater 4-2 is connected to the ultrapure water main pipe through a pipe; the gas outlet of the hydrolysis bed gas heater 4-2 passes through the pipe and the gas phase hydrolysis fluidized bed main body 4
  • the inlet ports at the bottom of the -4 are connected; the liquid outlet of the high purity vanadium oxychloride vanadium storage tank 3-8 is connected to the vanadium oxychloride inlet of the vana
  • the inlet of the calcining bed air purifier 5-1 is connected to the compressed air manifold through a pipeline; the outlet of the calcining bed air purifier 5-1 is connected to the inlet of the calcined bed gas heater 5-2 through a pipe;
  • the combustion air inlet and the fuel inlet of the burner of the calcining bed gas heater 5-2 are respectively connected to the compressed air main pipe and the fuel main pipe through a pipe;
  • the gas outlet of the calcining bed gas heater 5-2 passes through the pipe and the calcined fluidized bed main body 5
  • the inlet ports at the bottom of the -3 are connected; the gas outlet at the top of the calcined fluidized bed main body 5-3 is connected to the inlet of the bottom of the gas phase hydrolysis fluidized bed main body 4-4 through a pipe;
  • the body of the fluidized bed is calcined 5-3
  • the lower discharge opening is connected to the high-purity vanadium pentoxide product silo through a pipeline;
  • the gas outlet of the exhaust gas eluting absorber 6 is connected to the gas inlet of the draft fan 7 through a pipe; the gas outlet of the draft fan 7 is connected to the gas inlet at the bottom of the chimney 8 through a pipe.
  • the high-purity vanadium pentoxide powder is produced by using the above system, and the specific method comprises: industrial grade vanadium pentoxide powder and carbon powder silo 1-3 in the industrial grade vanadium pentoxide silo 1-1
  • the carbon powder is respectively mixed into the chlorinated fluidized bed main body 2-2 by the industrial grade vanadium pentoxide screw feeder 1-2 and the carbon powder screw feeder 1-4 simultaneously entering the chlorination bed feeder 2-1;
  • the chlorine gas from the chlorine gas source main pipe, the nitrogen gas of the nitrogen gas source main pipe and the air of the compressed air main pipe are preheated by the flue gas heat exchanger 2-4 and the chlorinated flue gas, and then enter the chlorinated fluidized bed main body 2-2.
  • the powder material such as vanadium pentoxide or carbon powder is maintained fluidized and chemically reacted with it.
  • the air causes some of the carbon powder to burn to provide heat to maintain the fluidized bed temperature.
  • the chlorine gas and the carbon powder work together to make vanadium pentoxide and A small amount of impurities are chlorinated to form a chlorinated residue and a chlorinated flue gas rich in vanadium oxychloride;
  • the chlorinated residue is sequentially passed through a slag discharge port of the chlorination fluidized bed main body 2-2 and a chlorination bed spiral slag discharge device 2-7 discharge;
  • the chlorinated flue gas is removed by the chlorination bed cyclone 2-3 and falls back to the chlorinated fluidized bed main body 2-2
  • the crude vanadium oxychloride vapor formed by the flue gas condenser 2-5 sequentially enters the rectification column 3-2 and the distillation still 3-1 to carry out a rectification operation to obtain a vanadium-rich scrap rich in high-boiling impurities and rich in low boiling point.
  • the high-purity vanadium oxychloride vanadium in the high-purity vanadium oxychloride vanadium storage tank 3-8 is loaded into the gas-phase hydrolyzed fluidized bed by the purified air from the hydrolysis bed air purifier 4-1 through the vanadium oxychloride vanadium nozzle 4-3.
  • vanadium oxychloride hydrolyzed to form vanadium pentoxide powder and hydrogen chloride-rich hydrolyzed flue gas
  • the vanadium pentoxide powder is discharged to the calcined fluidized bed main body through the hydrolysis bed discharger 4-6.
  • the hydrolyzed flue gas is removed from the dust by the expanded section of the gas-phase hydrolyzed fluidized bed main body 4-4, and then enters the hydrochloric acid exhaust gas absorber 4-5 for absorption treatment to form a by-product of the hydrochloric acid solution, and the exhaust gas is taken into the exhaust gas leaching absorber 6 for carrying out deal with;
  • the compressed air is sequentially purified by the calcining bed air purifier 5-1, and the calcined bed gas heater 5-2 is preheated and then enters the calcined fluidized bed main body 5-3 to maintain the fluidization of the vanadium pentoxide powder and make it Remove water and trace volatile impurities to obtain high-purity vanadium pentoxide powder and calcined flue gas; high-purity vanadium pentoxide product is discharged and sent to high-purity product silo; calcined flue gas is removed by expanding section After entering the gas phase hydrolysis fluidized bed main body 4-4 for the fluidized gas phase hydrolysis of vanadium oxychloride to supply heat and fluidization; the gas discharged from the exhaust gas elution absorber 6 after being absorbed by the alkali solution is sent by the induced draft fan 7 Empty into the chimney 8 after evacuation.
  • the industrial grade vanadium pentoxide is used as a raw material, and the chemical composition thereof is shown in Table 1.
  • the treatment amount is 80 kg/h, which is obtained by low temperature chlorination, vanadium oxychloride rectification, gas phase hydrolysis and calcination. High purity vanadium pentoxide product.
  • the amount of carbon powder added in the low-temperature chlorination process is 10% of the quality of the industrial grade vanadium pentoxide powder, the chlorination operation temperature is 500 ° C, and the average residence time of the powder is 30 min;
  • the number of trays in the rectification section is 5, the number of trays in the stripping section is 10, and the reflux ratio in the rectification operation is 40;
  • the gas phase hydrolysis fluidized bed main body 4-4 The gas phase hydrolysis process has a mass ratio of water vapor to vanadium oxychloride of 1.2, a gas phase hydrolysis operation temperature of 600 ° C; in the calcined fluidized bed main body 5-3, the calcination operation temperature is 400 ° C, and the average residence time of the powder is 240 min.
  • the direct yield of vanadium is 83%, and the purity of the high-purity vanadium pentoxide product is 99.995wt% (4N5)
  • the amount of carbon powder added in the low-temperature chlorination process is 20% of the quality of the industrial grade vanadium pentoxide powder, the chlorination operation temperature is 300 ° C, and the average residence time of the powder is 80 min;
  • the rectification column 3-2 the number of trays in the rectification section of the rectification section is 10, the number of trays in the stripping section is 20, and the reflux ratio of the rectification operation is 15;
  • the gas phase hydrolysis process has a mass ratio of water vapor to vanadium oxychloride of 2.0, a gas phase hydrolysis operation temperature of 160 ° C; in the calcined fluidized bed main body 5-3, the calcination operation temperature is 620 ° C, and the average residence time of the powder is 30 min.
  • the direct yield of vanadium is 85%, and the purity of the high-purity vanadium pentoxide product is 99.999

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Treating Waste Gases (AREA)
  • Catalysts (AREA)

Abstract

一种生产高纯五氧化二钒粉体的系统及方法,采用流态化低温氯化将工业级五氧化二钒转化为三氯氧钒,通过流化气体与氯化烟气换热实现氯化气体预热、适量配加空气使部分炭粉燃烧实现氯化过程的热量平衡供给,提高氯化效率和保证低温氯化的良好选择性;三氯氧钒经精馏提纯后进行流态化气相水解、流态化煅烧,生产得到高纯五氧化二钒产品和盐酸溶液副产品。该系统和方法具有原料适应性强、无污染废水排放、生产能耗和操作成本低、产品质量稳定等优点,适用于4N以上高纯五氧化二钒粉体的大规模工业化生产。

Description

一种生产高纯五氧化二钒粉体的系统及方法 技术领域
本发明属于化工、材料领域,特别涉及一种生产高纯五氧化二钒粉体的系统及方法。
背景技术
五氧化二钒是重要的工业钒制品之一,广泛应用于生产钒铁和氮化钒等合金添加剂以及催化剂、着色剂、硬质合金添加剂等领域。随着新能源技术的不断发展,电池行业对高纯五氧化二钒(纯度3N5以上)的需求日益强劲,包括具有良好大规模储能性能的全钒液流电池(VRB)和电动汽车用钒酸盐系锂离子电池等。然而,现有工业技术通常仅可制备纯度2N5的五氧化二钒(即HGT 3485-2003规定指标的产品),难以满足电池行业用五氧化二钒的要求。因此,如何低成本、高效制备高纯五氧化二钒是新能源技术领域亟待解决的热点问题之一。
目前,通常以浸出钒溶液或富钒物料(如多钒酸铵、偏钒酸铵、工业级五氧化二钒等)溶解得到钒溶液为原料,采用化学沉淀净化或(和)溶剂萃取/离子树脂交换等方法进行净化,得到纯净的钒溶液然后进行铵盐沉淀得到纯净的多钒酸铵或偏钒酸铵沉淀,再经过煅烧分解得到高纯五氧化二钒粉体,如中国专利申请CN1843938A、CN102730757A、CN103145187A、CN103515642A、CN103194603A、CN103787414A、CN102181635A、CN103663557A和欧洲专利EP0713257B1等。在这些方法中,除杂工艺参数与原料的杂质含量密切相关,因而对原料的适应性差;净化过程中使用的钙盐、镁盐净化剂或萃取剂、酸碱试剂以及钒沉淀用铵盐也容易引入杂质。为了提高产品质量,通常要求使用纯度较高的昂贵试剂,因而成本过高,无法规模化生产且产品纯度难以稳定在3N5以上。
针对净化剂或萃取剂易引入杂质和试剂使用成本过高的问题,相关机构还提出采用反复沉淀法实现钒溶液的净化除杂,即利用含钒溶液的铵盐沉淀特性,选择性地将钒沉淀出来而将杂质离子部分抑制于沉淀后的溶液中,然后再次将得到的铵盐沉淀溶解后,进行多次重复操作,从而得到较为纯净的多钒酸铵或偏钒酸铵沉淀,再经过煅烧分解得到高纯五氧化二钒粉体,如中国专利申请CN103606694A和CN102923775A等。这有效降低了试剂使用量及其引入杂质的可能性,但溶解-沉淀过程仍需使用大量纯度较高的酸碱试剂和铵盐,提纯成本 仍然较高;且繁冗的多次沉淀操作既降低了生产效率又造成钒直收率的明显下降。另外,上述溶液净化方法中,萃取/反萃、沉淀、洗涤等操作步骤会产生大量的废水,主要含有少量的钒离子、铵根离子和大量的钠盐,处理难度大、污染问题突出,这也严重制约了其规模化工业应用。
因金属氯化物的沸点及饱和蒸气压相差较大,不同金属氯化物很容易通过蒸馏/精馏实现分离,原料氯化-精馏提纯-后续处理是高纯物质的常用制备工艺,如高纯硅(多晶硅)、高纯二氧化硅等。由于钒的氯化物三氯氧钒与常见杂质铁、钙、镁、铝、钠、钾等的氯化物沸点相差很大,很容易通过精馏得到高纯三氯氧钒,而从高纯三氯氧钒通过水解和铵盐沉淀,再辅以煅烧即可制备高纯五氧化二钒。因此,采用氯化法制备高纯五氧化二钒从原理上具有较大的优势。实际上,采用氯化法制备高纯五氧化二钒不仅原理上可行,而且早在上世纪60年代,就由美国爱荷华州立大学的研究人员在实验室得以实现(Journal of the Less-Common Metals,1960,2:29-35)。他们以多钒酸铵为原料,通过配碳氯化制得粗三氯氧钒,蒸馏提纯获得高纯三氯氧钒,铵盐沉淀得到高纯偏钒酸铵,最后在500~600℃下煅烧获得高纯五氧化二钒粉体,但沉淀、洗涤过程将产生大量的氨氮废水(每t五氧化二钒产品至少产生1.8t的氯化铵废盐),处理难度大;铵盐沉淀、干燥、煅烧过程不仅能耗高,而且极易造成环境污染。另外,该项研究仅在实验室设备上、分段间歇地实现了氯化法制备高纯五氧化二钒,无法提供工业规模如何采用氯化法连续制备高纯五氧化二钒相关信息,可能也正是由于这些原因,之后的几十年里,也难觅氯化法连续制备高纯五氧化二钒的报道。
最近,中国专利申请CN103130279A提出了采用氯化法,以钒铁磁铁矿、钒渣、含钒催化剂等含钒物质为原料制备高纯五氧化二钒的方法。经配碳氯化-除尘-冷凝得到钒氯化物的混合物,经过精馏分离四氯化钒得到纯净的三氯氧钒后,将三氯氧钒通入超纯水溶液中或超纯氨水溶液中进行沉淀,经过滤、干燥、煅烧得到五氧化二钒。该项专利存在如下不足:(1)与前述美国爱荷华州立大学研究类似,该专利实际只给出了氯化的原则流程,缺乏具体可操作的方案,比如氯化方式既包括了沸腾氯化,又包括了熔盐氯化,而熔盐氯化与沸腾氯化是完全不同的氯化方法;再比如,对于氯化反应器提出采用“回转窑、流化炉、沸腾炉、竖炉、多膛炉”等反应器,实际上涵盖了冶金工业领域几乎所有的常用主流反应器,但不同的反应器对原料的要求差别非常大,竖炉只能处理大于8mm的“粗”颗粒,使用“细颗粒”时需要进行球团与烧结前处理,而沸腾氯化一般适合处理 细颗粒,所以对于一种特定的钒原料,无法直接适用于回转窑、流化炉、沸腾炉、竖炉、多膛炉等反应器;况且“流化炉”与“沸腾炉”本质上是一样的,只是叫法不同;由此可见,由于这些反应器的操作方式及条件相差很大,只给出原则流程实际上无法实施;(2)将三氯氧钒通入超纯水溶液中进行水解,由于五氧化二钒极易溶解于盐酸溶液中,钒的沉淀回收率过低;在HCl浓度大于6.0mol/L的盐酸溶液中,五氧化二钒溶解时将发生还原生成VOCl2,同时放出氯气,这将会进一步降低钒的沉淀回收率;沉淀和洗涤过程必将会产生大量的含钒盐酸溶液,难以有效实现综合处理。
另外,对于工业大规模应用而言,现有钒原料氯化技术仍存在如下两个问题:(1)钒原料氯化焙烧属于强放热过程,氯化反应产生的热量除了可满足固体和气体反应物料的预热外,仍需要通过炉壁散热等方式移出才能稳定氯化温度,故固体和气体通常均以近室温状态进入反应器内,被氯化反应产生热量预热后才能参与反应,这使得氯化反应器局部反应效率过低;(2)由于需要通过大量散热移出氯化反应产生的热量以维持操作温度,故操作条件和环境气候变化均易引起氯化温度波动,造成氯化选择性和效率降低,需要采用合理的热量平衡供给和温度调控方式。因此,必须提供合理热量供给和温度控制,才有可能有效地提高氯化效率和获得稳定氯化温度从而确保氯化的选择性以有效抑制杂质的氯化。
因此,通过工艺及技术创新,实现氯化过程的温度调控、提高钒的直收率、避免氨氮排放污染和降低生产能耗,是提高氯化法制备高纯五氧化二钒技术经济性的关键。
发明内容
针对上述问题,本发明提出了一种生产高纯五氧化二钒粉体的系统及方法,以保证低温氯化的良好选择性、避免产生大量污染废水、降低高纯五氧化二钒的生产能耗和操作成本。为了达到这些目的,本发明采用了如下技术方案:
本发明的生产高纯五氧化二钒粉体的系统,所述系统包括加料装置1、低温氯化流化床2、精馏提纯装置3、气相水解流化床4、煅烧流化床5、尾气淋洗吸收器6、引风机7和烟囱8;
所述加料装置1包括工业级五氧化二钒料仓1-1、工业级五氧化二钒螺旋加料器1-2、炭粉料仓1-3和炭粉螺旋加料器1-4;
所述低温氯化流化床2包括氯化床进料器2-1、氯化流化床主体2-2、氯化 床旋风分离器2-3、烟气换热器2-4、烟气冷凝器2-5、氯化床酸封罐2-6和氯化床螺旋排渣器2-7;
所述精馏提纯装置3包括蒸馏釜3-1、精馏塔3-2、馏出物冷凝器3-3、回流液收集罐3-4、含硅三氯氧钒储罐3-5、精馏段酸封罐3-6、高纯三氯氧钒冷凝器3-7和高纯三氯氧钒储罐3-8;
所述气相水解流化床4包括水解床空气净化器4-1、水解床气体加热器4-2、三氯氧钒喷嘴4-3、气相水解流化床主体4-4、盐酸尾气吸收器4-5和水解床排料器4-6;
所述煅烧流化床5包括煅烧床空气净化器5-1、煅烧床气体加热器5-2和煅烧流化床主体5-3;
所述工业级五氧化二钒料仓1-1底部的出料口与所述工业级五氧化二钒螺旋加料器1-2的进料口相连接;所述炭粉料仓1-3底部的出料口与所述炭粉螺旋加料器1-4的进料口相连接;所述工业级五氧化二钒螺旋加料器1-2的出料口、所述炭粉螺旋加料器1-4的出料口均与所述氯化床进料器2-1的进料口通过管道相连接;
所述氯化床进料器2-1的排料口与所述氯化流化床主体2-2上部的进料口通过管道相连接;所述氯化床进料器2-1底部的进气口通过管道与氮气气源总管相连接;所述氯化床旋风分离器2-3设置于所述氯化流化床主体2-2的扩大段顶部中心;所述氯化床旋风分离器2-3顶部的出气口通过管道与所述烟气换热器2-4的热烟气入口相连接;所述烟气换热器2-4的冷烟气出口通过管道与所述烟气冷凝器2-5的气体入口相连接;所述烟气冷凝器2-5的气体出口通过管道与所述氯化床酸封罐2-6的气体入口相连接;所述氯化床酸封罐2-6的气体出口通过管道与所述尾气淋洗吸收器6的气体入口相连接;所述氯化流化床主体2-2下部的排渣口与所述氯化床螺旋排渣器2-7的进料口通过管道相连接;所述氯化流化床主体2-2底部的进气口通过管道与所述烟气换热器2-4的热气体出口相连接;所述烟气换热器2-4的冷气体入口通过管道分别与氯气气源总管、氮气气源总管及压缩空气总管相连接;
所述烟气冷凝器2-5底部的液体出口通过管道与所述精馏塔3-2的进料口相连接;所述蒸馏釜3-1的蒸气出口通过管道与所述精馏塔3-2的蒸气入口相连接;所述蒸馏釜3-1的回流口通过管道与所述精馏塔3-2底部的液体回流出口相连接;所述精馏塔3-2顶部的气体出口通过管道与所述馏出物冷凝器3-3的气体入口相 连接;所述馏出物冷凝器3-3的液体出口通过管道与所述回流液收集罐3-4的液体入口相连接;所述回流液收集罐3-4的回流液体出口通过管道与所述精馏塔3-2顶部的回流液体入口相连接;所述回流液收集罐3-4的排料口与所述含硅三氯氧钒储罐3-5的入口通过管道相连接;所述含硅三氯氧钒储罐3-5的乏气出口通过管道与所述精馏段酸封罐3-6的气体入口相连接;所述精馏酸封罐3-6的气体出口通过管道与所述尾气淋洗吸收器6的气体入口相连接;所述精馏塔3-2的精馏物出口通过管道与所述高纯三氯氧钒冷凝器3-7的气体入口相连接;所述高纯三氯氧钒冷凝器3-7的液体出口与所述高纯三氯氧钒储罐3-8的液体入口通过管道相连接;所述蒸馏釜3-1底部设置了底流出口;
所述水解床空气净化器4-1的进气口与压缩空气总管通过管道相连接;所述水解床空气净化器4-1的出气口通过管道分别与所述水解床气体加热器4-2的进气口、三氯氧钒喷嘴4-3的气体入口及水解床排料器4-6底部的进气口相连接;所述水解床气体加热器4-2燃烧嘴的助燃风入口和燃料入口分别通过管道与压缩空气总管和燃料总管相连接;所述水解床气体加热器4-2的进气口通过管道与超纯水总管相连接;所述水解床气体加热器4-2的出气口通过管道与所述气相水解流化床主体4-4底部的进气口相连接;所述高纯三氯氧钒储罐3-8的液体出口通过管道与所述三氯氧钒喷嘴4-3的三氯氧钒入口相连接;所述气相水解流化床主体4-4扩大段顶部的气体出口通过管道与所述盐酸尾气吸收器4-5的气体入口相连接;所述盐酸尾气吸收器4-5底部设置了盐酸溶液出口;所述盐酸尾气吸收器4-5的气体出口通过管道与所述尾气淋洗吸收器6的气体入口相连接;所述气相水解流化床主体4-4上部的出料口通过管道与所述水解床排料器4-6的进料口相连接;所述水解床排料器4-6的排料口通过管道与所述煅烧流化床主体5-3上部的进料口相连接;
所述煅烧床空气净化器5-1的进气口与压缩空气总管通过管道相连接;所述煅烧床空气净化器5-1的出气口通过管道与所述煅烧床气体加热器5-2的进气口相连接;所述煅烧床气体加热器5-2燃烧嘴的助燃风入口和燃料入口分别通过管道与压缩空气总管和燃料总管相连接;所述煅烧床气体加热器5-2的出气口通过管道与所述煅烧流化床主体5-3底部的进气口相连接;所述煅烧流化床主体5-3顶部的出气口通过管道与所述气相水解流化床主体4-4底部的进气口相连接;所述煅烧流化床主体5-3下部的排料口通过管道与高纯五氧化二钒产品料仓相连接;
所述尾气淋洗吸收器6的气体出口通过管道与所述引风机7的气体入口相连 接;所述引风机7的气体出口通过管道与所述烟囱8底部的气体入口相连接。
本发明的基于上述系统的生产高纯五氧化二钒粉体的方法,包括以下步骤:
所述工业级五氧化二钒料仓1-1中的工业级五氧化二钒粉料和所述炭粉料仓1-3的炭粉分别经所述工业级五氧化二钒螺旋加料器1-2和所述炭粉螺旋加料器1-4同时进入所述氯化床进料器2-1混合后进入所述氯化流化床主体2-2;来自氯气气源总管的氯气、氮气气源总管的氮气及压缩空气总管的空气经所述烟气换热器2-4与氯化烟气换热预热后进入所述氯化流化床主体2-2中使五氧化二钒、炭粉等粉体物料维持流态化并与之发生化学反应,空气使部分炭粉发生燃烧提供热量维持流化床温度,氯气与炭粉共同作用使五氧化二钒和少量杂质发生氯化,形成氯化残渣和富含三氯氧钒的氯化烟气;氯化残渣依次经所述氯化流化床主体2-2下部的排渣口和氯化床螺旋排渣器2-7排出;氯化烟气经所述氯化床旋风分离器2-3将粉尘脱除并落回氯化流化床主体2-2后,再经所述烟气换热器2-4预冷却并进入烟气冷凝器2-5中使其中的三氯氧钒冷凝形成粗三氯氧钒液体,剩余尾气经所述氯化床酸封罐2-6后进入所述尾气淋洗吸收器6中;
所述烟气冷凝器2-5形成的粗三氯氧钒液体进入所述精馏塔3-2和所述蒸馏釜3-1后进行精馏操作,得到富含高沸点杂质的富钒废料、富含低沸点杂质的含硅三氯氧钒蒸气和高纯三氯氧钒蒸气;富钒废料用于后续回收钒,含硅三氯氧钒蒸气经所述馏出物冷凝器3-3冷凝至液体后,部分经回流液收集罐3-4部分回流至所述精馏塔3-2,其余部分进入所述含硅三氯氧钒储罐3-5中;含硅三氯氧钒储罐3-5中产生的乏气经所述精馏段酸封罐3-6后送往所述尾气淋洗吸收器6中,含硅三氯氧钒可用于催化等化工领域;高纯三氯氧钒蒸气经所述高纯三氯氧钒冷凝器3-7冷凝至液体后进入所述高纯三氯氧钒储罐3-8中;
所述高纯三氯氧钒储罐3-8中的高纯三氯氧钒经所述三氯氧钒喷嘴4-3,由来自水解床空气净化器4-1的净化空气气载进入所述气相水解流化床主体4-4中;超纯水和净化空气经所述水解床气体加热器4-2预热后,与来自所述煅烧流化床主体5-3的煅烧烟气一起送入所述气相水解流化床主体4-4中使粉体物料维持流态化、并使三氯氧钒发生水解,形成五氧化二钒粉体和富含氯化氢的水解烟气;五氧化二钒粉体经所述水解床排料器4-6排出送入所述煅烧流化床主体5-3中;水解烟气经所述气相水解流化床主体4-4扩大段脱除粉尘后,进入所述盐酸尾气吸收器4-5进行吸收处理形成盐酸溶液副产品,吸收尾气进入所述尾气淋洗吸收器6进行处理;
压缩空气依次经所述煅烧床空气净化器5-1净化和煅烧床气体加热器5-2预热后进入所述煅烧流化床主体5-3内使五氧化二钒粉体维持流态化,并使之脱除水分和微量的挥发性杂质,得到高纯五氧化二钒粉体和煅烧烟气;高纯五氧化二钒产品排出并送入高纯产品料仓;煅烧烟气经扩大段脱除粉尘后进入所述气相水解流化床主体4-4中用于三氯氧钒的流态化气相水解供热和流化;所述尾气淋洗吸收器6经碱溶液吸收处理后排出的气体经所述引风机7送入所述烟囱8后排空。
本发明的特征之一在于:在所述氯化流化床主体2-2内,所述低温氯化过程炭粉添加量为工业级五氧化二钒粉料质量的10%~20%,氯化操作温度为300~500℃,粉料的平均停留时间为30~80min。
本发明的特征之二在于:在所述精馏塔3-2内,所述精馏操作精馏段的塔板数为5~10块,提馏段的塔板数为10~20块;在精馏操作过程中,保持回流比(即塔顶回流量与排料量之比)为15~40。
本发明的特征之三在于:在所述气相水解流化床主体4-4内,通过高纯三氯氧钒气相水解直接制备五氧化二钒粉体,所述气相水解过程通入水蒸气与三氯氧钒的质量比为1.2~2.0,气相水解操作温度为160~600℃。
本发明的特征之四在于:在所述煅烧流化床主体5-3内,气相水解的五氧化二钒粉体进一步进行流态化煅烧处理得到高纯五氧化二钒粉体,所述煅烧的操作温度为400~620℃,粉料的平均停留时间为30~240min。
本发明生产得到的高纯五氧化二钒粉体纯度均在4N以上。
相对于现有技术,本发明具有如下突出的优点:
(1)通过氯化气体与氯化烟气换热,在冷却烟气的同时,实现氯化气体预热,使氯化反应器温度分布更为均匀,有效提高钒原料低温氯化效率;
(2)通过适量配加空气使部分炭粉燃烧实现氯化过程的热量平衡供给和温度调控,稳定氯化操作温度,提高氯化反应效率和保证氯化的良好选择性,避免生成四氯化钒等副反应的发生;
(3)精馏纯化后的三氯氧钒经喷嘴送入气相水解流化床进行水解得到五氧化二钒粉体和盐酸副产品,相对于传统水解沉淀,可有效避免大量含钒、氨氮废水的产生;
(4)负载水气的空气经燃烧器预热后进入气相水解流化床实现供热和水蒸气供给;
(5)水解产生的五氧化二钒粉体经过进一步煅烧可得到高纯五氧化二钒粉 体产品,产生的热烟气送入气相水解流化床用于供热和流化,提高热量利用效率和生产效率;
本发明具有原料适应性强、低温氯化的良好选择性、无污染废水排放、生产能耗和操作成本低、产品质量稳定等优点,适用于4N以上高纯五氧化二钒粉体的大规模工业化生产,具有良好的经济效益和社会效益。
附图说明
附图用来提供对本发明的进一步阐释,并且构成说明书的一部分,与本发明的实施列一起用于解释本发明,并不构成对本发明的限制。
图1为本发明的生产高纯五氧化二钒粉体系统的配置示意图。
附图标记
1加料装置
1-1工业级五氧化二钒料仓        1-2工业级五氧化二钒螺旋加料器
1-3炭粉料仓                    1-4炭粉螺旋加料器
2低温氯化流化床
2-1氯化床进料器      2-2氯化流化床主体      2-3氯化床旋风分离器
2-4烟气换热器        2-5烟气冷凝器          2-6氯化床酸封罐
2-7氯化床螺旋排渣器
3精馏提纯装置
3-1蒸馏釜            3-2精馏塔              3-3馏出物冷凝器
3-4回流液收集罐      3-5含硅三氯氧钒储罐    3-6精馏段酸封罐
3-7高纯三氯氧钒冷凝器                       3-8高纯三氯氧钒储罐
4气相水解流化床
4-1水解床空气净化器   4-2水解床气体加热器   4-3三氯氧钒喷嘴
4-4气相水解流化床主体 4-5盐酸尾气吸收器     4-6水解床排料器
5煅烧流化床
5-1煅烧床空气净化器   5-2煅烧床气体加热器   5-3煅烧流化床主体
6尾气淋洗吸收器       7引风机              8烟囱
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。值得说明的是,实施例仅用以说明本发明的技术方案,而非对其限制。图1为本发明的一种生产高纯五氧化二钒粉体的系统及方法示意图。
结合图1,本实施例所使用的生产高纯五氧化二钒粉体的系统,包括加料装置1、低温氯化流化床2、精馏提纯装置3、气相水解流化床4、煅烧流化床5、尾气淋洗吸收器6、引风机7和烟囱8;
加料装置1包括工业级五氧化二钒料仓1-1、工业级五氧化二钒螺旋加料器1-2、炭粉料仓1-3和炭粉螺旋加料器1-4;
低温氯化流化床2包括氯化床进料器2-1、氯化流化床主体2-2、氯化床旋风分离器2-3、烟气换热器2-4、烟气冷凝器2-5、氯化床酸封罐2-6和氯化床螺旋排渣器2-7;
精馏提纯装置3包括蒸馏釜3-1、精馏塔3-2、馏出物冷凝器3-3、回流液收集罐3-4、含硅三氯氧钒储罐3-5、精馏段酸封罐3-6、高纯三氯氧钒冷凝器3-7和高纯三氯氧钒储罐3-8;
气相水解流化床4包括水解床空气净化器4-1、水解床气体加热器4-2、三氯氧钒喷嘴4-3、气相水解流化床主体4-4、盐酸尾气吸收器4-5和水解床排料器4-6;
煅烧流化床5包括煅烧床空气净化器5-1、煅烧床气体加热器5-2和煅烧流化床主体5-3;
工业级五氧化二钒料仓1-1底部的出料口与工业级五氧化二钒螺旋加料器1-2的进料口相连接;炭粉料仓1-3底部的出料口与炭粉螺旋加料器1-4的进料口相连接;工业级五氧化二钒螺旋加料器1-2的出料口、炭粉螺旋加料器1-4的出料口均与氯化床进料器2-1的进料口通过管道相连接;
氯化床进料器2-1的排料口与氯化流化床主体2-2上部的进料口通过管道相连接;氯化床进料器2-1底部的进气口通过管道与氮气气源总管相连接;氯化床旋风分离器2-3设置于氯化流化床主体2-2的扩大段顶部中心;氯化床旋风分离器2-3顶部的出气口通过管道与烟气换热器2-4的热烟气入口相连接;烟气换热器2-4的冷烟气出口通过管道与烟气冷凝器2-5的气体入口相连接;烟气冷凝器2-5的气体出口通过管道与氯化床酸封罐2-6的气体入口相连接;氯化床酸封罐 2-6的气体出口通过管道与尾气淋洗吸收器6的气体入口相连接;氯化流化床主体2-2下部的排渣口与氯化床螺旋排渣器2-7的进料口通过管道相连接;氯化流化床主体2-2底部的进气口通过管道与烟气换热器2-4的热气体出口相连接;烟气换热器2-4的冷气体入口通过管道分别与氯气气源总管、氮气气源总管及压缩空气总管相连接;
烟气冷凝器2-5底部的液体出口通过管道与精馏塔3-2的进料口相连接;蒸馏釜3-1的蒸气出口通过管道与精馏塔3-2的蒸气入口相连接;蒸馏釜3-1的回流口通过管道与精馏塔3-2底部的液体回流出口相连接;精馏塔3-2顶部的气体出口通过管道与馏出物冷凝器3-3的气体入口相连接;馏出物冷凝器3-3的液体出口通过管道与回流液收集罐3-4的液体入口相连接;回流液收集罐3-4的回流液体出口通过管道与精馏塔3-2顶部的回流液体入口相连接;回流液收集罐3-4的排料口与含硅三氯氧钒储罐3-5的入口通过管道相连接;含硅三氯氧钒储罐3-5的乏气出口通过管道与精馏段酸封罐3-6的气体入口相连接;精馏酸封罐3-6的气体出口通过管道与尾气淋洗吸收器6的气体入口相连接;精馏塔3-2的精馏物出口通过管道与高纯三氯氧钒冷凝器3-7的气体入口相连接;高纯三氯氧钒冷凝器3-7的液体出口与高纯三氯氧钒储罐3-8的液体入口通过管道相连接;蒸馏釜3-1底部设置了底流出口;
水解床空气净化器4-1的进气口与压缩空气总管通过管道相连接;水解床空气净化器4-1的出气口通过管道分别与水解床气体加热器4-2的进气口、三氯氧钒喷嘴4-3的气体入口及水解床排料器4-6底部的进气口相连接;水解床气体加热器4-2燃烧嘴的助燃风入口和燃料入口分别通过管道与压缩空气总管和燃料总管相连接;水解床气体加热器4-2的进气口通过管道与超纯水总管相连接;水解床气体加热器4-2的出气口通过管道与气相水解流化床主体4-4底部的进气口相连接;高纯三氯氧钒储罐3-8的液体出口通过管道与三氯氧钒喷嘴4-3的三氯氧钒入口相连接;气相水解流化床主体4-4扩大段顶部的气体出口通过管道与盐酸尾气吸收器4-5的气体入口相连接;盐酸尾气吸收器4-5底部设置了盐酸溶液出口;盐酸尾气吸收器4-5的气体出口通过管道与尾气淋洗吸收器6的气体入口相连接;气相水解流化床主体4-4上部的出料口通过管道与水解床排料器4-6的进料口相连接;水解床排料器4-6的排料口通过管道与煅烧流化床主体5-3上部的进料口相连接;
煅烧床空气净化器5-1的进气口与压缩空气总管通过管道相连接;煅烧床空气净化器5-1的出气口通过管道与煅烧床气体加热器5-2的进气口相连接;煅烧床气体加热器5-2燃烧嘴的助燃风入口和燃料入口分别通过管道与压缩空气总管和燃料总管相连接;煅烧床气体加热器5-2的出气口通过管道与煅烧流化床主体5-3底部的进气口相连接;煅烧流化床主体5-3顶部的出气口通过管道与气相水解流化床主体4-4底部的进气口相连接;煅烧流化床主体5-3下部的排料口通过管道与高纯五氧化二钒产品料仓相连接;
尾气淋洗吸收器6的气体出口通过管道与引风机7的气体入口相连接;引风机7的气体出口通过管道与烟囱8底部的气体入口相连接。
本实施例利用上述系统进行生产高纯五氧化二钒粉体,具体方法包括:工业级五氧化二钒料仓1-1中的工业级五氧化二钒粉料和炭粉料仓1-3的炭粉分别经工业级五氧化二钒螺旋加料器1-2和炭粉螺旋加料器1-4同时进入氯化床进料器2-1混合后进入氯化流化床主体2-2;来自氯气气源总管的氯气、氮气气源总管的氮气及压缩空气总管的空气经烟气换热器2-4与氯化烟气换热预热后进入氯化流化床主体2-2中使五氧化二钒、炭粉等粉体物料维持流态化并与之发生化学反应,空气使部分炭粉发生燃烧提供热量维持流化床温度,氯气与炭粉共同作用使五氧化二钒和少量杂质发生氯化,形成氯化残渣和富含三氯氧钒的氯化烟气;氯化残渣依次经氯化流化床主体2-2下部的排渣口和氯化床螺旋排渣器2-7排出;氯化烟气经氯化床旋风分离器2-3将粉尘脱除并落回氯化流化床主体2-2后,再经烟气换热器2-4预冷却并进入烟气冷凝器2-5中使其中的三氯氧钒冷凝形成粗三氯氧钒液体,剩余尾气经氯化床酸封罐2-6后进入尾气淋洗吸收器6中;
烟气冷凝器2-5形成的粗三氯氧钒液体依次进入精馏塔3-2和蒸馏釜3-1后进行精馏操作,得到富含高沸点杂质的富钒废料、富含低沸点杂质的含硅三氯氧钒蒸气和高纯三氯氧钒蒸气;富钒废料用于后续回收钒,含硅三氯氧钒蒸气经馏出物冷凝器3-3冷凝至液体后,部分经回流液收集罐3-4回流至精馏塔3-2,其余部分进入含硅三氯氧钒储罐3-5中;含硅三氯氧钒储罐3-5中产生的乏气经精馏段酸封罐3-6后送往尾气淋洗吸收器6中,含硅三氯氧钒可用于催化等化工领域;高纯三氯氧钒蒸气经高纯三氯氧钒冷凝器3-7冷凝至液体后进入高纯三氯氧钒储罐3-8中;
高纯三氯氧钒储罐3-8中的高纯三氯氧钒经三氯氧钒喷嘴4-3,由来自水解床空气净化器4-1的净化空气气载进入气相水解流化床主体4-4中;超纯水和净 化空气经水解床气体加热器4-2预热后,与来自煅烧流化床主体5-3的煅烧烟气一起送入气相水解流化床主体4-4中使粉体物料维持流态化、并使三氯氧钒发生水解,形成五氧化二钒粉体和富含氯化氢的水解烟气;五氧化二钒粉体经水解床排料器4-6排出送入煅烧流化床主体5-3中;水解烟气经气相水解流化床主体4-4扩大段脱除粉尘后,进入盐酸尾气吸收器4-5进行吸收处理形成盐酸溶液副产品,吸收尾气进入尾气淋洗吸收器6进行处理;
压缩空气依次经煅烧床空气净化器5-1净化、煅烧床气体加热器5-2预热后进入煅烧流化床主体5-3内使五氧化二钒粉体维持流态化,并使之脱除水分和微量的挥发性杂质,得到高纯五氧化二钒粉体和煅烧烟气;高纯五氧化二钒产品排出并送入高纯产品料仓;煅烧烟气经扩大段脱除粉尘后进入气相水解流化床主体4-4中用于三氯氧钒的流态化气相水解供热和流化;尾气淋洗吸收器6经碱溶液吸收处理后排出的气体经引风机7送入烟囱8后排空。
本实施例以粉状的工业级五氧化二钒为原料,其化学组成见表1所列,处理量为80kg/h,经低温氯化、三氯氧钒精馏、气相水解、煅烧生产得到高纯五氧化二钒产品。
表1实施例使用工业级五氧化二钒原料的化学组成(wt%)
V2O5 Si Ca Al Ti Fe Mn Na K S
98.8 0.0150 0.0275 0.0099 0.0260 0.0971 0.0293 0.1385 0.0714 0.1274
在氯化流化床主体2-2内,低温氯化过程炭粉添加量为工业级五氧化二钒粉体质量的10%,氯化操作温度500℃,粉料的平均停留时间30min;在精馏塔3-2内,精馏操作精馏段的塔板数5块,提馏段的塔板数10块,精馏操作的回流比40;在气相水解流化床主体4-4内,气相水解过程通入水蒸气与三氯氧钒的质量比1.2,气相水解操作温度600℃;在煅烧流化床主体5-3内,煅烧操作温度400℃,粉料的平均停留时间240min的操作条件下,钒的直收率达83%,高纯五氧化二钒产品的纯度达99.995wt%(4N5)。
在氯化流化床主体2-2内,低温氯化过程炭粉添加量为工业级五氧化二钒粉体质量的20%,氯化操作温度300℃,粉料的平均停留时间80min;在精馏塔3-2内,精馏操作精馏段的塔板数10块,提馏段的塔板数20块,精馏操作的回流比15;在气相水解流化床主体4-4内,气相水解过程通入水蒸气与三氯氧钒的质量比2.0,气相水解操作温度160℃;在煅烧流化床主体5-3内,煅烧操作温度620℃,粉料的平均停留时间为30min的操作条件下,钒的直收率达85%,高纯五氧化二钒产品的纯度达99.999wt%(5N)。
本发明未详细阐述部分属于本领域公知技术。
当然,本发明还可以有多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明的公开做出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明的权利要求的保护范围。

Claims (8)

  1. 一种生产高纯五氧化二钒粉体的系统,其特征在于,所述系统包括加料装置(1)、低温氯化流化床(2)、精馏提纯装置(3)、气相水解流化床(4)、煅烧流化床(5)、尾气淋洗吸收器(6)、引风机(7)和烟囱(8);
    所述加料装置(1)包括工业级五氧化二钒料仓(1-1)、工业级五氧化二钒螺旋加料器(1-2)、炭粉料仓(1-3)和炭粉螺旋加料器(1-4);
    所述低温氯化流化床(2)包括氯化床进料器(2-1)、氯化流化床主体(2-2)、氯化床旋风分离器(2-3)、烟气换热器(2-4)、烟气冷凝器(2-5)、氯化床酸封罐(2-6)和氯化床螺旋排渣器(2-7);
    所述精馏提纯装置(3)包括蒸馏釜(3-1)、精馏塔(3-2)、馏出物冷凝器(3-3)、回流液收集罐(3-4)、含硅三氯氧钒储罐(3-5)、精馏段酸封罐(3-6)、高纯三氯氧钒冷凝器(3-7)和高纯三氯氧钒储罐(3-8);
    所述气相水解流化床(4)包括水解床空气净化器(4-1)、水解床气体加热器(4-2)、三氯氧钒喷嘴(4-3)、气相水解流化床主体(4-4)、盐酸尾气吸收器(4-5)和水解床排料器(4-6);
    所述煅烧流化床(5)包括煅烧床空气净化器(5-1)、煅烧床气体加热器(5-2)和煅烧流化床主体(5-3);
    所述工业级五氧化二钒料仓(1-1)底部的出料口与所述工业级五氧化二钒螺旋加料器(1-2)的进料口相连接;所述炭粉料仓(1-3)底部的出料口与所述炭粉螺旋加料器(1-4)的进料口相连接;所述工业级五氧化二钒螺旋加料器(1-2)的出料口和所述炭粉螺旋加料器(1-4)的出料口均与所述氯化床进料器(2-1)的进料口通过管道相连接;
    所述氯化床进料器(2-1)的排料口与所述氯化流化床主体(2-2)上部的进料口通过管道相连接;所述氯化床进料器(2-1)底部的进气口通过管道与氮气气源总管相连接;所述氯化床旋风分离器(2-3)设置于所述氯化流化床主体(2-2)的扩大段顶部中心;所述氯化床旋风分离器(2-3)顶部的出气口通过管道与所述烟气换热器(2-4)的热烟气入口相连接;所述烟气换热器(2-4)的冷烟气出口通过管道与所述烟气冷凝器(2-5)的气体入口相连接;所述烟气冷凝器(2-5)的气体出口通过管道与所述氯化床酸封罐(2-6)的气体入口相连接;所述氯化床酸封罐(2-6)的气体出口通过管道与所述尾气淋洗吸收器(6)的气体入口相连接;所述氯化流化床主体(2-2)下部的排渣口与所述氯化床螺旋排渣器(2-7) 的进料口通过管道相连接;所述氯化流化床主体(2-2)底部的进气口通过管道与所述烟气换热器(2-4)的热气体出口相连接;所述烟气换热器(2-4)的冷气体入口通过管道分别与氯气气源总管、氮气气源总管及压缩空气总管相连接;
    所述烟气冷凝器(2-5)底部的液体出口通过管道与所述精馏塔(3-2)的进料口相连接;所述蒸馏釜(3-1)的蒸气出口通过管道与所述精馏塔(3-2)的蒸气入口相连接;所述蒸馏釜(3-1)的回流口通过管道与所述精馏塔(3-2)底部的液体回流出口相连接;所述精馏塔(3-2)顶部的气体出口通过管道与所述馏出物冷凝器(3-3)的气体入口相连接;所述馏出物冷凝器(3-3)的液体出口通过管道与所述回流液收集罐(3-4)的液体入口相连接;所述回流液收集罐(3-4)的回流液体出口通过管道与所述精馏塔(3-2)顶部的回流液体入口相连接;所述回流液收集罐(3-4)的排料口与所述含硅三氯氧钒储罐(3-5)的入口通过管道相连接;所述含硅三氯氧钒储罐(3-5)的乏气出口通过管道与所述精馏段酸封罐(3-6)的气体入口相连接;所述精馏酸封罐(3-6)的气体出口通过管道与所述尾气淋洗吸收器(6)的气体入口相连接;所述精馏塔(3-2)的精馏物出口通过管道与所述高纯三氯氧钒冷凝器(3-7)的气体入口相连接;所述高纯三氯氧钒冷凝器(3-7)的液体出口与所述高纯三氯氧钒储罐(3-8)的液体入口通过管道相连接;所述蒸馏釜(3-1)底部设置了底流出口;
    所述水解床空气净化器(4-1)的进气口与压缩空气总管通过管道相连接;所述水解床空气净化器(4-1)的出气口通过管道分别与所述水解床气体加热器(4-2)的进气口、三氯氧钒喷嘴(4-3)的气体入口及水解床排料器(4-6)底部的进气口相连接;所述水解床气体加热器(4-2)燃烧嘴的助燃风入口和燃料入口分别通过管道与压缩空气总管和燃料总管相连接;所述水解床气体加热器(4-2)的进气口通过管道与超纯水总管相连接;所述水解床气体加热器(4-2)的出气口通过管道与所述气相水解流化床主体(4-4)底部的进气口相连接;所述高纯三氯氧钒储罐(3-8)的液体出口通过管道与所述三氯氧钒喷嘴(4-3)的三氯氧钒入口相连接;所述气相水解流化床主体(4-4)扩大段顶部的气体出口通过管道与所述盐酸尾气吸收器(4-5)的气体入口相连接;所述盐酸尾气吸收器(4-5)底部设置了盐酸溶液出口;所述盐酸尾气吸收器(4-5)的气体出口通过管道与所述尾气淋洗吸收器(6)的气体入口相连接;所述气相水解流化床主体(4-4)上部的出料口通过管道与所述水解床排料器(4-6)的进料口相连接;所述水解床排料器(4-6)的排料口通过管道与所述煅烧流化床主体(5-3)上部的进料口 相连接;
    所述煅烧床空气净化器(5-1)的进气口与压缩空气总管通过管道相连接;所述煅烧床空气净化器(5-1)的出气口通过管道与所述煅烧床气体加热器(5-2)的进气口相连接;所述煅烧床气体加热器(5-2)燃烧嘴的助燃风入口和燃料入口分别通过管道与压缩空气总管和燃料总管相连接;所述煅烧床气体加热器(5-2)的出气口通过管道与所述煅烧流化床主体(5-3)底部的进气口相连接;所述煅烧流化床主体(5-3)顶部的出气口通过管道与所述气相水解流化床主体(4-4)底部的进气口相连接;所述煅烧流化床主体(5-3)下部的排料口通过管道与高纯五氧化二钒产品料仓相连接;
    所述尾气淋洗吸收器(6)的气体出口通过管道与所述引风机(7)的气体入口相连接;所述引风机(7)的气体出口通过管道与所述烟囱(8)底部的气体入口相连接。
  2. 一种基于权利要求1所述系统的生产高纯五氧化二钒粉体的方法,包括以下步骤:
    所述工业级五氧化二钒料仓(1-1)中的工业级五氧化二钒粉料和所述炭粉料仓(1-3)的炭粉分别经所述工业级五氧化二钒螺旋加料器(1-2)和所述炭粉螺旋加料器(1-4)同时进入所述氯化床进料器(2-1)混合后进入所述氯化流化床主体(2-2);来自氯气气源总管的氯气、氮气气源总管的氮气及压缩空气总管的空气经所述烟气换热器(2-4)与氯化烟气换热预热后进入所述氯化流化床主体(2-2)中使五氧化二钒和炭粉维持流态化并与之发生化学反应,空气使部分炭粉发生燃烧提供热量维持流化床温度,氯气与炭粉共同作用使五氧化二钒和少量杂质发生氯化,形成氯化残渣和富含三氯氧钒的氯化烟气;氯化残渣依次经所述氯化流化床主体(2-2)下部的排渣口和氯化床螺旋排渣器(2-7)排出;氯化烟气经所述氯化床旋风分离器(2-3)将粉尘脱除并落回氯化流化床主体(2-2)后,再经所述烟气换热器(2-4)预冷却并进入烟气冷凝器(2-5)中使其中的三氯氧钒冷凝形成粗三氯氧钒液体,剩余尾气经所述氯化床酸封罐(2-6)后进入所述尾气淋洗吸收器(6)中;
    所述烟气冷凝器(2-5)形成的粗三氯氧钒液体依次进入所述精馏塔(3-2)和所述蒸馏釜(3-1)后进行精馏操作,得到富含高沸点杂质的富钒废料、富含低沸点杂质的含硅三氯氧钒蒸气和高纯三氯氧钒蒸气;含硅三氯氧钒蒸气经所述馏出物冷凝器(3-3)冷凝至液体后,部分经回流液收集罐(3-4)回流至所述精 馏塔(3-2),其余部分进入所述含硅三氯氧钒储罐(3-5)中;含硅三氯氧钒储罐(3-5)中产生的乏气经所述精馏段酸封罐(3-6)后送往所述尾气淋洗吸收器(6)中;高纯三氯氧钒蒸气经所述高纯三氯氧钒冷凝器(3-7)冷凝至液体后进入所述高纯三氯氧钒储罐(3-8)中;
    所述高纯三氯氧钒储罐(3-8)中的高纯三氯氧钒经所述三氯氧钒喷嘴(4-3),由来自水解床空气净化器(4-1)的净化空气气载进入所述气相水解流化床主体(4-4)中;超纯水和净化空气经所述水解床气体加热器(4-2)预热后,与来自所述煅烧流化床主体(5-3)的煅烧烟气一起送入所述气相水解流化床主体(4-4)中使粉体物料维持流态化、并使三氯氧钒发生水解,形成五氧化二钒粉体和富含氯化氢的水解烟气;五氧化二钒粉体经所述水解床排料器(4-6)排出送入所述煅烧流化床主体(5-3)中;水解烟气经所述气相水解流化床主体(4-4)扩大段脱除粉尘后,进入所述盐酸尾气吸收器(4-5)进行吸收处理形成盐酸溶液副产品,吸收尾气进入所述尾气淋洗吸收器(6)进行处理;
    压缩空气依次经所述煅烧床空气净化器(5-1)净化和所述煅烧床气体加热器(5-2)预热后进入所述煅烧流化床主体(5-3)内使五氧化二钒粉体维持流态化,并使之脱除水分和微量的挥发性杂质,得到高纯五氧化二钒粉体和煅烧烟气;高纯五氧化二钒产品排出并送入高纯产品料仓;煅烧烟气经扩大段脱除粉尘后进入所述气相水解流化床主体(4-4)中用于三氯氧钒的流态化气相水解供热和流化;
    所述尾气淋洗吸收器(6)经碱溶液吸收处理后排出的气体经所述引风机(7)送入所述烟囱(8)后排空。
  3. 根据权利要求2所述的生产高纯五氧化二钒粉体的方法,其特征在于,在所述氯化流化床主体(2-2)内,所述氯化过程炭粉添加量为工业级五氧化二钒粉料质量的10%~20%。
  4. 根据权利要求2所述的生产高纯五氧化二钒粉体的方法,其特征在于,在所述氯化流化床主体(2-2)内,所述氯化操作温度为300~500℃,粉料的平均停留时间为30~80min。
  5. 根据权利要求2所述的生产高纯五氧化二钒粉体的方法,其特征在于,在所述精馏塔(3-2)内,所述精馏操作精馏段的塔板数为5~10块,提馏段的塔板数为10~20块。
  6. 根据权利要求2所述的生产高纯五氧化二钒粉体的方法,其特征在于, 所述精馏操作的回流比为15~40。
  7. 根据权利要求2所述的生产高纯五氧化二钒粉体的方法,其特征在于,在所述气相水解流化床主体(4-4)内,通过高纯三氯氧钒气相水解直接制备五氧化二钒粉体,所述气相水解过程通入水蒸气与三氯氧钒的质量比为1.2~2.0,气相水解操作温度为160~600℃。
  8. 根据权利要求2所述的生产高纯五氧化二钒粉体的方法,其特征在于,在所述煅烧流化床主体(5-3)内,气相水解的五氧化二钒粉体进一步进行流态化煅烧处理得到高纯五氧化二钒粉体,所述煅烧的操作温度为400~620℃,粉料的平均停留时间为30~240min。
PCT/CN2016/072518 2015-01-30 2016-01-28 一种生产高纯五氧化二钒粉体的系统及方法 WO2016119717A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2017558608A JP6404498B2 (ja) 2015-01-30 2016-01-28 五酸化二バナジウム粉末の製造システム及び製造方法
NZ733919A NZ733919A (en) 2015-01-30 2016-01-28 System and method for producing high-purity vanadium pentoxide powder
EP16742779.8A EP3252012B1 (en) 2015-01-30 2016-01-28 System and method for producing high-purity vanadium pentoxide powder
RU2017130369A RU2670866C9 (ru) 2015-01-30 2016-01-28 Система и способ для производства порошка высокочистого пентоксида ванадия
US15/547,075 US10099939B2 (en) 2015-01-30 2016-01-28 System and method for producing high-purity vanadium pentoxide powder
CA2973499A CA2973499C (en) 2015-01-30 2016-01-28 System and method for producing high-purity vanadium pentoxide powder
BR112017015803-5A BR112017015803A2 (zh) 2015-01-30 2016-01-28 A process for producing high-purity vanadium pentoxide powder system and method of
AU2016212451A AU2016212451B2 (en) 2015-01-30 2016-01-28 System and method for producing high-purity divanadium pentoxide powder
ZA2017/04630A ZA201704630B (en) 2015-01-30 2017-07-10 System and method for producing high-purity vanadium pentoxide powder
PH12017550058A PH12017550058A1 (en) 2015-01-30 2017-07-28 System and method for producing high-purity vanadium pentoxide powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510051580.1 2015-01-30
CN201510051580.1A CN105984897B (zh) 2015-01-30 2015-01-30 一种生产高纯五氧化二钒粉体的系统及方法

Publications (1)

Publication Number Publication Date
WO2016119717A1 true WO2016119717A1 (zh) 2016-08-04

Family

ID=56542444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072518 WO2016119717A1 (zh) 2015-01-30 2016-01-28 一种生产高纯五氧化二钒粉体的系统及方法

Country Status (12)

Country Link
US (1) US10099939B2 (zh)
EP (1) EP3252012B1 (zh)
JP (1) JP6404498B2 (zh)
CN (1) CN105984897B (zh)
AU (1) AU2016212451B2 (zh)
BR (1) BR112017015803A2 (zh)
CA (1) CA2973499C (zh)
NZ (1) NZ733919A (zh)
PH (1) PH12017550058A1 (zh)
RU (1) RU2670866C9 (zh)
WO (1) WO2016119717A1 (zh)
ZA (1) ZA201704630B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105984900B (zh) * 2015-01-30 2017-06-13 中国科学院过程工程研究所 一种制备高纯五氧化二钒粉体的系统及方法
CN105984898B (zh) * 2015-01-30 2017-06-13 中国科学院过程工程研究所 一种生产高纯四氧化二钒粉体的系统及方法
CN105984896B (zh) * 2015-01-30 2017-06-13 中国科学院过程工程研究所 一种提纯制备高纯五氧化二钒粉体的系统及方法
CN106257726B (zh) * 2016-01-28 2018-03-23 中国科学院过程工程研究所 一种生产高纯度高活性钒电解液的系统及方法
CN108630973B (zh) * 2017-03-17 2020-05-19 中国科学院过程工程研究所 一种高效清洁氯化法制备高纯度钒电解液的系统及方法
CN108622936B (zh) * 2017-03-17 2020-02-18 中国科学院过程工程研究所 一种高效清洁氯化法制备高纯五氧化二钒粉体的系统及方法
CN108950208B (zh) * 2018-06-04 2023-09-29 山东习尚喜新材料科技股份有限公司 一种金属钾的连续生产装置及工艺
CN112646972B (zh) * 2020-11-13 2021-12-24 北京科技大学 一种氯化-选择性氧化分离含钒铬物料中钒铬的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845552A (zh) * 2010-04-23 2010-09-29 河北钢铁股份有限公司承德分公司 一种钒渣梯度氯化回收有价元素的方法
CN102234117A (zh) * 2010-05-05 2011-11-09 刘基扬 一种含可水解卤原子的物质的水解方法
CN103130279A (zh) * 2011-11-29 2013-06-05 刘艳梅 一种氯化生产高纯五氧化二钒的方法
CN103922403A (zh) * 2014-03-24 2014-07-16 攀钢集团攀枝花钢铁研究院有限公司 一种多钒酸铵流态化生产粉状五氧化二钒的方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6907434A (zh) * 1968-05-20 1969-11-24
DE1936988C3 (de) * 1969-07-21 1974-01-03 Dynamit Nobel Ag, 5210 Troisdorf Verfahren zur Herstellung von Vanadinoxitrichlorid
JPS5520210A (en) * 1978-07-25 1980-02-13 Sumitomo Chem Eng Kk Manufacture of vanadium oxychloride
EP0103940A1 (en) * 1982-08-16 1984-03-28 Stauffer Chemical Company Process for preparing vanadium halides
SU1678073A1 (ru) * 1989-06-05 1996-08-27 Березниковский титано-магниевый комбинат Способ получения пятиокиси ванадия
JP3085634B2 (ja) 1994-11-17 2000-09-11 鹿島北共同発電株式会社 高純度バナジウム電解液の製造法
RU2175990C1 (ru) * 2000-04-05 2001-11-20 Открытое акционерное общество "АВИСМА титано-магниевый комбинат" Способ получения пентаоксида ванадия
RU23292U1 (ru) * 2001-11-16 2002-06-10 ООО Научно-производственная экологическая фирма "ЭКО-технология" Поточная линия для получения пентаоксида ванадия
CN1843938A (zh) 2006-04-30 2006-10-11 宿素满 一种五氧化二钒的生产方法
RU74636U1 (ru) * 2008-02-11 2008-07-10 ООО "Энергострой" Аппаратурно-технологический комплекс для получения пентаоксида ванадия
CN102730757A (zh) 2011-04-03 2012-10-17 崇阳县恒通工贸有限公司 一种用偏钒酸铵制备高纯五氧化二钒的方法
CN102181635A (zh) 2011-04-08 2011-09-14 北京矿冶研究总院 一种石煤钒矿硫酸浸出液制备五氧化二钒的方法
CN103515642A (zh) 2012-06-25 2014-01-15 中国人民解放军63971部队 一种高纯度高浓度钒电池电解液的制备方法
CN102923775A (zh) 2012-11-27 2013-02-13 攀钢集团攀枝花钢铁研究院有限公司 一种高纯度五氧化二钒的制备方法
CN103145187B (zh) 2013-03-22 2014-11-05 中南大学 一种无害化高纯五氧化二钒的生产工艺
CN103194603B (zh) 2013-04-01 2015-06-10 攀枝花学院 高纯五氧化二钒的制备方法
CN103606694B (zh) 2013-11-15 2015-07-08 河北钢铁股份有限公司承德分公司 一种商用钒电池电解液的制备方法
CN103663557B (zh) 2014-01-07 2015-06-17 湖南有色金属研究院 一种粗钒制备高纯五氧化二钒的方法
CN103787414B (zh) 2014-01-26 2016-04-13 贵州义信矿业有限公司 焙烧法钒溶液制取高纯五氧化二钒的方法
CN105984898B (zh) * 2015-01-30 2017-06-13 中国科学院过程工程研究所 一种生产高纯四氧化二钒粉体的系统及方法
CN105984896B (zh) * 2015-01-30 2017-06-13 中国科学院过程工程研究所 一种提纯制备高纯五氧化二钒粉体的系统及方法
CN105984899B (zh) * 2015-01-30 2017-05-17 中国科学院过程工程研究所 一种提纯五氧化二钒的系统及方法
CN105984900B (zh) * 2015-01-30 2017-06-13 中国科学院过程工程研究所 一种制备高纯五氧化二钒粉体的系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845552A (zh) * 2010-04-23 2010-09-29 河北钢铁股份有限公司承德分公司 一种钒渣梯度氯化回收有价元素的方法
CN102234117A (zh) * 2010-05-05 2011-11-09 刘基扬 一种含可水解卤原子的物质的水解方法
CN103130279A (zh) * 2011-11-29 2013-06-05 刘艳梅 一种氯化生产高纯五氧化二钒的方法
CN103922403A (zh) * 2014-03-24 2014-07-16 攀钢集团攀枝花钢铁研究院有限公司 一种多钒酸铵流态化生产粉状五氧化二钒的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ROBERT E. MCCARLEY ET AL.: "The Preparation of High Purity Vanadium Pentoxide by a Chlorination Procedure", JOURNAL OF THE LESS-COMMON METALS, no. 2, 30 April 1960 (1960-04-30), pages 29 - 35, XP022782006 *
See also references of EP3252012A4 *

Also Published As

Publication number Publication date
EP3252012A4 (en) 2018-01-03
PH12017550058A1 (en) 2018-02-05
AU2016212451A1 (en) 2017-08-31
EP3252012B1 (en) 2018-09-26
EP3252012A1 (en) 2017-12-06
CN105984897B (zh) 2017-05-17
BR112017015803A2 (zh) 2018-06-19
CA2973499C (en) 2019-12-31
US20180009675A1 (en) 2018-01-11
CA2973499A1 (en) 2016-08-04
US10099939B2 (en) 2018-10-16
NZ733919A (en) 2018-08-31
CN105984897A (zh) 2016-10-05
ZA201704630B (en) 2019-06-26
JP2018509371A (ja) 2018-04-05
RU2670866C1 (ru) 2018-10-25
RU2670866C9 (ru) 2018-12-11
JP6404498B2 (ja) 2018-10-10
AU2016212451B2 (en) 2018-01-18

Similar Documents

Publication Publication Date Title
WO2016119717A1 (zh) 一种生产高纯五氧化二钒粉体的系统及方法
WO2016119716A1 (zh) 一种制备高纯五氧化二钒粉体的系统及方法
WO2016119722A1 (zh) 一种提纯制备高纯五氧化二钒粉体的系统及方法
WO2016119719A1 (zh) 一种生产高纯四氧化二钒粉体的系统及方法
WO2016119718A1 (zh) 一种提纯五氧化二钒的系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742779

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2973499

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017558608

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12017550058

Country of ref document: PH

Ref document number: 15547075

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016742779

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017015803

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2017130369

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2016212451

Country of ref document: AU

Date of ref document: 20160128

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112017015803

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017015803

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170724