WO2016117118A1 - Euv光生成システム及びeuv光生成方法、並びにトムソン散乱計測システム - Google Patents

Euv光生成システム及びeuv光生成方法、並びにトムソン散乱計測システム Download PDF

Info

Publication number
WO2016117118A1
WO2016117118A1 PCT/JP2015/051874 JP2015051874W WO2016117118A1 WO 2016117118 A1 WO2016117118 A1 WO 2016117118A1 JP 2015051874 W JP2015051874 W JP 2015051874W WO 2016117118 A1 WO2016117118 A1 WO 2016117118A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
target
pulse laser
plasma
euv light
Prior art date
Application number
PCT/JP2015/051874
Other languages
English (en)
French (fr)
Inventor
健太郎 富田
喜一郎 内野
柳田 達哉
若林 理
啓明 戸室
Original Assignee
国立大学法人九州大学
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, ギガフォトン株式会社 filed Critical 国立大学法人九州大学
Priority to PCT/JP2015/051874 priority Critical patent/WO2016117118A1/ja
Priority to JP2016570453A priority patent/JPWO2016117118A1/ja
Publication of WO2016117118A1 publication Critical patent/WO2016117118A1/ja
Priority to US15/622,139 priority patent/US20170280545A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0448Adjustable, e.g. focussing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4412Scattering spectrometry
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources

Definitions

  • the present disclosure relates to an EUV light generation system, an EUV light generation method, and a Thomson scattering measurement system for generating extreme ultraviolet (EUV) light.
  • EUV extreme ultraviolet
  • an LPP Laser Produced Plasma
  • DPP laser-excited plasma
  • SR Synchrotron Radiation
  • An EUV light generation system includes a chamber, a target supply device that supplies a target to the inside of the chamber, and a drive laser device that generates EUV light by generating plasma by irradiating the target with drive pulse laser light.
  • a probe laser device that generates Thomson scattered light by irradiating plasma with probe pulse laser light
  • a spectroscope that measures the spectral waveform of the ion term of Thomson scattered light
  • a Thomson scattered light that is placed in front of the spectrometer
  • a wavelength filter that suppresses light having a predetermined wavelength that is substantially the same as the wavelength of the probe pulse laser light from entering the spectroscope.
  • An EUV light generation method includes: supplying a target into a chamber; generating plasma by irradiating the target with drive pulse laser light to generate EUV light; and probe pulse laser light on the plasma. And the spectrum waveform of the ion term of this Thomson scattered light is measured by a spectroscope, and the probe pulse laser light of the light including the Thomson scattered light is included in the front stage of the spectroscope. And suppressing the light having a predetermined wavelength that is substantially the same as the wavelength from entering the spectroscope.
  • a Thomson scattering measurement system includes a probe laser device that generates Thomson scattered light by irradiating plasma with probe pulse laser light, a spectrometer that measures a spectrum waveform of an ion term of Thomson scattered light, There may be provided a wavelength filter that is disposed in the preceding stage and suppresses light having a predetermined wavelength that is substantially the same as the wavelength of the probe pulse laser light from the light including Thomson scattered light from entering the spectroscope.
  • FIG. 1 schematically illustrates an exemplary configuration of an exemplary LPP type EUV light generation system.
  • FIG. 2 schematically shows a configuration example of a Thomson scattering measurement system applied to the EUV light generation system.
  • FIG. 3 schematically shows an example of a spectrum waveform of Thomson scattered light when the scattering parameter is ⁇ > 1.
  • FIG. 4 schematically shows an example of a spectrum waveform when the scattering parameter is ⁇ ⁇ 1.
  • FIG. 5 schematically shows an example of a spectrum waveform of the stray light of the probe pulse laser light and the ion term of the Thomson scattered light.
  • FIG. 1 schematically illustrates an exemplary configuration of an exemplary LPP type EUV light generation system.
  • FIG. 2 schematically shows a configuration example of a Thomson scattering measurement system applied to the EUV light generation system.
  • FIG. 3 schematically shows an example of a spectrum waveform of Thomson scattered light when the scattering parameter is ⁇ > 1.
  • FIG. 4 schematically shows an example of a spectrum waveform when the scatter
  • FIG. 6 schematically shows a configuration example of the Thomson scattering measurement system according to the first embodiment applied to the EUV light generation system.
  • FIG. 7 schematically shows a configuration example of the shielding member.
  • FIG. 8 schematically shows a configuration example of the drive laser apparatus according to the first embodiment.
  • FIG. 9 schematically shows an example of a spectrum intensity distribution measured by an ICCD camera when light emitted from plasma is incident on a wavelength filter.
  • FIG. 10 schematically shows an example of a spectrum waveform measured when the shielding member is removed and Rayleigh scattered light of the probe pulse laser beam is incident on the spectrum measuring apparatus.
  • FIG. 11 is a timing chart illustrating an example of control timing by the EUV light generation control unit.
  • FIG. 12 schematically shows how the target is turned into plasma and EUV light is generated.
  • FIG. 13 schematically shows an image of the emission state of EUV light.
  • FIG. 14 schematically shows a spectrum image of the ion term of Thomson scattered light.
  • FIG. 15 schematically shows spectral waveforms at positions P11, P12, and P13 in FIG.
  • FIG. 16 schematically shows an example of a high-resolution spectrometer.
  • FIG. 17 schematically shows an example of a spectrum waveform of an ion term that can be measured by the spectrometer shown in FIG.
  • FIG. 18 schematically shows a configuration example of an EUV light generation system including a Thomson scattering measurement system.
  • FIG. 19 schematically shows a configuration example of the drive laser apparatus in the EUV light generation system shown in FIG.
  • FIG. 20 is a timing chart illustrating an example of control timing by the EUV light generation control unit.
  • FIG. 21 is a main flowchart schematically showing an example of a control flow for setting a condition parameter at the time of exposure using the Thomson scattering measurement system in the EUV light generation system shown in FIG.
  • FIG. 22 is a sub flowchart showing details of the process in step S112 in the main flowchart shown in FIG.
  • FIG. 23 schematically shows an example of an initial condition parameter.
  • FIG. 24 is a sub-flowchart showing details of the process in step S117 in the main flowchart shown in FIG.
  • FIG. 25 schematically shows an example of test result data.
  • FIG. 26 is a sub flowchart showing details of the process in step S122 in the main flowchart shown in FIG. FIG.
  • FIG. 27 is a sub-flowchart showing details of the process in step S124 in the main flowchart shown in FIG.
  • FIG. 28 schematically shows an example of rewriting contents of the condition parameter.
  • FIG. 29 schematically shows an example of an embodiment of a target supply apparatus in which the target diameter can be adjusted.
  • FIG. 30 schematically shows an example of an embodiment of a laser device capable of controlling the pulse width and pulse energy.
  • FIG. 31 schematically shows a modification of the incident direction of the probe pulse laser beam.
  • FIG. 32 schematically shows a configuration example of ICCD.
  • FIG. 33 schematically shows an example of the operation of the image intensifier.
  • FIG. 34 shows an example of the hardware environment of the control unit.
  • the present disclosure relates to an EUV light generation system and an EUV light generation method that generate EUV light by irradiating a target with pulsed laser light to generate plasma.
  • the present invention also relates to a Thomson scattering measurement system that measures Thomson scattered light of generated plasma.
  • FIG. 1 schematically shows a configuration of an exemplary LPP type EUV light generation system.
  • the EUV light generation apparatus 1 may be used together with at least one laser apparatus 3.
  • a system including the EUV light generation apparatus 1 and the laser apparatus 3 is referred to as an EUV light generation system 11.
  • the EUV light generation apparatus 1 may include a chamber 2 and, for example, a target supply unit 26 as a target supply apparatus.
  • the chamber 2 may be sealable.
  • the target supply unit 26 may be attached so as to penetrate the wall of the chamber 2, for example.
  • the material of the target substance supplied from the target supply unit 26 may include, but is not limited to, tin, terbium, gadolinium, lithium, xenon, or a combination of any two or more thereof.
  • the wall of the chamber 2 may be provided with at least one through hole.
  • a window 21 may be provided in the through hole.
  • the pulse laser beam 32 output from the laser device 3 may pass through the window 21.
  • an EUV collector mirror 23 having a spheroidal reflecting surface may be disposed.
  • the EUV collector mirror 23 may have first and second focal points.
  • On the surface of the EUV collector mirror 23, for example, a multilayer reflective film in which molybdenum and silicon are alternately laminated may be formed.
  • the EUV collector mirror 23 is, for example, an intermediate collector whose first focus is located at or near the plasma generation region 25 and whose second focus is a desired focus position defined by the specifications of the exposure apparatus 6. It is preferably arranged so as to be located at the light spot (IF) 292.
  • a through hole 24 may be provided at the center of the EUV collector mirror 23, and the pulse laser beam 33 may pass through the through hole 24.
  • the EUV light generation apparatus 1 may include an EUV light generation control unit 5. Further, the EUV light generation controller 5 may include a target sensor 4 and the like. The target sensor 4 may detect at least one of the presence, trajectory, position, and speed of the target 27. The target sensor 4 may have an imaging function.
  • the EUV light generation apparatus 1 may include a connection portion 29 that communicates the inside of the chamber 2 and the inside of the exposure apparatus 6.
  • a wall 291 in which an aperture 293 is formed may be provided inside the connection portion 29.
  • the wall 291 may be arranged such that its aperture 293 is located at the second focal position of the EUV collector mirror 23.
  • the EUV light generation apparatus 1 may include a laser beam traveling direction control unit 34, a laser beam focusing mirror 22, a target recovery unit 28 for recovering the target 27, and the like.
  • the laser beam traveling direction control unit 34 includes an optical element for defining the traveling direction of the laser beam and an actuator for adjusting the position, posture, and the like of the optical element in order to control the traveling direction of the laser beam. You may prepare.
  • the pulsed laser beam 31 output from the laser device 3 passes through the window 21 as the pulsed laser beam 32 through the laser beam traveling direction control unit 34 and enters the chamber 2. May be.
  • the pulse laser beam 32 may travel along the path of at least one laser beam into the chamber 2, be reflected by the laser beam collector mirror 22, and irradiate at least one target 27 as the pulse laser beam 33.
  • the target supply unit 26 may be configured to output the target 27 toward the plasma generation region 25 inside the chamber 2.
  • the target 27 may be irradiated with at least one pulse included in the pulse laser beam 33.
  • the target 27 irradiated with the pulsed laser light is turned into plasma, and EUV light 251 can be emitted from the plasma together with the emitted light.
  • the EUV light 251 may be reflected and collected by the EUV collector mirror 23.
  • the EUV light 252 reflected by the EUV collector mirror 23 may be output to the exposure apparatus 6 through the intermediate condensing point 292.
  • a single target 27 may be irradiated with a plurality of pulses included in the pulse laser beam 33.
  • the EUV light generation controller 5 may be configured to control the entire EUV light generation system 11.
  • the EUV light generation controller 5 may be configured to process image data of the target 27 imaged by the target sensor 4. Further, the EUV light generation controller 5 may be configured to control at least one of, for example, control of the timing at which the target 27 is output and control of the output direction of the target 27.
  • the EUV light generation control unit 5 controls at least one of, for example, control of the oscillation timing of the laser device 3, control of the traveling direction of the pulse laser light 32, and control of the focusing position of the pulse laser light 33. It may be configured to do.
  • the various controls described above are merely examples, and other controls may be added as necessary.
  • FIG. 2 schematically shows a configuration example of a Thomson scattering measurement system applied to, for example, the EUV light generation system 11 shown in FIG.
  • substantially the same parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the Thomson scattering measurement system may include a chamber 2, an EUV light generation control unit 5, a drive laser device 3D, a probe laser device 30, a laser focusing optical system 22a, and a delay circuit 53.
  • the Thomson scattering measurement system may also include a collimator lens 91, a high reflection mirror 92, a condenser lens 93, a high reflection mirror 94, and a spectrometer 130.
  • the chamber 2 may include a window 21, a window 35 and a window 36, a target recovery unit 28, an energy sensor 52, and a target supply device 70.
  • the target supply device 70 may include a target supply unit 26 having a nozzle 62 and may be attached to the chamber 2 so as to supply the target 27 to the plasma generation region 25.
  • the target supply unit 26 may store a target material such as tin.
  • the target supply unit 26 may heat the target material to a predetermined temperature equal to or higher than the melting point of the target material with a heater (not shown). For example, when the target material is tin having a melting point of 232 ° C., the target material may be heated to a temperature of 280 ° C., for example.
  • the target supply device 70 may be configured to generate the droplet-shaped target 27 in an on-demand manner and output from the nozzle 62 in response to the input of the target output signal S1 from the EUV light generation control unit 5. .
  • the target supply device 70 may generate the target 27 by applying a high-voltage pulse between an extraction electrode (not shown) and the nozzle 62 as in the ink jet technique.
  • the energy sensor 52 detects the energy of the EUV light 251 and includes a filter (not shown) that transmits the EUV light 251 and a photodiode.
  • the energy sensor 52 is attached to the chamber 2 so that the detection direction faces the plasma generation region 25. May be.
  • the target recovery unit 28 may be disposed on the extension of the trajectory of the target 27 supplied from the target supply device 70, and may recover the target 27 and the like that have not been converted to plasma.
  • the window 21 may be sealed and fixed to the chamber 2 on the optical path of the drive pulse laser beam 31D.
  • the window 35 may be sealed and fixed to the chamber 2 on the optical path of the probe pulse laser beam 31P.
  • the window 36 may be sealed and fixed to the chamber 2 on the optical path of the Thomson scattered light 31T.
  • the drive laser device 3D may be a laser device that outputs a drive pulse laser beam 31D for heating the target 27 into plasma and generating the EUV light 251.
  • the drive laser device 3D may be, for example, a CO 2 laser device that outputs a pulse laser beam having a wavelength of 10.6 ⁇ m.
  • the drive laser device 3D and the laser focusing optical system 22a are configured so that the drive pulse laser beam 31D is focused on the target 27 supplied to the plasma generation region 25 via the laser focusing optical system 22a and the window 21. It may be arranged.
  • the probe laser device 30 may be a laser device that outputs a probe pulse laser beam 31P for measuring the Thomson scattered light 31T of plasma generated in the plasma generation region 25.
  • the probe laser device 30 may be, for example, a laser device that generates second harmonic light of a YAG laser that oscillates in a single longitudinal mode.
  • the wavelength of the second harmonic light of the YAG laser may be 532.0 nm.
  • the probe laser device 30 may be arranged so that the probe pulse laser beam 31 ⁇ / b> P is irradiated to the plasma generated in the plasma generation region 25 through the window 35.
  • the spectroscope 130 may measure the spectrum waveform of the ion term of the Thomson scattered light 31T.
  • the spectroscope 130 may include an entrance slit 131, a collimator optical system 132, a grating 133, a condensing optical system 134, and an ICCD camera 135.
  • the collimator optical system 132 and the grating 133 may be arranged so that the light transmitted through the incident slit 131 is collimated by the collimator optical system 132 and is incident on the grating 133 at an incident angle ⁇ 1.
  • the condensing optical system 134 may be arranged so that the light diffracted at the diffraction angle ⁇ 1 by the grating 133 is condensed on the light receiving surface of the ICCD camera 135 and the diffraction image of the entrance slit 131 is measured on the light receiving surface. .
  • the collimator lens 91 may be arranged so that the Thomson scattered light 31T incident through the window 36 is collimated.
  • the high reflection mirror 92 may be arranged so that the Thomson scattered light 31T collimated by the collimator lens 91 enters the condenser lens 93.
  • the condensing lens 93 may be arranged so that the incident slit 131 is illuminated by the Thomson scattered light 31T through the high reflection mirror 94.
  • the delay circuit 53 may be connected to the target supply device 70 so that the target output signal S1 can be output to the target supply device 70.
  • the delay circuit 53 may also be connected to the drive laser apparatus 3D so that the drive pulse emission trigger TG1 can be output to the drive laser apparatus 3D.
  • the delay circuit 53 may also be connected to the probe laser device 30 so that the probe pulse emission trigger TG2 can be output to the probe laser device 30.
  • the delay circuit 53 may also be connected to the ICCD camera 135 so that the shutter signal S2 can be output to the ICCD camera 135.
  • the EUV light generation controller 5 may be connected to the delay circuit 53 and the ICCD camera 135.
  • the EUV light generation controller 5 outputs to the delay circuit 53 delay data Dt0 indicating the delay time of each of the target output signal S1, the drive pulse emission trigger TG1, the probe pulse emission trigger TG2, and the shutter signal S2. Also good.
  • the EUV light generation controller 5 may also output a trigger signal TG0 to the delay circuit 53 so as to generate the respective signals with a predetermined delay time.
  • the droplet-shaped target 27 can be output from the nozzle 62 of the target supply device 70.
  • the drive pulse emission trigger TG1 is input to the drive laser device 3D
  • the drive pulse pulse laser beam 31D can be output from the drive laser device 3D.
  • the target 27 that has reached the plasma generation region 25 can be irradiated with the drive pulse pulse laser beam 31D through the laser focusing optical system 22a.
  • the target 27 can be turned into plasma and EUV light 251 can be generated.
  • the energy sensor 52 may detect the energy of the EUV light 251 and output the detected value to the EUV light generation control unit 5.
  • the probe pulse laser light 31P is output from the probe laser apparatus 30, and the probe pulse laser light 31P may be irradiated to the plasma.
  • the Thomson scattered light 31T of the probe pulse laser light 31P from the plasma is transmitted by the collimator lens 91, the high reflection mirror 92, the condenser lens 93, and the high reflection mirror 94, and illuminates the entrance slit 131 of the spectroscope 130. Can do.
  • the Thomson scattered light 31T that has passed through the incident slit 131 can be collimated by the collimator optical system 132 and incident on the grating 133 to generate diffracted light.
  • the diffracted light by the grating 133 can be condensed on the light receiving surface of the ICCD camera 135 by the condensing optical system 134. As a result, a diffraction image of the entrance slit 131 can be formed on the light receiving surface of the ICCD camera 135.
  • the ICCD camera 135 When the shutter signal S2 is input to the ICCD camera 135, the ICCD camera 135 is opened for the time of the pulse width of the shutter signal S2 at the input timing of the shutter signal S2, and the image at that time can be measured. Since the diffraction angle of the diffracted light varies depending on the wavelength, the spectrum waveform of the ion term of the Thomson scattered light 31T at the time when the shutter signal S2 is input can be measured on the light receiving surface of the ICCD camera 135. The ICCD camera 135 may output the measured result to the EUV light generation controller 5 as image data.
  • FIG. 3 schematically shows an example of a spectrum waveform of the Thomson scattered light 31T when the scattering parameter ⁇ described below is ⁇ > 1.
  • FIG. 4 schematically shows an example of a spectrum waveform when the scattering parameter ⁇ is ⁇ ⁇ 1.
  • the horizontal axis may be a difference wavelength ⁇ centered on the wavelength ⁇ 0 of the probe pulse laser beam 31P, and the vertical direction may be signal intensity.
  • the scattering parameter ⁇ of the Thomson scattered light 31T can be given by the following equation.
  • ⁇ D is the Debye length
  • k is the wave number
  • ⁇ 0 is the wavelength of the probe pulse laser beam 31P
  • is the scattering angle
  • ne is the electron density
  • Te is the electron temperature
  • ⁇ 0 is the vacuum dielectric constant
  • e may be an elementary charge.
  • the spectral waveform of the Thomson scattered light 31T of the plasma that generates the EUV light 251 can be cooperatively scattered.
  • the spectral waveform of the electronic term is observed as shown in FIG. 4, but in the case of cooperative scattering, the spectral waveform of the ion term and the electronic term is observed as shown in FIG. Can be done.
  • the spectrum of ion terms and electron terms can be observed symmetrically on the short wavelength side and the long wavelength side with respect to the wavelength ⁇ 0 of the probe pulse laser beam 31P.
  • the spectrum waveform of the ion term having a wavelength close to the wavelength ⁇ 0 of the probe pulse laser beam 31P can be observed with a strong signal intensity. For this reason, the plasma parameter can be estimated with high accuracy by measuring the ion term.
  • the spectrum waveform of the ion term By measuring the spectrum waveform of the ion term, from the shape of the spectrum waveform of the ion term, the peak wavelength of the ion term, and the signal intensity, the valence Z, the electron density ne , the electron temperature Te , and the ion temperature Ti are obtained. Can be calculated.
  • the value of Z and T e based on the value of Z ⁇ T e may ask separated from the theoretical table value CR model.
  • the specific spectral function S (k, ⁇ ) of the Thomson scattered light 31T is described in detail in Chapter 5 Section 5.2 or Section 5.3 of the following reference. Reference: D. H. Froula, S. H. Glenzer, N. C. Luhmann, Jr., and J. Sheffield: Plasma Scattering of Electromagnetic Radiation (Academic Press, USA, 2011) 2nd ed.
  • the peak wavelength ⁇ p of the ion term can be given by the following equation:
  • the peak wavelength ⁇ p in the following equation may be a deviation amount from the wavelength ⁇ 0 of the probe pulse laser beam 31P.
  • may be a Boltzmann constant
  • M i may be an ion mass.
  • Absolute value of the electron density n e is obtained by calibrating the total intensity I T Thomson scattering ions section at an intensity I R of Rayleigh scattering was performed by sealing the argon gas of known density in the same chamber obtain.
  • a specific calculation formula can be given by the following formula.
  • n 0 is the density of argon gas
  • ⁇ R is the cross-sectional area of Rayleigh scattering of argon gas
  • ⁇ T is the total cross-sectional area of Thomson scattering
  • S i is the integral value at the difference wavelength of the spectral function of the ion term
  • FIG. 5 schematically shows an example of a spectrum waveform of the stray light of the probe pulse laser beam 31P and the ion term of the Thomson scattered light 31T.
  • the horizontal axis may be the difference wavelength ⁇ centered on the wavelength ⁇ 0 of the probe pulse laser beam 31P, and the vertical axis may be the signal intensity.
  • an example of the spectrum waveform in case the target 27 is carbon and tin is shown typically.
  • the stray light due to the probe pulse laser beam 31P is large, and the spectrum waveform in which the ion term and the stray light of the probe pulse laser beam 31P are combined is obtained. Can be measured. For this reason, it can be difficult to measure the ion term with high accuracy.
  • the difference ⁇ p between two peak wavelengths measured as an ion term is as narrow as 60 pm, and it may be difficult to separate the spectral waveform of the ion term and the stray light of the probe pulse laser beam 31P.
  • FIG. 6 schematically shows a configuration example of a Thomson scattering measurement system applied to the EUV light generation system as the first embodiment.
  • substantially the same components as those in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the Thomson scattering measurement system shown in FIG. 6 may include a wavelength filter 150 arranged in front of the spectroscope 130 with respect to the configuration of FIG.
  • the wavelength filter 150 may suppress light having a predetermined wavelength that is substantially the same as the wavelength ⁇ 0 of the probe pulse laser light 31P from the light including the Thomson scattered light 31T from entering the spectroscope 130.
  • the whole of the wavelength filter 150 and the spectroscope 130 may be the spectrum measuring device 140 that measures the spectrum waveform of the ion term of the Thomson scattered light 31T.
  • the collimator lens 91, the high reflection mirrors 95, 96a, and 96b, and the condenser lens 97 may be disposed on the optical path of the Thomson scattered light 31T between the window 36 of the chamber 2 and the wavelength filter 150.
  • the collimator lens 91, the high reflection mirrors 95, 96a, and 96b, and the condensing lens 97 are arranged so that an image of the plasma by the Thomson scattered light 31T is rotated by 270 ° to the incident slit 151 of the wavelength filter 150. May be.
  • a high reflection mirror 98 and an off-axis parabolic mirror 99 may be disposed.
  • the surfaces of the high reflection mirror 98 and the off-axis paraboloidal mirror 99 may be coated with a film that highly reflects laser light having both wavelengths of a pre-pulse laser beam and a main pulse laser beam 31M, which will be described later.
  • the drive laser device 3D may include a first prepulse laser device 3p1, a second prepulse laser device 3p2, and a main pulse laser device 3M shown in FIG.
  • the drive laser apparatus 3D may receive the first prepulse emission trigger TGp1, the second prepulse emission trigger TGp2, and the main pulse emission trigger TGm1 as the drive pulse emission trigger TG1 from the delay circuit 53.
  • the wavelength filter 150 may include an incident slit 151, a high reflection mirror 141, a collimator optical system 142, a grating 143, a grating 144, a condensing optical system 145, and an intermediate slit 152.
  • the wavelength filter 150 may also include a collimator optical system 161, a grating 162, a grating 163, a condensing optical system 164, and a high reflection mirror 165.
  • the gratings 143 and 144 may be a dispersion optical system that spatially disperses light including the Thomson scattered light 31T according to the wavelength.
  • the gratings 143 and 144 may be dispersion gratings that diffract light including Thomson scattered light 31T according to wavelength.
  • the incident slit 151 may be arranged so that a plasma image by the Thomson scattered light 31T formed by the condenser lens 97 is incident thereon.
  • the high reflection mirror 141 may be arranged so that the Thomson scattered light 31T transmitted through the incident slit 151 is highly reflected and incident on the collimator optical system 142.
  • the collimator optical system 142 may be disposed so as to convert light transmitted through the incident slit 151 into first collimated light.
  • the grating 143 may be arranged such that the first collimated light is incident at a predetermined incident angle ⁇ 1 and is diffracted at a substantially diffraction angle ⁇ 1.
  • the grating 144 may be arranged such that the diffracted light from the grating 143 enters at a predetermined incident angle ⁇ 1 and is diffracted at a substantially diffraction angle ⁇ 1.
  • the condensing optical system 145 may be arranged to condense the diffracted light from the grating 144.
  • the intermediate slit 152 may include a shielding member 152a that shields light of a predetermined wavelength out of the dispersed light by the gratings 143 and 144. As shown in FIG. 7, the shielding member 152 a may be arranged linearly at a substantially central portion of the intermediate slit 152. The intermediate slit 152 may be disposed on the focal plane of the condensing optical system 145. The intermediate slit 152 may shield light having a predetermined wavelength from the dispersed light from the gratings 143 and 144 by the shielding member 152a and allow light incident on both sides of the shielding member 152a to pass therethrough.
  • the gratings 162 and 163 may be a reverse dispersion optical system that spatially reversely disperses the dispersed light after the light having a predetermined wavelength is shielded by the shielding member 152a.
  • the gratings 162 and 163 may be inverse dispersion gratings that diffract the dispersed light according to the wavelength after the light having a predetermined wavelength is shielded by the shielding member 152a.
  • the collimator optical system 161 may be disposed so as to convert light that has passed through both sides of the shielding member 152a into second collimated light.
  • the grating 162 may be arranged such that the second collimated light is incident at an incident angle ⁇ 1 and is diffracted at a substantially diffraction angle ⁇ 1.
  • the grating 163 may be arranged such that the diffracted light from the grating 162 enters at a predetermined incident angle ⁇ 1 and is diffracted at a substantially diffraction angle ⁇ 1.
  • the condensing optical system 164 may be arranged so as to collect the diffracted light diffracted by the grating 163.
  • the high reflection mirror 165 may be arranged so that the diffracted light transmitted through the condensing optical system 164 forms an image at the entrance slit 131 of the spectroscope 130.
  • the specifications of the optical elements constituting the wavelength filter 150 and the spectroscope 130 may be as follows.
  • the effective diameters of the lenses of the collimator optical systems 132, 142, 161 and the condensing optical systems 134, 145, 164 are 60 mm, the focal length is 486 mm, and chromatic aberration correction may be performed in the measurement wavelength region.
  • the gratings 133, 143, 144, 162, and 163 may be blazed gratings of 2400 lines / mm.
  • the slit width of the entrance slits 131 and 151 may be about 20 ⁇ m.
  • the shielding member 152a may be a tungsten wire having a diameter of 100 ⁇ m.
  • the EUV light generation control unit 5 may calculate a plasma parameter indicating plasma characteristics from the spectrum waveform of the ion term of the Thomson scattered light 31T measured by the spectrum measuring device 140.
  • the EUV light generation controller 5 may also control the drive laser device 3D based on the detection value of the energy sensor 28 and the plasma parameter so that the characteristics of the drive pulse laser beam 31D are optimized.
  • the EUV light generation controller 5 may also control the target supply device 70 so that the target diameter of the target 27 is optimized based on the detection value of the energy sensor 28 and the plasma parameter.
  • FIG. 8 schematically shows a configuration example of the drive laser apparatus 3D.
  • the drive pulse laser beam 31D may include a pre-pulse laser beam that diffuses the target 27 and a main pulse laser beam 31M that converts the diffused target 27 into plasma.
  • the drive laser device 3D may include a pre-pulse laser device 3P that outputs a pre-pulse laser beam and a main pulse laser device 3M that outputs a main pulse laser beam 31M.
  • the drive laser device 3D may further include a beam adjuster 171, a beam adjuster 172, and a beam adjuster 173.
  • the drive laser apparatus 3D may also include a high reflection mirror 174, a polarizer 175, a dichroic mirror 176, and a ⁇ / 2 plate 177.
  • the beam adjuster 171, the beam adjuster 172, and the beam adjuster 173 may each include a concave lens 178a and a convex lens 178b.
  • the beam adjusters 171, 172, and 173 can adjust the beam diameter in the plasma generation region 25 by adjusting the distance between the concave lens 178 a and the convex lens 178 b.
  • a concave lens 178a and a convex lens 178b are combined is shown as a beam adjuster.
  • the present invention is not limited to this example, and a combination of a concave mirror and a convex mirror, a combination of a lens and a mirror, Alternatively, it may be a deformable mirror that deforms the mirror surface.
  • the prepulse laser apparatus 3P may include a first prepulse laser apparatus 3p1 that outputs a first prepulse laser beam 31p1 and a second prepulse laser apparatus 3p2 that outputs a second prepulse laser beam 31p2.
  • the first prepulse laser apparatus 3p1 may be, for example, a picosecond laser apparatus that outputs pulsed laser light having a pulse width of less than 1 ns.
  • the picosecond laser device may include a master oscillator of an Nd: YVO4 mode-locked laser and a regenerative amplifier of Nd: YAG crystal.
  • the first pre-pulse laser apparatus 3p1 may output a pulse laser beam having a wavelength of 1.06 ⁇ m and a pulse width of about 14 ps with a full width at half maximum.
  • the second pre-pulse laser apparatus 3p2 may be a YAG laser apparatus that outputs a pulse laser beam having a wavelength of 1.06 ⁇ m and a pulse width of about 6 ns with a full width at half maximum.
  • the main pulse laser device 3M may be a CO 2 laser device that outputs a pulse laser beam having a wavelength of 10.6 ⁇ m and a pulse width of about 15 ns with a full width at half maximum.
  • the polarizer 175 may be arranged so that the optical path axes of the first prepulse laser beam 31p1 and the second prepulse laser beam 31p2 substantially coincide.
  • the dichroic mirror 176 may be arranged so that the optical path axes of the first pre-pulse laser beam 31p1, the second pre-pulse laser beam 31p2, and the main pulse laser beam 31M substantially coincide.
  • the dichroic mirror 176 may be formed of a diamond substrate, and may be coated with a film that highly reflects light with a wavelength of 1.06 ⁇ m and highly transmits light with a wavelength of 10.6 ⁇ m on the surface.
  • the ⁇ / 2 plate 177 may be arranged so as to rotate the polarization plane of the second prepulse laser beam 31p2 by 90 °.
  • the ⁇ / 2 plate 177 may make the second pre-pulse laser beam 31p2 incident on the polarizer 175 as S-polarized light.
  • the polarizer 175 may multiplex the first prepulse laser light 31p1 incident as P-polarized light and the second prepulse laser light 31p2 incident as S-polarized light.
  • S-polarized light may be polarized in a direction perpendicular to the paper surface
  • P-polarized light may be polarized in a direction parallel to the paper surface.
  • a black circle S added in the optical path indicates a polarization direction perpendicular to the paper surface
  • a solid line P added orthogonally to the optical path in the optical path indicates a polarization direction parallel to the paper surface. May be.
  • the main pulse laser device 3M may be connected to the delay circuit 53 so as to receive the main pulse light emission trigger TGm1.
  • the first prepulse laser apparatus 3p1 may be connected to the delay circuit 53 so as to receive the first prepulse emission trigger TGp1.
  • the second prepulse laser apparatus 3p2 may be connected to the delay circuit 53 so as to receive the second prepulse emission trigger TGp2.
  • the EUV light generation controller 5 controls at least one of the first and second prepulse laser devices 3p1 and 3p2 and the main pulse laser device 31M based on the detection value of the energy sensor 52 and the plasma parameter. Also good. This control is performed so as to optimize the generation of EUV light by controlling the beam parameter as at least one of the characteristics of the first and second pre-pulse laser beams 31p1 and 31p2 and the main pulse laser beam 31M. It may be broken.
  • the image of the plasma generated by the Thomson scattered light 31T is incident on the wavelength filter 150 via the collimator lens 91, the high reflection mirrors 95, 96a, and 96b, and the condenser lens 97.
  • An image can be formed by rotating 270 ° in the slit 151.
  • the longitudinal direction of the opening of the incident slit 151 of the wavelength filter 150 and the axial direction of the drive pulse laser beam 31D may substantially coincide.
  • the light transmitted through the entrance slit 151 can be collimated by the collimator optical system 142 and diffracted by the gratings 143 and 144.
  • the gratings 143 and 144 can diffract light including Thomson scattered light 31T so as to be spatially dispersed according to the wavelength.
  • the image of the entrance slit 151 can be formed on the shielding member 152a of the intermediate slit 152 by the condensing optical system 145 via the collimator optical system 142 and the gratings 143 and 144.
  • the intermediate slit 152 Of light incident on the intermediate slit 152, light having a predetermined wavelength that is substantially the same as the wavelength ⁇ 0 of the probe pulse laser beam 31P can be shielded by the shielding member 152a.
  • the Thomson scattered light 31T having a wavelength range equal to or greater than the wavelength ⁇ 0 of the probe pulse laser light 31P can pass through the intermediate slit 152.
  • the light transmitted through the intermediate slit 152 can be collimated by the collimator optical system 161 and then diffracted by the gratings 162 and 163 with inverse dispersion as compared with the dispersion by the gratings 143 and 144.
  • the diffracted light can be formed as an image of the entrance slit 151 on the entrance slit 131 of the spectroscope 130 by the condensing optical system 164 via the high reflection mirror 165.
  • the diffracted light passes through the entrance slit 131 of the spectroscope 130 and passes through the collimator optical system 132, the grating 133, and the condensing optical system 134 as a diffraction image of the entrance slit 131 on the light receiving surface of the ICCD camera 135. Can be imaged.
  • FIG. 9 shows the intensity distribution of the spectrum measured by the ICCD camera 135 when light emitted from the plasma is incident on the entrance slit 151 of the wavelength filter 150 in the Thomson scattering measurement system of FIG.
  • the horizontal axis may be a difference wavelength ⁇ centered on the wavelength ⁇ 0 of the probe pulse laser beam 31P, and the vertical axis may be signal intensity.
  • the difference ⁇ p between the two peak wavelengths measured as the ion term of the Thomson scattered light 31T can be, for example, about 60 pm.
  • (Device function of spectrometer 130) 10 schematically shows an example of a spectrum waveform measured when the shielding member 152a is removed and the Rayleigh scattered light of the probe pulse laser beam 31P is incident on the spectrum measuring device 140 in the Thomson scattering measurement system of FIG. Show.
  • the horizontal axis may be a difference wavelength ⁇ centered on the wavelength ⁇ 0 of the probe pulse laser beam 31P, and the vertical axis may be signal intensity.
  • the spectral line width of the single longitudinal mode laser beam which is the probe pulse laser beam 31P can be very narrow.
  • the spectrum waveform measured by the spectrum measuring device 140 can be a device function of the spectroscope 130 of the spectrum measuring device 140.
  • the full width at half maximum ⁇ f of the device function of the spectrometer 130 can be 18 pm as shown in FIG.
  • the ion term of the Thomson scattered light 31T can be measured by the spectrum measuring device 140 of this device function.
  • FIG. 11 is a timing chart showing an example of control timing by the EUV light generation control unit 5.
  • the vertical axis may be a signal level.
  • the vertical axis may be the light intensity.
  • the vertical axis may be plasma density or temperature.
  • FIG. 12 schematically shows how the target 27 is turned into plasma and EUV light 251 is generated.
  • the target 27 may be irradiated with the first pre-pulse laser beam 31p1 having a spot diameter slightly larger than the diameter of the target 27 and having a picosecond.
  • the target 27 may be destroyed by irradiating the target 27 with the first pre-pulse laser beam 31p1, and the secondary target 27p1 diffused in a semi-dome shape may be generated.
  • the secondary target 27p1 can be diffused in a semi-dome shape in the direction opposite to the direction A1 orthogonal to the laser traveling direction and the laser traveling direction A2.
  • the secondary target 27p1 can be diffused in the same direction with respect to the laser traveling direction A2.
  • Pre-plasma is generated by irradiation with the second pre-pulse laser beam 31p2, and a tertiary target 27p2 can be generated.
  • the EUV light generation controller 5 may output delay data Dt0 indicating delay times of various signals to the delay circuit 53.
  • the various signals may include a target output signal S1, a probe pulse emission trigger TG2, a first prepulse emission trigger TGp1, a second prepulse emission trigger TGp2, a main pulse emission trigger TGm1, and a shutter signal S2.
  • the EUV light generation controller 5 may output a target output signal S1.
  • the EUV light generation controller 5 may also output the trigger signal TG0 to the delay circuit 53 so that the various signals are generated with a predetermined delay time.
  • the EUV light generation controller 5 may output the trigger signal TG0 at substantially the same timing as the target output signal S1.
  • the target output signal S ⁇ b> 1 is input to the target supply device 70, the droplet-shaped target 27 can be output from the nozzle 62 of the target supply device 70.
  • the first prepulse emission trigger TGp1 may be output from the delay circuit 53 to the first prepulse laser apparatus 3p1.
  • the first prepulse laser light 31p1 can be output from the first prepulse laser apparatus 3p1.
  • the first pre-pulse laser beam 31p1 can be irradiated to the target 27 that has reached the plasma generation region 25 by the laser focusing optical system 22a, as shown in FIG. 11G and FIG. .
  • the target 27 can be destroyed and a secondary target 27p1 diffused in a semi-dome shape can be formed.
  • the second prepulse emission trigger TGp2 may be output from the delay circuit 53 to the second prepulse laser apparatus 3p2.
  • the second prepulse laser light 31p2 can be output from the second prepulse laser apparatus 3p2.
  • the second pre-pulse laser beam 31p2 can be applied to the secondary target 27p1 by the laser focusing optical system 22a as shown in FIG. 11H and FIG. 12B.
  • the secondary target 27p1 can be pre-plasmaed to form the tertiary target 27p2.
  • the main pulse emission trigger TGm1 may be output from the delay circuit 53 to the main pulse laser apparatus 3M.
  • the main pulse laser beam 31M can be output from the main pulse laser device 3M.
  • the main pulse laser beam 31M can be applied to the tertiary target 27p2 by the laser focusing optical system 22a as shown in (I) of FIG. 11 and (C) of FIG.
  • the tertiary target 27p2 is turned into plasma, and EUV light 251 can be generated.
  • the energy sensor 52 may detect the energy of the EUV light 251 and output the detected value to the EUV light generation controller 5.
  • the probe pulse emission trigger TG2 may be output from the delay circuit 53 to the probe laser device 30.
  • the probe pulse emission trigger TG2 is input to the probe laser device 30, the probe pulse laser beam 31P is output, and the probe pulse laser beam 31P can be irradiated to the plasma 25a as shown in FIG.
  • the Thomson scattered light 31T of the probe pulse laser beam 31P from the plasma 25a can be incident on the incident slit 151 of the wavelength filter 150 of the spectrum measuring device 140.
  • Light that has been transmitted by the wavelength filter 150 and whose transmission with a predetermined wavelength that is substantially the same as the wavelength ⁇ 0 of the probe pulse laser beam 31P is suppressed can be incident on the entrance slit 131 of the spectroscope 130.
  • a diffraction image of the entrance slit 131 can be formed on the light receiving surface of the ICCD camera 135.
  • the shutter circuit S2 may be output from the delay circuit 53 to the ICCD camera 135.
  • the shutter signal S2 is input to the ICCD camera 135, the shutter is opened for the time of the pulse width of the shutter signal S2, and the image at that time can be measured. Since the diffraction angle of the diffracted light varies depending on the wavelength, the spectrum waveform of the ion term of the Thomson scattered light 31T within the time when the shutter signal S2 is input can be measured on the light receiving surface of the ICCD camera 135.
  • the ICCD camera 135 may output the measured result to the EUV light generation controller 5 as image data.
  • the delay time of the first and second prepulse emission triggers TGp1 and TGp2 is the time ⁇ Td1 from when the target 27 is irradiated with the first prepulse laser beam 31p1 until the second prepulse laser beam 31p2 is irradiated. -2 may be adjusted.
  • the delay time of the first pre-pulse light emission trigger TGp1 and the main pulse light emission trigger TGm1 can vary the time ⁇ Td1-3 from when the target 27 is irradiated with the first pre-pulse laser beam 31p1 until the main pulse laser beam 31M is irradiated. It may be adjusted as possible.
  • timing of the probe pulse light emission trigger TG2 and the shutter signal S2 may be adjusted according to the time for which the plasma 25a is desired to be measured.
  • FIG. 13 schematically shows an image of the emission state of the EUV light 251.
  • FIG. 14 schematically shows a spectrum image of the ion term of the Thomson scattered light 31T.
  • the vertical direction indicates the position, and the horizontal direction indicates the wavelength.
  • FIG. 15 schematically shows the spectrum waveform of the ion term of the Thomson scattered light 31T at each of the positions P11, P12, and P13 in FIG.
  • the vicinity of the wavelength ⁇ 0 of the probe pulse laser beam 31P can be a stray light reducing wavelength region by the wavelength filter 150.
  • the target 27 is irradiated with at least one pre-pulse laser beam, and after a predetermined time, the diffused target 27 is irradiated with the main pulse laser beam 31M, whereby the target 27 is turned into plasma and EUV light 251 is generated.
  • the measurement result is shown.
  • the probe pulse laser beam 31P is irradiated to the plasma 25a at a predetermined time after the main pulse laser beam 31M is irradiated onto the target 27 and turned into plasma.
  • the solid curve may be a curve calculated by calculating the spectrum of the ion term from the plasma parameters and convolution-integrating the instrument function of the spectrometer 130 of FIG.
  • the plasma parameters may be ion valence Z, electron density ne , electron temperature T e , and ion density Ti.
  • the solid curve that is the calculated value substantially matches the measured value.
  • the average value ⁇ av two peak wavelengths of the ion term is shifted from the wavelength lambda 0 of the probe pulse laser light 31P may occur by Doppler effect of light by that ions move. Therefore, it is possible to estimate the ion moving direction and velocity v from the average value ⁇ av of the two peak wavelengths of the ion term.
  • the ion velocity v can be obtained from the following equation (1) showing the Doppler effect of light.
  • c represents the speed of light.
  • ⁇ av ⁇ 0 (1-v / c) / (1-v 2 / c 2 ) 0.5 (1)
  • the position P12 and the wavelength lambda 0 of the average ⁇ av and probe pulse laser beam 31P two peak wavelengths of ions term substantially coincide, the ion is considered the center position of the plasma 25a hardly moves. Ions move to the incident side of the main pulse laser beam 31M at a position P11 closer to the center position, and ions move in the traveling direction of the main pulse laser beam 31M at a position P13 downstream of the center position. it is conceivable that.
  • a diffraction image of the entrance slit 151 is formed in the wavelength filter 150, and the light having a predetermined wavelength is shielded by the shielding member 152a, so that the wavelength near the wavelength ⁇ 0 of the probe pulse laser beam 31P is obtained. Stray light can be suppressed. And the spectrum waveform of the ion term of the Thomson scattered light 31T can be measured with high accuracy by separating the light with suppressed stray light by the spectroscope 130.
  • the wavelength filter 150 is diffracted twice by the two gratings 143 and 144 to form the diffraction image of the entrance slit 151, but the present invention is not limited to this example.
  • the present invention is not limited to this example.
  • by using one grating whose size is twice that of the gratings 143 and 144 and doubling the lens focal length and effective diameter of the collimator optical system 142 and the condensing optical system 145 substantially the same. Performance can be obtained.
  • the pulse width of the probe pulse laser beam 31P and the pulse width of the shutter signal S2 can be made substantially the same and synchronized. Then, the shutter signal S2 of the ICCD camera 135 can be output during plasma emission to measure the Thomson scattered light 31T.
  • the pulse width of the probe pulse laser beam 31P may be increased, and the pulse width of the shutter signal S2 of the ICCD camera 135 may be shorter than the pulse width of the probe pulse laser beam 31P. Good. Then, the timing of the shutter signal S2 may be changed.
  • the pulse width of the shutter signal S2 of the ICCD camera 135 may be set longer than the pulse width of the probe pulse laser beam 31P, and measurement may be performed by changing the irradiation timing of the probe pulse laser beam 31P.
  • FIG. 16 shows an example of a high-resolution spectroscope 130A capable of setting the full width at half maximum of the device function to about 10 pm as a modification of the spectroscope 130.
  • the spectroscope 130 ⁇ / b> A may have a configuration in which a grating 136 having substantially the same specifications as the grating 133 is further added to the configuration of the spectroscope 130 illustrated in FIG. 6.
  • the grating 136 may be disposed on the optical path between the grating 133 and the condensing optical system 134.
  • the diffraction image of the entrance slit 131 can be formed on the light receiving surface of the ICCD camera 135 through the collimator optical system 132, the grating 133 and the grating 136, and the condensing optical system 134.
  • FIG. 17 schematically illustrates an example of a spectrum waveform of an ion term that can be measured by the spectrometer 130A illustrated in FIG.
  • the horizontal axis may be the difference wavelength ⁇ centered on the wavelength ⁇ 0 of the probe pulse laser beam 31P, and the vertical axis may be the signal intensity.
  • FIG. 17 shows a spectrum waveform obtained by convolution-integrating an instrument function having a full width at half maximum of about 10 pm with a spectrum waveform of an ion term theoretically obtained from plasma parameters.
  • FIG. 17 shows a spectrum waveform when the material of the target 27 is tin (Sn), terbium (Tb), and gadolinium (Gd).
  • the spectrum waveforms in the case where the material of the target 27 is terbium and gadolinium are substantially the same. 17, ion temperature T e when the material of the target 27 is terbium and gadolinium are 100 eV, the valence Z is calculated as 18. Ion temperature T e when the material of the target 27 is tin 40 eV, the valence Z are calculated as 10.
  • Terbium and gadolinium are 6. It is attracting attention as a material that generates EUV light 251 of X nm.
  • 6. Xnm may be a wavelength around 6.7 nm.
  • the ion term of the Thomson scattered light 31T can be measured by the spectrum measurement device 140 of the present disclosure.
  • FIG. 18 schematically illustrates a configuration example of an EUV light generation system including a Thomson scattering measurement system as a second embodiment of the present disclosure.
  • substantially the same parts as those in FIG. 6 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • a dichroic mirror 344 that multiplexes so that the optical path of the drive pulse laser beam 31D and the optical path of the probe pulse laser beam 31P substantially coincide with each other may be disposed. Accordingly, the drive pulse laser beam 31D and the probe pulse laser beam 31P may be incident on the inside of the chamber 2 from one window 21 substantially coaxially.
  • the dichroic mirror 344 may be made of a diamond substrate, and the surface thereof may be coated with a film that highly reflects the probe pulse laser beam 31P and highly transmits the drive pulse laser beam 31D.
  • the window 21 is made of a diamond substrate, and the surface thereof may be coated with a film that suppresses reflection of the drive pulse laser beam 31D and the probe pulse laser beam 31P.
  • High reflection mirrors 341 and 342 may be disposed on the optical path between the drive laser device 3D and the dichroic mirror 344.
  • a high reflection mirror 343 and a beam adjuster 179 may be disposed on the optical path between the probe laser device 30 and the dichroic mirror 344.
  • the beam adjuster 179 may include a concave lens and a convex lens, and may be configured to adjust the beam diameter of the probe pulse laser beam 31P in the plasma generation region 25 by adjusting the distance between the lenses.
  • the chamber 2 may include a laser focusing optical system 22a, a plate 82, and an XYZ axis stage 84. Further, the chamber 2 may include an EUV collector mirror 23, a mirror holder 81, a window 21, and a target recovery unit 28. The window 21 may be sealed and fixed to the inner wall of the chamber 2. A target supply unit 26 and a target detection device 40 may be attached to the chamber 2.
  • a fiber input optical system 153 for measuring the Thomson scattered light 31T of the plasma 25a may be attached to the chamber 2 toward the plasma generation region 25.
  • the Thomson scattered light 31T may be input from the fiber input optical system 153 to the spectrum measuring device 140 via the optical fiber 154 and the fiber output optical system 155.
  • the fiber input optical system 153 may include a window and a transfer optical system, and may form an image of the plasma 25a by the Thomson scattered light 31T on the end face of the incident sleeve of the optical fiber 154.
  • the optical fiber 154 may be a bundle fiber in which a plurality of optical fibers are bundled.
  • the fiber output optical system 155 may be arranged so that the incident slit 151 of the spectrum measuring device 140 is illuminated by the light output from the optical fiber 154.
  • the fiber output optical system 155 may include a condenser lens. This condensing lens may be arranged so that the entrance slit 151 is illuminated by the Thomson scattered light 31T emitted from the end face of the output sleeve of the optical fiber 154.
  • the laser condensing optical system 22 a may include a plate 83, a holder 223, a holder 224, an off-axis parabolic mirror 221, and a flat mirror 222.
  • the off-axis parabolic mirror 221 may be held on the plate 83 by the holder 223.
  • the plane mirror 222 may be held on the plate 83 by the holder 224. The positions and postures of these mirrors are maintained so that the drive pulse laser beam 31D and the probe pulse laser beam 31P reflected by the off-axis paraboloid mirror 221 and the plane mirror 222 are condensed in the plasma generation region 25. Also good.
  • the plate 82 may be fixed to the wall inside the chamber 2.
  • the EUV collector mirror 23 may be a spheroid mirror centered on the Z axis.
  • the EUV collector mirror 23 may be fixed to the plate 82 via the mirror holder 81 so that the first focal point of the spheroid is substantially coincident with the plasma generation region 25.
  • the reflective surfaces of the flat mirror 222 and the off-axis parabolic mirror 221 may be coated with a film that highly reflects the drive pulse laser beam 31D and the probe pulse laser beam 31P.
  • the reflective surface of the EUV collector mirror 23 may be coated with a Mo / Si multilayer film.
  • a target detection device 40 that measures the passing timing of the target 27 may be disposed on the trajectory of the target 27.
  • the target detection device 40 may include a target sensor 4 and a light source unit 45.
  • the light source unit 45 may include a light source 46 and an illumination optical system 47.
  • the light source unit 45 may be arranged so as to illuminate the target 27 at a predetermined position P1 on the trajectory Ya between the nozzle 62 of the target supply unit 26 and the plasma generation region 25.
  • the target sensor 4 may include an optical sensor 41 and a light receiving optical system 42. The target sensor 4 may be arranged to receive illumination light output from the light source unit 45.
  • the target sensor 4 and the light source unit 45 may be arranged on the opposite sides with respect to the trajectory Ya of the target 27.
  • a window 21 a and a window 21 b may be attached to the chamber 2.
  • the window 21 a may be positioned between the light source unit 45 and the trajectory Ya of the target 27.
  • the light source unit 45 may condense light at a predetermined position P1 of the trajectory Ya of the target 27 through the window 21a.
  • the window 21 b may be positioned between the trajectory Ya of the target 27 and the target sensor 4.
  • the detection position of the target 27 detected by the target sensor 4 can substantially coincide with the light condensing position of the light source unit 45.
  • the target sensor 4 may output a passage timing signal Tm1 as a detection signal of the target 27.
  • the passage timing signal Tm1 may be a timing signal indicating the supply timing of the target 27.
  • the passage timing signal Tm1 output from the target sensor 4 may be input to the EUV light generation control unit 5.
  • the passage timing signal Tm1 may be input to the delay circuit 53 as the trigger signal TG0 via the EUV light generation controller 5.
  • the EUV light generation controller 5 may receive a generation signal that instructs generation of the EUV light 251 from an exposure apparatus controller 6a of an exposure apparatus 6 as an external apparatus.
  • the EUV light generation controller 5 may include a storage unit 51.
  • the storage unit 51 may store condition parameters during exposure, plasma parameter data, and the like as shown in FIG.
  • the EUV light generation controller 5 may be connected to the drive laser apparatus 3D so as to transmit the data Dt1 to the drive laser apparatus 3D.
  • the data Dt1 may be beam parameters such as the target pulse energy, pulse width, and beam diameter of the plasma generation region 25 of the drive laser apparatus 3D, for example.
  • the EUV light generation control unit 5 may be connected to the target supply unit 26 so as to transmit the data Dt2 to the target supply unit 26.
  • This data Dt2 may be a target parameter such as a target diameter, for example.
  • FIG. 19 schematically shows a configuration example of the drive laser apparatus 3D in the EUV light generation system shown in FIG.
  • substantially the same parts as those in FIG. 8 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the drive laser device 3D may have a configuration in which a single-axis stage is added to each concave lens 178a of the beam adjusters 171, 172, and 173.
  • the structure may be adjusted automatically. Further, the beam distance in the plasma generation region 25 of the main pulse laser beam 31M may be automatically adjusted by adjusting the lens interval in the beam adjuster 173 with a single axis stage.
  • the drive laser device 3D may include a drive laser control unit 54.
  • the drive laser control unit 54 may receive the data Dt1 output from the EUV light generation control unit 5. Then, the drive laser control unit 54 may perform control based on the data of the respective beam parameters of the first and second pre-pulse laser beams 31p1 and 31p2 and the main pulse laser beam 31M.
  • the beam parameter may be data such as pulse energy, pulse width, and beam diameter at the irradiation position of the target 27 as shown in FIG.
  • the drive laser controller 54 controls the first and second prepulse laser devices 3p1 and 3p2, the main pulse laser device 3M, and the beam adjusters 171, 172, and 173 based on the beam parameter data. May be.
  • FIG. 20 is a timing chart showing an example of control timing by the EUV light generation control unit 5.
  • the vertical axis may be a signal level.
  • the vertical axis may be the light intensity.
  • the vertical axis may be the density or temperature of the plasma 25a.
  • the light emission trigger of the drive laser device 3D is based on the passage timing signal Tm1 from the target detection device 40 instead of the target output signal S1 of FIG.
  • the output timing is controlled.
  • Other control timings may be substantially the same as in FIG.
  • the target 27 may be illuminated by illumination light from the light source unit 45.
  • the target sensor 4 can receive the illumination light output from the light source unit 45.
  • the optical sensor 41 of the target sensor 4 can output the detection signal as the passage timing signal Tm1.
  • the target sensor 4 may output one pulse signal as the passage timing signal Tm1 every time one target 27 is detected.
  • the passage timing signal Tm1 can be input to the EUV light generation controller 5.
  • the EUV light generation controller 5 may output delay data Dt0 indicating delay times of various signals to the delay circuit 53 based on the passage timing signal Tm1.
  • the EUV light generation controller 5 may also output the trigger signal TG0 to the delay circuit 53 so that various signals are generated with a predetermined delay time based on the passage timing signal Tm1.
  • the various signals may include a probe pulse emission trigger TG2, a first prepulse emission trigger TGp1, a second prepulse emission trigger TGp2, a main pulse emission trigger TGm1, and a shutter signal S2.
  • the drive pulse laser beam 31D and the probe pulse laser beam 31P can enter the chamber 2 substantially coaxially.
  • the probe pulse emission trigger TG2 is input to the probe laser device 30
  • the probe pulse laser beam 31P is output, and the probe pulse laser beam 31P can be irradiated to the plasma 25a as shown in FIG.
  • the Thomson scattered light 31T of the probe pulse laser light 31P from the plasma 25a can be incident on the incident slit 151 of the spectrum measuring device 140 via the fiber input optical system 153, the optical fiber 154, and the fiber output optical system 155.
  • the spectrum measuring device 140 can measure the spectrum of the ion term of the Thomson scattered light 31T using the ICCD camera 135 in synchronization with the pulse of the shutter signal S2.
  • the EUV light generation control unit 5 sets exposure condition parameters as described below based on the detection value of the energy sensor 52 and the plasma parameters calculated from the spectrum waveform of the ion term of the Thomson scattered light 31T. You may perform control to set.
  • FIG. 21 is a main flowchart schematically showing an example of a control flow for setting the exposure condition parameters using the Thomson scattering measurement system in the EUV light generation system shown in FIG.
  • FIG. 22 is a sub-flowchart showing details of the process in step S112.
  • FIG. 23 schematically shows an example of an initial condition parameter.
  • the EUV light generation controller 5 may store condition parameter data for each data number in a table as shown in FIG.
  • the number of data numbers may be stored in the table by the number of necessary test conditions.
  • the condition parameters may include respective beam parameters of the first pre-pulse laser beam 31p1, the second pre-pulse laser beam 31p2, and the main pulse laser beam 31M.
  • the beam parameters of the first pre-pulse laser beam 31p1 may include data on the pulse energy Ep1, the pulse width ⁇ Tp1, and the beam diameter Dp1.
  • the beam parameters of the second prepulse laser beam 31p2 may include data of the pulse energy Ep2, the pulse width ⁇ Tp2, the beam diameter Dp2, and the delay time ⁇ T1-2 with respect to the first prepulse laser beam 31p1.
  • the beam parameters of the main pulse laser beam 31M may include data of the pulse energy Em, the pulse width ⁇ Tm, the beam diameter Dm, and the delay time ⁇ T1-3 with respect to the first prepulse laser beam 31p1.
  • the parameter of the target 27 may also be included in the condition parameter.
  • the parameter of the target 27 may include data on the target diameter Ddl.
  • the EUV light generation control unit 5 may return to the main flow of FIG. 21, output the target output signal S1 to the target supply device 70, and cause the target supply device 70 to start generating the target 27 (step). S113).
  • the EUV light generation controller 5 may determine whether the EUV light 251 has been generated based on the detection value of the energy sensor 52 (step S114). If the EUV light generation controller 5 determines that the EUV light 251 is not generated (step S114; N), the process of step S114 may be repeated.
  • the EUV light generation controller 5 may perform acquisition of spectral waveform data of ion terms of the Thomson scattered light 31T and calculation of plasma parameters (step S117).
  • FIG. 24 is a sub-flowchart showing details of the processing in step S117.
  • the EUV light generation controller 5 may acquire the spectrum waveform data of the ion term of the Thomson scattered light 31T from the image data of the ICCD camera 135 of the spectrum measuring device 140 (step S141).
  • the EUV light generation controller 5 may calculate a plasma parameter from the spectrum waveform of the ion term (step S142), and may return to the main flow of FIG.
  • the plasma parameter may be calculated by calculating a theoretical spectrum waveform that substantially matches the spectrum waveform of the ion term.
  • the EUV light generation control unit 5 may return to the main flow of FIG. 21 and write test result data in the table of the data number N in the storage unit 51 (step S118).
  • FIG. 25 schematically shows an example of test result data.
  • the EUV light generation control unit 5 stores test result data such as plasma parameters, pulse energy Eeuv of EUV light 251, conversion efficiency CE, etc. for each data number in a table as shown in FIG. 25 in the storage unit 51. May be written.
  • step S119 If the EUV light generation control unit 5 determines that all tests have been completed (step S119; Y), the EUV light generation control unit 5 reads the table data in the storage unit 51 and reads the maximum CE plasma parameter that maximizes the conversion efficiency CE. Good (step S122).
  • FIG. 26 is a sub-flowchart showing details of the process in step S122.
  • the EUV light generation controller 5 may extract the data number Ncemax of the maximum CE that maximizes the conversion efficiency CE from the table data (step S151).
  • the EUV light generation control unit 5 may read the plasma parameter with the data number Ncemax from the table data in the storage unit 51 (step S152).
  • F may be a parameter value indicating whether or not the plasma parameter is within the optimum range.
  • FIG. 27 is a sub-flowchart showing details of the process in step S124.
  • the EUV light generation controller 5 may change the range of the delay time ⁇ T1-2 according to the electron density n e when the data number Ncemax.
  • the EUV light generation control unit 5 may change the target diameter range (step S161).
  • the EUV light generation controller 5 the conversion efficiency CE is sometimes the electron density n e when the maximum lower than the density of the target delay time ( ⁇ T1-2, ⁇ T1-3) delay so as to shorten the time of The time range may be changed.
  • the electron density n e is higher than the density of the target delay time ( ⁇ T1-2, ⁇ T1-3) may change the range of the delay time so as to lengthen the.
  • the EUV light generation controller 5 as if the electron density n e is higher than the density of the target is to reduce the target size, when the electron density n e is less than the density of the target is to increase the target size,
  • the target diameter range may be changed.
  • the EUV light generation controller 5 depending on the electron temperature T e when the data number Ncemax, MAY change the range of condition parameters of the drive pulse laser beam 31D (step S162).
  • the EUV light generation controller 5, when conversion efficiency CE is lower than the electron temperature T e is the target temperature when the the maximum is in the range of condition parameters so that the pulse energy of the main pulse laser light 31M increases May be changed.
  • the EUV light generation control unit 5 replaces the condition parameter data in the table of the storage unit 51 with data in a range corresponding to the measurement result of the plasma parameter (step S163), and returns to the main flow of FIG. Also good.
  • FIG. 28 schematically shows an example of rewriting contents of the condition parameter.
  • the measurement items may include an electron density ne , an electron temperature Te , and a spatial distribution ( ne , Te ).
  • information density for example density shortage, and may include information density overload.
  • information obtained from the measurement items of the electron temperature T e temperature information, for example insufficient heating, and information of the heating excessive may be included.
  • Information obtained from the measurement items of the spatial distribution (n e , T e ) may include target distribution and beam distribution information, for example, beam positional deviation and beam non-uniformity information.
  • n e target size and the delay time Derutati1-2
  • the pulse energy of the main pulse laser light 31M, pulse width may include information of the beam diameter.
  • a target position As a feedback parameter of the spatial distribution (n e , T e ), a target position, a change in a focused beam profile, and a beam position may be included.
  • the target position may include information on a change in the trajectory of the target 27 and a change in the speed of the target 27, for example.
  • the beam position may include, for example, information on irradiation timing and change in the laser focusing position.
  • the EUV light generation controller 5 determines from the table data in the storage 51 that the maximum CE that maximizes the conversion efficiency CE.
  • the condition parameter in the case may be read (step S125).
  • the EUV light generation controller 5 may set a condition parameter for the maximum CE as a condition parameter at the time of exposure (step S126), and the process may be terminated.
  • the triggers of the first and second pre-pulse light emission triggers TGp1, TGp2 and the main pulse light emission trigger TGm1 can be delayed based on the passage timing signal Tm1 of the target 27.
  • the irradiation timing of the first and second pre-pulse laser beams 31p1 and 31p2 and the main pulse laser beam 31M to the target 27 can be controlled with high accuracy.
  • the target supply device 70 that outputs the target 27 that is not on-demand can be measured.
  • it may be applicable to a continuous jet method target supply device 70 that generates a droplet-like target 27 by vibrating the nozzle 62 with a piezoelectric element.
  • the optical path axes of the probe pulse laser beam 31P and the drive pulse laser beam 31D substantially coincide with each other, a window 35 for entering the probe pulse laser beam 31P in FIG. 6 and an optical system for delivering the probe pulse laser beam 31P are provided. It may not be necessary. Further, even if the condensing position of the laser condensing optical system 22a is changed, the plasma irradiation position of the probe pulse laser light 31P also changes in the same manner, so that the adjustment of the optical axis of the probe pulse laser light 31P may be hardly required. .
  • the Thomson scattered light 31T of the plasma 25a is incident on the spectrum measuring device 140 via the optical fiber 154, alignment can be facilitated.
  • the Thomson scattered light 31T is measured, it may be possible to perform the measurement by attaching the spectrum measuring device 140 via the optical fiber 154.
  • the Thomson scattered light 31T is made incident on the spectrum measuring device 140 via the optical fiber 154, but is made incident without going through the optical fiber 154, as in the embodiment of FIG. It may be.
  • the drive laser device 3D may be only the main pulse laser device 3M.
  • the drive laser device 3D may be only the main pulse laser device 3M and the first pre-pulse laser device 3p1.
  • the incident sleeve of the optical fiber incident optical system 153 is fixed on an automatic stage, and the incident sleeve is moved by the automatic stage, so that the ion term at each position is obtained. May be measured.
  • the optical fiber 154 may be a bundle fiber, and one optical fiber 154 may be arranged in the longitudinal direction on the input sleeve and the output sleeve. Then, the direction in which the optical fibers 154 of the input sleeve are arranged may substantially coincide with the Z-axis direction.
  • the fiber input optical system 153 and the fiber output optical system 155 may be arranged so that the direction in which the optical fibers 154 of the output sleeve are arranged substantially coincides with the longitudinal direction of the entrance slit 151 of the spectrum measuring device 140.
  • FIG. 29 schematically illustrates an example of an embodiment of a target supply device 70 capable of adjusting the target diameter.
  • the target supply device 70 may include a target supply unit 26, a pressure regulator 65, a piezo power supply 66, a function generator 67, and a target control unit 71.
  • the target supply unit 26 includes a tank 61 that stores a target material 69 such as tin, a heater 64 that heats the target material 69, a nozzle 62 that outputs the target material 69 from the nozzle hole 62a, and a piezoelectric element that vibrates the nozzle 62. 63 may be included.
  • the pressure regulator 65 may be connected to the tank 61 by piping in order to control the pressure from the inert gas supply source 68 to a predetermined pressure.
  • the function generator 67 may supply a voltage of a predetermined PM modulation function to the piezo element 63 via the piezo power supply 66.
  • the target control unit 71 may perform temperature control for heating the target material 69 stored in the tank 61 to a predetermined temperature by the heater 64.
  • the target control unit 71 may perform temperature control for heating to a predetermined temperature of, for example, 250 ° C. to 290 ° C., which is a melting point of 232 ° C. or higher.
  • Target control unit 71 may receive target target diameter data Dt2 from EUV light generation control unit 5.
  • the target control unit 71 may calculate a voltage waveform to be applied to the piezo element 63 so as to achieve a target diameter.
  • the voltage applied to the piezo element 63 may be a function of PM modulation of the carrier wave fc and the modulated wave fm, for example.
  • the pressure controller adjusts the pressure so that the jet stream that becomes the target 27 is output from the nozzle hole 62a of the nozzle 62 at a predetermined speed. 65 may be controlled.
  • the target control unit 71 may output a control signal indicating the calculated PM modulation function to the function generator 67.
  • the function generator 67 may supply a voltage of a PM modulation function to the piezo element 63 via the piezo power supply 66. Thereby, the liquid jet of the target material 69 can be output from the nozzle hole 62 a of the nozzle 62.
  • Vibration is transmitted to the liquid jet by the piezo element 63, and a plurality of droplet-shaped targets 27 can be generated by the PM-modulated carrier wave fc. Next, a plurality of droplet-like targets 27 can be combined with a modulated wave fm to form one target 27.
  • the number of coupled droplet-shaped targets 27 can be changed by changing the modulation wave fm, so that the target diameter can be controlled.
  • FIG. 30 schematically shows an example of an embodiment of a laser device capable of controlling the pulse width and pulse energy.
  • a laser device capable of controlling the pulse width and pulse energy.
  • the drive laser apparatus 3D may include a master oscillator (MO) 110 mounted with a Q switch, an optical shutter 120, and an amplifier PA1.
  • MO master oscillator
  • PA1 amplifier
  • the master oscillator 110 may include a CO 2 laser discharge tube 113, an acoustooptic device 114, an optical resonator, a high frequency power supply 115, and an acoustooptic device driver 116.
  • the CO 2 laser discharge tube 113 includes a CO 2 laser gas and may include a pair of electrodes 117a and 117b and two windows 118 and 119. The pair of electrodes 117a and 117b may be connected to the high frequency power supply 115.
  • the optical resonator includes a high reflection mirror 111 and a partial reflection mirror 112, and a CO 2 laser discharge tube 113 and an acoustooptic device 114 may be disposed on the optical path of the resonator.
  • the optical shutter 120 may include a Pockels cell 121, a polarizer 122, and a Pockels cell driver 123.
  • the Pockels cell 121 and the polarizer 122 may be disposed on the optical path of the pulsed laser light output from the master oscillator 110.
  • the amplifier PA1 may include a CO 2 laser discharge tube 124 and a high frequency power source 125.
  • the CO 2 laser discharge tube 124 may be disposed on the optical path of the pulsed laser light that has passed through the optical shutter 120.
  • the CO 2 laser discharge tube 124 includes CO 2 laser gas and may include a pair of electrodes 126a and 126b and two windows 127 and 128. The pair of electrodes 126a and 126b may be connected to the high frequency power supply 125.
  • the EUV light generation controller 5 may output data Dt1 of target pulse energy and target pulse width to the drive laser controller 54.
  • the drive laser control unit 54 applies a voltage to the pair of electrodes 117a and 117b of the master oscillator 110 via the high-frequency power source 115 so that the target pulse energy is obtained, and the drive laser control unit 54 is connected between the pair of electrodes 117a and 117b. It may be excited by discharging.
  • the drive laser control unit 54 also applies a voltage to the pair of electrodes 126a and 126b of the amplifier PA1 via the high-frequency power source 125 so that the target pulse energy is obtained, so that the pair of electrodes 126a and 126b are connected. It may be excited by discharging.
  • the drive laser controller 54 may control the acoustooptic device 114 via the acoustooptic device driver 116 so as to function as a Q switch. As a result, pulse laser light of about several hundred ns can be output from the partial reflection mirror 112.
  • the drive laser controller 54 may control the opening time of the optical shutter 120 via the Pockels cell driver 123 so that the pulse laser beam of about several hundred ns has a target pulse width.
  • the pulse laser beam that has passed through the optical shutter 120 can be a single pulse of, for example, several tens of ns that is close to the target pulse width.
  • This single pulsed laser beam can be amplified when passing through the amplifier PA1.
  • the pulsed laser light amplified by the amplifier PA1 can have characteristics close to the target pulse energy and the target pulse width.
  • the amplifier PA1 is not limited to one, and a plurality of amplifiers may be arranged. Further, a monitor for measuring the pulse energy and the pulse waveform may be arranged in the drive laser device 3D, and feedback control may be performed so that the target pulse energy and the target pulse width are obtained.
  • FIG. 31 shows a modification of the incident direction of the probe pulse laser beam 31P.
  • the probe pulse laser beam 31 ⁇ / b> P may be irradiated to the plasma 25 a from an axis including the XY plane including the plasma generation region 25.
  • FIG. 32 schematically shows a configuration example of ICCD.
  • the ICCD camera 135 may include an ICCD (Intensified CCD, image intensifier CCD) as shown in FIG.
  • the ICCD may include an image intensifier 180 and a CCD 190.
  • the image intensifier 180 may include an incident window 181, a photocathode 182, an MCP (Micro Channel Plate) 183, a phosphor screen 184, and a fiber optics plate 185 in order from the light incident side.
  • MCP Micro Channel Plate
  • the MCP 183 may include a large number of thin channels, and each channel may form an electron multiplier.
  • the fiber optics plate 185 may have a structure in which a large number of optical fibers are bundled.
  • the CCD 190 may be disposed on the light exit surface side of the fiber optics plate 185.
  • FIG. 33 schematically shows an example of the operation of the image intensifier 180.
  • the light 191 incident on the incident window 181 may be photoelectrically converted into electrons 192 by the photocathode 182.
  • the photocathode 182 may emit a plurality of electrons 192 corresponding to the amount of light 191.
  • Each electron 192 emitted from the photocathode 182 may be accelerated according to the potential between the photocathode 182 and the incident surface of the MCP 183 and may enter each channel of the MCP 183.
  • the MCP 183 may emit the multiplied electrons 193 toward the phosphor screen 184.
  • the fluorescent screen 184 may emit light according to the amount of incident electrons 193.
  • the fiber optics plate 185 may transmit the light emitted from the fluorescent screen 184 to the emission surface side as amplified light 194.
  • the shutter function of the image intensifier 180 may be enabled by controlling the potential difference between the photocathode 182 and the entrance surface of the MCP 183.
  • the image intensifier 180 can amplify the brightness of the optical image while maintaining the position information of the incident optical image.
  • a transfer lens for transferring the optical image formed on the phosphor screen 184 onto the image sensor of the CCD 190 may be disposed.
  • FIG. 34 is a block diagram illustrating an example hardware environment in which various aspects of the disclosed subject matter may be implemented.
  • the exemplary hardware environment 100 of FIG. 34 includes a processing unit 1000, a storage unit 1005, a user interface 1010, a parallel I / O controller 1020, a serial I / O controller 1030, A / D, D / A.
  • the converter 1040 may be included, the configuration of the hardware environment 100 is not limited to this.
  • the processing unit 1000 may include a central processing unit (CPU) 1001, a memory 1002, a timer 1003, and an image processing unit (GPU) 1004.
  • the memory 1002 may include random access memory (RAM) and read only memory (ROM).
  • the CPU 1001 may be any commercially available processor. A dual microprocessor or other multiprocessor architecture may be used as the CPU 1001.
  • the processing unit 1000 may read and execute a program stored in the storage unit 1005. Further, the processing unit 1000 may read data from the storage unit 1005 together with the program. Further, the processing unit 1000 may write data to the storage unit 1005.
  • the CPU 1001 may execute a program read from the storage unit 1005.
  • the memory 1002 may be a work area for temporarily storing programs executed by the CPU 1001 and data used for the operation of the CPU 1001.
  • the timer 1003 may measure the time interval and output the measurement result to the CPU 1001 according to the execution of the program.
  • the GPU 1004 may process the image data according to a program read from the storage unit 1005 and output the processing result to the CPU 1001.
  • the parallel I / O controller 1020 may be connected to parallel I / O devices that can communicate with the processing unit 1000, such as the delay circuit 53, the target supply device 70, and the ICCD camera 135. The communication with the / O device may be controlled.
  • the serial I / O controller 1030 can communicate with the processing unit 1000 such as the drive laser device 3D, the main pulse laser device 3M, the prepulse laser device 3P, the first prepulse laser device 3p1, and the second prepulse laser device 3p2.
  • a plurality of serial I / O devices may be connected, and communication between the processing unit 1000 and the plurality of serial I / O devices may be controlled.
  • the A / D and D / A converter 1040 may be connected to various sensors, for example, an analog device such as the energy sensor 52, via an analog port, and controls communication between the processing unit 1000 and these analog devices. Or A / D or D / A conversion of communication contents may be performed.
  • the user interface 1010 may display the progress of the program executed by the processing unit 1000 to the operator so that the operator can instruct the processing unit 1000 to stop the program or execute the interrupt routine.
  • the exemplary hardware environment 100 may be applied to the configuration of the EUV light generation controller 5 and the like in the present disclosure.
  • controllers may be implemented in a distributed computing environment, i.e., an environment where tasks are performed by processing units connected via a communications network.
  • the EUV light generation control unit 5 and the like may be connected to each other via a communication network such as Ethernet (registered trademark) or the Internet.
  • program modules may be stored in both local and remote memory storage devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)

Abstract

 本開示によるEUV光生成システムは、チャンバと、チャンバの内部にターゲットを供給するターゲット供給装置と、ドライブパルスレーザ光をターゲットに照射することによりプラズマを発生させてEUV光を生成するドライブレーザ装置と、プローブパルスレーザ光をプラズマに照射することによりトムソン散乱光を生成するプローブレーザ装置と、トムソン散乱光のイオン項のスペクトル波形を計測する分光器と、分光器の前段に配置され、トムソン散乱光を含む光のうちプローブパルスレーザ光の波長と略同一波長の所定波長の光が分光器へと入射するのを抑制する波長フィルタとを備えてもよい。

Description

EUV光生成システム及びEUV光生成方法、並びにトムソン散乱計測システム
 本開示は、極端紫外(EUV)光を生成するためのEUV光生成システム及びEUV光生成方法、並びにトムソン散乱計測システムに関する。
 近年、半導体プロセスの微細化に伴って、半導体プロセスの光リソグラフィにおける転写パターンの微細化が急速に進展している。次世代においては、70nm~45nmの微細加工、さらには32nm以下の微細加工が要求されるようになる。このため、例えば32nm以下の微細加工の要求に応えるべく、波長13nm程度の極端紫外(EUV)光を生成するための極端紫外光生成装置と縮小投影反射光学系(reduced projection reflective optics)とを組み合わせた露光装置の開発が期待されている。
 EUV光生成装置としては、ターゲット物質にレーザ光を照射することによって生成されるプラズマを用いたLPP(Laser Produced Plasma:レーザ励起プラズマ)方式の装置と、放電によって生成されるプラズマを用いたDPP(Discharge Produced Plasma)方式の装置と、軌道放射光を用いたSR(Synchrotron Radiation)方式の装置との3種類の装置が提案されている。
米国特許出願公開第2013/0148203号明細書 米国特許第8181511号明細書 米国特許第8674304号明細書 国際公開第2005/069451号
概要
 本開示によるEUV光生成システムは、チャンバと、チャンバの内部にターゲットを供給するターゲット供給装置と、ドライブパルスレーザ光をターゲットに照射することによりプラズマを発生させてEUV光を生成するドライブレーザ装置と、プローブパルスレーザ光をプラズマに照射することによりトムソン散乱光を生成するプローブレーザ装置と、トムソン散乱光のイオン項のスペクトル波形を計測する分光器と、分光器の前段に配置され、トムソン散乱光を含む光のうちプローブパルスレーザ光の波長と略同一波長の所定波長の光が分光器へと入射するのを抑制する波長フィルタとを備えてもよい。
 本開示によるEUV光生成方法は、チャンバの内部にターゲットを供給することと、ドライブパルスレーザ光をターゲットに照射することによりプラズマを発生させてEUV光を生成することと、プラズマにプローブパルスレーザ光を照射することによってトムソン散乱光を生じさせ、このトムソン散乱光のイオン項のスペクトル波形を分光器によって計測することと、分光器の前段において、トムソン散乱光を含む光のうちプローブパルスレーザ光の波長と略同一波長の所定波長の光が分光器へと入射するのを抑制することとを含んでもよい。
 本開示によるトムソン散乱計測システムは、プローブパルスレーザ光をプラズマに照射することによりトムソン散乱光を生成するプローブレーザ装置と、トムソン散乱光のイオン項のスペクトル波形を計測する分光器と、分光器の前段に配置され、トムソン散乱光を含む光のうちプローブパルスレーザ光の波長と略同一波長の所定波長の光が分光器へと入射するのを抑制する波長フィルタとを備えてもよい。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、例示的なLPP式のEUV光生成システムの一構成例を概略的に示す。 図2は、EUV光生成システムに適用されるトムソン散乱計測システムの一構成例を概略的に示す。 図3は、散乱パラメータがα>1のときのトムソン散乱光のスペクトル波形の一例を模式的に示す。 図4は、散乱パラメータがα≪1のときのスペクトル波形の一例を模式的に示す。 図5は、プローブパルスレーザ光の迷光とトムソン散乱光のイオン項とのスペクトル波形の一例を模式的に示す。 図6は、EUV光生成システムに適用される第1の実施形態に係るトムソン散乱計測システムの一構成例を概略的に示す。 図7は、遮蔽部材の一構成例を概略的に示す。 図8は、第1の実施形態に係るドライブレーザ装置の一構成例を概略的に示す。 図9は、プラズマから発光した光を波長フィルタに入射させた時にICCDカメラで計測されるスペクトルの強度分布の一例を模式的に示す。 図10は、遮蔽部材を取り外してプローブパルスレーザ光のレイリー散乱光をスペクトル計測装置に入射させた場合に計測されるスペクトル波形の一例を模式的に示す。 図11は、EUV光生成制御部による制御タイミングの一例を示すタイミングチャートである。 図12は、ターゲットをプラズマ化してEUV光を生成するまでの様子を模式的に示す。 図13は、EUV光の発光状態の画像を模式的に示す。 図14は、トムソン散乱光のイオン項のスペクトル画像を模式的に示す。 図15は、図14の位置P11,P12,P13のそれぞれにおけるスペクトル波形を模式的に示す。 図16は、高分解能化された分光器の一例を概略的に示す。 図17は、図16に示した分光器によって計測され得るイオン項のスペクトル波形の一例を模式的に示す。 図18は、トムソン散乱計測システムを含むEUV光生成システムの一構成例を概略的に示す。 図19は、図18に示したEUV光生成システムにおけるドライブレーザ装置の一構成例を概略的に示す。 図20は、EUV光生成制御部による制御タイミングの一例を示すタイミングチャートである。 図21は、図18に示したEUV光生成システムにおいてトムソン散乱計測システムを用いて露光時の条件パラメータを設定する制御の流れの一例を概略的に示すメインのフローチャートである。 図22は、図21に示したメインのフローチャートにおけるステップS112の処理の詳細を示すサブのフローチャートである。 図23は、初期の条件パラメータの一例を概略的に示す。 図24は、図21に示したメインのフローチャートにおけるステップS117の処理の詳細を示すサブのフローチャートである。 図25は、試験結果のデータの一例を概略的に示す。 図26は、図21に示したメインのフローチャートにおけるステップS122の処理の詳細を示すサブのフローチャートである。 図27は、図21に示したメインのフローチャートにおけるステップS124の処理の詳細を示すサブのフローチャートである。 図28は、条件パラメータの書き換え内容の一例を概略的に示す。 図29は、ターゲット径を調節可能なターゲット供給装置の実施形態の一例を概略的に示す。 図30は、パルス幅とパルスエネルギとを制御可能なレーザ装置の実施形態の一例を概略的に示す。 図31は、プローブパルスレーザ光の入射方向の変形例を概略的に示す。 図32は、ICCDの一構成例を概略的に示す。 図33は、イメージインテンシファイアの動作の一例を概略的に示す。 図34は、制御部のハードウエア環境の一例を示す。
実施形態
<内容>
[1.概要]
[2.EUV光生成装置の全体説明](図1)
 2.1 構成
 2.2 動作
[3.トムソン散乱計測システム]
 3.1 構成(図2)
 3.2 動作
 3.3 トムソン散乱光のスペクトル波形
 3.4 課題
[4.第1の実施形態](波長フィルタを含むトムソン散乱計測システム)
 4.1 構成
  4.1.1 システムの全体構成(図6、図7)
  4.1.2 ドライブレーザ装置の構成(図8)
 4.2 動作
  4.2.1 システム全体の動作
  4.2.2 EUV光生成制御部による制御タイミング
 4.3 作用
 4.4 変形例(図16)
[5.第2の実施形態](トムソン散乱計測システムを含むEUV光生成システム)
 5.1 構成
  5.1.1 システムの全体構成(図18)
  5.1.2 ドライブレーザ装置の構成(図19)
 5.2 動作
 5.3 作用
 5.4 変形例
[6.その他の実施形態]
 6.1 ターゲット径を制御可能なターゲット供給装置の実施形態(図29)
  6.1.1 構成
  6.1.2 動作
 6.2 パルス幅を制御可能なレーザ装置の実施形態(図30)
  6.2.1 構成
  6.2.2 動作
 6.3 プローブパルスレーザ光をドライブパルスレーザ光に対して垂直に入射するトムソン散乱計測システムの実施形態(図31)
 6.4 ICCDの実施形態(図32~図33)
[7.制御部のハードウエア環境](図34)
[8.その他]
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
[1.概要]
 本開示は、ターゲットにパルスレーザ光を照射してプラズマ化して、EUV光を生成するEUV光生成システム及びEUV光生成方法に関する。また、生成したプラズマのトムソン散乱光を計測するトムソン散乱計測システムに関する。
[2.EUV光生成システムの全体説明]
 2.1 構成
 図1に、例示的なLPP式のEUV光生成システムの構成を概略的に示す。EUV光生成装置1は、少なくとも1つのレーザ装置3と共に用いられてもよい。本願においては、EUV光生成装置1及びレーザ装置3を含むシステムを、EUV光生成システム11と称する。図1に示し、かつ、以下に詳細に説明するように、EUV光生成装置1は、チャンバ2、及びターゲット供給装置として例えばターゲット供給部26を含んでもよい。チャンバ2は、密閉可能であってもよい。ターゲット供給部26は、例えば、チャンバ2の壁を貫通するように取り付けられてもよい。ターゲット供給部26から供給されるターゲット物質の材料は、スズ、テルビウム、ガドリニウム、リチウム、キセノン、又は、それらの内のいずれか2つ以上の組み合わせを含んでもよいが、これらに限定されない。
 チャンバ2の壁には、少なくとも1つの貫通孔が設けられていてもよい。その貫通孔には、ウインドウ21が設けられてもよい。ウインドウ21をレーザ装置3から出力されるパルスレーザ光32が透過してもよい。チャンバ2の内部には、例えば、回転楕円面形状の反射面を有するEUV集光ミラー23が配置されてもよい。EUV集光ミラー23は、第1及び第2の焦点を有し得る。EUV集光ミラー23の表面には、例えば、モリブデンとシリコンとが交互に積層された多層反射膜が形成されていてもよい。EUV集光ミラー23は、例えば、その第1の焦点がプラズマ生成領域25又はその近傍に位置し、その第2の焦点が露光装置6の仕様によって規定される所望の集光位置である中間集光点(IF)292に位置するように配置されるのが好ましい。EUV集光ミラー23の中央部には貫通孔24が設けられていてもよく、貫通孔24をパルスレーザ光33が通過してもよい。
 EUV光生成装置1は、EUV光生成制御部5を含んでもよい。またEUV光生成制御部5は、ターゲットセンサ4等を含んでもよい。ターゲットセンサ4は、ターゲット27の存在、軌跡、位置、及び速度の内の少なくとも1つを検出してもよい。ターゲットセンサ4は、撮像機能を有していてもよい。
 さらに、EUV光生成装置1は、チャンバ2の内部と露光装置6の内部とを連通する接続部29を含んでもよい。接続部29内部には、アパーチャ293が形成された壁291が設けられてもよい。壁291は、そのアパーチャ293がEUV集光ミラー23の第2の焦点位置に位置するように配置されてもよい。
 さらに、EUV光生成装置1は、レーザ光進行方向制御部34、レーザ光集光ミラー22、ターゲット27を回収するためのターゲット回収部28等を含んでもよい。レーザ光進行方向制御部34は、レーザ光の進行方向を制御するために、レーザ光の進行方向を規定するための光学素子と、この光学素子の位置、姿勢等を調整するためのアクチュエータとを備えてもよい。
 2.2 動作
 図1を参照に、レーザ装置3から出力されたパルスレーザ光31は、レーザ光進行方向制御部34を経て、パルスレーザ光32としてウインドウ21を透過してチャンバ2内に入射してもよい。パルスレーザ光32は、少なくとも1つのレーザ光の経路に沿ってチャンバ2内に進み、レーザ光集光ミラー22で反射されて、パルスレーザ光33として少なくとも1つのターゲット27に照射されてもよい。
 ターゲット供給部26は、ターゲット27をチャンバ2内部のプラズマ生成領域25に向けて出力するよう構成されてもよい。ターゲット27には、パルスレーザ光33に含まれる少なくとも1つのパルスが照射されてもよい。パルスレーザ光が照射されたターゲット27はプラズマ化し、そのプラズマから放射光と共にEUV光251が放射され得る。EUV光251は、EUV集光ミラー23によって反射されると共に集光されてもよい。EUV集光ミラー23によって反射されたEUV光252は、中間集光点292を通って、露光装置6に出力されてもよい。なお、1つのターゲット27に、パルスレーザ光33に含まれる複数のパルスが照射されてもよい。
 EUV光生成制御部5は、EUV光生成システム11全体の制御を統括するよう構成されてもよい。EUV光生成制御部5は、ターゲットセンサ4によって撮像されたターゲット27のイメージデータ等を処理するよう構成されてもよい。また、EUV光生成制御部5は、例えば、ターゲット27が出力されるタイミングの制御、及びターゲット27の出力方向の制御の内の少なくとも1つを制御するよう構成されてもよい。
 さらに、EUV光生成制御部5は、例えば、レーザ装置3の発振タイミングの制御、パルスレーザ光32の進行方向の制御、及びパルスレーザ光33の集光位置の制御の内の少なくとも1つを制御するよう構成されてもよい。上述の様々な制御は単なる例示に過ぎず、必要に応じて他の制御が追加されてもよい。
[3.トムソン散乱計測システム]
(3.1 構成)
 図2に、例えば図1に示したEUV光生成システム11に適用されるトムソン散乱計測システムの一構成例を概略的に示す。なお、以下では図1の構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
 トムソン散乱計測システムは、チャンバ2と、EUV光生成制御部5と、ドライブレーザ装置3Dと、プローブレーザ装置30と、レーザ集光光学系22aと、遅延回路53とを含んでもよい。トムソン散乱計測システムはまた、コリメータレンズ91と、高反射ミラー92と、集光レンズ93と、高反射ミラー94と、分光器130とを含んでもよい。
 チャンバ2は、ウインドウ21、ウインドウ35及びウインドウ36と、ターゲット回収部28と、エネルギセンサ52と、ターゲット供給装置70とを含んでいてもよい。
 ターゲット供給装置70は、ノズル62を備えたターゲット供給部26を含み、プラズマ生成領域25にターゲット27を供給するようにチャンバ2に取り付けられてもよい。ターゲット供給部26は、スズ等のターゲット材料を貯蔵してもよい。ターゲット供給部26は、ターゲット材料を図示しないヒータによって、ターゲット材料の融点以上の所定の温度に加熱してもよい。例えば、ターゲット材料が融点232℃のスズである場合、ターゲット材料を例えば280℃の温度に加熱してもよい。
 ターゲット供給装置70は、EUV光生成制御部5からのターゲット出力信号S1の入力に応じて、オンデマンド方式でドロップレット状のターゲット27を生成し、ノズル62から出力するように構成されてもよい。ターゲット供給装置70は例えば、インクジェットの技術のように、図示しない引出電極とノズル62との間に高電圧のパルスを印加することによって、ターゲット27を生成してもよい。
 エネルギセンサ52は、EUV光251のエネルギを検出するものであって、EUV光251を透過する図示しないフィルタとフォトダイオードとを含み、検出方向がプラズマ生成領域25に向くようにチャンバ2に取り付けられてもよい。
 ターゲット回収部28は、ターゲット供給装置70から供給されたターゲット27の軌道の延長線上に配置され、プラズマ化されなかったターゲット27等を回収してもよい。
 ウインドウ21は、ドライブパルスレーザ光31Dの光路上において、チャンバ2にシールされて固定されていてもよい。ウインドウ35は、プローブパルスレーザ光31Pの光路上において、チャンバ2にシールされて固定されていてもよい。ウインドウ36は、トムソン散乱光31Tの光路上において、チャンバ2にシールされて固定されていてもよい。
 ドライブレーザ装置3Dは、ターゲット27を加熱してプラズマ化し、EUV光251を生成するためのドライブパルスレーザ光31Dを出力するレーザ装置であってもよい。ドライブレーザ装置3Dは例えば、波長10.6μmのパルスレーザ光を出力するCO2レーザ装置であってもよい。ドライブレーザ装置3Dとレーザ集光光学系22aは、ドライブパルスレーザ光31Dが、レーザ集光光学系22aとウインドウ21とを介してプラズマ生成領域25に供給されたターゲット27に集光されるように配置されてもよい。
 プローブレーザ装置30は、プラズマ生成領域25で発生したプラズマのトムソン散乱光31Tを計測するためのプローブパルスレーザ光31Pを出力するレーザ装置であってもよい。プローブレーザ装置30は例えば、シングル縦モードで発振するYAGレーザの第2高調波光を発生するレーザ装置であってもよい。YAGレーザの第2高調波光の波長は532.0nmであってもよい。プローブレーザ装置30は、プローブパルスレーザ光31Pが、ウインドウ35を介して、プラズマ生成領域25で発生したプラズマに照射されるように配置されてもよい。
 分光器130は、トムソン散乱光31Tのイオン項のスペクトル波形を計測するものであってもよい。分光器130は、入射スリット131と、コリメータ光学系132と、グレーティング133と、集光光学系134と、ICCDカメラ135とを含んでもよい。コリメータ光学系132とグレーティング133は、入射スリット131を透過した光がコリメータ光学系132によりコリメートされて、グレーティング133に入射角度α1で入射するように配置されてもよい。集光光学系134は、グレーティング133において回折角度β1で回折した光をICCDカメラ135の受光面に集光し、受光面上で入射スリット131の回折像が計測されるように配置されてもよい。
 コリメータレンズ91は、ウインドウ36を介して入射したトムソン散乱光31Tがコリメートされるように配置してもよい。
 高反射ミラー92は、コリメータレンズ91によってコリメートされたトムソン散乱光31Tが集光レンズ93に入射するように配置してもよい。
 集光レンズ93は、高反射ミラー94を介して入射スリット131がトムソン散乱光31Tによって照明されるように配置してもよい。
 遅延回路53は、ターゲット供給装置70にターゲット出力信号S1を出力可能となるようにターゲット供給装置70に接続されてもよい。遅延回路53はまた、ドライブレーザ装置3Dにドライブパルス発光トリガTG1を出力可能となるようにドライブレーザ装置3Dに接続されていてもよい。遅延回路53はまた、プローブレーザ装置30にプローブパルス発光トリガTG2を出力可能となるようにプローブレーザ装置30に接続されてもよい。遅延回路53はまた、ICCDカメラ135にシャッタ信号S2を出力可能となるようにICCDカメラ135に接続されてもよい。
 EUV光生成制御部5は、遅延回路53とICCDカメラ135とに接続されていてもよい。
(3.2 動作)
 EUV光生成制御部5は、遅延回路53に、ターゲット出力信号S1、ドライブパルス発光トリガTG1、プローブパルス発光トリガTG2、及びシャッタ信号S2のそれぞれの信号の遅延時間を示す遅延データDt0を出力してもよい。EUV光生成制御部5はまた、遅延回路53に、上記それぞれの信号を所定の遅延時間で生成するようにトリガ信号TG0を出力してもよい。
 最初にターゲット出力信号S1がターゲット供給装置70に入力されると、ターゲット供給装置70のノズル62からドロップレット状のターゲット27が出力され得る。ドライブレーザ装置3Dにドライブパルス発光トリガTG1が入力されると、ドライブレーザ装置3Dからドライブパルスパルスレーザ光31Dが出力され得る。プラズマ生成領域25に到達したターゲット27には、レーザ集光光学系22aを介してドライブパルスパルスレーザ光31Dが照射され得る。その結果、ターゲット27がプラズマ化して、EUV光251が生成され得る。エネルギセンサ52は、EUV光251のエネルギを検出し、EUV光生成制御部5にその検出値を出力してもよい。
 一方、プローブレーザ装置30に、プローブパルス発光トリガTG2が入力されると、プローブレーザ装置30からプローブパルスレーザ光31Pが出力され、プラズマにプローブパルスレーザ光31Pが照射され得る。プラズマからのプローブパルスレーザ光31Pのトムソン散乱光31Tは、コリメータレンズ91と、高反射ミラー92と、集光レンズ93と、高反射ミラー94とによって伝送され、分光器130の入射スリット131を照明し得る。入射スリット131を通過したトムソン散乱光31Tは、コリメータ光学系132によってコリメートされ、グレーティング133に入射して回折光が生成され得る。グレーティング133による回折光は集光光学系134によってICCDカメラ135の受光面上に集光し得る。結果として、入射スリット131の回折像がICCDカメラ135の受光面上に結像し得る。
 ICCDカメラ135にシャッタ信号S2が入力されると、シャッタ信号S2の入力タイミングで、シャッタ信号S2のパルス幅の時間だけ、ICCDカメラ135がシャッタ開状態となり、その時間の画像が計測され得る。回折光は、波長によって回折角度が異なるので、ICCDカメラ135の受光面上で、シャッタ信号S2が入力された時間のトムソン散乱光31Tのイオン項のスペクトル波形が計測され得る。ICCDカメラ135は、計測された結果を画像データとしてEUV光生成制御部5に出力してもよい。
(3.3 トムソン散乱光のスペクトル波形)
 図3及び図4を参照して、トムソン散乱光31Tのスペクトル波形について説明する。図3は、以下で説明する散乱パラメータαがα>1のときのトムソン散乱光31Tのスペクトル波形の一例を模式的に示している。図4は、散乱パラメータαがα≪1のときのスペクトル波形の一例を模式的に示している。図3及び図4において、横軸はプローブパルスレーザ光31Pの波長λ0を中心波長とする差波長Δλ、縦方向は信号強度であってもよい。
 トムソン散乱光31Tの散乱パラメータαは、以下の式で与えられ得る。以下の式において、λDはデバイ長、kは波数、λ0はプローブパルスレーザ光31Pの波長、θは散乱角、neは電子密度、Teは電子温度、ε0は真空誘電率、eは電気素量であってもよい。
Figure JPOXMLDOC01-appb-M000001
 ここで、α>1のときは、電子群の協同的運動による散乱という意味で協同的散乱(collective scattering)という。α≪1のときは、プラズマによる散乱断面積は電子の個々の熱運動のみによって決まるという意味で非協同的散乱(incoherent scattering)という。
 EUV光251を生成するプラズマのトムソン散乱光31Tのスペクトル波形は、協同的散乱となり得る。非協同的散乱の場合は図4に示したように電子項のスペクトル波形のみが観察されるが、協同的散乱の場合は、図3に示したようにイオン項と電子項のスペクトル波形が観測され得る。協同的散乱の場合は、プローブパルスレーザ光31Pの波長λ0に対して短波長側と長波長側とにそれぞれ対称的にイオン項と電子項のスペクトルが観測され得る。
(プラズマパラメータの決定法)
 プローブパルスレーザ光31Pの波長λ0に対して波長が近いイオン項のスペクトル波形は、強い信号強度で観測され得る。このため、イオン項を計測することによって、プラズマパラメータを高精度に見積もり得る。イオン項のスペクトル波形を計測することによって、イオン項のスペクトル波形の形状、イオン項のピーク波長、及び信号強度から、価数Z、電子密度ne、電子温度Te、及びイオン温度Tiを計算し得る。ZとTeの値は、Z・Teの値に基づいて、CRモデルの理論テーブル値から分離して求め得る。
 イオン項のスペクトル波形は、以下の式で表されるパラメータβで特徴付けられ得る。図3のイオン項の中心部窪みとピーク値との比をRとすると、例えばβ=1.5,2,2.5,3に対応してR=2,3,5,10と変化し得る。具体的なトムソン散乱光31Tのスペクトル関数S(k,Δλ)は、次の参考文献の5章5.2節あるいは5.3節に詳しく説明されている。
 参考文献:D. H. Froula, S. H. Glenzer, N. C. Luhmann, Jr., and J. Sheffield: Plasma Scattering of Electromagnetic Radiation (Academic Press, USA, 2011) 2nd ed.
Figure JPOXMLDOC01-appb-M000002
 なお、上記参考文献では、スペクトル関数を差波長Δλではなく周波数差Δω(同文献では単にωで表記)の関数として示しているが、ΔωからΔλへの変換は、以下の式を用いればよい。
 Δλ={λ0 2/(2πc)}Δω
 次に、イオン項のピーク波長Δλpは、以下の式で与えられ得る。以下の式のピーク波長Δλpは、プローブパルスレーザ光31Pの波長λ0からのずれ量であってもよい。ここで、κはボルツマン定数、Miはイオン質量であってもよい。
Figure JPOXMLDOC01-appb-M000003
 電子密度neの絶対値は、トムソン散乱のイオン項の全強度ITを、同じチャンバ内に既知の密度のアルゴンガスを封入して行ったレイリー散乱の強度IRで校正することにより得られ得る。具体的な計算式は、以下の式で与えられ得る。
Figure JPOXMLDOC01-appb-M000004
 ここで、n0はアルゴンガスの密度、σRはアルゴンガスのレイリー散乱の断面積、σTはトムソン散乱の全断面積、Siはイオン項のスペクトル関数の差波長での積分値で、以下の式で与えられ得る。
Figure JPOXMLDOC01-appb-M000005
 なお、アルゴンガスのレイリー散乱の断面積とトムソン散乱の全断面積との比は、今の場合、
  σR/σT=1100
であってもよい。
(3.4 課題)
 図5は、プローブパルスレーザ光31Pの迷光とトムソン散乱光31Tのイオン項とのスペクトル波形の一例を模式的に示している。図5において、横軸はプローブパルスレーザ光31Pの波長λ0を中心波長とする差波長Δλ、縦軸は信号強度であってもよい。図5には、ターゲット27が炭素とスズである場合のスペクトル波形の一例を模式的に示す。
 通常の分光器130でイオン項を計測した場合、図5に示したように、プローブパルスレーザ光31Pによる迷光が大きくて、イオン項とプローブパルスレーザ光31Pの迷光とが合成されたスペクトル波形が計測され得る。このために、イオン項を高精度に計測することが困難となり得る。特に、ターゲット27がスズの場合は、イオン項として計測される2つのピーク波長の差Δλpが60pmと狭く、イオン項とプローブパルスレーザ光31Pの迷光とのスペクトル波形の分離が困難となり得る。
[4.第1の実施形態](波長フィルタを含むトムソン散乱計測システム)
(4.1 構成)
(4.1.1 システムの全体構成)
 図6は、第1の実施形態として、EUV光生成システムに適用されるトムソン散乱計測システムの一構成例を概略的に示している。なお、以下では図2の構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
 図6に示したトムソン散乱計測システムは、図2の構成に対して、分光器130の前段に配置された波長フィルタ150を含んでもよい。波長フィルタ150は、トムソン散乱光31Tを含む光のうちプローブパルスレーザ光31Pの波長λ0と略同一波長の所定波長の光が分光器130へと入射するのを抑制するものであってもよい。波長フィルタ150と分光器130とを合わせた全体が、トムソン散乱光31Tのイオン項のスペクトル波形を計測するスペクトル計測装置140であってもよい。
 チャンバ2のウインドウ36と波長フィルタ150との間におけるトムソン散乱光31Tの光路上に、コリメータレンズ91と、高反射ミラー95,96a,96bと、集光レンズ97とが配置されていてもよい。トムソン散乱光31Tによるプラズマの像が、波長フィルタ150の入射スリット151に270°回転して結像するように、コリメータレンズ91と高反射ミラー95,96a,96bと、集光レンズ97とが配置されてもよい。
 ドライブパルスレーザ光31Dのレーザ集光光学系22aとして、高反射ミラー98と軸外放物面ミラー99とが配置されてもよい。高反射ミラー98と軸外放物面ミラー99の表面には、後述するプリパルスレーザ光とメインパルスレーザ光31Mとの両方の波長のレーザ光を高反射する膜がコートされていてもよい。
 ドライブレーザ装置3Dは、後述する図8に示す第1のプリパルスレーザ装置3p1と、第2のプリパルスレーザ装置3p2と、メインパルスレーザ装置3Mとを含んでいてもよい。ドライブレーザ装置3Dには、遅延回路53から、ドライブパルス発光トリガTG1として、第1のプリパルス発光トリガTGp1、第2のプリパルス発光トリガTGp2、及びメインパルス発光トリガTGm1が入力されてもよい。
 波長フィルタ150は、入射スリット151と、高反射ミラー141と、コリメータ光学系142と、グレーティング143と、グレーティング144と、集光光学系145と、中間スリット152とを含んでもよい。波長フィルタ150はまた、コリメータ光学系161と、グレーティング162と、グレーティング163と、集光光学系164と、高反射ミラー165とを含んでもよい。
 グレーティング143,144は、トムソン散乱光31Tを含む光を、波長に応じて空間的に分散させる分散光学系であってもよい。グレーティング143,144は、トムソン散乱光31Tを含む光を波長に応じて回折させる分散グレーティングであってもよい。
 入射スリット151は、集光レンズ97によって結像されたトムソン散乱光31Tによるプラズマの像が入射するように配置されてもよい。高反射ミラー141は、入射スリット151を透過したトムソン散乱光31Tを高反射して、コリメータ光学系142に入射させるように配置されてもよい。コリメータ光学系142は、入射スリット151を透過した光を第1のコリメート光に変換するように配置されてもよい。グレーティング143は、第1のコリメート光が所定の入射角度α1で入射し、略回折角度β1で回折されるように配置されてもよい。グレーティング144は、グレーティング143による回折光が所定の入射角度α1で入射し、略回折角度β1で回折されるように配置されてもよい。集光光学系145は、グレーティング144による回折光を集光するように配置されてもよい。
 中間スリット152は、グレーティング143,144による分散光のうち所定波長の光を遮蔽する遮蔽部材152aを含んでもよい。遮蔽部材152aは、図7に示したように、中間スリット152の略中央部に線状に配置されていてもよい。中間スリット152は、集光光学系145の焦点面上に配置されてもよい。中間スリット152は、グレーティング143,144による分散光のうち遮蔽部材152aで所定波長の光を遮蔽し、遮蔽部材152aの両側に入射した光を通過させてもよい。
 グレーティング162,163は、遮蔽部材152aにより所定波長の光が遮蔽された後の分散光を波長に応じて空間的に逆分散させる逆分散光学系であってもよい。グレーティング162,163は、遮蔽部材152aにより所定波長の光が遮蔽された後の分散光を波長に応じて回折させる逆分散グレーティングであってもよい。
 コリメータ光学系161は、遮蔽部材152aの両側を通過した光を第2のコリメート光に変換するように配置されてもよい。グレーティング162は、第2のコリメート光が入射角度β1で入射し、略回折角度α1で回折されるように配置されてもよい。グレーティング163は、グレーティング162による回折光が所定の入射角度β1で入射し、略回折角度α1で回折されるように配置されてもよい。集光光学系164は、グレーティング163を回折した回折光を集光するように配置してもよい。集光光学系164を透過した回折光が、分光器130の入射スリット131で結像するように高反射ミラー165が配置されてもよい。
 波長フィルタ150と分光器130とを構成する光学素子の仕様は、以下のものであってもよい。コリメータ光学系132,142、161、及び集光光学系134,145,164のレンズの有効径は60mm、焦点距離は486mmであって、計測波長域において、色収差補正がなされていてもよい。グレーティング133,143,144,162,163は、2400本/mmのブレーズドグレーティングであってもよい。入射スリット131,151のスリット幅は、約20μmであってもよい。遮蔽部材152aは、100μm径のタングステンワイヤであってもよい。
 EUV光生成制御部5は、スペクトル計測装置140で計測されたトムソン散乱光31Tのイオン項のスペクトル波形からプラズマの特性を示すプラズマパラメータを計算してもよい。EUV光生成制御部5はまた、エネルギセンサ28の検出値とプラズマパラメータとに基づいて、ドライブパルスレーザ光31Dの特性が最適化されるよう、ドライブレーザ装置3Dを制御してもよい。EUV光生成制御部5はまた、エネルギセンサ28の検出値とプラズマパラメータとに基づいて、ターゲット27のターゲット径が最適化されるよう、ターゲット供給装置70を制御してもよい。
(4.1.2 ドライブレーザ装置の構成)
 図8は、ドライブレーザ装置3Dの一構成例を概略的に示している。
 ドライブパルスレーザ光31Dは、ターゲット27を拡散させるプリパルスレーザ光と、拡散されたターゲット27をプラズマ化するメインパルスレーザ光31Mとを含んでもよい。ドライブレーザ装置3Dは、プリパルスレーザ光を出力するプリパルスレーザ装置3Pと、メインパルスレーザ光31Mを出力するメインパルスレーザ装置3Mとを含んでもよい。
 ドライブレーザ装置3Dはさらに、ビーム調節器171、ビーム調節器172、及びビーム調節器173を含んでもよい。ドライブレーザ装置3Dはまた、高反射ミラー174と、偏光子175と、ダイクロイックミラー176と、λ/2板177とを含んでもよい。ビーム調節器171、ビーム調節器172、及びビーム調節器173はそれぞれ、凹レンズ178aと凸レンズ178bとを含んでもよい。ビーム調節器171,172,173はそれぞれ、凹レンズ178aと凸レンズ178bとの間隔を調節することによって、プラズマ生成領域25におけるビーム径を調節し得る。この実施形態では、ビーム調節器として、凹レンズ178aと凸レンズ178bとを組み合わせた例を示したが、この例に限定されることなく、凹面ミラーと凸面ミラーとの組み合わせ、レンズとミラーとの組み合わせ、又はミラー面を変形させるディフォーマブルミラー等であってもよい。
 プリパルスレーザ装置3Pは、第1のプリパルスレーザ光31p1を出力する第1のプリパルスレーザ装置3p1と、第2のプリパルスレーザ光31p2を出力する第2のプリパルスレーザ装置3p2とを含んでもよい。第1のプリパルスレーザ装置3p1は例えば、1ns未満のパルス幅のパルスレーザ光を出力するピコ秒レーザ装置であってもよい。ピコ秒レーザ装置は、Nd:YVO4モードロックレーザのマスタオシレータと、Nd:YAG結晶の再生増幅器とを含んでもよい。第1のプリパルスレーザ装置3p1は例えば、波長1.06μm、パルス幅が半値全幅で約14psのパルスレーザ光を出力するものであってもよい。第2のプリパルスレーザ装置3p2は、YAGレーザ装置であって、波長が1.06μm、パルス幅が半値全幅で約6nsのパルスレーザ光を出力するものであってもよい。
 メインパルスレーザ装置3Mは、CO2レーザ装置であって、波長10.6μm、パルス幅が半値全幅で約15nsのパルスレーザ光を出力するものであってもよい。
 偏光子175において第1のプリパルスレーザ光31p1と第2のプリパルスレーザ光31p2との光路軸が略一致するように、偏光子175が配置されてもよい。ダイクロイックミラー176において第1のプリパルスレーザ光31p1と第2のプリパルスレーザ光31p2と、メインパルスレーザ光31Mとの光路軸が略一致するように、ダイクロイックミラー176が配置されてもよい。
 ダイクロイックミラー176は、ダイヤモンド基板からなり、表面に波長1.06μmの光を高反射し、波長10.6μmの光を高透過する膜がコートされていてもよい。
 λ/2板177は、第2のプリパルスレーザ光31p2の偏光面を90°回転させるように配置されてもよい。λ/2板177は、偏光子175に対して、第2のプリパルスレーザ光31p2をS偏光で入射させてもよい。偏光子175は、P偏光で入射した第1のプリパルスレーザ光31p1とS偏光で入射した第2のプリパルスレーザ光31p2とを合波してもよい。なお、図8において、S偏光は紙面に対して垂直な方向の偏光、P偏光は紙面に平行な方向の偏光であってもよい。なお、図8において、光路中に付した黒塗りの丸印Sは紙面に対して垂直な偏光方向を示し、光路中に光路に直交して付した実線Pは紙面に平行な偏光方向を示してもよい。
 メインパルスレーザ装置3Mは、メインパルス発光トリガTGm1を受信するように遅延回路53に接続されていてもよい。第1のプリパルスレーザ装置3p1は、第1のプリパルス発光トリガTGp1を受信するように遅延回路53に接続されていてもよい。第2のプリパルスレーザ装置3p2は、第2のプリパルス発光トリガTGp2を受信するように遅延回路53に接続されていてもよい。
 EUV光生成制御部5は、エネルギセンサ52の検出値とプラズマパラメータとに基づいて、第1及び第2のプリパルスレーザ装置3p1,3p2、及びメインパルスレーザ装置31Mのうち少なくとも1つを制御してもよい。この制御は、第1及び第2のプリパルスレーザ光31p1,31p2、及びメインパルスレーザ光31Mのうち少なくとも1つの特性としてのビームパラメータを制御して、EUV光の生成が最適化されるように行われてもよい。
(4.2 動作)
(4.2.1 システム全体の動作)
 図6に示したトムソン散乱計測システムでは、コリメータレンズ91と、高反射ミラー95,96a,96bと、集光レンズ97とを介して、トムソン散乱光31Tによるプラズマの像が、波長フィルタ150の入射スリット151に270°回転して結像し得る。波長フィルタ150の入射スリット151の開口の長手方向と、ドライブパルスレーザ光31Dの軸方向とが略一致してもよい。入射スリット151を透過した光は、コリメータ光学系142によりコリメートされ、グレーティング143,144により回折され得る。グレーティング143,144は、トムソン散乱光31Tを含む光を波長に応じて空間的に分散するように回折させ得る。入射スリット151の像は、コリメータ光学系142とグレーティング143,144とを介して、集光光学系145によって中間スリット152の遮蔽部材152a上に結像し得る。
 中間スリット152に入射した光のうち、プローブパルスレーザ光31Pの波長λ0と略同一波長の所定波長の光が、遮蔽部材152aによって遮蔽され得る。そして、プローブパルスレーザ光31Pの波長λ0に対して、所定の波長範囲以上のトムソン散乱光31Tは中間スリット152を透過し得る。中間スリット152を透過した光は、コリメータ光学系161によってコリメートされた後、グレーティング162,163により、グレーティング143,144による分散に比べて逆分散で回折され得る。この回折光は、高反射ミラー165を介して、集光光学系164によって分光器130の入射スリット131上に入射スリット151の像として結像され得る。この回折光は分光器130の入射スリット131を透過して、コリメータ光学系132と、グレーティング133と、集光光学系134とを介して、入射スリット131の回折像としてICCDカメラ135の受光面に結像し得る。
(波長フィルタ150による迷光の低減作用)
 図9は、図6のトムソン散乱計測システムにおいて、プラズマから発光した光を波長フィルタ150の入射スリット151に入射させた時に、ICCDカメラ135で計測されるスペクトルの強度分布を示している。図9において、横軸はプローブパルスレーザ光31Pの波長λ0を中心波長とする差波長Δλ、縦軸は信号強度であってもよい。
 図9に示したように、波長フィルタ150によって、プローブパルスレーザ光31Pの波長λ0=532.0nmから±25pmの範囲のスペクトルの透過が抑制され得る。上記図5に示したように、トムソン散乱光31Tのイオン項として計測される2つのピーク波長の差Δλpは例えば60pm程度となり得る。イオン項の2つのピークの波長の差Δλp=60pmを計測するためには、波長フィルタ150によって抑制される光の波長幅Δλsが、少なくともΔλs=50pmとなることが好ましい。
 すなわち、好ましくは、波長フィルタ150によって抑制される光の波長幅Δλsと、イオン項として計測される2つのピーク波長の差Δλpとが以下の関係を満たしてもよい。
 Δλs/Δλp≦50/60=0.833
(分光器130の装置関数)
 図10は、図6のトムソン散乱計測システムにおいて、遮蔽部材152aを取り外してプローブパルスレーザ光31Pのレイリー散乱光をスペクトル計測装置140に入射させた場合に計測されるスペクトル波形の一例を模式的に示している。図10において、横軸はプローブパルスレーザ光31Pの波長λ0を中心波長とする差波長Δλ、縦軸は信号強度であってもよい。
 プローブパルスレーザ光31Pであるシングル縦モードのレーザ光のスペクトル線幅は、非常に狭くなり得る。その結果、スペクトル計測装置140で計測されたスペクトル波形が、スペクトル計測装置140の分光器130の装置関数となり得る。この分光器130の装置関数の半値全幅Δλfは、図10に示したように18pmとなり得る。後述するが、この装置関数のスペクトル計測装置140で、トムソン散乱光31Tのイオン項を計測し得る。
 好ましくは、分光器130の装置関数の半値全幅Δλfと、トムソン散乱光31Tのイオン項として計測される2つのピーク波長の差Δλpとが、以下の関係を満たしてもよい。
 Δλf/Δλp≦18/60=0.3
(4.2.2 EUV光生成制御部による制御タイミング)
 図11は、EUV光生成制御部5による制御タイミングの一例を示すタイミングチャートである。なお、図11の(A)~(F)において、縦軸は信号レベルであってもよい。図11の(G)~(I),(K),(L)において、縦軸は光の強度であってもよい。図11の(J)において、縦軸はプラズマの密度または温度であってもよい。
 図12は、ターゲット27をプラズマ化してEUV光251を生成するまでの様子を模式的に示している。なお、図12の(A)は時刻t=0の状態、図12の(B)は時刻t=Δt1-Δt2の状態、図12の(C)は時刻t=Δt1の状態、図12の(D)は時刻t=Δt1+Δt3の状態を模式的に示している。
 まず、図12を参照してターゲット27からプラズマ25aを発生させる様子を説明する。図12の(A)に示したように、時刻t=0において、ターゲット27に、ターゲット27の径よりも多少大きなスポット径のピコ秒の第1のプリパルスレーザ光31p1を照射してもよい。
 ターゲット27に、第1のプリパルスレーザ光31p1が照射されることによってターゲット27が破壊され、半ドーム状に拡散した2次ターゲット27p1が生成されてもよい。2次ターゲット27p1は、レーザ進行方向に直交する方向A1とレーザ進行方向A2に対して逆方向に半ドーム状に拡散され得る。2次ターゲット27p1は、レーザ進行方向A2に対して同方向にも拡散され得る。この2次ターゲット27p1の大きさと略同じスポット径の第2のプリパルスレーザ光31p2を、図12の(B)に示したように、時刻t=Δt1-Δt2において照射してもよい。
 第2のプリパルスレーザ光31p2の照射によって、プリプラズマが生成され、3次ターゲット27p2が生成され得る。この3次ターゲット27p2と略同じスポット径のメインパルスレーザ光31Mを、図12の(C)に示したように、時刻t=Δt1において照射してもよい。
 3次ターゲット27p2にメインパルスレーザ光31Mが照射されることにより、図12の(D)に示したように、時刻t=Δt1+Δt3においてプラズマ化されてEUV光251が生成され得る。
 次に、図11を参照して、EUV光生成制御部5による制御タイミングを説明する。
 EUV光生成制御部5は、遅延回路53に、各種の信号の遅延時間を示す遅延データDt0を出力してもよい。各種の信号は、ターゲット出力信号S1、プローブパルス発光トリガTG2、第1のプリパルス発光トリガTGp1、第2のプリパルス発光トリガTGp2、メインパルス発光トリガTGm1及びシャッタ信号S2を含んでもよい。
 図11の(A)に示したように、EUV光生成制御部5はターゲット出力信号S1を出力してもよい。EUV光生成制御部5はまた、遅延回路53に、上記各種の信号が所定の遅延時間で生成されるようにトリガ信号TG0を出力してもよい。EUV光生成制御部5はトリガ信号TG0をターゲット出力信号S1と略同じタイミングで出力してもよい。ターゲット出力信号S1がターゲット供給装置70に入力されると、ターゲット供給装置70のノズル62からドロップレット状のターゲット27が出力され得る。
 次に、図11の(B)に示したように、遅延回路53から第1のプリパルスレーザ装置3p1に、第1のプリパルス発光トリガTGp1を出力してもよい。第1のプリパルスレーザ装置3p1に第1のプリパルス発光トリガTGp1が入力されると、第1のプリパルスレーザ装置3p1から第1のプリパルスレーザ光31p1が出力され得る。第1のプリパルスレーザ光31p1は、レーザ集光光学系22aによって、図11の(G)、及び図12の(A)に示したように、プラズマ生成領域25に到達したターゲット27に照射され得る。その結果、図12の(B)に示したように、ターゲット27が破壊され、半ドーム状に拡散した2次ターゲット27p1が形成され得る。
 次に、図11の(C)に示したように、遅延回路53から第2のプリパルスレーザ装置3p2に第2のプリパルス発光トリガTGp2を出力してもよい。第2のプリパルスレーザ装置3p2に第2のプリパルス発光トリガTGp2が入力されると、第2のプリパルスレーザ装置3p2から第2のプリパルスレーザ光31p2が出力され得る。第2のプリパルスレーザ光31p2は、レーザ集光光学系22aによって、図11の(H)、及び図12の(B)に示したように、2次ターゲット27p1に照射され得る。その結果、図12の(C)に示したように、2次ターゲット27p1がプリプラズマ化し、3次ターゲット27p2が形成され得る
 次に、図11の(D)に示したように、遅延回路53からメインパルスレーザ装置3Mにメインパルス発光トリガTGm1を出力してもよい。メインパルスレーザ装置3Mにメインパルス発光トリガTGm1が入力されると、メインパルスレーザ装置3Mからメインパルスレーザ光31Mが出力され得る。メインパルスレーザ光31Mは、レーザ集光光学系22aによって、図11の(I)、及び図12の(C)に示したように、3次ターゲット27p2に照射され得る。その結果、図11の(J),(L)、及び図12の(D)に示したように、3次ターゲット27p2がプラズマ化し、EUV光251が生成され得る。
 エネルギセンサ52は、EUV光251のエネルギを検出し、EUV光生成制御部5にその検出値を出力してもよい。
 次に、図11の(E)に示したように、遅延回路53からプローブレーザ装置30に、プローブパルス発光トリガTG2を出力してもよい。プローブレーザ装置30にプローブパルス発光トリガTG2が入力されると、プローブパルスレーザ光31Pが出力され、図11の(K)に示したように、プラズマ25aにプローブパルスレーザ光31Pが照射され得る。
 プラズマ25aからのプローブパルスレーザ光31Pのトムソン散乱光31Tは、スペクトル計測装置140の波長フィルタ150の入射スリット151に入射し得る。分光器130の入射スリット131には、波長フィルタ150によってプローブパルスレーザ光31Pの波長λ0と略同一波長の所定波長の光の透過が抑制された光が入射され得る。ICCDカメラ135の受光面には、入射スリット131の回折像が結像し得る。
 次に、図11の(F)に示したように、遅延回路53からICCDカメラ135にシャッタ信号S2を出力してもよい。ICCDカメラ135にシャッタ信号S2が入力されると、シャッタ信号S2のパルス幅の時間だけシャッタ開状態となり、その時間の画像が計測され得る。回折光は、波長によって、回折角度が異なるので、ICCDカメラ135の受光面上に、シャッタ信号S2が入力された時間内のトムソン散乱光31Tのイオン項のスペクトル波形が計測され得る。ICCDカメラ135は、計測された結果を画像データとしてEUV光生成制御部5に出力してもよい。
 ここで、第1及び第2のプリパルス発光トリガTGp1,TGp2の遅延時間は、ターゲット27に第1のプリパルスレーザ光31p1が照射されてから第2のプリパルスレーザ光31p2が照射されるまでの時間ΔTd1-2を可変できるように調節されてもよい。第1のプリパルス発光トリガTGp1及びメインパルス発光トリガTGm1の遅延時間は、ターゲット27に第1のプリパルスレーザ光31p1が照射されてからメインパルスレーザ光31Mが照射されるまでの時間ΔTd1-3を可変できるように調節されてもよい。
 さらに、プローブパルス発光トリガTG2とシャッタ信号S2とのタイミングは、プラズマ25aを計測したい時間に合わせて調節されてもよい。
(トムソン散乱光31Tのスペクトル波形の計測結果)
 図13~図15を参照して、トムソン散乱光31Tのイオン項のスペクトル波形の計測結果の例を説明する。図13は、EUV光251の発光状態の画像を模式的に示している。図14は、トムソン散乱光31Tのイオン項のスペクトル画像を模式的に示している。図14において、縦方向は位置、横方向は波長を示す。図15は、図14の位置P11,P12,P13のそれぞれの位置におけるトムソン散乱光31Tのイオン項のスペクトル波形を模式的に示している。図15に示したように、プローブパルスレーザ光31Pの波長λ0付近は波長フィルタ150による迷光低減波長領域となり得る。
 これらの図には、ターゲット27に少なくとも1つのプリパルスレーザ光を照射し、所定時間後に、拡散したターゲット27にメインパルスレーザ光31Mを照射することによってターゲット27をプラズマ化してEUV光251を生成した時の測定結果を示す。プローブパルスレーザ光31Pは、ターゲット27にメインパルスレーザ光31Mが照射されて、プラズマ化した後の所定の時間にプラズマ25aに照射している。
 図15において、イオン項のスペクトル波形の2つのピーク波長を短波長側から、それぞれλ1とλ2とし、その平均値λav(=(λ1+λ2)/2)を求めてもよい。
 図15において、実線の曲線は、プラズマパラメータからイオン項のスペクトルを計算し、図10の分光器130の装置関数をコンボリューション積分することによって、計算された曲線であってもよい。プラズマパラメータは、イオン価数Z、電子密度ne、電子温度Te、及びイオン密度Tiであってもよい。図15から分かるように、計算値である実線の曲線が、計測値に対して略一致している。
 上記のような計算を行うことによって、その計測時間とプラズマ25aの計測位置におけるプラズマパラメータを計算することができ得る。図15において、イオン項の2つのピーク波長の平均値λavがプローブパルスレーザ光31Pの波長λ0からずれているのは、イオンが移動することよる光のドプラー効果によって起こり得る。そこで、イオン項の2つのピーク波長の平均値λavから、イオンの移動方向と速度vを見積もることができ得る。光のドプラー効果を示す以下の(1)式から、イオンの速度vを求め得る。(1)式で、cは光速を示す。
 λav=λ0(1-v/c)/(1-v2/c20.5 ……(1)
 ここで、イオン項の2つのピーク波長の平均値λavとプローブパルスレーザ光31Pの波長λ0とが略一致する位置P12では、イオンはほとんど移動せずプラズマ25aの中心位置と考えられる。この中心位置よりも手前側の位置P11ではイオンはメインパルスレーザ光31Mの入射側に移動し、中心位置の下流側の位置P13では、イオンはメインパルスレーザ光31Mの進行方向に移動していると考えられる。
(4.3 作用)
 この第1の実施形態によれば、波長フィルタ150において入射スリット151の回折像を形成して、所定波長の光を遮蔽部材152aで遮蔽することによって、プローブパルスレーザ光31Pの波長λ0付近の迷光を抑制し得る。そして、迷光を抑制した光を分光器130によって分光することによって、トムソン散乱光31Tのイオン項のスペクトル波形を高精度に計測し得る。
(4.4 変形例)
 図6に示した実施形態では、波長フィルタ150において、2つのグレーティング143,144で2回回折させて、入射スリット151の回折像を結像させていたが、この例に限定されない。例えば、グレーティング143,144に対して大きさが2倍の1つのグレーティングを用い、コリメータ光学系142と集光光学系145とのレンズ焦点距離及び有効径を2倍にすることによって、略同様の性能を得ることができ得る。
 また、図11に示した制御タイミングの実施形態では、プローブパルスレーザ光31Pのパルス幅とシャッタ信号S2のパルス幅とを略同じにして同期させ得る。そして、プラズマ発光中にICCDカメラ135のシャッタ信号S2を出力して、トムソン散乱光31Tを計測し得る。この実施形態に限定されることなく、例えば、プローブパルスレーザ光31Pのパルス幅を長くして、ICCDカメラ135のシャッタ信号S2のパルス幅をプローブパルスレーザ光31Pのパルス幅よりも短くしてもよい。そして、シャッタ信号S2のタイミングを変化させてもよい。また、ICCDカメラ135のシャッタ信号S2のパルス幅をプローブパルスレーザ光31Pのパルス幅よりも長くしておいて、プローブパルスレーザ光31Pの照射タイミングを変化させて計測してもよい。
(ターゲット材料がGd、Tbの場合と分光器の高分解能化)
 図16は、分光器130の変形例として、装置関数の半値全幅を約10pmにし得る高分解能化された分光器130Aの一例を示している。分光器130Aは、図6に示した分光器130の構成に対してさらに、グレーティング133と略同じスペックのグレーティング136が追加された構成であってもよい。グレーティング136は、グレーティング133と集光光学系134との間の光路上に配置されていてもよい。
 この分光器130Aでは、コリメータ光学系132と、グレーティング133及びグレーティング136と、集光光学系134とを介して、入射スリット131の回折像がICCDカメラ135の受光面に結像され得る。
 図17は、図16に示した分光器130Aによって計測され得るイオン項のスペクトル波形の一例を模式的に示している。図17において、横軸はプローブパルスレーザ光31Pの波長λ0を中心波長とする差波長Δλ、縦軸は信号強度であってもよい。図17には、プラズマパラメータから理論的に求められるイオン項のスペクトル波形に、半値全幅が約10pmの装置関数をコンボリューション積分することによって得られたスペクトル波形が示されている。図17には、ターゲット27の材料がスズ(Sn)、テルビウム(Tb)及びガドリニウム(Gd)の場合におけるスペクトル波形を示す。ターゲット27の材料がテルビウム及びガドリニウムの場合におけるスペクトル波形は略一致している。図17において、ターゲット27の材料がテルビウム及びガドリニウムの場合におけるイオン温度Teは100eV、価数Zは18として計算している。ターゲット27の材料がスズの場合におけるイオン温度Teは40eV、価数Zは10として計算している。
 テルビウムとガドリニウムは、6.XnmのEUV光251を生成する材料として注目されている。ここで、6.Xnmは6.7nm付近の波長であってもよい。この場合は、スズの場合よりもイオン項として計測される2つのピーク波長の差Δλpが広いので、本開示のスペクトル計測装置140によって、トムソン散乱光31Tのイオン項を計測し得る。
[5.第2の実施形態](トムソン散乱計測システムを含むEUV光生成システム)
(5.1 構成)
(5.1.1 システムの全体構成)
 図18は、本開示の第2の実施形態として、トムソン散乱計測システムを含むEUV光生成システムの一構成例を概略的に示している。なお、以下では図6の構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
 図18に示したように、ドライブパルスレーザ光31Dの光路とプローブパルスレーザ光31Pの光路とを略一致させるように合波するダイクロイックミラー344が配置されていてもよい。これにより、1つのウインドウ21からチャンバ2の内部にドライブパルスレーザ光31Dとプローブパルスレーザ光31Pとを略同軸で入射させるようにしてもよい。ダイクロイックミラー344は、ダイヤモンド基板からなり、表面にプローブパルスレーザ光31Pを高反射し、ドライブパルスレーザ光31Dを高透過する膜がコートされていてもよい。ウインドウ21は、ダイヤモンド基板からなり、表面にドライブパルスレーザ光31Dとプローブパルスレーザ光31Pとの反射を抑制する膜がコートされていてもよい。
 ドライブレーザ装置3Dとダイクロイックミラー344との間の光路上には、高反射ミラー341,342が配置されていてもよい。プローブレーザ装置30とダイクロイックミラー344との間の光路上には、高反射ミラー343と、ビーム調節器179とが配置されていてもよい。ビーム調節器179は凹レンズと凸レンズとを含み、それらのレンズ間の距離を調節することによって、プローブパルスレーザ光31Pのプラズマ生成領域25におけるビーム径を調節できるように構成されていてもよい。
 チャンバ2は、レーザ集光光学系22aと、プレート82と、XYZ軸ステージ84とを含んでもよい。さらに、チャンバ2は、EUV集光ミラー23と、ミラーホルダ81と、ウインドウ21と、ターゲット回収部28とを含んでもよい。ウインドウ21は、チャンバ2の内壁にシールして固定されてもよい。チャンバ2には、ターゲット供給部26と、ターゲット検出装置40とが取り付けられてもよい。
 チャンバ2にはまた、プラズマ25aのトムソン散乱光31Tを計測するための、ファイバ入力光学系153がプラズマ生成領域25に向けて取り付けられていてもよい。トムソン散乱光31Tは、ファイバ入力光学系153から光ファイバ154とファイバ出力光学系155とを介してスペクトル計測装置140に入力されてもよい。ファイバ入力光学系153は、ウインドウと転写光学系とを含み、トムソン散乱光31Tによるプラズマ25aの像を光ファイバ154の入射スリーブの端面に結像するようにしてもよい。光ファイバ154は、複数本の光ファイバを束ねたバンドルファイバであってもよい。光ファイバ154から出力された光によってスペクトル計測装置140の入射スリット151が照明されるように、ファイバ出力光学系155が配置されていてもよい。このファイバ出力光学系155は集光レンズを含んでもよい。この集光レンズは、光ファイバ154の出力スリーブの端面から出たトムソン散乱光31Tによって、入射スリット151が照明されるように配置されてもよい。
 レーザ集光光学系22aは、プレート83と、ホルダ223と、ホルダ224と、軸外放物面ミラー221と、平面ミラー222とを含んでいてもよい。軸外放物面ミラー221はホルダ223によってプレート83に保持されてもよい。平面ミラー222はホルダ224によってプレート83に保持されてもよい。軸外放物面ミラー221及び平面ミラー222によって反射されたドライブパルスレーザ光31Dとプローブパルスレーザ光31Pとがプラズマ生成領域25で集光するように、これらのミラーの位置及び姿勢が保持されてもよい。
 プレート82はチャンバ2の内部で、壁に固定されていてもよい。EUV集光ミラー23は、Z軸を中心とする回転楕円面のミラーであってもよい。EUV集光ミラー23は、回転楕円面の第1焦点が、プラズマ生成領域25と略一致するようにミラーホルダ81を介して、プレート82に固定されていてもよい。EUV集光ミラー23の中央部には、ドライブパルスレーザ光31Dとプローブパルスレーザ光31Pとが通過するための貫通孔24があってもよい。
 平面ミラー222及び軸外放物面ミラー221との反射面には、ドライブパルスレーザ光31Dとプローブパルスレーザ光31Pとを高反射する膜がコーティングされていてもよい。EUV集光ミラー23の反射表面には、Mo/Siの多層膜がコーティングされていてもよい。
 チャンバ2において、ターゲット27の軌道上には、ターゲット27の通過タイミングを計測するターゲット検出装置40が配置されていてもよい。ターゲット検出装置40は、ターゲットセンサ4と、光源部45とを含んでいてもよい。光源部45は、光源46と、照明光学系47とを含んでいてもよい。ターゲット供給部26のノズル62とプラズマ生成領域25との間の軌道Ya上の所定位置P1のターゲット27を照明するように、光源部45を配置してもよい。ターゲットセンサ4は、光センサ41と、受光光学系42とを含んでいてもよい。ターゲットセンサ4は、光源部45から出力された照明光を受光するように配置してもよい。
 ターゲットセンサ4と光源部45とは、ターゲット27の軌道Yaを挟んで互いに反対側に配置されていてもよい。チャンバ2にはウインドウ21a及びウインドウ21bが取り付けられていてもよい。ウインドウ21aは、光源部45とターゲット27の軌道Yaとの間に位置されていてもよい。光源部45は、ウインドウ21aを介してターゲット27の軌道Yaの所定位置P1に光を集光してもよい。ウインドウ21bは、ターゲット27の軌道Yaとターゲットセンサ4との間に位置されていてもよい。ターゲットセンサ4によって検出されるターゲット27の検出位置は、光源部45による光の集光位置とほぼ一致し得る。ターゲットセンサ4は、ターゲット27の検出信号として通過タイミング信号Tm1を出力してもよい。通過タイミング信号Tm1は、ターゲット27の供給タイミングを示すタイミング信号であってもよい。ターゲットセンサ4から出力された通過タイミング信号Tm1は、EUV光生成制御部5に入力されてもよい。そして、通過タイミング信号Tm1は、EUV光生成制御部5を介して、トリガ信号TG0として遅延回路53に入力されてもよい。
 EUV光生成制御部5には、EUV光251の生成を指示する生成信号が、外部装置としての露光装置6の露光装置制御部6aから入力されてもよい。EUV光生成制御部5は、記憶部51を備えていてもよい。記憶部51は、後述する図23に示すような露光時の条件パラメータやプラズマパラメータのデータ等を記憶してもよい。EUV光生成制御部5は、ドライブレーザ装置3DにデータDt1を送信するようにドライブレーザ装置3Dに接続されていてもよい。このデータDt1は、例えば、ドライブレーザ装置3Dの目標パルスエネルギ、パルス幅、及びプラズマ生成領域25のビーム径等のようなビームパラメータであってもよい。EUV光生成制御部5は、ターゲット供給部26にデータDt2を送信するようにターゲット供給部26に接続されていてもよい。このデータDt2は、例えば、ターゲット径等のようなターゲットパラメータであってもよい。
(5.1.2 ドライブレーザ装置の構成)
 図19は、図18に示したEUV光生成システムにおけるドライブレーザ装置3Dの一構成例を概略的に示している。なお、以下では図8の構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
 ドライブレーザ装置3Dは、ビーム調節器171,172,173のそれぞれの凹レンズ178aに1軸ステージが追加された構成であってもよい。ビーム調節器171,172におけるそれぞれのレンズ間隔を1軸ステージで調節することにより、ターゲット27に照射される、第1及び第2のプリパルスレーザ光31p1,31p2のプラズマ生成領域25におけるそれぞれのビーム径を自動で調節できる構造となっていてもよい。また、ビーム調節器173におけるレンズ間隔を1軸ステージで調節することにより、メインパルスレーザ光31Mのプラズマ生成領域25におけるビーム径を自動で調節できる構造となっていてもよい。
 ドライブレーザ装置3Dは、ドライブレーザ制御部54を含んでいてもよい。ドライブレーザ制御部54は、EUV光生成制御部5から出力されたデータDt1を受信してもよい。そして、ドライブレーザ制御部54は、第1及び第2のプリパルスレーザ光31p1,31p2、並びにメインパルスレーザ光31Mのそれぞれのビームパラメータのデータに基づく制御を行ってもよい。ビームパラメータは、後述する図23に示すようなパルスエネルギ、パルス幅、及びターゲット27の照射位置でのビーム径等のデータであってもよい。ドライブレーザ制御部54は、上記ビームパラメータのデータに基づいて、第1及び第2のプリパルスレーザ装置3p1,3p2、並びにメインパルスレーザ装置3Mと、ビーム調節器171,172,173とのそれぞれを制御してもよい。
(5.2 動作)
 図20は、EUV光生成制御部5による制御タイミングの一例を示すタイミングチャートである。なお、図20の(A)~(F)において、縦軸は信号レベルであってもよい。図20の(G)~(I),(K),(L)において、縦軸は光の強度であってもよい。図20の(J)において、縦軸はプラズマ25aの密度または温度であってもよい。
 図20において、図11のタイミングチャートと異なる点は、図11の(A)のターゲット出力信号S1に代えて、ターゲット検出装置40からの通過タイミング信号Tm1に基づいて、ドライブレーザ装置3Dの発光トリガの出力タイミングを制御している点である。その他の制御タイミングは、図11と略同様であってもよい。
 ターゲット検出装置40において、光源部45からの照明光によってターゲット27が照明されてもよい。ターゲットセンサ4は、光源部45から出力された照明光を受光し得る。チャンバ2内でターゲット27が所定位置P1を通過する際に照明光の一部を遮蔽し、ターゲットセンサ4が受光する光強度が低下し得る。この光強度の変化をターゲットセンサ4の光センサ41により検出してターゲット27の検出信号としてもよい。光センサ41は、検出信号を通過タイミング信号Tm1として出力し得る。ターゲットセンサ4は、1つのターゲット27を検出する毎に、通過タイミング信号Tm1として1つのパルス信号を出力してもよい。通過タイミング信号Tm1は、EUV光生成制御部5に入力され得る。
 EUV光生成制御部5は、通過タイミング信号Tm1に基づいて、遅延回路53に、各種の信号の遅延時間を示す遅延データDt0を出力してもよい。EUV光生成制御部5はまた、通過タイミング信号Tm1に基づいて、遅延回路53に、各種の信号が所定の遅延時間で生成されるようにトリガ信号TG0を出力してもよい。各種の信号は、プローブパルス発光トリガTG2、第1のプリパルス発光トリガTGp1、第2のプリパルス発光トリガTGp2、メインパルス発光トリガTGm1及びシャッタ信号S2を含んでもよい。
 このEUV光生成システムでは、チャンバ2の内部にドライブパルスレーザ光31Dとプローブパルスレーザ光31Pとが略同軸で入射し得る。プローブレーザ装置30にプローブパルス発光トリガTG2が入力されると、プローブパルスレーザ光31Pが出力され、図20の(K)に示したように、プラズマ25aにプローブパルスレーザ光31Pが照射され得る。プラズマ25aからのプローブパルスレーザ光31Pのトムソン散乱光31Tは、ファイバ入力光学系153と光ファイバ154とファイバ出力光学系155とを介して、スペクトル計測装置140の入射スリット151に入射し得る。スペクトル計測装置140は、ICCDカメラ135によって、シャッタ信号S2のパルスに同期して、トムソン散乱光31Tのイオン項のスペクトルを計測し得る。
 EUV光生成制御部5は、エネルギセンサ52の検出値と、トムソン散乱光31Tのイオン項のスペクトル波形から計算されたプラズマパラメータとに基づいて、以下で説明するような、露光時の条件パラメータを設定する制御を行ってもよい。
 図21は、図18に示したEUV光生成システムにおいてトムソン散乱計測システムを用いて露光時の条件パラメータを設定する制御の流れの一例を概略的に示すメインフローチャートである。
 EUV光生成制御部5はまず、データ番号Nの値をN=1に設定してもよい(ステップS111)。次に、EUV光生成制御部5は、データ番号N=1の条件パラメータを初期パラメータとして設定してもよい(ステップS112)。
 図22は、ステップS112の処理の詳細を示すサブのフローチャートである。EUV光生成制御部5は、記憶部51からデータ番号N=1の条件パラメータを読み出してもよい(ステップS131)。次に、EUV光生成制御部5は、読み出したデータ番号N=1の条件パラメータを初期パラメータとして設定し(ステップS132)、図21のメインのフローに戻ってもよい。
 図23は、初期の条件パラメータの一例を概略的に示している。EUV光生成制御部5は、記憶部51における図23のようなテーブルに、各データ番号について、条件パラメータのデータを格納してもよい。このデータ番号の数は、必要な試験の条件の数だけテーブルに記憶しておいてもよい。条件パラメータには、第1のプリパルスレーザ光31p1、第2のプリパルスレーザ光31p2及びメインパルスレーザ光31Mのそれぞれのビームパラメータが含まれていてもよい。
 第1のプリパルスレーザ光31p1のビームパラメータには、パルスエネルギEp1、パルス幅ΔTp1、及びビーム径Dp1のデータが含まれていてもよい。第2のプリパルスレーザ光31p2のビームパラメータには、パルスエネルギEp2、パルス幅ΔTp2、ビーム径Dp2、及び第1のプリパルスレーザ光31p1に対する遅延時間ΔT1-2のデータが含まれていてもよい。メインパルスレーザ光31Mのビームパラメータには、パルスエネルギEm、パルス幅ΔTm、ビーム径Dm、及び第1のプリパルスレーザ光31p1に対する遅延時間ΔT1-3のデータが含まれていてもよい。
 条件パラメータにはまた、ターゲット27のパラメータが含まれていてもよい。ターゲット27のパラメータには、ターゲット径Ddlのデータが含まれていてもよい。
 次に、EUV光生成制御部5は、図21のメインのフローに戻り、ターゲット供給装置70にターゲット出力信号S1を出力し、ターゲット供給装置70にターゲット27の生成を開始させてもよい(ステップS113)。次に、EUV光生成制御部5は、エネルギセンサ52の検出値に基づいて、EUV光251が生成されたか否かを判断してもよい(ステップS114)。EUV光生成制御部5は、EUV光251が生成されていないと判断した場合(ステップS114;N)には、ステップS114の処理を繰り返してもよい。
 EUV光生成制御部5は、EUV光251が生成されたと判断した場合(ステップS114;Y)には、次に、エネルギセンサ52の検出値に基づいて、EUV光251のパルスエネルギの値Eeuvを取得してもよい(ステップS115)。次に、EUV光生成制御部5は、パルスエネルギEeuvとメインパルスレーザ光31MのパルスエネルギEmとから、変換効率CE(=Eeuv/Em)を計算してもよい(ステップS116)。
 次に、EUV光生成制御部5は、トムソン散乱光31Tのイオン項のスペクトル波形データの取得と、プラズマパラメータの計算とを行ってもよい(ステップS117)。
 図24は、ステップS117の処理の詳細を示すサブのフローチャートである。EUV光生成制御部5は、スペクトル計測装置140のICCDカメラ135の画像データから、トムソン散乱光31Tのイオン項のスペクトル波形データを取得してもよい(ステップS141)。次に、EUV光生成制御部5は、イオン項のスペクトル波形からプラズマパラメータを計算し(ステップS142)、図21のメインのフローに戻ってもよい。プラズマパラメータの計算は、イオン項のスペクトル波形と略一致する理論スペクトル波形を計算することで行ってもよい。
 次に、EUV光生成制御部5は、図21のメインのフローに戻り、記憶部51のデータ番号Nのテーブルに試験結果のデータを書き込んでもよい(ステップS118)。
 図25は、試験結果のデータの一例を概略的に示している。EUV光生成制御部5は、記憶部51における図25のようなテーブルに、各データ番号について、試験結果のデータ、例えば、プラズマパラメータ、EUV光251のパルスエネルギEeuv、及び変換効率CEのデータ等を書き込んでもよい。プラズマパラメータには、イオンの価数Z、電子密度ne、電子温度Te、及びイオン温度Tiが含まれていてもよい。
 次に、EUV光生成制御部5は、記憶部51に格納されている条件パラメータのデータすべてについて、試験を終了したか否かを判断してもよい(ステップS119)。EUV光生成制御部5は、すべての試験を終了していないと判断した場合(ステップS119;N)には、データ番号Nの値をN=N+1にしてもよい(ステップS120)。次に、EUV光生成制御部5は、データ番号Nの条件パラメータに設定し(ステップS121)、ステップS113の処理に戻ってもよい。
 EUV光生成制御部5は、すべての試験を終了したと判断した場合(ステップS119;Y)、記憶部51のテーブルデータを読み出し、変換効率CEが最大となる最大CEのプラズマパラメータを読み出してもよい(ステップS122)。
 図26は、ステップS122の処理の詳細を示すサブのフローチャートである。EUV光生成制御部5は、テーブルデータから変換効率CEが最大となる最大CEのデータ番号Ncemaxを抽出してもよい(ステップS151)。次に、EUV光生成制御部5は、記憶部51のテーブルデータから、データ番号Ncemaxのプラズマパラメータを読み出してもよい(ステップS152)。
 次に、EUV光生成制御部5は、電子密度neと電子温度Teが許容範囲に入っているか否かを判断してもよい。すなわち、EUV光生成制御部5は、nemin≦ne≦nemax、かつ、Temin≦Te≦Temaxであるか否かを判断してもよい(ステップS153)。EUV光生成制御部5は、許容範囲に入っていると判断した場合(ステップS153;Y)、F=1として(ステップS154)、図21のメインのフローに戻ってもよい。EUV光生成制御部5は、許容範囲に入っていないと判断した場合(ステップS153;N)、F=0として(ステップS155)、図21のメインのフローに戻ってもよい。ここで、Fはプラズマパラメータが最適範囲内に入っているか否かを示すパラメータ値であってもよい。
 次に。EUV光生成制御部5は、図21のメインのフローに戻り、上述のパラメータ値Fの値に基づいて、プラズマパラメータが最適範囲に入っているか否かを判断してもよい(ステップS123)。プラズマパラメータが最適範囲に入っていないと判断した場合(F=0、ステップS123;N)、EUV光生成制御部5は、条件パラメータのテーブルを書き換え(ステップS124)、ステップS111の処理に戻ってもよい。
 図27は、ステップS124の処理の詳細を示すサブのフローチャートである。EUV光生成制御部5は、データ番号Ncemaxの時の電子密度neに応じて遅延時間ΔT1-2の範囲を変更してもよい。または、EUV光生成制御部5は、ターゲット径の範囲の変更をしてもよい(ステップS161)。例えば、EUV光生成制御部5は、変換効率CEが最大となる時の電子密度neが目標の密度より低い場合は遅延時間(ΔT1-2,ΔT1-3)の時間を短くするように遅延時間の範囲を変更してもよい。また、電子密度neが目標の密度より高い場合は遅延時間(ΔT1-2,ΔT1-3)を長くするように遅延時間の範囲を変更してもよい。または、EUV光生成制御部5は、電子密度neが目標の密度よりも高い場合はターゲット径を小さくし、電子密度neが目標の密度よりも低い場合はターゲット径を大きくするように、ターゲット径の範囲の変更をしてもよい。
 次に、EUV光生成制御部5は、データ番号Ncemaxの時の電子温度Teに応じて、ドライブパルスレーザ光31Dの条件パラメータの範囲を変更してもよい(ステップS162)。例えば、EUV光生成制御部5は、変換効率CEが最大となる時の電子温度Teが目標の温度よりも低い場合は、メインパルスレーザ光31Mのパルスエネルギが高くなるように条件パラメータの範囲を変更してもよい。EUV光生成制御部5はまた、変換効率CEが最大となる時の電子温度Teが目標の温度よりも高い場合は、メインパルスレーザ光31Mのパルスエネルギが低くなるように条件パラメータの範囲を変更してもよい。
 次に、EUV光生成制御部5は、記憶部51のテーブルの条件パラメータのデータをプラズマパラメータの計測結果に応じた範囲のデータに置き換えて(ステップS163)、図21のメインのフローに戻ってもよい。
 図28は、条件パラメータの書き換え内容の一例を概略的に示している。計測項目として、電子密度ne、電子温度Te、及び空間分布(ne,Te)を含んでもよい。
 電子密度neの計測項目から得られる情報として、密度の情報、例えば密度不足、及び密度過多の情報が含まれていてもよい。電子温度Teの計測項目から得られる情報として、温度の情報、例えば加熱不足、及び加熱過大の情報が含まれていてもよい。空間分布(ne,Te)の計測項目から得られる情報として、ターゲット分布、及びビーム分布の情報、例えばビーム位置ずれ、及びビームの不均一性の情報が含まれていてもよい。
 電子密度neのフィードバックパラメータとして、ターゲット径と遅延時間ΔT1-2,ΔT1-3との情報が含まれていてもよい。また、電子温度Teのフィードバックパラメータとして、メインパルスレーザ光31Mのパルスエネルギ、パルス幅、及びビーム径の情報が含まれていてもよい。
 空間分布(ne,Te)のフィードバックパラメータとして、ターゲット位置と、集光ビームのプロファイルの変化と、ビーム位置とが含まれていてもよい。ターゲット位置は、例えばターゲット27の軌道の変化、及びターゲット27のスピードの変化の情報が含まれていてもよい。ビーム位置は、例えば照射タイミング、及びレーザの集光位置の変化の情報が含まれていてもよい。
 再び図21のメインのフローに戻って説明する。プラズマパラメータが最適範囲に入っていると判断した場合(F=1、ステップS123;Y)、EUV光生成制御部5は、記憶部51のテーブルデータから、変換効率CEが最大となる最大CEの場合の条件パラメータを読み出してもよい(ステップS125)。次に、EUV光生成制御部5は、最大CEの場合の条件パラメータを露光時の条件パラメータとして設定し(ステップS126)、処理を終了してもよい。
(5.3 作用)
 この第2の実施形態によれば、ターゲット27の通過タイミング信号Tm1に基づいて、第1及び第2のプリパルス発光トリガTGp1,TGp2、並びにメインパルス発光トリガTGm1のそれぞれのトリガを遅延させ得る。これによって、第1及び第2のプリパルスレーザ光31p1,31p2、並びにメインパルスレーザ光31Mのターゲット27への照射タイミングを高精度に制御し得る。
 また、オンデマンドではないターゲット27を出力するターゲット供給装置70であっても、計測可能となり得る。この具体例としては、ノズル62をピエゾ素子で振動させることによってドロップレット状のターゲット27を生成するコンティニュアスジェット法のターゲット供給装置70でも適用可能となり得る。
 また、プローブパルスレーザ光31Pとドライブパルスレーザ光31Dとの光路軸を略一致させることで、図6におけるプローブパルスレーザ光31Pを入射させるウインドウ35や、プローブパルスレーザ光31Pをデリバリする光学系を必要としなくなり得る。また、レーザ集光光学系22aの集光位置を変化させても、同様にプローブパルスレーザ光31Pのプラズマ照射位置が変化するので、プローブパルスレーザ光31Pの光軸の調整をほとんど必要としなくなり得る。
 また、光ファイバ154を介して、プラズマ25aのトムソン散乱光31Tをスペクトル計測装置140に入射しているので、アライメントが容易となり得る。また、トムソン散乱光31Tの計測を行う時にだけ、光ファイバ154を介してスペクトル計測装置140を取り付けて計測を行うことが可能となり得る。
(5.4 変形例)
 図18の実施形態では、光ファイバ154を介してトムソン散乱光31Tをスペクトル計測装置140に入射させるようにしたが、図6の実施形態と略同様に、光ファイバ154を介さずに入射させるようにしてもよい。
 図19の実施形態では、ドライブレーザ装置3Dの構成として、第1のプリパルスレーザ装置3p1と、第2のプリパルスレーザ装置3p2と、メインパルスレーザ装置3Mの実施形態を示したが、この実施形態に限定されない。例えば、ドライブレーザ装置3Dがメインパルスレーザ装置3Mのみであってもよい。また例えば、ドライブレーザ装置3Dがメインパルスレーザ装置3Mと第1のプリパルスレーザ装置3p1のみであってもよい。また例えば、プリパルスレーザ装置3Pが3台以上あってもよい。
 また、プラズマ25aの空間的な分布を計測する場合は例えば、光ファイバ入射光学系153の入射スリーブを自動ステージ上に固定し、自動ステージで、入射スリーブを移動させて、それぞれの位置におけるイオン項のスペクトルを計測してもよい。さらに、Z軸方向の分布を一度に計測する場合は光ファイバ154がバンドルファイバであって、入力スリーブと出力スリーブとに縦方向に1本1本の光ファイバ154を並べてもよい。そして、入力スリーブの光ファイバ154が並ぶ方向とZ軸方向とを略一致させてもよい。出力スリーブの光ファイバ154が並ぶ方向が、スペクトル計測装置140の入射スリット151の長手方向と略一致するようにそれぞれのファイバ入力光学系153とファイバ出力光学系155とを配置してもよい。
[6.その他の実施形態]
(6.1 ターゲット径を制御可能なターゲット供給装置の実施形態)
(6.1.1 構成)
 図29は、ターゲット径を調節可能なターゲット供給装置70の実施形態の一例を概略的に示している。ターゲット供給装置70は、ターゲット供給部26と、圧力調節器65と、ピエゾ電源66と、ファンクションジェネレータ67と、ターゲット制御部71とを含んでいてもよい。
 ターゲット供給部26は、スズ等のターゲット材料69を貯蔵するタンク61と、ターゲット材料69を加熱するヒータ64と、ターゲット材料69をノズル孔62aから出力するノズル62と、ノズル62を振動させるピエゾ素子63とを含んでいてもよい。
 圧力調節器65は、不活性ガス供給源68からの圧力を所定の圧力に制御するために、タンク61と配管で接続されていてもよい。ファンクションジェネレータ67は、ピエゾ電源66を介して、ピエゾ素子63に所定のPM変調の関数の電圧を供給してもよい。
(6.1.2 動作)
 ターゲット制御部71は、タンク61内に貯蔵されたターゲット材料69を、ヒータ64によって所定の温度まで加熱する温度制御をしてもよい。ターゲット制御部71は、例えば、ターゲット材料69がスズである場合、融点である232℃以上の例えば250℃~290℃の所定の温度まで加熱する温度制御をしてもよい。
 ターゲット制御部71は、EUV光生成制御部5から目標となるターゲット径のデータDt2を受信してもよい。ターゲット制御部71は、目標のターゲット径となるような、ピエゾ素子63に印加する電圧波形を計算してもよい。ピエゾ素子63に印加する電圧は、例えば搬送波fc、及び変調波fmのPM変調の関数であってもよい。
 ターゲット制御部71は、EUV光生成制御部5からターゲット出力信号S1を受信すると、ノズル62のノズル孔62aから所定の速度でターゲット27となる噴流が出力される圧力となるように、圧力調節器65を制御してもよい。次に、ターゲット制御部71は、ファンクションジェネレータ67に、計算したPM変調の関数を示す制御信号を出力してもよい。ファンクションジェネレータ67は、ピエゾ電源66を介して、ピエゾ素子63にPM変調の関数の電圧を供給してもよい。これにより、ノズル62のノズル孔62aからターゲット材料69の液体ジェットが出力され得る。その液体ジェットにピエゾ素子63によって振動が伝達され、PM変調の搬送波fcで複数のドロップレット状のターゲット27が生成され得る。次に、複数のドロップレット状のターゲット27が変調波fmで結合して、1つのターゲット27となり得る。
 このようなターゲット供給装置70によれば、変調波fmを変化させることによって、ドロップレット状のターゲット27の結合の個数を変化させることができるので、ターゲット径を制御し得る。
(6.2 パルス幅を制御可能なレーザ装置の実施形態)
 図30は、パルス幅とパルスエネルギとを制御可能なレーザ装置の実施形態の一例を概略的に示す。ここでは、ドライブレーザ装置3Dから出力されたドライブパルスレーザ光31Dのパルス幅とパルスエネルギとを制御可能にする実施形態を説明する。
(6.2.1 構成)
 ドライブレーザ装置3Dは、Qスイッチを搭載したマスタオシレータ(MO)110と、光シャッタ120と、増幅器PA1とを含んでもよい。
 マスタオシレータ110は、CO2レーザ放電管113と、音響光学素子114と、光共振器と、高周波電源115と、音響光学素子ドライバ116とを含んでもよい。CO2レーザ放電管113は、CO2レーザガスを含み、1対の電極117a,117bと、2つのウインドウ118,119とを含んでもよい。1対の電極117a,117bは高周波電源115に接続されていてもよい。光共振器は、高反射ミラー111と、部分反射ミラー112とを含み、この共振器の光路上にCO2レーザ放電管113と、音響光学素子114とが配置されていてもよい。
 光シャッタ120は、ポッケルスセル121と、偏光子122と、ポッケルスセルドライバ123とを含んでいてもよい。ポッケルスセル121と偏光子122は、マスタオシレータ110から出力されたパルスレーザ光の光路上に配置されていてもよい。
 増幅器PA1は、CO2レーザ放電管124と、高周波電源125とを含んでいてもよい。CO2レーザ放電管124は、光シャッタ120を通過したパルスレーザ光の光路上に配置されてもよい。CO2レーザ放電管124は、CO2レーザガスを含み、1対の電極126a,126bと、2つのウインドウ127,128とを含んでもよい。1対の電極126a,126bは高周波電源125に接続されていてもよい。
(6.2.2 動作)
 EUV光生成制御部5から、ドライブレーザ制御部54に、目標とするパルスエネルギと、目標とするパルス幅とのデータDt1が出力されてもよい。ドライブレーザ制御部54は、目標とするパルスエネルギとなるように、マスタオシレータ110の1対の電極117a,117bに高周波電源115を介して電圧を印加して、1対の電極117a,117b間で放電させて励起してもよい。
 ドライブレーザ制御部54はまた、目標とするパルスエネルギとなるように、増幅器PA1の1対の電極126a,126bに高周波電源125を介して電圧を印加して、1対の電極126a,126b間で放電させて励起してもよい。
 ドライブレーザ制御部54は、遅延回路53からドライブパルス発光トリガTG1を受信したら、Qスイッチとして機能するように、音響光学素子114を音響光学素子ドライバ116を介して制御してもよい。その結果、数百ns程度のパルスレーザ光が部分反射ミラー112から出力され得る。
 さらに、ドライブレーザ制御部54は、数百ns程度のパルスレーザ光が、目標とするパルス幅となるように光シャッタ120の開時間をポッケルスセルドライバ123を介して制御してもよい。光シャッタ120を通過したパルスレーザ光は、目標とするパルス幅に近い例えば数十nsの単パルスとなり得る。この単パルス化されたパルスレーザ光が、増幅器PA1を通過する際に増幅され得る。増幅器PA1で増幅されたパルスレーザ光は、目標とするパルスエネルギと目標とするパルス幅に近い特性になり得る。
 なお、増幅器PA1は、1台に限らず、複数の増幅器が配置されてもよい。また、このドライブレーザ装置3Dにパルスエネルギとパルス波形とを計測するモニタを配置して、目標のパルスエネルギと目標のパルス幅となるようにフィードバック制御してもよい。
(6.3 プローブパルスレーザ光をドライブパルスレーザ光に対して垂直に入射するトムソン散乱計測システムの実施形態)
 図31は、プローブパルスレーザ光31Pの入射方向の変形例を示している。図31に示したように、例えば、プローブパルスレーザ光31Pを、プラズマ生成領域25を含むXY平面を含む軸からプラズマ25aに照射してもよい。
(6.4 ICCDの実施形態)
 図32は、ICCDの一構成例を概略的に示している。
 ICCDカメラ135は、図32に示したようなICCD(Intensified CCD、イメージインテンシファイアCCD)を含んでいてもよい。ICCDは、イメージインテンシファイア180と、CCD190とを含んでいてもよい。イメージインテンシファイア180は、光の入射側から順に、入射窓181と、光電面182と、MCP(Micro Channel Plate)183と、蛍光面184と、ファイバオプティクスプレート185とを備えていてもよい。
 MCP183は、多数の細いチャンネルを含み、各チャンネルが電子増倍器を形成していてもよい。ファイバオプティクスプレート185は、多数の光ファイバを束ねた構造であってもよい。CCD190は、ファイバオプティクスプレート185の光の出射面側に配置されていてもよい。
 図33は、イメージインテンシファイア180の動作の一例を概略的に示している。
 イメージインテンシファイア180において、入射窓181に入射した光191は、光電面182によって電子192へと光電変換されてもよい。光電面182では、光191の光量に応じた複数の電子192を放出してもよい。光電面182から放出された各電子192は、光電面182とMCP183の入射面との間の電位に応じて加速され、MCP183の各チャンネルに入射してもよい。MCP183は、増倍された電子193を蛍光面184に向けて放出してもよい。蛍光面184は、入射した電子193の量に応じた光を出射してもよい。ファイバオプティクスプレート185は、蛍光面184から出射した光を増幅光194として出射面側に伝達してもよい。ここで、イメージインテンシファイア180のシャッタ機能は光電面182とMCP183の入射面との間の電位差を制御することによって可能となり得る。
 以上の原理により、イメージインテンシファイア180では、入射した光学像の位置情報を保った状態で光学像の輝度を増幅し得る。なお、ファイバオプティクスプレート185の代わりに、蛍光面184に形成された光学像をCCD190の撮像素子上に転写する転写レンズが配置されていてもよい。
[7.制御部のハードウエア環境]
 当業者は、汎用コンピュータ又はプログラマブルコントローラにプログラムモジュール又はソフトウエアアプリケーションを組み合わせて、ここに述べられる主題が実行されることを理解するだろう。一般的に、プログラムモジュールは、本開示に記載されるプロセスを実行できるルーチン、プログラム、コンポーネント、データストラクチャーなどを含む。
 図34は、開示される主題の様々な側面が実行され得る例示的なハードウエア環境を示すブロック図である。図34の例示的なハードウエア環境100は、処理ユニット1000と、ストレージユニット1005と、ユーザインターフェイス1010と、パラレルI/Oコントローラ1020と、シリアルI/Oコントローラ1030と、A/D、D/Aコンバータ1040とを含んでもよいが、ハードウエア環境100の構成は、これに限定されない。
 処理ユニット1000は、中央処理ユニット(CPU)1001と、メモリ1002と、タイマ1003と、画像処理ユニット(GPU)1004とを含んでもよい。メモリ1002は、ランダムアクセスメモリ(RAM)とリードオンリーメモリ(ROM)とを含んでもよい。CPU1001は、市販のプロセッサのいずれでもよい。デュアルマイクロプロセッサや他のマルチプロセッサアーキテクチャが、CPU1001として使用されてもよい。
 図34におけるこれらの構成物は、本開示において記載されるプロセスを実行するために、相互に接続されていてもよい。
 動作において、処理ユニット1000は、ストレージユニット1005に保存されたプログラムを読み込んで、実行してもよい。また、処理ユニット1000は、ストレージユニット1005からプログラムと一緒にデータを読み込んでもよい。また、処理ユニット1000は、ストレージユニット1005にデータを書き込んでもよい。CPU1001は、ストレージユニット1005から読み込んだプログラムを実行してもよい。メモリ1002は、CPU1001によって実行されるプログラム及びCPU1001の動作に使用されるデータを、一時的に保管する作業領域であってもよい。タイマ1003は、時間間隔を計測して、プログラムの実行に従ってCPU1001に計測結果を出力してもよい。GPU1004は、ストレージユニット1005から読み込まれるプログラムに従って、画像データを処理し、処理結果をCPU1001に出力してもよい。
 パラレルI/Oコントローラ1020は、遅延回路53、ターゲット供給装置70、及びICCDカメラ135等の、処理ユニット1000と通信可能なパラレルI/Oデバイスに接続されてもよく、処理ユニット1000とそれらパラレルI/Oデバイスとの間の通信を制御してもよい。シリアルI/Oコントローラ1030は、ドライブレーザ装置3D、メインパルスレーザ装置3M、プリパルスレーザ装置3P、第1のプリパルスレーザ装置3p1、及び第2のプリパルスレーザ装置3p2等の、処理ユニット1000と通信可能な複数のシリアルI/Oデバイスに接続されてもよく、処理ユニット1000とそれら複数のシリアルI/Oデバイスとの間の通信を制御してもよい。A/D、D/Aコンバータ1040は、アナログポートを介して、各種センサ、例えばエネルギセンサ52等のアナログデバイスに接続されてもよく、処理ユニット1000とそれらアナログデバイスとの間の通信を制御したり、通信内容のA/D、D/A変換を行ってもよい。
 ユーザインターフェイス1010は、操作者が処理ユニット1000にプログラムの停止や、割込みルーチンの実行を指示できるように、処理ユニット1000によって実行されるプログラムの進捗を操作者に表示してもよい。
 例示的なハードウエア環境100は、本開示におけるEUV光生成制御部5等の構成に適用されてもよい。当業者は、それらのコントローラが分散コンピューティング環境、すなわち、通信ネットワークを介して繋がっている処理ユニットによってタスクが実行される環境において実現されてもよいことを理解するだろう。本開示において、EUV光生成制御部5等は、イーサネット(登録商標)やインターネットといった通信ネットワークを介して互いに接続されてもよい。分散コンピューティング環境において、プログラムモジュールは、ローカル及びリモート両方のメモリストレージデバイスに保存されてもよい。
[8.その他]
 上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
 本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書、及び添付の特許請求の範囲に記載される不定冠詞「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。

Claims (16)

  1.  チャンバと、
     前記チャンバの内部にターゲットを供給するターゲット供給装置と、
     ドライブパルスレーザ光を前記ターゲットに照射することによりプラズマを発生させてEUV光を生成するドライブレーザ装置と、
     プローブパルスレーザ光を前記プラズマに照射することによりトムソン散乱光を生成するプローブレーザ装置と、
     前記トムソン散乱光のイオン項のスペクトル波形を計測する分光器と、
     前記分光器の前段に配置され、前記トムソン散乱光を含む光のうち前記プローブパルスレーザ光の波長と略同一波長の所定波長の光が前記分光器へと入射するのを抑制する波長フィルタと
     を備えるEUV光生成システム。
  2.  前記EUV光のエネルギを検出するエネルギセンサ
     をさらに備える
     請求項1に記載のEUV光生成システム。
  3.  前記トムソン散乱光のイオン項のスペクトル波形から前記プラズマの特性を示すプラズマパラメータを計算し、前記エネルギセンサの検出値と前記プラズマパラメータとに基づいて、前記ドライブパルスレーザ光の特性が最適化されるよう、前記ドライブレーザ装置を制御する制御部
     をさらに備える
     請求項2に記載のEUV光生成システム。
  4.  前記ドライブパルスレーザ光の特性は、前記ドライブパルスレーザ光のパルスエネルギ、パルス幅、ビーム径、及び前記ターゲットへの照射タイミングのうち、少なくとも1つを含む
     請求項3に記載のEUV光生成システム。
  5.  前記ドライブパルスレーザ光は、前記ターゲットを拡散させるプリパルスレーザ光と、拡散された前記ターゲットをプラズマ化するメインパルスレーザ光とを含み、
     前記ドライブレーザ装置は、前記プリパルスレーザ光を出力するプリパルスレーザ装置と、前記メインパルスレーザ光を出力するメインパルスレーザ装置とを含み、
     前記制御部は、前記エネルギセンサの検出値と前記プラズマパラメータとに基づいて、前記プリパルスレーザ光、及び前記メインパルスレーザ光のうち少なくとも一方の特性が最適化されるよう、前記プリパルスレーザ装置、及びメインパルスレーザ装置のうち少なくとも一方を制御する
     請求項3に記載のEUV光生成システム。
  6.  前記トムソン散乱光のイオン項のスペクトル波形から前記プラズマの特性を示すプラズマパラメータを計算し、前記エネルギセンサの検出値と前記プラズマパラメータとに基づいて、前記ターゲットのターゲット径が最適化されるよう、前記ターゲット供給装置を制御する制御部
     をさらに備える
     請求項2に記載のEUV光生成システム。
  7.  前記波長フィルタによって抑制される光の波長幅Δλsと、前記トムソン散乱光のイオン項として計測される2つのピーク波長の差Δλpとが、
     Δλs/Δλp≦50/60
     の関係を満たす
     請求項1に記載のEUV光生成システム。
  8.  前記分光器の装置関数の半値全幅Δλfと、前記2つのピーク波長の差Δλpとが、
     Δλf/Δλp≦18/60
     の関係を満たす
     請求項7に記載のEUV光生成システム。
  9.  前記ターゲットは、Sn、Gd、及びTbのいずれかを含む
     請求項1に記載のEUV光生成システム。
  10.  前記波長フィルタは、
     前記トムソン散乱光を含む光を、波長に応じて空間的に分散させる分散光学系と、
     前記分散光学系による分散光のうち前記所定波長の光を遮蔽する遮蔽部材と
     を含む
     請求項1に記載のEUV光生成システム。
  11.  前記波長フィルタは、
     前記遮蔽部材により前記所定波長の光が遮蔽された後の前記分散光を前記波長に応じて空間的に逆分散させる逆分散光学系
     をさらに含む
     請求項10に記載のEUV光生成システム。
  12.  前記分散光学系は、前記トムソン散乱光を含む光を波長に応じて回折させる分散グレーティングを含む
     請求項10に記載のEUV光生成システム。
  13.  前記逆分散光学系は、前記遮蔽部材により前記所定波長の光が遮蔽された後の前記分散光を前記波長に応じて回折させる逆分散グレーティングを含む
     請求項11に記載のEUV光生成システム。
  14.  チャンバの内部にターゲットを供給することと、
     ドライブパルスレーザ光を前記ターゲットに照射することによりプラズマを発生させてEUV光を生成することと、
     前記プラズマにプローブパルスレーザ光を照射することによってトムソン散乱光を生じさせ、このトムソン散乱光のイオン項のスペクトル波形を分光器によって計測することと、
     前記分光器の前段において、前記トムソン散乱光を含む光のうち前記プローブパルスレーザ光の波長と略同一波長の所定波長の光が前記分光器へと入射するのを抑制することと
     を含むEUV光生成方法。
  15.  プローブパルスレーザ光をプラズマに照射することによりトムソン散乱光を生成するプローブレーザ装置と、
     前記トムソン散乱光のイオン項のスペクトル波形を計測する分光器と、
     前記分光器の前段に配置され、前記トムソン散乱光を含む光のうち前記プローブパルスレーザ光の波長と略同一波長の所定波長の光が前記分光器へと入射するのを抑制する波長フィルタと
     を備えるトムソン散乱計測システム。
  16.  前記プラズマは、ターゲットにドライブパルスレーザ光を照射することによって生成される
     請求項15に記載のトムソン散乱計測システム。
PCT/JP2015/051874 2015-01-23 2015-01-23 Euv光生成システム及びeuv光生成方法、並びにトムソン散乱計測システム WO2016117118A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/051874 WO2016117118A1 (ja) 2015-01-23 2015-01-23 Euv光生成システム及びeuv光生成方法、並びにトムソン散乱計測システム
JP2016570453A JPWO2016117118A1 (ja) 2015-01-23 2015-01-23 Euv光生成システム及びeuv光生成方法、並びにトムソン散乱計測システム
US15/622,139 US20170280545A1 (en) 2015-01-23 2017-06-14 Extreme ultraviolet light generating system, extreme ultraviolet light generating method, and thomson scattering measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/051874 WO2016117118A1 (ja) 2015-01-23 2015-01-23 Euv光生成システム及びeuv光生成方法、並びにトムソン散乱計測システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/622,139 Continuation US20170280545A1 (en) 2015-01-23 2017-06-14 Extreme ultraviolet light generating system, extreme ultraviolet light generating method, and thomson scattering measurement system

Publications (1)

Publication Number Publication Date
WO2016117118A1 true WO2016117118A1 (ja) 2016-07-28

Family

ID=56416683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051874 WO2016117118A1 (ja) 2015-01-23 2015-01-23 Euv光生成システム及びeuv光生成方法、並びにトムソン散乱計測システム

Country Status (3)

Country Link
US (1) US20170280545A1 (ja)
JP (1) JPWO2016117118A1 (ja)
WO (1) WO2016117118A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646839A (zh) * 2017-01-24 2017-05-10 中国科学院西安光学精密机械研究所 深紫外谱段离轴四反光学成像系统
WO2018134861A1 (ja) * 2017-01-17 2018-07-26 ギガフォトン株式会社 トムソン散乱計測システム、及びeuv光生成システム
JPWO2018083727A1 (ja) * 2016-11-01 2019-09-19 ギガフォトン株式会社 極端紫外光生成装置
KR20190128212A (ko) * 2017-03-20 2019-11-15 에이에스엠엘 네델란즈 비.브이. 극자외 광원에 대한 계측 시스템
TWI713413B (zh) * 2017-09-20 2020-12-11 荷蘭商Asml荷蘭公司 輻射源
WO2023238928A1 (ja) * 2022-06-10 2023-12-14 国立大学法人北海道大学 プラズマ計測装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10811145B2 (en) * 2016-01-08 2020-10-20 Industry-University Cooperation Foundation Sogang University Plasma diagnosis system using multiple-path Thomson scattering
US11266002B2 (en) 2017-10-26 2022-03-01 Asml Netherlands B.V. System for monitoring a plasma
KR102666038B1 (ko) * 2018-02-28 2024-05-13 에이에스엠엘 네델란즈 비.브이. 방사선 소스
TWI821437B (zh) * 2018-10-26 2023-11-11 荷蘭商Asml荷蘭公司 用於監控光發射之系統、euv光源、及控制euv光源之方法
CN111741580B (zh) * 2020-07-22 2022-05-17 中国科学院高能物理研究所 一种高功率波长可调的极紫外光源的产生装置及方法
US20220229371A1 (en) * 2021-01-15 2022-07-21 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for monitoring and controlling extreme ultraviolet photolithography processes
CN113056079A (zh) * 2021-03-29 2021-06-29 中国工程物理研究院激光聚变研究中心 一种双角度深紫外汤姆逊散射诊断系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093308A (ja) * 2011-10-05 2013-05-16 Gigaphoton Inc 極端紫外光生成装置および極端紫外光生成方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US76101A (en) * 1868-03-31 ritchie
US6815700B2 (en) * 1997-05-12 2004-11-09 Cymer, Inc. Plasma focus light source with improved pulse power system
JP2003185798A (ja) * 2001-12-13 2003-07-03 Nikon Corp 軟x線光源装置およびeuv露光装置ならびに照明方法
US6738452B2 (en) * 2002-05-28 2004-05-18 Northrop Grumman Corporation Gasdynamically-controlled droplets as the target in a laser-plasma extreme ultraviolet light source
US7002168B2 (en) * 2002-10-15 2006-02-21 Cymer, Inc. Dense plasma focus radiation source
JP2006294606A (ja) * 2005-04-12 2006-10-26 Xtreme Technologies Gmbh プラズマ放射線源
DE102006003683B3 (de) * 2006-01-24 2007-09-13 Xtreme Technologies Gmbh Anordnung und Verfahren zur Erzeugung von EUV-Strahlung hoher Durchschnittsleistung
US20090224182A1 (en) * 2008-02-21 2009-09-10 Plex Llc Laser Heated Discharge Plasma EUV Source With Plasma Assisted Lithium Reflux
US8436328B2 (en) * 2008-12-16 2013-05-07 Gigaphoton Inc. Extreme ultraviolet light source apparatus
JP5355115B2 (ja) * 2009-01-30 2013-11-27 株式会社東芝 極端紫外光光源装置及びその調整方法
KR101748461B1 (ko) * 2010-02-09 2017-06-16 에너제틱 테크놀로지 아이엔씨. 레이저 구동 광원
DE102010028994A1 (de) * 2010-05-14 2011-11-17 Helmholtz-Zentrum Dresden - Rossendorf E.V. Erzeugung kurzwelliger ultrakurzer Lichtpulse und deren Verwendung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093308A (ja) * 2011-10-05 2013-05-16 Gigaphoton Inc 極端紫外光生成装置および極端紫外光生成方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KENTARO TOMITA ET AL.: "A Collective Laser Thomson Scattering System for Diagnostics of Laser -Produced Plasmasfor Extreme Ultraviolet Light Sources", APPLIED PHYSICS EXPRESS, vol. 6, no. 7, pages 076101 - 1 - 076101-4 *
KENTARO TOMITA ET AL.: "Collective Thomson Scattering Diagnostics of EUV Plasmas", J. PLASMA FUSION RESEARCH SERIES, vol. 8, 2009, pages 488 - 491 *
KENTARO TOMITA: "EUV Kogen-yo Laser Seisei Sn Plasma no Thomson Sanran Keisoku System Kaihatsu", Taiwan, Retrieved from the Internet <URL:http://ptsl.phy.ncu.edu.tw/Taiwan-Japan_2014/collectiveThomson,Tomita.pptx.pdf> [retrieved on 20150403] *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018083727A1 (ja) * 2016-11-01 2019-09-19 ギガフォトン株式会社 極端紫外光生成装置
WO2018134861A1 (ja) * 2017-01-17 2018-07-26 ギガフォトン株式会社 トムソン散乱計測システム、及びeuv光生成システム
US10627287B2 (en) 2017-01-17 2020-04-21 Gigaphoton Inc. Thomson scattering measurement system and EUV light generation system
CN106646839A (zh) * 2017-01-24 2017-05-10 中国科学院西安光学精密机械研究所 深紫外谱段离轴四反光学成像系统
CN106646839B (zh) * 2017-01-24 2022-08-05 中国科学院西安光学精密机械研究所 深紫外谱段离轴四反光学成像系统
KR20190128212A (ko) * 2017-03-20 2019-11-15 에이에스엠엘 네델란즈 비.브이. 극자외 광원에 대한 계측 시스템
JP2020512577A (ja) * 2017-03-20 2020-04-23 エーエスエムエル ネザーランズ ビー.ブイ. 極端紫外線光源のためのメトロロジシステム
KR102482288B1 (ko) 2017-03-20 2022-12-27 에이에스엠엘 네델란즈 비.브이. 극자외 광원에 대한 계측 시스템
JP7240322B2 (ja) 2017-03-20 2023-03-15 エーエスエムエル ネザーランズ ビー.ブイ. 極端紫外線光源のためのメトロロジシステム
TWI713413B (zh) * 2017-09-20 2020-12-11 荷蘭商Asml荷蘭公司 輻射源
US11140765B2 (en) 2017-09-20 2021-10-05 Asml Netherlands B.V. Radiation source
WO2023238928A1 (ja) * 2022-06-10 2023-12-14 国立大学法人北海道大学 プラズマ計測装置

Also Published As

Publication number Publication date
US20170280545A1 (en) 2017-09-28
JPWO2016117118A1 (ja) 2017-10-26

Similar Documents

Publication Publication Date Title
WO2016117118A1 (ja) Euv光生成システム及びeuv光生成方法、並びにトムソン散乱計測システム
KR101887104B1 (ko) 레이저 산출 플라즈마 euv 광원
Sears et al. Production and characterization of attosecond electron bunch trains
US9468082B2 (en) Extreme ultraviolet light generation apparatus and control method for laser apparatus in extreme ultraviolet light generation system
US8705035B2 (en) Target generation device
JP7241143B2 (ja) 極端紫外光源におけるターゲット膨張率制御
US10674591B2 (en) Target expansion rate control in an extreme ultraviolet light source
US9386675B2 (en) Laser beam controlling device and extreme ultraviolet light generating apparatus
US9713240B2 (en) Stabilizing EUV light power in an extreme ultraviolet light source
TWI757446B (zh) 用於euv光源的系統及方法
JP2007088267A (ja) 極端紫外光源装置
JP6434404B2 (ja) 極端紫外光生成システム
WO2017027386A1 (en) System and method for controlling source laser firing in an lpp euv light source
WO2018134861A1 (ja) トムソン散乱計測システム、及びeuv光生成システム
US10531550B2 (en) Extreme ultraviolet light generation device
JP7110341B2 (ja) ターゲット撮影装置及び極端紫外光生成装置
JP6724167B2 (ja) ターゲット撮影装置及び極端紫外光生成装置
WO2016027346A1 (ja) 極端紫外光生成システムおよび極端紫外光生成方法
WO2019092831A1 (ja) 極端紫外光生成装置及び電子デバイスの製造方法
JP2022503714A (ja) 光学変調器の制御

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878810

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570453

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878810

Country of ref document: EP

Kind code of ref document: A1