JP2022503714A - 光学変調器の制御 - Google Patents

光学変調器の制御 Download PDF

Info

Publication number
JP2022503714A
JP2022503714A JP2021514365A JP2021514365A JP2022503714A JP 2022503714 A JP2022503714 A JP 2022503714A JP 2021514365 A JP2021514365 A JP 2021514365A JP 2021514365 A JP2021514365 A JP 2021514365A JP 2022503714 A JP2022503714 A JP 2022503714A
Authority
JP
Japan
Prior art keywords
optical
pulse
electro
voltage pulse
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021514365A
Other languages
English (en)
Inventor
ストラム,リャン,マイケル
ロキツキー,ロスティスラブ
シン,ラン
リーベンベルグ,クリストッフェル,ヨハネス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of JP2022503714A publication Critical patent/JP2022503714A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0327Operation of the cell; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • G02F2201/505Arrangements improving the resistance to acoustic resonance like noise
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0085Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Geometry (AREA)
  • Plasma Technology (AREA)
  • X-Ray Techniques (AREA)

Abstract

Figure 2022503714000001
極端紫外線(EUV)光源のための装置は、電気光学材料を含み、相互に時間的に分離した複数の光パルスを含むパルス光ビームを受光するように構成された光学変調システムと、電気光学材料に第1の光パルスが入射している間に電気光学材料に第1の電気パルスを印加し、電気光学変調器に第2の光パルスが入射している間に電気光学材料に第2の電気パルスを印加し、電気光学材料に第1の光パルスが入射した後であって電気光学材料に第2の光パルスが入射する前に電気光学材料に中間電気パルスを印加するように、電源を制御するよう構成された制御システムと、を含む。
【選択図】 図2A

Description

(関連出願の相互参照)
[0001] 本出願は、2018年10月18日に出願された「Control of an Optical Modulator」と題する米国特許出願第62/747,518号の優先権を主張する。これは参照により全体が本願に含まれる。
[0002] 本開示は光学変調器の制御に関する。例えば、光学変調器における光漏れ(optical leakage)を制御することができる。光学変調器は、極端紫外線(EUV)光源及び/又はリソグラフィシステムの一部であり得る。
[0003] 例えば、20ナノメートル(nm)以下、5~20nmの間、又は13~14nmの間の波長の光を含む、100nm以下の波長を有する(時として軟x線とも称される)電磁放射のような極端紫外線(「EUV」)光は、フォトリソグラフィプロセスで使用され、レジスト層において重合を開始することにより、例えばシリコンウェーハのような基板に極めて小さいフィーチャを生成することができる。
[0004] EUV光を発生する方法は、必ずしも限定ではないが、例えばキセノン、リチウム、又はスズのような、EUV範囲に輝線を有する元素を含む材料を、プラズマ状態に変換することを含む。しばしばレーザ生成プラズマ(「LPP」:laser produced plasma)と呼ばれる1つのそのような方法では、例えば材料の小滴、プレート、テープ、流れ、又はクラスタの形態であるターゲット材料を、駆動レーザと称されることのある増幅光ビームで照射することにより、必要なプラズマを生成できる。このプロセスでは、プラズマは通常、例えば真空チャンバのような密閉容器内で生成され、様々なタイプのメトロロジ機器を用いて監視される。
[0005] 1つの全体的な態様において、極端紫外線(EUV)光源のための装置は、電気光学材料を含み、相互に時間的に分離した複数の光パルス(pulse of light)を含むパルス光ビームを受光するように構成された光学変調システムと、電気光学材料に第1の光パルスが入射している間に電気光学材料に第1の電気パルスを印加し、電気光学変調器に第2の光パルスが入射している間に電気光学材料に第2の電気パルスを印加し、電気光学材料に第1の光パルスが入射した後であって電気光学材料に第2の光パルスが入射する前に電気光学材料に中間電気パルスを印加するように、電源を制御するよう構成された制御システムと、を含む。
[0006] 実施例は、以下の特徴のうち1つ又はを含み得る。電気光学材料に印加された第1の電気パルスは電気光学材料に物理的効果を生じ、この物理的効果は、電気光学材料に中間電気パルスが印加されるときに電気光学材料に存在し得る。物理的効果は、電気光学材料内を進む音響波及び/又は機械的歪みを含み得る。電気光学材料に中間電気パルスを印加すると物理的効果は低減し得る。
[0007] 第1の光パルス及び第2の光パルスは、パルス光ビーム内の連続した光パルスであり得る。
[0008] 制御システムは、第1の電気パルスと中間電気パルスとの間の時間量を制御するように構成することができる。
[0009] 電気光学材料は半導体を含み得る。
[0010] 電気光学材料は絶縁体を含み得る。
[0011] 電気光学材料は電気光学結晶を含み得る。
[0012] 装置は、少なくとも1つの偏光ベース光学要素を更に含み得る。
[0013] 別の全体的な態様において、光学パルス(optical pulse)を形成するための装置は、電気光学材料を含み、オン状態で光を透過させると共にオフ状態で光を阻止するように構成された光学変調システムを含む。光学変調システムは、相互に時間的に分離した少なくとも第1の光パルス及び第2の光パルスを含むパルス光ビームを受光するように構成されている。制御システムを電圧源に結合することができる。制御システムは、電気光学変調器に第1の光パルスが入射している間に、電圧源に、電気光学変調器をオン状態に切り換えるよう構成された第1の電圧パルスを電気光学変調器に印加させることによって第1の形成された光学パルスを発生し、電気光学材料に中間電圧パルスを印加し、第1の電圧パルス及び中間電圧パルスを印加した後であって電気光学材料に第2の光パルスが入射している間に、第2の電圧パルスを電気光学材料に印加することによって第2の形成された光学パルスを発生する、ように構成されている。第2の電圧パルスは、電気光学変調器をオン状態に切り換えるよう構成されている。電気光学材料に対する中間電圧パルスの印加によって、第2の形成された光学パルスの特性が制御される。
[0014] 実施例は、以下の特徴のうち1つ以上を含み得る。第2の形成された光学パルスはペデスタル部(pedestal portion)及び主要部を含み、第2の形成された光学パルスの特性はペデスタルの特性を含み、電気光学材料に対する中間電圧パルスの印加によってペデスタル部の特性を制御できるようになっている。ペデスタル部及び主要部は時間的に連続し得る。ペデスタル部の特性は、ペデスタル部の時間長、最大強度、及び/又は平均強度とすることができる。
[0015] 電気光学材料に対する中間電圧パルスの印加によって、オフ状態で光学変調システムを透過する光漏れ光の量が変化し得る。電気光学材料に対する中間電圧パルスの印加によって、オフ状態で光学変調システムを透過する光漏れ光が低減し得る。
[0016] いくつかの実施例において、制御システムは、第1の時点で第1の電圧パルスを電気光学材料に印加させ、制御システムは、第1の時点の後の第2の時点で中間電圧パルスを電気光学材料に印加させる。第2の時点及び第1の時点は遅延時間だけ時間的に分離し、制御システムは更に、遅延時間を調整することによって第2の形成された光学パルスの特性を制御するように構成されている。
[0017] また、制御システムは、中間電圧パルスの振幅、時間長、及び位相を制御するように構成することができる。
[0018] 制御システムは更に、ペデスタル部の測定された特性の指示を受信し、受信した指示に基づいて中間電圧パルスの特性を調整する、ように構成することができる。
[0019] 制御システムは更に、プラズマによって生成された極端紫外線(EUV)光の量の指示を受信し、EUV光の量の受信した指示に基づいて中間電圧パルスの特性を調整する、ように構成することができる。中間電圧パルスの特性を調整するように構成されている制御システムは、中間電圧パルスの振幅、中間電圧パルスの時間長、中間電圧パルスの位相、及び/又は、電気光学材料に中間電圧パルスを印加する時点である第2の時点を調整するように構成された制御システムを含み得る。
[0020] 別の全体的な態様において、光学パルスの特性を調整する方法は、光学変調システムに光が入射している間に光学変調システムの電気光学材料に第1の電圧パルスを印加することによって第1の光学パルスを形成することと、第1の電圧パルスを印加した後に電気光学材料に中間電圧パルスを印加することと、第1の電圧パルス及び中間電圧パルスの後であって電気光学材料に光が入射している間に第2の電圧パルスを電気光学材料に印加することによって第2の光学パルスを形成することと、を含む。第2の光学パルスの特性は中間電圧パルスの印加に基づいて調整される。
[0021] 実施例は、以下の特徴のうち1つ以上を含み得る。第1の光学パルスを増幅して、増幅した第1の光学パルスを形成することができる。増幅した第1の光学パルスとターゲット材料との相互作用によって生成されたプラズマから放出される極端紫外線(EUV)光の量の指示を受信することができる。プラズマから放出されるEUV光の量の受信した指示に基づいて、中間電圧パルスの少なくとも1つの特性を決定できる。中間電圧パルスの少なくとも1つの特性は、第1の電圧パルスの印加後の時間遅延を含み得る。中間電圧パルスの少なくとも1つの特性を決定することは、プラズマから放出されるEUV光の量の受信した指示に基づいて時間遅延を決定することを含み得る。中間電圧パルスの少なくとも1つの特性は、中間電圧パルスの振幅及び/又は長さを含み得る。中間電圧パルスの少なくとも1つの特性を決定することは、中間電圧パルスの振幅及び/又は長さを決定することを含み得る。
[0022] いくつかの実施例において、第2の光学パルスはペデスタル部及び主要部を含み、中間電圧パルスの印加に基づいてペデスタル部の特性が調整される。ペデスタル部は主要部と時間的に連続し得る。
[0023] 別の一般的なにおいて、極端紫外線(EUV)光源は、容器と、この容器に結合されるように構成されたターゲット材料供給装置と、パルス光ビームを受光するよう位置決めされるように構成され、電気光学材料を含む光学変調システムと、電圧源に結合された制御システムであって、電圧源に複数の形成電圧パルスを電気光学材料に印加させ、複数の形成電圧パルスの各々は異なる時点で電気光学材料に印加され、電圧源に少なくとも1つの中間電圧パルスを電気光学材料に印加させ、少なくとも1つの中間電圧パルスは複数の形成電圧パルスのうち2つの間に電気光学材料に印加される、ように構成された制御システムと、を含む。
[0024] 実施例は、以下の特徴のうち1つ以上を含み得る。ターゲット材料供給装置は、容器内のターゲット領域へ複数のターゲット材料小滴を提供するように構成することができ、ターゲット材料小滴はターゲット送出レートでターゲット領域に到達し、制御システムは、ターゲット送出レートに依存する形成レートで電気光学材料に形成電圧パルスを印加する。
[0025] 中間電圧パルスの特徴は振幅及び/又は位相を含み得る。制御システムは更に、形成レートに関連付けて記憶された振幅及び/又は位相にアクセスし、電圧源に、アクセスした振幅及び/又は位相で中間電圧パルスを生成させる、ように構成することができる。制御システムは更に、形成電圧パルスの1つと中間電圧パルスの1つとの間の時間遅延を制御するように構成することができる。
[0026] EUV光源は光学増幅器も含み得る。電気光学材料に形成電圧パルスを印加するたびに光学パルスを形成することができる。形成された光学パルスは光学増幅器によって増幅されて増幅光学パルスを形成し得る。制御システムは更に、容器内でプラズマによって生成されたEUV光の量を測定するよう構成されたメトロロジシステムに結合するように構成できる。プラズマは、形成された増幅光学パルスでターゲット材料を照射することによって形成され得る。制御システムは更に、メトロロジシステムから測定されたEUV光の量を受信するように構成できる。制御システムは更に、測定されたEUV光の量に基づいて中間電圧パルスの1つ以上の特徴を変更するように構成できる。中間電圧パルスの1つ以上の特徴は、中間電圧パルスの振幅、中間電圧パルスの時間長、中間電圧パルスの位相、及び/又は最新の形成電圧パルスの印加後の時間遅延を含み得る。
[0027] 上述の技術のいずれかの実施例は、EUV光源、システム、方法、プロセス、デバイス、又は装置を含み得る。1つ以上の実施例の詳細は、添付図面及び以下の記載に述べられている。他の特徴は、記載及び図面から、また特許請求の範囲から明らかとなるであろう。
[0028] EUVリソグラフィシステムの一例のブロック図である。 [0029] 変調システムの一例のブロック図である。 [0030] 光学パルスの一例の図である。 [0031] 図2Bの光学パルスから形成された修正光学パルス(modified optical pulse)の一例の図である。 [0032] 時間の関数としての光学ビーム(optical beam)の一例の図である。 [0033] 時間の関数としての電気信号の一例の図である。 [0034] 照射光学パルスの特性を制御するためのプロセスの一例のフローチャートである。 [0035] リソグラフィ装置の一例のブロック図である。 [0035] リソグラフィ装置の一例のブロック図である。 [0036] EUV光源の一例のブロック図である。
[0037] 電気光学変調器の光漏れを制御するための技術を記載する。電気光学変調器は、初期光ビームを変調して修正光学パルスを形成するために用いられる。電気光学変調器は電気光学材料を含む。電気光学材料に電気信号(例えば有限長を有する電圧パルス)を印加することで、初期光ビームが変調されて修正光学パルスが形成されるように電気光学材料の屈折率を変化させる。電気信号の印加後、電気光学材料に中間電気信号を印加する。以下で更に詳しく検討するように、電気光学材料に対する中間電気信号の印加によって、電気光学変調器の光漏れを制御することができる。中間電気信号は、電気信号によって発生した音響波を軽減させるか、変化させるか、又は制御する。音響波を制御すると電気光学変調器の光漏れの量も制御され、これにより、次いで形成される(又は後に形成される)修正光学パルスの特徴又は特性を制御することが可能となる。
[0038] 図1を参照すると、システム100のブロック図が示されている。システム100はEUVリソグラフィシステムの一例である。システム100はEUV光源101を含み、これはEUV光196をリソグラフィ装置195に提供する。リソグラフィ装置195は、EUV光196でウェーハ(例えばシリコンウェーハ)を露光して、ウェーハ上に電子フィーチャを形成する。EUV光196は、ターゲット118内のターゲット材料を照射光学パルス108で照射することにより形成されたプラズマ197から放出される。ターゲット材料は、プラズマ状態でEUV光を放出する任意の材料(例えばスズ)である。
[0039] EUV光源101は光学パルス発生システム104を含み、これは修正光学パルス107から増幅光学パルス108を生成する。光学パルス発生システム104は光源105を含み、これは、例えばパルス(例えばQスイッチ)もしくは連続波炭酸ガス(CO)レーザ、又は固体レーザ(例えばNd:YAGレーザもしくはエルビウムドープファイバ(Er:ガラス)レーザ)とすることができる。光源105は、光パルス列又は連続光ビームとすることができる光学ビーム106(又は光ビーム(light beam)106)を生成する。光源105は、電気光学材料122を含む変調システム120へ向かう経路111上に光学ビーム106を放出する。電気光学材料122は経路111上にあり、光学ビーム106は電気光学材料122に入射する。
[0040] 変調システム120は、電気光学効果に基づいて光学ビーム106を変調する電気光学変調器である。電気光学効果は、電源123によって発生した直流(DC)又は低周波数電界124の印加により生じる電気光学材料122の屈折率の変化を表す。電源123は、例えば電圧源、関数発生器、又は電力供給とすればよい。光学ビーム106が電気光学材料122に入射している間に電気光学材料122の電気光学効果を制御することにより、変調システム120は光学ビーム106の位相、偏光、又は振幅を変調してパルス107を形成する。
[0041] 電界124を用いて、変調システム120が光を伝送するか否かを制御できる。電界124を用いて、光学ビーム106の1又は複数の特定部分のみが電気光学材料122を通過するように電気光学材料122を制御することができる。このようにして、変調システム120は光学ビーム106の一部からパルス107を形成する。
[0042] また、光学パルス発生システム104は1つ以上の光学増幅器130も含み、各光学増幅器130は経路111上に利得媒体132を含む。利得媒体132はポンピングによってエネルギを受け、このエネルギをパルス107に提供することで、パルス107は増幅されて増幅光学パルス108又は照射光学パルス108になる。パルス107の増幅量は、増幅器130及び利得媒体132の利得によって決定する。利得は、増幅器130が入力光ビームに与えるエネルギの増大量又は増大率である。
[0043] パルス108は、経路111上を、ターゲット118を収容する真空容器180の方へ伝搬する。パルス108及びターゲット118は、真空容器180内のターゲット領域115において相互作用し、この相互作用は、ターゲット118内のターゲット材料の少なくとも一部を、EUV光196を放出するプラズマ197に変換する。
[0044] 電気光学材料122に電界124を印加すると、材料122に音響波が発生する。音響波は、材料122に歪みを生じ、電界124が材料122に印加されなくなった後及び/又は電界124の特性が変化した後も持続する可能性がある。音響波によって生じた歪みは、材料122の屈折率が変化することが予想されない時間期間中であっても材料122の屈折率を変化させる。こういった屈折率の変化は光漏れを招く恐れがある。光漏れは、変調システム120が、光が変調システム120を通過してはならない状態である場合に、変調器120を通過する光である。以下で検討するように、電界124は、材料122に印加されて、材料122における残留音響波を軽減及び/又は制御することにより光漏れを軽減及び/又は制御する成分(例えばパルス)を含む。
[0045] また、EUV光源101は、ターゲット領域115に対して位置決めされたメトロロジシステム182も含む。メトロロジシステム182は、EUV光196を検知するように構成された1つ以上のセンサ184を含む。メトロロジシステム182は、真空チャンバ180内の(例えばターゲット領域115における)EUV光196の量の表現を発生する。メトロロジシステム182は、測定されたEUV光の量を表すデータを、通信リンク183を介して制御システム175に提供する。
[0046] いくつかの実施例において、メトロロジシステム182は光学検知システム185も含み、これは、パルス107及び/又は増幅パルス108の特性を制御するように構成された1つ以上の光学センサを含む。光学検知システム185は、検知システム185がパルス107及び/又は増幅パルス108の特性(例えばペデスタル部の特性)を決定できるようにパルス107及び/又はパルス108の1又は複数の波長を検出できる任意のセンサを含み得る。図1の例において、光学検知システム185はメトロロジシステム182の一部であるが、光学検知システム185はメトロロジシステム182とは別個であってもよい。例えば光学検知システム185は、変調システム120と光学増幅器130との間で光学パルス107のサンプルを受信するように位置決めすることができる。また、光学検知システム185は、光学パルス107及び/又はパルス108の測定に関連したデータを制御システム175に提供することができる。いくつかの実施例において、EUVセンサ184及び/又は光学検知システム185からの情報は、制御システム175によって電界124のパラメータを設定及び/又は変更するために用いられる。
[0047] 制御システム175は、メトロロジシステム182からデータを受信することに加えて、通信インタフェース176を介してパルス発生システム104と及び/又はパルス発生システム104のいずれかのコンポーネントとデータ及び/又は情報を交換する。例えばいくつかの実施例において、制御システム175は、変調システム120及び/又は光源105を動作させるトリガ信号を提供することができる。別の例において、制御システム175は、照射光学パルス108のインスタンスとターゲット118のインスタンスとの間の多くの相互作用についてEUVセンサ184からEUV光の測定量を受信して、電界124の特定のパラメータ又は特性に可能な多くの設定のうちどれが最大のEUV光量を発生するかを決定できる。更に別の例において、制御システム175は、電界124を発生する電源123にデータ及び/又は情報を提供する。この例では、制御システム175により提供されるデータは、例えば電界124の振幅及び/又は2つのパルス間の時間遅延のような電界124の様々な特性を決定する。
[0048] 制御システム175は、電子プロセッサ177と、電子ストレージ178と、入出力(I/O)インタフェース179と、を含む。電子プロセッサ177は、汎用又は特殊用途マイクロプロセッサのようなコンピュータプログラムの実行に適した1つ以上のプロセッサや、任意の種類のデジタルコンピュータの1つ以上の任意のプロセッサを含む。一般に電子プロセッサは、読み取り専用メモリ、ランダムアクセスメモリ、又はそれら双方から命令及びデータを受信する。電子プロセッサ177は任意のタイプの電子プロセッサとすればよい。
[0049] 電子ストレージ178は、RAM等の揮発性メモリ、又は不揮発性メモリとすることができる。いくつかの実施例において、電子ストレージ178は不揮発性及び揮発性の部分又はコンポーネントを含む。電子ストレージ178は、制御システム175及び/又は制御システム175のコンポーネントの動作に使用されるデータ及び情報を記憶することができる。
[0050] また、電子ストレージ178は、コンピュータプログラムとして命令を記憶することができる。この命令が実行された場合、プロセッサ177は、制御システム175、変調システム120、及び/又は光源105のコンポーネントと通信を行う。例えば光源105がパルス源である実施例では、命令は電子プロセッサ177に信号を発生させる命令であり、この信号によって光源105は光学パルスを放出することができる。
[0051] I/Oインタフェース179は任意の種類の電子インタフェースであり、これによって制御システム175は、オペレータ、変調システム120、及び/又は光源105、及び/又は別の電子デバイスで実行している自動化プロセスとの間で、データ及び信号を受信及び/又は送出することができる。例えばI/Oインタフェース179は、視覚ディスプレイ、キーボード、及び通信インタフェースのうち1つ以上を含み得る。
[0052] 図2Aは変調システム220のブロック図である。変調システム220は、変調システム120(図1)の実施例の一例である。変調システム220は電気光学材料122を含み、これは、図2Aに示されている実施例では電極223a、223b間に位置決めされている。電極223a、223bは、電極223a、223b間に電界を形成するよう制御可能である。例えば、制御システム175によって電圧源223は電圧信号214を電極223bに与えて、電極223bが電極223aとは異なる電圧に保持されるようにすることで、電気光学材料122の両端に電界又は電位差(V)を生成できる。
[0053] 更に、変調システム220は電気光学材料122の2つ以上のインスタンスを含み得る。例えば変調システム220は、2つの電気光学材料122、もしくは3つの電気光学材料122を含むか、又は、用途に適した任意の数をビーム経路111上に配置することができる。また、電気光学材料122の各インスタンスは、その電気光学材料122に電界を印加するように制御可能である電極223a、223bを含む。電気光学材料122の2つ以上のインスタンスを含む実施例において、各電気光学材料122に印加される電界は同一であるか、又は電気光学フィールド(electro-optic field)のうち少なくともいくつかは異なる可能性がある。これらの電気光学材料122は制御システム175によってグループとして制御されるか、又は、様々な電界は制御システム175の各インスタンスによって個別に制御可能である。
[0054] また、変調システム220は1つ以上の偏光ベース光学要素224も含む。図2Aの例では、偏光ベース光学要素224は1つだけ図示されている。しかしながら他の実施例では、追加の偏光ベース光学要素224を含めてもよい。例えば、光学ビーム106を受光する変調システム220の側に第2の偏光ベース光学要素224が存在してもよい。更に、偏光ベース光学要素224は電気光学材料122から物理的に分離しているものとして図示されているが、他の実施例も可能である。例えば、光学要素224及び電気光学材料122が相互に接触した状態であるように、偏光ベース光学要素224を電気光学材料122上に形成されたフィルムとしてもよい。
[0055] 偏光ベース光学要素224は、光の偏光状態に基づいて光と相互作用する任意の光学要素である。例えば偏光ベース光学要素224は、水平方向の偏光を透過させると共に垂直方向の偏光を阻止する、又はその逆である直線偏光子とすればよい。偏光ベース光学要素224は、水平方向の偏光を透過させると共に垂直方向の偏光を反射する偏光ビームスプリッタとしてもよい。偏光ベース光学要素224は、特定の偏光状態を有する光以外の全ての光を吸収する光学要素としてもよい。いくつかの実施例において、偏光ベース光学要素224は4分の1波長板を含み得る。少なくとも1つの偏光ベース光学要素224は、電気光学材料122を通過する光を受光すると共に特定の偏光状態の光をビーム経路111上へ誘導するように位置決めされている。
[0056] 上記で検討したように、図2には1つの電気光学材料122及び1つの偏光ベース光学要素224が示されているが、これらのコンポーネントの一方又は双方を2つ以上、ビーム経路111上で相互に直列に配置して変調システム120に含めることも可能である。例えば変調システムは、ビーム経路111上に直列の3つの偏光ベース光学要素224及び2つの電気光学材料122を含み、3つの偏光ベース光学要素224のうち2つの間に各電気光学材料122を置くことができる。
[0057] 電気光学材料122は、光学ビーム106のそれ以上の波長の1つを透過させる任意の材料とすることができる。光学ビーム106が10.6ミクロン(μm)の波長の光を含む実施例では、材料122は例えば、テルル化カドミウム亜鉛(CdZnTe又はCZT)、テルル化カドミウム(CdTe)、テルル化亜鉛(ZnTe)、及び/又はガリウムヒ素(GaAs)とすることができる。他の波長では他の材料を使用できる。例えば材料122は、一カリウムリン酸塩(KDP)、無水リン酸アンモニウム(ADP)、クォーツ、塩化第一銅(CuCl)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)、ニオブ酸リチウム(LiNbO)、ガリウムリン(GaP)、タンタル酸リチウム(LiTaO)、又はチタン酸バリウム(BaTiO)とすることができる。光学ビーム106の1つ以上の波長を透過させると共に外力の印加に応答して複屈折を示す他の材料も、材料122として使用できる。例えば、材料122としてクォーツを用いることができる。
[0058] また、電気光学材料122は異方性も示す。異方性を示す材料では、材料の特性(屈折率等)は空間的に非均一である。このため、制御可能な外力(電位差(V)等)を印加することで、材料122の特性を1又は複数の特定方向に沿って変化させることができる。例えば、外力を印加することにより、材料122を伝搬する光の様々な偏光成分の屈折率を制御できる。従って、電極223a、223b間の電位差(V)を制御することにより、材料122を通過する光の偏光状態を制御することができる。
[0059] 理想的な動作のもとでは、変調システム220が光を透過させるのは、材料122に印加された電位差Vによって材料122を通過する光の偏光状態が偏光ベース光学要素224の偏光条件と合致した場合だけである。例えば、偏光ベース光学要素224が水平方向の偏光をビーム経路111上へ透過させるように位置決めされた直線偏光子であり、かつ、光学ビーム106が最初に材料122へ入射する際に垂直方向に偏光されている場合、パルス107が形成されるのは、光学ビーム106が偏光ベース光学要素224と相互作用する前に材料122に印加された電位差Vによって光学ビーム106の偏光状態が変化して光学ビーム106が水平方向の偏光になった場合だけである。
[0060] 変調システム220は、光を意図的に透過させるよう制御されている場合はいつでもオン状態であると考えられる。例えば、印加される電位差Vが、光学ビーム106の偏光状態が偏光ベース光学要素224と合致するようなものである場合、光学変調システム220はオン状態であると考えられ、パルス107が形成される。印加される電位差Vが、光学ビーム106の偏光状態が偏光ベース光学要素224と直交すると予想されるようなものである場合、光学変調システム220はオフ状態である。理想的な条件のもとでは、光学変調システム220がオフ状態である場合には光学ビーム106は変調システム120を通過しない。
[0061] しかしながら、電位差Vを材料122に印加すると材料122に音響波が伝搬する。こういった音響波は、材料122から電位差Vが除去された後も持続し得る。更に、音響波は材料122内に歪みを生じ、この歪みによって材料122の光学特性が変化し、電位差Vが印加されていない場合であっても入射光が(光漏れとして)変調システム220を通過する可能性がある。このため実際の動作では、材料122に入射する光が変調システム220を通過するはずでない偏光ベース光学要素224の偏光状態であっても、変調システム220はスプリアス光(光漏れ)を透過させる恐れがある。例えば、照射光学パルスの形成直前に光漏れが存在する場合、光漏れは照射光学パルスにペデスタル部を形成する。
[0062] 図2B及び図2Cも参照すると、光学パルス206の一例の図(図2B)と、光学パルス206から形成された修正光学パルス207の一例(図2C)が示されている。パルス207はペデスタル部225及び主要部268を含む。図2Bは時間の関数としてパルス206の強度を示し、図2Cは時間の関数としてパルス207の強度を示す。
[0063] パルス206は、ほぼガウス形である時間プロファイル(強度対時間)を有する。パルス206は、変調システム220と相互作用してパルス207を形成する。制御システム175は、パルス206の特定部分267を選択又は抽出するように変調システム220を制御する。図2Bの例では、変調システム220は時点t=taにおいて光を透過させるように設定され、時点t=tbにおいて光を阻止するように設定されている。言い換えると、光学変調システム220は、部分267における光(これは時点taとtbとの間のパルス206内の光である)のみを透過させるように意図されている。例えば制御システム175は、電気光学材料122を通過する光の偏光が偏光ベース光学要素224の偏光と合致するように電圧信号214を印加することで、時点taで光を透過させるよう変調システム220を制御できる。電圧信号214を除去することによって、時点tbで光の透過を停止するように変調システム220を制御できる。
[0064] しかしながら、電気光学材料122における音響波(又は、偏光ベース光学要素224の予想できない動作のような他の外乱)に起因して、taの前の時点及び/又はtbの後の時点で変調システム220を光漏れが透過する可能性がある。図2Bの例において、漏れ光266は時点taの直前に発生する光漏れである。漏れ光266は部分267の直前に変調モジュール120を通過する。
[0065] 図2Cを参照すると、漏れ光266はペデスタル部225を形成する。図示の例では、ペデスタル部225は221で表されたウィンドウ内で発生し、ペデスタル部225はパルス207の残り部分よりも早期に発生する。ペデスタル部225でない光学パルス207の部分を主要部268と呼ぶ。ペデスタル部225及び主要部268は双方とも光学パルス207の部分であり、ペデスタル部225は主要部268と時間的につながっている。言い換えると、ペデスタル部225と主要部268との間に光が存在しない期間はない。
[0066] ペデスタル部225は、主要部268とは異なる時間プロファイル(時間の関数としての強度)を有する。例えば、ペデスタル部225の平均及び最大の強度及び光学エネルギは、主要部268の平均及び最大の強度及び光学エネルギよりも小さい。また、ペデスタル部225の形状は主要部268の形状とは異なる。更に、ペデスタル部225の特徴(例えば強度、時間プロファイル、及び/又は長さ)は、光漏れなしで形成されるパルスの早期の部分の特徴とは異なる。
[0067] 修正パルス207は、ターゲット領域115へ伝搬する増幅パルス208を形成するため増幅器130によって増幅される。増幅パルス208はペデスタル部225及び主要部268を含み、増幅パルス208の各部分225、268は修正パルス207の対応部分よりも強度が大きい。図2Cの例では、ペデスタル部225は主要部268の前に発生し、主要部268よりも前にターゲット118に到達する。いくつかの実施例において、主要部268は、ターゲット118内のターゲット材料の少なくとも一部を、EUV光を放出するプラズマに変換するのに充分な強度又はエネルギを有する。ペデスタル部225は、主要部268ほど大きいエネルギを持たず、ターゲット材料をプラズマに変換するのに充分なエネルギを持つ場合もそうでない場合もある。しかしながら、ペデスタル部225の光はターゲット118で反射し、ターゲット118の表面から材料を蒸発させ、及び/又はターゲット118の部分を引きちぎる(break off)可能性がある。ペデスタル部225は、主要部268がターゲット118に到達する前にターゲット118を変化させることによってプラズマ形成を妨げる、及び/又は経路111上を戻ってくる望ましくない反射を発生させる恐れがある。
[0068] 一方、ペデスタル部225は、ターゲット118の特性(例えば密度、形状、及び/又は大きさ)がプラズマ形成にいっそう好ましいものとなるようにターゲット118を調節することができる。このため、光漏れの量を制御することによってペデスタル部225の光量を制御することが望ましい。制御システム175は、パルス207の形成前に電気光学材料122に印加される中間電気信号によって、光漏れの量(この例では漏れ光266)を制御する。
[0069] 図2B及び図2Cに関して検討したパルス207は、修正光学パルス207の一例として与えられる。パルス207は他の形態を有することも可能である。例えば、漏れ光266が時点taよりも前に発生し、ペデスタル部225が主要部268から分離している場合がある。こういった実施例では、ペデスタル部225と主要部268との間に光が存在しない期間がある。更に、漏れ光266が時点tbよりも後に発生し、ペデスタル部225が主要部268の後に発生する場合がある。こういった実施例では、ペデスタル部225は主要部268の後にターゲット115に到達する。いくつかの実施例では、漏れ光266が時点taの前と時点tbの後に発生し、主要部268の各側にペデスタル部225が存在する。
[0070] 図3Aは、時間の関数としての光学ビーム306の強度のプロットである。図3Bは、時間の関数としての電気信号324の電圧のプロットである。図3A及び図3Bでは同一の時間スケールが用いられる。電気信号324は、制御システム175が制御する関数発生器によって生成されて電気光学材料122(図1及び図2A)に印加することができる電気信号の一例である。電気信号324は、変調システム220(図2A)に関連付けて検討される。光学ビーム306は、電気光学材料122に入射することができる光学ビーム(又は光ビーム)の一例である。
[0071] 光学ビーム306は光の2つの初期光学パルスを含む。すなわち、材料122に入射する第1の初期光学パルス306_1と第2の初期光学パルス306_2である。第1の初期光学パルス306_1が材料122に入射した後、第2の初期パルス306_2が材料122に入射する。第1の光学パルス306_1及び第2の光学パルス306_2は、相互に時間的に分離した別個の光学パルスである。光学ビーム306は、初期光学パルス306_1及び306_2の他にも光学パルスを含み得る。
[0072] 電気信号324は、時点t1で開始して材料122に印加される第1の電気パルス325a_1と、時点t2で開始して材料122に印加される第2の電気パルス325a_2を含む。電気パルス325a_1、325a_2は、それぞれ有限の時間長331_1、331_2にわたってAボルトの振幅を有する電圧パルスである。このため、電気パルス325a_1及び325a_2を印加すると、それぞれ時間長331_1、331_2にわたって電圧Aが材料122に印加される。
[0073] 電圧Aは、変調システム220をオン状態とするのに充分な電圧である。従って、電気パルス325a_1及び325a_2が材料122に印加されている間、材料122に入射する光は光学変調システム220を透過する。電気パルス325a_1及び325a_2の終了後、変調システム220はオフ状態に戻る。
[0074] 時間長331_1及び331_2は同一であるか又は異なる可能性がある。図3Bの実施例では、第1及び第2の電気パルス325a_1及び325a_2は同一の電圧振幅(A)を有する。しかしながら他の実施例では、電気パルス325a_1及び325a_2は異なる電圧振幅を有し、電気パルス325a_1及び325a_2は双方とも変調システム220をオン状態に遷移させるのに充分な電圧を有する。
[0075] 電気信号324は、時点tiで材料122に印加される中間電気パルス325b_1も含む。時点tiは時点t1の後かつ時点t2の前に発生する。時点tiは、第1の電気パルス325a_1の終了時点から遅延時間330だけ離れている。中間電気パルス325b_1は、時間長又は時間幅332にわたって振幅Bを有する。
[0076] 時点0において、変調システム220はオフ状態である。時点t1で第1の電気パルス325a_1を印加すると、変調システム220はオン状態に遷移する。時点t1では、第1の光学パルス306_1が材料122に入射している。第1の電気パルス325a_1の時間長は第1の光学パルス306_1の時間長よりも短い。従って、時間長331_1の間に材料122に入射する第1の光学パルス306_1の部分のみが材料122を通過する。材料を通過する第1の光学パルス306_1の部分が、修正光学パルス(図2Cの修正光学パルス207等)を形成する。材料122に第1の電気パルス325a_1を印加すると、材料122に音響波が生じる。音響波は歪みを生じ、材料122の光学特性を変化させる。音響波は、第1の電気信号325a_1が終了して材料122に電圧が印加されなくなった後も材料122内を伝搬し続ける。第1の電気信号325a_1の印加により生じた音響波は、第2の光学パルス306_2が材料122に入射したが第2の電気信号325a_2が材料122に印加される前に存在することがある。こういった状況では、変調システム220がオフ状態であるにもかかわらず光が変調システム220を通過する可能性がある。このような光が光漏れであり、変調システム220によって形成される光学パルスレーザにペデスタルを形成する。
[0077] 図4は、照射光学パルスの特性を制御するためのプロセス400の一例のフローチャートである。照射光学パルスはペデスタル部を含み得る。プロセス400について、EUV光源101及び制御システム175(図1)、変調システム220(図2A)、光学ビーム306(図3A)、及び電気信号324(図3B)に関連付けて検討する。しかしながら、プロセス400を、他のEUV光源、他の光学ビーム、他の電気信号、及び/又は他の電気光学変調システムによって実行することも可能である。
[0078] 変調システム220を用いて第1の修正光学パルスを形成する(410)。第1の修正光学パルスを形成するには、第1の光学パルス306_1を材料122に入射させ、時点t1で第1の電圧パルス325a_1を材料122に印加する。時点t1では、第1の光学パルス306_1が材料122に入射しており、変調システム220はオン状態である。このため、時点t1で開始して時間長331_1の終了までの第1の光学パルス306_1の部分が、材料122を通過し、第1の修正光学パルスになる。更に、第1の電圧パルス325a_1の印加によって音響波が材料122内を伝搬する。この音響波を第1の音響波と呼ぶ。この音響は、第1の電圧パルス325a_1が終了して変調システム220がオフ状態になった後も材料122内を伝搬し続ける可能性がある。
[0079] 材料122に中間電圧パルス325b_1を印加する(420)。材料122に中間電圧325b_1を印加することによっても、音響波(第2の音響波と呼ぶ)が材料122内を伝搬する。第2の音響波は第1の音響波と干渉する。強め合う干渉によって音響波の振幅が増大し、弱め合う干渉によって音響波の振幅が低減する。中間電圧パルス325b_1の振幅及び/又は時間長332は、第2の音響波の振幅を決定する。遅延330は、第1の音響波に対する第2の音響波の位相を決定する。従って、遅延330及び/又は振幅Bを制御することにより、第1及び第2の音響波間の相互作用の性質を制御することができる。例えば、第2の音響波が第1の音響波と同一の振幅及び反対の位相を有する場合、第1及び第2の音響波は、中間電気パルス325b_1の印加後に音響波が材料122内を伝搬しないように干渉し合う。
[0080] 変調システム220を用いて第2の修正光学パルスを形成する(430)。第2の修正光学パルスは、中間電圧パルス325b_1を材料122に印加した後に形成される。第2の光学パルス306_2が材料122に入射する。時点t2で、第2の電圧パルス325a_2を材料122に印加して、変調システム220をオン状態に遷移させる。時点t2で開始して時間長331_2の終了までの第2の光学パルス306_2の部分が材料122を透過する。
[0081] 上記で検討したように、第1の音響波と第2の音響波は干渉し、材料122における音響波の特徴はこの干渉の性質に依存する。音響波は材料122に歪みを発生し、材料122の屈折率を変化させる。こういった屈折率の変化により、変調システム220がオフ状態の場合に光が光漏れとして変調システム220を通過する可能性がある。中間電圧パルス325b_1を用いて、第2の光学パルス306_2の1つ以上の特性を所望のように変更する。例えば、中間電圧パルス325b_1を用いて、第2の光学パルス306_2の最大又は平均強度、時間長、及び/又は時間プロファイルを変更することができる。いくつかの実施例では、中間電圧パルス325b_1を用いてペデスタル部を制御及び/又は形成する。
[0082] 例えば、材料122における音響波の特徴に応じて、時点t2の前又は電圧パルス325a_2が印加されなくなった後(変調システム220がオフ状態である場合)に材料122に入射する第2の光学パルス306_2の光の一部も、光漏れとして変調システム220を透過させて、第2の修正光学パルスにペデスタル部を形成することができる。ペデスタルの強度、時間長、及び他の特性は、材料122における音響波を調整することで制御可能である光漏れ量に依存する。材料122における音響波は、材料122に中間電圧パルス325b_1を印加することによって制御、調整、又は軽減することができる。従って、中間電圧パルス325b_1を印加することにより、ペデスタル部の1つ以上の特性が制御又は調整される。更に、中間電圧パルス325b_1により、光学パルス306_2の主要部の1つ以上の特性を制御することができる。
[0083] 中間電圧パルス325b_1を用いて、第2の光学パルス306_2の1つ以上の特性を他の手法で制御することも可能である。例えば上記で検討したように、ペデスタル部は修正パルスの主要部から時間的に分離している場合がある。こういった実施例では、中間電圧パルス325b_1を用いて、分離したペデスタル部及び/又は主要部を変更することができる。
[0084] 更に、光学ビーム306が追加の光学パルスを含み、電気信号324が追加の電圧パルスを含むことがある。いくつかの実施例において、制御システム175は、EUVセンサ184(図1)が測定した、修正光学パルスとターゲット材料118との間の相互作用により発生したEUV光の量の指示を受信する。例えば、中間電圧パルスの最適な設定を決定するため中間電圧パルスの特性を変化させながら、2以上の相互作用にわたってEUV光の測定量を追跡する。いくつかの相互作用の各々で遅延330を変化させて、どの遅延330が最大のEUV光を生成するかを決定できる。別の例では、中間電圧パルス325b_1の振幅Bを変化させて、最大のEUV光を生成する振幅Bを決定する。
[0085] いくつかの実施例では、電子ストレージ178に、振幅B、幅332、及び/又は遅延330の最適値を光学ビーム306のパルス繰り返し率と相関付けるルックアップテーブル又はデータベースを記憶して、光学ビーム306の繰り返し率が変化した場合に振幅B及び/又は遅延330を変更するようにしてもよい。
[0086] 図5及び図6は、システム120及び22等の変調システムを用いることができるリソグラフィ装置に関する。図5は、ソースコレクタモジュールSOを含むリソグラフィ装置500のブロック図である。リソグラフィ装置500は以下のものを含む。
・放射ビームB(例えばEUV放射)を調節するように構成された照明システム(イルミネータ)IL
・パターニングデバイス(例えばマスク又はレチクル)MAを支持するように構成され、パターニングデバイスを正確に位置決めするように構成された第1のポジショナPMに接続された支持構造(例えばマスクテーブル)MT
・基板(例えばレジストコートウェーハ)Wを保持するように構成され、基板を正確に位置決めするように構成された第2のポジショナPWに接続された基板テーブル(例えばウェーハテーブル)WT
・パターニングデバイスMAによって放射ビームBに与えられたパターンを基板Wのターゲット部分C(例えば1つ以上のダイを含む)に投影するように構成された投影システム(例えば反射型投影システム)PS
[0087] 照明システムは、放射を誘導し、整形し、又は制御するための、屈折、反射、磁気、電磁気、静電気、又は他のタイプの光学コンポーネントのような様々なタイプの光学コンポーネント、又はそれらのいずれかの組み合わせを含むことができる。
[0088] 支持構造MTは、パターニングデバイスの方向、リソグラフィ装置の設計、及び他の条件、例えばパターニングデバイスが真空環境で保持されているか否かに応じた方法で、パターニングデバイスMAを保持する。支持構造は、機械式、真空式、静電式、又は他のクランプ技術を使用してパターニングデバイスを保持することができる。支持構造は、例えばフレーム又はテーブルであり、必要に応じて固定式又は可動式とすることができる。支持構造は、例えば投影システムに対してパターニングデバイスが所望の位置にあることを保証できる。
[0089] 「パターニングデバイス」という用語は、基板のターゲット部分にパターンを生成するように、放射ビームの断面にパターンを付与するため使用できる任意のデバイスを指すものとして広義に解釈されるべきである。放射ビームに付与されるパターンは、集積回路等のターゲット部分に生成されるデバイスの特定の機能層に対応し得る。
[0090] パターニングデバイスは透過型又は反射型とすることができる。パターニングデバイスの例には、マスク、プログラマブルミラーアレイ、及びプログラマブルLCDパネルが含まれる。マスクはリソグラフィにおいて周知であり、これには、バイナリマスク、レベンソン型(alternating)位相シフトマスク、ハーフトーン型(attenuated)位相シフトマスクのようなマスクタイプ、更には様々なハイブリッドマスクタイプも含まれる。プログラマブルミラーアレイの一例は、小型ミラーのマトリクス配列を使用しており、ミラーは各々、入射する放射ビームを異なる方向に反射するよう個々に傾斜させることができる。傾斜したミラーは、ミラーマトリクスによって反射する放射ビームにパターンを付与する。
[0091] 投影システムPSは、照明システムILと同様、使用する露光放射、又は真空の使用のような他の要因に合わせて適宜、例えば屈折型、反射型、磁気型、電磁型、静電気型、又はその他のタイプの光学コンポーネントのような様々なタイプの光学コンポーネント、又はそれらの任意の組み合わせを含むことができる。その他のガスは放射を吸収しすぎるため、EUV放射用に真空を使用することが望ましい場合がある。従って、真空壁及び真空ポンプを用いてビーム経路全体に真空環境を提供することができる。
[0092] 図5及び図6の例において、この装置は反射型である(例えば反射マスクを使用する)。リソグラフィ装置は、2つ(デュアルステージ)又はそれ以上の基板テーブル(及び/又は2つ以上のパターニングデバイステーブル)を有するタイプとすることができる。このような「マルチステージ」機械においては、追加のテーブルを並行して使用するか、又は、1つ以上のテーブルを露光に使用している間に1つ以上の他のテーブルで準備ステップを実行することができる。
[0093] 図5を参照すると、イルミネータILはソースコレクタモジュールSOから極端紫外線放射ビームを受光する。EUV光を生成する方法は、必ずしも限定ではないが、例えばキセノン、リチウム、又はスズのような、EUV範囲内に1つ以上の輝線がある少なくとも1つの元素を有する材料をプラズマ状態に変換することを含む。しばしばレーザ生成プラズマ(「LPP」)と呼ばれる1つのそのような方法では、必要な線発光元素を有する材料の小滴、流れ、又はクラスタ等の燃料をレーザビームで照射することにより、必要なプラズマを生成する。ソースコレクタモジュールSOは、燃料を励起するレーザビームを提供するためのレーザ(図5には図示されていない)を含むEUV放射システムの一部とすることができる。結果として生じるプラズマは、例えばEUV放射のような出力放射を放出し、この出力放射はソースコレクタモジュール内に配置された放射コレクタを用いて集光される。例えば炭酸ガス(CO)レーザを使用して燃料励起のためのレーザビームを提供する場合、レーザとソースコレクタモジュールは別個の構成要素である可能性がある。
[0094] そのような場合、レーザはリソグラフィ装置の一部を形成するとは見なされず、放射ビームは、レーザからソースコレクタモジュールへ、例えば適切な誘導ミラー及び/又はビームエキスパンダを含むビームデリバリシステムを用いて渡される。その他の場合、例えば放射源がしばしばDPP源と呼ばれる放電生成プラズマEUVジェネレータである場合は、放射源はソースコレクタモジュールの一体部分である可能性がある。
[0095] イルミネータILは、放射ビームの角度強度分布を調整するためのアジャスタを備えることができる。通常、イルミネータの瞳面内の強度分布の少なくとも外側半径範囲及び/又は内側半径範囲(一般にそれぞれ、σ-outer及びσ-innerと呼ばれる)を調整することができる。更に、イルミネータILは、ファセットフィールドミラーデバイス及びファセット瞳ミラーデバイスのような様々な他のコンポーネントも含むことができる。イルミネータILを用いて、放射ビームが断面において所望の均一性と強度分布を有するように調節することができる。
[0096] 放射ビームBは、支持構造(例えばマスクテーブル)MT上に保持されたパターニングデバイス(例えばマスク)MAに入射し、パターニングデバイスによってパターン形成される。パターニングデバイス(例えばマスク)MAから反射された後、放射ビームBは投影システムPSを通過し、投影システムPSはビームを基板Wのターゲット部分C上に合焦させる。第2のポジショナPW及び位置センサPS2(例えば、干渉デバイス、リニアエンコーダ、又は容量センサ)を使用して、基板テーブルWTを、例えば様々なターゲット部分Cを放射ビームBの経路に位置決めするように正確に移動させることができる。同様に、第1のポジショナPM及び別の位置センサPS1を用いて、パターニングデバイス(例えばマスク)MAを放射ビームBの経路に対して正確に位置決めすることができる。パターニングデバイス(例えばマスク)MA及び基板Wは、パターニングデバイスアライメントマークM1、M2及び基板アライメントマークP1、P2を用いて位置合わせすることができる。
[0097] 図示されている装置は、以下のモードのうち少なくとも1つで使用可能である。
1.ステップモードでは、支持構造(例えばマスクテーブル)MT及び基板テーブルWTを基本的に静止状態に維持しながら、放射ビームに付与されたパターン全体を1回でターゲット部分Cに投影する(すなわち単一静的露光)。次に、別のターゲット部分Cを露光できるように、基板テーブルWTをX方向及び/又はY方向に移動させる。
2.スキャンモードでは、支持構造(例えばマスクテーブル)MT及び基板テーブルWTを同期的にスキャンしながら、放射ビームに付与されたパターンをターゲット部分Cに投影する(すなわち単一動的露光)。支持構造(例えばマスクテーブル)MTに対する基板テーブルWTの速度及び方向は、投影システムPSの拡大(縮小)及び像反転特性によって決定することができる。
3.別のモードでは、支持構造(例えばマスクテーブル)MTがプログラマブルパターニングデバイスを保持して基本的に静止状態に維持されると共に基板テーブルWTを移動又はスキャンさせながら、放射ビームに付与されたパターンをターゲット部分Cに投影する。このモードでは、一般にパルス放射源が使用され、基板テーブルWTの各移動の後に又はスキャン中の連続した放射パルスと放射パルスとの間に、プログラマブルパターニングデバイスが必要に応じて更新される。この動作モードは、上記で言及したタイプのプログラマブルミラーアレイ等のプログラマブルパターニングデバイスを使用するマスクレスリソグラフィに容易に適用できる。
[0098] 上述した使用モードの組み合わせ及び/又は変形、又は全く異なる使用モードも利用できる。
[0099] 図6は、ソースコレクタモジュールSO、照明システムIL、及び投影システムPSを含むリソグラフィ装置500の実施例を更に詳しく示す。ソースコレクタモジュールSOは、このソースコレクタモジュールSOの閉鎖構造620内に真空環境を維持できるように構築及び配置されている。システムIL及びPSも同様にそれら自身の真空環境内に収容されている。レーザ生成LPPプラズマ源によって、EUV放射放出プラズマ2を形成することができる。ソースコレクタモジュールSOの機能は、プラズマ2からのEUV放射ビーム20を仮想光源点に合焦させるように送出することである。仮想光源点は一般に中間焦点(IF)と称される。ソースコレクタモジュールは、中間焦点IFが閉鎖構造620のアパーチャ621に又はその近傍に位置するように構成されている。仮想光源点IFは、放射放出プラズマ2の像である。
[0100] 中間焦点IFにおけるアパーチャ621から、放射は、この例ではファセットフィールドミラーデバイス22及びファセット瞳ミラーデバイス24を含む照明システムILを横断する。これらのデバイスはいわゆる「フライアイ(fly’s eye)」イルミネータを形成する。これは、パターニングデバイスMAにおいて放射ビーム21の所望の角度分布を与えると共に、パターニングデバイスMAにおいて所望の放射強度均一性を与える(参照番号660で示されている)ように配置されている。支持構造(マスクテーブル)MTによって保持されたパターニングデバイスMAでビーム21が反射されると、パターン付きビーム26が形成される。このパターン付きビーム26は、投影システムPSによって、反射要素28、30を介して、基板テーブルWTにより保持された基板W上に結像される。基板W上のターゲット部分Cを露光するため、基板テーブルWT及びパターニングデバイステーブルMTが同期した移動を行って照明スリットを通してパターニングデバイスMA上のパターンをスキャンすると同時に、放射パルスを発生させる。
[0101] 各システムIL及びPSは、閉鎖構造620と同様の閉鎖構造によって画定されたそれら自身の真空環境又は近真空(near-vacuum)環境内に配置されている。一般に、照明システムIL及び投影システムPS内には、図示するよりも多くの要素が存在し得る。更に、図示するよりも多くのミラーが存在する場合がある。例えば、照明システムIL及び/又は投影システムPS内には、図6に示すもの以外に1つから6つの追加の反射要素が存在することがある。
[0102] ソースコレクタモジュールSOについて更に詳しく検討すると、レーザ623を含むレーザエネルギソースが、ターゲット材料を含む燃料にレーザエネルギ624を堆積するように配置されている。ターゲット材料は、キセノン(Xe)、スズ(Sn)、又はリチウム(Li)等、プラズマ状態でEUV放射を放出する任意の材料とすればよい。プラズマ2は、数10電子ボルト(eV)の電子温度を有する高度に電離したプラズマである。例えばテルビウム(Tb)及びガドリニウム(Gd)のような他の燃料材料によって、より高いエネルギのEUV放射を発生させることも可能である。これらのイオンの脱励起及び再結合中に発生した高エネルギ放射がプラズマから放出され、近法線入射コレクタ3によって収集され、アパーチャ621に合焦される。プラズマ2及びアパーチャ621は、それぞれコレクタCOの第1及び第2の焦点に位置付けられている。
[0103] 図6に示されているコレクタ3は単一の曲面ミラーであるが、コレクタは他の形態をとってもよい。例えばコレクタは、2つの放射収集面を有するシュヴァルツシルトコレクタとしてもよい。一実施形態においてコレクタは、相互に入れ子状になった複数の実質的に円筒形のリフレクタを含むかすめ入射コレクタとしてもよい。
[0104] 例えば液体スズである燃料を送出するため、高周波数の小滴の流れ628をプラズマ2の所望の位置に向けて発射するよう配置された小滴ジェネレータ626が、閉鎖構造620内に配置されている。小滴ジェネレータ626は、ターゲット形成装置216とすることができる、及び/又は接着剤234等の接着剤を含む。動作中、レーザエネルギ624は小滴ジェネレータ626の動作と同期して送出され、各燃料小滴をプラズマ2に変えるための放射インパルスを送出する。小滴送出の周波数は数キロヘルツとすることができ、例えば50kHzである。実際には、レーザエネルギ624は少なくとも2つのパルスで送出される。すなわち、燃料材料を小さいクラウドに気化させるため、限られたエネルギのプレパルスがプラズマ位置に到達する前の小滴へ送出され、次いで、プラズマ2を発生させるため、レーザエネルギのメインパルス624が所望の位置のクラウドへ送出される。閉鎖構造620の反対側にトラップ630が設けられ、何らかの理由でプラズマに変わらない燃料を捕捉する。
[0105] 小滴ジェネレータ626は、燃料液体(例えば溶融スズ)を収容するリザーバ601、フィルタ669、及びノズル602を備えている。ノズル602は、燃料液体の小滴をプラズマ2の形成位置の方へ放出するように構成されている。リザーバ601内の圧力と、ピエゾアクチュエータ(図示せず)によってノズルに加えられる振動との組み合わせによって、燃料液体の小滴をノズル602から放出させることができる。
[0106] 当業者に既知のように、装置とその様々なコンポーネント、及び放射ビーム20、21、26のジオメトリ及び挙動を測定及び記述するため、基準軸X、Y、及びZを規定することができる。装置の各部分において、X軸、Y軸、及びZ軸の局所基準系(local reference frame)を規定することができる。図6の例において、Z軸は、システム内の所与のポイントにおいて光軸O方向とほぼ一致し、概ねパターニングデバイス(レチクル)MAの面に垂直であると共に基板Wの面に垂直である。図6に示されているように、ソースコレクタモジュールにおいて、X軸は燃料の流れ628の方向とほぼ一致し、Y軸はX軸に直交し紙面から出ていく方向である。一方、レチクルMAを保持する支持構造MTの近傍において、X軸は、Y軸と位置合わせされたスキャン方向を概ね横断する。便宜上、図6の概略図のこのエリアでは、X軸は図示されているように紙面から出ていく方向である。これらの指定は当技術分野において従来からのものであり、本明細書でも便宜的に採用される。原理上、装置及びその挙動を記述するため任意の基準系を選択することができる。
[0107] 典型的な装置では、全体としてソースコレクタモジュール及びリソグラフィ装置500の動作に使用される多数の追加コンポーネントが存在するが、ここには図示されていない。これらには、例えばコレクタ3及び他の光学系に損傷を与えるかそれらの性能を低下させる燃料材料の堆積を防止するように、閉鎖された真空内の汚染の効果を低減又は軽減するための構成が含まれる。存在するが詳述しない他の特徴部には、リソグラフィ装置500の様々なコンポーネント及びサブシステムの制御に関与する全てのセンサ、コントローラ、及びアクチュエータがある。
[0108] 図7を参照すると、LPP EUV光源700の実施例が示されている。光源700は、リソグラフィ装置500におけるソースコレクタモジュールSOとして使用できる。更に、図1の光学パルス発生システム104は駆動レーザ715の一部とすることができる。駆動レーザ715はレーザ623(図6)として使用できる。
[0109] LPP EUV光源700は、プラズマ形成位置705のターゲット混合物714を、ビーム経路に沿ってターゲット混合物714の方へ進行する増幅光ビーム710で照射することによって形成される。図1、図2A、図2B、及び図3に関して検討されたターゲット材料、並びに図1に関して検討されたターゲットの流れ121内のターゲットは、ターゲット混合物714であるか又はターゲット混合物714を含むことができる。プラズマ形成位置705は真空チャンバ730の内部707にある。増幅光ビーム710がターゲット混合物714に当たると、ターゲット混合物714内のターゲット材料は、EUV範囲内に輝線がある元素を有するプラズマ状態に変換される。生成されたプラズマは、ターゲット混合物714内のターゲット材料の組成に応じた特定の特徴を有する。これらの特徴は、プラズマによって生成されるEUV光の波長、並びにプラズマから放出されるデブリの種類及び量を含み得る。
[0110] 光源700は供給システム725も含む。供給システム725は、液体小滴、液体流、固体粒子もしくはクラスタ、液体小滴に含まれる固体粒子、又は液体流に含まれる固体粒子の形態であるターゲット混合物714を、送出、制御、及び誘導する。ターゲット混合物714はターゲット材料を含み、これは例えば、水、スズ、リチウム、キセノン、又は、プラズマ状態に変換された場合にEUV範囲内に輝線を有する任意の材料である。例えば元素スズは、純粋なスズ(Sn)として、例えばSnBr、SnBr、SnHのようなスズ化合物として、例えばスズ-ガリウム合金、スズ-インジウム合金、スズ-インジウム-ガリウム合金、又はこれらの合金の組み合わせのようなスズ合金として、使用され得る。ターゲット混合物714は、非ターゲット粒子のような不純物も含み得る。従って、不純物が存在しない状況では、ターゲット混合物714はターゲット材料でのみ構成される。ターゲット混合物714は、供給システム725によってチャンバ730の内部707へ、更にプラズマ形成位置705へ送出される。
[0111] 光源700は駆動レーザシステム715を含み、これは、レーザシステム715の1又は複数の利得媒体内の反転分布によって増幅光ビーム710を生成する。光源700は、レーザシステム715とプラズマ形成位置705との間にビームデリバリシステムを含む。ビームデリバリシステムは、ビーム伝送システム720及びフォーカスアセンブリ722を含む。ビーム伝送システム720は、レーザシステム715から増幅光ビーム710を受光し、必要に応じて増幅光ビーム710を方向操作及び変更し、増幅光ビーム710をフォーカスアセンブリ722に出力する。フォーカスアセンブリ722は、増幅光ビーム710を受光し、ビーム710をプラズマ形成位置705に合焦する。
[0112] いくつかの実施例においてレーザシステム715は、1以上のメインパルスを提供し、場合によっては1以上のプレパルスも提供するための、1以上の光増幅器、レーザ、及び/又はランプを含み得る。1以上のプレパルスを含む実施例では、1以上のプレパルスの経路に光学パルス発生システム104のような光学パルス発生システムを配置することができる。各光増幅器は、所望の波長を高い利得で光学的に増幅することができる利得媒体、励起源、及び内部光学系を含む。光増幅器は、レーザミラー、又はレーザキャビティを形成する他のフィードバックデバイスを有する場合も有しない場合もある。従ってレーザシステム715は、レーザキャビティが存在しない場合であっても、レーザ増幅器の利得媒体における反転分布によって増幅光ビーム710を生成する。更にレーザシステム715は、レーザシステム715に充分なフィードバックを与えるレーザキャビティが存在する場合、コヒーレントなレーザビームである増幅光ビーム710を生成できる。「増幅光ビーム」という用語は、増幅されているだけで必ずしもコヒーレントなレーザ発振でないレーザシステム715からの光、及び増幅されていると共にコヒーレントなレーザ発振であるレーザシステム715からの光のうち1つ以上を包含する。
[0113] レーザシステム715における光増幅器は、利得媒体としてCOを含む充填ガスを含み、波長が約9100nm~約11000nm、特に約10600nmの光を、800以上の利得で増幅できる。レーザシステム715で使用するのに適した増幅器及びレーザは、パルスレーザデバイスを含み得る。これは例えば、DC又はRF励起によって約9300nm又は約10600nmの放射を生成し、例えば10kW以上の比較的高いパワーで、例えば40kHz以上の高いパルス繰り返し率で動作するパルスガス放電COレーザデバイスである。パルス繰り返し率は例えば50kHzとすればよい。また、レーザシステム715における光増幅器は、レーザシステム715をもっと高いパワーで動作させる場合に使用され得る水のような冷却システムも含むことができる。
[0114] 光源700は、増幅光ビーム710を通過させてプラズマ形成位置705に到達させることができるアパーチャ740を有するコレクタミラー735を含む。コレクタミラー735は例えば、プラズマ形成位置705に主焦点を有すると共に中間位置745に二次焦点(中間焦点とも呼ばれる)を有する楕円ミラーであり得る。中間位置745でEUV光は光源700から出力し、例えば集積回路リソグラフィツール(図示せず)に入力することができる。光源700は、端部が開口した中空円錐形シュラウド750(例えばガス円錐(cone))も含むことができる。これは、コレクタミラー735からプラズマ形成位置705に向かってテーパ状であり、増幅光ビーム710がプラズマ形成位置705に到達することを可能としながら、フォーカスアセンブリ722及び/又はビーム伝送システム720内に入るプラズマ生成デブリの量を低減させる。この目的のため、シュラウドにおいて、プラズマ形成位置705の方へ誘導されるガス流を提供することができる。
[0115] 光源700は、小滴位置検出フィードバックシステム756と、レーザ制御システム757と、ビーム制御システム758と、に接続されているマスタコントローラ755も含むことができる。光源700は1以上のターゲット又は小滴撮像器760を含むことができ、これは、例えばプラズマ形成位置705に対する小滴の位置を示す出力を与え、この出力を小滴位置検出フィードバックシステム756に提供する。小滴位置検出フィードバックシステム756は、例えば小滴の位置及び軌道を計算することができ、それらから小滴ごとに又は平均値として小滴位置誤差が計算され得る。これにより、小滴位置検出フィードバックシステム756は、小滴位置誤差をマスタコントローラ755に対する入力として提供する。従ってマスタコントローラ755は、例えばレーザ位置、方向、及びタイミング補正信号を、例えばレーザタイミング回路の制御に使用するためレーザ制御システム757に提供し、及び/又はビーム制御システム758に提供して、ビーム伝送システム720の増幅光ビームの位置及び整形を制御し、チャンバ730内のビーム焦点スポットの位置及び/又は集光力を変化させることができる。
[0116] 供給システム725はターゲット材料送出制御システム726を含む。ターゲット材料送出制御システム726は、マスタコントローラ755からの信号に応答して動作可能であり、例えば、ターゲット材料供給装置727によって放出される小滴の放出点を変更して、所望のプラズマ形成位置705に到達する小滴の誤差を補正する。ターゲット材料供給装置727は、接着剤234等の接着剤を使用するターゲット形成装置を含む。
[0117] 更に、光源700は光源検出器765及び770を含むことができる。これらは、限定ではないが、パルスエネルギ、波長の関数としてのエネルギ分布、特定の波長帯内のエネルギ、特定の波長帯外のエネルギ、EUV強度の角度分布、及び/又は平均パワーを含む1つ以上のEUV光パラメータを測定する。光源検出器765は、マスタコントローラ755によって使用されるフィードバック信号を発生する。フィードバック信号は、効果的かつ効率的なEUV光生成のため適切なときに適切な場所で小滴を正確に捕らえるために、例えばレーザパルスのタイミング及び焦点のようなパラメータの誤差を示すことができる。
[0118] 光源700は、光源700の様々なセクションを位置合わせするため又は増幅光ビーム710をプラズマ形成位置705へ方向操作するのを支援するために使用され得るガイドレーザ775も含むことができる。ガイドレーザ775に関連して、光源700は、フォーカスアセンブリ722内に配置されてガイドレーザ775からの光の一部と増幅光ビーム710をサンプリングするメトロロジシステム724を含む。他の実施例では、メトロロジシステム724はビーム伝送システム720内に配置される。メトロロジシステム724は、光のサブセットをサンプリング又は方向転換する光学要素を含むことができ、そのような光学要素は、ガイドレーザビーム及び増幅光ビーム710のパワーに耐えられる任意の材料から作製される。マスタコントローラ755がガイドレーザ775からのサンプリングされた光を解析し、この情報を用いてビーム制御システム758を介してフォーカスアセンブリ722内のコンポーネントを調整するので、メトロロジシステム724及びマスタコントローラ755からビーム解析システムが形成されている。
[0119] 従って、要約すると、光源700は増幅光ビーム710を生成し、これはビーム経路に沿って誘導されてプラズマ形成位置705のターゲット混合物714を照射して、混合物714内のターゲット材料を、EUV範囲内の光を放出するプラズマに変換する。増幅光ビーム710は、レーザシステム715の設計及び特性に基づいて決定される特定の波長(駆動レーザ波長とも称される)で動作する。更に、ターゲット材料がコヒーレントなレーザ光を生成するのに充分なフィードバックをレーザシステム715に与える場合、又は駆動レーザシステム715がレーザキャビティを形成する適切な光学フィードバックを含む場合、増幅光ビーム710はレーザビームであり得る。
[0120] 実施例は、以下の条項を用いて更に記載することができる。
1.極端紫外線(EUV)光源のための装置であって、
電気光学材料を含み、相互に時間的に分離した複数の光パルスを含むパルス光ビームを受光するように構成された光学変調システムと、
電気光学変調器に第1の光パルスが入射している間に電気光学材料に第1の電気パルスを印加し、電気光学材料に第2の光パルスが入射している間に電気光学材料に第2の電気パルスを印加し、電気光学材料に第1の光パルスが入射した後であって電気光学材料に第2の光パルスが入射する前に電気光学材料に中間電気パルスを印加するように、電源を制御するよう構成された制御システムと、
を備える装置。
2.電気光学材料に第1の電気パルスを印加すると電気光学材料に物理的効果が生じ、物理的効果は、電気光学材料に中間電気パルスが印加されるときに電気光学材料に存在する、条項1に記載の装置。
3.物理的効果は、電気光学材料内を進む音響波及び/又は機械的歪みを含む、条項2に記載の装置。
4.電気光学材料に中間電気パルスを印加すると物理的効果が低減する、条項2に記載の装置。
5.第1の光パルス及び第2の光パルスはパルス光ビーム内の連続した光パルスである、条項1に記載の装置。
6.制御システムは第1の電気パルスと中間電気パルスとの間の時間量を制御するように構成されている、条項1に記載の装置。
7.電気光学材料は半導体を含む、条項1に記載の装置。
8.電気光学材料は絶縁体を含む、条項1に記載の装置。
9.電気光学材料は電気光学結晶を含む、条項1に記載の装置。
10.少なくとも1つの偏光ベース光学要素を更に備える、条項1に記載の装置。
11.中間電気パルスは、第1の電気パルスによって生じた音響外乱と干渉する音響外乱を発生させる、条項1に記載の装置。
12.光学パルスを形成するための装置であって、
電気光学材料を含み、オン状態で光を透過させると共にオフ状態で光を阻止するように構成され、相互に時間的に分離した少なくとも第1の光パルス及び第2の光パルスを含むパルス光ビームを受光するように構成された光学変調システムと、
電圧源に結合された制御システムであって、
電気光学変調器に第1の光パルスが入射している間に、電圧源に、電気光学変調器をオン状態に切り換えるよう構成された第1の電圧パルスを電気光学変調器に印加させることによって第1の形成された光学パルスを発生し、
電気光学材料に中間電圧パルスを印加し、
第1の電圧パルス及び中間電圧パルスを印加した後であって電気光学材料に第2の光パルスが入射している間に、第2の電圧パルスを電気光学材料に印加することによって第2の形成された光学パルスを発生する、ように構成された制御システムと、を備え、第2の電圧パルスは電気光学変調器をオン状態に切り換えるよう構成され、電気光学材料に対する中間電圧パルスの印加によって第2の形成された光学パルスの特性が制御される、装置。
13.第2の形成された光学パルスはペデスタル部及び主要部を含み、第2の形成された光学パルスの特性はペデスタルの特性を含み、電気光学材料に対する中間電圧パルスの印加によってペデスタル部の特性が制御されるようになっている、条項12に記載の装置。
14.ペデスタル部及び主要部は時間的に連続している、条項13に記載の装置。
15.ペデスタル部の特性は、ペデスタル部の時間長、最大強度、及び/又は平均強度を含む、条項13に記載の装置。
16.電気光学材料に対する中間電圧パルスの印加によって、オフ状態で光学変調システムを透過する光漏れ光の量が変化する、条項12に記載の装置。
17.電気光学材料に対する中間電圧パルスの印加によって、オフ状態で光学変調システムを透過する光漏れ光が低減する、条項16に記載の装置。
18.制御システムは第1の時点で第1の電圧パルスを電気光学材料に印加させ、
制御システムは第1の時点の後の第2の時点で中間電圧パルスを電気光学材料に印加させ、
第2の時点及び第1の時点は遅延時間だけ時間的に分離し、
制御システムは更に、遅延時間を調整することによって第2の形成された光学パルスの特性を制御するように構成されている、条項12に記載の装置。
19.制御システムは更に、中間電圧パルスの振幅、時間長、及び位相のうち少なくとも1つを制御するように構成されている、条項18に記載の装置。
20.制御システムは更に、
ペデスタル部の測定された特性の指示を受信し、
受信した指示に基づいて中間電圧パルスの特性を調整する、
ように構成されている、条項13に記載の装置。
21.制御システムは更に、
プラズマによって生成された極端紫外線(EUV)光の量の指示を受信し、
EUV光の量の受信した指示に基づいて中間電圧パルスの特性を調整する、
ように構成されている、条項12に記載の装置。
22.中間電圧パルスの特性を調整するように構成されている制御システムは、中間電圧パルスの振幅、中間電圧パルスの時間長、中間電圧パルスの位相、及び/又は、電気光学材料に中間電圧パルスを印加する時点である第2の時点を調整するように構成された制御システムを含む、条項21に記載の装置。
23.光学パルスのペデスタルの特性を調整する方法であって、
光学変調システムに光が入射している間に光学変調システムの電気光学材料に第1の電圧パルスを印加することによって第1の光学パルスを形成することと、
第1の電圧パルスを印加した後に電気光学材料に中間電圧パルスを印加することと、
第1の電圧パルス及び中間電圧パルスの後であって電気光学材料に光が入射している間に第2の電圧パルスを電気光学材料に印加することによって第2の光学パルスを形成することと、を含み、第2の光学パルスの特性は中間電圧パルスの印加に基づいて調整される、方法。
24.第1の光学パルスを増幅して、増幅した第1の光学パルスを形成することと、
増幅した第1の光学パルスとターゲット材料との相互作用によって生成されたプラズマから放出される極端紫外線(EUV)光の量の指示を受信することと、
プラズマから放出されるEUV光の量の受信した指示に基づいて中間電圧パルスの少なくとも1つの特性を決定することと、
を更に含む、条項23に記載の方法。
25.中間電圧パルスの少なくとも1つの特性は第1の電圧パルスの印加後の時間遅延を含み、中間電圧パルスの少なくとも1つの特性を決定することは、プラズマから放出されるEUV光の量の受信した指示に基づいて時間遅延を決定することを含む、条項24に記載の方法。
26.中間電圧パルスの少なくとも1つの特性は中間電圧パルスの振幅及び/又は長さを含み、中間電圧パルスの少なくとも1つの特性を決定することは、中間電圧パルスの振幅及び/又は長さを決定することを含む、条項24に記載の方法。
27.第2の光学パルスはペデスタル部及び主要部を含み、中間電圧パルスの印加に基づいてペデスタル部の特性が調整される、条項23に記載の方法。
28.ペデスタル部は主要部と時間的に連続している、条項27に記載の方法。
29.極端紫外線(EUV)光源であって、
容器と、
容器に結合されるように構成されたターゲット材料供給装置と、
パルス光ビームを受光するよう位置決めされるように構成され、電気光学材料を含む光学変調システムと、
電圧源に結合された制御システムであって、
電圧源に複数の形成電圧パルスを電気光学材料に印加させ、複数の形成電圧パルスの各々は異なる時点で電気光学材料に印加され、
電圧源に少なくとも1つの中間電圧パルスを電気光学材料に印加させ、少なくとも1つの中間電圧パルスは複数の形成電圧パルスのうち2つの連続した形成電圧パルスの間に電気光学材料に印加される、
ように構成された制御システムと、
を備えるEUV光源。
30.ターゲット材料供給装置は容器内のターゲット領域へ複数のターゲット材料小滴を提供するように構成され、ターゲット材料小滴はターゲット送出レートでターゲット領域に到達し、制御システムは、ターゲット送出レートに依存する形成レートで電気光学材料に形成電圧パルスを印加する、条項29に記載のEUV光源。
31.中間電圧パルスの特徴は振幅及び/又は位相を含み、
制御システムは更に、
形成レートに関連付けて記憶された振幅及び/又は位相にアクセスし、
電圧源に、アクセスした振幅及び/又は位相で中間電圧パルスを生成させる、
ように構成されている、条項28に記載のEUV光源。
32.制御システムは更に、形成電圧パルスの1つと中間電圧パルスの1つとの間の時間遅延を制御するように構成されている、条項29に記載のEUV光源。
33.更に光学増幅器を備え、
電気光学材料に形成電圧パルスを印加するたびに光学パルスが形成され、
形成された光学パルスは光学増幅器によって増幅されて増幅光学パルスを形成し、
制御システムは更に、容器内でプラズマによって生成されたEUV光の量を測定するよう構成されたメトロロジシステムに結合するように構成され、
プラズマは、形成された増幅光学パルスでターゲット材料を照射することによって形成され、
制御システムは、メトロロジシステムから測定されたEUV光の量を受信するように構成され、
制御システムは、測定されたEUV光の量に基づいて中間電圧パルスの1つ以上の特徴を変更するように構成されている、条項29に記載のEUV光源。
34.中間電圧パルスの1つ以上の特徴は、中間電圧パルスの振幅、中間電圧パルスの時間長、中間電圧パルスの位相、及び/又は最新の形成電圧パルスの印加後の時間遅延を含む、条項33に記載のEUV光源。
[0121] 他の実施例も特許請求の範囲内である。

Claims (34)

  1. 極端紫外線(EUV)光源のための装置であって、
    電気光学材料を含み、相互に時間的に分離した複数の光パルスを含むパルス光ビームを受光するように構成された光学変調システムと、
    前記電気光学変調器に第1の光パルスが入射している間に前記電気光学材料に第1の電気パルスを印加し、前記電気光学材料に第2の光パルスが入射している間に前記電気光学材料に第2の電気パルスを印加し、前記電気光学材料に前記第1の光パルスが入射した後であって前記電気光学材料に前記第2の光パルスが入射する前に前記電気光学材料に中間電気パルスを印加するように、電源を制御するよう構成された制御システムと、
    を備える装置。
  2. 前記電気光学材料に前記第1の電気パルスを印加すると前記電気光学材料に物理的効果が生じ、前記物理的効果は、前記電気光学材料に前記中間電気パルスが印加されるときに前記電気光学材料に存在する、請求項1に記載の装置。
  3. 前記物理的効果は、前記電気光学材料内を進む音響波及び/又は機械的歪みを含む、請求項2に記載の装置。
  4. 前記電気光学材料に前記中間電気パルスを印加すると前記物理的効果が低減する、請求項2に記載の装置。
  5. 前記第1の光パルス及び前記第2の光パルスは前記パルス光ビーム内の連続した光パルスである、請求項1に記載の装置。
  6. 前記制御システムは前記第1の電気パルスと前記中間電気パルスとの間の時間量を制御するように構成されている、請求項1に記載の装置。
  7. 前記電気光学材料は半導体を含む、請求項1に記載の装置。
  8. 前記電気光学材料は絶縁体を含む、請求項1に記載の装置。
  9. 前記電気光学材料は電気光学結晶を含む、請求項1に記載の装置。
  10. 少なくとも1つの偏光ベース光学要素を更に備える、請求項1に記載の装置。
  11. 前記中間電気パルスは、前記第1の電気パルスによって生じた音響外乱と干渉する音響外乱を発生させる、請求項1に記載の装置。
  12. 光学パルスを形成するための装置であって、
    電気光学材料を含み、オン状態で光を透過させると共にオフ状態で光を阻止するように構成され、相互に時間的に分離した少なくとも第1の光パルス及び第2の光パルスを含むパルス光ビームを受光するように構成された光学変調システムと、
    電圧源に結合された制御システムであって、
    前記電気光学変調器に前記第1の光パルスが入射している間に、前記電圧源に、前記電気光学変調器を前記オン状態に切り換えるよう構成された第1の電圧パルスを前記電気光学変調器に印加させることによって第1の形成された光学パルスを発生し、
    前記電気光学材料に中間電圧パルスを印加し、
    前記第1の電圧パルス及び前記中間電圧パルスを印加した後であって前記電気光学材料に前記第2の光パルスが入射している間に、第2の電圧パルスを前記電気光学材料に印加することによって第2の形成された光学パルスを発生する、ように構成された制御システムと、を備え、前記第2の電圧パルスは前記電気光学変調器を前記オン状態に切り換えるよう構成され、前記電気光学材料に対する前記中間電圧パルスの前記印加によって前記第2の形成された光学パルスの特性が制御される、装置。
  13. 前記第2の形成された光学パルスはペデスタル部及び主要部を含み、前記第2の形成された光学パルスの前記特性は前記ペデスタルの特性を含み、前記電気光学材料に対する前記中間電圧パルスの前記印加によって前記ペデスタル部の特性が制御されるようになっている、請求項12に記載の装置。
  14. 前記ペデスタル部及び前記主要部は時間的に連続している、請求項13に記載の装置。
  15. 前記ペデスタル部の前記特性は、前記ペデスタル部の時間長、最大強度、及び/又は平均強度を含む、請求項13に記載の装置。
  16. 前記電気光学材料に対する前記中間電圧パルスの前記印加によって、前記オフ状態で前記光学変調システムを透過する光漏れ光の量が変化する、請求項12に記載の装置。
  17. 前記電気光学材料に対する前記中間電圧パルスの前記印加によって、前記オフ状態で前記光学変調システムを透過する光漏れ光が低減する、請求項16に記載の装置。
  18. 前記制御システムは第1の時点で前記第1の電圧パルスを前記電気光学材料に印加させ、
    前記制御システムは前記第1の時点の後の第2の時点で前記中間電圧パルスを前記電気光学材料に印加させ、
    前記第2の時点及び前記第1の時点は遅延時間だけ時間的に分離し、
    前記制御システムは更に、前記遅延時間を調整することによって前記第2の形成された光学パルスの特性を制御するように構成されている、請求項12に記載の装置。
  19. 制御システムは更に、前記中間電圧パルスの振幅、時間長、及び位相のうち少なくとも1つを制御するように構成されている、請求項18に記載の装置。
  20. 前記制御システムは更に、
    前記ペデスタル部の測定された特性の指示を受信し、
    前記受信した指示に基づいて前記中間電圧パルスの特性を調整する、
    ように構成されている、請求項13に記載の装置。
  21. 前記制御システムは更に、
    プラズマによって生成された極端紫外線(EUV)光の量の指示を受信し、
    前記EUV光の量の前記受信した指示に基づいて前記中間電圧パルスの特性を調整する、
    ように構成されている、請求項12に記載の装置。
  22. 前記中間電圧パルスの特性を調整するように構成されている前記制御システムは、前記中間電圧パルスの振幅、前記中間電圧パルスの時間長、前記中間電圧パルスの位相、及び/又は、前記電気光学材料に前記中間電圧パルスを印加する時点である第2の時点を調整するように構成された前記制御システムを含む、請求項21に記載の装置。
  23. 光学パルスの特性を調整する方法であって、
    光学変調システムに光が入射している間に前記光学変調システムの電気光学材料に第1の電圧パルスを印加することによって第1の光学パルスを形成することと、
    前記第1の電圧パルスを印加した後に前記電気光学材料に中間電圧パルスを印加することと、
    前記第1の電圧パルス及び前記中間電圧パルスの後であって前記電気光学材料に光が入射している間に第2の電圧パルスを前記電気光学材料に印加することによって第2の光学パルスを形成することと、を含み、前記第2の光学パルスの特性は前記中間電圧パルスの前記印加に基づく、方法。
  24. 前記第1の光学パルスを増幅して、増幅した第1の光学パルスを形成することと、
    前記増幅した第1の光学パルスとターゲット材料との相互作用によって生成されたプラズマから放出される極端紫外線(EUV)光の量の指示を受信することと、
    前記プラズマから放出される前記EUV光の量の前記受信した指示に基づいて前記中間電圧パルスの少なくとも1つの特性を決定することと、
    を更に含む、請求項23に記載の方法。
  25. 前記中間電圧パルスの前記少なくとも1つの特性は前記第1の電圧パルスの前記印加後の時間遅延を含み、前記中間電圧パルスの少なくとも1つの特性を決定することは、前記プラズマから放出される前記EUV光の量の前記受信した指示に基づいて前記時間遅延を決定することを含む、請求項24に記載の方法。
  26. 前記中間電圧パルスの前記少なくとも1つの特性は前記中間電圧パルスの振幅及び/又は長さを含み、前記中間電圧パルスの少なくとも1つの特性を決定することは、前記中間電圧パルスの前記振幅及び/又は長さを決定することを含む、請求項24に記載の方法。
  27. 前記第2の光学パルスはペデスタル部及び主要部を含み、前記中間電圧パルスの前記印加に基づいて前記ペデスタル部の特性が調整される、請求項23に記載の方法。
  28. 前記ペデスタル部は前記主要部と時間的に連続している、請求項27に記載の方法。
  29. 極端紫外線(EUV)光源であって、
    容器と、
    前記容器に結合されるように構成されたターゲット材料供給装置と、
    パルス光ビームを受光するよう位置決めされるように構成され、電気光学材料を含む光学変調システムと、
    電圧源に結合された制御システムであって、
    前記電圧源に複数の形成電圧パルスを前記電気光学材料に印加させ、前記複数の形成電圧パルスの各々は異なる時点で前記電気光学材料に印加され、
    前記電圧源に少なくとも1つの中間電圧パルスを前記電気光学材料に印加させ、前記少なくとも1つの中間電圧パルスは前記複数の形成電圧パルスのうち2つの連続した形成電圧パルスの間に前記電気光学材料に印加される、
    ように構成された制御システムと、
    を備えるEUV光源。
  30. 前記ターゲット材料供給装置は前記容器内のターゲット領域へ複数のターゲット材料小滴を提供するように構成され、前記ターゲット材料小滴はターゲット送出レートで前記ターゲット領域に到達し、前記制御システムは、前記ターゲット送出レートに依存する形成レートで前記電気光学材料に前記形成電圧パルスを印加する、請求項29に記載のEUV光源。
  31. 前記中間電圧パルスの特徴は振幅及び/又は位相を含み、
    前記制御システムは更に、
    前記形成レートに関連付けて記憶された振幅及び/又は位相にアクセスし、
    前記電圧源に、前記アクセスした振幅及び/又は位相で前記中間電圧パルスを生成させる、
    ように構成されている、請求項29に記載のEUV光源。
  32. 前記制御システムは更に、前記形成電圧パルスの1つと前記中間電圧パルスの1つとの間の時間遅延を制御するように構成されている、請求項29に記載のEUV光源。
  33. 更に光学増幅器を備え、
    前記電気光学材料に形成電圧パルスを印加するたびに光学パルスが形成され、
    前記形成された光学パルスは前記光学増幅器によって増幅されて増幅光学パルスを形成し、
    前記制御システムは更に、前記容器内でプラズマによって生成されたEUV光の量を測定するよう構成されたメトロロジシステムに結合するように構成され、
    前記プラズマは、前記形成された増幅光学パルスで前記ターゲット材料を照射することによって形成され、
    前記制御システムは、前記メトロロジシステムから前記測定されたEUV光の量を受信するように構成され、
    前記制御システムは、前記測定されたEUV光の量に基づいて前記中間電圧パルスの1つ以上の特徴を変更するように構成されている、請求項29に記載のEUV光源。
  34. 前記中間電圧パルスの前記1つ以上の特徴は、前記中間電圧パルスの振幅、前記中間電圧パルスの時間長、前記中間電圧パルスの位相、及び/又は最新の形成電圧パルスの印加後の時間遅延を含む、請求項33に記載のEUV光源。
JP2021514365A 2018-10-18 2019-10-16 光学変調器の制御 Pending JP2022503714A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862747518P 2018-10-18 2018-10-18
US62/747,518 2018-10-18
PCT/US2019/056605 WO2020081734A1 (en) 2018-10-18 2019-10-16 Control of optical modulator

Publications (1)

Publication Number Publication Date
JP2022503714A true JP2022503714A (ja) 2022-01-12

Family

ID=68468815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021514365A Pending JP2022503714A (ja) 2018-10-18 2019-10-16 光学変調器の制御

Country Status (6)

Country Link
JP (1) JP2022503714A (ja)
KR (1) KR20210076911A (ja)
CN (1) CN112867964A (ja)
NL (1) NL2024009A (ja)
TW (1) TWI825198B (ja)
WO (1) WO2020081734A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050094678A1 (en) * 2003-11-04 2005-05-05 Yingyin Zou Electro-optic Q-switch
JP2007310104A (ja) * 2006-05-17 2007-11-29 Nippon Telegr & Teleph Corp <Ntt> 電気光学素子およびその製造方法
JP2010519783A (ja) * 2007-02-26 2010-06-03 サイマー インコーポレイテッド レーザ生成プラズマeuv光源
JP2013093308A (ja) * 2011-10-05 2013-05-16 Gigaphoton Inc 極端紫外光生成装置および極端紫外光生成方法
WO2014192872A1 (ja) * 2013-05-31 2014-12-04 ギガフォトン株式会社 極端紫外光生成システム
DE102016122705B3 (de) * 2016-11-24 2018-03-29 Trumpf Scientific Lasers Gmbh + Co. Kg Verfahren zur anregung eines kristalls einer pockels-zelle und verstärkungseinheit
JP2020519934A (ja) * 2017-05-10 2020-07-02 エーエスエムエル ネザーランズ ビー.ブイ. レーザ生成プラズマ源

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7196772B2 (en) * 2003-11-07 2007-03-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP3018774A1 (en) * 2014-11-04 2016-05-11 High Q Laser GmbH Method for generating a burst mode by means of switching a Pockels cell
US9832855B2 (en) * 2015-10-01 2017-11-28 Asml Netherlands B.V. Optical isolation module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050094678A1 (en) * 2003-11-04 2005-05-05 Yingyin Zou Electro-optic Q-switch
JP2007310104A (ja) * 2006-05-17 2007-11-29 Nippon Telegr & Teleph Corp <Ntt> 電気光学素子およびその製造方法
JP2010519783A (ja) * 2007-02-26 2010-06-03 サイマー インコーポレイテッド レーザ生成プラズマeuv光源
JP2013093308A (ja) * 2011-10-05 2013-05-16 Gigaphoton Inc 極端紫外光生成装置および極端紫外光生成方法
WO2014192872A1 (ja) * 2013-05-31 2014-12-04 ギガフォトン株式会社 極端紫外光生成システム
DE102016122705B3 (de) * 2016-11-24 2018-03-29 Trumpf Scientific Lasers Gmbh + Co. Kg Verfahren zur anregung eines kristalls einer pockels-zelle und verstärkungseinheit
JP2019536117A (ja) * 2016-11-24 2019-12-12 トルンプフ サイエンティフィック レーザーズ ゲゼルシャフト ミットベシュレンクテル ハフツング アンド コンパニー コマンディートゲゼルシャフトTrumpf Scientific Lasers GmbH+Co.KG ポッケルスセルの結晶の励起
JP2020519934A (ja) * 2017-05-10 2020-07-02 エーエスエムエル ネザーランズ ビー.ブイ. レーザ生成プラズマ源

Also Published As

Publication number Publication date
TWI825198B (zh) 2023-12-11
KR20210076911A (ko) 2021-06-24
CN112867964A (zh) 2021-05-28
TW202034092A (zh) 2020-09-16
NL2024009A (en) 2020-05-07
WO2020081734A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
KR102088905B1 (ko) 구동기 유도 노즐 세정 기능을 갖는 방울 생성기
US11856681B2 (en) Target delivery system
TWI788814B (zh) 極紫外線(euv)光學源、用於euv光源之裝置、及光學隔離方法
JP7225224B2 (ja) プラズマをモニタするためのシステム
JP7356439B2 (ja) 光ビームの空間変調
US10401704B2 (en) Compensating for a physical effect in an optical system
US20160087389A1 (en) Laser system, extreme ultraviolet light generation system, and method of controlling laser apparatus
US10887975B2 (en) Optical pulse generation for an extreme ultraviolet light source
WO2014203804A1 (ja) 極端紫外光生成システム
TW202036174A (zh) 用於極紫外線光學微影系統的劑量控制
NL2025612B1 (en) Extreme ultraviolet light generation system and electronic device manufacturing method
US11006511B2 (en) Laser device and extreme ultraviolet light generation device using delay determination at a shutter
TWI825198B (zh) 極紫外線(euv)光源及用於euv光源之設備、用於形成光學脈衝之設備及調整光學脈衝之性質的方法
EP3949692A1 (en) Controlling conversion efficiency in an extreme ultraviolet light source
KR20210078494A (ko) 광 방출 모니터링
NL2020778A (en) Laser produced plasma source
NL2034792A (en) Euv light generation system and electronic device manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240329