WO2016116195A1 - Verfahren zum erzeugen einer kohlenstoffschicht auf einer ausgangsstruktur und mikroelektromechanische oder halbleiter-struktur - Google Patents

Verfahren zum erzeugen einer kohlenstoffschicht auf einer ausgangsstruktur und mikroelektromechanische oder halbleiter-struktur Download PDF

Info

Publication number
WO2016116195A1
WO2016116195A1 PCT/EP2015/077240 EP2015077240W WO2016116195A1 WO 2016116195 A1 WO2016116195 A1 WO 2016116195A1 EP 2015077240 W EP2015077240 W EP 2015077240W WO 2016116195 A1 WO2016116195 A1 WO 2016116195A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
carbon
starting
layer
lpcvd process
Prior art date
Application number
PCT/EP2015/077240
Other languages
German (de)
English (en)
French (fr)
Inventor
Friedjof Heuck
Sabine Nagel
Franziska Rohlfing
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP15797674.7A priority Critical patent/EP3248211A1/de
Priority to CN201580074163.7A priority patent/CN107112202A/zh
Publication of WO2016116195A1 publication Critical patent/WO2016116195A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • B81C1/00373Selective deposition, e.g. printing or microcontact printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition

Definitions

  • M EMS micro-Jilektro-Mechanical Sensor
  • LPCVD Low Pressure Chemical Vapor Deposition refers to a chemical process for the production of layers on substrates in the production of
  • micromechanical sensors or semiconductor structures are micromechanical sensors or semiconductor structures.
  • the LPCVD process according to the invention makes it possible to deposit thin carbon layers on a layer of silicon dioxide (SiO 2 ).
  • the main idea of this LPCVD process is that in addition to the carbon precursor chlorine and silicon is used. As a result, no silicon and silicon-carbon compound separates, but a pure carbon layer from the selected process parameters on the Si0 2 , despite the silicon content in the process gas atmosphere.
  • this process is not a plasma-assisted process, but a purely thermally activated process, which advantageously the deposition
  • metal catalysts for the decomposition of carbon precursors as is the case for known carbon deposition processes.
  • the invention is also particularly suitable for, in particular automated, mass production with high reliability and process reliability and allows low reject rates.
  • the invention advantageously enables a planar and targeted deposition of a carbon layer on defined and selectable positions of a semiconductor material wafer.
  • silicon dioxide Si0 2
  • the carbon layer can be mechanically and electrically contacted in situ. It is an LPCVD process that requires no special system modifications and can be carried out with established process gases.
  • the carbon layers produced by the process according to the invention have well-known, advantageous properties. These are u.a. a high electrical conductivity, high mobility of the charge carriers and a high mechanical strength of the few nanometers thick carbon layer.
  • An advantageous property consists in a high electrical conductivity of the carbon layer combined with a high mobility of the charge carriers.
  • the layers are suitable, for example, for the production of THz transistors, capacitors with high energy density and for storing large amounts of energy, so-called supercaps and batteries, the further Hall effect-based magnetic sensors and transparent interconnects or electrodes, for example for displays.
  • the generated carbon layers continue to allow a chemical
  • the carbon layers produced also have a high mechanical strength at low density with additional piezoresistive or also
  • piezoelectric properties are thus suitable, for example, for use in spring structures for resonators, e.g. Micromirror or
  • the method according to the invention comprises the steps
  • the LPCVD process is under certain, deemed favorable
  • Process conditions namely at a process temperature in a range between 700 ° C and 1300 ° C and at a process pressure in a range between 1 00 mTorr and 5000 mTorr is performed.
  • a suitable combination of parameters is, for example, a process temperature of 1020 ° C with a process pressure of 875 mTorr.
  • the starting structure in addition to the sections consisting of silicon dioxide, may have further sections, which may be e.g. made of silicon (Si) and / or silicon carbide (SiC).
  • Si silicon
  • SiC silicon carbide
  • Hydrofluoric acid can be advantageously used for gas phase etching.
  • methyltrichlorosilane can be advantageously used as starting material.
  • methyltrichlorosilane can be advantageously used as starting material.
  • silane, methane and hydrogen chloride can be used.
  • other starting materials can be used, which among the Process conditions of the LPCVD process are comparable sources of carbon, silicon and chlorine.
  • additional gases for example hydrogen as a carrier gas or ammonia, can be added as a source for doping the SiC layer.
  • the invention is directed to a micromechanical structure or a
  • Figure 1 is a schematic representation of a section through the layer structure of an inventively generated M EMS or semiconductor structure, which represents the initial structure for the selective carbon capture.
  • FIG. 2 shows a schematic representation of a section through the layer structure of an M EMS or semiconductor structure produced according to the invention as an example of the variant in which silicon carbide (SiC) support structures were produced in addition to the carbon layer,
  • SiC silicon carbide
  • Figure 3 is a schematic representation of the structure of Figure 2, in the
  • Figure 4 is a schematic representation of a section through a with the
  • inventive method produced semiconductor structure using the example of a
  • the present invention utilizes an LPCVD process to deposit thin carbon layers, which are, for example but not necessarily, crystalline and are on a layer of SiO 2.
  • Essential in the deposition of this layer is that no pure carbon precursor (carbon precursor) is used, but a starting material or a starting material mixture is used, the or In addition to carbon and typically hydrogen, the process also provides chlorine and silicon. This can be achieved by using a single precursor, such as methyltrichlorosilane. It is also conceivable to use about three different precursors, each of which represents a source of carbon, silicon and chlorine, such as silane, methane and hydrogen chloride. It is essential that starting materials are used which, under the process conditions of the LPCVD process, are sources for the required elements of carbon, chlorine and silicon concentration. With, for example, this aforementioned gas combination silane, methane and
  • Hydrogen chloride can be deposited in the LPCVD process on a simple silicon substrate thin layers of silicon carbide (SiC). However, if a layer of SiO 2 is present on the substrate, no SiC layer grows thereon under suitable process conditions, but instead a thin, pure carbon layer which, with suitably selected process parameters, sets in a desired carbon configuration.
  • SiC silicon carbide
  • Methytricholorsilan is still no silicon compound deposited on the SiO 2 layer, but a carbon layer. To achieve this selective process, moderate to high process temperatures (700 - 1300 ° C) and low process pressures (100 - 5000 mTorr) are required.
  • the selectivity of the process over SiO 2 can advantageously also be used to the effect that on a starting layer of z.
  • Si, SiC another layer
  • FIG. 1 schematically and by way of example shows an initial structure 1 which is to be processed by the method according to the invention.
  • the output structure 1 has a substrate 10 of, for example, silicon, over which a so-called start layer 11, for example consisting of silicon (Si) or silicon carbide (SiC), is arranged. Sectionally or in sections, the start layer 11 is covered with a layer of silicon oxide (SiO 2).
  • starting structure 1 is introduced into the process space of an LPCVD installation in which the subsequent LPCVD process is carried out.
  • the appropriate process parameters such as, in particular, the process pressure and process temperature are set in the abovementioned range, as well as the aforementioned provided (step 32) process chemicals (step 33).
  • the semiconductor structure 1 'produced with the described LPCVD process comprises, in turn, the substrate 10, above which the start layer 11 and, in sections, the regions 12-x of silicon oxide which are mounted above it.
  • silicon carbide portions 13-1, 13-2 and 13-3 are grown on the portions of the start layer located between the SiO 2 portions 12-x and immediately exposed to the LPCVD process.
  • a layer 14-1, 14-2, 14-3 and 14-4 (hereinafter collectively 14-x) were respectively deposited from carbon.
  • the silicon carbide layer and the carbon layer have very different thicknesses depending on the time of deposition.
  • the carbon layers are only a few atomic layers a few nm thick ( ⁇ 20 nm, with process times of 60 min), the silicon carbide layers of the same process are several hundred nm thick.
  • the resistivity of the silicon carbide layer is from the doping, by an addition of ammonia, depending, but it will reach no values less 10Ohmcm.
  • the carbon layer may have a resistivity of 10 ohmcm, with a high degree of crystallinity.
  • the carbon layers 14-x are mechanically and electrically connected to the respective adjacent silicon carbide sections 13-x.
  • the silicon carbide layers or sections 13-1, 13-2, 13-3 can serve as supports for the respectively adjacent carbon layers 14-x, if these are used in a subsequent example
  • the existence of an SiO 2 surface 13-x is essential, the layer thickness of which is irrelevant. This can, for example, be advantageously used to use extremely thin SiO 2 layers, for example in function as gate oxides.
  • Step 35 is omitted to obtain the gate oxide.
  • This layer 22-x is patterned to provide electrical wiring and the contacts for drain 23-1, source 23-2, and gate region 22-2. Subsequently, a thin SiO 2 layer 25 over the
  • Gate 22-2 applied.
  • the subsequent selective structuring according to the invention makes it possible for a carbon layer 24 to be formed on the gate oxide 25, which on the one hand constitutes the channel of the transistor 2 and, secondly, for the carbon layer to be drained via the depositing SiC 23-1 and 23-2 Source contacted.
  • the channel on the surface and not the gate electrode In contrast to the normal transistors here lies the channel on the surface and not the gate electrode.
  • sensors can be in this Configuration next to the channel-gate potential, additionally sense effects, influence conductivity in channel 24.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
PCT/EP2015/077240 2015-01-22 2015-11-20 Verfahren zum erzeugen einer kohlenstoffschicht auf einer ausgangsstruktur und mikroelektromechanische oder halbleiter-struktur WO2016116195A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15797674.7A EP3248211A1 (de) 2015-01-22 2015-11-20 Verfahren zum erzeugen einer kohlenstoffschicht auf einer ausgangsstruktur und mikroelektromechanische oder halbleiter-struktur
CN201580074163.7A CN107112202A (zh) 2015-01-22 2015-11-20 用于在原始结构上生成碳层的方法以及微机电或半导体结构

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015201048.1A DE102015201048A1 (de) 2015-01-22 2015-01-22 Verfahren zum Erzeugen einer Kohlenstoffschicht auf einer Ausgangsstruktur und Mikroelektromechanische oder Halbleiter-Struktur
DE102015201048.1 2015-01-22

Publications (1)

Publication Number Publication Date
WO2016116195A1 true WO2016116195A1 (de) 2016-07-28

Family

ID=54608536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/077240 WO2016116195A1 (de) 2015-01-22 2015-11-20 Verfahren zum erzeugen einer kohlenstoffschicht auf einer ausgangsstruktur und mikroelektromechanische oder halbleiter-struktur

Country Status (4)

Country Link
EP (1) EP3248211A1 (zh)
CN (1) CN107112202A (zh)
DE (1) DE102015201048A1 (zh)
WO (1) WO2016116195A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110079996B (zh) * 2019-05-24 2021-08-13 中国人民解放军国防科技大学 一种碳化硅纤维表面缺陷的修复方法及其修复后碳化硅纤维

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080197384A1 (en) * 2007-02-21 2008-08-21 Jessica Hartwich Field Effect Transistor Arrangement
US20100035419A1 (en) * 2008-08-11 2010-02-11 International Business Machines Corporation PATTERN INDEPENDENT Si:C SELECTIVE EPITAXY

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8361813B1 (en) * 2011-12-09 2013-01-29 Intermolecular, Inc. Method for generating graphene structures
CN103311104B (zh) * 2013-06-13 2016-01-27 苏州大学 一种石墨烯的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080197384A1 (en) * 2007-02-21 2008-08-21 Jessica Hartwich Field Effect Transistor Arrangement
US20100035419A1 (en) * 2008-08-11 2010-02-11 International Business Machines Corporation PATTERN INDEPENDENT Si:C SELECTIVE EPITAXY

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GUPTA A ET AL: "Selective epitaxy and lateral overgrowth of 3C-SiC on Si - A review", PROGRESS IN CRYSTAL GROWTH AND CHARACTERIZATION OF MATERIALS, ELSEVIER PUBLISHING, BARKING, GB, vol. 51, no. 1-3, January 2005 (2005-01-01), pages 43 - 69, XP027827904, ISSN: 0960-8974, [retrieved on 20050101] *
J. ELECTROCHEM. SOC., vol. 133, no. 2, 1986, pages 379 - 383
LATHA H K E ET AL: "Microstructure and electrical properties of nitrogen doped 3C-SiC thin films deposited using methyltrichlorosi", MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, ELSEVIER SCIENCE PUBLISHERS B.V., BARKING, UK, vol. 29, 14 January 2014 (2014-01-14), pages 117 - 123, XP029108879, ISSN: 1369-8001, DOI: 10.1016/J.MSSP.2013.12.017 *
OHSHITA Y ET AL: "LOW-TEMPERATURE AND SELECTIVE GROWTH OF -SIC USING THE SIH2CL2//C3H8/H2/HCL GAS SYSTEM", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS, US, vol. 66, no. 9, November 1989 (1989-11-01), pages 4535 - 4537, XP000073135, ISSN: 0021-8979, DOI: 10.1063/1.343922 *

Also Published As

Publication number Publication date
CN107112202A (zh) 2017-08-29
EP3248211A1 (de) 2017-11-29
DE102015201048A1 (de) 2016-07-28

Similar Documents

Publication Publication Date Title
DE19680590B4 (de) Verfahren zur Herstellung von Beschleunigungssensoren
DE69720249T2 (de) Atomare drähte von grosser länge und stabilität und verfahren zum herstellen dieser drähte
EP0594030A2 (de) Verfahren zur Herstellung eines Wafers mit einer monokristallinen Siliciumcarbidschicht
DE10055421A1 (de) Verfahren zur Erzeugung einer mikromechanischen Struktur und mikromechanische Struktur
DE102013209266A1 (de) Bauelement mit einem Hohlraum
DE102012209706B4 (de) Verfahren zur Herstellung von zwei Bauelement-Wafern aus einem einzelnen Basissubstrat durch Anwendung eines gesteuerten Abspaltprozesses
DE102013209513B4 (de) Abtrennen unter Verwendung von Teilbereichen einer Stressorschicht
EP3248211A1 (de) Verfahren zum erzeugen einer kohlenstoffschicht auf einer ausgangsstruktur und mikroelektromechanische oder halbleiter-struktur
DE60318545T2 (de) Verfahren zum Freisetzen von mikrohergestellten Oberflächenstrukturen in einem Epitaxiereaktor
DE102004010295A1 (de) Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren
EP1852901B1 (de) Verfahren zur Herstellung einer Schichtenstruktur
DE4445177C2 (de) Verfahren zur Herstellung mikromechanischer Bauelemente mit freistehenden Mikrostrukturen
WO1999063582A2 (de) Verfahren zum herstellen von halbleiterbauelementen
WO2017121535A1 (de) Verfahren zum herstellen eines mehrschichtigen mems-bauelements und entsprechendes mehrschichtiges mems-bauelement
DE102012112989A1 (de) Verfahren zum Aufbringen einer Temporärbondschicht
DE10102993B4 (de) Herstellungsverfahren für ein mikromechanisches Bauelement
DE102007001130A1 (de) Verfahren zum Herstellen einer Durchkontaktierung in einer Schicht und Anordnung mit einer Schicht mit Durchkontaktierung
DE102013104663A1 (de) Haltestruktur für eine Barrierenschicht einer Halbleitervorrichtung
DE112010001934B4 (de) Halbleiterbauelement und Verfahren zu seiner Herstellung
EP0793736B1 (de) Verfahren zur herstellung mikromechanischer bauelemente mit freistehenden mikrostrukturen oder membranen
EP2150488A2 (de) Verfahren zur herstellung eines mikromechanischen bauelements mit auffüllschicht und maskenschicht
WO2020078739A1 (de) Mikroelektromechanische struktur mit einem, in einer kaverne der mikroelektromechanischen struktur angeordneten funktionselement
EP3172166A1 (de) Verfahren zum wachstum von vertikal ausgerichteten einwandigen kohlenstoffnanoröhren mit gleichen elektronischen eigenschaften sowie zum vervielfältigen von einwandigen kohlenstoffnanoröhren mit gleichen elektronischen eigenschaften
US7176540B2 (en) Method for producing micromechanical structures and a micromechanical structure
DE102017125221A1 (de) Verfahren und Vorrichtung zur Entfernung von Verunreinigungen aus Chlorsilanen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15797674

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015797674

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015797674

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE