TWI821437B - 用於監控光發射之系統、euv光源、及控制euv光源之方法 - Google Patents

用於監控光發射之系統、euv光源、及控制euv光源之方法 Download PDF

Info

Publication number
TWI821437B
TWI821437B TW108138412A TW108138412A TWI821437B TW I821437 B TWI821437 B TW I821437B TW 108138412 A TW108138412 A TW 108138412A TW 108138412 A TW108138412 A TW 108138412A TW I821437 B TWI821437 B TW I821437B
Authority
TW
Taiwan
Prior art keywords
light
control system
emission
target
gas
Prior art date
Application number
TW108138412A
Other languages
English (en)
Other versions
TW202032278A (zh
Inventor
約翰 湯姆 四世 史圖華特
丹尼爾 約翰 威廉 布朗
羅伯特 傑 拉法斯
業爭 陶
伊格爾 維拉德密洛維齊 佛蒙柯維
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202032278A publication Critical patent/TW202032278A/zh
Application granted granted Critical
Publication of TWI821437B publication Critical patent/TWI821437B/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • H05G2/005X-ray radiation generated from plasma being produced from a liquid or gas containing a metal as principal radiation generating component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma

Abstract

本發明提供一種系統,其包括具有經組態以接收一目標及一光束之一內部區之一真空腔室。目標材料當在一電漿狀態中時發射極紫外線(EUV)光。該系統亦包括經組態以藉由偵測來自該內部區中之原子、離子或分子的光發射並在該內部區中產生該光發射之一空間分佈之一表示而成像該內部區的一偵測系統。一控制系統耦接至該偵測系統。該控制系統經組態以分析該空間分佈之該表示以判定來自該內部區中之原子、離子或分子的該光發射之一空間分佈,並基於該光發射之該空間分佈判定是否調整該光束之一性質及/或該真空腔室之一性質。

Description

用於監控光發射之系統、EUV光源、及控制EUV光源之方法
本發明係關於監控光發射。光發射可為在極紫外線(EUV)光源之真空腔室中發生的光之發射。
極紫外線(「EUV」)光,例如波長為100奈米(nm)或更小(有時亦被稱作軟x射線)且包括波長為例如20nm或更小、介於5nm與20nm之間或介於13nm與14nm之間的光之電磁輻射可用於光微影製程中,以藉由在抗蝕劑層中起始聚合而在基板(例如矽晶圓)中產生極小特徵。
用以產生EUV光之方法包括但未必限於:運用在EUV範圍內之發射譜線將包括例如氙、鋰或錫之元素的材料轉換成電漿狀態。在常常被稱為雷射產生電漿「LPP」之一個此類方法中,可藉由運用可被稱作驅動雷射之經放大光束來輻照例如呈材料小滴、板、帶、串流或叢集之形式的目標材料而產生所需電漿。對於此製程,通常在例如真空腔室之密封容器中產生電漿,且使用各種類型之度量衡設備來監控電漿。
在一個通用態樣中,一種系統包括:一真空腔室,其包括一內部區,該內部區經組態以接收一目標及一光束,該目標包括當在一電漿狀態中時發射極紫外線(EUV)光之目標材料;一偵測系統,其經組態以 成像該內部區,該偵測系統經組態以偵測來自該內部區中之原子、離子或分子的光發射並在該內部區中產生該光發射之一空間分佈之一表示;及一控制系統,其耦接至該偵測系統,該控制系統經組態以:分析該光發射之該空間分佈之該表示以判定來自該內部區中之原子、離子或分子的該光發射之一空間分佈;及基於該光發射之該空間分佈判定是否調整該光束之至少一個性質及/或該真空腔室之至少一個性質。
實施方案可包括以下特徵中之一或多者。光發射可包括螢光。螢光可包括雷射誘導之螢光。控制系統經組態以分析表示亦可包括控制系統經組態以比較至少在兩個不同時間的內部區中之螢光之空間分佈以估計內部區中之離子的速度,並比較所估計速度與速度規格,且該控制系統可經組態以基於所估計速度與速度規格之該比較而判定是否調整氣體之壓力。
系統亦可包括經組態以相對於偵測系統定位的一或多個光譜濾光器,該光譜濾光器經組態以僅允許一些波長到達偵測系統。該一或多個光譜濾光器中之每一者可經組態以透射具有在目標材料之複數個發射譜線中之一者中之波長的光。在一些實施方案中,該一或多個光譜濾光器中之至少一者經組態以透射在可見光範圍中之波長。真空腔室可進一步經組態以在內部區中含有氣體,且光譜濾光器可經組態以透射具有在該氣體之發射譜線處之波長的光。
控制系統可經組態以接收內部區之複數個表示,該複數個表示中之每一者可與不同時間相關聯,且控制系統經組態以分析內部區之表示可包括控制系統經組態以分析該複數個表示中之每一者以判定在不同時間中之每一者的內部區中之光發射之空間分佈。內部區中之光發射可由 內部區中之能量事件引起,且不同時間為在能量事件之後發生的所有時間。能量事件可包括光束與目標之間的相互作用,且光發射可為來自以下各者的發射:(a)目標材料;(b)由光束與目標材料之間的相互作用形成的電漿;及/或(c)由光束與目標之相互作用形成的碎片。
控制系統可經組態以接收內部區之擴展曝光表示,內部區之該擴展曝光表示包括在一時間週期內的內部區中之發射之空間分佈之平均值。真空腔室可進一步經組態以在內部區中含有一氣體,該能量事件可為添加能量至氣體之相互作用,且光發射可為來自氣體之發射。添加能量至氣體的相互作用可包括(a)光束與氣體之間的相互作用;(b)氣體與由光束與目標之間的相互作用形成的電漿之間的相互作用;及/或(c)離子與氣體之間的相互作用。
控制系統經組態以分析表示以判定內部區中之光發射的空間分佈可包括控制系統經組態以估計光發射之強度的形狀及/或空間分佈。
在一些實施方案中,系統亦包括:一第一光譜濾光器,其經組態以透射具有在一第一波長帶中之波長的光;及一第二光譜濾光器,其經組態以透射具有在一第二波長帶中之波長的光,且控制系統經組態以分析該表示可包括:控制系統經組態以估計在該第一波長帶中之光發射的量並估計在該第二波長帶中之光發射的量,且該控制系統可進一步經組態以基於比較在該第一波長帶處的光發射之所估計量與在該第二波長帶處的光發射之所估計量來估計目標材料之離子化分數。控制系統可基於所估計離子化分數而判定是否調整光束之至少一個性質。控制系統可基於所估計離子化分數而判定是否調整光束之指向方向。
光束可包括具有足以將目標材料中之至少一些轉換成發射EUV光之電漿的能量的主脈衝光束。
該光束可包括預脈衝光束。
空間分佈之表示可包括二維表示之表示。
該光束可包括脈衝光束,且控制系統經組態以調整該光束之至少一個性質可包括控制系統經組態以調整該脈衝光束之稍後發生之脈衝的至少一個性質。
在另一通用態樣中,一種EUV光源包括經組態以執行以下操作的一真空腔室:在一內部區中含有一氣體並接收一目標及一光束,該目標包括在一電漿狀態中發射極紫外線(EUV)光之目標材料;一監控器,其包括至少一個感測器,該至少一個感測器經組態以偵測來自該內部區中之該氣體的發射並產生該等所偵測發射之一指示;及一控制系統,其耦接至該監控器,該控制系統經組態以:分析所偵測發射之該指示;及基於該分析判定是否調整該光束之至少一個性質及/或該真空腔室之至少一個性質。
實施方案可包括以下特徵中之一或多者。監控器可包括經組態以成像內部區之一部分並在該部分中產生所偵測發射之空間分佈之表示的偵測系統。控制系統可經組態以在一段時間內接收複數個表示,每一表示指示在該時間段中之一不同時間的該部分中之所偵測發射之一空間分佈,且該控制系統可經組態以基於該複數個表示中之兩者或多於兩者判定是否調整光束之至少一個性質及/或真空腔室之至少一個性質。
氣體可包括氫氣,且所偵測發射可包括來自氫氣之H阿法(H-α)及/或H貝他(H-β)發射。
EUV光源亦可包括:一第一光譜濾光器,其經組態以透射一第一波長帶;及一第二光譜濾光器,其經組態以透射一第二波長帶,其中在操作使用中,該第一光譜濾光器及該第二光譜濾光器可在該部分與該偵測系統之間;且該控制系統經組態以分析該等所偵測發射可包括該控制系統經組態以比較由該第一光譜濾光器透射之發射之一表示與由該第二光譜濾光器透射之發射之一表示;且可基於該比較進行是否調整該光束之至少一個性質及/或該真空腔室之至少一個性質的判定。
該EUV光源亦可包括耦接至該真空腔室之內部的一壓力控制器,該壓力控制器經組態以改變該真空腔室之該內部中的該氣體之一壓力,且該控制系統可耦接至該壓力控制器。
在另一通用態樣中,一種控制一EUV光源的方法包括:提供一目標至一真空腔室中之一目標區,該真空腔室在一內部區中含有一氣體;促使一光束與該目標區中之該目標之間的一相互作用;偵測來自該真空腔室之該內部區中之原子、離子及/或分子的光發射,該光發射係對該真空腔室中之一能量事件的一回應,該能量事件包括添加能量至該目標及/或該氣體之一事件;分析該所偵測光發射以判定該內部區中之光發射之一空間分佈;及基於該分析判定是否調整該光束及/或該氣體之一性質。
上文所描述之技術中之任一者的實施方案可包括EUV光源、系統、方法、製程、器件或裝置。在以下附圖及描述中闡述一或多個實施方案之細節。其他特徵將自描述及圖式及自申請專利範圍而顯而易見。
2:電漿
3:收集器
21:輻射光束
22:琢面化場鏡面器件
24:琢面化光瞳鏡面器件
26:經圖案化光束
28:反射元件
30:反射元件
100:極紫外線(EUV)光源
102:脈衝持續時間
103:峰值功率
104:脈衝
105:光產生模組
106:光束
107:光學路徑
108:探測雷射
109:真空腔室
110:目標供應系統
111:光束遞送系統
112:光學組件
113:孔隙
114:光學元件
115:雷射光束
116:反射表面
117:目標形成裝置
118:儲集器
119:孔
121:目標
121p:目標
122:氣體
123:電漿形成部位
130:感測器系統
134:感測器模組
135:感測器
136:光譜濾光器
137:光譜濾光器模組
140:氣體管理系統
150:控制系統
152:分析模組
154電子處理器
156:電子儲存器
157:信號
158:I/O介面
159:命令信號
195:碎片
196:電漿
197:光
198:EUV光
199:微影裝置
200:EUV光源
204_1:脈衝
204_2:脈衝
205:光產生模組
206_1:第一光束
206_2:第二光束
207_1:光束路徑
207_2:光束路徑
208_1:第一光學源
208_2:第二光學源
211_1:光束遞送系統/光束轉向系統
211_2:光束遞送系統
221m:經修改目標
221p:初始目標
224:初始目標區
300:程序
400A:影像
400B:影像
400C:影像
400D:影像
401:環結構
500A:影像
500B:影像
500C:影像
500D:影像
501:曲線
504:衝擊波/爆炸波
600:微影裝置
601:儲集器
602:噴嘴
620:圍封結構
621:孔隙
623:雷射
624:雷射能量
626:小滴產生器
628:高頻小滴串流/燃料串流
630:截留器
660:參考
669:過濾器
700:LPP EUV光源
705:電漿形成部位
707:真空腔室之內部
710:經放大光束
714:目標混合物
715:驅動雷射/雷射系統
720:光束傳送系統
722:聚焦總成
725:供應系統
726:目標材料遞送控制系統
727:目標材料供應裝置
730:真空腔室
735:收集器鏡面
740:孔隙
745:中間部位
750:開端式中空圓錐形護罩
755:主控控制器
756:小滴位置偵測回饋系統
757:雷射控制系統
758:光束控制系統
760:目標或小滴成像器
765:光源偵測器
770:光源偵測器
775:導引雷射
B:輻射光束
C:目標部分
IL:照明系統/照明器
MA:圖案化器件
M1:圖案化器件對準標記
M2:圖案化器件對準標記
P:壓力
P1:基板對準標記
P2:基板對準標記
PM:第一定位器
PS:投影系統
PS1:位置感測器
PS2:位置感測器
PW:第二定位器
SO:源收集器模組
W:基板
WT:基板台
當結合隨附圖式閱讀時,自以下詳細描述最佳地理解本發 明。強調,根據慣例,圖式之各種特徵未必按比例。相比之下,為清楚起見,可任意擴大或減小各種特徵之尺寸。貫穿本說明書及圖式,類似數字代表類似特徵。
圖1A為極紫外線(EUV)光源之實例的方塊圖。
圖1B為光學脈衝之時間曲線的實例。
圖2為極紫外線(EUV)光源之另一實例的方塊圖。
圖3為用於控制EUV光源之程序之實例的流程圖。
圖4A至圖4D為雷射誘導之螢光的實例影像。
圖5為與分析來自氣體之光發射相關的實例資料。
圖6A及圖6B為微影裝置之實例的方塊圖。
圖7為EUV光源之實例的方塊圖。
揭示用於基於對在EUV源之真空腔室內發生的光之發射的分析控制極紫外線(EUV)微影系統及/或EUV源的技術。
參看圖1A,展示極紫外線(EUV)光源100之方塊圖。EUV光源100包括感測器系統130及控制系統150。感測器系統130監控在真空腔室109內部發生的光之發射並提供關於該等發射的資訊至控制系統150。由控制系統150分析該等發射,該控制系統經組態以基於對該等發射之分析對EUV光源100之一或多個組件進行調整。該等發射可為來自電漿196、氣體122、目標121p中之目標材料及/或碎片195的發射。監控真空腔室109中之發射允許判定及控制影響EUV源之效能的EUV源100之多種參數。舉例而言,來自感測器系統130之資訊可用於判定藉由電漿產生事件離子化的目標材料(或燃料)之部分或分數及/或判定沈積至在真空腔室 109中之氣體122中的能量之量。對此類參數之瞭解允許控制系統150改良EUV光源100之效能。
所監控發射為自真空腔室109中之一或多個物質發射的光。該等物質包括或為原子、分子及/或離子。該等發射可為涉及來自物質之發光的任何種類之發射。舉例而言,該等發射可為由於原子被高溫源激勵而發生的光學發射。在另一實例中,該等發射可為來自原子、分子或離子之螢光。螢光為由已吸收光或其他電磁輻射之物質進行的光之發射。
此外,該等發射可為雷射誘導之螢光。雷射誘導之螢光為原子、離子或分子吸收雷射光且物質之電子經激勵至較高能量位準所藉以的程序。在激勵之後,電子衰變成較低能量位準且原子、離子或分子發射光。此所發射光為雷射誘導之螢光。雷射誘導之螢光可藉由運用光束106(其可為雷射)輻照物質及/或藉由運用由探測雷射108產生之雷射光束115輻照物質而產生。適合於以所關注方式激勵物質的任何雷射可用作探測雷射108。舉例而言,探測雷射108可為能夠經調諧以產生若干不同波長中之一者的雷射(諸如光學參數振盪器或其他類型可調諧雷射)。
特定發射之波長係藉由物質之性質及用以激勵物質的能量之量判定。此外,特定物質可產生多於一個波長之發射。舉例而言,氫氣在氫電子自第三最低能量位準躍遷至第二最低能量位準時發射658.28奈米(nm)之波長的光。此發射被稱為H阿法(H-α)發射。然而,氫氣亦發射其他波長之光。舉例而言,氫氣在氫電子自第四最低能量位準躍遷至第二最低能量位準時發射486.14奈米之波長的光。此發射被稱為H貝他(H-β)發射。氫氣亦具有其他發射譜線。由氫氣發射之波長取決於激勵能量的量,其判定電子自基態激勵至的能量位準。類似地,可存在於真空腔室109中 之其他物質視其各別物理性質及激勵物質所藉由的能量而發射特定波長之光。
藉由分析此等發射,控制系統150能夠監控真空腔室109內之條件並相應地調整真空腔室109中之環境。詳言之,控制系統150經組態以基於所監控發射分析並調整光束106之後續(稍後發生)脈衝的一或多個性質及/或真空腔室109之一或多個性質。可經調整的光束106之後續脈衝的性質包括例如大小(例如,電漿形成部位123處之光束腰)、平均及/或最大能量、時間持續時間及/或相對於電漿形成部位123之位置。可經調整的真空腔室109之性質包括例如氣體122之壓力、氣體122之溫度、氣體122之流動速率、氣體122之流動方向、目標121p之大小及/或目標121之串流中目標的間隔。
在論述控制系統150之前更詳細地論述EUV源100之各種組件。
EUV源100亦包括發射目標之串流121的目標供應系統110。目標供應系統110包括目標形成裝置117,其界定流體地耦接至儲集器118之孔119。在操作使用中,目標材料係在可流動狀態中(例如,目標材料經熔融且處於高於其熔點之溫度)且儲集器118經加壓至壓力P。壓力P大於真空腔室109中之壓力。因此,在操作使用中,目標材料流經孔119並進入真空腔室109中以形成目標之串流121。在圖1A的實例中,目標之串流121大體上在x方向上自孔119行進至電漿形成部位123,其中目標121p(其為流121中之目標中之一者)在圖1A中描繪之時間在電漿形成部位123處。
目標之串流121中之目標可為目標材料之小滴。目標材料 可為當在電漿狀態中時發射EUV光的任何材料。舉例而言,目標材料可包括水、錫、鋰及/或氙。目標材料可為包括目標物質及雜質(諸如非目標粒子)之目標混合物。目標物質為當在電漿狀態中時具有在EUV範圍中之發射譜線之物質。目標物質可為(例如)液體或熔融金屬之小滴、液體流之一部分、固體粒子或叢集、液滴內所含有之固體粒子、目標材料之發泡體,或液體流之一部分內所含有之固體粒子。目標物質可為(例如)水、錫、鋰、氙,或當轉換成電漿狀態時具有在EUV範圍之發射譜線的任何材料。舉例而言,目標物質可為元素錫,其可用作純錫(Sn);用作錫化合物,例如,SnBr4、SnBr2、SnH4;用作錫合金,例如,錫-鎵合金、錫-銦合金、錫-銦-鎵合金,或此等合金之任何組合。此外,在不存在雜質之情形下,目標材料僅包括目標物質。
在EUV源100之操作期間,電漿196係藉由光束106與在電漿形成部位123處之目標121p的相互作用而形成。電漿包括共同地稱為電漿粒子之精細或小粒子。電漿粒子可為例如燃料之經汽化、經霧化及/或經離子化粒子,且所監控發射可包括來自此等物質中之任一者的發射。光束與目標材料的相互作用(其中光束具有足以將目標材料中之至少一些轉換成電漿的能量)被稱作電漿產生事件。每一電漿產生事件亦大體上產生碎片(例如,未轉換成電漿196的目標材料之片段或塊片)且所監控發射可包括來自碎片之發射。因此,在EUV源100之操作期間,電漿196及碎片195在電漿產生事件之後存在於腔室109中。
EUV源100亦包括光產生模組105,其產生光束106。光產生模組105可為例如二氧化碳(CO2)雷射或固態雷射。光產生模組105可包括在圖1A中未展示的各種其他組件,諸如前置放大器、功率放大器、用 以導引光的光學元件(諸如鏡面),及光束組合器。在一些實施方案中,光產生模組105包括多於一個光學源且可包括多於一個雷射且可包括不同類型的雷射。圖2展示包括多於一個光學源的光產生模組205之實例。
光束106可為其中之每一者與時間上最接近之脈衝分開的脈衝列。圖1B展示列內之脈衝104的時間曲線(隨時間變化之光功率)之實例。脈衝104為可為光束106之部分的脈衝中之一者的實例。脈衝104具有峰值功率103及有限時間持續時間102。在圖1B的實例中,脈衝持續時間102為在此期間脈衝104具有非零功率的時間。脈衝104自零增加至峰值功率103的時間為脈衝之上升時間。在其他實施方案中,脈衝持續時間102及/或上升時間可基於其他量度。舉例而言,脈衝持續時間102可小於在此期間脈衝104具有非零功率(諸如脈衝104之半峰全寬(FWHM))的時間。類似地,可在不同於零光功率及峰值光功率103的兩個值之間量測上升時間。
在所展示實例中,脈衝104之功率自零功率單調增加至峰值功率103且自峰值功率103單調降低至零。其他時間曲線係可能的。舉例而言,脈衝之功率可自零非單調增加至峰值功率。脈衝可具有多於一個峰值能量點。此外,構成光束106的脈衝列中之脈衝可具有不同時間曲線。
光束106由包括一或多個光學組件112之光束遞送系統111在光學路徑107上導引至真空腔室109。光學組件112可包括能夠與光束106相互作用的任何組件。組件112亦可包括能夠形成及/或塑形脈衝104的器件。舉例而言,光學組件112可包括被動光學器件(諸如鏡面、透鏡及/或稜鏡),及任何相關聯機械座架器件及/或電子驅動器。此等組件可轉向 及/或聚焦光束106。另外,光學組件112可包括修改光束106之一或多個特性的組件。舉例而言,光學組件112可包括能夠改變光束106之時間曲線以形成脈衝104的主動光學元件,諸如聲光調變器及/或電光調變器。
脈衝104離開光束遞送系統111並進入真空腔室109。脈衝104通過光學元件114之孔隙113以到達電漿形成部位123。脈衝104與目標121p中之目標材料之間的相互作用產生發射光197之電漿196。光197包括具有對應於目標121p中之目標材料的發射譜線之波長的光。
光197包括EUV光198及帶外光。帶外光為不在EUV光範圍中之波長的光。舉例而言,目標材料可包括錫。在此等實施方案中,光197包括EUV光198且亦包括帶外光,諸如深紫外線(DUV)光、可見光、近紅外(NIR)光、中間波長紅外(MWIR)光,及/或長波長紅外(LWIR)光。EUV光198可包括具有例如5奈米(nm)、5nm至20nm、10nm至120nm或少於50nm之波長的光。DUV光可包括具有在約120nm至300nm之間的波長的光,可見光可包括具有在約390nm至750nm之間的波長的光,NIR光可包括具有在約750nm至2500nm之間的波長的光,MWIR光可具有在約3000nm至5000nm之間的波長的光,且LWIR光可具有在約8000nm至12000nm之間的波長的光。
光學元件114具有經定位以接收光197中之至少一些的反射表面116。反射表面116具有反射EUV光198但不反射光197之帶外分量或僅反射光197之帶外分量的標稱量的塗層。以此方式,反射表面116僅導引EUV光198至微影裝置199。
EUV源100亦包括供應氣體122至真空腔室109之氣體管理系統140。氣體122可為例如氫氣或氧氣。氣體管理系統140可包括泵、閥 及用於氣體管理之其他組件。氣體管理系統140經組態以控制被供應至真空腔室的氣體122之各種性質,諸如溫度、壓力及/或流動速率。舉例而言,氣體管理系統140可以足以按經控制方式移動碎片(諸如碎片195)的流動速率供應氣體122及/或控制氣體122之溫度及/或壓力以影響電漿產生之態樣。
EUV光源100亦包括感測器系統130,其提供包括與所監控發射相關之資料的信號157至控制系統150。如上文所提及,所監控發射可包括來自電漿196之發射、來自氣體122之發射,及/或來自碎片195之發射。感測器系統130包括包括一或多個感測器135之感測器模組134。感測器135為能夠偵測或感測具有所關注發射的波長之光的任何偵測器或感測器。因此,在圖1A的實例中,感測器135可為能夠偵測來自電漿196之發射的感測器、能夠偵測可自氣體122發射的一或多個波長之感測器,及/或能夠感測自碎片195發射的光之波長的感測器。
在一些實施方案中,感測器135能夠產生包括關於發射之空間資訊的資料。舉例而言,感測器135可為感測器之二維陣列,其中每一感測器經組態以感測自真空腔室109之特定部分發射的光。每一感測器係固定的且具有相對於感測器監控的真空腔室109之部分的已知部位,因此亦可判定所感測發射之相對部位。在此等實施方案中,空間資訊展示發射如何分佈於真空腔室109中。來自感測器135之資料可用於形成真空腔室109(真空腔室109的一部分)之二維空間表示(諸如影像),其中影像展示真空腔室109內的所監控發射之相對部位。
此外,感測器135可能能夠在一段時間內產生真空腔室109中所監控發射之許多二維空間表示。舉例而言,感測器135可為俘獲以由 視訊感測器判定之圖框速率收集的圖框(影像)的視訊感測器。在此等實施方案中,每一圖框為在不同時間的真空腔室109中之發射之表示。在另一實例中,感測器為具有允許感測器在有限時間段內感測發射的曝光機構的攝影機。在此等實施方案中,由感測器135產生的資料表示真空腔室109中之發射的時間平均值。感測器模組134可包括多於一個感測器。在此等實施方案中,感測器135位於相對於真空腔室109之特定區的不同部位,使得由感測器135產生的資料可用於產生所監控發射之三維空間表示。
此外,感測器系統130亦可包括光譜濾光器模組137。光譜濾光器模組137包括一或多個光譜濾光器136。光譜濾光器136允許控制哪一或哪些特定波長由感測器135感測。以此方式,特定發射可與真空腔室中之總發射分開,使得僅監控所關注的發射。當包括於感測器系統130中時,光譜濾光器136定位於感測器135與真空腔室109之內部的所監控部分之間的光學路徑上。
光譜濾光器136為能夠允許僅一些波長或特定波長到達感測器135同時實質上防止任何其他波長到達感測器135的任何濾光器。光譜濾光器136可為例如僅允許可見光到達感測器135的光譜濾光器,或僅允許可見光譜內之特定波長到達感測器135的光譜濾光器。光譜濾光器136可基於透射、反射及/或吸收分隔波長。舉例而言,光譜濾光器136可為透射波長帶內之波長同時反射或吸收所有其他波長的多層介電質堆疊。在另一實例中,光譜濾光器136可為在不同方向上反射不同波長的雙色鏡或光柵。
光譜濾光器模組137可包括多於一個光譜濾光器136。舉例而言,在一些實施方案中,感測器模組134包括多於一個感測器135,且 光譜濾光器模組137包括用於該等感測器中之每一者的光譜濾光器136。
EUV光源100亦包括控制系統150,其使用來自感測器系統130之資訊來分析真空腔室109中之發射。控制系統150亦提供命令信號159(其係基於關於真空腔室109中之發射的資訊而產生)至光產生模組105、目標供應系統110、氣體管理系統140及/或光束遞送系統111。
控制系統150包括分析模組152。分析模組152分析來自感測器系統130之資訊並基於該分析判定是否對光束106及/或真空腔室109進行調整。參看圖3進一步論述控制系統150及分析模組152之操作。在圖1A的實例中,使用電子處理器154、電子儲存器156及I/O介面158實施控制系統150之分析模組152。電子處理器154包括適合於執行電腦程式之一或多個處理器,諸如一般或特殊用途微處理器,及任何種類之數位電腦之任一或多個處理器。一般而言,電子處理器自唯讀記憶體、隨機存取記憶體(RAM)或兩者接收指令及資料。電子處理器154可係任何類型之電子處理器。電子處理器154執行構成分析模組152之指令。
電子儲存器156可為諸如RAM之揮發性記憶體,或非揮發性記憶體。在一些實施方案中,且電子儲存器156包括非揮發性及揮發性部分或組件。電子儲存器156可儲存用於控制系統150之操作的資料及資訊。舉例而言,電子儲存器156可儲存實施分析模組152之指令(例如,呈電腦程式形式)。分析模組152自感測器系統130接收資訊,且亦可自光產生模組105、氣體管理系統140、供應系統110及/或光束遞送系統111接收資訊。
電子儲存器156亦可儲存指令(或許作為電腦程式),該等指令當經執行時促使電子處理器154與光產生模組105、氣體管理系統140、 光束遞送系統111、供應系統110及/或感測器系統130中之組件通信。舉例而言,該等指令可為促使電子處理器154提供由分析模組152產生的命令信號159至光產生模組105、氣體管理系統140、供應系統110及/或光束遞送系統111的指令。
命令信號159為促使光產生模組105及/或光束遞送系統111中之組件以調整光束106的方式起作用的信號或促使氣體管理系統140調整氣體122之性質的信號。舉例而言,命令信號159可為包括足以促使氣體管理系統140中之閥及/或泵起始操作、停止操作或繼續但以不同方式操作的資訊的信號。在另一實例中,命令信號159為能夠調整目標供應系統110之性質的信號,該等性質改變目標達到電漿形成部位123所藉以之速率。在此實例中,命令信號159可為包括足以促使目標形成裝置117以不同速率振動使得到達電漿形成部位123的目標之大小及/或速率改變的資訊的信號。在又一實例中,命令信號159為在光產生模組105及/或光束遞送系統111上操作以改變光束106之性質的信號。舉例而言,命令信號159可為足以促使光束遞送系統111中之鏡面移動的信號或足以調整光束遞送系統111中之電光調變器之操作的信號。
I/O介面158為允許控制系統150與運算器(operator)、光產生模組105、光產生模組105之一或多個組件、微影裝置199及/或在另一電子器件上運行的自動化程序交換資料及信號的任何種類之介面。舉例而言,在一些實施方案中,分析模組152可由終端使用者程式化以包括特定針對於終端使用者的分析。在此等實施方案中,分析模組可經由I/O介面158而程式化。I/O介面158可包括視覺顯示器、鍵盤及諸如並列埠、通用串列匯流排(USB)連接之通信介面及/或諸如乙太網路之任何類型之網路介 面中的一或多者。I/O介面158亦可允許在無實體接觸的情況下經由例如IEEE 802.11、藍芽或近場通信(NFC)連接進行通信。
參看圖2,展示EUV光源200之方塊圖。該EUV光源200為EUV光源之實施方案之另一實例。除EUV光源200使用包括發射第一光束206_1之第一光學源208_1及發射第二光束206_2之第二光學源208_2的光產生模組205之外,EUV光源200與EUV光源100(圖1A)相同。脈衝204_1為第一光束206_1之脈衝,且脈衝204_2為第二光束206_2之脈衝。脈衝204_2可被稱作「預脈衝」光束,且脈衝204_1可被稱作「主脈衝」光束。
EUV光源200包括光學元件114,但為簡單起見圖2中僅僅展示光學元件114之孔隙113。脈衝204_2沿著光束路徑207_2傳播,通過光學元件114之孔隙113,並經由光束遞送系統211_2遞送至初始目標區224。初始目標區224自供應系統110接收初始目標221p。初始目標區224相對於電漿形成部位123在-x方向上移位。
脈衝204_2與初始目標區224處之目標221p相互作用以調節目標221p並形成經修改目標221m。調節可增強目標221p吸收脈衝204_1之能力。舉例而言,儘管EUV發光電漿196大體上並不在初始目標區224處產生,但脈衝204_2與目標221p之間的相互作用可改變初始目標221p中之目標材料的分佈之形狀、體積及/或大小及/或可沿著主脈衝204_1之傳播方向減小目標材料之密度梯度。此外,脈衝204_2與初始目標221p之間的相互作用可產生未必發射EUV光的預電漿或電漿。經修改目標221m可為例如目標材料之盤形分佈,其在x-y平面中具有比目標221p大的範圍,且沿著z軸具有比目標221p小的範圍。經修改目標221m偏移至電漿形成部 位123並由脈衝204_1輻照以形成電漿196。
在圖2之實施方案中,控制系統150耦接至光學源208_2及光束遞送系統211_2,使得控制系統150可用於控制第二光束206_2(或光束206_2之後續或稍後發生之脈衝)之性質。舉例而言,控制系統150可調整光束206_2之稍後發生之脈衝的脈衝能量、光束206_2之稍後發生之脈衝相對於目標221p之預期部位的部位,及/或光束206_2之稍後發生之脈衝的持續時間。以此方式,控制系統150可用於控制初始目標221p之調節的參數。控制系統150亦耦接至光學源208_1及光束遞送系統211_1且可用以控制光束206_1(或光束206_1之脈衝)之性質。此外,控制系統150耦接至氣體管理系統140且能夠調整氣體122之一或多個特性。
光源208_1及208_2可為例如兩個雷射。舉例而言,光源208_1、208_2可為兩個二氧化碳(CO2)雷射。在其他實施方案中,光源208_1、208_2可為不同類型之雷射。舉例而言,光學源208_2可為固態雷射,且光學源208_1可為CO2雷射。在圖2之實例中,第一光束206_1及第二光束206_2經脈衝。第一光束206_1及第二光束206_2可具有不同波長。舉例而言,在其中光源208_1、208_2包括兩個CO2雷射之實施方案中,第一光束206_1之波長可為約10.26微米(μm)且第二光束206_2之波長可在10.18μm與10.26μm之間。第二光束206_2之波長可為約10.59μm。在此等實施方案中,自CO2雷射之不同線產生光束206_1、206_2,從而導致該等光束206_1、206_2具有不同波長,儘管兩個光束皆自同一類型之源產生。
脈衝204_1及204_2具有不同能量且可具有不同持續時間。舉例而言,預脈衝204_2可具有至少1ns之持續時間,舉例而言,預脈衝 可具有1至100ns之持續時間及1μm或10μm之波長。在一個實例中,輻射之預脈衝為具有15至60mJ之能量、20至70奈秒(ns)之脈衝持續時間及1至10微米(μm)之波長的雷射脈衝。在一些實例中,預脈衝可具有小於1ns之持續時間。舉例而言,預脈衝可具有300皮秒(ps)或更小、100ps或更小、100至300ps之間或10至100ps之間的持續時間。
光束遞送系統211_1及211_2中之每一者類似於光束遞送系統111(圖1A)。在圖2的實例中,第一光束206_1及第二光束206_2與單獨光束遞送系統相互作用並在單獨光學路徑上行進。然而,在其他實施方案中,第一光束206_1及第二光束206_2可共用同一光學路徑的全部或部分且亦可共用同一光束遞送系統。
參看圖3,展示程序300之流程圖。程序300為可由控制系統150執行的程序之實例。
偵測自真空腔室109中之物質發射的光(310)。所發射光係由感測器135偵測。物質可為原子、離子及/或分子。物質可為氣體122、電漿196及/或碎片195之部分。自物質發射的光可為螢光或雷射誘導之螢光。所發射光係由感測器135偵測。感測器135產生指示所發射光之特性的資料。舉例而言,資料可指示所發射光之強度。在一些實施方案中,資料指示真空腔室109中之所發射光的相對部位。在此等實施方案中,資料可用於形成二維表示,諸如影像。此外,在一些實施方案中,感測器模組134包括多於一個感測器135。多於一個感測器135可相對於真空腔室109之特定部分而定位。在此等實施方案中,來自感測器135之資料可一起用以形成以三維形式表示真空腔室109中之光發射之空間分佈的立體表示。
在一些實施方案中,感測器135在相對短週期(例如,20微 秒(μs)或更短,諸如10奈秒(ns)或更小之週期)內收集資料,使得所偵測發射與單一電漿產生事件相關聯。此等實施方案允許EUV光源100或200之一或多個組件在逐脈衝基礎上被改變。此外,在相對短週期內的監控允許產生快速時間解析影像,諸如圖4A至圖4D及圖5中所展示。在其他實施方案中,感測器135在較長週期內收集資料,使得所偵測發射與多於一個電漿產生事件相關聯。
分析所偵測發射之指示(320)。該指示為經由信號157自感測器系統接收的資料。信號157包括描述發射的資訊,諸如所偵測發射之強度。在一些實施方案中,信號157包括關於所偵測發射之部位資訊。舉例而言,信號157可包括感測器135之二維陣列的讀出,其中由陣列中之每一感測器偵測的發射之強度包括於信號157中。基於此類資訊,控制系統150判定所偵測發射之相對部位。
如上文所論述,在一些實施方案中,感測器系統130包括光譜濾光器模組137及一或多個光譜濾光器136。在此等實施方案中,光譜濾光器136判定哪些波長到達該一或多個感測器135。舉例而言,光譜濾光器136可包括經設計以僅允許與H-α發射相關聯之波長到達感測器150的濾光器。在此等實施方案中,信號157可包括指示特定信號157包括與所偵測H-α發射相關之資訊的資料。
此外,信號157可包括與產生發射所根據之條件相關的資料。舉例而言,信號157可包括關於感測器的資訊,諸如曝光時間。在另一實例中,信號157可包括關於真空腔室中之環境的資訊。此類環境資訊之實例包括溫度、壓力及/或氣體122之流動速率及關於光束106的資訊,諸如脈衝持續時間、脈衝能量及/或脈衝波長。
控制系統150之分析模組152能夠對所偵測發射之指示執行多種分析。各種分析可作為例如可由電子處理器154執行的電腦程式儲存於電子儲存器156上。對所偵測發射之任何類型分析可被執行。參看圖4A至圖4D及圖5論述資料及對彼資料之對應分析的特定實例。不同於此等實例中論述之分析的分析可由分析模組152執行。
亦參考圖4A至圖4D,展示其中發射為中性原子錫的雷射誘導之螢光的實例。在此實例中,錫用作目標材料,且中性原子錫可為錫碎片及/或未轉換成電漿196的錫。在圖4A至圖4D之實例中,感測器135為成像電漿形成部位123並產生真空腔室109之二維影像的攝影機。
在圖4A至圖4D的實例中,感測器135為具有約10奈秒(ns)之曝光時間的加強電荷耦合器件(ICCD),光譜濾光器136置放於感測器135與電漿形成部位123之間,且雷射誘導之螢光係藉由運用來自探測雷射108之雷射光束115激勵中性錫原子而形成。在此實例中,探測雷射108為可調諧雷射,且雷射光束115為具有脈衝的脈衝光束,該等脈衝具有幾奈秒(例如,10ns或更小)之持續時間。另外,探測雷射108經調諧,使得雷射光束115具有286.3nm之波長,其激勵在基態中之中性原子錫。中性錫原子之某一分數或百分比經由發射在317.5nm處之光(雷射誘導之螢光)的電子躍遷而衰減。在此實例中,光譜濾光器136為居中於317.5nm處的帶通濾光器。另外,圖4A至圖4D係關於使用預脈衝及主脈衝的系統。因此,此等圖係關於圖2而論述。
圖4A為在預脈衝(圖2之脈衝204_2)與初始目標221p(圖2)相互作用之後的200奈秒(ns)處來自真空腔室109中之中性錫的雷射誘導之螢光的影像400A。圖4B為在預脈衝與初始目標221p相互作用之後的1900 ns處來自真空腔室109中之中性錫的雷射誘導之螢光的影像400B。圖4C為在預脈衝(圖2之脈衝204_1)與經修改目標220m(圖2)相互作用之後的300ns處來自真空腔室109中之中性錫的雷射誘導之螢光的影像400C。圖4D為在主脈衝與經修改目標220m相互作用之後的900ns處來自真空腔室109中之中性錫的雷射誘導之螢光的影像400D。每一影像400A至400D之每一像素表示真空腔室109之特定區中的雷射誘導之螢光的量。主脈衝與經修改目標220m之間的相互作用為電漿產生事件。
分析模組152藉由分析影像400A至400D以判定某些頻譜線之強度及此等線之相對強度來判定藉由相互作用離子化的錫之量。舉例而言,來自中性錫之發射的強度可與單獨或雙重地離子化錫之強度相比較以判定在電漿產生事件之後經離子化的目標材料之原子的分數。發射之強度與錫原子(圖4A至圖4D之實例中的中性錫原子)之數目成比例。因此,若來自中性錫原子之發射的強度在來自離子物質之強度增加的同時降低,則此係改變離子化分數之證據。
可分析影像400A至400D之其他特徵。舉例而言,強度之空間分佈可經分析以估計由中性錫原子行進的距離及/或中性錫原子之速度。舉例而言,如圖4D中所見,自原點(主脈衝與經修改目標220m之間的相互作用之方位)行進之距離及經過時間(在此實例中在相互作用之後的900ns)給出彼等中性錫原子之速度。
此外,螢光之定向角指示經修改目標220m相對於主脈衝之傳播方向的角度或定向且螢光之定向角隨經修改目標220m之定向變化而變化。因此,經修改目標220m之定向亦可自影像(諸如影像400A至400D)判定。
分析模組152亦自影像400A至400D判定關於發射的其他資訊。舉例而言,分析模組152可應用形態運算器(morphological operator)以識別影像400C中之環結構401。環結構401在空間中隨時間擴展,此係由於電漿產生事件發生。分析模組152亦識別影像400D中之環結構401。藉由比較影像400C中之環結構401與影像400D中之環結構401的空間特性,可估計錫原子之速度。舉例而言,影像401C及401D中之環結構401的半徑及/或直徑可經比較並在知曉影像400C與400D之間的時間之量情況下用以估計錫原子之速度。此外,在一些實施方案中,自單個影像判定錫原子之速度。舉例而言,當來自主脈衝與經修改目標220m之相互作用的時間已知用於一單個影像時可自彼單個影像判定錫原子之速度。當自兩個或多於兩個影像判定錫原子之速度時,亦可判定錫原子之速度的變化。
此外,形態運算器可用於判定環結構401之定向。環結構之定向提供經修改目標220m之定向的指示。舉例而言,可在識別環結構401之後估計環結構401之長軸及短軸,且可自該等軸估計環結構401之定向。
影像400A至400D經提供為感測器系統130可提供至控制系統150的資料之實例。可監控其他類型之雷射誘導之螢光。舉例而言,展示在電漿產生事件期間形成的目標材料之離子的雷射誘導之螢光的影像可經產生並提供至控制系統150。在另一實例中,分析來自氣體122之發射。氣體122可歸因於例如來自脈衝104(或圖2之脈衝204_1及/或脈衝204_2)的真空腔室109中之熱、及/或氣體122中之離子移動、藉由電漿196之形成,或藉由探測雷射108的直接激勵而發射光。圖5展示與分析來自氣體122之發射以判定由於電漿產生事件而沈積至氣體122中的能量之 量相關的實例。
在圖5的實例中,氣體122為氫氣且感測器135為產生電漿形成部位123之二維影像的攝影機。光之脈衝將目標材料中之至少一些轉換成發射EUV光之電漿。在圖5的實例中,脈衝能量為860毫焦耳(mJ),脈衝之波長為10μm,且脈衝之持續時間為10ns。目標為具有約50μm之半徑的錫小滴。在此實施方案中,光譜濾光器136為具有居中於H-α發射波長上之窄光譜帶的帶通濾波器且置放於電漿形成部位123與感測器135之間。因此,H-α發射達到感測器135而其他波長之光實質上被防止達到感測器135。
(拍攝的更多影像中之)四個二維影像500A至500D展示於圖5中。在不同時間獲得影像500A至500D中之每一者。因此,影像500A至500D為在四個不同時間在電漿形成部位123處H-α發射之相對強度或量的影像。
分析模組152經組態以分析諸如500A至500D之影像以判定衝擊波或爆炸波504之空間特性。爆炸波504藉由電漿產生事件形成於氣體122中。空間特性可包括例如半徑、直徑、半長軸之定向、長軸之定向、短軸之定向,及/或爆炸波504之周長。分析模組152藉由將形態運算器及成像處理技術應用於影像而定位由攝影機收集的影像中之一或多者中的爆炸波504。舉例而言,爆炸波504之一般形狀已知為圓形,且分析模組152可應用偵測影像內之圓形目標的形態過濾器以在來自攝影機之影像中定位爆炸波504。在另一實例中,分析模組152可應用依賴於在衝擊波504之邊緣處的發射與背景之間的強度之差的邊緣偵測器。
在爆炸波504之空間特性已被估計後,分析模組152應用 Taylor-Sedov方程式以估計沈積至氣體122中的能量(E)之量。Taylor-Sedov方程式為:
Figure 108138412-A0305-02-0028-2
其中E為沈積至氣體122中的能量,r為爆炸波之半徑,ρo為氣體122之密度,且t-to為自電漿產生事件以來的時間。自在時間(t)處俘獲的電漿形成部位123之影像估計在特定時間(t)處的半徑(r)。分析模組152使用方程式1及在特定時間(t)處之爆炸波504的半徑之估計值估計沈積至氣體122中的能量之量。
分析模組152亦可自影像500A至500D判定其他資訊。舉例而言,圖5亦包括相對總H-α發射隨自電漿產生事件以來的時間變化的曲線。為產生曲線501,由攝影機在特定時間收集的影像中之每一像素的值經求和並經正規化。繪製隨時間變化之結果。影像500A至500D對應於包括於曲線501上的點中之四個。
圖4A至圖4D及圖5中展示的資料為感測器系統130可經由信號157提供至控制系統150的資料之類型的實例。然而,感測器系統130可經組態以收集關於真空腔室109中之發射的任何其他資料,且分析模組152亦可經組態以分析此類資料。舉例而言,在一些實施方案中,由多於一個感測器135監控電漿形成部位123,該等感測器其中之每一者具有對應於目標材料或氣體122之特定發射譜線的光譜濾光器136。在此等實施方案中,每一感測器135提供指定在相同操作條件下在電漿產生部位123處的物質之發射譜線中之一者的空間分佈的資料。來自每一感測器之所量測發射與由其他感測器量測之所量測發射相比較以判定真空腔室109中之環境的性質。舉例而言,在比較來自目標材料之不同可能發射之情況下, 此比較產生經離子化以形成電漿196的目標材料之部分的估計。
此外,分析模組152可經組態以比較在電漿事件之後的兩個不同時間的某一類型發射之空間分佈。舉例而言,在其中使用錫作為目標材料的實施方案中,感測器135可與僅允許來自離子化錫之發射到達感測器135的濾光器136一起使用。藉由比較在不同時間取得的經離子化錫之發射的影像,分析模組152能夠估計錫離子之運動的速度及/或方向。
因此,分析模組152分析來自感測器系統130之資訊及資料。
除了分析自感測器系統130提供的資料之外,控制系統150亦基於分析判定是否對EUV光源100或200進行調整(330)。對EUV光源100或200之調整可為對EUV光源100或200之任何組件的調整且可包括對EUV光源100或200之多於一個組件的調整。是否進行調整及調整之性質(若存在)取決於關於(320)論述的分析之結果。
EUV光源100或200可與各種效能規範相關聯,且對發射之分析可用於判定EUV光源100或200是否操作於一或多個效能規範內。轉換效率(CE)為效能規範之實例。轉換效率為被供應至EUV光源100或200的轉換成EUV光的能量之比率。CE取決於離子化分數(轉換成離子的目標材料之部分)。如上文所論述,對發射之分析可用於估計離子化分數。為了增加離子化分數,可增加光束106中之脈衝的持續時間及/或能量。因此,若CE低於所指定CE,則控制系統150可發出命令信號159至光產生模組105以改變光束106中之脈衝的持續時間及/或強度。
在另一實例中,控制系統150可發出命令信號159至光產生模組205(圖2)以使得預脈衝204_2之性質被改變。如上文所論述,預脈衝 204_2藉由改變目標之形狀及/或密度而調節目標,使得所修改目標221m(圖2)更有利於電漿產生。光產生模組205可經調整,使得預脈衝204_2之強度及/或持續時間使得稍後產生之修改目標211m具有較低密度及/或不同形狀。此外,在一些實施方案中,控制系統150發出命令信號至光束轉向系統211_1,使得預脈衝204_2相對於初始目的地部位224的位置被改變。此外,串流121中之目標之大小可經調整以減小離子化分數。在此等實施方案中,命令信號159經提供至目標供應系統110以例如改變目標形成裝置117之振動的頻率,使得串流121中之目標的大小減小。
在另一實例中,對發射之分析產生大於所要離子速度的所估計離子速度。在此實例中,控制系統150發出命令信號159至氣體管理系統140。氣體管理系統140促使氣體122之壓力增加使得在後續電漿產生事件中產生的離子具有較低速度。在又一實例中,對發射之分析展示在電漿產生事件之後相對不久的時間相對高的錫原子量。在電漿產生事件之後不久的相對高錫原子量為真空腔室109中過多碎片之指示。控制系統150可發出命令信號159至氣體管理系統140以增加氣體122之流動速率及/或改變氣體122之流動方向以遠離光學元件114移動碎片。
在又一實例中,對發射之分析用以產生沈積至氣體122中的能量之量的估計。能量之所估計量與臨限值及/或規範(例如,能量之可接受量的範圍)相比較,且若能量之所估計量高於臨限值及/或不滿足臨限值,則控制系統150可發出命令至光產生模組205以減小預脈衝204_2之功率。減小功率或預脈衝204_2大體上減小在預脈衝204_2與初始目標221p之間的相互作用期間產生的離子及/或預脈衝電漿之量,且藉此減小沈積至氣體122中的能量。
在一些實施方案中,控制系統150發出命令信號159至EUV光源100或200之多於一個組件或系統。舉例而言,為增加離子化分數,控制系統150可發出命令信號159至光產生模組105或205、目標供應系統110及氣體管理系統140。此外,在一些情況下,滿足所有效能規範及/或可接受地操作EUV光源100,且不進行調整。
在判定是否調整EUV光源100或200之後,控制系統150判定是否繼續監控真空腔室109(340)。若監控繼續,則程序300返回至(310)。若監控不繼續,則程序300結束。此外,在一些實施方案中,程序300在EUV光源100或200之操作期間連續地運行,使得控制系統連續地監控EUV光源100或200。在此等實施方案中,控制系統150不判定是否繼續監控真空腔室109且實際上連續地並且在EUV光源100或200之操作期間不中斷地監控真空腔室109。
圖6A為包括源收集器模組SO之微影裝置600的方塊圖。微影裝置600包括:˙照明系統(照明器)IL,其經組態以調節輻射光束B(例如,EUV輻射);˙支撐結構(例如光罩台)MT,其經建構以支撐圖案化器件(例如光罩或倍縮光罩)MA,且連接至經組態以準確地定位該圖案化器件之第一定位器PM;˙基板台(例如晶圓台)WT,其經建構以固持基板(例如抗蝕劑塗佈晶圓)W,且連接至經組態以準確地定位該基板之第二定位器PW;及˙投影系統(例如反射性投影系統)PS,其經組態以將由圖案化器件MA賦予至輻射光束B之圖案投影至基板W之目標部分C(例如包括一或多 個晶粒)上。
照明系統可包括用於導引、塑形或控制輻射的各種類型之光學組件,諸如折射、反射、磁性、電磁、靜電或其他類型之光學組件,或其任何組合。
支撐結構MT以取決於圖案化器件MA之定向、微影裝置之設計及其他條件(諸如圖案化器件是否被固持於真空環境中)之方式來固持圖案化器件MA。支撐結構可使用機械、真空、靜電或其他夾持技術來固持圖案化器件。支撐結構可為例如框架或台,其可視需要而固定或可移動。支撐結構可確保圖案化器件(例如)相對於投影系統處於所要位置。
所使用之術語「圖案化器件」應被廣泛地解譯為係指可用以在輻射光束之橫截面中向輻射光束賦予圖案以便在基板之目標部分中產生圖案的任何器件。被賦予至輻射光束之圖案可對應於目標部分中產生之器件(諸如積體電路)中之特定功能層。
圖案化器件可為透射的或反射的。圖案化器件之實例包括光罩、可程式化鏡面陣列,及可程式化LCD面板。光罩在微影中為吾人所熟知,且包括諸如二元、交變相移及衰減式相移之光罩類型,以及各種混合光罩類型。可程式化鏡面陣列之一實例採用小鏡面之矩陣配置,該等小鏡面中之每一者可個別地傾斜,以便使入射輻射光束在不同方向上反射。傾斜鏡將圖案賦予至由鏡面矩陣反射之輻射光束中。
類似於照明系統IL,投影系統PS可包括適於所使用之曝光輻射或適於諸如真空之使用之其他因素的各種類型之光學組件,諸如折射、反射、磁性、電磁、靜電或其他類型之光學組件,或其任何組合。可需要將真空用於EUV輻射,此係由於其他氣體可吸收過多輻射。因此,可 憑藉真空壁及真空泵而將真空環境提供至整個光束路徑。
在圖6A及6B之實例中,該裝置為反射型(例如,採用反射光罩)。微影裝置可屬於具有兩個(雙載物台)或兩個以上基板台(及/或兩個或兩個以上圖案化器件台)之類型。在此等「多載物台」機器中,可並行地使用額外台,或可對一或多個台進行預備步驟,同時將一或多個其他台用於曝光。
參看圖6A,照明器IL自源收集器模組SO接收極紫外線輻射光束。用以產生EUV光之方法包括但未必限於:運用在EUV範圍內之一或多個發射譜線將具有至少一個元素(例如氙、鋰或錫)之材料轉換成電漿狀態。在一種此類方法(常常被稱為雷射產生電漿「LPP」)中,藉由運用雷射光束來輻照燃料(諸如具有所需譜線發射元素之材料的小滴、串流或叢集)而產生所需電漿。源收集器模組SO可為包括雷射(圖6A中未展示)的EUV輻射系統之部分,該雷射用於提供激勵燃料之雷射光束。所得電漿發射輸出輻射,例如EUV輻射,該輻射係使用安置於源收集器模組中之輻射收集器予以收集。舉例而言,當使用二氧化碳(CO2)雷射以提供用於燃料激勵之雷射光束時,雷射及源收集器模組可為單獨實體。
在此等情況下,不認為雷射形成微影裝置之部分,且輻射光束係憑藉包括例如合適導引鏡及/或光束擴展器之光束遞送系統而自雷射傳遞至源收集器模組。在其他情況下,舉例而言,當源為放電產生電漿EUV產生器(常常被稱為DPP源)時,源可為源收集器模組之整體部件。
照明器IL可包含用於調整輻射光束之角強度分佈的調整器。通常,可調整照明器之光瞳平面中之強度分佈之至少外部徑向範圍及/或內部徑向範圍(通常分別被稱作σ外部及σ內部)。另外,照明器IL可包 含各種其他組件,諸如琢面化場鏡面器件及琢面化光瞳鏡面器件。照明器IL可用以調節輻射光束,以在其橫截面中具有所要均一性及強度分佈。
輻射光束B入射於被固持於支撐結構(例如光罩台)MT上之圖案化器件(例如光罩)MA上,且係由該圖案化器件而圖案化。在自圖案化器件(例如光罩)MA反射之後,輻射光束B傳遞通過投影系統PS,投影系統PS將該光束聚焦至基板W之目標部分C上。憑藉第二定位器PW及位置感測器PS2(例如干涉器件、線性編碼器或電容式感測器),可準確地移動基板台WT,例如以便使不同目標部分C定位於輻射光束B之路徑中。相似地,第一定位器PM及另一位置感測器PS1可用以相對於輻射光束B之路徑來準確地定位圖案化器件(例如光罩)MA。可使用圖案化器件對準標記M1、M2及基板對準標記P1、P2來對準圖案化器件(例如光罩)MA及基板W。
所描繪裝置可在以下模式中之至少一者下使用:
1.在步進模式中,在將被賦予至輻射光束之整個圖案一次性投影至目標部分C上時,使支撐結構(例如光罩台)MT及基板台WT保持基本上靜止(亦即單次靜態曝光)。接著,使基板台WT在X及/或Y方向上移位,以使得可曝光不同目標部分C。
2.在掃描模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,同步地掃描支撐結構(例如光罩台)MT及基板台WT(亦即,單次動態曝光)。可藉由投影系統PS之放大率(縮小率)及影像反轉特性來判定基板台WT相對於支撐結構(例如光罩台)MT之速度及方向。
3.在另一模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,使支撐結構(例如光罩台)MT保持基本上靜止,從而固持可程式化 圖案化器件,且移動或掃描基板台WT。在此模式中,通常採用脈衝式輻射源,且在基板台WT之每一移動之後或在掃描期間之順次輻射脈衝之間根據需要而更新可程式化圖案化器件。此操作模式可易於應用於利用可程式化圖案化器件(諸如上文所提及之類型的可程式化鏡面陣列)之無光罩微影。
亦可採用對上文所描述之使用模式之組合及/或變體或完全不同的使用模式。
圖6B更詳細地展示微影裝置600之實施方案,該微影裝置包括源收集器模組SO、照明系統IL及投影系統PS。源收集器模組SO經建構及配置成使得可將真空環境維持於源收集器模組SO之圍封結構620中。系統IL及PS同樣地含於其自身真空環境內。可由雷射產生LPP電漿源形成EUV輻射發射電漿2。源收集器模組SO之功能係自電漿2遞送EUV輻射光束20,使得其聚焦於虛擬源點中。虛擬源點通常被稱作中間焦點(IF),且源收集器模組經配置成使得中間焦點IF位於圍封結構620中之孔隙621處或附近。虛擬源點IF為輻射發射電漿2之影像。
自中間焦點IF處之孔隙621,輻射橫穿照明系統IL,照明系統IL在此實例中包括琢面化場鏡面器件22及琢面化光瞳鏡面器件24。此等器件形成所謂的「蠅眼」照明器,其經配置以提供在圖案化器件MA處的輻射光束21之所要角度分佈,以及圖案化器件MA處的輻射強度(如由參考660所展示)之所要均一性。在由支撐結構(光罩台)MT固持之圖案化器件MA處的光束21之反射後,即形成經圖案化光束26,且由投影系統PS將經圖案化光束26經由反射元件28、30而成像至由基板台WT固持之基板W上。為了曝光基板W上之目標部分C,在基板台WT及圖案化器件台MT 執行經同步移動以經由照明隙縫掃描圖案化器件MA上之圖案的同時產生輻射之脈衝。
每一系統IL及PS配置於其自有真空或近真空環境內,該環境係由相似於圍封結構620之圍封結構界定。比所展示元件更多之元件大體上可存在於照明系統IL及投影系統PS中。另外,可存在比所展示鏡面更多的鏡面。舉例而言,除了圖6B所展示之反射元件以外,在照明系統IL及/或投影系統PS中亦可存在一至六個額外反射元件。
更詳細地考慮源收集器模組SO,包括雷射623之雷射能量源經配置以將雷射能量624沈積至包括目標材料之燃料中。目標材料可為處於電漿狀態中的發射EUV輻射之任何材料,諸如氙(Xe)、錫(Sn)或鋰(Li)。電漿2為具有數十電子伏特(eV)之電子溫度的高度離子化電漿。可運用其他燃料材料,例如鋱(Tb)及釓(Gd)來產生更高能EUV輻射。在此等離子之去激勵及再結合期間產生之高能輻射係自電漿發射、由近正入射收集器3收集且聚焦於孔隙621上。電漿2及孔隙621分別位於收集器CO之第一焦點及第二焦點處。
儘管圖6B所展示之收集器3為單一彎曲鏡面,但該收集器可採取其他形式。舉例而言,收集器可為具有兩個輻射收集表面之史瓦西(Schwarzschild)收集器。在一實施例中,收集器可為包含巢套於彼此內之複數個實質上圓柱形反射器之掠入射收集器。
為了遞送燃料(其(例如)為液體錫),在圍封體620內配置小滴產生器626,小滴產生器626經配置以發出高頻小滴串流628朝向電漿2之所要部位。小滴發生器626可為目標形成裝置216及/或包括諸如黏著劑234之黏著劑。在操作中,與小滴產生器626之操作同步地遞送雷射能量 624,以遞送輻射脈衝以使每一燃料小滴變成電漿2。小滴之遞送頻率可為幾千赫茲,例如,50kHz。實務上,以至少兩個脈衝來遞送雷射能量624:在具有有限能量之預脈衝到達電漿部位之前,將預脈衝遞送至小滴,以便使燃料材料汽化成小雲狀物,且接著,將雷射能量624之主脈衝遞送至所要部位處之雲狀物,以產生電漿2。截留器630提供於圍封結構620之相對側上,以俘獲不管出於何種原因而未變成電漿之燃料。
小滴產生器626包含含有燃料液體(例如熔融錫)之儲集器601,以及過濾器669及噴嘴602。噴嘴602經組態以將燃料液體之小滴噴射朝向電漿2形成部位。燃料液體之小滴可自噴嘴602藉由儲集器601內之壓力與由壓電致動器(圖中未示)施加至噴嘴之振動之組合而噴射。
如熟習此項技術者將知曉,可定義參考軸線X、Y及Z以量測及描述裝置、其各種組件及輻射光束20、21、26之幾何形狀及行為。在裝置之每一部分處,可定義X軸、Y軸及Z軸之局域參考座標系。圖6B之實例中,Z軸在系統中之給定點處與方向光軸O大致重合,且大體上垂直於圖案化器件(倍縮光罩)MA之平面且垂直於基板W之平面。在源收集器模組中,X軸與燃料串流628之方向大致重合,而Y軸正交於燃料串流628之方向,從而自頁面指出,如圖6B所指示。另一方面,在固持倍縮光罩MA之支撐結構MT附近,X軸大體上橫向於與Y軸對準之掃描方向。出於方便起見,在示意圖圖6B之此區域中,X軸自頁面中指出,再次如所標記。此等指定在此項技術中係習知的,且將在本文中出於方便起見而被採用。原則上,可選擇任何參考座標系以描述裝置及其行為。
用於源收集器模組及微影裝置600整體上之操作中的眾多額外組件存在於典型裝置中,但此處未說明。此等組件包括用於減小或減 輕經圍封真空內之污染效應之配置,例如,以防止燃料材料之沈積物損害或削弱收集器3及其他光學件之效能。存在但未予以詳細地描述之其他特徵為在控制微影裝置600之各種組件及子系統時涉及之所有感測器、控制器及致動器。
參看圖7,展示LPP EUV光源700之實施方案。該光源700可用作微影裝置600中之源收集器模組SO。此外,圖1之光產生模組105可為驅動雷射715之部分。驅動雷射715可用作雷射623(圖6B)。
藉由運用經放大光束710輻照電漿形成部位705處之目標混合物714而形成LPP EUV光源700,該經放大光束710沿著朝向目標混合物714之光束路徑行進。關於圖1A、圖2及圖3所論述之目標材料以及圖1A及圖2之串流121中之目標可為或包括目標混合物714。電漿形成部位705係在真空腔室730之內部707內。當經放大光束710照在目標混合物714上時,該目標混合物714內之目標材料轉換成具有在EUV範圍內之發射譜線之元素的電漿狀態。所產生電漿具有取決於目標混合物714內之目標材料之組合物的某些特性。此等特性可包括由電漿產生之EUV光之波長及自電漿釋放之碎片之類型及量。
光源700亦包括供應系統725,該目供應系統遞送、控制及導引呈液滴、液體流、固體粒子或叢集、液滴內所含有之固體粒子或液體流內所含有之固體粒子之形式的目標混合物714。目標混合物714包括目標材料,諸如水、錫、鋰、氙或在經轉換成電漿狀態時具有在EUV範圍內之發射譜線的任何材料。舉例而言,元素錫可用作純錫(Sn);用作錫化合物,例如SnBr4、SnBr2、SnH4;用作錫合金,例如錫-鎵合金、錫-銦合金、錫-銦-鎵合金或此等合金之任何組合。目標混合物714亦可包括諸如 非目標粒子之雜質。因此,在不存在雜質之情形中,目標混合物714係僅由目標材料組成。目標混合物714係由供應系統725遞送至腔室730之內部707中且遞送至電漿形成部位705。
光源700包括驅動雷射系統715,該驅動雷射系統歸因於雷射系統715之一或若干增益介質內之粒子數反轉而產生經放大光束710。光源700包括介於雷射系統715與電漿形成部位705之間的光束遞送系統,該光束遞送系統包括光束傳送系統720及聚焦總成722。光束傳送系統720自雷射系統715接收經放大光束710,且視需要轉向及修改經放大光束710且將經放大光束710輸出至聚焦總成722。聚焦總成722接收經放大光束710且將光束710聚焦至電漿形成部位705。
在一些實施方案中,雷射系統715可包括用於提供一或多個主脈衝且在一些情況下提供一或多個預脈衝之一或多個光學放大器、雷射及/或燈。每一光學放大器包括能夠以高增益光學地放大所要波長之增益介質、激勵源及內部光學件。光學放大器可具有或可不具有形成雷射空腔之雷射鏡面或其他回饋器件。因此,雷射系統715即使在不存在雷射空腔的情況下歸因於雷射放大器之增益介質中之粒子數反轉亦會產生經放大光束710。此外,雷射系統715可在存在用以提供對雷射系統715之足夠回饋之雷射空腔的情況下產生為相干雷射光束之經放大光束710。術語「經放大光束」涵蓋如下各者中之一或多者:來自雷射系統715之僅僅經放大但未必為相干雷射振盪的光,及來自雷射系統715之經放大且亦為相干雷射振盪的光。
雷射系統715中之光學放大器可包括填充氣體(包括CO2)作為增益介質,且可以大於或等於800倍之增益放大在約9100nm與約11000 nm之間的波長下,且尤其在約10600nm下的光。供用於雷射系統715中之合適放大器及雷射可包括脈衝式雷射器件,例如脈衝式氣體放電CO2雷射器件,該脈衝式氣體放電CO2雷射器件例如運用以相對較高功率(例如10kW或高於10kW)及高脈衝重複率(例如40kHz或大於40kHz)操作的DC或RF激勵產生處於約9300nm或約10600nm之輻射。舉例而言,脈衝重複率可為50kHz。雷射系統715中之光學放大器亦可包括可在較高功率下操作雷射系統715時使用的冷卻系統,諸如水。
光源700包括收集器鏡面735,該收集器鏡面具有孔隙740以允許經放大光束710傳遞通過且到達電漿形成部位705。收集器鏡面735可為例如具有在電漿形成部位705處之主焦點及在中間部位745處之次級焦點(亦被稱為中間焦點)之橢球形鏡面,其中EUV光可自光源700輸出且可經輸入至例如積體電路微影工具(圖中未示)。光源700亦可包括開端式中空圓錐形護罩750(例如氣體錐體),該圓錐形護罩自收集器鏡面735朝向電漿形成部位705漸狹以減小進入聚焦總成722及/或光束傳送系統720的電漿產生之碎片之量,同時允許經放大光束710到達電漿形成部位705。出於此目的,可將氣流提供於護罩中,該氣流經導引朝向電漿形成部位705。
光源700亦可包括連接至小滴位置偵測回饋系統756、雷射控制系統757及光束控制系統758之主控控制器755。光源700可包括一或多個目標或小滴成像器760,該一或多個目標或小滴成像器提供指示小滴例如相對於電漿形成部位705之位置之輸出且將此輸出提供至小滴位置偵測回饋系統756,該小滴位置偵測回饋系統可例如計算小滴位置及軌跡,自該小滴位置及軌跡可基於逐小滴地或平均地計算出小滴位置誤差。因 此,小滴位置偵測回饋系統756將小滴位置誤差作為輸入提供至主控控制器755。因此,主控控制器755可將雷射位置、方向及時序校正信號提供至(例如)可用以(例如)控制雷射時序電路之雷射控制系統757及/或提供至光束控制系統758,該光束控制系統用以控制經放大光束位置及光束傳送系統720之塑形以改變光束焦斑在腔室730內之部位及/或焦度。
供應系統725包括目標材料遞送控制系統726,該目標材料遞送控制系統可操作以回應於(例如)來自主控控制器755之信號而修改如由目標材料供應裝置727釋放的小滴之釋放點,以校正到達所要電漿形成部位705處之小滴中的誤差。目標材料供應裝置727包括採用黏著劑(諸如黏著劑234)之目標形成裝置。
另外,光源700可包括量測一或多個EUV光參數之光源偵測器765及770,該一或多個EUV光參數包括但不限於脈衝能量、依據波長而變化之能量分佈、特定波長帶內之能量、在特定波長帶外的能量,及EUV強度及/或平均功率之角度分佈。光源偵測器765產生回饋信號以供主控控制器755使用。回饋信號可例如指示為了有效及高效EUV光產生而在適當地點及時間恰當地攔截小滴的雷射脈衝之諸如時序及焦點的參數之誤差。
光源700亦可包括導引雷射775,該導引雷射可用以將光源700之各個區段對準或輔助將經放大光束710轉向至電漿形成部位705。結合導引雷射775,光源700包括度量衡系統724,該度量衡系統被置放於聚焦總成722內以對來自導引雷射775之光之一部分以及經放大光束710進行取樣。在其他實施方案中,度量衡系統724被置放於光束傳送系統720內。度量衡系統724可包括對光之子集進行取樣或重新導引之光學元件, 此光學元件係由可耐受導引雷射光束及經放大光束710之功率之任何材料製造。光束分析系統係由度量衡系統724及主控控制器755形成,此係由於主控控制器755分析自導引雷射775取樣之光且使用此資訊以經由光束控制系統758調整聚焦總成722內之組件。
因此,概言之,光源700產生經放大光束710,該經放大光束沿著光束路徑經導引以輻照電漿形成部位705處之目標混合物714以將混合物714內之目標材料轉換成發射在EUV範圍內之光之電漿。經放大光束710在基於雷射系統715之設計及性質而判定之特定波長(其亦被稱作驅動雷射波長)下操作。另外,經放大光束710在目標材料將足夠回饋提供回至雷射系統715中以產生相干雷射光時或在驅動雷射系統715包括合適光學回饋以形成雷射空腔的情況下可為雷射光束。
先前僅說明本發明之實施例的原理。因此應瞭解,熟習此項技術者將能夠設計各種配置,儘管並未在本文中明確地描述或展示,但所述配置體現本發明之原理且包括於其精神及範疇內。此外,本文中所敍述之所有實例及條件性語言主要明確地預期僅用於教育目的且輔助讀者理解本發明之原理及由本發明人貢獻之概念以促進本領域,且所有實例應被理解為不限於此等所特定敍述之實例及條件。此外,本文中敍述本發明之原理、態樣及實施例以及其特定實例之所有陳述意欲涵蓋其結構等效物及功能等效物兩者。另外,意欲此類等效物包括目前已知之等效物及未來研發之等效物(亦即不管結構如何,執行相同功能之所研發之任何元素)兩者。
意欲結合附圖閱讀對例示性實施例之此描述,該等附圖被視為整個書面描述之一部分。在描述中,諸如「下部」、「上部」、「水 平」、「垂直」、「在...上方」、「在...下方」、「向上」、「向下」、「頂部」及「底部」以及其衍生詞(例如「水平地」、「向下地」、「向上地」等)之相對術語應解釋為指代如接著描述或如以下論述之圖式中所展示的定向。此等相對術語僅出於描述之方便起見並且並不需要裝置在特定定向上建構或操作。涉及附接、耦接及其類似者的術語(諸如「連接」及「互連」)指代直接或間接地經由介入結構而經緊固或彼此附接之結構之關係,以及可移動的或剛性的附接或關係兩者,除非以其他方式明確地描述。
儘管已關於例示性實施例描述本發明,但其不限於此。其他實施方案在申請專利範圍之範疇內。所附申請專利範圍應廣泛地視為包括本發明之其他變體及實施例,該等變體及實施例可在不脫離本發明之等效物的範疇及範圍情況下由熟習此項技術者製造。
可使用以下條項進一步描述本發明之實施方案:
1.一種系統,其包含:一真空腔室,其包含一內部區,其中該內部區經組態以接收一目標及一光束,該目標包含目標材料,且該目標材料當在一電漿狀態中時發射極紫外線(EUV)光;一偵測系統,其經組態以成像該內部區,該偵測系統經組態以偵測來自該內部區中之原子、離子或分子的光發射並在該內部區中產生該光發射之一空間分佈之一表示;及一控制系統,其耦接至該偵測系統,該控制系統經組態以:分析該光發射之該空間分佈之該表示以判定來自該內部區中之原子、離子或分子的該光發射之一空間分佈;及基於該光發射之該空間分佈判定是否調整該光束之至少一個性質及/ 或該真空腔室之至少一個性質。
2.如條項1之系統,其中該光發射包含螢光。
3.如條項2之系統,其中該螢光包含雷射誘導之螢光。
4.如條項1之系統,其進一步包含經組態以相對於該偵測系統定位的一或多個光譜濾光器,該等光譜濾光器經組態以僅允許一些波長到達該偵測系統。
5.如條項4之系統,其中該一或多個光譜濾光器中之每一者經組態以透射具有該目標材料之複數個發射譜線中之一者之一波長的光。
6.如條項5之系統,其中該一或多個光譜濾光器中之至少一者經組態以透射一可見光範圍中之一波長。
7.如條項4之系統,其中該真空腔室進一步經組態以在該內部區中含有一氣體,且該光譜濾光器經組態以透射具有在該氣體之一發射譜線處之一波長的光。
8.如條項1之系統,其中該控制系統經組態以接收該內部區之複數個表示,該複數個表示中之每一者係與一不同時間相關聯,且該控制系統經組態以分析該內部區之該表示包含該控制系統經組態以分析該複數個表示中之每一者以判定在該等不同時間中之每一者的該內部區中之該光發射之該空間分佈。
9.如條項8之系統,其中該內部區中之該光發射由該內部區中一之能量事件引起,且該等不同時間為在該能量事件之後發生的所有時間。
10.如條項9之系統,其中該能量事件包含該光束與該目標之間的一相互作用,且該光發射為來自以下各者的一發射:(a)該目標材料;(b)由該光束與該目標材料之間的該相互作用形成的一電漿;及/或(c)由該光 束與該目標之該相互作用形成的碎片。
11.如條項1之系統,其中該控制系統經組態以接收該內部區之一擴展曝光表示,該內部區之該擴展曝光表示包含在一時間週期內的該內部區中之該發射之該空間分佈之一平均值。
12.如條項9之系統,其中該真空腔室進一步經組態以含有在該內部區中的一氣體,該能量事件包含添加能量至該氣體之一相互作用,且該光發射為來自該氣體之一發射。
13.如條項12之系統,其中添加能量至該氣體的該相互作用包含:(a)該光束與該氣體之間的一相互作用;(b)該氣體與由該光束與該目標之間的一相互作用形成的一電漿之間的一相互作用;及/或(c)離子與該氣體之間的一相互作用。
14.如條項1之系統,其中該控制系統經組態以分析該表示以判定該內部區中之該光發射之一空間分佈包含該控制系統經組態以估計該光發射之強度之一形狀及/或一空間分佈。
15.如條項1之系統,其進一步包含:一第一光譜濾光器,其經組態以透射具有一第一波長帶中之一波長的光;及一第二光譜濾光器,其經組態以透射具有在一第二波長帶中之一波長的光,且其中該控制系統經組態以分析該表示包含:該控制系統經組態以估計在該第一波長帶中的光發射之一量並估計在該第二波長帶中的光發射之一量,且該控制系統進一步經組態以基於比較在該第一波長帶處之光發射的該所估計量與在該第二波長帶處之光發射的該所估計量來估計該目標材料之一離子化分數。
16.如條項15之系統,其中該控制系統基於該所估計離子化分數而判定是否調整該光束之至少一個性質。
17.如條項16之系統,其中該控制系統基於該所估計離子化分數而判定是否調整該光束之一指向方向。
18.如條項1之系統,其中該光束包含一主脈衝光束,該主脈衝光束包含足以將目標材料中之至少一些轉換成發射EUV光之一電漿的一能量。
19.如條項1之系統,其中該光束包含一預脈衝光束。
20.如條項4之系統,其中該控制系統經組態以分析該表示進一步包含該控制系統經組態以比較至少在兩個不同時間的該內部區中之螢光之該等空間分佈以估計該內部區中之離子之一速度,並比較該所估計速度與一速度規格,且該控制系統可經組態以基於該所估計速度與該速度規格之該比較而判定是否調整該氣體之一壓力。
21.如條項1之系統,其中該空間分佈之該表示包含一二維表示之一表示。
22.如條項1之系統,其中該光束包含一脈衝光束,且該控制系統經組態以調整該光束之至少一個性質包含該控制系統經組態以調整該脈衝光束之一稍後發生之脈衝的至少一個性質。
23.一種EUV光源,其包含:一真空腔室,其經組態以:在一內部區中含有一氣體並接收一目標及一光束,該目標包含在一電漿狀態中發射極紫外線(EUV)光的目標材料;一監控器,其包含至少一個感測器,該至少一個感測器經組態以偵 測來自該內部區中之該氣體之發射並產生該等所偵測發射之一指示;及一控制系統,其耦接至該監控器,該控制系統經組態以:分析所偵測發射之該指示;及基於該分析判定是否調整該光束之至少一個性質及/或該真空腔室之至少一個性質。
24.如條項23之EUV光源,其中該監控器包含經組態以成像該內部區之一部分並在該部分中產生所偵測發射之一空間分佈之一表示的一偵測系統。
25.如條項24之EUV光源,其中該控制系統經組態以在一段時間內接收複數個表示,每一表示指示在該時間段中之一不同時間的該部分中之所偵測發射之一空間分佈,且該控制系統經組態以基於該複數個表示中之兩者或多於兩者判定是否調整該光束之至少一個性質及/或該真空腔室之至少一個性質。
26.如條項23之EUV光源,其中該氣體包含氫氣,且該所偵測發射包含來自該氫氣之一H阿法(H-α)及/或一H貝他(H-β)發射。
27.如條項24之EUV光源,其進一步包含:一第一光譜濾光器,其經組態以透射一第一波長帶;及一第二光譜濾光器,其經組態以透射一第二波長帶,其中在操作使用中,該第一光譜濾光器及該第二光譜濾光器係在該部分與該偵測系統之間;且該控制系統經組態以分析該等所偵測發射包含該控制系統經組態以比較由該第一光譜濾光器透射之發射之一表示與由該第二光譜濾光器透射之發射之一表示;且是否調整該光束之至少一個性質及/或該真空腔室之 至少一個性質的該判定係基於該比較。
28.如條項24之EUV光源,其進一步包含耦接至該真空腔室之內部的一壓力控制器,該壓力控制器經組態以改變該真空腔室之該內部中的該氣體之一壓力,且其中該控制系統耦接至該壓力控制器。
29.一種控制一EUV光源之方法,該方法包含:提供一目標至一真空腔室中之一目標區,該真空腔室在一內部區中含有一氣體;促使一光束與該目標區中之該目標之間的一相互作用;偵測來自該真空腔室之該內部區中之原子、離子及/或分子的光發射,該光發射係對該真空腔室中之一能量事件的一回應,該能量事件包含添加能量至該目標及/或該氣體的一事件;分析該所偵測光發射以判定該內部區中之光發射之一空間分佈;及基於該分析判定是否調整該光束及/或該氣體之一性質。
其他實施方案在申請專利範圍之範疇內。
100:極紫外線(EUV)光源
104:脈衝
105:光產生模組
106:光束
107:光學路徑
108:探測雷射
109:真空腔室
110:目標供應系統
111:光束遞送系統
112:光學組件
113:孔隙
114:光學元件
115:雷射光束
116:反射表面
117:目標形成裝置
118:儲集器
119:孔
121:目標
121p:目標
122:氣體
123:電漿形成部位
130:感測器系統
134:感測器模組
135:感測器
136:光譜濾光器
137:光譜濾光器模組
140:氣體管理系統
150:控制系統
152:分析模組
154:電子處理器
156:電子儲存器
157:信號
158:I/O介面
159:命令信號
195:碎片
196:電漿
197:光
198:EUV光
199:微影裝置
P:壓力

Claims (29)

  1. 一種用於監控光發射之系統,其包含:一真空腔室,其包含一內部區,其中該內部區經組態以接收一目標及一光束,該目標包含目標材料,且該目標材料當在一電漿狀態中時發射極紫外線(EUV)光;一偵測系統,其經組態以成像該內部區,該偵測系統經組態以偵測來自該內部區中之原子、離子或分子的光發射並在該內部區中產生該光發射之一空間分佈之一表示;及一控制系統,其耦接至該偵測系統,該控制系統經組態以:分析該光發射之該空間分佈之該表示以判定來自該內部區中之原子、離子或分子的該光發射之一空間分佈;及基於該光發射之該空間分佈判定是否調整該光束之至少一個性質及/或該真空腔室之至少一個性質。
  2. 如請求項1之系統,其中該光發射包含螢光(fluorescence)。
  3. 如請求項2之系統,其中該螢光包含雷射誘導(laser-induced)之螢光。
  4. 如請求項1之系統,其進一步包含經組態以相對於該偵測系統定位的一或多個光譜濾光器,該等光譜濾光器經組態以僅允許一些波長到達該偵測系統。
  5. 如請求項4之系統,其中該一或多個光譜濾光器中之每一者經組態以透射具有在該目標材料之複數個發射譜線(emission lines)中之一者中之一波長的光。
  6. 如請求項5之系統,其中該一或多個光譜濾光器中之至少一者經組態以透射在一可見光範圍中的一波長。
  7. 如請求項4之系統,其中該真空腔室進一步經組態以在該內部區中含有一氣體,且該光譜濾光器經組態以透射具有在該氣體之一發射譜線處之一波長的光。
  8. 如請求項1之系統,其中該控制系統經組態以接收該內部區之複數個表示,該複數個表示中之每一者係與一不同時間相關聯,且該控制系統經組態以分析該內部區之該表示包含該控制系統經組態以分析該複數個表示中之每一者以判定在該等不同時間中之每一者的該內部區中之該光發射之該空間分佈。
  9. 如請求項8之系統,其中該內部區中之該光發射由該內部區中之一能量事件引起,且該等不同時間為在該能量事件之後發生的所有時間。
  10. 如請求項9之系統,其中該能量事件包含該光束與該目標之間的一相互作用,且該光發射為來自以下各者的一發射:(a)該目標材料;(b)由該 光束與該目標材料之間的該相互作用形成的一電漿;及/或(c)由該光束與該目標之該相互作用形成的碎片(debris)。
  11. 如請求項1之系統,其中該控制系統經組態以接收該內部區之一擴展曝光表示(extended exposure representation),該內部區之該擴展曝光表示包含在一時間週期(temporal period)內的該內部區中之該發射之該空間分佈之一平均值。
  12. 如請求項9之系統,其中該真空腔室進一步經組態以在該內部區中含有一氣體,該能量事件包含添加能量至該氣體的一相互作用,且該光發射為來自該氣體之一發射。
  13. 如請求項12之系統,其中添加能量至該氣體的該相互作用包含:(a)該光束與該氣體之間的一相互作用;(b)該氣體與由該光束與該目標之間的一相互作用形成的一電漿之間的一相互作用;及/或(c)離子與該氣體之間的一相互作用。
  14. 如請求項1之系統,其中該控制系統經組態以分析該表示以判定該內部區中之該光發射之一空間分佈包含該控制系統,該控制系統經組態以估計該光發射之強度之一形狀及/或一空間分佈。
  15. 如請求項1之系統,其進一步包含:一第一光譜濾光器,其經組態以透射具有一第一波長帶中之一波長 的光;及一第二光譜濾光器,其經組態以透射具有一第二波長帶中之一波長的光,且其中該控制系統經組態以分析該表示包含:該控制系統經組態以估計該第一波長帶中之光發射的一量並估計該第二波長帶中之光發射的一量,且該控制系統進一步經組態以基於比較在該第一波長帶處的光發射之該所估計量與在該第二波長帶處的光發射之該所估計量來估計該目標材料之一離子化分數(ionization fraction)。
  16. 如請求項15之系統,其中該控制系統基於該所估計離子化分數而判定是否調整該光束之至少一個性質。
  17. 如請求項16之系統,其中該控制系統基於該所估計離子化分數而判定是否調整該光束之一指向方向(pointing direction)。
  18. 如請求項1之系統,其中該光束包含一主脈衝光束,該主脈衝光束包含足以將該目標材料中之至少一些轉換成發射EUV光之一電漿的一能量。
  19. 如請求項1之系統,其中該光束包含一預脈衝光束。
  20. 如請求項4之系統,其中該控制系統經組態以分析該表示進一步包含該控制系統經組態以比較至少在兩個不同時間的該內部區中之螢光之該等空間分佈以估計該內部區中之離子之一速度,並比較該所估計速度與一速 度規格(velocity specification),且該控制系統經組態以基於該所估計速度與該速度規格之該比較而判定是否調整該氣體之一壓力。
  21. 如請求項1之系統,其中該空間分佈之該表示包含一二維表示之一表示。
  22. 如請求項1之系統,其中該光束包含一脈衝光束,且該控制系統經組態以調整該光束之至少一個性質包含該控制系統經組態以調整該脈衝光束之一稍後發生之脈衝(later-occurring pulse)的至少一個性質。
  23. 一種EUV光源,其包含:一真空腔室,其經組態以:在一內部區中含有一氣體並接收一目標及一光束,該目標包含在一電漿狀態中發射極紫外線(EUV)光的目標材料;一監控器,其包含至少一個感測器,該至少一個感測器經組態以偵測來自該內部區中之該氣體之發射並產生該等所偵測發射之一指示;及一控制系統,其耦接至該監控器,該控制系統經組態以:分析所偵測發射之該指示;及基於該分析判定是否調整該光束之至少一個性質及/或該真空腔室之至少一個性質。
  24. 如請求項23之EUV光源,其中該監控器包含經組態以成像該內部區之一部分並在該部分中產生所偵測發射之一空間分佈之一表示的一偵測系 統。
  25. 如請求項24之EUV光源,其中該控制系統經組態以在一段時間內接收複數個表示,每一表示指示在該時間段中之一不同時間的該部分中之所偵測發射之一空間分佈,且該控制系統經組態以基於該複數個表示中之兩者或多於兩者判定是否調整該光束之至少一個性質及/或該真空腔室之至少一個性質。
  26. 如請求項23之EUV光源,其中該氣體包含氫氣,且該所偵測發射包含來自該氫氣之一H阿法(H-α)及/或一H貝他(H-β)發射。
  27. 如請求項24之EUV光源,其進一步包含耦接至該真空腔室之內部的一壓力控制器,該壓力控制器經組態以改變該真空腔室之該內部中的該氣體之一壓力,且其中該控制系統耦接至該壓力控制器。
  28. 一種EUV光源,其包含:一真空腔室,其經組態以:在一內部區中含有一氣體並接收一目標及一光束,該目標包含在一電漿狀態中發射極紫外線(EUV)光的目標材料;一監控器,其包含至少一個感測器,該至少一個感測器經組態以偵測來自該內部區中之該氣體之發射並產生該等所偵測發射之一指示,其中該監控器包含經組態以成像該內部區之一部分並在該部分中產生所偵測發射之一空間分佈之一表示的一偵測系統;及 一控制系統,其耦接至該監控器,該控制系統經組態以:分析所偵測發射之該指示;及基於該分析判定是否調整該光束之至少一個性質及/或該真空腔室之至少一個性質;一第一光譜濾光器,其經組態以透射一第一波長帶;及一第二光譜濾光器,其經組態以透射一第二波長帶,其中在操作使用中,該第一光譜濾光器及該第二光譜濾光器係在該部分與該偵測系統之間;且該控制系統經組態以分析該等所偵測發射包含該控制系統經組態以比較由該第一光譜濾光器透射之發射之一表示與由該第二光譜濾光器透射之發射之一表示;且是否調整該光束之至少一個性質及/或該真空腔室之至少一個性質的該判定係基於該比較。
  29. 一種控制一EUV光源之方法,該方法包含:提供一目標至一真空腔室中之一目標區,該真空腔室在一內部區中含有一氣體;促使一光束與該目標區中之該目標之間的一相互作用;偵測來自該真空腔室之該內部區中之原子、離子及/或分子的光發射,該光發射係對該真空腔室中之一能量事件的一回應,該能量事件包含添加能量至該目標及/或該氣體的一事件;分析該所偵測光發射以判定該內部區中之光發射之一空間分佈;及基於該分析判定是否調整該光束及/或該氣體之一性質。
TW108138412A 2018-10-26 2019-10-24 用於監控光發射之系統、euv光源、及控制euv光源之方法 TWI821437B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862751267P 2018-10-26 2018-10-26
US62/751,267 2018-10-26

Publications (2)

Publication Number Publication Date
TW202032278A TW202032278A (zh) 2020-09-01
TWI821437B true TWI821437B (zh) 2023-11-11

Family

ID=68618194

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108138412A TWI821437B (zh) 2018-10-26 2019-10-24 用於監控光發射之系統、euv光源、及控制euv光源之方法

Country Status (6)

Country Link
EP (1) EP3871473A1 (zh)
KR (1) KR20210078494A (zh)
CN (1) CN112930714A (zh)
NL (1) NL2024090A (zh)
TW (1) TWI821437B (zh)
WO (1) WO2020086901A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11452197B2 (en) * 2018-10-29 2022-09-20 Taiwan Semiconductor Manufacturing Co., Ltd. Shock wave visualization for extreme ultraviolet plasma optimization

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140264091A1 (en) * 2013-03-15 2014-09-18 Cymer, Llc Beam position control for an extreme ultraviolet light source
TW201721294A (zh) * 2015-09-23 2017-06-16 Asml荷蘭公司 微影設備及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7394083B2 (en) * 2005-07-08 2008-07-01 Cymer, Inc. Systems and methods for EUV light source metrology
CN101849212A (zh) * 2007-11-08 2010-09-29 Asml荷兰有限公司 辐射系统和方法以及光谱纯度滤光片
JP5599992B2 (ja) * 2009-09-03 2014-10-01 ギガフォトン株式会社 イオン化レーザ装置および極端紫外光光源装置
US8993976B2 (en) * 2011-08-19 2015-03-31 Asml Netherlands B.V. Energy sensors for light beam alignment
EP3011645B1 (en) * 2013-06-18 2019-03-13 ASML Netherlands B.V. Lithographic method and system
US9380691B2 (en) * 2014-02-28 2016-06-28 Asml Netherlands B.V. Adaptive laser system for an extreme ultraviolet light source
JPWO2016117118A1 (ja) * 2015-01-23 2017-10-26 国立大学法人九州大学 Euv光生成システム及びeuv光生成方法、並びにトムソン散乱計測システム
TWI788998B (zh) * 2015-08-12 2023-01-01 荷蘭商Asml荷蘭公司 極紫外線光源中之目標擴張率控制
US9713240B2 (en) * 2015-08-12 2017-07-18 Asml Netherlands B.V. Stabilizing EUV light power in an extreme ultraviolet light source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140264091A1 (en) * 2013-03-15 2014-09-18 Cymer, Llc Beam position control for an extreme ultraviolet light source
TW201721294A (zh) * 2015-09-23 2017-06-16 Asml荷蘭公司 微影設備及方法

Also Published As

Publication number Publication date
KR20210078494A (ko) 2021-06-28
NL2024090A (en) 2020-05-13
EP3871473A1 (en) 2021-09-01
CN112930714A (zh) 2021-06-08
WO2020086901A1 (en) 2020-04-30
TW202032278A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
KR102072064B1 (ko) 방사선 소스
US20220151052A1 (en) System for monitoring a plasma
TWI820102B (zh) 用於一極紫外線(euv)光源之系統及形成用於一euv光源之一目標之方法
JP4966342B2 (ja) 放射源、放射を生成する方法およびリソグラフィ装置
JP2022008595A (ja) 極端紫外光源におけるターゲット膨張率制御
JP2013524525A (ja) Euv放射源およびeuv放射生成方法
JP5740106B2 (ja) Euv放射発生装置
US10289006B2 (en) Beam delivery for EUV lithography
TWI821437B (zh) 用於監控光發射之系統、euv光源、及控制euv光源之方法
JP2014527273A (ja) 放射源及びリソグラフィ装置
US11166361B2 (en) Method and device for measuring contamination in EUV source
CN112041752A (zh) 用于测试诸如收集器反射镜的反射镜的系统及测试诸如收集器反射镜的反射镜的方法
US20200045800A1 (en) Euv radiation source for lithography exposure process
US11320744B2 (en) Method and apparatus for controlling extreme ultraviolet light
TWI825198B (zh) 極紫外線(euv)光源及用於euv光源之設備、用於形成光學脈衝之設備及調整光學脈衝之性質的方法
TW202106116A (zh) 控制極紫外光源中的轉換效率
NL2015136A (en) Radiation systems and associated methods.
NL2012718A (en) Radiation systems and associated methods.
JP2023506415A (ja) 極端紫外線光源の較正システム