WO2016117507A1 - 区画線認識装置 - Google Patents

区画線認識装置 Download PDF

Info

Publication number
WO2016117507A1
WO2016117507A1 PCT/JP2016/051292 JP2016051292W WO2016117507A1 WO 2016117507 A1 WO2016117507 A1 WO 2016117507A1 JP 2016051292 W JP2016051292 W JP 2016051292W WO 2016117507 A1 WO2016117507 A1 WO 2016117507A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
white line
estimation
lane
lane marking
Prior art date
Application number
PCT/JP2016/051292
Other languages
English (en)
French (fr)
Inventor
洋平 増井
豊晴 勝倉
緒方 義久
剛 名波
喬士 西田
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Priority to CN201680006391.5A priority Critical patent/CN107209998B/zh
Priority to US15/544,840 priority patent/US10339393B2/en
Priority to DE112016000423.0T priority patent/DE112016000423T8/de
Publication of WO2016117507A1 publication Critical patent/WO2016117507A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • B60W30/12Lane keeping

Definitions

  • the present disclosure relates to a lane marking recognition device, and more particularly, to a lane marking recognition device applied to a vehicle equipped with an imaging device that photographs the front of the vehicle.
  • an adaptive cruise control system in which a vehicle traveling on the same lane as the own vehicle is selected as a preceding vehicle and the vehicle follows the selected preceding vehicle, or the vehicle has left and right lane markings.
  • Various controls such as a lane keeping assist for controlling the running of the vehicle so as not to deviate from the above are known.
  • a camera is mounted on the vehicle, and the front of the vehicle is photographed to recognize the driving lane marking, and the driving of the vehicle is controlled using the recognized driving lane marking (for example, , See Patent Document 1).
  • a clothoid parameter indicating the degree of bending of the travel path is calculated from the travel lane marking in the image taken by the camera, and the future of the vehicle on the travel path is calculated using the calculated clothoid parameter. It is disclosed to predict the behavior of
  • a long-distance travel section that could not be recognized by the image by estimating the shape of the travel lane line farther than the recognition section of the travel lane line based on the shape of the travel lane line recognized from the image captured by the imaging device The vehicle traveling control using the information regarding the line becomes possible.
  • the recognition accuracy of the running lane markings recognized from the image is low, the deviation between the long-distance white line shape obtained by estimation and the actual white line shape becomes large. In such a case, as a result of detailed studies by the inventors, a problem has been found that the controllability of the vehicle travel control based on the shape of the travel lane marking may be reduced.
  • This indication is made in view of the above-mentioned subject, and provides a lane marking recognition device which can use a result with high estimation accuracy for a lane marking outside the recognition range by an image by vehicle driving control. For one purpose.
  • a lane marking recognition device is a lane marking recognition device that is applied to a vehicle on which an imaging device that captures the front of the vehicle is mounted, based on an image in front of the vehicle acquired by the imaging device.
  • the lane marking recognition means for recognizing the lane marking that divides the lane of the vehicle, and the lane marking in the range that cannot be recognized by the lane marking recognition means based on the lane marking recognized by the lane marking recognition means
  • Lane marking estimation means for estimating the shape of the line, reliability determination means for determining the reliability of the traveling lane line recognized by the lane marking recognition means, and reliability of the traveling lane line by the reliability determination means
  • Estimation invalidation means for invalidating the estimation of the shape of the travel lane line by the lane marking estimation means based on the determination result.
  • the estimation of the shape of the lane marking in the range that could not be recognized on the image is invalidated.
  • the estimation accuracy decreases, and the driving support control It is thought that controllability is affected.
  • the block diagram which shows schematic structure of the system which has a lane marking recognition apparatus which concerns on 1st Embodiment.
  • the flowchart which shows the process sequence of the white line recognition process by a lane marking recognition apparatus.
  • (A) And (b) is a figure showing two images from which the inter-vehicle distance with a preceding vehicle differs.
  • the flowchart which shows the process sequence of the invalidation process by a white line estimation part.
  • the flowchart which shows the process sequence of the reliability determination process by a white line estimation part.
  • the lane marking recognition device of this embodiment is mounted on a vehicle.
  • This lane marking recognition device recognizes a white line as a lane marking that divides the traveling lane of the vehicle.
  • Information related to the white line recognized by the lane marking recognition device (for example, white line information) follows the preceding vehicle as a vehicle that runs on the same lane as the own vehicle among the forward vehicles that run ahead of the own vehicle. It is used for driving support control such as adaptive cruise control, and lane keeping assist for controlling the vehicle travel so that the vehicle does not deviate from the travel lane marking.
  • driving support control such as adaptive cruise control
  • lane keeping assist for controlling the vehicle travel so that the vehicle does not deviate from the travel lane marking.
  • a lane marking recognition device 10 is a computer including a CPU, a ROM, a RAM, an I / O, and the like, and the CPU executes each program of the lane marking recognition device 10 by executing a program installed in the ROM. Functions (for example, lane marking recognition means, lane marking estimation means, reliability determination means, and estimation invalidation means) are realized.
  • the vehicle that is, the host vehicle
  • the vehicle is equipped with an imaging device 21 as an object detection unit that detects an object existing around the vehicle.
  • the lane marking recognition device 10 inputs an image captured by the imaging device 21 and creates white line information using the input image.
  • the imaging device 21 is an in-vehicle camera, and is composed of a CCD camera, a CMOS image sensor, a near infrared camera, and the like.
  • the imaging device 21 captures the surrounding environment including the traveling road of the host vehicle, generates image data representing the captured image, and sequentially outputs the image data to the lane marking recognition device 10.
  • the imaging device 21 is installed in the vicinity of the upper end of the windshield of the host vehicle, for example, and captures an area that extends in the range of a predetermined imaging angle ⁇ 1 toward the front of the vehicle around the imaging axis.
  • the imaging device 21 may be a monocular camera or a stereo camera.
  • the lane marking recognition device 10 inputs image data from the imaging device 21 and inputs detection signals from various sensors provided in the vehicle.
  • various sensors include a yaw rate sensor 22 that detects an angular velocity (for example, a yaw rate) in the turning direction of the vehicle, a vehicle speed sensor 23 that detects a vehicle speed, a steering angle sensor 24 that detects a steering angle, and the like. Is provided.
  • the vehicle speed sensor 23 corresponds to vehicle speed detection means.
  • the yaw rate sensor 22 and the steering angle sensor 24 correspond to turning detection means.
  • the lane marking recognition device 10 includes a white line recognition unit 11 and a white line estimation unit 12.
  • the white line recognition unit 11 recognizes a white line located in an image photographed by the imaging device 21.
  • the white line estimation unit 12 uses the information on the white line recognized by the white line recognition unit 11 to determine the shape of the white line in the range that cannot be recognized by the white line recognition unit 11, that is, the white line farther than the white line recognition range by the white line recognition unit 11. Estimate the shape.
  • FIG. 2 is a flowchart showing a processing procedure of white line recognition processing executed by the lane marking recognition apparatus 10. This process is repeatedly executed by the CPU of the lane marking recognition apparatus 10 at a predetermined control cycle.
  • a white line recognition unit 11 corresponding to a lane line recognition unit (for example, a lane line recognition unit), a lane line estimation unit (for example, a lane line estimation unit), and a reliability determination unit (for example, a reliability determination unit).
  • each function with the white line estimation part 12 equivalent to an estimation invalid means for example, estimation invalid part
  • step S10 an image taken by the imaging device 21 is acquired.
  • step S11 the edge point P is extracted based on the luminance information of the road image in the acquired image, and in step S12, the Hough transform is performed on the extracted edge point P.
  • a straight line or a curve in which a plurality of edge points P are continuously arranged is extracted.
  • step S13 the extracted straight lines or curves are used as white line candidates, and their feature amounts are calculated.
  • step S14 a pair of straight lines or curves extending from the white line candidates in the traveling direction of the vehicle is used. To narrow down.
  • step S15 the bird's-eye view conversion of the edge point P is performed. Specifically, coordinate conversion is performed on the narrowed-down white line candidate edge point P using the attachment position and attachment angle of the imaging device 21 to convert it into a plan view.
  • the range where the white line is located is the “white line recognition range”. That is, according to the image photographed by the imaging device 21, the white line shape from the own vehicle to the short distance D1 can be recognized, and the position farthest from the own vehicle in the recognized white line is the end of the white line recognition range.
  • the plan view is an orthogonal coordinate system at the center of the host vehicle with the vehicle width direction of the host vehicle being the X axis and the traveling direction of the vehicle being the Y axis.
  • a white line parameter ⁇ (for example, the position of the white line, the inclination of the white line, the white line width, the curvature of the white line, the curvature change rate, etc.) that is a parameter for specifying the white line shape converted into the plan view is estimated.
  • the white line parameter ⁇ is estimated by approximating the white line shape converted into a plan view by a polynomial (for example, a white line model).
  • the shape of the white line outside the white line recognition range is estimated by extrapolation using the white line parameter ⁇ .
  • the shape of the far white line is estimated by a white line model using the white line parameter ⁇ , for example, using at least one of the curvature of the white line and the curvature change rate (for example, clothoid parameter).
  • the white line model may be approximated by a polynomial, or a table or the like.
  • the estimated white line parameter of the white line is stored, and this routine is terminated.
  • the function of the white line recognition unit 11 corresponding to the lane marking recognition means is realized by the processing from steps S10 to S15 by the lane marking recognition apparatus 10. Moreover, the function of the white line estimation part 12 equivalent to a lane marking estimation means is implement
  • the information regarding the white line recognized by the white line recognition unit 11 and the information regarding the far white line estimated by the white line estimation unit 12 are input to the vehicle control device 30.
  • the vehicle control device 30 realizes driving support control such as an adaptive cruise control function and a lane keeping assist function.
  • the vehicle speed of the host vehicle is controlled by the set vehicle speed, and the inter-vehicle distance between the host vehicle and the preceding vehicle is controlled by a distance according to the vehicle speed of the host vehicle.
  • the movement trajectory of the forward vehicle existing ahead of the host vehicle is compared with the shape of the white line recognized by the white line recognition unit 11 and the shape of the far white line estimated by the white line estimation unit 12.
  • trajectory of a front vehicle follows the shape of a white line shape and a distant white line
  • trajectory of a front vehicle is made into the future predicted course of the own vehicle. Further, based on the predicted course, a preceding vehicle to be followed by the host vehicle is selected, and engine control and brake control for following the selected preceding vehicle are performed.
  • the future course prediction method of the own vehicle in adaptive cruise control is not limited to the above.
  • the white line shape recognized by the white line recognition unit 11 and the shape of the far white line estimated by the white line estimation unit 12 are predicted future courses of the own vehicle. And the like.
  • the information about the white line recognized by the white line recognition unit 11 and the information about the far white line estimated by the white line estimation unit 12 correspond to information about the white line recognized by the lane marking recognition device (for example, white line information).
  • the future position of the host vehicle is predicted based on the vehicle speed and the yaw rate, and the host vehicle may deviate from the white line using the predicted future position, the white line shape, and the far white line shape. It is determined whether or not there is.
  • a warning is displayed on the in-vehicle display or a warning sound is notified.
  • a steering force is applied to the steering when it is determined that the host vehicle may deviate from the white line.
  • the white line shape farther than the short distance D1 is estimated using the white line shape up to the short distance D1 recognized by the imaging device 21, if the accuracy of the white line shape recognized by the imaging device 21 is low, the short distance The estimation accuracy of the white line shape farther away than D1 is lowered.
  • the shape of the far white line is estimated by the white line model, the calculation error of the white line shape recognized from the image is amplified by the error of the white line model, and the estimation accuracy tends to be lowered. In such a case, it is conceivable that the difference between the estimated white line shape and the actual white line shape becomes large, and the controllability of the driving support control is lowered.
  • the white line reliability that is the reliability (probability) of the white line recognized by the white line recognition unit 11 is determined, and the white line estimation unit 12 estimates the white line shape based on the determination result. Is supposed to be invalidated.
  • the reliability determination conditions include the following three conditions: the first condition to the third condition.
  • the estimation of the white line shape by the white line estimation unit 12 is invalidated when at least one of these three conditions is satisfied.
  • First condition The vehicle speed of the host vehicle is equal to or lower than a predetermined low vehicle speed determination value Vth.
  • Second condition The yaw rate of the host vehicle is greater than a predetermined value ⁇ th.
  • -Third condition The white line width varies in front of the host vehicle.
  • the inter-vehicle distance is controlled so that the inter-vehicle distance between the host vehicle and the preceding vehicle becomes a distance according to the vehicle speed of the host vehicle.
  • the inter-vehicle distance is controlled so that the inter-vehicle distance between the host vehicle and the preceding vehicle increases as the vehicle speed of the host vehicle increases.
  • the distance between the vehicle and the preceding vehicle may be shortened in situations where the host vehicle is traveling in a low vehicle speed range, such as traveling in a city area or traveling in a traffic jam section on a highway. There is.
  • the visibility of the white line from the host vehicle differs depending on the inter-vehicle distance from the preceding vehicle. The shorter the inter-vehicle distance from the preceding vehicle, the shorter the distance of the white line that can be recognized from the image.
  • FIG. 3 is a diagram showing two images 40 with different inter-vehicle distances from the preceding vehicle 43, where (a) shows a case where the inter-vehicle distance is short and (b) shows a case where the inter-vehicle distance is long.
  • the white line is hidden by the preceding vehicle 43, thereby shortening the white line recognition distance. Further, the white line recognition distance at this time is shorter when the inter-vehicle distance from the preceding vehicle 43 is shorter than when the inter-vehicle distance is long.
  • the reliability determination condition includes that the vehicle speed of the host vehicle is a traveling state equal to or less than the low vehicle speed determination value Vth, and when the first condition is satisfied, the white line recognition unit 11
  • the white line shape estimation by the white line estimation unit 12 is invalidated because the white line reliability of the white line recognized in (2) is low.
  • the white line estimation unit 12 may estimate the white line shape in a situation where the distance between the preceding vehicle 43 may be shortened. It is invalidated. Therefore, when the vehicle traveling in the adjacent lane has changed from the adjacent lane to the own lane 41, the white line shape estimation can be invalidated in advance in a situation where the reliability of the white line is low.
  • the reliability determination condition includes that the yaw rate of the host vehicle is greater than the predetermined value ⁇ th, and when the second condition is satisfied, the white line recognized by the white line recognition unit 11 is detected. Assuming that the white line reliability is low, white line shape estimation by the white line estimation unit 12 is invalidated.
  • the second condition is a determination condition for determining whether or not the host vehicle is in a predetermined turning state in which the vehicle is turning larger than a predetermined angular velocity with respect to the white line 42.
  • the reliability determination condition includes that the white line width varies in front of the host vehicle.
  • step S21 it is determined whether the white line reliability is low.
  • the reliability determination flag FA set by the reliability determination processing of FIG. 5 is acquired, and determination is made based on the acquired flag FA.
  • the reliability determination flag FA is set to 0 when the white line reliability is low, and is set to 1 when the white line reliability is high.
  • step S22 If it is determined that the white line reliability is high, the process proceeds to step S22, and the white line shape estimation by the white line estimation unit 12 is validated. In this case, vehicle travel control is performed using the information about the white line recognized by the white line recognition unit 11 and the information about the far white line estimated by the white line estimation unit 12.
  • step S23 when it is determined that the white line reliability is low, the process proceeds to step S23, and the white line shape estimation by the white line estimation unit 12 is invalidated.
  • “invalidate white line shape estimation by the white line estimation unit 12” means that the white line estimation unit 12 prohibits the execution of arithmetic processing for estimating the far white line shape, and the white line estimation unit 12 estimates Including discarding the result, and not using the result estimated by the white line estimation unit 12 for the driving support control. In the present embodiment, one of these three processes is executed. Even when the white line shape estimation by the white line estimation unit 12 is invalidated, use of the information regarding the white line recognized by the white line recognition unit 11 is permitted.
  • the invalidation processing from steps S21 to S23 by the white line estimation unit 12 corresponds to an estimation invalidation unit.
  • step S31 it is determined whether or not the vehicle speed of the host vehicle is equal to or lower than a predetermined low vehicle speed determination value Vth.
  • the determination is made using the vehicle speed detected by the vehicle speed sensor 23.
  • step S32 it is determined whether the yaw rate of the host vehicle detected by the yaw rate sensor 22 is greater than a predetermined value ⁇ th.
  • step S33 it is determined whether there is a change in the white line width in front of the host vehicle. Specifically, it is determined using the recognition result of the white line by the white line recognition unit 11, the distance between the pair of white lines in the vehicle width direction changes in front of the vehicle, and the amount of change is equal to or greater than a predetermined value. In this case, it is determined that there is a change in the white line width in front of the host vehicle.
  • step S34 the reliability determination flag FA Set 1 to.
  • step S35 the reliability determination flag FA.
  • the reliability determination process from steps S31 to S35 by the white line estimation unit 12 corresponds to a reliability determination unit.
  • the configuration of invalidating the estimation of the white line shape farther than the white line recognition range is adopted.
  • the white line shape in a range that cannot be recognized in the image 40 is estimated using the white line 42 recognized by the image 40, the accuracy of the white line shape estimation decreases if the reliability of the recognized white line 42 is low.
  • the reliability determination condition includes that the vehicle speed of the host vehicle is equal to or lower than a predetermined low vehicle speed determination value Vth (first condition), and if the vehicle speed is equal to or lower than the low vehicle speed determination value Vth, a white line by the white line estimation unit 12
  • Vth a predetermined low vehicle speed determination value
  • the configuration is such that shape estimation is invalid. According to such a configuration, when the white line estimation unit 12 has a low white line estimation accuracy due to a short white line recognition distance based on the image, it is avoided that vehicle travel control using the white line estimation result is performed. can do.
  • the white line shape by the white line estimation unit 12 It was set as the structure which invalidated the estimation of. According to this configuration, when the white line estimation unit 12 has low white line estimation accuracy due to a decrease in white line edge point P detection accuracy, vehicle travel control using the white line estimation result is performed. Can be avoided.
  • the reliability determination condition includes that there is a variation in the white line width in front of the host vehicle (that is, the third condition), and when there is a variation in the white line width in front of the host vehicle, the white line shape by the white line estimation unit 12 It was set as the structure which invalidated the estimation of. According to such a configuration, when the accuracy of the white line estimation by the white line estimation unit 12 is low due to the road shape not being a constant shape or the road shape and the white line shape not matching, the white line It is possible to avoid the vehicle travel control using the estimation result.
  • the reliability determination condition includes the first condition to the third condition. However, one or two of the first condition to the third condition are included in the reliability determination condition, and at least When one is established, the white line shape estimation by the white line estimation unit 12 may be invalidated.
  • the turning detection means is not limited to the above.
  • the steering angle sensor 24 is used as a turning detection unit and the steering angle of the host vehicle is larger than a predetermined value, the estimation of the white line shape by the white line estimation unit 12 is invalidated assuming that the host vehicle is in a predetermined turning state.
  • the imaging device 21 may be used as a turning detection unit, and it may be determined that the host vehicle is in a predetermined turning state based on the image data.
  • the vehicle speed of the host vehicle is determined to be equal to or lower than the predetermined low vehicle speed determination value Vth (that is, the first condition) based on the detection result of the inter-vehicle distance from the preceding vehicle 43 by the object detection means. Also good. In this case, when the detected inter-vehicle distance is shorter than the determination value, it is determined that the first condition is satisfied, and the white line shape estimation by the white line estimation unit 12 is invalidated.
  • Vth that is, the first condition
  • the reliability determination condition may include conditions other than the first condition to the third condition described above. For example, it is conceivable that the recognition accuracy of the white line is lowered at night or in an environment where it is raining or snowing. Therefore, the reliability determination condition based on the environment, specifically, for example, may include night, rainy weather, snowfall, and the like.
  • the imaging apparatus is provided as the object detection unit, but the present disclosure may be applied to a system including a radar apparatus and a sonar together with the imaging apparatus.
  • the lane marking recognition apparatus 10 stores a program in a ROM corresponding to a non-transitional tangible recording medium, and the CPU corresponding to a computer processor executes the program to thereby execute the lane marking recognition apparatus 10.
  • the program may be stored in a non-transitional tangible recording medium other than the ROM (for example, a nonvolatile memory other than the ROM), and the program may be executed by a processor such as a CPU.
  • a method for example, a lane marking recognition method
  • the program stored in the non-transitional tangible recording medium is executed by the processor. But you can.
  • each means provided by the lane marking recognition device 10 for example, a lane marking recognition unit corresponding to the white line recognition unit 11, a lane line estimation unit corresponding to the white line estimation unit 12, a reliability determination unit, and an estimation invalidation unit). May be provided by software recorded on a non-transitional tangible recording medium such as a non-volatile memory and a computer that executes the software, software alone, hardware alone, or a combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

 区画線認識装置(10)は、車両前方を撮影する撮像装置(21)が搭載された車両に適用される。区画線認識装置(10)は、撮像装置(21)により取得した画像に基づいて、車両の走行車線を区画する走行区画線を認識する区画線認識部(11)と、区画線認識部(11)により認識した走行区画線に基づいて、区画線認識部(11)により認識できなかった範囲の走行区画線の形状を推定する区画線推定部(12)とを備える。区画線認識装置(10)は、区画線認識部(11)により認識した走行区画線の信頼度を判定し、その判定結果に基づいて、区画線推定部(12)による走行区画線の形状の推定を無効とする。

Description

区画線認識装置 関連出願の相互参照
 本出願は、2015年1月21日に出願された日本出願番号2015-009775号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。
 本開示は、区画線認識装置に関し、詳しくは、車両前方を撮影する撮像装置が搭載された車両に適用される区画線認識装置に関する。
 車両の走行支援制御としては、自車両と同一の車線上を走行する車両を先行車として選択し、該選択した先行車に追従して走行するアダプティブクルーズコントロールシステムや、車両が左右の走行区画線から逸脱しないように車両の走行を制御するレーンキーピングアシスト等の各種制御が知られている。
 こうした走行支援制御では、車両にカメラを搭載し、車両の前方を撮影して走行区画線を認識するとともに、認識した走行区画線を用いて車両の走行を制御することが行われている(例えば、特許文献1参照)。特許文献1に記載の装置では、カメラで撮影された画像内の走行区画線から、走行路の屈曲度合いを示すクロソイドパラメータを算出し、その算出したクロソイドパラメータを用いて、走行路における車両の将来の挙動を予測することが開示されている。
特開2001-10524号公報
 撮像装置で撮影した画像から認識した走行区画線の形状に基づいて、走行区画線の認識区間よりも遠方の走行区画線の形状を推定することにより、画像により認識できなかった遠距離の走行区画線に関する情報を利用した車両走行制御が可能となる。その一方で、画像から認識した走行区画線の認識精度が低い場合、推定により求めた遠距離の白線形状と、実際の白線形状とのずれが大きくなる。かかる場合、発明者の詳細な検討の結果、走行区画線の形状に基づく車両走行制御の制御性が低下するおそれがあるという課題が見出された。
 本開示は上記課題に鑑みなされたものであり、画像による認識範囲外の走行区画線について、推定精度の高い結果を車両走行制御で使用できるようにすることができる区画線認識装置を提供することを一つの目的とする。
 本開示の一態様による区画線認識装置は、車両前方を撮影する撮像装置が搭載された車両に適用される区画線認識装置であって、前記撮像装置により取得した車両前方の画像に基づいて、前記車両の走行車線を区画する走行区画線を認識する区画線認識手段と、前記区画線認識手段により認識した走行区画線に基づいて、前記区画線認識手段により認識できなかった範囲の前記走行区画線の形状を推定する区画線推定手段と、前記区画線認識手段により認識した前記走行区画線の信頼度を判定する信頼度判定手段と、前記信頼度判定手段による前記走行区画線の信頼度の判定結果に基づいて、前記区画線推定手段による前記走行区画線の形状の推定を無効とする推定無効手段と、を備える。
 上記構成では、画像に基づき認識した走行区画線の信頼度に基づいて、画像では認識できなかった範囲の走行区画線の形状の推定を無効とする構成とした。画像により認識した走行区画線を用いて、画像では認識できなかった範囲の走行区画線の形状を推定する場合、認識した走行区画線の信頼度が低いと推定精度が低下し、走行支援制御の制御性に影響を及ぼすことが考えられる。この点に鑑み上記構成とすることにより、推定精度の低い走行区画線の結果を用いた車両走行制御が行われることを抑制することができ、ひいては、車両の走行支援制御の制御性を良好にすることができる。
第1実施形態に係る区画線認識装置を有するシステムの概略構成を示すブロック図。 区画線認識装置による白線認識処理の処理手順を示すフローチャート。 (a)および(b)は、先行車両との車間距離が異なる2つの画像を表す図。 白線推定部による無効化処理の処理手順を示すフローチャート。 白線推定部による信頼度判定処理の処理手順を示すフローチャート。
 (第1実施形態)
 以下、本実施形態に係る区画線認識装置について、図面を参照しつつ説明する。本実施形態の区画線認識装置は、車両に搭載されるものである。この区画線認識装置は、車両の走行車線を区画する走行区画線としての白線を認識する。区画線認識装置で認識した白線に関する情報(例えば、白線情報)は、自車両の前方を走行する前方車両のうち、自車両と同一の車線上を走行する車両としての先行車両に追従して走行するアダプティブクルーズコントロールや、車両が走行区画線から逸脱しないように車両の走行を制御するレーンキーピングアシスト等の走行支援制御に用いられる。まずは、本実施形態の区画線認識装置の概略構成について図1を用いて説明する。
 図1に示すシステムは、車両に搭載されるものであり、本実施形態の区画線認識装置10を有する。図1において、区画線認識装置10は、CPU、ROM、RAM、I/O等を備えたコンピュータであり、CPUが、ROMにインストールされているプログラムを実行することで区画線認識装置10の各機能(例えば、区画線認識手段、区画線推定手段、信頼度判定手段、および推定無効手段)を実現する。車両(すなわち、自車両)には、車両周囲に存在する物体を検知する物体検知手段としての撮像装置21が搭載されている。区画線認識装置10は、撮像装置21で撮影された画像を入力し、その入力した画像を用いて白線情報を作成する。
 撮像装置21は車載カメラであり、CCDカメラやCMOSイメージセンサ、近赤外線カメラ等で構成されている。撮像装置21は、自車両の走行道路を含む周辺環境を撮影し、その撮影した画像を表す画像データを生成して区画線認識装置10に逐次出力する。撮像装置21は、自車両の例えばフロントガラスの上端付近に設置されており、撮像軸を中心に車両前方に向かって所定の撮影角度δ1の範囲で広がる領域を撮影する。なお、撮像装置21は単眼カメラであってもよく、ステレオカメラであってもよい。
 区画線認識装置10は、撮像装置21からの画像データを入力するとともに、車両に設けられた各種センサの検出信号をそれぞれ入力する。図1に示すシステムには、各種センサとしては、車両の旋回方向への角速度(例えば、ヨーレート)を検出するヨーレートセンサ22、車速を検出する車速センサ23、操舵角を検出する操舵角センサ24などが設けられている。車速センサ23は、車速検出手段に対応する。ヨーレートセンサ22及び操舵角センサ24は、旋回検出手段に対応する。
 区画線認識装置10は、白線認識部11と、白線推定部12とを備えている。白線認識部11は、撮像装置21で撮影された画像内に位置する白線を認識する。白線推定部12は、白線認識部11で認識した白線に関する情報を用いて、白線認識部11で認識できなかった範囲の白線の形状、つまり白線認識部11による白線認識範囲よりも遠方の白線の形状を推定する。
 図2は、区画線認識装置10で実行される白線認識処理の処理手順を示すフローチャートである。この処理は、区画線認識装置10のCPUにより所定の制御周期で繰り返し実行される。この処理により、区画線認識手段(例えば、区画線認識部)に相当する白線認識部11と、区画線推定手段(例えば、区画線推定部)、信頼度判定手段(例えば、信頼度判定部)、および推定無効手段(例えば、推定無効部)に相当する白線推定部12との各機能が実現される。
 図2において、ステップS10では、撮像装置21で撮影された画像を取得する。続くステップS11では、取得した画像中の道路画像の輝度情報に基づきエッジ点Pを抽出し、ステップS12で、抽出したエッジ点Pに対してハフ変換を行う。ここでは、エッジ点Pが複数個連続して並ぶ直線又は曲線の抽出を行う。続くステップS13では、抽出した直線又は曲線を白線候補としてそれらの特徴量を算出し、ステップS14で、白線候補の中から、車両の進行方向へと延びる一対の直線又は曲線を、特徴量を用いて絞り込む。
 続いて、ステップS15では、エッジ点Pの鳥瞰変換を行う。具体的には、絞り込んだ白線候補のエッジ点Pに対して、撮像装置21の取り付け位置及び取り付け角度を用いて座標変換を行い、平面図へと変換する。なお、得られた平面図において白線が位置する範囲が「白線認識範囲」である。すなわち、撮像装置21により撮影された画像によれば、自車両から近距離D1までの白線形状を認識可能であり、認識した白線における自車両から最も離間した位置が白線認識範囲の端部となる。平面図は、自車両の車幅方向をX軸、車両の進行方向をY軸とする自車両中心の直交座標系となる。
 続くステップS16では、平面図へと変換された白線形状を特定するパラメータである白線パラメータη(例えば、白線の位置、白線の傾き、白線幅、白線の曲率、曲率変化率等)を推定する。白線パラメータηの推定は、平面図へと変換された白線形状を多項式(例えば、白線モデル)により近似することにより行う。
 続いて、ステップS17では、白線パラメータηによる外挿により、白線認識範囲外の白線、つまり近距離D1よりも遠方の白線(以下「遠方白線」ともいう。)の形状を推定する。遠方白線の形状の推定は、白線パラメータηを用いた白線モデルにより行い、例えば白線の曲率及び曲率変化率(例えば、クロソイドパラメータ)の少なくとも1つを用いて行う。なお、白線モデルは多項式による近似であってもよく、テーブル等であってもよい。推定した白線の白線パラメータを記憶し、本ルーチンを終了する。本実施形態において、区画線認識装置10によるステップS10からS15までの処理により、区画線認識手段に相当する白線認識部11の機能が実現される。また、区画線認識装置10によるステップS16およびS17の処理により、区画線推定手段に相当する白線推定部12の機能が実現される。
 図1の説明に戻り、白線認識部11が認識した白線に関する情報、及び白線推定部12で推定した遠方白線に関する情報は、車両制御装置30へ入力される。車両制御装置30は、アダプティブクルーズコントロール機能や、レーンキーピングアシスト機能等の走行支援制御を実現する。
 具体的には、アダプティブクルーズコントロール機能では、自車両の車速を設定車速で制御するとともに、自車両と先行車両との間の車間距離を、自車両の車速に応じた距離で制御する。具体的には、自車両の前方に存在する前方車両の移動軌跡と、白線認識部11が認識した白線形状及び白線推定部12で推定した遠方白線の形状とを比較する。そして、前方車両の移動軌跡が白線形状及び遠方白線の形状に沿っている場合には、前方車両の移動軌跡を自車両の将来の予測進路とする。また、その予測進路に基づいて、自車両が追従するべき先行車両を選定するとともに、その選定した先行車両に追従するためのエンジン制御及びブレーキ制御を実施する。
 なお、アダプティブクルーズコントロールにおける自車両の将来の進路予測方法は上記に限らず、例えば白線認識部11が認識した白線形状及び白線推定部12で推定した遠方白線の形状を自車両の将来の予測進路とする方法などが挙げられる。白線認識部11が認識した白線に関する情報、及び白線推定部12で推定した遠方白線に関する情報が、区画線認識装置で認識した白線に関する情報(例えば、白線情報)に相当する。
 また、レーンキーピングアシスト機能では、例えば車速及びヨーレートにより自車両の将来の位置を予測し、その予測した将来の位置と白線形状及び遠方白線形状とを用いて、自車両が白線を逸脱するおそれがあるか否かを判定する。自車両が白線を逸脱するおそれがあると判定された場合には、車載ディスプレイに警告表示を行ったり、警告音で報知したりする。また、車両制御装置30が運転補助機能を有しているシステムでは、自車両が白線を逸脱するおそれがあると判定された場合にステアリングに操舵力を加える。
 ここで、撮像装置21で認識した近距離D1までの白線形状を用いて、近距離D1よりも遠方の白線形状を推定する場合、撮像装置21で認識した白線形状の精度が低いと、近距離D1よりも遠方の白線形状の推定精度が低下する。特に、白線モデルによって遠方白線の形状を推定する場合には、画像から認識した白線形状の演算誤差が白線モデルの誤差によって増幅され、推定精度が低下しやすい。かかる場合、推定した白線形状と実際の白線形状との乖離が大きくなり、走行支援制御の制御性が低下することが考えられる。
 その点に鑑み、本実施形態では、白線認識部11で認識した白線の信頼度(確からしさ)である白線信頼度を判定し、その判定結果に基づいて、白線推定部12による白線形状の推定を無効とすることとしている。本実施形態では、予め定めた所定の信頼度判定条件が成立している場合に白線信頼度が低いものと判定し、白線推定部12による白線形状の推定を無効とする。信頼度判定条件としては、下記の第1条件~第3条件の3つの条件を含む。本実施形態では、これら3つの条件のうちの少なくとも1つが成立している場合に、白線推定部12による白線形状の推定を無効とする。
・第1条件:自車両の車速が所定の低車速判定値Vth以下であること。
・第2条件:自車両のヨーレートが所定値θthよりも大きいこと。
・第3条件:自車両の前方において白線幅の変動があること。
 まず、第1条件について、アダプティブクルーズコントロール機能を有する車両では、自車両と先行車両との間の車間距離が自車両の車速に応じた距離になるように車間距離が制御される。具体的には、自車両の車速が高いほど、自車両と先行車両との車間距離が大きくなるように車間距離が制御される。そのため、市街地を走行していたり、高速道の渋滞区間を走行していたりする等といった、自車両が低車速領域で走行している状況では、先行車両との車間距離が短くなっている可能性がある。また、自車両からの白線の見えやすさは先行車両との車間距離に応じて相違し、先行車両との車間距離が短いほど、画像により認識可能な白線の距離が短くなる。
 図3は、先行車両43との車間距離が異なる2つの画像40を表す図であり、(a)は車間距離が短い場合、(b)は車間距離が長い場合を示している。図3に示すように、自車両の前方に自車線41を走行する先行車両43が存在する場合、先行車両43によって白線が隠されることで白線認識距離が短くなる。また、このときの白線認識距離は、先行車両43との車間距離が短い場合の方が、車間距離が長い場合に比べて短くなる。そこで、本実施形態では、自車両の車速が低車速判定値Vth以下の走行状態であることを信頼度判定条件に含むものとし、この第1条件が成立している場合には、白線認識部11で認識した白線の白線信頼度が低いものとして、白線推定部12による白線形状の推定を無効とする。
 なお、車速によって先行車両43との車間距離が短い状況か否かを判定する構成では、先行車両43との車間距離が短くなる可能性がある状況において、白線推定部12による白線形状の推定が無効とされる。したがって、隣接車線を走行する車両が隣接車線から自車線41に車線変更してきた場合に、白線信頼度が低くなる状況では白線形状の推定を事前に無効としておくことができる。
 次に、第2条件について、自車両のヨーレートが大きい場合には、自車両が車線変更している可能性がある。また、自車両の車線変更時には、自車両から見た白線の傾きが緩やかになり、つまり白線のカーブ半径Rが小さくなり、白線のエッジ点Pが検出しにくくなる。かかる場合、白線認識部11による白線の認識精度が低くなる。そこで、本実施形態では、自車両のヨーレートが所定値θthよりも大きいことを信頼度判定条件に含むものとし、この第2条件が成立している場合には、白線認識部11で認識した白線の白線信頼度が低いものとして、白線推定部12による白線形状の推定を無効とする。なお、この第2条件は、自車両が白線42に対して所定角速度よりも大きく旋回している所定の旋回状態にあるか否かを判定するための判定条件である。
 第3条件について、自車両の前方において白線幅の変動がある場合には、幅員が減少している区間や車線合流区間などを走行していることが想定される。この場合、道路形状が変形していたり、道路形状と白線形状とが一致していなかったりする可能性がある。こうした場合に、白線認識部11で認識した近距離D1までの白線形状を用いて、近距離D1よりも遠方の白線形状を推定すると、推定した白線形状と実際の白線形状とのずれが大きくなる可能性がある。そこで本実施形態では、自車両の前方に白線幅の変動があることを信頼度判定条件に含むものとし、この第3条件が成立している場合には、白線認識部11で認識した白線の白線信頼度が低いものとして、白線推定部12による白線形状の推定を無効とする。
 次に、本実施形態の具体的態様について、図4及び図5のフローチャートを用いて説明する。これらの処理は、白線推定部12により所定周期毎に実行される。
 まず、図4の無効化処理について説明する。図4において、ステップS21では、白線信頼度が低いか否かを判定する。ここでは、図5の信頼度判定処理により設定した信頼度判定フラグFAを取得し、その取得したフラグFAに基づき判定する。信頼度判定フラグFAについて本実施形態では、白線信頼度が低レベルである場合に0がセットされ、白線信頼度が高レベルである場合に1がセットされる。
 白線信頼度が高いと判定された場合には、ステップS22へ進み、白線推定部12による白線形状の推定を有効とする。この場合、白線認識部11が認識した白線に関する情報、及び白線推定部12で推定した遠方白線に関する情報を用いて車両走行制御が実施される。
 一方、白線信頼度が低いと判定された場合には、ステップS23へ進み、白線推定部12による白線形状の推定を無効とする。ここで、「白線推定部12による白線形状の推定を無効にする」とは、白線推定部12による遠方白線の形状を推定するための演算処理の実施を禁止すること、白線推定部12で推定した結果を破棄すること、白線推定部12で推定した結果を走行支援制御に使用しないこと等を含む。本実施形態では、これら3つの処理の中の1つを実行する。なお、白線推定部12による白線形状の推定を無効とする場合であっても、白線認識部11が認識した白線に関する情報については使用を許可する。本実施形態において、白線推定部12によるステップS21からS23までの無効化処理は、推定無効手段に相当する。
 次に、図5の信頼度判定処理について説明する。図5において、ステップS31では、自車両の車速が所定の低車速判定値Vth以下であるか否かを判定する。ここでは、車速センサ23で検出した車速を用いて判定する。ステップS32では、ヨーレートセンサ22により検出した自車両のヨーレートが所定値θthよりも大きいか否かを判定する。
 ステップS33では、自車両の前方において白線幅の変動があるか否かを判定する。具体的には、白線認識部11による白線の認識結果を用いて判定し、車両の幅方向における一対の白線間の距離が車両前方で変化しており、かつその変化量が所定値以上である場合に、自車両の前方において白線幅の変動有りと判定する。
 ステップS31、S32及びS33の全ての処理で否定判定された場合、つまり第1条件~第3条件の全部が成立していると判定された場合には、ステップS34へ進み、信頼度判定フラグFAに1をセットする。一方、ステップS31、S32及びS33のいずれかで肯定判定された場合には、ステップS35へ進み、信頼度判定フラグFAに0をセットする。本実施形態において、白線推定部12によるステップS31からS35までの信頼度判定処理は、信頼度判定手段に相当する。
 以上詳述した本実施形態によれば、次の優れた効果が得られる。
 画像40に基づき認識した白線42の信頼度に基づいて、白線認識範囲よりも遠方の白線形状の推定を無効とする構成とした。画像40により認識した白線42を用いて、画像40では認識できなかった範囲の白線形状を推定する場合、認識した白線42の信頼度が低いと白線形状の推定精度が低下する。この点に鑑み上記構成とすることにより、推定精度の低い白線に関する情報を用いた車両走行制御が行われることを抑制することができ、ひいては、車両の走行支援制御の制御性を良好にすることができる。
 信頼度判定条件として、自車両の車速が所定の低車速判定値Vth以下であること(第1条件)を含み、車速が低車速判定値Vth以下である場合には、白線推定部12による白線形状の推定を無効とする構成とした。こうした構成によれば、画像による白線認識距離が短いことに起因して、白線推定部12による白線の推定精度が低い場合に、その白線の推定結果を用いた車両走行制御が行われることを回避することができる。
 信頼度判定条件として、自車両のヨーレートが所定値θthよりも大きいこと(すなわち、第2条件)を含み、自車両のヨーレートが所定値θthよりも大きい場合には、白線推定部12による白線形状の推定を無効とする構成とした。この構成によれば、白線のエッジ点Pの検出精度が低下することに起因して、白線推定部12による白線の推定精度が低い場合に、その白線の推定結果を用いた車両走行制御が行われることを回避することができる。
 信頼度判定条件として、自車両の前方において白線幅の変動があること(すなわち、第3条件)を含み、自車両の前方に白線幅の変動がある場合には、白線推定部12による白線形状の推定を無効とする構成とした。こうした構成によれば、道路形状が一定形状でなかったり、道路形状と白線形状とが一致していなかったりすることに起因して、白線推定部12による白線の推定精度が低い場合に、その白線の推定結果を用いた車両走行制御が行われることを回避することができる。
 (他の実施形態)
 本開示は上記実施形態に限定されず、種々変形して実施することができ、例えば次のように実施してもよい。
 ・上記実施形態では、信頼度判定条件として第1条件~第3条件を含む構成としたが、第1条件~第3条件のうちの1つ又は2つを信頼度判定条件に含むものとし、少なくとも1つが成立している場合に、白線推定部12による白線形状の推定を無効とする構成としてもよい。
 ・上記実施形態では、自車両の旋回の状態を検出する旋回検出手段としてヨーレートセンサ22を用い、自車両のヨーレートが所定値θthよりも大きい場合に、白線推定部12による白線形状の推定を無効としたが、旋回検出手段は上記に限定しない。例えば、旋回検出手段として操舵角センサ24を用い、自車両の操舵角が所定値よりも大きい場合に、自車両が所定の旋回状態にあるとして白線推定部12による白線形状の推定を無効としてもよい。あるいは、旋回検出手段として撮像装置21を用い、画像データに基づき自車両が所定の旋回状態にあることを判定してもよい。
 ・上記実施形態において、自車両の車速が所定の低車速判定値Vth以下であること(すなわち、第1条件)を、物体検知手段による先行車両43との車間距離の検出結果に基づき判定してもよい。この場合、検出した車間距離が判定値よりも短い場合に第1条件が成立しているものと判定し、白線推定部12による白線形状の推定を無効とする構成とする。
 ・信頼度判定条件として、上記の第1条件~第3条件以外の条件を含んでいてもよい。例えば、夜間や、雨又は雪が降っている環境では白線の認識精度が低下することが考えられる。そこで、環境に基づく信頼度判定条件、具体的には、例えば夜間であること、雨天であること、降雪時であることなどを含むものとしてもよい。
 ・上記実施形態では、物体検知手段として撮像装置を備える構成としたが、撮像装置と共に、レーダ装置やソナーを備えるシステムに本開示を適用してもよい。
 ・上記実施形態では、区画線認識装置10において、非遷移的実体的記録媒体に相当するROMにプログラムが格納され、このプログラムをコンピュータのプロセッサに相当するCPUが実行することにより区画線認識装置10の各機能を実現しているが、ROM以外の非遷移的実体的記録媒体(例えば、ROM以外の不揮発性メモリ)にプログラムが格納され、このプログラムをCPU等のプロセッサが実行する構成でもよい。この場合、区画線認識装置10において、非遷移的実体的記録媒体に格納されたプログラムがプロセッサにより実行されることにより、このプログラムに対応する方法(例えば、区画線認識方法)が実行される構成でもよい。
 ・また、区画線認識装置10が実行する各機能の一部又は全部を、一つあるいは複数の集積回路(すなわち、IC)等によりハードウェア的に構成してもよい。さらに、区画線認識装置10が提供する各手段(例えば、白線認識部11に対応する区画線認識手段と、白線推定部12に対応する区画線推定手段、信頼度判定手段、および推定無効手段)は、不揮発性メモリ等の非遷移的実体的記録媒体に記録されたソフトウェアおよびそれを実行するコンピュータ、またはソフトウェアのみ、またはハードウェアのみ、あるいはそれらの組合せによって提供してもよい。

Claims (5)

  1.  車両前方を撮影する撮像装置(21)が搭載された車両に適用される区画線認識装置であって、
     前記撮像装置により取得した車両前方の画像(40)に基づいて、前記車両の走行車線を区画する走行区画線(42)を認識する区画線認識手段と、
     前記区画線認識手段により認識した走行区画線に基づいて、前記区画線認識手段により認識できなかった範囲の前記走行区画線の形状を推定する区画線推定手段と、
     前記区画線認識手段により認識した走行区画線の信頼度を判定する信頼度判定手段と、
     前記信頼度判定手段による前記走行区画線の信頼度の判定結果に基づいて、前記区画線推定手段による前記走行区画線の形状の推定を無効とする推定無効手段と、
    を備える区画線認識装置。
  2.  前記車両の速度を検出する車速検出手段(23)をさらに備え、
     前記信頼度判定手段は、前記走行区画線の信頼度として、前記車速検出手段により検出した速度が所定の低車速判定値以下であるか否かを判定し、
     前記推定無効手段は、前記信頼度判定手段により前記車両の速度が前記所定の低車速判定値以下であると判定された場合に、前記区画線推定手段による前記走行区画線の推定を無効とする請求項1に記載の区画線認識装置。
  3.  前記車両の旋回の状態を検出する旋回検出手段(22、24)をさらに備え、
     前記信頼度判定手段は、前記走行区画線の信頼度として、前記旋回検出手段により前記車両が前記走行区画線に対して所定角速度よりも大きく旋回している所定の旋回状態にあるか否かを判定し、
     前記推定無効手段は、前記信頼度判定手段により前記車両が前記所定の旋回状態にあると判定された場合に、前記区画線推定手段による前記走行区画線の推定を無効とする請求項1又は2に記載の区画線認識装置。
  4.  前記信頼度判定手段は、前記走行区画線の信頼度として、前記車両の前方において前記走行区画線の幅の変動があるか否かを判定し、
     前記推定無効手段は、前記信頼度判定手段により前記走行区画線の幅の変動有りと判定された場合に、前記区画線推定手段による前記走行区画線の推定を無効とする請求項1~3のいずれか一項に記載の区画線認識装置。
  5.  車両に搭載された区画線認識装置により、前記車両に搭載された撮像装置により取得した車両前方の画像に基づいて、前記車両の走行車線を区画する走行区画線を認識し、
     前記区画線認識装置により、前記画像から認識した前記走行区画線に基づいて、前記画像から認識できなかった範囲の前記走行区画線の形状を推定し、
     前記区画線認識装置により、前記画像から認識した前記走行区画線の信頼度を判定し、
     前記区画線認識装置により、前記走行区画線の信頼度の判定結果に基づいて、前記走行区画線の形状の推定を無効とする、区画線認識方法。
PCT/JP2016/051292 2015-01-21 2016-01-18 区画線認識装置 WO2016117507A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680006391.5A CN107209998B (zh) 2015-01-21 2016-01-18 车道线识别装置以及车道线识别方法
US15/544,840 US10339393B2 (en) 2015-01-21 2016-01-18 Demarcation line recognition apparatus
DE112016000423.0T DE112016000423T8 (de) 2015-01-21 2016-01-18 Abschnittslinienerkennungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-009775 2015-01-21
JP2015009775A JP6363518B2 (ja) 2015-01-21 2015-01-21 区画線認識装置

Publications (1)

Publication Number Publication Date
WO2016117507A1 true WO2016117507A1 (ja) 2016-07-28

Family

ID=56417052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051292 WO2016117507A1 (ja) 2015-01-21 2016-01-18 区画線認識装置

Country Status (5)

Country Link
US (1) US10339393B2 (ja)
JP (1) JP6363518B2 (ja)
CN (1) CN107209998B (ja)
DE (1) DE112016000423T8 (ja)
WO (1) WO2016117507A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3082044A1 (fr) * 2018-05-31 2019-12-06 Psa Automobiles Sa Procede et dispositif de detection de la voie de circulation sur laquelle circule un vehicule, en fonction des delimitations determinees

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10431102B2 (en) * 2016-11-09 2019-10-01 The Boeing Company Flight range-restricting systems and methods for unmanned aerial vehicles
JP6702849B2 (ja) * 2016-12-22 2020-06-03 株式会社Soken 区画線認識装置
JP6669059B2 (ja) 2016-12-27 2020-03-18 トヨタ自動車株式会社 位置算出装置
CN109829351B (zh) * 2017-11-23 2021-06-01 华为技术有限公司 车道信息的检测方法、装置及计算机可读存储介质
JP2020086489A (ja) * 2018-11-15 2020-06-04 いすゞ自動車株式会社 白線位置推定装置及び白線位置推定方法
DE102019102922A1 (de) * 2019-02-06 2020-08-06 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zur Multi-Sensor-Datenfusion für automatisierte und autonome Fahrzeuge
JP7176478B2 (ja) 2019-06-14 2022-11-22 トヨタ自動車株式会社 画像認識装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218937A (ja) * 1996-02-08 1997-08-19 Nippon Soken Inc 区画線検出装置
JP2010128949A (ja) * 2008-11-28 2010-06-10 Hitachi Automotive Systems Ltd カメラ装置
JP2010221909A (ja) * 2009-03-24 2010-10-07 Hitachi Automotive Systems Ltd 走行環境認識装置および車両制御装置
JP2011028659A (ja) * 2009-07-29 2011-02-10 Hitachi Automotive Systems Ltd 道路形状認識装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3400092B2 (ja) 1994-05-17 2003-04-28 マツダ株式会社 自動車の走行路推定装置
JP3753893B2 (ja) * 1999-06-29 2006-03-08 本田技研工業株式会社 走行車両の制御装置
JP2005301892A (ja) * 2004-04-15 2005-10-27 Mitsubishi Motors Corp 複数のカメラによるレーン認識装置
JP4659631B2 (ja) * 2005-04-26 2011-03-30 富士重工業株式会社 車線認識装置
JP5124875B2 (ja) * 2008-03-12 2013-01-23 本田技研工業株式会社 車両走行支援装置、車両、車両走行支援プログラム
JP5094658B2 (ja) * 2008-09-19 2012-12-12 日立オートモティブシステムズ株式会社 走行環境認識装置
JP5286214B2 (ja) * 2009-09-30 2013-09-11 日立オートモティブシステムズ株式会社 車両制御装置
JP5747482B2 (ja) * 2010-03-26 2015-07-15 日産自動車株式会社 車両用環境認識装置
JP5258859B2 (ja) * 2010-09-24 2013-08-07 株式会社豊田中央研究所 走路推定装置及びプログラム
JP5281664B2 (ja) * 2011-02-23 2013-09-04 クラリオン株式会社 車線逸脱警報装置および車線逸脱警報システム
WO2012137354A1 (ja) * 2011-04-08 2012-10-11 トヨタ自動車株式会社 道路形状推定システム
JP5733395B2 (ja) * 2011-06-13 2015-06-10 日産自動車株式会社 車載用画像認識装置、撮像軸調整装置およびレーン認識方法
JP2013117515A (ja) * 2011-11-02 2013-06-13 Aisin Aw Co Ltd レーン案内表示システム、方法およびプログラム
JP6185418B2 (ja) * 2014-03-27 2017-08-23 トヨタ自動車株式会社 走路境界区画線検出装置
JP6285321B2 (ja) 2014-08-25 2018-02-28 株式会社Soken 道路形状認識装置
JP6702849B2 (ja) * 2016-12-22 2020-06-03 株式会社Soken 区画線認識装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218937A (ja) * 1996-02-08 1997-08-19 Nippon Soken Inc 区画線検出装置
JP2010128949A (ja) * 2008-11-28 2010-06-10 Hitachi Automotive Systems Ltd カメラ装置
JP2010221909A (ja) * 2009-03-24 2010-10-07 Hitachi Automotive Systems Ltd 走行環境認識装置および車両制御装置
JP2011028659A (ja) * 2009-07-29 2011-02-10 Hitachi Automotive Systems Ltd 道路形状認識装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3082044A1 (fr) * 2018-05-31 2019-12-06 Psa Automobiles Sa Procede et dispositif de detection de la voie de circulation sur laquelle circule un vehicule, en fonction des delimitations determinees

Also Published As

Publication number Publication date
CN107209998A (zh) 2017-09-26
US20180012083A1 (en) 2018-01-11
DE112016000423T8 (de) 2017-12-14
CN107209998B (zh) 2020-12-15
JP6363518B2 (ja) 2018-07-25
US10339393B2 (en) 2019-07-02
DE112016000423T5 (de) 2017-10-26
JP2016134095A (ja) 2016-07-25

Similar Documents

Publication Publication Date Title
WO2016117507A1 (ja) 区画線認識装置
US10780884B2 (en) Vehicle cruise control apparatus and vehicle cruise control method
US10345443B2 (en) Vehicle cruise control apparatus and vehicle cruise control method
JP6356585B2 (ja) 車両の走行制御装置
JP6404722B2 (ja) 車両の走行制御装置
JP4420011B2 (ja) 物体検知装置
CN107209997B (zh) 车辆的行驶控制装置以及行驶控制方法
JP6363519B2 (ja) 車両制御装置
JP6468136B2 (ja) 走行支援装置及び走行支援方法
JP5363921B2 (ja) 車両用白線認識装置
WO2018097026A1 (ja) 車両制御装置
JP6354659B2 (ja) 走行支援装置
JP6970547B2 (ja) 車両制御装置及び車両制御方法
JP2015069289A (ja) 車線認識装置
JP2015203972A (ja) 走行経路生成装置
JP4937844B2 (ja) 歩行者検出装置
JP2018060422A (ja) 物体検出装置
US20150232089A1 (en) Apparatus and program for setting assistance region
JP6115429B2 (ja) 自車位置認識装置
JP2015067030A (ja) 運転支援装置
JP2018206071A (ja) 区画線認識装置
JP6200780B2 (ja) 車線認識判定装置
JP6606472B2 (ja) 走路形状認識装置、走路形状認識方法
JP6082293B2 (ja) 車両用白線認識装置
CN114954510A (zh) 划分线识别装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740114

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15544840

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016000423

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16740114

Country of ref document: EP

Kind code of ref document: A1