WO2016117664A1 - 磁気抵抗効果素子及び磁気メモリ - Google Patents

磁気抵抗効果素子及び磁気メモリ Download PDF

Info

Publication number
WO2016117664A1
WO2016117664A1 PCT/JP2016/051758 JP2016051758W WO2016117664A1 WO 2016117664 A1 WO2016117664 A1 WO 2016117664A1 JP 2016051758 W JP2016051758 W JP 2016051758W WO 2016117664 A1 WO2016117664 A1 WO 2016117664A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording layer
layer
effect element
magnetoresistive effect
length
Prior art date
Application number
PCT/JP2016/051758
Other languages
English (en)
French (fr)
Inventor
佐藤 英夫
慎也 石川
俊輔 深見
正二 池田
松倉 文▲礼▼
大野 英男
哲郎 遠藤
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2016570710A priority Critical patent/JP6607578B2/ja
Publication of WO2016117664A1 publication Critical patent/WO2016117664A1/ja
Priority to US15/657,148 priority patent/US10263180B2/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details

Definitions

  • the present invention relates to a magnetoresistive effect element and a magnetic memory.
  • a magnetic memory using magnetization reversal by spin injection is composed of a magnetic tunnel junction element (MTJ element), a reference layer (fixed layer) in which the direction of magnetization is fixed, and a recording layer (free layer) in which the direction of magnetization changes. ) are stacked via a tunnel insulating film (see, for example, Patent Documents 1 and 2).
  • the performance index is an index represented by the ratio between the thermal stability index and the write current (thermal stability index / write current).
  • the thermal stability index indicates the heat resistance of recorded data, and it is desirable that the thermal stability index be large in order to retain data for a long period of time as a nonvolatile memory.
  • Patent Document 3 discloses a technique for realizing high thermal stability of a magnetoresistive element. On the other hand, a smaller write current is desirable from the viewpoint of power saving. Therefore, it is desirable that the figure of merit expressed by the thermal stability index / write current is larger.
  • the in-plane magnetization type magnetoresistive effect element has a problem that the figure of merit is small. In other words, the magnetoresistive effect element of the in-plane magnetization method cannot hold recording data for a long period of time, and requires a large write current for rewriting the recording data.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an in-plane magnetization type magnetoresistive element and magnetic memory having a high figure of merit.
  • the magnetoresistive element of the present invention comprises: A reference layer made of a ferromagnetic material and having a magnetization direction facing the film surface direction; A recording layer made of a ferromagnetic material and having a magnetization direction facing the film surface direction; A barrier layer disposed between the reference layer and the recording layer; With The film thickness of the recording layer / the length of the short axis of the recording layer> 0.3.
  • the film thickness of the recording layer / the length of the short axis of the recording layer ⁇ 1.
  • the length of the long axis of the recording layer / the length of the short axis of the recording layer > 1.5.
  • the length of the short axis of the recording layer is ⁇ 30 nm.
  • the performance index is 1.5 ⁇ A ⁇ 1 or more
  • the thermal stability index is 60 or more
  • the magnetic memory of the present invention is a magnetic memory including the above-described magnetoresistance effect element as a memory cell.
  • the thickness of the recording layer / the length of the short axis of the recording layer > 0.3.
  • FIG. It is a figure which shows the example of the other structure of the magnetoresistive effect element which concerns on embodiment. It is a figure which shows the example of the other structure of the magnetoresistive effect element which concerns on embodiment. It is a figure which shows the example of the other structure of the magnetoresistive effect element which concerns on embodiment. It is a figure which shows the example of the other structure of the magnetoresistive effect element which concerns on embodiment.
  • the magnetoresistive effect element 10 includes a stacked substrate layer (electrode layer) 11, reference layer (fixed layer) 12, barrier layer 13, and recording layer (free layer). ) 14 and an electrode layer 15.
  • the substrate layer 11 is made of a metal such as Ta.
  • the reference layer 12 is made of a ferromagnetic material having an easy magnetization axis in a direction parallel to the film surface, and the direction of the magnetization Mf is fixed in one direction.
  • a material constituting the reference layer 12 for example, a material containing a 3d transition metal such as Fe, Co, or Ni can be used. More specifically, 3d transition metals such as Fe, Co, Ni, Fe—Co, Fe—Ni, Co—Ni, Fe—Co—Ni, Co—Fe—B, Fe—B, Co—B, etc.
  • An alloy containing a 3d transition metal can be used.
  • a material such as B, C, N, O, Al, Si, P, Ga, or Ge can be added to these so that desired electrical characteristics and structures can be obtained.
  • the reference layer 12 may be comprised from the laminated structure which expresses a laminated ferri bond. In this case, it is desirable to use Ru as the bonding layer. Further, the reference layer 12 may include an antiferromagnetic layer. In this case, the magnetization can be fixed more firmly. Examples of usable antiferromagnetic materials include Ir—Mn and Pt—Mn alloys.
  • the barrier layer 13 is made of an insulator and forms a tunnel barrier.
  • an insulating film containing oxygen such as MgO or Al 2 O 3 , AlN, or the like can be used.
  • the recording layer 14 is a layer made of a ferromagnetic material having an easy axis of magnetization in a direction parallel to the film surface, and the direction of the magnetization Mg is changed by spin injection writing.
  • a material constituting the recording layer 14 for example, a material containing a 3d transition metal such as Fe, Co, or Ni can be used. More specifically, 3d transition metals such as Fe, Co, Ni, Fe—Co, Fe—Ni, Co—Ni, Fe—Co—Ni, Co—Fe—B, Fe—B, Co—B, etc. An alloy containing a 3d transition metal can be used. Further, materials such as B, C, N, O, Al, Si, P, Ga, and Ge can be appropriately added so that desired electric characteristics and structures can be obtained.
  • the electrode layer 15 is made of a conductor such as metal.
  • the electrode layer 15 is made of Ta, for example.
  • the recording layer 14 has an elliptical shape as shown in FIG.
  • the major axis of the ellipse is the Y axis
  • the minor axis is the X axis
  • the film thickness direction is the Z axis.
  • the length of the recording layer 14 in the Y-axis direction that is, the length of the major axis (major axis length) is Dy
  • the length in the X-axis direction that is, the length of the minor axis (minor axis length) is Dx
  • the film The thickness (thickness) is t.
  • the barrier layer 13 and the reference layer 12 also have substantially the same configuration except for deformation during patterning. However, it is not necessary to have the same shape and configuration.
  • 1 ⁇ film thickness t / short for the recording layer 14 It is formed in a size satisfying the conditions of axial length Dx> 0.3, 4> long axial length Dy / short axial length Dx> 1.5. Details thereof will be described later.
  • the reference layer 12 is formed from the electrode 11 side by a PtMn layer (15 nm) / CoFe layer (2.5 nm) / Ru layer (0.9 nm) / CoFeB layer (1.5 nm). It is comprised from the laminated body of /.
  • the barrier layer 13 is composed of an MgO layer (1 to 2 nm).
  • the recording layer 14 is composed of a CoFeB layer, and is formed to a size that satisfies the following conditions: 1 ⁇ film thickness t / short axis length Dx> 0.3, 4> long axis length Dy / short axis length Dx> 1.5. ing.
  • the film thickness t is 10 nm
  • the short axis length Dx 10 nm (4 to 16 nm)
  • the long axis length Dy 28 nm (15 to 35 nm).
  • the substrate layer 11 and the electrode layer 15 are each composed of Ta (5 nm).
  • the magnetic memory circuit 100 has a structure in which memory cells are arranged in a matrix with the magnetoresistive effect element 10 and the selection transistor 20 as memory cells for 1 bit.
  • the source electrode of the selection transistor 20 is electrically connected to the source line SL, the drain electrode is electrically connected to the substrate layer 11 of the magnetoresistive effect element 10, and the gate electrode is electrically connected to the word line WL.
  • the electrode layer 15 of the magnetoresistive effect element 10 is connected to the bit line BL.
  • the voltage of the word line WL connected to the magnetoresistive effect element 10 to be written is controlled to turn on the corresponding selection transistor 20. Subsequently, the voltage applied between the bit line BL and the source line SL is adjusted to control the direction and magnitude of the write current Iw flowing through the magnetoresistive effect element 10, and desired data is obtained by spin injection magnetization reversal. Write.
  • the magnetization Mg of the recording layer 14 becomes parallel to the magnetization Mf of the reference layer 12 and when the write current Iw flows from the reference layer 12 to the recording layer 14, The magnetization of the recording layer 14 is antiparallel to the magnetization of the reference layer 12.
  • a selection voltage is applied to the word line WL to turn on the selection transistor 20, and a reading voltage is applied between the bit line BL and the source line SL.
  • the level of the resistance of the magnetoresistive effect element 10 is obtained from the value of the read current with respect to the applied read voltage, whereby the recorded data is read out.
  • the write current Iw and the thermal stability index ⁇ of the magnetoresistive effect element 10 having the configuration shown in FIGS. 1 and 2 are expressed by Expression (1) and Expression (2).
  • damping constant
  • h ⁇ Dirac constant
  • e elementary charge
  • Ms saturation magnetization
  • V volume
  • ⁇ 0 vacuum permeability
  • Ny demagnetizing field coefficient in Y axis direction (major axis direction)
  • Nx Demagnetizing factor in the X-axis direction
  • Nz Demagnetizing factor in the film thickness direction
  • P Spin polarizability
  • Relative angle of magnetization of recording layer and reference layer (0 or ⁇ )
  • k B Boltzmann constant
  • T Absolute temperature.
  • the damping constant ⁇ is a standard 0.005
  • the spin polarizability P is a standard 0.45.
  • Non-Patent Documents 2 and 3 attempt to improve the figure of merit using interfacial magnetic anisotropy derived from the interface between the ferromagnetic material and the oxide.
  • Patent Documents 2 and 3 and Non-Patent Document 4 attempts are made to improve the figure of merit by devising a laminated structure.
  • the maximum figure of merit obtained in previous reports is 1.4 reported in Non-Patent Document 4, and this value is used to realize a memory using a magnetic tunnel junction as will be described later. Is insufficient.
  • the inventors focused on the ratio between the film thickness and the short axis length.
  • a physical factor having a small figure of merit in the conventional example is that Nx and Ny are small and Nz is large because the ratio of the film thickness to the short axis length is small.
  • these decrease the performance index as a result in order to decrease the thermal stability index ⁇ and increase the write current Iw.
  • the inventor has found that by increasing the ratio of the film thickness to the minor axis length, Nz can be reduced and Nx and Ny can be increased, and as a result, ⁇ / Iw can be increased.
  • the effects of the present invention are shown below based on specific calculation results.
  • the thermal stability index ⁇ and the write current Iw are calculated and shown for the film thickness t. 7 (a) and 7 (b).
  • the saturation magnetization is 1.3 T, which is a general value of CoFeB.
  • the thermal stability index ⁇ has a peak at a certain film thickness ( ⁇ t), while the write current Iw is a monotonically increasing function with respect to the film thickness. . Therefore, a high performance index can be obtained by designing the thermal stability index ⁇ to be in the vicinity of the film thickness having a peak.
  • the performance index ⁇ / Iw is actually calculated, it is as shown in FIG.
  • the data retention period needs to be 10 years or longer (for example, STT-MRAM of ITRS (The International Technology for Semiconductors, 2011_ERD3) Refer to recommended values).
  • the thermal stability index ⁇ needs to be at least about 40. is there. Furthermore, in consideration of variations between elements (including variations in materials and manufacturing processes), differences in use environment, and the like, the thermal stability index ⁇ is desirably 60 or more.
  • the gate width of the selection transistor 20 there is a correlation between the gate width of the selection transistor 20 and the current that can be passed. At 40 nm, the current that can flow is limited to 40 ⁇ A. In the future, when the selection transistor 20 is miniaturized (highly integrated), it is necessary to make the write current Iw smaller.
  • the limit is about 1.4 at most.
  • the figure of merit becomes 1.5 ⁇ A ⁇ 1 or more, and excellent characteristics as a magnetic memory are obtained. It was confirmed that it was obtained.
  • the long axis length Dy and the short axis length Dx of the recording layer 14 are preferably 4> Dy / Dx> 1.5 so that the in-plane magnetization Mg of the recording layer 14 is stably maintained. . Even if Dy / Dx is set to 4 or more, an increase in magnetic anisotropy does not contribute to an increase in the thermal stability index, which is useless. When the major axis length Dy and the minor axis length Dx are in the above-described ranges, waste is reduced, which is suitable for high integration and miniaturization. On the other hand, when Dy / Dx is 1.5 or less, the magnetic anisotropy is small, so that a sufficient thermal stability index cannot be obtained.
  • an increase in the short axis length Dx means an increase in the film thickness t, and an increase in the film thickness t causes an increase in etching time. Therefore, when the current etching technique is used, it is desirable that the short axis length Dx ⁇ 30 nm from the viewpoint of the manufacturing time of the memory and further from the relationship with the thickness of the mask formed on the magnetic tunnel junction.
  • the film thickness t needs to be about 30 nm or more in order to obtain a high performance index.
  • the thermal stability index is sufficiently large, from several hundred to several thousand.
  • the write current becomes excessively large, from several hundred to several thousand ⁇ A. It is virtually impossible to pass such a large current through the element.
  • Dx is large, the necessary value of the thermal stability index of 60 can be obtained without having a large figure of merit, and the write current at that time can also be designed within a reasonable range. it can.
  • the design value used in the conventional magnetoresistive effect element of the in-plane magnetization method is located far left from the peak.
  • the magnetoresistive effect element 10 is i) An in-plane magnetization method in which the magnetization directions of the reference layer 12 and the recording layer 14 are parallel to the film surface. ii) Since the ratio t / Dx between the film thickness t of the recording layer 14 and the minor axis length Dx is larger than 0.3, a figure of merit of 1.5 ⁇ A ⁇ 1 or more can be obtained. As a result, a data retention period of 10 years or more can be secured while securing a small write current Iw.
  • the ratio t / Dx between the film thickness t of the recording layer 14 and the short axis length Dx is less than 1, energy loss at the time of magnetization reversal can be suppressed.
  • the ratio Dy / Dx between the major axis length Dy and the minor axis length Dx of the recording layer 14 is greater than 1.5, the magnetization Mg can be stably maintained.
  • the ratio Dy / Dx between the major axis length Dy and the minor axis length Dx of the recording layer 14 is less than 4, the size of the recording layer 14 is small and suitable for high integration and miniaturization.
  • the planar shape of the recording layer 14 is not limited to an ellipse, and an arbitrary shape can be selected as shown in FIGS.
  • a rectangle 104 that circumscribes the planar shape of the recording layer 14 and has the smallest interview is drawn, and the long side of the rectangle 104 extends.
  • the long side of the rectangle is the length Dy of the long axis
  • the short side of the rectangle is the length Dx of the short axis.
  • the shapes are all symmetrical with respect to the X axis and the Y axis, but the effect of the present invention can be obtained even when the shape is asymmetric.
  • the configuration of the magnetoresistive effect element is not limited to the configuration shown in FIGS.
  • a second reference layer 31 and a second barrier layer 32 may be disposed.
  • a nonmagnetic layer 42 and a second recording layer 41 may be disposed.
  • the film thickness and material of the nonmagnetic layer 42 are adjusted so as to provide magnetic coupling between the first recording layer 14 and the second recording layer 41.
  • a nonmagnetic layer 62, a recording layer 61, a barrier layer 64, and a reference layer 63 may be disposed.
  • the total film thickness of all the recording layers in which a plurality of recording layers are arranged may satisfy the above condition.
  • Electrode layer 10 magnetoresistive effect element 11 substrate layer (electrode layer) 12 Reference layer (fixed layer) 13 Barrier layer (insulating layer) 14 Recording layer (free layer) 15 electrode layer 20 selection transistor WL word line BL bit line SL source line

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

 磁気抵抗効果素子(10)は、強磁性体から構成され、磁化の方向が膜面方向を向いた参照層(12)と、強磁性体から構成され、磁化の方向が膜面方向を向いた記録層(14)と、参照層(12)と記録層(14)との間に配置された障壁層(13)と、を備える。記録層(14)の膜厚/記録層(14)の短軸の長さは、0.3より大きく、これにより、性能指数1.5μA-1以上を実現する。

Description

磁気抵抗効果素子及び磁気メモリ
 この発明は、磁気抵抗効果素子及び磁気メモリに関する。
 小さい電流で磁化反転が可能な不揮発性の記憶素子として、スピン注入書き込みによる磁化反転を利用する構成の磁気メモリが注目されている。
 スピン注入による磁化反転を利用する磁気メモリは、磁気トンネル接合素子(MTJ素子)により構成され、磁化の向きが固定された参照層(固定層)と、磁化の向きが変化する記録層(自由層)とが、トンネル絶縁膜を介して積層された構成を有する(例えば、特許文献1、2参照)。
 研究の初期の段階では、磁気抵抗効果素子としては、参照層及び記録層の磁化の方向が膜面に平行な面内磁化方式のものが多く研究されていた。しかし、面内磁化方式の磁気抵抗効果素子の場合、性能指数(反転効率)が小さいという問題がある。
 性能指数とは、熱安定性指数と書き込み電流の比(熱安定性指数/書き込み電流)で表される指数である。熱安定性指数は、記録データの熱に対する耐性を示し、不揮発性メモリとして、データを長期間保持するためには、熱安定性指数が大きいことが望ましい。例えば、特許文献3には、磁気抵抗効果素子の高い熱安定性を実現させるための技術が開示されている。一方、書き込み電流は、小さい方が省電力の観点から望ましい。従って、熱安定性指数/書き込み電流で表される性能指数は、大きい方が望ましい。
特開2004-259913号公報 特開2006-93432号公報 特開2007-294737号公報
H.Kubota et al.,Applied Physics Letters Vol.89,032505(2006) S.Yakata et al.,Journal Applied Physics Vol.105,07D131(2009) P.Khalili Amiri et al.,Applied Physics Letters Vol.98、112507(2011) Jun Hayakawa et al.,IEEE Transactions On Magnetics,40、1962(2009)
 面内磁化方式の磁気抵抗効果素子は、性能指数が小さいという問題がある。換言すれば、面内磁化方式の磁気抵抗効果素子は、記録データを長期間保持できず、記録データの書き換えに大きな書き込み電流が必要となる。
 性能指数を向上するため、近時、磁化の方向が強磁性膜の膜面に垂直な垂直磁化方式の磁気抵抗効果素子が研究されている。しかし、垂直磁気異方性を示す磁性材料は限られている。このため、垂直磁化方式の磁気抵抗効果素子は、材料の選択が制限されるという問題がある。このため、面内磁化方式で、性能指数の高い磁気抵抗効果素子が求められている。
 本発明は、こうした実情に鑑みてなされたものであり、性能指数の高い面内磁化方式の磁気抵抗効果素子及び磁気メモリを提供することを目的とする。
 上記目的を達成するために、本発明の磁気抵抗効果素子は、
 強磁性体から構成され、磁化の方向が膜面方向を向いた参照層と、
 強磁性体から構成され、磁化の方向が膜面方向を向いた記録層と、
 前記参照層と前記記録層との間に配置された障壁層と、
を備え、
 前記記録層の膜厚/前記記録層の短軸の長さ>0.3であることを特徴とする。
 前記記録層の膜厚/前記記録層の短軸の長さ<1であることが望ましい。
 前記記録層の長軸の長さ/前記記録層の短軸の長さ>1.5であることが望ましい。
 前記記録層の長軸の長さ/前記記録層の短軸の長さ<4であることが望ましい。
 前記記録層の短軸の長さ<30nmであることが望ましい。
 例えば、前記記録層の膜厚/前記記録層の短軸の長さ>0.3であることにより、性能指数が1.5μA-1以上であり、熱安定性指数は60以上、想定書き込み電流は40μA以下である。
 また、本発明の磁気メモリは、上述の磁気抵抗効果素子をメモリセルとして備える磁気メモリである。
 本発明によれば、記録層の膜厚/記録層の短軸の長さ>0.3である。このようなサイズ比とすることにより、高い性能指数を得ることができ、高性能の磁気抵抗効果素子とそれをメモリセルとして使用する磁気メモリを得ることができる。
本発明の実施の形態に係る磁気抵抗効果素子の積層構造を示す図である。 実施の形態に係る磁気抵抗効果素子の平面構造を示す図である。 実施の形態に係る磁気抵抗効果素子を含む磁気メモリ回路の構成を示す図である。 (a)と(b)は、磁気抵抗効果素子の平行状態(低抵抗状態)と反平行状態(高抵抗状態)とを説明するための図である。 熱安定性指数とデータ保持時間との関係を示すグラフである。 反磁界係数と膜厚/短軸長の比の関係を表すグラフである。 本願発明の実施の形態に係る磁気抵抗効果素子の特性を、複数サイズの記録層について示す図であり、(a)は、記録層の膜厚と熱安定性指数との関係を示す図、(b)は、記録層の膜厚と書き込み電流との関係を示す図、(c)は、記録層の膜厚と性能指数との関係を示す図である。 (a)~(d)は、実施の形態に係る磁気抵抗効果素子の記録層の平面形状の他の例を示す図である。 (a)と(b)は、記録層の平面形状が長方形の場合以外の、長軸の長さ(長軸長)Dyと短軸の長さ(短軸長)Dxの求め方を説明するための図である。 実施の形態に係る磁気抵抗効果素子の他の構造の例を示す図である。 実施の形態に係る磁気抵抗効果素子の他の構造の例を示す図である。 実施の形態に係る磁気抵抗効果素子の他の構造の例を示す図である。
 以下、本発明の実施の形態に係る磁気抵抗効果素子とそれを用いた磁気メモリを説明する。
 本実施形態に係る磁気抵抗効果素子10は、図1に示すように、積層された基板層(電極層)11と、参照層(固定層)12と、障壁層13と、記録層(自由層)14と、電極層15とを備える。
 基板層11はTa等の金属等から構成される。
 参照層12は、膜面に平行な方向に磁化容易軸を有する強磁性体から構成され、磁化Mfの方向が一方向に固定されている。
 参照層12を構成する材料としては、例えば、Fe,Co,Ni等の3d遷移金属を含む材料を使用できる。より具体的には、Fe,Co,Niなどの3d遷移金属、Fe-Co,Fe-Ni,Co-Ni,Fe-Co-Ni,Co-Fe-B,Fe-B,Co-Bなどの3d遷移金属を含む合金などを用いることができる。これらに、B,C,N,O,Al,Si,P,Ga,Geなどの材料を添加して、所望の電気特性や構造が得られるように調整することもできる。
 また、参照層12は、積層フェリ結合を発現する積層構造から構成されてもよい。この場合、結合層としては、Ruを用いることが望ましい。
 さらに、参照層12は、反強磁性層を含んでも良い。この場合、より強固に磁化を固定することができる。使用可能な反強磁性体としては、Ir-Mn,Pt-Mn合金等がある。
 障壁層13は、絶縁体から構成され、トンネル障壁を構成する。障壁層13の材料としては、例えば、MgO,Al等の酸素を含む絶縁膜,AlN等を使用できる。
 記録層14は、膜面に平行な方向に磁化容易軸を有する強磁性体から構成された層であり、磁化Mgの方向がスピン注入書き込みにより変化する。
 記録層14を構成する材料としては、例えば、Fe,Co,Ni等の3d遷移金属を含む材料を使用できる。より具体的には、Fe,Co,Niなどの3d遷移金属、Fe-Co,Fe-Ni,Co-Ni,Fe-Co-Ni,Co-Fe-B,Fe-B,Co-Bなどの3d遷移金属を含む合金などを用いることができる。また、適宜、B,C,N,O,Al,Si,P,Ga,Geなどの材料を添加して、所望の電気特性や構造が得られるように調整することもできる。
 電極層15は、金属などの導体から構成される。電極層15は、例えば、Taから構成される。
 本実施の形態では、記録層14は、図2に示すように楕円形状を有する。楕円の長軸をY軸、短軸をX軸、膜厚方向をZ軸とする。記録層14のY軸方向の長さ、即ち長軸の長さ(長軸長)をDy、X軸方向の長さ、即ち、短軸の長さ(短軸長)をDx、また、膜厚(厚さ)をtとする。なお、一般には、障壁層13と参照層12も、パターニング時の変形などを除けば、ほぼ同様の構成を有する。ただし、同一の形状及び構成である必要はない。
 本実施の形態においては、1.5μA-1以上の高い性能指数を得る一方で、トレードオフの関係にある他の条件との整合をとるため、記録層14に関し、1≧膜厚t/短軸長Dx>0.3、4>長軸長Dy/短軸長Dx>1.5、の条件を満たすサイズに形成されている。その詳細については後述する。
 磁気抵抗効果素子10の一実施例では、参照層12は、電極11側から、PtMn層(15nm)/CoFe層(2.5nm)/Ru層(0.9nm)/CoFeB層(1.5nm)/の積層体から構成される。
 障壁層13は、MgO層(1~2nm)から構成される。
 記録層14は、CoFeB層から構成され、1≧膜厚t/短軸長Dx>0.3、4>長軸長Dy/短軸長Dx>1.5、の条件を満たすサイズに形成されている。
 例えば、膜厚tは10nm,短軸長Dx=10nm(4~16nm)、長軸長Dy=28nm(15~35nm)に形成される。
 基板層11と電極層15は、それぞれ、Ta(5nm)から構成される。
 次に、上記構成を有する磁気抵抗効果素子10をメモリセルとして用いた磁気メモリ回路100について図3を参照して説明する。
 図3に示すように、磁気メモリ回路100は、磁気抵抗効果素子10と選択トランジスタ20とを1ビット分のメモリセルとして、メモリセルが、マトリクス状に配列された構造を有する。
 選択トランジスタ20のソース電極はソース線SLに、ドレイン電極は磁気抵抗効果素子10の基板層11に、ゲート電極はワード線WLにそれぞれ電気的に接続されている。また、磁気抵抗効果素子10の電極層15は、ビット線BLに接続されている。
 図4(a)に示すように、参照層12の磁化Mfの方向と記録層14の磁化Mrの方向が互いに平行で同一方向(P状態)のとき、基板層11と電極層15との間が低抵抗になる。一方、図4(b)に示すように、反平行(平行で反対方向:AP状態)のとき高抵抗になる。この抵抗値の高低をビット情報の「0」と「1」に対応させる。この実施形態では、低抵抗に「0」を、高抵抗に「1」を割り当てることとする。
 磁気抵抗効果素子10に情報を書き込む場合、書き込み対象の磁気抵抗効果素子10に接続されたワード線WLの電圧を制御して、対応する選択トランジスタ20をオンする。続いて、ビット線BLとソース線SLとの間に印加する電圧を調整して、磁気抵抗効果素子10を流れる書き込み電流Iwの向きと大きさを制御して、スピン注入磁化反転によって所望のデータを書き込む。
 書き込み電流Iwが記録層14から参照層12に流れるとき、記録層14の磁化Mgは参照層12の磁化Mfに対して平行になり、書き込み電流Iwが参照層12から記録層14に流れるとき、記録層14の磁化は参照層12の磁化に対して反平行になる。
 一方、読み出し時には、ワード線WLに選択電圧を印加して選択トランジスタ20をオンし、さらに、ビット線BLとソース線SLの間に読み出し電圧を印加する。印加した読み出し電圧に対する読み出し電流の値により、磁気抵抗効果素子10の抵抗の高低が求められ、これにより、記録されているデータが読み出される。
 次に、上記構成を有する本実施形態の磁気抵抗効果素子10が、従来の場合に比べて、性能指数に優れている点を説明する。
 図1、2に示した構成の磁気抵抗効果素子10の書き込み電流Iwと熱安定性指数Δは式(1)と式(2)で表される。
 I=α・[e/(h・g(θ))](Ms・V)[Ms/(2μ)((Nz-Nx)+(Nz-Ny))]    ・・・(1)
 Δ=[(Nx-Ny)/2]・[MsV/(2μT)]    ・・・(2)
 ここで、Nz={1-(Nx+Ny)}
      g(θ)=P/{2・(1+Pcosθ)}
 である。
 α:ダンピング定数、h:ディラック定数、e:素電荷、Ms:飽和磁化、V:体積、μ:真空の透磁率、Ny:Y軸方向(長軸方向)の反磁界係数、Nx:X軸方向の反磁界係数、Nz:膜厚方向の反磁界係数、P:スピン分極率、θ:記録層と参照層の磁化の相対角度(0若しくはπ)、k:ボルツマン定数、T:絶対温度である。
 ここでは、ダンピング定数αを標準的な0.005、スピン分極率Pを標準的な0.45とする。
 以降の説明において、書き込み電流Iwは、θ=0とπの場合の平均値を用いる。
 はじめに、面内磁化方式の従来例での問題点を述べる。従来例では、例えば非特許文献1において、Dx=70nm、Dy=160nm、t=2nmが用いられている。この場合、数値計算からNz=0.94、Nx=0.05、Ny=0.01と求まる。また、飽和磁化を非特許文献1で報告されている1.38Tを用いると、式(1)と式(2)から、書き込み電流Iwと熱安定性指数Δは、それぞれ434μAと102と求まる。したがって、性能指数Δ/Iwの値は0.24μA-1となる。
 このような低い性能指数は、磁気トンネル接合を用いたメモリを作製するためには、好適ではない。このため、非特許文献2、3では強磁性体と酸化物の界面に由来する界面磁気異方性を利用して性能指数を向上させる試みがなされている。また、特許文献2、3ならびに非特許文献4では、積層構造を工夫して、性能指数を向上させる試みがなされている。しかし、これまでの報告において得られている最大の性能指数は、非特許文献4で報告されている1.4であり、この値は後述するように磁気トンネル接合を用いたメモリを実現するには不十分である。
 これに対して、本発明では、発明者は膜厚と短軸長の比に着目した。従来例で性能指数が小さい物理的な要因は、膜厚と短軸長の比が小さいために、NxとNyが小さくNzが大きいことである。これらは、式(1)と式(2)から明らかなように、熱安定性指数Δを減少させ、書き込み電流Iwを増加させるために、結果として性能指数を低下させる。発明者は、膜厚と短軸長の比を大きくすることで、Nzを小さくし、またNxとNyを大きくすることができ、結果としてΔ/Iwを大きくできることを見出した。以下に、具体的な計算結果に基づき、本発明の効果を示す。
 記録層14の短軸長Dx×長軸長Dyを7×14nm、8×17nm、10×20nm、11×23nm、13×25nm、14×28nm、の6通りの値としたときについてそれぞれ、Nx、Ny,Nzを求めて、膜厚と短軸長の比に対して整理すると、図6(a)~(c)のようになる。膜厚と短軸長の比の増加に伴い、Nx、Nyは増加し、Nzは減少することが分かる。従来の構造では、膜厚/短軸長の比は、大きいものでも0.06程度であり、本研究で用いる構造に比べると、非常に小さいことがわかる。
 次に、これらのNx、Ny、Nzの値と、式(1)と式(2)を用いて、熱安定性指数Δと書き込み電流Iwを計算し、膜厚tに対して示したものが、図7(a)と(b)である。なお、ここで飽和磁化は、CoFeBの一般的な値である1.3Tとした。
 図7(a)、(b)から明らかなように熱安定性指数Δはある膜厚(≒t)においてピークを取る一方で、書き込み電流Iwは膜厚に対して単調増加関数となっている。従って、熱安定性指数Δがピークを取る膜厚の近傍となるように設計することによって高い性能指数を得られる。実際に性能指数=Δ/Iwを計算すると、図7(c)に示すようになる。
 また、磁気抵抗効果素子10を不揮発性メモリとして使用するためには、データの保持期間を10年以上とする必要がある(例えば、ITRS(The International Technology Roadmap for Semiconductors)の2011_ERD3の、STT-MRAMに関する推奨値参照)。
 一方、図5に示すように、熱安定性指数Δとデータ保持時間τとの間には、相関があり、保持期間10年を満たすためには、熱安定性指数Δは最低40程度必要である。さらに、素子間のばらつき(材質のばらつき、製造工程のばらつきを含む)、使用環境の差などを考慮すると、熱安定性指数Δは60以上の値が望ましい。
 また、選択トランジスタ20のゲート幅と流せる電流には相関があり、例えば、半導体メモリであるSRAM(Static Random Access Memory)やDRAM(Dynamic Random Access Memory)の性能向上が難しくなる技術世代であるゲート幅40nmでは、流せる電流は40μAが限界である。また、将来、選択トランジスタ20が小型化(高集積化)されると、書き込み電流Iwをより小さくする必要がある。
 従って、選択トランジスタ20のゲート幅が40nmの場合、性能指数Δ/Iwは最低でも、Δ/Iw=60/40μA≒1.5μA-1が必要となる。技術世代が進み、ゲート幅が小さくなると、さらに大きな性能指数が必要となる。
 しかしながら、従来の面内磁化方式の磁気抵抗効果素子で、このような大きな性能指数を達成したものは報告されておらず、せいぜい1.4程度が限界である。
 一方、図7(c)上で、性能指数Δ/Iwが1.5μA-1以上となる条件を求めると、記録層14のサイズが14×28nmのときの条件が最も厳しく、4.2/14≒0.3となる。
 さらに、より詳細なシミュレートと実験により、記録層14の膜厚t/短軸長Dx>0.3とすることにより、性能指数が1.5μA-1以上となり、磁気メモリとして優れた特性が得られることが確認された。
 一方、膜厚t>短軸長Dxとした場合、記録層14の磁化の向きが反転する際に、熱エネルギーによる磁化反転が膜面内では生じず、磁化がZ軸方向(膜面に垂直方向)に回転してしまい、熱安定性指数が減少する。この結果、膜厚tを大きくしても、性能指数Δ/Iwはピークを過ぎると逆に減少してしまう。このため、t<Dxが望ましい。
 この点から、1>t/Dxという条件が得られる。
 さらに、記録層14の面内磁化Mgが安定して維持されるように、記録層14の長軸長Dyと短軸長Dxとは、4>Dy/Dx>1.5となることが望ましい。Dy/Dxを4以上としても、磁気異方性の増加が熱安定性指数の増加に寄与しないために、無駄である。長軸長Dyと短軸長Dxを上述した範囲とすると、無駄が少なくなり、高集積化・小型化に適している。一方、Dy/Dxが1.5以下となると、磁気異方性が小さいために、十分な熱安定性指数が得られなくなる。
 また、短軸長Dxの増加は、膜厚tの増加を意味し、膜厚tの増加は、エッチング時間の増加を引き起こす。したがって、現在のエッチング技術を用いる場合、メモリの作製時間の観点から、さらに、磁気トンネル接合の上に形成されるマスクの厚みとの関係から、短軸長Dx<30nmが望ましい。
 なお、Dx>30nmであっても高い性能指数を得ることは原理的には可能である。しかし、従来の面内磁化方式で用いられているような70nm程度のDxの場合、高い性能指数を得るためには膜厚tを30nm程度以上とする必要がある。この場合、高い性能指数を得ることは可能であり、図7に示すように熱安定性指数は数100~数1000と十分に大きくなる。一方で、書き込み電流は数100~数1000μAと過剰に大きくなる。このような大きな電流を素子に通電することは事実上不可能である。言い換えると、Dxが大きいときは大きな性能指数を有さなくても熱安定性指数の必要値である60を得ることができ、また、そのときの書き込み電流も妥当な範囲内に設計することができる。
 実際、図7(a)~(c)に示すように、従来の面内磁化方式の磁気抵抗効果素子で用いている設計値は、ピークよりも遥かに左側に位置しており、従来の方法においても、熱安定性指数の必要値を満たしながら書き込み電流を妥当な値以下に抑えることは可能であった。しかし、最先端の半導体製造プロセスに混載し、より高集積な磁気メモリを実現するためにはDxを小さくする必要がある。このため、従来の設計思想で十分大きな熱安定性指数と十分小さな書き込み電流を実現することは困難であった。これが開発の中心が面内磁化方式から垂直磁化方式へとシフトしたことの所以である。
 これに対して、本発明では面内磁化方式においても異なる設計思想を用いることによって好適な性能が得られることを見出し、その好適な設計範囲を見出した点に本質があり、この点で従来の面内磁化方式の磁気抵抗効果素子とは一線を画するものである。
 以上説明したように、本実施の形態に係る磁気抵抗効果素子10は、
 i)参照層12と記録層14との磁化の方向が膜面に平行な面内磁化方式のものである。
 ii)記録層14の膜厚tと短軸長Dxの比t/Dxが0.3より大きいため、1.5μA-1以上の性能指数を得ることができる。これにより、小さい書き込み電流Iwを確保しつつ、10年以上のデータ保持期間を確保できる。
 iii)また、記録層14の膜厚tと短軸長Dxとの比t/Dxが1未満であるため、磁化反転の際のエネルギーロスを抑えることができる。
 iv)さらに、記録層14の長軸長Dyと短軸長Dxとの比Dy/Dxが1.5より大きいという条件を満たすことにより、磁化Mgを安定して維持できる。
 一方、記録層14の長軸長Dyと短軸長Dxとの比Dy/Dxが4未満であることより、記録層14のサイズに無駄が少なく、高集積化・小型化に適している。
 v)記録層14の短軸長Dxが30nm以下という条件を満たしているので、製造工程におけるエッチング時間の増加を抑制し、記録層14を安定して製造することができる。また、導入可能な書き込み電流を得ることができる。
 記録層14の平面形状は、楕円形に限定されず、図8(a)~(d)に示すように、任意の形状を選択することができる。このような場合には、図9(a)、(b)に示すように、記録層14の平面形状に外接し、且つ、面接の最も小さい長方形104を描き、長方形104の長辺の延びる方向を磁化容易軸とし、長方形の長辺を長軸の長さDy、長方形の短辺を短軸の長さDxとすればよい。また、図中の例では、すべてX軸とY軸に線対称な形状となっているが、これが非対称な形となっても、本発明の効果は得られる。
 記録層14の平面形状に応じて、熱安定性指数Δと書き込み電流Iwを求める式(1)と式(2)は変化するが、何れにしても、上記の条件式t/Dx>0.3を満たすことにより、1.5μA-1以上の性能指数を得ることができる。
 磁気抵抗効果素子の構成も図1、図2に示す構成に限定されない。
 例えば、図10に示すように、第2の参照層31と第2の障壁層32を配置してもよい。
 また、図11に示すように、非磁性層42と第2の記録層41を配置してもよい。この場合、非磁性層42は、第1の記録層14と第2の記録層41の間に磁気的な結合を与えるように膜厚や材料が調整される。
 さらに、図12に示すように、非磁性層62、記録層61、障壁層64、参照層63を配置してもよい。
 記録層が複数配置されている全ての記録層の合計の膜厚が、上記条件を満たすようにすればよい。
 以上、本発明は、上記実施形態の説明および図面によって限定されるものではなく、上記実施形態および図面に適宜変更等を加えることは可能である。
 本出願は、2015年1月22日に出願された日本国特許出願2015-10186号に基づくものであり、その明細書、特許請求の範囲、図面および要約書を含むものである。上記日本国特許出願における開示は、その全体が本明細書中に参照として含まれる。
 10 磁気抵抗効果素子
 11 基板層(電極層)
 12 参照層(固定層)
 13 障壁層(絶縁層)
 14 記録層(自由層)
 15 電極層
 20 選択トランジスタ
 WL ワード線
 BL ビット線
 SL ソース線

Claims (7)

  1.  強磁性体から構成され、磁化の方向が膜面方向を向いた参照層と、
     強磁性体から構成され、磁化の方向が膜面方向を向いた記録層と、
     前記参照層と前記記録層との間に配置された障壁層と、
    を備える磁気抵抗効果素子であって、
     前記記録層の膜厚/前記記録層の短軸の長さ>0.3であることを特徴とする、
     磁気抵抗効果素子。
  2.  前記記録層の膜厚/前記記録層の短軸の長さ<1であることを特徴とする、
     請求項1に記載の磁気抵抗効果素子。
  3.  前記記録層の長軸の長さ/前記記録層の短軸の長さ>1.5であることを特徴とする、
     請求項1又は2に記載の磁気抵抗効果素子。
  4.  前記記録層の長軸の長さ/前記記録層の短軸の長さ<4であることを特徴とする、
     請求項3に記載の磁気抵抗効果素子。
  5.  前記記録層の短軸の長さ<30nmであることを特徴とする、
     請求項1乃至4の何れか1項に記載の磁気抵抗効果素子。
  6.  前記記録層の膜厚/前記記録層の短軸の長さ>0.3であることにより、性能指数が1.5μA-1以上であり、
     熱安定性指数は60以上、想定書き込み電流は40μA以下である、
     ことを特徴とする請求項1乃至5の何れか1項に記載の磁気抵抗効果素子。
  7.  請求項1乃至6の何れか1項に記載の磁気抵抗効果素子をメモリセルとして備える磁気メモリ。
PCT/JP2016/051758 2015-01-22 2016-01-21 磁気抵抗効果素子及び磁気メモリ WO2016117664A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016570710A JP6607578B2 (ja) 2015-01-22 2016-01-21 磁気抵抗効果素子及び磁気メモリ
US15/657,148 US10263180B2 (en) 2015-01-22 2017-07-22 Magnetoresistance effect element and magnetic memory

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015010186 2015-01-22
JP2015-010186 2015-01-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/657,148 Continuation US10263180B2 (en) 2015-01-22 2017-07-22 Magnetoresistance effect element and magnetic memory

Publications (1)

Publication Number Publication Date
WO2016117664A1 true WO2016117664A1 (ja) 2016-07-28

Family

ID=56417194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051758 WO2016117664A1 (ja) 2015-01-22 2016-01-21 磁気抵抗効果素子及び磁気メモリ

Country Status (3)

Country Link
US (1) US10263180B2 (ja)
JP (1) JP6607578B2 (ja)
WO (1) WO2016117664A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165451A (ja) * 2002-11-13 2004-06-10 Sony Corp 磁気記憶素子及び磁気記憶素子の記録方法
JP2006108565A (ja) * 2004-10-08 2006-04-20 Toshiba Corp 磁気抵抗効果素子及び磁気記録装置
US20090302403A1 (en) * 2008-06-05 2009-12-10 Nguyen Paul P Spin torque transfer magnetic memory cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259913A (ja) 2003-02-26 2004-09-16 Sony Corp 環状体の製造方法および磁気記憶装置およびその製造方法
JP2006093432A (ja) 2004-09-24 2006-04-06 Sony Corp 記憶素子及びメモリ
US7355884B2 (en) 2004-10-08 2008-04-08 Kabushiki Kaisha Toshiba Magnetoresistive element
JP2007294737A (ja) 2006-04-26 2007-11-08 Hitachi Ltd トンネル磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ
JP5814680B2 (ja) * 2011-07-29 2015-11-17 株式会社東芝 磁気抵抗素子及び磁気メモリ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165451A (ja) * 2002-11-13 2004-06-10 Sony Corp 磁気記憶素子及び磁気記憶素子の記録方法
JP2006108565A (ja) * 2004-10-08 2006-04-20 Toshiba Corp 磁気抵抗効果素子及び磁気記録装置
US20090302403A1 (en) * 2008-06-05 2009-12-10 Nguyen Paul P Spin torque transfer magnetic memory cell

Also Published As

Publication number Publication date
US20170324030A1 (en) 2017-11-09
JP6607578B2 (ja) 2019-11-20
JPWO2016117664A1 (ja) 2017-11-02
US10263180B2 (en) 2019-04-16

Similar Documents

Publication Publication Date Title
JP6200471B2 (ja) 磁気メモリ
JP5867030B2 (ja) 記憶素子、記憶装置
JP6290487B1 (ja) 磁気メモリ
JP6182993B2 (ja) 記憶素子、記憶装置、記憶素子の製造方法、磁気ヘッド
US8013407B2 (en) Magnetic memory device having a recording layer
US20100140726A1 (en) Method and system for providing magnetic elements having enhanced magnetic anisotropy and memories using such magnetic elements
CN106953005B (zh) 磁性元件和存储装置
JP5318191B2 (ja) 磁気メモリ
JP2005093488A (ja) 磁気抵抗効果素子とその製造方法、および磁気メモリ装置とその製造方法
JP2011210830A (ja) 磁気記憶素子および磁気記憶装置
WO2014050379A1 (ja) 記憶素子、記憶装置、磁気ヘッド
JPWO2004006335A1 (ja) 磁気ランダムアクセスメモリ
KR20190104865A (ko) 자기접합 및 하이브리드 캡핑층을 갖는 자기장치, 이를 이용하는 자기메모리 및 자기장치의 제공방법
JP7169683B2 (ja) 磁気抵抗効果素子及び磁気メモリ
JP4834404B2 (ja) 端部領域において磁気状態が安定している磁性書込み線を有するmramセル
JP5492144B2 (ja) 垂直磁化磁気抵抗効果素子及び磁気メモリ
JP2013115399A (ja) 記憶素子、記憶装置
JP2008153527A (ja) 記憶素子及びメモリ
US20070133264A1 (en) Storage element and memory
US11690299B2 (en) Magnetoresistance effect element and magnetic memory
WO2016139879A1 (ja) 記憶素子、その製造方法及び記憶装置
US20110291209A1 (en) Magnetic memory device
JP6607578B2 (ja) 磁気抵抗効果素子及び磁気メモリ
JP2007073638A (ja) 記憶素子及びメモリ
US20170263853A1 (en) Spin transfer torque memory and logic devices having an interface for inducing a strain on a magnetic layer therein

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740271

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570710

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16740271

Country of ref document: EP

Kind code of ref document: A1